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Abstract  

This dissertation presents Vtrace (from the words ‘verify trace’). Vtrace is a tool which takes 

traces from an abstract model of a Go program and determines whether these traces 

correspond to real errors in the original program. Vtrace makes use of Uppaal to generate 

traces through the abstract model, and Toph for Go-to-Uppaal translation. To verify traces, 

Vtrace automatically builds and runs deterministic tests for each trace and can force Uppaal 

to exhaustively regenerates new traces until an error is confirmed real.  

Vtrace presents the output of any tests to the user in the form of readable log files, allowing 

the user to see the exact execution of the program which led to the error (complete with 

concurrent goroutine interleavings). 

Vtrace is shown to be capable of finding errors in small Go programs but struggles to deal 

with programs where shared memory is used across multiple goroutines. Evaluation also 

shows that performance scales quite poorly, and that this tool is realistically unsuitable for 

large-scale programs.  
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1. Introduction  

1.1 Overview: 
Section 1 of this dissertation is an introduction, to introduce the reader to the Go 

programming language, familiarize the reader with the idea of trace reconstruction, highlight 

the value that Vtrace brings, and give a summary of the overall contributions of this project. 

Section 2 of this dissertation contains details on background of this project, covering some of 

the important tools used as part of this project, as well as some of the related research in the 

field of trace reconstruction. 

Section 3 explains the methodology behind this project, firstly giving an overview of the 

entire algorithm used, before afterward going into detail on each of the separate 

components. 

Section 4 of this dissertation describes the implementation of this algorithm, going into detail 

on all major parts of the implementation, with example code to help where needed. 

Section 5 covers the evaluation of Vtrace, explaining how and why performance scales the 

way that it does at each part of the algorithm, as well as covering the impact of some of the 

optimisations made.  

Section 6 goes into detail about the limitations of the implementation and offers potential 

solutions in future work. 

Section 7 is a short conclusion on the entire project. 

concurrency and channel operations in Go. 

The Go programming language was released in 2009, with work on the language design 

starting at Google in 20071. With the prevalence of multicore systems and the increasing 

need to write safe, simple concurrent code in large scale systems, Go was designed to allow 

concurrency to be introduced into a program with ease. It features CSP-style concurrency 

(communicating sequential processes), with the ‘go’ keyword being used to run a function 

call concurrently in a ‘goroutine’ – a lightweight user-space thread, managed by the Go 

runtime scheduler. 

For example, the line:  

go serveConnection(conn) 

will run the function serveConnection with the argument ‘conn’ in a concurrent goroutine. 

Go also offers channels, which can send values to other goroutines or receive values from 

other goroutines. The use of channels for communication between goroutines is highly 

encouraged, and idiomatic Go code tends to make use of channels to share information, 

rather than trying to synchronise reads or writes to some shared memory location. 

For example, a goroutine X that executes the line: 

channelA <- result 

will try to send the value of the result variable into channelA. 

If the channel is buffered (meaning that it can store a buffer of sent items), then X will 

continue past this line, but if the channel is unbuffered, then this line will block until another 

 
1 Go FAQ, https://golang.org/doc/faq (last accessed 2021-02-14) 

https://golang.org/doc/faq
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goroutine tries to receive from the same channel. To continue the example, when a separate 

goroutine Y executes the line: 

resultX := <- channelA 

This line receives from the channelA, and assigns the value received from the channelA to 

the variable resultX. After this line, both goroutine X and goroutine Y get unblocked and can 

progress. 

State spaces, model abstractions and goal of trace reconstruction: 

Concurrent systems are notoriously difficult to manually analyse. As the number of 

concurrent actors increases, so does the number of possible states that the program can 

have at any point in time. This complexity makes concurrent systems susceptible to reaching 

unintended/bad states (such as deadlocks or runtime errors). Additionally, unless constant 

logging is done for each concurrent actor, if a program is found in a bad state it can be 

difficult to determine the exact sequence of concurrent interleavings which produced this 

state.  

To check for errors before a program is run, a model checker can be used. This takes a 

representation of the source program (which is abstracted to increases verification speed) 

and will provide a trace (a sequence of states and state transitions) that leads to a bad state 

when possible. However, use of abstract model for this verification means that traces can be 

reported which would not be possible in the source program. 

Prata in [1] describes the ‘state’ of a program as the “set of values of all of the variables at 

any given point in program execution”. From this, the ‘state space’ of a program is defined as 

the set of all possible states that a program can have. It is clear then, that as the number of 

variables in a program increases, the size of the state space will increase exponentially. This 

‘state space explosion’ problem outlined by Clarke et al. in [2] makes it difficult to perform 

model checking on programs if the model checking were to involve exploring the entire state 

space. 

Therefore, to make model checking feasible, an abstract model with a smaller state space 

can be used. This abstracted model of the program can be constructed in a number of ways. 

For example, in [3], Stadtmüller et al. restrict their work to using a subset of the Go language 

with limited features and channels are only used for synchronization, with the messages that 

they pass being ignored. Similarly, the Toph translator used by Vtrace (explained in section 

2) builds an abstracted model of the program by disregarding portions of the program which 

are not pertinent to the programs channel operations (it also only reduces the channels to be 

for synchronization, not for message-passing). 

As mentioned above, use of an abstracted model leads to inaccuracies, since the 

abstraction process may have removed some of the logic which was in place to prevent 

certain conditions from occurring, allowing the model checker to then report that states can 

be reached which would never occur in the source program. This inconsistency of abstract 

model checkers prompts the need for tools which can verify whether or not a trace from a 

model checker corresponds to a valid execution of the source program. 
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1.2 Project objective and research questions  
The principle objective of this project is to develop a tool which is capable of reconstructing a 

trace in a unit test form, where this trace is extracted from a Uppaal model of a Go program, 

and executing this reconstruction will allow the user to understand whether or not the trace 

corresponds to a real error.  

This objective is derived from the following research question which resides is at the heart of 

this project:   

“Given a trace through an Uppaal model of a Go program, is it possible to instrument the Go 

program such that the trace can be determined to be reproducible?” 

This question arose following the development of the ‘Toph’ tool (Philipeit, 2020) [4] for 

translating Go programs into Uppaal models. Toph is discussed further in the background 

section. A review of the current domain of trace reconstruction and Go verification also 

revealed that while there is much research done in both of these domains, there remains to 

exist a tool which would otherwise accomplish this project’s research objective.  

1.3 Contributions 
The major contributions are made with this project: 

- A parser which instruments Go code to support execution following a prescribed 

sequence of state transitions.  

- An approach for capturing the sequence of states from an Uppaal trace, and turning 

this sequence into a unit test 

- A test runner that automatically run unit tests, with the ability to regenerate these unit 

tests using another unique sequence of states if the test fails to reproduce the error. 

The above functionality has been implemented in the Vtrace tool, which currently resides in 

a GitHub repository at https://github.com/brianneville/vtrace. A fork of the Toph translator 

with modifications that support Vtrace is found at https://github.com/brianneville/toph.  

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/brianneville/vtrace
https://github.com/brianneville/toph
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2. Background   

2.1 Uppaal 

Uppaal is a verification tool which facilitates all stages of model verification – from model 

specification, to simulation and verification. It was developed in collaboration between 

Aalborg University in Denmark, and Uppsala University in Sweden. Originally released in 

1995, Uppaal is continuously updated and improved with the current snapshot version 

(4.1.24) used for this project being released only recently in November 2019.  

As a tool for modelling systems, Uppaal allows modelling of concurrent processes, where 

each process is created from the beginning of the simulation, and processes can 

synchronize with each other through channels or shared variables. Unlike channels in Go, 

Uppaal’s channels are only used for synchronization, and they unable to pass data from one 

process to the other. Additionally, channels in Uppaal cannot be buffered, meaning that a 

‘send’ operation on a channel will be blocking until a corresponding ‘receive’ operation is 

performed on that same channel (and vice-versa). Shared state can also be used for 

synchronization (for example, a state can be made to take a transition when a global integer 

variable increases beyond a certain threshold), through declaration of global variables which 

all processes can read or write to. Processes can also declare local variables, which are only 

accessible within that processes scope. 

Models in Uppaal are composed of states, with transitions between these states dictating 

program flow based on either global variables, local variables, or channel synchronization. 

These transitions also have an ‘update’ capability, where a statement can be declared which 

is executed upon taking the transition. This statement could call a function or update global 

or local variables to some new value. Variables in Uppaal2 can have types which are either 

32-bit signed integers, booleans, channels, clocks (which evaluate to real-numbers and 

increment synchronously), or arrays or structs which contain these fields as types.  

Models are accompanied by queries; logical formulae defined by the developer, which are 

expected to be true across the entire state space. These logical formulae3 can adopt any of 

the following forms: 

A[] p – “for all paths p always holds” 

A<> p – “for all paths p eventually holds” 

E[] p – “there exists some path where p holds” 

E<> p – “there exists some path where p eventually holds” 

p --> q – meaning “whenever p holds, q eventually holds” 

Where p and q are state properties, written as expressions4. 

Models and their respective queries are saved in an XML format, and Uppaal also provides a 

GUI to interpret this format, aiding in the visualization, construction and debugging of these 

models. For verification and trace generation, Uppaal also provides a Java API to its C++ 

 
2 Uppaal Types, https://docs.uppaal.org/language-reference/system-description/declarations/types/ 
(last accessed 2021-05-09) 
3 Semantics of logical formulae in Uppaal, https://docs.uppaal.org/language-reference/requirements-
specification/semantics/ (last accessed 2021-05-09) 
4 Expressions for properties of states in Uppaal, https://docs.uppaal.org/language-
reference/expressions/ (last accessed 2021-05-09) 

https://docs.uppaal.org/language-reference/system-description/declarations/types/
https://docs.uppaal.org/language-reference/requirements-specification/semantics/
https://docs.uppaal.org/language-reference/requirements-specification/semantics/
https://docs.uppaal.org/language-reference/expressions/
https://docs.uppaal.org/language-reference/expressions/
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verifier backend. This API allows programs to be written in which models can be instantiated 

and have their queries run on the verifier. When running queries, the API allows for 

parameters to be specified controlling aspects such as the search order (breadth-first, depth-

first, or random-depth first), or the type of trace to return (some random trace, the shortest 

trace, or the fastest trace). 

2.2 Toph 
Toph (Philipeit, 2020) [4] is a tool which translates Go programs into Uppaal models. Toph 

supports translation of the following aspects of a Go program: 

- branching statements (if/else statements, switch statements, select statements) 

- function calls, including calls that will run in new goroutines 

- panic/recover calls 

- return statements 

- for loops, continue or break statements 

- loops ranging over a channel, array, slice or map 

- calls to create a new struct (using the ‘new’ function) 

- calls to create a new array, slice or map 

- calls to copy a slice (using the ‘copy’ function) 

- deletion from a map 

- calls to create a new channel (buffered or unbuffered), send/receive over a channel, 

or close an existing channel 

- calls that cause the program to exit (such as os.Exit) 

- mutex lock/unlock operations (for sync.Mutex and sync.RWMutex) 

- wait group operations (for sync.WaitGroup)  

- calls to run functions in sync.Once.Do 

While this translation process results in Uppaal models being constructed such that the 

interactions between all of these aspects of the program is modelled, the actual values used 

are not included in the model (i.e. the values stored in slices, maps, or arrays, or those which 

are sent/received over channels, or used to branch into if/else statements). This loss of 

information is inevitable as a consequence of the limited types supported by Uppaal. 

However, by only mapping the control flow of the program in this fashion, Toph creates an 

abstracted version of the program which allows for much faster verification, as the model’s 

state space is greatly reduced.  

Upon translation, Toph also generates queries as specified by the user. These queries can 

check for the following properties of a system: 

- goroutines exiting with a panic 

- channel safety 

- sync.Mutex and sync.RWMutex safety 

- sync.WaitGroup safety 

- channel related deadlocks 

- sync.Mutex and sync.RWMutex related deadlocks 

- sync.Once related deadlocks  

- sync.WaitGroup related deadlocks 

- parts of code are reachable or not reachable (requires the desired part of code to be 

annotated) 

Additionally, Toph can generate queries related to the resources used by the verifier itself, 

namely: 
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- queries to check that resource bounds are never exceeded 

- queries to check that resource bounds for particular resources are never exceeded 

To specify in formal verification terminology, the models produced by Toph are complete 

models – that is, they are models which contain all errors that exist in the original program, 

but which also contain false errors. 

 

2.3 Gofmt 
Gofmt is a tool provided as part of the Go distribution5. Gofmt is a formatting tool which 

standardizes the format of valid Go files, modifying whitespace and indentation. This tool 

was provided by the Go authors so that Go programs could have a consistent, familiar style 

on first read. It also allows for developers to write code without worrying about formatting, 

and across projects using source control it allows reviewers to see exactly what parts of their 

code have been modified (i.e. No developer’s individual formatting style can contribute to the 

modifications). 

As of 2013, 70% of Go code written used gofmt6, and gofmt plugins exist which can 

automatically run gofmt on file-save for editors such as Visual Studio Code, Emacs, Vim, 

and GoLand.  

The following figures show an example of the gofmt tool being used: 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 Related work in trace reconstruction and verification 
The need to be able to debug code which fails on very rare occasions or for obscure reasons 

has driven a lot of research and development in the domain of trace reconstruction. For 

example, in [5], Srinivasan et al introduce a system called Flashback, with which a Linux 

 
5 Gofmt source code, https://golang.org/cmd/gofmt/ (last accessed 2021-05-09) 
6 Gofmt blog post, https://blog.golang.org/gofmt (last accessed 2021-05-09) 

 

Figure 2.2: File formatted with gofmt 

 
Figure 2.1: File with haphazard 

formatting 

 

https://golang.org/cmd/gofmt/
https://blog.golang.org/gofmt
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process that encounters an error can be rolled back to some prior stable state, and the 

actions which led to the error can be replayed. As the process executes, calls to a custom 

kernel function (which are either inserted by the programmer or automatically) inside a 

modified Linux 2.4.22 kernel save the state of the process in a suspended ‘shadow-process’. 

System calls made by the process are captured, so that any information exchanged with the 

environment that affects the process (such as interprocess communication, network sending 

or receiving, or bytes read from a file) is logged. When replaying an error, the shadow 

process is forked and resumed, and all system calls are replayed to match the logged 

versions that led to the error. 

Since Flashback operates on the kernel level, the order of thread scheduling is also logged – 

meaning that multithreaded processes can be replayed by forcing the kernel to interleave the 

threads in a certain order.  

Flashback offers a much stronger replay engine than Vtrace, and its capacity to reproduce 

system calls and environment information is a testament to the power of kernel-space code. 

Its use of kernel-space code however means that Flashback is more complicated and less 

safe to run (compared to Vtrace which runs entirely in user-space). By comparison, Vtrace 

cannot detect if an external stateful object existed and this may lead to testcase behaviour 

changing if such an object was a dependency and was modified in during testing of multiple 

Q<num>.go.txt files.  

A user-space alternative to Flashback is offered by Saito in Jockey [6] a shared object file 

which can be linked into a program to enable logging for deterministic replay. As with 

Flashback, jockey captures checkpoint states of the process. System calls in the libc7 library 

are modified so that they log any returned values, which can be returned again later if the 

program is replayed. However, as this code does not run in the kernel, it cannot record 

thread-scheduling order, and so multi-threaded programs cannot be replayed. 

However, both Flashback and Jockey feature no verification aspect, and so it can only hope 

to find errors or undesirable states in programs through continuous execution of the 

program. This means that (depending on the size of the program and the number of possible 

states) they may not be useful until a program has been running for a long time. With no 

verification aspect, the developer has a choice of arbitrarily stopping testing their program 

after a period of testing, or running the program with these tools enabled, which will incur 

some performance overhead (see section 6 in [5] pp. 9-13 and section 5 in [6] pp. 8-9). 

Deels et al. present a system which is capable of verifying properties of traces in Friday [7]. 

Friday leverages liblog [8] to capture checkpoints and logs for a program’s execution. Liblog 

is a user-space shared library that (similar to Jockey), catches and logs calls made to libc 

functions. A custom scheduler ensures that only one thread at a time is running, and a 

thread can only be suspended when encountering another system call – at which point that 

thread’s context is logged. This allows for multithreaded applications to be logged, without 

any modifications to the kernel. In Friday, liblog allows any trace to be deterministically 

replayed in a distributed system. 

To aid developers in debugging these traces, Friday introduces watchpoints and 

breakpoints. Breakpoints functions similarly to GDB breakpoints, where the program 

 
7 libc(7) — Linux manual page,  
https://man7.org/linux/man-pages/man7/libc.7.html (last accessed 2021-02-08). 

https://man7.org/linux/man-pages/man7/libc.7.html
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surrenders execution to the debugger upon encountering. Watchpoints allow for variables in 

a program to be monitored during execution, and global watchpoints can be set that monitor 

the value of one or multiple variables across many nodes in the distributed system. This 

allows for global invariants to be written which can be evaluated to verify properties of the 

trace as it is being replayed. This invariant is specified in a script, using python to write 

scripting commands to a built-in interpreter. 

This approach differs from the approach used by Vtrace in a number of ways. Firstly, the 

properties of a trace can only be verified when replaying the trace, while Vtrace depends on 

a verifier (Uppaal) to priorly provide a trace which will lead to a certain property. Secondly as 

with Jockey and Flashback, Friday’s replay system (liblog) is able to reproduce the results of 

system calls made during the trace, which Vtrace is unable to emulate. Friday is also 

designed to support debugging across multiple processes, while the use of channels in 

Vtrace to schedule traces means that only traces from one process can be replayed. 

Following Friday, the work of Liu et al. in [9] introduces the D3S checker for distributed 

systems. D3S does not feature a replay system for traces, and rather focuses on catching 

errors while the program is running. A developer supplies a number of functions that contain 

predicates for the system, which must hold for a part of the system or for the system as a 

whole. D3S uses a separate verifier process to check this predicate, with the verifier process 

receiving state information from all other processes in the system. In the event that a 

predicate fails, D3S then reports the states which led to that failure. Compared to Uppaal and 

Vtrace, D3S’s but its lack of trace reconstruction capability means that errors may be more 

difficult to investigate.  

The Pensieve tool outlined by Zhang et al. in [10] takes a different approach to failure 

reproduction than previously mentioned work. Pensieve uses ‘event chaining’ (described in 

[10] section 3, pp. 4-9) to infer the minimal lines of relevant code that are required to 

reproduce the trace. In this case, the ‘trace’ is a combination of “log files output by the failure 

execution, the system’s bytecode, a list of supported user commands, and a description of 

the symptoms associated with the failure (typically a user-selected subset of error messages 

in the log files)” (see [10] p.2). The control flow and the program data which are deemed to 

be dependencies for this trace are then constructed into a unit test. This unit test is executed 

three times to confirm that it can reproduce the exception. In the event that any of these 

attempts fail, Pensieve re-constructs the unit test using a slightly modified trace (e.g. by 

taking alternate branch conditions). Pensieve’s ability to deal with faulty unit tests in this way 

is a guaranteed by the fact that it will never receive false traces (unlike Vtrace). Therefore, 

this approach of iteratively building minimal unit tests could not be applied to Vtrace, as 

Vtrace needs to be able to determine whether a trace is real or not. 

The latest approach to trace verification in Go is Dara, described by Anand in [11]. Dara 

uses a concrete model checking approach, meaning that no abstraction of the system is 

created in order to check its properties. Dara instead instruments the source code to allow 

for a global scheduler to control execution as it verifies properties, making use of a custom 

Go runtime package which communicates with this scheduler. Similar to D3S, desired 

properties are declared through functions that get checked during execution. In the event 

that a property fails to hold, Dara returns a trace of the sequence of states that led to the 

undesired state. These traces can be replayed, leveraging the same global scheduler and 
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runtime infrastructure. To deal with the state space explosion during verification, Dara offers 

a selection of strategies for prioritizing path selection during the exploration stage.  

Compared to Vtrace, Dara’s approach is potentially a lot slower due to the lack of an 

abstract model. However, performing concrete model checking in this fashion means that 

unlike the Toph models used by Vtrace, it will never deal with false traces. Dara is also 

arguably less transparent than Vtrace, with much of its implementation hidden from the user 

in a modified runtime environment and scheduling infrastructure. By comparison, use of the 

native Go runtime in Vtrace, and the use of channels to enforce scheduling provides a 

slightly clearer way for users to follow the trace’s execution in the testcases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
 

10 
 

3. Methodology  

3.1 General algorithm overview 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The general algorithm for trace reconstruction, unit-test generation and verification which is 

applied in this project will be presented here in a brief overview, with following subsections 

providing a further in-depth explanation for individual components.  

Figure 3.1 provides a visual reference for the algorithm, with the gold arrows representing 

the typical program flow, black lines indicating the reading or writing of files, and grey lines 

showing the places at which the program will exit. The original program (shown labeled as 

Source in figure 3.1) is a directory containing Go files and/or Go packages.  

Beyond this point the following terms begin to appear, and so they are defined for the reader 

here for clarity: 

Real error: A real error is an error which exists in the source program, and which will occur 

through some combination of interleavings of multiple goroutines in the source program. It is 

a state that the program can reach where upon reaching this state, the program will exhibit 

or has exibited some behaviour which is undesirable (for example, reaching this state may 

mean that the Go runtime panics and/or the program exits undesirably). For a real error, a 

trace can produced by Uppaal where the sequence of transitions can be  reconstruct into a 

test for the source program, and this test can be run to completion. 

False error: A false error is an error which does not exist in the source program, and which 

will never occur for all possible interleavings of goroutines. A false error exists only as a 

byproduct of the abstraction that Toph applies when translating the Go program into a 

 

              Figure 3.1: Vtrace general algorithm overview  
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Uppaal model. False errors are produced by false traces – Uppaal traces which report a path 

through the model that cannot be reproduced in the source program. For a false error, the 

test which attempts to reproduce the trace will fail. 

Orchestration test: A Go file containing an Orchestrate function, where this function 

instructs Orc (a modified version of the original Source program), how it should proceed so 

that some trace can be reproduced.  

Trace disallowing: Given a query and a trace for an error produced by that query, ‘trace 

disallowing’ means modifying the query, such that if it is run again, it will not produce the 

exact same trace as before. 

The algorithm is composed of three stages; the first pass, the second pass and the deep 

pass. Each of these stages executes sequentially, and will be explained in detail now: 

The first pass 

 

Figure 3.2: Isolated diagram of the first pass  

In the first pass, the Source program is translated with Toph, producing an Uppaal model 

known as the Source model, and some queries relating to the model. Using Uppaal, these 

queries are then checked for the Source model. If no queries fail, then Vtrace can exit, as 

this indicates that the Soure program has no errors. However, if any queries fail, then Vtrace 

must proceed so that these errors can be investigated and determined real or false. 

While first pass is useful, traces that come from errors are not particularly useful and cannot 

be reconstructed within Source, since the transitions between states would proceed non-

deterministically. Therefore, it is necessary to produce a new version of Source, through 

which program flow can be finely controlled and traces can be reproduced.  
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The second pass 

 

Figure 3.3: Isolated diagram of the second pass 

At the start of the second pass, two new versions of the Source program are created, Orc 

and Proto. Orc (short for Orchestrated) is the version of Source through which program flow 

can be precisely controlled. Proto (short for Prototype) is a version of Source which is used 

to generate traces that can be built into Orchestration tests to run with Orc. 

While Orc and proto are created at the same time, the second pass stage only makes use of 

Proto, with Orc being used afterwards in the deep pass stage. In this second pass stage, 

Toph is used to translate Proto into an Uppaal model, and to generate queries for this 

model’s properties. It should be noted that the properties checked by the queries for the 

Source model will also be checked by the queries generated for the Proto model. However, 

the nature of Proto (i.e. the modifications that it contains with respect to Source) will mean 

that Toph also generates a large amount of additional queries for the Proto model.  

Next, the queries for the Proto model are checked for the model using Uppaal. After the 

queries have been checked, the Proto model is updated to prepare it for the deep pass 

stage. This updated version of the model contains functionality that allows for trace 

disallowing to be performed later in the deep pass. Finally, any queries which did not 

produce errors are removed from the set of queries that accompany the Proto model. This 

query removal process ensures that the deep pass does not spend time searching for traces 

from queries that will never produce errors. 
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The deep pass 

 

Figure 3.4: Isolated diagram of the deep pass 

The deep pass is the main loop of Vtrace. It begins at after the end of the second pass 

stage, with a Proto model that can perform trace disallowing, and has queries that are known 

to produce errors. These queries are again run on the model using Uppaal. If no errors are 

produced, then Vtrace exits (note that for the first iteration of this loop, errors will alwys be 

produced). The traces from these errors are then converted into Orchestration tests. These 

Orchestration tests then get combined with Orc, compiled into executibles and run by the 

test runner, which will report to the user whether the trace reconstructed in the Orchestration 

test corresponded to a false or real error. 

Next, the queries for the Proto model are updated so that any queries which correspond to 

real errors are removed, and any queries which correspond to false errors have their traces 

disallowed. This main loop then repeats to some bound defined by the user, or until no more 

errors are produced (which will also occur if all queries for this model have been removed). 

On each iteration, the trace disallowing means that a different, distinct trace is generated. 

Since trace disallowing eliminates paths to an error, it is possible to run this deep pass until 

all traces to the error that Uppaal can produce have been produced and proven to 

correspond to false errors. In this case, the error is known to be false. In practice however, 

models tend to have so many possible traces to any given error that running the deep pass 

to verify that all of them are false is impractical or infeasible. 
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3.2 Algorithm components  
Source 

Source is an entire Go program – a collection of Go files under a package structure. 

Specifically, the root directory for Source is the ‘main’ package for a Go program and 

contains a file with the program entry point (i.e. a file containing the function ‘main’). All Go 

files which exist within this directory and in any sub-directories are considered to make up 

Source. External packages (packages not existing under the main package) can be 

imported, as can packages included in the standard library8. 

Toph translation 

All Uppaal models used by Vtrace are created for Uppaal version 4.1.24, and are created 

using Toph. Each model is contained inside an XML file, with this XML file also specifying 

the queries that Toph has generated for this model.  

Each model is a system of smaller sub-models, where each of these sub-models emulates 

some functionality from the original Go program. Specifically, sub-models either emulate 

some function within the Go program (for example, the main function will be a sub-model), or 

some behaviour of a type which offers concurrency to the program. The following types have 

their behaviour emulated within an Uppaal model: channel, sync.WaitGroup, sync.Mutex.  

By default, Toph generates as many queries as possible given the contents of the model. 

Toph supports flags that allow for only certain queries to be generated (for example, a flag 

can be set so that only channel-safety queries are generated). Vtrace in turn has a flag 

allowing users to specify flags that they wish to pass into Toph during model generation. 

Toph also allows for flags to be set which signal Toph whether or not some optimisations 

should be performed when generating Uppaal models. One of these flags instructs Toph to 

optimise the Go program’s intermediate representation (IR), and the other instructs Toph to 

optimise the Uppaal models produced. Allowing Toph to perform these optimisations leads 

to a model with a reduced number of states and thus, faster verification times. For Vtrace, 

these optimisations are used when creating the Source model, allowing for the first pass to 

complete faster. Since Proto and Orc use the states in the first pass model in their 

construction, use of these optimisations for the first pass also leads to a reduction in the 

number of states in the Proto model (see below detailing Proto). 

These optimisations however, are not used when translating Proto into the Proto model, as 

their use led to the removal of some necessary elements of the Proto model, as well as 

some other states which are required to exist for trace disallowing. 

Proto 

Proto is a Go program which is functionally indisguishable from Source. This is to say that 

when either Source or Proto are compiled, both programs will have the same functionality 

and produce an identical output. Every every line of code in the Source program exists in 

Proto, as well as almost every comment. 

Despite this, Proto has two key differences from Source. The first difference is the inclusion 

of Guards; blocking channel operations placed over every line from the Source program 

which corresponds to a state in the Source model. The second is the inclusion of the 

Scheduler function; a function that gets started in a separate goroutine at the beginning of 

 
8 Go Standard library packages, https://pkg.go.dev/std (last accessed 2021-05-10) 

https://pkg.go.dev/std
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the main function. This Scheduler function contains a loop with a select statement9, where 

every Guard in Proto has a corresponding case statement in this select statement. The 

Scheduler function ensures that if program flow encounters a blocking Guard operation it will 

immediately become unblocked and proceed beyond it, meaning that the programs 

execution is not hindered by the inclusion of these Guards.   

As an example of this, take a line from an example Source program which tells the program to make 

a channel ‘chA’ as shown in (3.1). 

  

In the Source model, calls to create a channel are represented as states, meaning that in 

Proto, this line should have a Guard before it. As a result, the following Guard line shown in 

(3.2) will exist in Proto: 

 

 

Here, the Guard is the blocking channel operation attempting to receive from the 

ChPROTO_main_1 channel (recall that in Go, an arrow out of a channel denotes receiving, 

while an arrow into a channel denotes sending). When running Proto, this guard will be 

unblocked by the Scheduler function declared in a file with contents shown in (3.3): 

 

 

 

 

 

 

 

 

 

 

In this entire example program for which (3.3) was used, five states were present, and each 

state is blocked with a different Guard. The Scheduler function can be seen to constantly 

attempting to unblock each of these Guards through its select statement. 

In some sense, the Scheduler function can be thought of as a program-wide hook. If Proto 

runs non-deterministically, some certain sequence of Guard unblocks will be performed by 

entering certain cases inside Scheduler’s select statement, with this sequence of Guard 

unblocks corresponding to a path taken through the program.  

 
9 In Go, a select statement selects one viable channel operation to perform when given a number of 
possible blocking channel operations. These possible channel operations are provided in the form of 
‘case’ statements. See https://tour.golang.org/concurrency/5 (last accessed 2021-02-10) 

<-PROTO_scheduler_autogen.ChPROTO_main_1 
chA := make(chan string) 

 

chA := make(chan string) 

 

 

package PROTO_scheduler_autogen 
 
var ChPROTO_main_0 = make(chan struct{}) 
var ChPROTO_main_1 = make(chan struct{}) 
var ChPROTO_main_2 = make(chan struct{}) 
var ChPROTO_main_3 = make(chan struct{}) 
var ChPROTO_main_4 = make(chan struct{}) 
 
func Scheduler() { 
   for { 
      select { 
      case ChPROTO_main_0 <- struct{}{}: 
      case ChPROTO_main_1 <- struct{}{}: 
      case ChPROTO_main_2 <- struct{}{}: 
      case ChPROTO_main_3 <- struct{}{}: 
      case ChPROTO_main_4 <- struct{}{}: 
      } 
   } 
} 

 

(3.1) 

(3.2) 

(3.3) 

https://tour.golang.org/concurrency/5
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As this hooking exists within Proto and exists due to channel operations which Toph will 

never abstract away during translation, it will also exist within the Proto model. This means 

that traces produced from the Proto model will include information about the sequence of 

Guard unblocks necessary to reproduce the trace. Additionally, traces will include 

information about which function (which could be a goroutine) was allowed to progress upon 

unblocking any Guard. As such, the Proto model produces traces with the necessary 

information to build Orchestration tests for Orc.  

Orc 

Orc is a Go program which supports the execution of an Orchestration test. That is to say, 

Orc has all of the necessary lines for an Orchestration test to interact with when 

deterministically reproducing and verifying a trace. When supplied with any Orchestration 

test, Orc gets compiled into an executable and run by Vtrace’s Orchestration test runner 

(although the user may manually perform this compilation if they wish), with the result of its 

execution indicating the validity of the trace that produced the Orchestration test.  

Where Proto starts a Scheduler function in a goroutine at the beginning of the program, Orc 

makes a call to start a function called Orchestrate in a goroutine instead. This Orchestrate 

function is declared in an Orchestration test and is used to deterministically manage program 

flow in Orc. 

Orc includes Guards at the same positions as Proto, since Orchestration tests are created 

from the traces provided by the Proto model and will need to unblock the same sequence of 

Guards to progress. However, Orc also notably features OrcGuards, goroutine-specific 

channels which perform blocking and unblocking operations. OrcGuards are placed before 

every Guard, and after every block of code that is executed when a Guard is unblocked. 

In this way, OrcGuards can serve two purposes. Firstly, by placing them before Guards, an 

Orchestration test can control which goroutine is able to progress to unblock that Guard. 

Secondly, by placing OrcGuards at the end of blocks of code in between Guards, 

Orchestration tests can ensure that a goroutine has completed the ‘transition’ from one 

Guard to the next (analogous to transitioning between states in the Proto model). 

As well as OrcGuards, Orc also features additional code that logs the control flow of the 

program as an Orchestration test is being played out. The logging will log the current line 

that the program has reached or is about to reach (depending on the context it may be 

preferable to log either before or after), as well as the name of the goroutine that has 

executed that line. 

Logging lines in this fashion helps the user to understand exactly how the program has 

executed, and in the event that an error is found, this logging is a lot easier to interpret than 

the Proto, Orc or Orchestration test. This allows the user to distance themselves from the 

fine details of Vtrace’s operation, ignore the complexity of the autogenerated Proto, Orc, or 

Orchestration tests, and to instead focus on the Vtrace’s output and the errors it describes. 

As in (3.1) before, the following example lines in (3.4) from a Source program can be used to 

illustrate the changes that are made in Orc. 

 

 

 

chA := make(chan string) 
fmt.Printf("created new channel of type %T", chA) 
 
// lock some mutex (this will be the next state) 
mtx.Lock() 
 

 

 

(3.4) 
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In Orc, the call to make a new channel will have a Guard (the same as was used in Proto), 

as well as logging before the make statement, and an OrcGuard before the Guard and after 

the code along the transition (i.e. before entry to the next state. Logging will also be done for 

all lines in the code (using the orcutil.PrintControlFlow function). Note that the line mtx.Lock() 

will correspond to a state in the Source model, and so reaching this state marks the end of 

the block of code that lies on the transition between states. The section of code in Orc 

relating only to the channel creation state and the transition to the following state is shown 

below in (3.5). The section of Orc relating to the mtx.Lock() line has been removed for clarity, 

to emphasise where the transition starts and ends. 

 

 

 

 

 

Here OrcGuards are the blocking receive operations using the ChORCHESTRATION 

channel. Logging is done with the orcutil.PrintControlFlow calls, and when these lines are 

reached in an Orchestration test, the output shown in (3.6) will be logged showing the lines 

executed and the name of the goroutine which executed them (in this case ‘func_5_main’ – 

the main goroutine): 

 

 

Orchestration test 

As previously mentioned, an Orchestration test is a Go file that declares the Orchestrate 

function, where this function instructs Orc how it should proceed so that a trace can be 

reproduced. In the deep pass stage, Orchestration tests are generated for each trace 

produced by Uppaal. The Orchestrate function declared in these tests is for the most part a 

sequence of sections of code, with the purpose of each these sections of code falling under 

one of the following categories: 

1. Goroutine registration: 

At certain points in the trace, a new goroutines is spawned, or the program flow of an 

existing goroutines will enter into a function. In both of these cases, goroutine 

registration needs to occur. For newly spawned goroutines, a new channel used for 

OrcGuards needs to be registered and associated with that new goroutine. For the 

case where a goroutine enters a function, references to this goroutine from the trace 

will use the name of this function. To ensure that Orchestration test can still refer to 

the correct goroutine at any point, goroutines must re-register the channel they use 

for OrcGuards upon function entry.  

 

2. OrcGuard and Guard unblocking: 

This is the most common section of code in an Orchestration test, and generally 

follows a simple unblock-unblock-wait structure. Its purpose is to reconstruct a Guard 

unblock that occurs in a trace from the Proto model. From the trace, the name of the 

goroutine or function in which the Guard unblock was performed is known, as is the 

<-ChORCHESTRATION 
<-PROTO_scheduler_autogen.ChPROTO_main_1 
orcutil.PrintControlFlow(ChORCHESTRATION, "chA := make(chan string)") 
chA := make(chan string) 
fmt.Printf("created new channel of type %T", chA) 
orcutil.PrintControlFlow(ChORCHESTRATION, "fmt.Printf(\"created new channel of type %T\", chA)") 
 
// lock some mutex (this will be the next state) 
<-ChORCHESTRATION 

 

2021/04/08 22:58:22.719877 func5_main_0  :  chA := make(chan string) 
2021/04/08 22:58:22.719877 func5_main_0  :  fmt.Printf("created new channel of type %T", chA) 

 

(3.5) 

(3.6) 
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name of the Guard which was unblocked. From this, a section of code in the 

Orchestration test is constructed where the following actions occur: 

a. The OrcGuard for the specified goroutine is unblocked, allowing that 

particular goroutine to reach the Guard. 

b. The specified Guard is unblocked, allowing the goroutine to progress and 

execute the code along the transition. 

c. The Orchestrate function blocks itself using the same channel as was used by 

the OrcGuard before (in part a.), allowing it to wait until the program has 

completed its transition and reached the next state. 

When this unblock-unblock-wait structure is employed, all transitions can occur 

completely deterministically, replicating the trace perfectly.  

3. Debug logging: 

In addition to the logs generated as the program runs, Vtrace’s Orchestration test 

runner also writes debug information from each Orchestration test to the standard 

output as it automatically runs Orchestration tests. In the event that an Orchestration 

test corresponds to a real error, this debug information will include the standard error 

stream describing the error from the program’s perspective. In the event that the 

Orchestration test corresponds to a false error however, the test runner will report 

how far the Orchestration test was able to progress (i.e. given an Orchestration test 

with 𝑁 sections, the test runner will report how many of these sections were able to 

be executed, and what was the last section that executed to completion) . 

Trace disallowing 

As previously mentioned, trace disallowing involves modifying the queries given to Uppaal 

such that these queries will return new traces to any errors found by these queries. Before 

understanding how this works (see implementation), it is important to emphasise why this is 

required as a core part Vtrace’s algorithm.  

Trace disallowing is needed to deal with some of the abstractions that Toph uses when 

producing models. These abstractions can mean that even if a real error is present, the first 

trace produced for this error may take some path to the error which is not possible in Source, 

and so this error would be mistakenly classified as a false error. Vtrace therefore needs 

some way to generate new traces for the same error, so that it could find all possible traces 

to this error and verify that all of these traces correspond to false errors, or find the real error 

that lies somewhere among them. 

One common example of a case where trace disallowing is used is in loops where the loop 

condition involves a variable, as shown below in (3.7): 

 

In this example, x is some variable that controls how many times the loop is repeated. 

As Toph cannot reason about the value that the variable will have upon reaching the loop, 

this value is not included in the model meaning that while the model contains a loop, Uppaal 

has no idea how many iterations of this loop are expected in the Source program. When 

checking a query, Uppaal will therefore initially assume that only one iteration of the loop is 

needed and produce a trace where this occurs. In Source, a real error may exist beyond this 

loop, but since the trace specifies that only one iteration is needed while Source expects the 

loops to run for multiple iterations, then Vtrace will report that the trace corresponds to a 

false error as it cannot be reproduced. With trace disallowing, the query corresponding to 

for i := 0; i < x; i++ { 

 
(3.7) 
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this error is modified, so that the next time it is checked on the model (i.e. on the next 

iteration of the deep pass), Uppaal must generate a new trace. In this new trace Uppaal may 

report that the error is reachable after two iterations of the loop. 

Uppaal queries and state space exploration 

When checking a query on a model, Uppaal offers a selection of strategies for use when 

exploring the state space. In terms of deterministic strategies, Uppaal offers breadth-first and 

depth-first exploration. Since Uppaal will always cease exploring immediately upon 

encountering a state for which the query is false, each of these strategies will return only one 

trace for per query and running the query on the model multiple times will always produce 

this same trace. Using these two strategies, it is therefore possible to generate at most two 

distinct traces to an error. Uppaal also offers ‘random-depth first’ as an alternative non-

deterministic exploration strategy. Random-depth first operates as its name suggests, 

exploring the state space to random depths until the query fails. Using this exploration 

strategy, all possible traces to an error can be found. While random-depth exploration can be 

used for generating new traces, it would still need trace disallowing to prevent Uppaal from 

being allowed to generate the same trace twice.  

Breadth-first search is preferred due to the following reasons: 

- Random-depth exploration is inconsistent: the unpredictable nature of random-depth 

exploration could mislead users of Vtrace. A user may uncover a real error with their 

program, make some slight modification, and then rerun Vtrace to determine if they 

have successfully fixed the error. If after running the deep pass stage for the same 

number of iterations, a real error has not been found, the user may incorrectly 

assume that they have fixed the error, unaware that Uppaal had randomly not 

produced the correct trace yet. 

 

- Depth-first exploration traces prioritises unrealistic execution patterns: Depth-first 

exploration assumes that goroutines run to completion sequentially if lacking 

interaction (synchronisation/communication). This assumption is not representative of 

most programs, where goroutines are interleaved from the moment they are 

spawned, and errors arise from these interleavings. By comparison, breadth-first 

exploration prioritises interleaving goroutines together, even without interaction, 

which is a closer approximation of the way that the Go runtime actually interleaves 

goroutines. However, even with breadth-first exploration trace disallowing will 

eventually mean that the case where goroutines run sequentially is considered; but 

using breadth-first exploration means that this most common case where errors are 

due to interleaving is considered first. 
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4. Implementation  

4.1 Trace extraction 
One of the first parts of the implementation for this project involved finding some way to 

extract traces from Uppaal in a usable form. The executable used by Uppaal for model 

checking can be passed a flag that will instruct it to produce traces when verifying. However, 

the traces produced in this manner as not readable (states are not obviously labelled, and 

neither are transitions). To recover a trace where the states are readable, Uppaal’s Java API 

can be used. This API allows for queries to return objects representing the trace, from which 

it is possible to find the transitions between states as well as the current variable values after 

every transition. 

Therefore, the first stage of this project involved creating a Java program which, when 

provided with a model and queries for that model, could save these readable traces in a 

useable format. As Vtrace was to be written in Go which has built-in support for JSON 

encoding/decoding, information about traces from Uppaal is extracted and then exported in 

the form of JSON files. Below in figure 4.1 is an example of a JSON file that was created 

when a query failed on a Source model (full trace lines not shown). 

 

Figure 4.1: Example of a JSON file containing a query formula, comment, result, and trace. 

This JSON file contains the query formula responsible for producing this trace, the comment 

associated with this query, the trace itself, and the result obtained from Uppaal for this query 

- which can either be ‘F’ (query not satisfied), ‘M’ (query maybe satisfied), ‘E’ (error occurred 

for this query), or ‘T’ (query satisfied). In the case that a query’s result is ‘T’, no trace will be 

produced. Within each line of the trace array, values contained within the round braces are 

the current variable values of variables in the model at each state, and the transitions 

between states take the form shown in (4.1). 

𝑋: 𝐴 > 𝐵 

Where A is an initial state, B is the next state that was reached after the transition. Note that 

while Uppaal does make a distinction between goroutines and functions as it runs, the 

syntax for traces does not make such a distinction, and so under this syntax X is the name of 

a function or goroutine in which this transition occurred. 

 

 

 

 

(4.1) 
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4.2 Creating Orchestration tests 
The three components of an Orchestrate function are implemented as follows: 

Goroutine registration 

Goroutine registration is done by passing the channel used by the OrcGuards for a currently-

running function through a registration channel and to the Orchestrate function, where it can 

be stored in a map entry keyed by the name of that currently-running function. This function 

name is found from the trace which generates the Orchestration test. For example, if the 

trace specifies that a function or goroutine with the name “innerFunc” has been called or 

spawned from a function “outerFunc” after a Guard ChPROTO_main_12 was unblocked, it 

will represent this with the line in (4.2). 

 

On this line, the name of each function is unique throughout the whole program, meaning 

that if innerFunc is called again somewhere else, it will be given another number as a suffix 

(e.g. the next call would be named func6_innerFunc_1). Regardless of whether this function 

is a new goroutine or not, all lines in the trace that are run within this function will have the 

form: 

 

Where A is the start state and B is the state reached following the transition. To register a 

channel as being used for OrcGuards for this function, the following line (4.4) in the 

Orchestrate function stores the channel in a map. 

 

 

OrcGuard and Guard unblocking 

Lines of the trace will specify which goroutine is unblocking which Guard. For example, line 

below in (4.5) shows the line at which the Guard ChPROTO_main _10 is unblocked by the 

func7_outerFunc_0 goroutine/function: 

 

When the Orchestrate function is created, the above line is converted into an unblock-

unblock-wait sequence. First the registered channel for the func7_outerFunc_0 function is 

unblocked, then the Guard is unblocked, and then Orchestrate blocks itself using the same 

OrcGuard channel as before until the transition completes and the next state is reached. 

 

 

The ‘wait’ part of this is excluded in the case where the Guard unblock is the last Guard 

unblock which occurs in that specific goroutine, since in this case, the function will exit after 

the last transition has completed (having a ‘wait’ for the last transition would also interfere 

with the operation of a utility function called OpenNextCh which handles goroutine/function 

exiting. This OpenNextCh function is explained in implementation section). 

 

 

orcutil.LookupOrcChMap["func6_innerFunc_0"] = <-orcutil.RegisteringCh 

 

func7_outerFunc_0: received_ChPROTO_main_12_0 > created_func6_innerFunc_0 

 

func6_innerFunc_0: A > B 

 

func7_outerFunc_0: receiving_ChPROTO_main_10_0 > received_ChPROTO_main_10_0 

 

orcutil.LookupOrcChMap["func7_outerFunc_0"] <- struct{}{} 

ChPROTO_main_10 <- struct{}{} 

orcutil.LookupOrcChMap["func7_outerFunc_0"] <- struct{}{} 

 

 

 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
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Debug logging 

After every section in the Orchestrate function which performs either registration or 

unblocking, a function is called which writes a string version of that section to a temporary 

debug file which is read by Vtrace’s test runner after the Orchestration test has completed. 

Accompanying this string version of the section is a number indicating how many sections 

are in the Orchestrate function in total, and the index of the last section that ran to 

completion. For example, after running the section with index 3 out of a total of 11 sections, 

which consisted of the lines in (4.7): 

 

 

The debug logger would run the function: 

 

 

The sendDebug boolean is set automatically, based on whether or not the Orchestration test 

is being run by the user or by the Vtrace test runner. UpdateDebugLine will only use logging 

if sendDebug is true. 

 

4.3 Creating Proto and Orc 
Static analysis and gofmt 

Proto and Orc are created simultaneously at the start of the second pass through static 

analysis of Source (with state information from the Source model). The choice to generate 

these programs through static analysis (rather than working with an Abstract Syntax Tree) 

was made partially with the goal of readability and ease of use in mind – while Vtrace does 

aim to produce output which is sufficiently comprehensive that the user would not have to 

delve into the Proto or Orc versions and seek to understand or them in great detail, having 

the option to explore Proto and Orc so is a clear benefit. This is true in the case of both real 

and false errors, where it may be of interest for the user to inspect some parts of the Orc or 

Proto program to understand why and how an error was shown to be true or false.  

However, the primary reason behind generating Orc and Proto as Go programs (i.e. 

directories and Go files) is that Toph needs to take an uncompiled Go program as an input, 

and therefore Proto is required to be of this form. As Proto and Orc share the same states, it 

makes sense to generate both at the same time.  

In general, static analysis of a program however is not trivial, as people’s unique coding 

styles can be troublesome to parse. This difficulty is lessened greatly (though not entirely) in 

the case of Go by the existence and ubiquitous use of the gofmt tool. With use of this tool 

being so standardised, Vtrace therefore makes the reasonable assumption that Source has 

been formatted according to gofmt and takes advantage of this fact when parsing Go files to 

generate Proto and Orc. As a simple example of some of the utility that gofmt brings, 

consider the following code (4.9) which has been formatted with gofmt. 

 

 

orcutil.LookupOrcChMap["func6_innerFunc_0"] <- struct{}{} 

ChPROTO_main_10 <- struct{}{} 

orcutil.LookupOrcChMap["func6_innerFunc_0"] <- struct{}{} 

 

 

 
orcutil.UpdateDebugLine(sendDebug, orcutil.Status{Line: 4, Max: 11, LastGoodLine: 
`orcutil.LookupOrcChMap["func6_innerFunc _0"] <- struct{}{}\nChPROTO_main_10 <- 
struct{}{}\norcutil.LookupOrcChMap["func6_innerFunc_0"] <- struct{}{}\n\n`}) 

 

(4.7) 

(4.8) 
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In this code, note that gofmt has left no space between the struct name ‘someType’ and the 

opening brace next to it, while in the ‘if’ statement a space has been added between the 

condition and the brace next to it. Exploiting this, Vtrace can distinguish the meaning of 

these two lines immediately, and treat the lines 1 – 3 as a struct (and for example, avoiding 

placing logging statements in the lines of this struct declaration), while treating the lines 5 – 7 

as a block of code, where each new line would require a logging statement. Overall, gofmt is 

relied on by Vtrace as a form of filtering or pre-processing which is applied to the code, 

encoding information about types and content which would otherwise be challenging and 

inconvenient for Vtrace’s parser to acquire during Proto/Orc creation. 

Extracting state information 

Before Proto or Orc are created, the Source model must be inspected to determine which 

lines should be guarded. To do this, Vtrace uses the fact that Toph inserts comments in the 

model marking every element in the model with the filename and line of code that 

corresponds to it. To keep this line information in a useful form for later, Vtrace creates a 

map called ‘reducedLines’ mapping a string to a slice of integers (slices are dynamic arrays 

in Go). The XML file containing the Source model is then read line by line. For every 

filename found, an entry in the map is created, and for every entry in the map, a sorted slice 

of line numbers is maintained. Once fully populated, reducedLines is then returned to Vtrace 

for use in parsing. 

File structures 

All directories created by Vtrace are created under the parent directory of Source. In order 

for Vtrace to create Proto and Orc successfully, Source must be some directory which exists 

under the “src” directory under the directory specified by the users GOPATH environment 

variable. For example, Source is “D:\Users\Brian\go\src\mywork\prog\”, where GOPATH is 

“D:\Users\Brian\go\”. Vtrace creates Proto and Orc using the suffixes “_proto” and “_orc” and 

also adds a timestamp marking the Unix time that the Vtrace created them. Note that this 

timestamp is added by default but can be overridden and set to any positive integer value 

desired. Similarly, Vtrace creates a directory for the first pass with the “_first_pass” suffix 

(containing the Source model and any JSON files from traces extracted from it), and another 

directory for the second pass with the “_second_pass” suffix (which contains the Proto 

model and any traces extracted from it). This would result in the directory structure in (4.10): 

%GOPATH%\src\mywork\ 

                         ├─ prog\ 
                         ├─ prog_first_pass_1624748400\ 
                         ├─ prog_orc_1624748400\ 
                         ├─ prog_proto_1624748400\ 
                         ├─ prog_second_pass_1624748400\ 
 

File writing 

To create Proto and Orc, a separate goroutine is spawned for every Go file under the root 

directory of Source. Each of these goroutines runs a function called buildProtoFile that 

creates a Proto and Orc version of the Go file provided. Once all these goroutines have been 

x := someType{ 
   data: "test", 
} 
 
if x.data != "test" { 
   panic("something bad") 
} 

 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

(4.9) 

(4.10) 
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spawned, another goroutine is spawned that runs a function called ManageMapCreation. 

The interaction between the buildProtoFile goroutines and the ManageMapCreation 

goroutine is described in figure 4.2 below. From within buildProtoFile, a struct called 

fCallsStore is responsible for collecting information that is gets sent to ManageMapCreation. 

fCallsStore is an instance of a struct with the following CallsStore type: 

 

 

 

Here pkg is set to the package that the Source file is from, store is a slice of function 

identifiers from functions declared in Source file, and importedPkgs is a slice of packages 

imported in the Source file. Each of these fields is updated at various locations in the 

buildProtoFile function. 

Described here (in order) is the sequence of operations performed by the buildProtoFile 

function.  

1. Import rewriting 

Files in Source which import packages from Source have these imports replaced in Proto 

and Orc. For example, the import line  
import "mywork/prog/subdir” 

becomes  
import "mywork/prog_proto_1624748400/subdir” 

import "mywork/prog_orc_1624748400/subdir” 
in Proto and Orc respectively. This replacement is done only for packages that exist 

under Source, and any external packages are imported as before. All files in Proto and 

Orc are also modified to import the ‘PROTO_scheduler_autogen’ package, which exists 

under the root of Source. In Proto, this package is responsible for exporting the 

Scheduler function and Guard declarations, while in Orc, the Orchestration tests are 

placed under in this package and from here export the Orchestrate function and Guard 

declarations.  

In Orc, all files also import the package "github.com/brianneville/vtrace/project/orcutil" 

from Vtrace. This package provides utility functions used by the test runner when running 

Orchestration tests (see utility functions), and types used when modifying function 

definitions. This import rewriting is done as the Source file is read line by line. As this is 

done, the names of imported package are saved to fCallsStore as importedPkgs. 

 

2. Write Proto, and partially write Orc 

Once the imports have been handled, the Source file is continued to be read until a line 

is found which begins a function definition. This function is checked to see if it is a one-

line function (in the case it is, this one-line function is split into declaration and contents 

lines).  Next, the name of this function is saved to fCallsStore. After this, all lines within 

this function definition are parsed sequentially, and Guards, OrcGuards and logging 

information are added at appropriate locations. In cases where line breaks are only used 

for visual purposes (such as long boolean expressions or struct declarations) lines are 

concatenated.  

If no lines are found that contain function definitions, then the Source file is copied to the 

locations of the Proto and Orc file, and buildProtoFile can exit.  

 

type CallsStore struct { 
   pkg          string 
   store        []string 
   importedPkgs []string 
} 

 

(4.11) 
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Additionally, in Orc, some calls to utility functions are added accordingly, and function 

definitions are modified so that they receive an argument which is of the type of channel 

used by OrcGuards (these channels have type orcutil.OrcChan). By modifying function 

definitions, the channels used by OrcGuards are passed into functions, and so can 

continue to be used to block or unblock the goroutine which is running in that function. 

For example: 

A function: 
func (v *view) handleMessage(message string) { 

gets modified in Orc to have the definition: 
func (v *view) handleMessage(ChORCHESTRATION orcutil.OrcChan,message string){ 

and will result in the following function identifier being added to fCallsStore: 
".handleMessage," 

This identifier means that handleMessage is a function which is a receiver (due to the “.” 

prefix), and accepts at least one argument due to the “,” suffix). 

 

Recall that an OrcGuard is a receive operation from the ChORCHESTRATION channel, 

and so by having a calling function pass the same ChORCHESTRATION into any called 

functions, Orchestration tests can continue to block and unblock the same goroutine 

regardless of what function it is in.  

 

3. Apply CallsMap to Orc 

After the entire Source file has been read, buildProtoFile will wait until all other Source 

files in the program have been read. At this point, fCallsStore is used to receive a map of 

all function names that could be present in the Source file, known as CallsMap. This map 

is specific to each package that the Source files are in. In this map, distinctions are made 

between functions that accept arguments and those which do not, as well as functions 

that are receivers on structs.  

Now that buildProtoFile has callsMap, this callsMap is applied to the Orc file, meaning 

that the Orc file is read from start to finish again, line by line, and function calls which are 

found that have identifiers in the callsMap are modified so that they pass the 

ChORCHESTRATION variable into the function as the first argument. As in the example 

function above, any calls made to handleMessage would be modified so that instead of: 
v.handleMessage(message) 

they read: 
v.handleMessage(ChORCHESTRATION, message) 

The figure 4.2 describes the interaction between the ManageMapCreation goroutine and the 

buildProtoFile goroutines. Note that the dashed lines indicate conditional branches, meaning 

that the loop in ManageMapCreation will continue until all Source files have been parsed 

fully.  
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Figure 4.2: Interaction between the ManageMapCreation goroutine and buildProtoFile 

goroutines 

Goroutine registration in Orc and Orchestration tests 

In a trace extracted from the Uppaal, the transitions are labelled with the function they occur 

in. As previously mentioned, a transition has the format 𝑋: 𝐴 > 𝐵, with 𝑋 being either a 

function or a goroutine. As an example, in Proto the following lines (4.12) specify a guard 

and a call to spawn a new goroutine from the main goroutine: 

 

 

When a trace includes spawning this goroutine, the trace will include lines specifying that a 

new goroutine is spawned, as in (4.13): 

 

                 

              

          

           

        

              

               

                       

                            

                                   

                                   

           

       

                   

                   

<-PROTO_scheduler_autogen.ChPROTO_main_9 
go checkVal(value) 

 

"func7_main_0: received_ChPROTO_main_9_0 > created_func6_checkVal_0,  
"func7_main_0: created_func6_checkVal_0 > started_func6_checkVal_0, func6_checkVal_0: starting > started,  

 

(4.12) 

(4.13) 
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However, if somewhere else in the program the function checkVal is called again but not 

spawned in a goroutine, so that the program flow of the main goroutine continues into the 

function, then the program will contain lines shown in (4.14). 

 

 

Although the trace will also contain lines with the exact same format as (4.13), except for 

function instance number marking the function as different from func6_chechVal_0: 

 

 

Therefore, in order to determine when a new goroutine has been spawned during 

Orchestration tests, Vtrace must make modifications from within the Orc file itself which 

support identification and reaction to new goroutines – the trace alone cannot be relied on to 

make this distinction. 

To deal with these problem, Vtrace’s parsing wraps any calls to create new goroutines in Orc 

within a new scope, and inside this scope redeclares the ChORCHESTRATION variable to a 

new channel. The call to spawn the goroutine is then made as normal, but now the 

ChORCHESTRATION variable that is being passed into the function has been assigned to a 

value unique to that newly spawned goroutine. Also, at the start of every single function, 

Vtrace adds a line of code that registers the ChORCHESTRATION variable with the 

Orchestration test, so that it can be used for the OrcGuards within this function.  

By way of example using the checkVal function from above, the following are the lines that 

get executed in Orc. The call that does not spawn a new goroutine (4.14) is treated as a 

regular function call in Orc, meaning it gets treated as a normal function call. 

 

 

 

The call that spawns a new goroutine (4.12) is wrapped in a new scope so that the 

ChORCHESTRATION variable can be redeclared, and in Orc it becomes: 

 

 

 

 

 

Note that the ChORCHESTRATION value is only redeclared within this scope (i.e. the curly 

braces), and outside the scope, the value remains unchanged. Like all functions in Orc, the 

function checkVal also has a line added to the beginning of it, allowing this function to 

register whatever ChORCHESTRATION value it has received with an Orchestration test 

(note that the deferred call is explained later in the section on openNextCh). 

 

<-PROTO_scheduler_autogen.ChPROTO_main_14 
checkVal(other_value) 

 

"func7_main_0: received_ChPROTO_main_14_0 > created_func6_checkVal_1,  
"func7_main_0: created_func6_checkVal_1 > started_func6_checkVal_1, func6_checkVal_1: starting > started,  

 

<-ChORCHESTRATION 
<-ChORCHESTRATION 
<-PROTO_scheduler_autogen.ChPROTO_main_9 
orcutil.PrintControlFlow(ChORCHESTRATION, "go checkVal(value)") 
{ 
   ChORCHESTRATION := make(orcutil.OrcChan) 
 
   go checkVal(ChORCHESTRATION, value) 
} 

 

<-ChORCHESTRATION 
<-ChORCHESTRATION 
<-PROTO_scheduler_autogen.ChPROTO_main_14 
orcutil.PrintControlFlow(ChORCHESTRATION, "checkVal(other_value") 
checkVal(ChORCHESTRATION, other_value) 
 

 

(4.14) 

(4.15) 

(4.16) 

(4.17) 
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The result of these modifications is that Orchestration tests (which are reconstructed from 

traces and therefore have no awareness of whether a function is spawned in a goroutine or 

not), can simply maintain a map of the ChORCHESTRATION channels that are used by 

each function, and send to the correct ChORCHESTRATION values without knowing 

whether these are running in goroutines or not. 

For example, in an Orchestration test the call to spawn checkVal in a new goroutine 

executes, and the new value of ChORCHESTRATION is sent into the orcutil.RegisteringCh 

channel. Within the Orchestrate function, the following lines register this value to the name of 

the newly created function (found from the trace lines). 

 

Now, whenever the Orchestration test seeks to unblock the OrcGuards used by 

func6_checkVal_0, it sends to value stored in this map. 

 

Later, the call to run checkVal without a new goroutine, the same process occurs except this 

time, since ChORCHESTRATION was not redeclared in a new scope, the line 

 

Will actually re-register the same ChORCHESTRATION that was used in the main goroutine 

to be used when unblocking the OrcGuards used by func6_checkVal_1.  

 

Utility functions for Orc execution 

While generating Orc, some additional lines of code are inserted in certain situations to allow 

Orchestration tests to manage situations. These lines make calls to functions that Vtrace 

exports under the orcutil package. 

The first one of these functions is BlockMainExit. In BlockMainExit, a blocking receive 

operation is made on a certain channel which is never used anywhere else, and at no point 

in any Orchestration test is anything sent to this channel. The result is that BlockMainExit will 

block the calling function indefinitely. As its name suggests, BlockMainExit is used to block 

the main function from exiting. At the very start of the program’s main function, a call to 

BlockMainExit is deferred, meaning that if the main function is ever exiting normally (i.e. not 

exiting with a runtime panic or through a call to os.Exit), then the BlockMainExit function will 

called right before the function exits. By blocking the main function from exiting, Vtrace 

ensures that the Orchestration test gets a chance to run to completion if possible. In the 

case that the Orchestration test runs to completion, the Orchestrate function will make a call 

to os.Exit which will force the program to exit anyway. Without BlockMainExit, a real error 

which occurs as a result of code that executes after the last guard in the main goroutine has 

also been unblocked may not be caught. This last guard in the main goroutine may be 

unblocked either as part of a trace, or as part of a trace generated through trace disallowing.  

 

func sendToLog(ChORCHESTRATION orcutil.OrcChan, val int) { 

   defer orcutil.OpenNextCh(ChORCHESTRATION) 

   orcutil.RegisteringCh <- ChORCHESTRATION 

 

orcutil.LookupOrcChMap["func6_checkVal_0"] = <-orcutil.RegisteringCh 

 

orcutil.LookupOrcChMap["func6_checkVal_0"] <- struct{}{} 

orcutil.LookupOrcChMap["func6_checkVal_1"] = <-orcutil.RegisteringCh 

 

(4.18) 
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For example, without BlockMainExit, an error in the program shown in (4.20) may go 

undetected if the main goroutine exits before A and B are finished communicating.  

 

 

 

 

 

 

 

 

 

 

 

 

The second utility function exported by orcutil for use in Orc is the UnblockOrchestrate 

function. This function is used in locations around Orc to unblock the Orchestrate function, 

allowing it to progress past an OrcGuard which is blocking it and continue to run the rest of 

the trace. This may seem counterintuitive at first – one might think that if a trace (and thus 

the Orchestration test based on this trace) requires an OrcGuard to be unblocked, then it 

should only be unblocked from within the Orchestrate function, and failing to unblock this 

OrcGuard would indicate that the trace cannot be reproduced. Ordinarily it would be correct 

to think this, but there is one situation where this logic fails; that being the case where the 

line after a Guard is itself a blocking operation (i.e. a channel operation or a mutex 

lock/unlock). In this particular case, both the Orchestrate goroutine and the current running 

goroutine will be blocked; the current running goroutine will be blocked as it needs another 

goroutine to run to synchronise with, while the Orchestrate goroutine will be blocked as it is 

waiting for the current running goroutine to report that the code that lies along the transition 

between Guards has been executed. As a result, the program will enter an undesired 

deadlock state. 

For example, if the program shown in (4.20) is run, one of either goroutine A or B will reach 

the line where they send or receive from the channel ch before the other goroutine, and will 

be blocked until the other goroutine reaches the line where it can send/receive and both 

goroutines can continue. As a result, Orc will add lines to A and B so that they make calls to 

UnblockOrchestrate. 

package main 
 
func A(ch chan int) { 
   v := <-ch 
   if v == 0 { 
      panic("something wrong") 
   } 
} 
 
func B(ch chan int) { 
   ch <- 0 
} 
 
func main() { 
   ch := make(chan int) 
   go A(ch) 
   go B(ch) 
} 

 

program with a real error 

func main() { 
   defer orcutil.BlockMainExit() 

 

The beginning of the main function in Orc 

var chLastBlock = make(chan struct{}) 
 
// prevent main goroutine from exiting early 
func BlockMainExit() { 
   <-chLastBlock 
} 

 

The orcutil.BlockMainExit function 

 

 (4.19) 

(4.20) 

(4.21) 



  
 

30 
 

 

UnblockOrchestrate has the following implementation, shown in (4.22) below. 

 

 

 

 

 

 

 

 

In the Orc version of the program in (4.20), the function B will have lines added so that it 

contains the following: 

 

 

 

 

While the function A will have lines added as such (shown only for the transition into the if 

statement): 

 

 

 

 

 

In the case where an Orchestration test is based on a trace which needs to progress beyond 

the line v := <-ch and into the if statement, the following lines (4.25) will be in the Orchestrate 

function: 

 

 

This unblocks the OrcGuard for the goroutine A, then unblocks the ChPROTO_main_0 

Guard and waits for A to complete the transition to the next state. Once the Guard has been 

unblocked, the UnblockOrchestrate function is run in another goroutine. However, 

UnblockOrchestrate receives from the channel used by the OrcGuard, and the Orchestrate 

function can progress to eventually unblock the ChPROTO_main_3 Guard. Once A enters 

the if statement and finally completes the transition, the UnblockOrchestrate function 

performs a send operation to unblock the ‘end of transition’ OrcGuard. 

<-ChORCHESTRATION 
<-PROTO_scheduler_autogen.ChPROTO_main_0 
orcutil.PrintControlFlow(ChORCHESTRATION, "v := <-ch") 
go orcutil.UnblockOrchestrate(ChORCHESTRATION) 
v := <-ch 
if v == 0 { 
   orcutil.PrintControlFlow(ChORCHESTRATION, "if v == 0 {") 
   <-ChORCHESTRATION 

 

<-ChORCHESTRATION 
<-PROTO_scheduler_autogen.ChPROTO_main_3 
orcutil.PrintControlFlow(ChORCHESTRATION, "ch <- 0") 
go orcutil.UnblockOrchestrate(ChORCHESTRATION) 
ch <- 0 
<-ChORCHESTRATION 

orcutil.LookupOrcChMap["func5_A_0"] <- struct{}{} 
ChPROTO_main_0 <- struct{}{} 
orcutil.LookupOrcChMap["func5_A_0"] <- struct{}{} 

 

// UnblockOrchestrate allows for the scheduler to progress so that the channel which 'syncs' with the 
// current goroutine can be reached. 
// Call this before any operation which blocks the current goroutine. 
func UnblockOrchestrate(orcCh OrcChan) { 
   select { 
   case <-orcCh: 
      orcCh <- struct{}{} 
      break 
   case <-time.After(500 * time.Millisecond): 
      // we need to sleep for some time to ensure that the line which contains the send/recv 
      // operation in all other goroutines is blocking 
      break 
   } 
} 

 

(4.22) 

(4.23) 

(4.24) 

(4.25) 
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Up to 500 milliseconds of delay in UnblockOrchestrate is needed to ensure that the entire 

program does not deadlock while waiting for the Orchestrate function to move from the line 

where it is unblocking the Guard, to the line where it is waiting on the last OrcGuard. 

Typically, moving from one line to the next like this will take an order of nanoseconds on any 

modern hardware (note that all other goroutines are blocked at this point, and not adding any 

delay), but a maximum delay of 500 milliseconds was added to absolutely guarantee that 

this program does not deadlock. 

The last utility function exported for use in Orc is OpenNextCh. OpenNextCh is a simple 

function that takes an argument of a channel used by an OrcGuard and starts a goroutine 

which sends to that that channel, unblocking it the OrcGuard, as shown in (4.26): 

 

 

 

 

 

OpenNextCh is used in two crucial situations throughout Orc. Firstly, OpenNextCh is used 

just outside scopes where new goroutines are spawned, for example:  

 

 

 

 

 

Here, OpenNextCh is needed because the Orchestrate function can only verify that the 

checkVal goroutine has been spawned correctly by checking that the transition from the 

ChPROTO_main_6 Guard has completed inside a new goroutine, as such: 

 

 

 

The call to OpenNextCh in (4.27) means that the next OrcGuard in the main function will be 

unblocked, as though the transition from the ChPROTO_main_6 Guard to the next state has 

completed.  

In addition to this, a call to OpenNextCh is deferred at the start of every function excluding 

the main function. In the case that the function is run in a goroutine this deferred call to 

OpenNextCh has no effect, but in the case where the function is called by some other 

function, this deferred call to OpenNextCh will result in the OrcGuard which is at the end of 

the transition in the calling function to be unblocked. For example, consider the following 

program (4.29) which has a real error introduced by the panic call. 

 

<-ChORCHESTRATION 
<-PROTO_scheduler_autogen.ChPROTO_main_6 
orcutil.PrintControlFlow(ChORCHESTRATION, "go A(ch)") 
{ 
   ChORCHESTRATION := make(orcutil.OrcChan) 
 
   go A(ChORCHESTRATION, ch) 
} 
orcutil.OpenNextCh(ChORCHESTRATION) 

 

orcutil.LookupOrcChMap["func7_main_0"] <- struct{}{} 
ChPROTO_main_6 <- struct{}{} 
 
orcutil.LookupOrcChMap["func5_A_0"] = <-orcutil.RegisteringCh 
orcutil.LookupOrcChMap["func5_A_0"] <- struct{}{} 

 

// Used to unblock <-ChORCHESTRATION in caller after entering new goroutine 
// When entering a new function, a call to OpenNextCh is deferred 
// so it can unblock the <-ChORCHESTRATION line after returning back to the caller function. 
// In the case that this function is a goroutine, this deferred call does nothing. 
func OpenNextCh(orcCh OrcChan) { 
   go func() { orcCh <- struct{}{} }() 
} 

 

(4.26) 

(4.27) 

(4.28) 
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In Orc, both functions X and Y have lines which make deferred calls to OpenNextCh, as 

such: 

 

 

 

 

When the goroutine running X exits this deferred call has no effect, as this goroutine will 

never be started again. However, when the function call to Y exits, the deferred OpenNextCh 

call will unblock the OrcGuard which is at the end of the transition in the calling function, 

meaning that the program will be able to progress beyond OrcGuard at line 68 in (4.32).  

 

 

 

 

 

Unlike UnblockOrchestrate, the OpenNextCh function cannot incorporate any kind of 

timeout. This is because Vtrace is not aware of how long it will take for the transition to occur 

(for example, if some code was written in between line 67 and 68, there is no way of 

knowing how long it will take to run. As a result, for every goroutine spawned in the original 

program, one additional goroutine will be spawned that is blocked for the remainder of the 

program.  

 

 

 

 

 

package main 
 
func X(ch chan int) { 
   <-ch 
} 
 
func Y(ch chan int) { 
   ch <- 0 
} 
 
func main() { 
   ch := make(chan int) 
   go X(ch) 
   Y(ch) 
   panic("panic") 
} 

 

func Y(ChORCHESTRATION orcutil.OrcChan, ch chan int) { 
   defer orcutil.OpenNextCh(ChORCHESTRATION) 

 
func X(ChORCHESTRATION orcutil.OrcChan, ch chan int) { 
   defer orcutil.OpenNextCh(ChORCHESTRATION) 

 

<-ChORCHESTRATION 
<-PROTO_scheduler_autogen.ChPROTO_main_6 
orcutil.PrintControlFlow(ChORCHESTRATION, "Y(ch)") 
Y(ChORCHESTRATION, ch) 
<-ChORCHESTRATION 
<-ChORCHESTRATION 
<-PROTO_scheduler_autogen.ChPROTO_main_7 
orcutil.PrintControlFlow(ChORCHESTRATION, "panic(\"panic\")") 
panic("panic") 

 

64. 

65. 

66. 

67. 

68. 

69. 

70. 

71. 

72. 

(4.29) 

(4.30) 

(4.31) 

(4.32) 
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4.4 Parsing 
When explaining how Orc and Proto are created in the buildProtoFile function, it is 

mentioned that each function is parsed line by line, and that some effort is expended to 

ensure that lines are parsed appropriately with Guards and logging function calls are only 

inserted at appropriate locations. This sub-section will go into further detail about how this 

parsing is carried out.  

One-line functions 

In Go programs formatted with Gofmt, functions can be declared with both their definition 

and contents on the same line. For example, the following one-line functions which have 

been formatted with Gofmt: 

 

 

These one-line functions can be identified by the fact that every opening curly brace has an 

accompanying closing curly brace. When encountering any new function definition in the file, 

Vtrace’s parsing checks the line that the function is declared on to see whether it is a one-

line function. If it is, the function will be split into definition and contents sections. This 

splitting takes advantage of the way that Gofmt formats one-line functions. In particular one-

line functions formatted with Gofmt will only have an opening curly brace followed by a 

space (i.e. “{ “) at the start of the contents line, and will only have a space followed by a 

closing curly brace (i.e. “ }”) at the end of the contents line. For example, the above functions 

(4.33) will be split into separate lines so that they are parsed as though they were declared: 

 

 

 

 

After one-line functions are split into lines these lines are passed to the same function which 

handles lines read within regular multi-line functions, known as writeLineWithinFunction.  

writeLineWithinFunction 

WriteLineWithinFunction is perhaps one of the most important functions in Vtrace. Its 

purpose is to parse a line provided to it, potentially concatenate this line onto the next line, 

and then write the line to Proto and Orc. When the line is being written, 

writeLineWithinFunction determines the placement for the Guards, OrcGuards and Logging 

for this line, making sure that these additional inclusions are not placed in any way which 

would cause errors during compilation (all inclusions must be added such that they do not 

disrupt the program code). WriteLineWithinFunction has the following definition (4.35): 

 

 

 

 

 

func (c *calcType) String() string { return fmt.Sprintf("%d", c.value) } 
 
func (c *calcType) CopyAdd(i int) *calcType { return &calcType{value: c.value + i} } 

 

func (c *calcType) String() string { 
   return fmt.Sprintf("%d", c.value) 
} 
 
func (c *calcType) CopyAdd(i int) *calcType { 
   return &calcType{value: c.value + i} 
} 

 

 

(4.33) 

(4.34) 
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With: 

line – the line read from within a function from a file in Source. 

writer, writerOrc – the writers for writing to the version of this file in Proto and Orc 

respectively. 

scanner – a scanner which reads lines from the version of this file in Source. 

guardGen, orcGuardGen – structs that manage the generation of Guards and OrcGuards. 

fCallsStore – used to communicate function information to the ManageMapCreation 

goroutine. 

flags – a struct of boolean values which store information discovered from previous lines of 

the function. 

reducedManager – used to lookup whether the current line is mapped to a state in the 

Source model. 

The first thing that writeLineWithinFunction does is iterate over the line character by 

character, collecting information about the line from characters which are not in comments. 

As it iterates, the index of the last valid character (the last non-whitespace character which is 

not part of a comment) is maintained, as well as the current difference between the number 

of opening and closing curly braces and round braces. Also, booleans track whether or not 

the line contains a blocking channel operation or an unblocking sync.Mutex.Unlock() call 

(which will be used later to insert a call to orcutil.UnblockOrchestrate) – as while 

sync.Mutex.Lock calls are represented with states in the Source model, sync.Mutex.Unlock 

calls only exist along transitions. Booleans also track whether or not this line is a comment, 

and whether or not this line will force the enclosing scope to return or not.  

Once this line has been read in its entirety, the last valid character is inspected and used to 

determine whether or not this line is incomplete. For an incomplete line, the line ends with 

some operator or symbol, and the line break between the remainder of the line is for visual 

effect only. For example, lines ending in &&, || , &, |, + (but not ++), - (but not --), *, / (but not 

//), <<, >>, ^, =, or a comma character are all continued on the next line. Therefore, in the 

case of these incomplete lines, the next line is needed to properly parse the line given to 

writeLineWithinFunction. This is why the scanner is supplied to this function. Using the 

scanner, the next line is read and is concatenated onto the previous line at the index of the 

last valid character. The line is then parsed again, beginning from the index of the last valid 

character. The last valid character index is important for this concatenation purpose, as it 

allows for lines which have comments at their end to be concatenated without the comment 

overriding the concatenated line. For example, the following struct (4.36) which has 

comments in its definition: 

 

 

 

 

These lines will be rewritten by Vtrace during parsing so that it they are concatenated, and 

that any comments which interfere with the concatenation will be removed. The result of this 

func writeLineWithinFunction(line string, writer, writerOrc *bufio.Writer, scanner *bufio.Scanner, 
   guardGen *guardGenerator, orcGuardGen *orcGuardGenerator, fCallsStore *calls.CallsStore, 
   flags *buildFlags, reducedManager *reducedLinesManager) error { 

 

testUser := User{ 
   name: "test", // this goes 
   /*keep this*/ age:/*and this*/ 65, 
   id: 6782341 ^ 
      /*this too*/ 101010101, 
} // and the ending one 

 

(4.35) 

(4.36) 
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concatenation and comment removal is that this line will be present in Orc and Proto as 

(4.37): 

 

 

With the comment “// this goes” removed so that the next line can be concatenated and not 

become a comment. 

This line concatenation is important as it is one of the methods used by Vtrace’s parsing to 

ensure that logging calls can be placed after every line, and not in the middle of any 

statements of code (which would produce a compilation error). 

Once every character in the completed line has been parsed, a few additional checks are 

performed on the line, checking for keywords at the start of the line of code, such as “return”, 

“goto”, “panic(”, “close(“ , “break”, “continue”, “type”, “case ”, “select”, “switch”, “default:” or 

“func”. A set of booleans are assigned based on combinations of the results of these checks. 

Additionally, the current line number is looked up using the reducedManager and a boolean 

is set. This boolean indicates whether or not the current line should have any Guards 

(lookups in reducedManager will return true in the case that the Source file name and line 

number are present as a state in the Source model).  

Next, writeLineWithinFunction has a chain of if-else statements, where each branch of the if-

else statement is taken based on a combination of all boolean values for the line. Based on 

the conditions, one of these branches will be taken and the line, logging function, and Guard 

(with accompanying OrcGuards in Orc), will be written using writer and writerOrc in a 

particular order, summarised in (4.38).  

 

 

 

 

 

 

  

   

 

 

 

 

The need for different orders arises from the multitude of different possible lines and blocks 

of code which can be written. For example:  

The conditionA is true for function definitions and ‘case’ statements. For lines which are 

function definitions, the order of writing is necessary to ensure that no lines are written above 

testUser := User{name: "test",/*keep this*/ age:/*and this*/ 65,id: 6782341 ^/*this too*/ 101010101} // and the ending one 

if conditionA { 
   /* write order: 
     Line 
     Guard (+OrcGuards) 
     Logging 
   */ 
} else if conditionB { 
   /* write order: 
     Guard (+OrcGuards) 
     Logging 
     Line 
   */ 
} else if conditionC { 
   /* write order: 
     Guard (+OrcGuards) 
     Line 
     Logging 
   */ 
} else { 
   /* write order: 
     Logging 
     Line 
   */ 
} 

 

(4.37) 

(4.38) 
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the line which defines the function, as channel operations (Guards and OrcGuards) and 

function calls (logging) are not allowed outside of functions. Similarly, for lines which are 

case statements, channel operations and function calls must be written inside the case 

statement in order to be valid Go code. For lines which define functions (apart from the 

program’s main function), it is at this point where functions definitions are modified to accept 

the OrcGuard’s channel as an argument. It is also at this point where the function is added to 

fCallsStore. 

While managing function definitions, the branch in conditionA handles the program’s main 

function slightly differently. For the main function, the call to start the Scheduler function in a 

separate goroutine is inserted in Proto, and the call to start the Orchestrate function in a 

separate goroutine is inserted in Orc. Also inserted at the start of Orc is a line of code which 

assigns the ChORCHESTRATION variable for the main goroutine and registers it for use in 

the Orchestration test. 

The conditionB and conditionC have much less concrete usages, and the choice to use one 

or the other is a lot more complicated and nuanced, and may need to account for both the 

information of the line and the state of the buildFlags variables set when parsing previous 

lines. However, one simple example of a situation where conditionB would be true is above 

lines that return from functions. In this case, it makes sense that the line with the logging, 

Guard, and OrcGuards would be above the return line, as they would be unreachable if they 

were placed below the return line. An example of a situation where condition C would be true 

is for a line with a function call in it, where this function call is an import from some external 

package or the standard library. In this case, it only makes sense to log that the function call 

has been executed after the function call returns (i.e. logging should be placed underneath 

the line). If the function is defined in the program, then the logging will be before the line 

(using condition B), showing that the goroutine has been started, since it may not progress 

beyond the function definition until later in the test. 

The default case is for when all conditionA, conditionB and conditionC are false. In this case 

no Guards and OrcGuards are written, and logging is added only over the line. An additional 

condition is added when writing the logging line, just to ensure that this logging line is never 

written below lines that return to a higher scope, or below ‘select’ or ‘switch’ statements 

(since this would create code that cannot be compiled). 
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4.5 Running orchestration tests 
Detecting real errors 

Vtrace’s test runner will automatically run Orchestration tests, and so it needs to be able to 

distinguish between tests which correspond to real errors, and those which correspond to 

false errors. To do this, Vtrace’s test runner operates under the assumption that any time a 

program running with an Orchestration test deadlocks, that Orchestration test corresponds to 

a false error. This follows from the logic that for false errors, the Orchestration test has an 

Orchestrate function which specifies some sequence of Guard unblocks that are impossible 

to recreate, and deadlock will occur as it will try to unblock a Guard which cannot be 

unblocked or reached. 

In the case of real errors, the Orchestrate function will execute every section of code within 

it, and at the end will call os.Exit with a custom error code (error code 13) which Vtrace’s test 

runner identifies as verification that the Orchestration test corresponds to a real error. In 

cases where the program exits with a runtime error which is not a deadlock, Vtrace’s test 

runner treats it as a real error. 

Deadlock detection relies on the go runtime’s deadlock detector, which will report a deadlock 

if a goroutine blocks itself while all other goroutines are also blocked. 

Note that relying on deadlocks to check whether or not an error is false does not mean that 

Vtrace cannot verify traces which result from queries relating to program deadlocks. In the 

case that a trace specifies a sequence of Guard unblocks that it expects would lead to a 

deadlock, an Orchestration test will be produced which verifies whether this sequence is 

possible. If it is possible, the program will now no longer deadlock, since the Orchestrate 

function will still be running. At this point however, the Orchestrate function will have 

completed all sections, and will call os.Exit with error code 13 to end the program and let the 

test runner know that a real error has been found. 

Trace disallowing 

Trace disallowing is used in the deep pass stage to continuously provide Vtrace with new 

traces for any particular queries which Uppaal finds errors for, but which Vtrace finds are 

false errors. When considering how to implement this, it became apparent that modifications 

to the Proto model were unavoidable, as Uppaal’s API does not offer any controls for 

preventing certain traces, and so the only way to prevent traces from being returned is to 

modify the model itself such that it internally supports preventing traces. To achieve this, the 

model needs to somehow maintain information about the trace. Since traces can already be 

identified by the sequence of Guard unblocks that occur, this information can be found by 

tracking the Guard unblocks that occur in the select statement in the model of the Scheduler 

function. 
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Figure 4.3: Example Uppaal model of a Scheduler function. 

Above in figure 4.3 is the Upppaal model as generated by Toph for a Scheduler function with 

9 case statements. Each case statement is represented by two nodes, connected with four 

transitions. Information about the trace can therefore be collected by adding ‘update’ 

operations on these conditions, so that a function call is made or a variable is updated every 

time the transition is taken. Ideally, each of these update operations would simply append 

the index of the transition onto a list, and so at the end of the trace, this list would contain the 

full history of all Guards unblocked. Unfortunately, Uppaal does not allow for memory to be 

allocated dynamically during verification, and rather it only supports arrays with a fixed 

length. Therefore, to store the history of the trace, a hash is computed and stored in a 

variable which is updated on every transition. The FNV-1a hash10 is used as a hashing 

function, in part due to its low collision rate, and largely due to its very fast compute time 

 
10 FNV-1a hash: http://www.isthe.com/chongo/tech/comp/fnv/ (last accessed 2021-05-09) 

http://www.isthe.com/chongo/tech/comp/fnv/
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(computing the hash only involves one XOR and one multiply operation). To compute this 

hash, the following function (4.39) is added to the declarations for this Uppaal model: 

 

 

 

 

Toph is modified so that it can be passed a flag which instructs it to add this function in the 

declarations for the model, while also adding calls to this function along the transitions for 

the case statements in the model of the Scheduler function. On each transition, the index of 

the case statement is passed as an argument to hash_path (e.g. if the third case statement 

is entered, hash_path(2) is called). With this hashing in place, traces will report the value of 

the hash32 variable at every state, and the hash32 value can be read at the final state in the 

trace to get the hash which represents the entire trace. 

The next part of the trace disallowing implementation is to prevent Uppaal from returning 

traces which have a hash that is known to be a false error. To achieve this, Vtrace takes the 

hash value from a trace which the test runner has identified as a false error and modifies the 

query which produces that trace so that it will hold true when the hash32 variable has that 

value. For example, take a query which has a formula that checks if a channel in a model 

can reach a bad state: 

𝐴[] (𝑛𝑜𝑡 𝑜𝑢𝑡_𝑜𝑓_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠) 𝑖𝑚𝑝𝑙𝑦 (𝑛𝑜𝑡 𝐶ℎ𝑎𝑛𝑛𝑒𝑙14. 𝑏𝑎𝑑) 

If this query runs and produces a trace which concludes with the hash32 variable having a 

value of   

-1657359148, then Vtrace will modify this query for the next iteration of the deep pass, such 

that its formula becomes: 

𝐴[] (𝑛𝑜𝑡 𝑜𝑢𝑡_𝑜𝑓_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠) 𝑖𝑚𝑝𝑙𝑦 (𝑛𝑜𝑡 (𝐶ℎ𝑎𝑛𝑛𝑒𝑙14. 𝑏𝑎𝑑 𝑎𝑛𝑑 ℎ𝑎𝑠ℎ32 ! =  −1657359148)) 

This new query formula will only become false if Channel14 reaches a bad state when 

hash32 is not the same as the value of hash32 which is known to produce a false error. This 

forces Uppaal to generate a trace which is different from the previous trace. In the case that 

Uppaal finds that this modified query formula holds true, then the original query formula is 

known to represent a false error. However, if this modified query formula does not hold, then 

the value of the hash32 variable is once again read from the last line in the trace and used to 

augment the query formula further. For example, if the hash32 value was 1372726421, then 

on the next iteration of the deep pass, the query formula would be modified to: 

𝐴[] (𝑛𝑜𝑡 𝑜𝑢𝑡_𝑜𝑓_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠) 𝑖𝑚𝑝𝑙𝑦 (𝑛𝑜𝑡 (𝐶ℎ𝑎𝑛𝑛𝑒𝑙14. 𝑏𝑎𝑑 

 𝑎𝑛𝑑 ℎ𝑎𝑠ℎ32 ! =  −1657359148 𝑎𝑛𝑑 ℎ𝑎𝑠ℎ32 ! =  1372726421)) 

Vtrace manages queries by maintaining a map mapping the number of the query (generated 

by Toph and placed found in the query’s comment) to the query. For example, the above 

query formula could have an accompanying comment  

“description: check Channel.bad state unreachable\ncategory: channel safety\nnumber: 2” 

This number from the comment that is used when storing the query in a map. After each 

iteration of the deep pass, the queries which did not produce traces are removed from this 

map, while all remaining queries in the map have their formulae updated. The XML file 

typedef int[-2147483648, 2147483647] int32_t; 

int32_t hash32 = -2128831035; 

int32_t FNV_prime32 = 16777619; 

 

void hash_path(int32_t id){ 

    hash32 = (hash32 ^ id) * FNV_prime32; 

} 

 

(4.39) 
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containing the model is then modified by reading it until the part where the queries are 

declared, inserting every query declaration that still remains in the query map, and truncating 

the file after queries have been inserted. 

 

4.6 Optimisations  
Major optimisations 

Three major optimisations are employed by Vtrace. The purpose of all of these optimisations 

is the same; to reduce the amount of time spent verifying queries which are known to not 

lead to errors. Details on the impact that each of these optimisations can be found in the 

evaluation section.  

The first major optimisation is the second pass stage. Running queries with trace disallowing 

is a far more computationally expensive operation than running those queries without trace 

disallowing, and the second pass stage is used to ensure that only queries which actually 

produce errors are ever run with trace disallowing in the deep pass stage, which greatly 

reduces the amount of time per iteration in the deep pass stage, since the time for a query to 

fail and produce an error is generally vastly lower than the time taken for a query to be 

verified if this query will never produce an error.  

The second major optimisation involves reducing the number of queries which are generated 

for the second pass stage (i.e. the queries that Toph generates for the Proto model). 

Specifically, this optimisation prevents Toph from generating queries for channels which 

have only been inserted into the program by Vtrace for use as Guards. Since these channels 

are not part of the original program, they will never produce errors in this program, and do 

not need to be checked. Additionally, since the behaviour of each of these channels is 

known and the way that they interact with the program (i.e. only receiving from the Scheduler 

function) is also known, these channels will never produce errors regardless. Since the 

number of channels used is always at least the same as the number of states in the Source 

model, allowing Toph to generate queries for these channels would mean that the a 

significant proportion of time in the second pass stage would be spent pointlessly verifying 

queries (scaling with the number of states in the Source model). To mitigate this, Toph is 

modified so that while the program is being translated, all channels which are found that 

have declarations in the same file as the Scheduler function (i.e. under some path ending in 

scheduler_autogen.go under the PROTO_scheduler_autogen directory) are ignored at the 

point where they would have queries generated. Additionally, all queries which would check 

that any ChPROTO channel can safely receive are ignored. Queries are also not generated 

for anything within the Scheduler function, by again skipping the processing which would 

otherwise be done for the scheduler_autogen.go file under the PROTO_scheduler_autogen 

directory. 

The third major optimisation involves even further reduction of the number of queries which 

are checked in the second pass stage. However contrary to the previous optimisation which 

involves directly reducing the set of queries produced by Toph, this optimisation involves 

filtering the set of queries after they have been produced. The key idea behind this 

optimisation is to use the categories that Toph adds into the comments of every query to 

determine in advance which queries could possibly fail for the Proto model, given the 

categories of queries which have failed for the Source model. Any categories of queries 

which had no failing queries for the Source model will also have no failing queries for the 

Proto model, and so do not have to be checked at the second pass stage. For example, if 

the Source model has queries which have the category “channel safety”, and none of these 
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queries produce errors, then any queries which are generated for the Proto model that are of 

the “channel safety” category also do not need to be checked during the second pass stage. 

Minor optimisations 

Vtrace also adds one minor optimisation when parsing to reduce the amount of Guards 

added where possible. This optimisation exploits the fact that every function definition 

corresponds to a state in the Source model. These function definition lines therefore need to 

have Guards, and the Guards for these lines will be placed directly underneath the function 

definition. In the case that the next line in the function which needs a Guard and is also not 

in a new scope (e.g. this next line is not inside a the branch of an ‘if’ statement or a loop 

body), then Vtrace can combine the two Guards into one, leading to fewer states in the Proto 

model and a faster verification time. 

For example, consider the function (4.40). 
  

 

 

For this function, the line for the function definition will be a state in the Source model, as will 

the line for the call “Y(v)”. Rather than have these two Guards placed after each other in the 

same scope with no other state in between, a Guard is placed after the function definition 

and no Guard is placed before the call to the function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*this optimisation is also applied to the version of this function in Orc 

 

4.7 Flags for Vtrace  
The following flags are used by Vtrace: 

-pkg: (string)This flag specifies the location of Source, the main package for a 

program. 

-proto-pkg: (string) This flag specifies the location of a Proto directory, if skipping the 

first pass stage 

One of either pkg or proto-pkg must be set. The proto-pkg flag can be used to specify the 

directory of a Proto version of a program (using either a relative path or absolute path). This 

should be used only in the case that all other directories and files generated by Vtrace still 

exist (see the directory structure at (4.10)). Using the proto-pkg flag means that Vtrace will 

skip the first pass and begin at the start of the second pass. By default, the pkg flag should 

func X(v int) { 
   Y(v) 
} 

 

func X(v int) { 
<-PROTO_scheduler_autogen.ChPROTO_main_2 
Y(v) 
<-PROTO_scheduler_autogen.ChPROTO_main_3 
} 

 

Optimised version 

func X(v int) { 
<-PROTO_scheduler_autogen.ChPROTO_main_2 
<-PROTO_scheduler_autogen.ChPROTO_main_3 
Y(v) 
<-PROTO_scheduler_autogen.ChPROTO_main_4 
} 
 

Unoptimised version 

 

(4.40) 

(4.41) 

(4.42) 



  
 

42 
 

be used, but the proto-pkg flag exists for the cases where either the first pass takes a very 

long time, or where the user wishes to make some modification to the Proto and Orc file 

before re-running the second pass (for example, adding in custom logging calls or 

configuring some variables used in the program. 

-reduced: (bool) This flag has a default value of true. Setting it to false will mean that 

every single line in the program will be given a Guard and OrcGuards. Leaving it as 

true will mean that only the lines which have states in the Source model are given a 

Guard and OrcGuards.  

-timestamp: (int) This flag has a default value of -1, which indicates that the current 

Unix time should be used when creating directories (e.g. myprog_proto_1609536398, 

myprog_orc_1609536398). Specifying any positive value for this flag will result in that 

value being used to create directories (e.g. timestamp=456 results in 

myprog_proto_456, myprog_orc_456), or if a directory with that timestamp already 

exists, it will be overwritten. 

-toph-args: (string) This flag specifies a list of space-separated flags to be set when 

Vtrace is using Toph to translate models. For example, to make Toph generate 

queries for only channel safety and exiting goroutines with panic, set  

-toph-args=“-query-channel-safety=true -query-goroutine-exit-with-panic=true”. For 

information about which can be passed into Toph, run toph.go and the flags will be 

printed to the console. The default value for this flag is an empty string “”, which 

means that Toph will generate as many queries as possible given the components of 

the model. 

 -optimize-first: (bool) This flag causes Vtrace to instruct Toph to optimize the 

Source model, leading to faster times for the first pass stage, reduced states in the 

Source model, and  therefore reduced Guards in the Proto model, leading to faster 

verification times in the second pass and deep pass stages. The default value is true. 

-run-depth: (int) This flag should be set to the maximum number of iterations that 

Vtrace should run for the deep pass stage. The user is free to set this as high as they 

wish (for example, if they wish to exhaustively verify that false errors are indeed false 

errors). The default value is 15.  

-ignore-toph-errors: (bool) This flag should be set to true if Vtrace is allowed to 

ignore any errors that Toph produces while translating. Toph may produce errors 

when encountering a line of code in a program it cannot translate fully, but in spite of 

this, it can still produce a model which contains real errors. By default, this flag is set 

to false and Vtrace will exit if Toph produces any translation errors. If this flag is set 

to true Vtrace will still print out any errors that Toph encounters, but it will continue 

rather than exiting.  

-timing: (bool) This flag should be set to true if Vtrace is to report the timing that 

each stage (first pass, second pass, and each iteration of the deep pass) of the 

algorithm takes. The execution times for these stages will be printed to the console 

after each stage is complete. The default value of this flag is true. 
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5. Evaluation   

5.1 Uppaal memory limitation 
One common issue that was consistent across all attempts to evaluate Vtrace’s performance 

was the memory limitation of Uppaal. Uppaal is a 32-bit process, and as such it cannot 

allocate more than 4GB of memory on a 64-bit system, or more than 2GB of memory on a 

32-bit system11. For Source models this is not an issue, and models for large programs 

(such as boltdb12) can be verified. However, this memory limit becomes much more of an 

obstacle for the performance of the Proto model in the second pass (without trace 

disallowing), and absolutely devastating for the performance of the Proto model when using 

trace disallowing in the deep pass.  

For the Proto model without trace disallowing, Toph has to add one additional instance of a 

channel process for every Guard in Proto. This means that the Proto model becomes much 

larger than the Source model, with a massively increased state space. This state space 

becomes even larger however, once trace disallowing is added to the Proto model. It is 

believed that this is due to the fact that with trace disallowing, every state in the Proto model 

becomes distinct (since the hash32 variable is constantly updated). This drastically 

increases the memory required for verification, since parts of the model which contain loops 

(such as the Scheduler function) are essentially unrolled, as each iteration of the loop would 

contain a global variable with a different value for each state in the loop. In general, for every 

state in a model without trace disallowing, there are multiple copies of that state in the model 

with trace disallowing. Each one of these copies has a unique hash32 value encoding the 

entire path to that state, and these copies pollute the overall state space. 

5.2 Stage scaling 
Since the time for the first pass, second pass and deep pass stages are all highly dependent 

on the original program supplied to Vtrace, it is difficult to quantify exactly how the 

performance for these stages scales as the program grows more complex. To perform some 

meaningful evaluation, a collection of test programs were written for Vtrace with each 

program designed to investigate the performance scaling of each stage in isolation. 

For this evaluation, the following specification was used: 

CPU Intel i5-9600KF CPU @ 
3.70GHz 

Memory  2x8GB DDR4 @ 3000 MHz 

Operating System Windows 10.0.19041 

Uppaal version13 4.1.24 

Go version14  go1.14.6 windows/amd64 

Java version 11.0.9 (major version 55) 

Table 5.1: Hardware and software used for evaluation 

No other programs were running in the background while testing, and every test of program 

runtime was repeated 5 times, with the final results being taken as an average of all of these 

runs. Each of the test programs was written to have a only one real error, and the time 

 
11 Uppaal’s memory limitation https://bugsy.grid.aau.dk/bugzilla/show_bug.cgi?id=63  
(last accessed 2021-05-10) 
12 https://github.com/boltdb/bolt  
13 Uppaal (version 4.1.24), Available at: https://uppaal.org/ (last accessed 2021-02-08) 
14 Go, Available at: https://golang.org/ (last accessed 2021-02-08) 

https://bugsy.grid.aau.dk/bugzilla/show_bug.cgi?id=63
https://github.com/boltdb/bolt
https://uppaal.org/
https://golang.org/
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measured for the deep pass stage is the sum of the time spent across all iterations that were 

needed until the real error was reported. Testing for any particular program was run until a 

clear trend in the growth of the program run time was observed and/or until Uppaal failed to 

verify queries for the Proto model of the test program. 

Testing max states - sequences 

The first program written is called sequences. (see Appendix A). In this program, a number 

of sending and receiving operations are performed between two goroutines, after which the 

program panics, producing a real error. The purpose of sequences is to investigate the 

relationship between the number of states in the Source model and the time taken for each 

of the stages. The number of states is controlled by increasing the number of channel 

operations in the program (since each channel operation will be a state in the Source 

model). Sequences has a real error, and this real error will always be found after one 

iteration of the deep pass.  

For this test, the following graphs were produced showing how the run time scales as more 

states are added. In these graphs, N is the number of channel operations in each of the two 

goroutines, and T(N) is the time taken to run the stage to completion having N channel 

operations in each goroutine. In these graphs, the Log (base 2) of each of both N and T(N) 

are used, so that the graph is showing the growth of the run time, rather than the run time 

itself. 

 

Figure 5.1: Run time growth of stages for sequences program 

From this graph, it is clear to see the run time for the deep pass grows drastically as more 

states are added to the model, with Uppaal going out of memory in the deep pass when 

attempting to verify a query for a Proto model which has 35 states in the Source model.  

This is clearly a problem, as 35 states is a very low number to have in a Go program, and 

certainly this indicates that Vtrace in its current form is not viable for large codebases. When 

fitting a curve to this data, it is found that the following equation approximates the curve of 

the run time growth for the deep pass for the ‘sequences’ program: 

𝐿𝑜𝑔2(𝑇(𝑁)) =  0.001349(𝐿𝑜𝑔2(𝑁))6.427 +  2.025 

Most notably, the run time for the deep pass appears to grow at an exponential rate and 

grows much faster than the run time for the first or second pass stages. It is worth noting 
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however that both the first pass and second pass stages are also growing exponentially, as 

seen in the below graphs (figures 5.2 and 5.3). Since the deep pass will fail before either of 

these stages become so time consuming as to matter, their growth rate is of less importance 

for this program. 

 

Figure 5.2: Run time growth of first pass stage     Figure 5.3: Run time growth of second  

for sequences program                                         pass stage for sequences program 

 

Testing loop verification - mutexloopconst 

The next program used for testing was called mutexloopconst (see Appendix B). In this 

program a loop runs, locking a mutex on every even-numbered iteration and unlocking it on 

every odd-numbered iteration. After the loop exits, the mutex is locked again. If the loop has 

run for an even number of times the program will panic, as a mutex cannot be re-locked 

while a lock for it is already held. This test investigates the effect that loops have on a 

program, as loops are a way to increase the effective size of a program without adding more 

states to it. 

Importantly in this program, the number of times that the loop runs is known at compile time, 

and therefore is known to Toph when translating and can be built into the model. The 

resulting graph shows the run time growth for all first pass, second pass and deep pass 

stages, where N is the number of iterations performed by the loop: 
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Figure 5.4: Run time growth of stages for mutexloopconst program 

The run time for the first pass appears to be constant, with the second pass and deep pass 

showing very slight exponential growth, with the second pass run time growth modelled by: 

𝐿𝑜𝑔2(𝑇(𝑁)) =  5.757𝑥10−5 (𝐿𝑜𝑔2(𝑁))4.363 +  2.109 

And the deep pass run time growth also modelled exponentially as:  

𝐿𝑜𝑔2(𝑇(𝑁)) =  1.041𝑥10−5 (𝐿𝑜𝑔2(𝑁))5.093 +  3.673 

Overall, mutexloopconst is a good demonstration of a program which scales well for Vtrace, 

performing well up to and including the case where N=512 loop iterations, before Uppaal’s 

server crashes when attempting to verify N=1024 iterations.  

Testing loop verification - mutexloopvar 

Often in Go programs, a loop’s iterations are not known at compile time, but rather are 

determined by some variable which is set as the code executes. The mutexloopvar program 

(see Appendix C) is a variation of mutexloopconst in which the limit of loop iterations is set 

as a variable, not set constant at compile time. In this case, Toph cannot determine how 

many times a loop must run, and neither can Uppaal. Multiple iterations of the deep pass are 

needed before Uppaal produces a trace which contains the correct number of iterations to 

exit the loop and verify that a real error exists. The run time growth for each stage is shown 

below, with N being the value of the variable that is set to the maximum number of iterations 

for the loop: 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10

Lo
g 2

(T
(N

))

Log2(N) 

Mutexloopconst run time growth

first pass

second pass

deep pass



  
 

47 
 

 

Figure 5.5: run time growth of stages for mutexloopvar program 

Here, the run time for the first pass and second pass appear to not grow (although from the 

mutexloopconst test, it is likely that they exhibit a very slight exponential growth unnoticeable 

for the lower value of N here). Meanwhile, the deep pass grows linearly, and its growth can 

be modelled with the equation: 

𝐿𝑜𝑔2(𝑇(𝑁)) = 1.006𝐿𝑜𝑔2(𝑁) +  2.684  

Looking at the program, the cause of this linearity can be understood clearly. For any value 

of N, Uppaal will first produce a trace which contains only one iteration of the loop. If N = 1, 

then the real error is found from this trace. However, if N > 1, then the Vtrace test runner will 

report a false error, since it has run an Orchestration test based on a trace which expects the 

loop to run once before continuing to the next state after the loop – something that is not 

possible to reproduce. This trace will therefore be disallowed, and the next trace produced 

by Uppaal will contain two iterations of the loop. This will continue for N cycles, until Uppaal 

produces a trace with N iterations of the loop. 

Testing goroutine spawning - Loopspawn 

The last performance test was to investigate the growth of the run time as more goroutines 

were spawned in a program. This test uses the loopspawn program (see Appendix D). In this 

program, a loop runs for a constant number of iterations (the number of iterations is fixed at 

compile time). Each iteration of this loop spawns a new goroutine to run a very simple 

function called checkPanic which will cause a panic if the goroutine is the last goroutine that 

is spawned by the loop. This panic is a real error and is detected on the first iteration of the 

deep pass. 

The following graph in figure 5.6 shows the run time growth of the loopspawn program as the 

number of spawned goroutines (N) increases. 
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Figure 5.6: run time growth of stages for loopspawn program 

Unlike other graphs, the second pass stage dominates here, growing at a rate which causes 

Uppaal to run out of memory when trying to complete the second pass stage in a program 

with only 5 goroutines spawned. The second pass can be modelled by the exponential 

equation: 

𝐿𝑜𝑔2(𝑇(𝑁)) = 0.721𝐿𝑜𝑔2(𝑁)3.411 +  1.85 

And the deep pass can also be modelled exponentially by: 

𝐿𝑜𝑔2(𝑇(𝑁)) = 0.05323𝐿𝑜𝑔2(𝑁)4.338 +  2.107 

It may seem surprising that the second pass here has such bad performance relative to the 

deep pass, given all other tests have the deep pass as the performance bottleneck stage. 

However, when looking at the queries run in the second pass stage, the run time growth of 

the second pass stage becomes a lot more obvious. In the second pass, lot of queries for 

this Proto model are generated which fall under the category of checking that a goroutine 

does not exit with a panic, and are not removed since this category is of the same type as 

the queries that fail. Verifying these queries takes a long time, even in this scenario where all 

goroutines have so few Guards.  

The poor performance and abysmal scaling of loopspawn has made it a prime target for 

measuring the improvement of optimisations made to Vtrace’s algorithm and 

implementation, specifically those aimed at query reduction. 

 

5.3 Query reduction optimisation 
For testing the performance of query optimisation, the loopspawn program with 4 concurrent 

goroutines as a metric (for reference, this version of loopspawn will be known as loopspawn-

4). Before the introduction of the first optimisation (the addition of the second pass stage to 

find only failing queries), Vtrace would proceed from the first pass into the deep pass, and all 

queries that Toph generated for the Proto model would be checked with trace disallowing. 
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This was highly inefficient, and it was not possible for the deep pass stage to complete 

without Uppaal running out of memory.  

Second pass 

With the introduction of the second pass stage to reduce the queries that run in the deep 

pass, loopspawn-4 was able to progress past the second pass stage, taking 5783 seconds 

(1 hour 36 minutes and 23 seconds) to complete the second pass stage, checking 36 

queries. After this second pass had completed however, Uppaal still ran out of memory in 

the deep pass stage when checking the following query which verifies that the Scheduler 

function cannot deadlock: 

𝐴[] (𝑛𝑜𝑡 𝑜𝑢𝑡_𝑜𝑓_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠) 𝑖𝑚𝑝𝑙𝑦 (𝑛𝑜𝑡 (𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘 𝑎𝑛𝑑 𝑓𝑢𝑛𝑐4_𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟_0. 𝑠𝑒𝑙𝑒𝑐𝑡_𝑝𝑎𝑠𝑠_2_0)) 

Note that this query is related to the Scheduler function and can be safely removed with the 

next optimisation as being a result of code added by Vtrace, it will never cause a real error. 

Removing Scheduler/Guard queries 

Next, Toph was modified to prevent queries being generated for Guard channels or the 

Scheduler function, and as a result loopspawn-4 was able to complete the second pass 

stage in 1408 seconds (23 minutes and 28 seconds), a reduction of 75.6% compared to the 

original time. In this second pass stage, only 14 queries were checked, representing a 

reduction of 61.1% compared to the original amount.  

After the second pass stage had completed, the deep pass was now able to complete 

without going out of memory, taking only 10 seconds to find the error (only one iteration of 

the deep pass). 

Category-based removal 

After queries were removed based on their category and the category of queries that failed 

in the first pass, loopspawn-4 was able to complete the second pass stage in 706 seconds 

(11 minutes and 46 seconds), a reduction of 87.79% compared to the original time. In the 

second pass stage now, only 9 queries were checked, a reduction of 75% compared to the 

original amount. Again, the deep pass stage was able to complete without going out of 

memory and took only 9 seconds (only one iteration of the deep pass). 

 

4.7  Self-parsing test 

To test the capabilities of the parser (i.e. how well the parser is able to concatenate lines and 

place Guards correctly), a short test was written in which Vtrace was instructed to parse its 

own code (3365 lines in 19 files, not including Go tests) with the flag reduced=false, 

meaning that every single line was to be Guarded. If no Guards were placed incorrectly (i.e. 

they were not in the middle of lines or within struct definitions etc), the Proto version should 

compile without errors. This is achieved successfully, with Proto and Orc versions of Vtrace 

being generated in an average of 32.80 milliseconds, and with this Proto version compiling 

without issue. 
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6 Implementation limitations and future work   
Vtrace’s current implementation, while extensive, has a number of limitations that may be 

resolved in future work. This section will cover some limitations, and also detail future 

improvements that would benefit Vtrace. 

6.1 Incompatibility with cgo 
Currently, Vtrace relies on the deadlock detection system built into the Go runtime. This Go 

runtime uses a group of OS-level threads (known as Machines or ‘M’s), onto which a 

scheduler multiplexes all goroutines in the program. In the event that all Ms are blocked, 

then the runtime can report that the program is deadlock. This approach to deadlock 

detection becomes an issue when cgo is included in a program, as its presence results in an 

extra OS-thread being spawned15. The existence of this extra M means that the Go runtime 

will no longer be able to report a deadlock from purely goroutine-based interaction and thus, 

Vtrace can no longer use this deadlocking as a check for a false error. 

One major case where this limitation is obvious is in programs which use ‘net’ package in the 

standard library to do networking operations. One some systems (unix systems for 

example), the net package uses a Go-based resolver for domain lookup, with the option to 

use a cgo resolver available but turned off by default. On other systems (such as Windows), 

the net package does not have this option, and can only use the cgo resolver. As a result, 

Go programs that use the net package for network operations on Windows systems will not 

run in Vtrace. 

Currently, Vtrace does not detect programs which use cgo, or any packages that import cgo. 

In future, this detection could be added so that users get warned if their code is incompatible 

with Vtrace. In future work perhaps Vtrace could allow simple create/read/update/delete 

operations to be performed by replacing calls to the net package with custom functions that 

Vtrace would export. Each of these custom functions could create a new OS process which 

executes the net request, writes the result to a file and ends. The custom function would 

then read the file, deletes it and returns the result to the calling function. This would mean 

that connections would not be able to be maintained in the program and reused, but that 

basic network operations would be possible. 

This would allow for logging to be written to the Vtrace test runner in real time over network 

connections. Perhaps the Vtrace test runner could host a server with a webpage GUI that 

displays the progress through the program by each goroutine in real time. If Vtrace supports 

large programs in future, or if Orchestration tests begin to take a long time to run, this could 

be useful and really elevate the user experience. 

6.2 Reading/writing external memory 
Currently, all Orchestration tests run under the assumption that the program does not 

interact with external memory or does not have any elements of randomness. If it is the case 

that some external memory is read and then written or overwritten at any stage during the 

program, then this reading and overwriting will occur when every Orchestration test is 

running ,and these Orchestration tests may not be able to find errors as they do not all start 

with the same initial conditions (i.e. modified memory is preserved during testing). To 

 
15 Runtime file defining cgo-related variables, https://golang.org/src/runtime/cgo.go (last accessed 
2021-05-10) 

https://golang.org/src/runtime/cgo.go
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prevent against this, Source programs written for Vtrace should not overwrite any memory 

that they ever have read from or will read from. 

To avoid modifying or intercepting any system calls (which would require customising a Go 

runtime, thus tying Vtrace to a particular Go version), future work could be done into 

checking which files are modified by the Source program, and making backups of these files 

so that they can be restored before any Orchestration test is run. 

6.3 Shared memory 
The use of shared memory in a Source program can be challenging for Vtrace to deal with 

and can in some situations make Orchestration tests nondeterministic. Due to the 

abstraction performed by Toph certain types of variables cannot be modelled, and so are 

effectively invisible to Uppaal when verifying. While this is fine in the case of locally-scoped 

variables, global variables or variables that are shared between goroutines create 

complications for running Orchestration tests. 

Firstly, In the case that some memory is shared between multiple goroutines and an error 

exists in one of these goroutines which depends on the value of that shared memory, Uppaal 

cannot ever produce a trace where it knows exactly how to produce that error. As a result, 

programs with errors of this form will only be found through iterations of the deep pass, as 

one of these iterations will eventually produce a trace in which Uppaal randomly finds the 

correct sequence of Guard unblocks that lead to the error. Depending on the number of 

states and goroutines, this kind of random search may take a long time and a lot of iterations 

of the deep pass. 

As an example of this, consider the following program (6.1): 

 

 

 

 

 

 

 

 

 

 

 

In this program, a real error exists since it is possible that the main function gets to reset the 

value of the global variable x to zero before the panicMaybe goroutine evaluates the if 

statement. Note that in this program, a mutex is added after the goroutine is spawned to 

create a state in the Source model (and a Guard in Proto). This Guard would never be 

unblocked on the first iteration of the deep pass (since Uppaal sees nothing beyond this 

state that contributes to the error) and will only be unblocked during some later iteration of 

the deep pass. As a result, this program takes multiple deep pass iterations before the error 

package main 
 
import "sync" 
 
var x int 
 
func panicMaybe() { 
   if x == 0 { 
      panic("can catch") 
   } 
} 
 
func main() { 
   x = 1 
   go panicMaybe() 
   x++ 
   var m sync.Mutex // create a new state here 
   m.Lock() 
   if x == 2 { 
      x = 0 
   } 
} 

 

(6.1) 
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is found. The following logs are collected from these passes, showing the various 

Orchestration tests that get run in an attempt to find the error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second case where shared memory poses an issue for Vtrace is in the case where the 

shared memory is read or written along a transition (which is executed deterministically 

according to an Orchestration test), in such a way that an interleaving which would be 

possible is no longer possible.  

2021/05/08 02:44:32.802242 func6_main_0  :  func main() { 
2021/05/08 02:44:32.803274 func6_main_0  :  x = 1 
2021/05/08 02:44:32.803274 func6_main_0  :  go panicMaybe() 
2021/05/08 02:44:32.803274 func6_main_0  :  x++ 
2021/05/08 02:44:32.803274 func6_main_0  :  var m sync.Mutex // create a new state here 
2021/05/08 02:44:32.804260 func5_panicMaybe_0  :  func panicMaybe() { 
2021/05/08 02:44:32.804260 func5_panicMaybe_0  :  } 

 

Deep pass: first iteration - trace attempts to go into if statement immediately 

2021/05/08 02:44:36.256209 func6_main_0  :  func main() { 
2021/05/08 02:44:36.257225 func6_main_0  :  x = 1 
2021/05/08 02:44:36.257225 func6_main_0  :  go panicMaybe() 
2021/05/08 02:44:36.257225 func6_main_0  :  x++ 
2021/05/08 02:44:36.257225 func6_main_0  :  var m sync.Mutex // create a new state here 
2021/05/08 02:44:36.259206 func5_panicMaybe_0  :  func panicMaybe() { 
2021/05/08 02:44:36.259206 func5_panicMaybe_0  :  } 

 

Deep pass: second iteration - different trace, producing same output as first iteration 

2021/05/08 02:44:39.817906 func6_main_0  :  func main() { 
2021/05/08 02:44:39.818878 func6_main_0  :  x = 1 
2021/05/08 02:44:39.819926 func6_main_0  :  go panicMaybe() 
2021/05/08 02:44:39.819926 func6_main_0  :  x++ 
2021/05/08 02:44:39.819926 func6_main_0  :  var m sync.Mutex // create a new state here 
2021/05/08 02:44:39.820878 func5_panicMaybe_0  :  func panicMaybe() { 
2021/05/08 02:44:39.820878 func5_panicMaybe_0  :  } 
2021/05/08 02:44:39.821878 func6_main_0  :  m.Lock() 
2021/05/08 02:44:39.821878 func6_main_0  :  if x == 2 { 
2021/05/08 02:44:39.821878 func6_main_0  :  x = 0 
2021/05/08 02:44:39.821878 func6_main_0  :  } 

 

Deep pass: third iteration - progressing past the mutex state, wrong order 

2021/05/08 02:44:43.753878 func6_main_0  :  func main() { 
2021/05/08 02:44:43.753878 func6_main_0  :  x = 1 
2021/05/08 02:44:43.754878 func6_main_0  :  go panicMaybe() 
2021/05/08 02:44:43.754878 func6_main_0  :  x++ 
2021/05/08 02:44:43.754878 func6_main_0  :  var m sync.Mutex // create a new state here 
2021/05/08 02:44:43.755877 func6_main_0  :  m.Lock() 
2021/05/08 02:44:43.755877 func6_main_0  :  if x == 2 { 
2021/05/08 02:44:43.755877 func6_main_0  :  x = 0 
2021/05/08 02:44:43.755877 func6_main_0  :  } 
2021/05/08 02:44:43.755877 func5_panicMaybe_0  :  func panicMaybe() { 
2021/05/08 02:44:43.756877 func5_panicMaybe_0  :  if x == 0 { 
2021/05/08 02:44:43.756877 func5_panicMaybe_0  :  panic("can catch") 

 

Deep pass: fourth iteration - error found 
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For example, consider the above program (6.1), but placing the ‘x++’ line along the transition 

before the entrance into the if statement in panicMaybe, as shown in (6.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case, no amount of iterations of the deep pass will result in the error being caught, as 

the x++ lies along a transition, and its execution will always be followed by the if statement. 

This is more obvious when seeing this function in Proto. In the below snippet of code (6.3), 

an Orchestration test will deterministically take execution directly from ChPROTO_main_0 to 

ChPROTO_main_1, or from ChPROTO_main_0 to ChPROTO_main_2, and x will never 

receive any interleaving with the main goroutine that would set x=0 after the x++ line was 

executed. 

 

 

 

 

 

 

The last case where shared memory becomes an issue for Vtrace to deal with is when reads 

or writes to shared memory that could result in an error are directly underneath an operation 

which requires synchronisation with another goroutine. In this case, the operation will require 

a call to orcutil.UnblockOrchestrate to progress the Orchestrate function, and so the lines 

below this synchronised operation can no longer be executed deterministically (i.e. the 

Orchestrate function cannot wait for the next state to be reached here). Therefore, in the 

case that the lines beneath the synchronisation operation contain some read/writes to 

shared memory, some interleaving which would otherwise cause an error may not be occur, 

and an Orchestration test could incorrectly be reported as corresponding to a false error. 

package main 
 
import "sync" 
 
var x int 
 
func panicMaybe() { 
   x++ // code along transition, error is uncatchable 
   if x == 0 { 
      panic("cannot catch") 
   } 
} 
 
func main() { 
   x = 1 
   go panicMaybe() 
   var m sync.Mutex // create a new state here 
   m.Lock() 
   if x == 2 { 
      x = 0 
   } 
} 

 

 

func panicMaybe() { 
   <-PROTO_scheduler_autogen.ChPROTO_main_0 
   x++ // code along transition, error is uncatchable 
   if x == 0 { 
      <-PROTO_scheduler_autogen.ChPROTO_main_1 
      panic("cannot catch") 
   } 
   <-PROTO_scheduler_autogen.ChPROTO_main_2 
} 

 

(6.2) 

(6.3) 
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For example, consider the following version (6.4) of the above programs ((6.1) and (6.1)): 

 

 

 

 

 

 

 

 

 

 

 

 

In here the same error exists as before (although the additional state added by the mutex is 

no longer present). However, as the below code snippets (6.6) and (6.7) show, the 

Orchestration test will contain calls to unblock Orchestrate function, releasing the calling 

goroutine to complete its transition to the next state. Here consider the situation where the 

maybePanic() goroutine evaluates its if statement and exits before the x++ line is executed, 

and a real error is not found. 

 

 

 

 

 

 

 

 

 

 

 

 

The one solution to these last two issues is the use of the ‘reduced’ flag for Vtrace. By 

passing the argument reduced=false, Vtrace will place Guards over every single line when 

building Proto. This will make the state space for the Proto model a lot larger, increase 

package main 
 
var x int 
 
func panicMaybe(ch chan int) { 
   <-ch 
   if x == 0 { 
      panic("maybe catch") 
   } 
} 
 
func main() { 
   x = 1 
   ch := make(chan int) 
   go panicMaybe(ch) 
   ch <- 0 
   /* to demonstrate nondeterminism, import time and uncomment this: */ 
   // time.Sleep(1*time.Second) // sleep to ensure goroutine progresses first 
   x++ 
   if x == 2 { 
      x = 0 
   } 
} 

 

<-PROTO_scheduler_autogen.ChPROTO_main_5 
orcutil.PrintControlFlow(ChORCHESTRATION, "ch <- 0") 
go orcutil.UnblockOrchestrate(ChORCHESTRATION) 
ch <- 0 
/* to demonstrate nondeterminism, import time and uncomment this: */ 
// time.Sleep(1*time.Second) // sleep to ensure goroutine progresses first 
x++ 
orcutil.PrintControlFlow(ChORCHESTRATION, "x++") 
if x == 2 { 
   orcutil.PrintControlFlow(ChORCHESTRATION, "if x == 2 {") 
   x = 0 
   orcutil.PrintControlFlow(ChORCHESTRATION, "x = 0") 
} 
orcutil.PrintControlFlow(ChORCHESTRATION, "}") 
<-ChORCHESTRATION 

 

<-PROTO_scheduler_autogen.ChPROTO_main_0 
orcutil.PrintControlFlow(ChORCHESTRATION, "func panicMaybe(ch chan int) {") 
orcutil.PrintControlFlow(ChORCHESTRATION, "<-ch") 
go orcutil.UnblockOrchestrate(ChORCHESTRATION) 
<-ch 
if x == 0 { 

 

(6.4) 

(6.6) 

(6.7) 
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memory usage in the deep pass and increase the time taken for Uppaal to check queries, 

but it will ensure that the problems described above are managed. With Guards over every 

line, enough deep pass iterations will eventually cause the real error to be found. Future 

work could be done into improving Vtrace’s handling for shared memory. Global variables 

could possibly be identified while parsing (as they will always be referenced by the same 

name), and could have Guards placed over lines where they are read or modified, meaning 

that the deep pass would work better with these variables without the need for reduce being 

set false. Additionally, some better way of controlling the Orchestrate function without 

needing to call unblockOrchestrate would prevent the nondeterminism problem described 

above. 

6.4 Hashing in Uppaal 
Since the FNV-1a function can have collisions, it cannot be guaranteed that two different 

traces would have the same hash and cause a real error to be never found. Specifically, if 

the hash of a trace which would produce a real error in an Orchestration test happened to be 

the same as the hash of a trace from a previous iteration of the deep pass, then the trace for 

the real error would never be reported.  

For example, if a trace has a hash of 736285766 is built into an Orchestration test that is run 

and found to correspond to a false error, then trace disallowing will ensure that no other 

trace with that hash is generated. However, if a different path to the error had a hash which 

collided with that earlier trace, then this path to the error would also never be returned as a 

trace. If that error path could have been viable in Orc, then the trace which would prove that 

a real error exists has been accidentally ignored. 

Since every hash function has collisions, any future work which wished to solve this issue 

would have to be based off of a fundamentally new approach to trace disallowing – one 

which did not involve hashing. While FNV-1a hash does have a low collision rate, a hash 

function with an even lower collision rate would help reduce the chance of collisions (see 

table I in [12], p.687). However, any other hash function would be more expensive to 

compute, and the decreased likelihood of collisions may not be worth the increase in time 

spent checking queries in the deep pass.  

6.5 Function objects and arguments 
Since Vtrace adds the ChORCHESTRATION argument to all function definitions, and 

passes this variable into all function calls, it cannot handle cases where the function itself is 

passed into another function (at which point its name may become modified within that 

called function). Likewise, any function objects that are passed into other functions will now 

no longer match the type specified by the argument. 

For example, consider the following program (6.8), in which a function is passed into another 

function: 

 

 

 

 

 

 

package main 
 
func A(toCall func(i int), value int) { 
   toCall(value) 
} 
 
func B(v int) { 
   panic(v) 
} 
 
func main() { 
   A(B, 2) 
} 

 

(6.8) 
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In Orc, the function definitions here for A and B will become (6.9) and (6.10). 

 

 

 

This however poses an issue in two lines in this program. Firstly, the line where A is called in 

main has still passes in the function B, but now the function B is no longer of the type func(i 

int) and cannot be passed into this function anymore. Similarly, in the line where toCall is 

called will still be written as (6.11) 

 

Since no function named toCall was defined in this program, and the parser was not aware 

that the ChORCHESTRATION argument should have been added here. 

The result of these issues is that no Orchestration test will run, as Orc contains Go code 

which causes the compiler to produce an error. To help notify the user if this issue is present 

in their program, Vtrace will warn the user as Orc is being generated in the event that a 

function is found passed into another function. For example, when Proto and Orc were being 

generated for this example program above, the following warning line was printed to the 

standard output: 

WARNING: in file 
D:\Users\Brian\go\src\github.com\brianneville\vtrace\examples\demo\funcobj_orc_123\main.go, the 
variable "B" may be a function in line: A(ChORCHESTRATION,B, 2). 
 If it is a function,please modify this any calls that are made to the variable, and modify the 
variable's type if necessary. 
 

If the user wishes to keep this function-passed-into-function code in their program, they can 

amend the issue in Orc by modifying the function calls and definitions. After this, the user 

can then restart Vtrace from the second pass stage using their corrected version of Orc by 

running Vtrace with the proto-pkg flag set to the path to the Proto directory. 

Future work on Vtrace could add a map of argument names that correspond to function 

objects into the flags *buildFlags variable that is used in writeLineWithinFunction. Then any 

time a function call is made to one of the functions that is saved in this map, that function call 

could pass the ChORCHESTRATION variable too. Also, the function definition line could 

have any parameters which are of some function type, have their type changed to include 

the ChORCHESTRATION argument. 

 

6.6 Deep pass optimisation 
If only one iteration of the deep pass is needed for a query to produce a trace that leads to 

an error when built into an Orchestration test, then the inclusion of trace-disallowing has only 

served to make performance worse when checking this query. Therefore, the deep pass 

could be optimised in future work by only adding trace-disallowing after the first iteration. 

This would mean that the first iteration and the second iteration of the deep pass would lead 

to the exact same traces, but given the additional time that checking queries takes with trace 

disallowing, it would be worthwhile performing this first iteration without trace disallowing. 

 

func A(ChORCHESTRATION orcutil.OrcChan, toCall func(i int), value int) { 

 

func B(ChORCHESTRATION orcutil.OrcChan, v int) { 

 

toCall(value) 

 

(6.9) 

(6.10) 

(6.11) 
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6.7 Pattern-based query reduction 
One future way to further reduce the queries in the second pass stage would be to do 

pattern matching on these queries against the queries that failed in the first pass. This could 

be done by constructing a regex for each of the queries that failed in the first pass and using 

this regex to further filter the queries in the second pass. For example in the case that a 

goroutine exits with a panic, the query that failed for this error in the first pass could be used 

to build a regex that only allows queries which have that structure to be used for the second 

pass. If the query formula that failed in the first pass was: 

A[] (not out_of_resources) imply (not (func4_panickyFunc_0.ending and 

!func4_panickyFunc_0.is_sync and func4_panickyFunc_0.internal_panic)) 

Then this query formula could be turned into a regex which matches 

A[] (not out_of_resources) imply (not (funcX_panickyFunc_Y.ending and 

!funcX_panickyFunc_Y.is_sync and funcX_panickyFunc_Y.internal_panic)) 

Where X and Y are any sequence of digits in the range 0-9.  

If this pattern-based matching was good enough, it could mean that query-filtering aspect of 

the second pass stage is no longer required, and the filtered set of queries for the Proto 

model could be run for the first time in the deep pass stage. 
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7 Conclusion   
Revisiting the original research question of “Given a trace through an Uppaal model of a Go 

program, is it possible to instrument the Go program such that the trace can be determined 

to be reproducible?”, the work presented in this dissertation has shown that this is very much 

possible, and Vtrace is capable of performing this trace extraction, instrumentation, and 

determination automatically.  

However, Vtrace is still not perfect and in its current implementation, it most notably faces 

challenges with applied to large-scale programs. In small part this is due to the memory 

limitations of Uppaal, but primarily this poor scaling can be seen as a consequence of the 

way that Vtrace manufactures determinism within programs (through channel operations 

which pollute the state space in Uppaal models).  

This project has brought a lot of challenges, both in terms of algorithm design and 

implementation. Vtrace was built entirely from the ground up without any other real reference 

tool and took a lot of planning throughout. Figuring out how to write a tool which could 

handle any Go program in a general sense was also difficult, especially since Vtrace 

operates on the code itself (syntactically), and not on some partially compiled format of the 

program (such as an AST). As more challenges were encountered during the 

implementation, and more code was added by Vtrace into Proto and Orc for orchestration 

purposes, the necessity of a human readable output became clearer. Vtrace’s line logging 

allows for a much more intuitive understanding of how an error manifests, and overall makes 

Vtrace a lot more user-friendly.  

Vtrace was designed to first be able to handle the most basic Go programs, then iteratively 

built to be more performant and capable of handling more complex programs. However, if 

redesigning Vtrace from the beginning, it could be beneficial to make scalability an absolute 

priority and design the entire tool around handling large-scale programs. With this approach, 

it is likely that the resulting tool was would be much more useful, since errors become 

increasingly obscure in larger programs. 

While there is still a lot of future work that could be done and improvements that could be 

added, Vtrace in its current form still offers great utility to Toph and presents a novel 

approach to trace reconstruction in Go programs. 
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Appendices  

A. Sequences 
Shown here with N (number of channel operations per goroutine) = 14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

package main 
 
var ch = make(chan int) 
 
func sender() { 
   ch <- 1 
   ch <- 1 
   // 2 ^ 
   ch <- 1 
   ch <- 1 
   // 4 ^ 
   ch <- 1 
   ch <- 1 
   // 6^ 
   ch <- 1 
   ch <- 1 
   // 8^ 
   ch <- 1 
   ch <- 1 
   // 10 ^ 
   ch <- 1 
   ch <- 1 
   // 12 ^ 
   ch <- 1 
   ch <- 1 
   // 14 ^ 
   //ch <- 1 
   //ch <- 1 
   // 16 ^ 
 
   close(ch) 
} 
 
func main() { 
   go sender() 
   <-ch 
   // 2^ 
   <-ch 
   <-ch 
   // 4 ^ 
   <-ch 
   <-ch 
   // 6^ 
   <-ch 
   <-ch 
   // 8 ^ 
   <-ch 
   <-ch 
   // 10 ^ 
   <-ch 
   <-ch 
   // 12 ^ 
   <-ch 
   <-ch 
   // 14 ^ 
   //<-ch 
   //<-ch 
   // 16 ^ 
 
   x := <-ch 
   if x == 1 { 
      close(ch) 
   } 
} 
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B. Mutexloopconst 
Shown here with N (number of loops) = 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Mutexloopvar 
Shown here with N (number of loops) = 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

package main 
 
import ( 
   "fmt" 
   "sync" 
) 
 
func main() { 
   var m sync.Mutex 
 
   m.Lock() 
   for i := 0; i < 8; i++ { 
      if i&0x1 == 0x1 { 
         m.Lock() 
         // do some work using lock here 
         fmt.Println("working with lock") 
         continue 
      } 
      m.Unlock() 
   } 
 
   // if above loop has run for an even number of 
   // then locking will cause an error (cant double lock) 
   m.Lock() 
} 

 

package main 
 
import ( 
   "fmt" 
   "sync" 
) 
 
// could be set from some other package 
var LoopIter = 8 
 
func main() { 
   var m sync.Mutex 
 
   m.Lock() 
   for i := 0; i < LoopIter; i++ { 
      if i&0x1 == 0x1 { 
         m.Lock() 
         // do some work using lock here 
         fmt.Println("working with lock") 
         continue 
      } 
      m.Unlock() 
   } 
 
   // if above loop has run for an even number of 
   // then locking will cause an error (cant double lock) 
   m.Lock() 
} 
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D. Loopspawn 
Shown here with N (number of goroutines spawned) = 4 

 

 

 

 

 

 

 

 

 

package main 
 
func checkPanic(i int) { 
   if i == 3 { 
      panic("somethings wrong") 
   } 
} 
 
func main() { 
   for i := 0; i < 4; i++ { 
      go checkPanic(i) 
   } 
} 

 


