
University of Dublin

TRINITY COLLEGE

Reducing Dissonance with Dynamic Tuning Algorithms
for MIDI Synthesis

Kilian Kirsch
M.A.I. (Electronic & Computer Engineering)

Dissertation May 2021
Supervisor: Prof. David Gregg

School of Computer Science and Statistics

OôReilly Institute, Trinity College, Dublin 2, Ireland

i

DECLARATION

I hereby declare that this project is entirely my own work and that it has not been submitted

as an exercise for a degree at this or any other university.

I have read and I understand the plagiarism provisions in the General Regulations of the

University Calendar for the current year, found at http://www.tcd.ie/calendar.

I have also comǇƭŜǘŜŘ ǘƘŜ hƴƭƛƴŜ ¢ǳǘƻǊƛŀƭ ƻƴ ŀǾƻƛŘƛƴƎ ǇƭŀƎƛŀǊƛǎƳ ΨwŜŀŘȅ {ǘŜŀŘȅ ²ǊƛǘŜΩΣ ƭƻŎŀǘŜŘ

at http://tcd -ie.libguides.com/plagiarism/ready-steady-write.

__ ________________________

Name Date

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

ii

ABSTRACT

This dissertation investigates a software based tuning method as an alternative to the

standard western, one-size-fits-all approach of tuning music pitches in the form of twelve-

tone equal temperament (12-TET). It is based on the belief that software synthesized music

does not have to follow the constraints of traditional instruments which cannot be tuned,

with precision, in a practical timeframe. The aim is to provide a custom tuning system, that

considers the melody of a song.

Four popular songs read from standard MIDI files were parsed and represented in a program.

This representation was analysed for its structure, dissonance between notes, and run

through a gradient descent algorithm. This algorithm optimizes the frequency of notes to

reduce calculated dissonance between simultaneous notes, or chords. Results were then

compared to standard tuning methods and the algorithm fine-tuned to maximize the

reduction in dissonance.

The algorithm shows up to 12% reduction in total calculated dissonance. Successful

dissonance reduction occurs in 3 out of 4 MIDI tunes of varying complexity. It can be

concluded that reducing dissonance in comparison to 12-TET is possible using the methods

outlined in this project. Possible adaptations to improve usability and widen the tuning

parameters are discussed in later sections of the dissertation.

iii

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Professor David Gregg, for the regular meetings, insightful

feedback, and guidance during the project.

Thank you to my girlfriend, Hannah, and my mother, Monika, for being cheerful and welcome

distractions in a time where it is easy to fall into an unbalanced routine, for always being

around to talk, and putting food on the table.

Thank you also to any friends who have supported me throughout the last year.

iv

TABLE OF CONTENTS

1 Introduction .. 1

2 Background ... 4

2.1 MIDI ... 4

2.1.1 What is MIDI? ... 4

2.1.2 Standard File Structure .. 4

2.1.3 MIDI Summary ... 9

2.2 Tuning .. 9

2.2.1 Frequency/Cents .. 9

2.2.2 Musical Systems ... 9

2.2.3 Soft Synths and Tuning (scl/kbm) .. 13

2.2.4 Tuning Summary .. 14

2.3 Consonance/Dissonance ... 14

2.3.1 What is Consonance/Dissonance? ... 14

2.3.2 Graph and Formulae Behind Sensory Dissonance vs. Frequency Ratio 14

2.3.3 Consonance/Dissonance Summary ... 16

2.4 Dynamic Tuning ... 16

2.4.1 Iteration Algorithm .. 16

2.4.2 Dynamic Tuning Summary ... 17

3 Implementation .. 18

3.1 Reading and Preparing MIDI Notes ... 18

3.1.1 Parsing .. 18

3.1.2 Simultaneous Notes ... 21

3.2 Algorithm ... 24

3.2.1 Baseline Frequencies and Cents .. 24

3.2.2 Tuning track by track.. 25

3.2.3 Comparison Metrics ... 26

3.2.4 Hyperparameter Tuning... 27

3.3 MIDI in Practice ... 28

3.4 Implementation Summary .. 28

4 Results & Discussion ... 29

v

4.1 Dissonance Comparison .. 29

4.1.1 Results .. 29

4.1.2 Discussion... 33

4.2 Example Changes .. 34

4.2.1 Results .. 34

4.2.2 Discussion... 42

4.3 Results & Discussion Summary ... 44

5 Conclusion .. 45

5.1 Conclusions.. 45

5.2 Future Work .. 45

5.2.1 Explore Alternative Gradient Calculations ... 45

5.2.2 Retune Unused MIDI Notes ... 46

5.2.3 Real-time MIDI Polyphonic Expression .. 46

5.2.4 Horizontal Tuning and Comparison ... 46

5.2.5 Comparison of Mean/Median Final Frequency ... 46

6 Bibliography .. 47

vi

LIST OF FIGURES

Figure 1 Comparison of just intonation frequencies when tuned relative to different notes. . 2

Figure 2 Contents of a standard MIDI file .. 4

Figure 3 General layout of MIDI chunks .. 5

Figure 4 Comparison of a C over multiple octaves (User:Angr, 2021). 10

Figure 5 Equal temperament and just intonation compared by intervals. 11

Figure 6 Example of difference between pitch and timbre. .. 15

Figure 7 Example of a dissonance curve. ... 16

Figure 8 Notes from a MIDI adaptation of John Denver - Take Me Home, Country Roads. ... 19

Figure 9 Notes from a MIDI adaptation of John Lennon ς Imagine. 20

Figure 10 Notes from a MIDI adaptation of Klaus Badelt - He's A Pirate. 20

Figure 11 Notes from a MIDI adaptation of Queen - Bohemian Rhapsody. 21

Figure 12 Sample of simultaneous notes highlighted from a MIDI adaptation of John Denver -

Take Me Home, Country Roads. .. 22

Figure 13 Sample of simultaneous notes highlighted from a MIDI adaptation of John Lennon

ς Imagine. ... 23

Figure 14 Sample of simultaneous notes highlighted from a MIDI adaptation of Klaus Badelt -

He's A Pirate. .. 23

Figure 15 Sample of simultaneous notes highlighted from a MIDI adaptation of Queen -

Bohemian Rhapsody. ... 24

Figure 16 Baseline frequencies used before tuning. ... 25

Figure 17 Just intonation frequencies used for comparison. .. 27

Figure 18 Comparison of impact from changes in the maximum cent change hyperparameter

to total dissonance. .. 28

Figure 19 Dissonance comparison for a MIDI adaptation of John Denver - Take Me Home,

Country Roads. ... 29

Figure 20 Dissonance comparison for a MIDI adaptation of John Lennon ς Imagine. 30

Figure 21 Dissonance comparison for of Klaus Badelt - He's A Pirate. 31

Figure 22 Dissonance comparison for a MIDI adaptation of Queen - Bohemian Rhapsody. .. 32

Figure 23 Frequency comparison in track 4 of John Denver - Take Me Home, Country Roads.

.. 34

Figure 24 Frequency comparison in track 6 of John Denver - Take Me Home, Country Roads.

.. 36

Figure 25 Frequency comparison in track 1 of John Lennon ς Imagine. 37

Figure 26 Frequency comparison in track 6 of John Lennon ς Imagine. 38

Figure 27 Frequency comparison in track 1 of Klaus Badelt ς IŜΩǎ ! tƛǊŀǘŜΦ 39

Figure 28 Frequency comparison in track 3 of Queen ς Bohemian Rhapsody. 40

Figure 29 Frequency comparison in track 4 of Queen ς Bohemian Rhapsody. 41

vii

LIST OF TABLES

Table 1 Examination of a SMF header chunk .. 6

Table 2 Variable-length quantity number vs. representation ... 7

¢ŀōƭŜ о 9ȄŀƳǇƭŜ ǳǎŀƎŜ ƻŦ ΨbƻǘŜ hƴΩ ŀƴŘ ΨbƻǘŜ hŦŦΩ /ƘŀƴƴŜƭ ±ƻƛŎŜ aŜǎǎŀƎŜǎ 8

Table 4 Default distribution of MIDI notes .. 10

Table 5 Example comparing intervals and semitones. .. 11

Table 6 Comparing 12-TET with just intonation (Wikipedia, 2021) ... 12

Table 7 Values corresponding to an example dissonance calculation, between 2 notes, with 6

partials each. .. 16

Table 8 Comparison of impact from changes in the maximum cent change hyperparameter to

total dissonance. .. 28

Table 9 Dissonance comparison for a MIDI adaptation of John Denver - Take Me Home,

Country Roads. ... 29

Table 10 Dissonance comparison for a MIDI adaptation of John Lennon ς Imagine. 30

Table 11 Dissonance comparison for of Klaus Badelt - He's A Pirate. 31

Table 12 Dissonance comparison for a MIDI adaptation of Queen - Bohemian Rhapsody. ... 32

Table 13 Frequency comparison in track 4 of John Denver - Take Me Home, Country Roads.

.. 35

Table 14 Frequency comparison in track 6 of John Denver - Take Me Home, Country Roads.

.. 36

Table 15 Frequency comparison in track 1 of John Lennon ς Imagine. 37

Table 16 Frequency comparison in track 6 of John Lennon ς Imagine. 38

Table 17 Frequency comparison in track 1 of Klaus Badelt ς IŜΩǎ ! tƛǊŀǘŜΦ 39

Table 18 Frequency comparison in track 3 of Queen ς Bohemian Rhapsody. 40

Table 19 Frequency comparison in track 4 of Queen ς Bohemian Rhapsody. 42

Table 20 Frequency changes of note 68, in track 3, of a MIDI adaptation of Queen - Bohemian

Rhapsody. ... 43

viii

NOMENCLATURE

12-TET ς Twelve-tone equal temperament

MIDI ς Musical Instrument Digital Interface

VST ς Virtual Studio Technology

DAW ς Digital Audio Workstation

SMF ς Standard MIDI File

MPE ς MIDI Polyphonic Expression

Pitch ς The fundamental frequency of a music note

Melody/Tune ς Multiple pitches in series

Chords ς Multiple pitches played together

Harmony ς How pitches played together interact

Timbre ς The frequency spectrum that defines the unique sound of an instrument

1

1 INTRODUCTION

Musical tuning intervals are determined by the mathematical ratio between the frequencies

ƻŦ ǎƛƴŜ ǿŀǾŜǎΣ ǊŜǇǊŜǎŜƴǘƛƴƎ ƴƻǘŜǎΦ Lƴ ƎŜƴŜǊŀƭΣ ǘƘŜ ΨǎƛƳǇƭŜǊΩ ǘƘŜ ǊŀǘƛƻΣ ǘƘŜ ƳƻǊŜ ƘŀǊƳƻnious it

sounds to the human ear. For example, if the note A4 is a 440 Hz sine wave, ƛǘǎ ΨƻŎǘŀǾŜΩ1, A5,

is 2:1 the frequency, 880 Hz. As the fractional denominator for this ratio is 1, the smallest

possible positive integer, this is known as the least dissonant or most consonant ratio. If a

sound is pleasant to the ear, it is known to be consonant, with the opposite, an unpleasant

sound, being dissonant. This relationship can be measured and will be explored. There are

many other small integer ratios such as ǘƘŜ ΨƳŀƧƻǊ ǎŜŎƻƴŘΩ - фΥуΣ ΨƳŀƧƻǊ ǘƘƛǊŘΩ ς рΥпΣ ΨǇŜǊŦŜŎǘ

ŦƛŦǘƘΩ ς 3:2 etc. Such frequency ratios are also known as just intervals. Groups of intervals that

sound pleasant when played together are known as scales. A scale that implements just

intervals is known as a just intonation scale. If a tune is played with intervals between notes

that are close to just intervals it could sound superior to the listener over picking two

frequencies at random.

However, it becomes difficult to incorporate these exact ratios on instruments, as there are

not enough keys/strings/frets to represent the near infinite number of frequencies required

if notes were to be tuned based on the notes played previous. It is also not possible to stick

to true just intonation intervals when multiple notes are played at once, as the ratio between

all notes is different and just intervals are not equally spaced. This is because instruments

have fixed frequencies to represent notes. Instruments, such as the piano in Figure 6, tend to

split an octave into 12 semitones, which is known as a chromatic scale. It is not possible to

split an octave into 12 using evenly spaced small integer ratios.

The following describes the ratio issues with just intonation when it is applied to instruments

with fixed tuning:

¶ /ƻƴǎƛŘŜǊ ŀ ƴƻǘŜΣ ΨȄΩΣ ǿƛǘƘ ŀ ǇƛǘŎƘ ƻŦ рлл Hz. It has a major second just interval, 9:8 the

frequency, 562.5 IȊΦ [Ŝǘ ǘƘƛǎ ǇƛǘŎƘ ōŜ ƴƻǘŜ ΨȅΩΦ ! ƳŀƧƻǊ ǎŜŎƻƴŘ ƛǎ н ǎŜƳƛǘƻƴŜǎ ŀōƻǾŜ

the original note.

¶ The major second for note y, iǎ ƴƻǘŜ ΨȊΩ ǿƛǘƘ ŀ ǇƛǘŎƘ ƻŦ сонΦу Hz ς 9:8 the frequency of

562.5 Hz and another 2 semitones.

¶ Note z should be 4 semitones above the original note, x, which is a major third interval

ς a 5:4 frequency ratio in just intonation. However, the major third of 500 Hz is 625

Hz.

¶ Note z now has two different tunings, 632.8 Hz relative to y and 625 Hz relative to x.

This effect compounds further when notes are tuned relative to the two frequencies

of note z.

Figure 1 shows 12 semitones between C4 and C5, and how just intonation can vary due to

inconsistent intervals. The frequencies change based on which note they are tuned in relation

1 ΨhŎǘŀǾŜΩ ƛǎ ǘƘŜ ƴŀƳŜ ƎƛǾŜƴ to the 2:1 frequency ratio of one note to another.

2

to. This note is the unison interval, which has a 1:1 frequency ratio. A4 is at a constant 440 Hz,

but its interval from the reference note changes.

In western modern music, instruments are tuned to a standard known as 12-tone-equal

temperament (12-TET). This tuning approximates just intervals while still being applicable to

instruments with a limit of keys/strings/holes to represent notes, such as pianos, guitars, and

flutes, by being evenly spaced on a logarithmic scale. Figure 1 shows this approximation by

how the equal temperament frequencies fall between the different just intonation ǎŎŀƭŜǎΩ

frequencies.

Figure 1 Comparison of just intonation frequencies when tuned relative to different notes.

As music can also be synthesized in software, where restrictions on the flexibility of tuning

notes do not exist, a tuning system could therefore be created that adjusts based on the

specific intervals in a musical piece. This system could be programmed to optimize these

intervals to be less dissonant than 12-TET. It is the goal of this project to apply an algorithm

that can find a unique tuning system for every tune it is applied to, that will improve on the

generic equal temperament.

My project will examine how software synthesizers read and interpret music in the form of

the Musical Instrument Digital Interface (MIDI) standard. The MIDI standard is used to store

information on the notes played in a song, along with information such as timing, intensity of

key presses and instrument names. MIDI is the prevalent standard for conveying this

information to electronic instruments. The file structure of a standard MIDI file will be broken

3

down and explained, as MIDI needs to be understood to extract information for the algorithm.

The project will read a MIDI file of any tune to understand when and what notes are played,

by which instruments.

Based on this, frequencies will be assigned to the notes played. These frequencies can be used

to calculate the dissonance between notes played simultaneously in the tune. The project

algorithm will use a calculation of dissonance between the frequencies of notes to quantify

how pleasant a group of notes sound to the listener. When multiple notes are compared at

once, there are minima on the multi-dimensional dissonance plane, where the dissonance is

at its lowest. The aim of the project is to reduce this dissonance, by altering the frequencies,

to find the intervals between note frequencies that converge in one of these minima. It would

be possible to find the maximum dissonance reduction by changing all frequencies to be the

same. However, the frequency change will be monitored to stay true to the original melody.

¢ƻ ǊŜǇǊŜǎŜƴǘ ǘƘŜ ƴŜǿ ƛƴǘŜǊǾŀƭǎ ōŜǘǿŜŜƴ ŦǊŜǉǳŜƴŎƛŜǎΣ ŀ ƭƻƎŀǊƛǘƘƳƛŎ Ǌŀǘƛƻ ŎŀƭƭŜŘ ΨŎŜƴǘǎΩ ƛǎ ǳǎŜŘΦ

Chapter 2, Background, will explore the information, technology, and equations needed to

understand the project. Chapter 3, Implementation, will discuss the application of this

technology. It will also highlight how dissonance measurements are applied to the algorithm.

Chapter 4, Results & Discussion, will discuss the results of the algorithm and how it compares

to other possible ǘǳƴƛƴƎǎΦ Lǘ ǿƛƭƭ ŀƭǎƻ ŘƛǎŎǳǎǎ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ǿŜŀƪƴŜǎǎŜǎ ŦƻǊ ŀǇǇƭƛŎŀǘƛƻƴΦ

Finally, Chapter 5, Conclusion, will summarize the project and make suggestions on the future

work that could be added to the project. The section on future work will describe additional

parameters to be added to the algorithm to improve tuning accuracy and usability.

4

2 BACKGROUND

2.1 MIDI

2.1.1 What is MIDI?

Musical Instrument Digital Interface (MIDI) is a standard used by manufacturers to convey

information about how a piece of music is played on an electronic instrument (Lehrman,

2017). These instruments can also be called synthesizers and often take the form of a

keyboard. MIDI does not define the actual sound of the music, but the synthesizer produces

it based on its specifications of waveforms, frequencies, and filters. Therefore, a MIDI signal

or file will sound different based on what synthesizer it is played on. Synthesizers are not

limited to hardware but can take the form of software synthesizers as Virtual Studio

Technology (VST) plugins to Digital Audio Workstations (DAWs), used by electronic music

ǇǊƻŘǳŎŜǊǎ ǘƻ ǇǊƻŘǳŎŜ ŀ ŘŜǎƛǊŜŘ ǎƻǳƴŘΦ ¢ƘŜǎŜ ΨǎƻŦǘǎȅƴǘƘǎΩ ǿƛƭƭ ōŜ ǘƘŜ ŦƻŎǳǎ ƻŦ ǘƘƛǎ ǇǊƻƧŜŎǘΦ

Different softsynths come with different functionalities, the focus of this project will be those

that allow the user to specify tunings for played notes, beyond the constraint of semitone

intervals. Well known free open source examples of such are ZynAddSubFX/Zyn-Fusion2 and

Surge3.

2.1.2 Standard File Structure

Figure 2 Contents of a standard MIDI file

2 https://zynaddsubfx.sourceforge.io/
3 https://surge-synthesizer.github.io/

https://zynaddsubfx.sourceforge.io/
https://surge-synthesizer.github.io/

5

The following section is based on (MIDI Manufacturers Association, 1996).

MIDI can be both transmitted electrically by serial transmission over a cable or read from a

Standard MIDI File (SMF). An SMF has the file extension (.mid) of which there are 2 common

types. ¢ȅǇŜ л ǳǎŜǎ ŀ ǎƛƴƎƭŜ ΨǘǊŀŎƪΩ ŦƻǊ ŀƭƭ ƛƴŦƻǊƳŀǘƛƻƴΣ ǿƘŜǊŜŀǎ ǘȅǇŜ м ŀƭƭƻǿǎ ŦƻǊ ƳǳƭǘƛǇƭŜ ǘǊŀŎƪǎΣ

which can be useful for dividing out information for different instruments. As type 1 is the

most relevant format for this project, this will be examined further. Figure 2 shows the

contents of a SMF, opened with the Visual Studio Code Hex Editor extension.

SMFs are split into chunks, that have a 4-byte identifier string, 4-bytes for number of data

bytes, and then the chunk data. The identifier strings can be the headeǊ ǎǘǊƛƴƎΣ άa¢ƘŘέ, or

ǘƘŜ ǘǊŀŎƪ ǎǘǊƛƴƎΣ άa¢ǊƪέΦ The layout of this is shown in Figure 3. The header chunk of a MIDI

file defines some important information such as the number of track chunks in the file. Each

track chunk contains information about how one instrument is supposed to play, or

synthesize, a tune.

Figure 3 General layout of MIDI chunks

2.1.2.1 Header Chunk

All type 1 MIDI files, which contain multiple tracks, must start with the 4-ōȅǘŜ ǎǘǊƛƴƎ άa¢ƘŘέΣ

or 0x4D546864. This symbolizes the start of a MIDI file and ǘƘŜ ōŜƎƛƴƴƛƴƎ ƻŦ ŀ ƘŜŀŘŜǊ ΨŎƘǳƴƪΩΦ

This is followed by 4 bytes defining the length of data in the header chunk in bytes. The header

data length will always be 6 bytes, which is made up of 2 bytes for the MIDI file type, 2 bytes

for the number of tracks, and 2 bytes for the timing definition. This is shown in Table 1.

6

The timing definition, or division, can have two formats. If it starts with 0, the other bits will

define the timing in ticks per quarter-note/beat. If it starts with 1, the other bits will define

frames per second and ticks per frame, however this format is rare.

A common header chunk will therefore be:

Table 1 Examination of a SMF header chunk

chunk type length format ntrks division

0x4D546864 0x00000006 0x0001 0x000B 0x00C0

άa¢ƘŘέ ŎƘǳƴƪ
type

6 header data
bytes to follow

Type-1
Standard MIDI
file

11 track
chunks to
follow

192 ticks per
beat

2.1.2.2 Track Chunks

Following the header chunk are the track chunks. Track chunks start off like a header chunk,

ŘŜŦƛƴƛƴƎ ǘƘŜ ŎƘǳƴƪ ǘȅǇŜ ŀǎ άa¢ǊƪέΣ ƻǊ лȄп5рптнс.Σ ŀƴŘ п-bytes to define the chunk length.

The structure of the track data is different to the header data.

The track data is separated into MTrk, or track, events, which are made up of delta time and

a command/event. Figure 3 shows where these events are in relation to the beginning of a

chunk.

Delta time describes the time that has passed since the previous event, given in ticks, the

resolutiƻƴ ƻŦ ǿƘƛŎƘ ǿŀǎ ŘŜǎŎǊƛōŜŘ ƛƴ ǘƘŜ ƘŜŀŘŜǊ ŎƘǳƴƪΦ 5Ŝƭǘŀ ǘƛƳŜ ƛǎ ƎƛǾŜƴ ŀǎ ŀ ΨǾŀǊƛŀōƭŜ-

ƭŜƴƎǘƘ ǉǳŀƴǘƛǘȅΩ. This allows 4-byte numbers up to 0x0FFFFFFF to be represented, while

smaller values such as 0x7F are still represented in 1 byte, saving space. When reading

variable length numbers, 7 bits are used per byte, i.e. (value & 0x7f), a mask of the value and

the first 7 bits of a byte. The most significant bit in every byte, signals whether more bytes

follow, or not. If the value masked with the MSB of the byte, is true, i.e. (value & 0x80), a

further byte is included in the variable-length number, until it is false. For example, the

maximum representable variable-length quantity 0x0FFFFFFF is represented by 0xFFFFFF7F,

as shown in Table 2.

The event related to delta time can take one of three forms:

¶ Meta-event

¶ MIDI event

¶ Sysex event

¢ƘŜ ŦƻǊƳŀǘ ƻŦ ǘƘŜǎŜ ŜǾŜƴǘǎ Ŏŀƴ ǾŀǊȅΣ ƘƻǿŜǾŜǊΣ ŜŀŎƘ ƻƴŜ ǿƛƭƭ ǎǘŀǊǘ ǿƛǘƘ ŀ Ψǎǘŀǘǳǎ ōȅǘŜΩΣ ǿƘƛŎƘ

defines the type of messages. The status byte is usually followed by one, or multiple, data

byte(s). Status bytes are in the range of 0x80 ς 0xFF and data bytes are 0x00 - 0x7F. This way

ǘƘŜȅ Ŏŀƴ ōŜ ŘƛǎǘƛƴƎǳƛǎƘŜŘ ōȅ ǿƘŜǘƘŜǊ ŀ ōȅǘŜΩǎ a{. ƛǎ ƘƛƎƘ ƻǊ ƭƻǿΦ ¦ƴǊŜŎƻƎƴƛȊŜŘ ǎǘŀǘǳǎ ōȅǘŜǎ

and related data are ignored, as opposed to throwing an error.

7

Table 2 Variable-length quantity number vs. representation

Step 1: Original Number

Hex number by
byte

0x0F 0xFF 0xFF 0xFF

Binary number 0000_1111 1111_1111 1111_1111 1111_1111

Step 2: Separate 7 ōƛǘǎ ǇŜǊ ōȅǘŜΣ ŀŘŘ Ŏƻƴǘƛƴǳŀǘƛƻƴ ōƛǘ άмέ ŀǎ a{. ŦƻǊ ŀƭƭ ōǳǘ last byte

7 bits per byte 1111_111 1_1111_11 11_1111_1 111_1111

Continuation
bit when
numbers
follow

Cont. Value Cont. Value Cont. Value Cont. Value

1 1111_111 1 1_1111_11 1 11_1111_1 0 111_1111

Step 3: Variable-length representation

Binary repr. 1 + 1111_111 1 + 1_1111_11 1 + 11_1111_1 0 + 111_1111

Hex repr. 0xFF 0xFF 0xFF 0x7F

2.1.2.2.1 Meta-Events

Meta-events specify song-related information, such as key and time signatures, track names,

etc. They begin with 0xFF, followed by the type of meta message, and the number of data

bytes as a variable-length quantity.

The meta-events important for this project are:

¶ Track Name (0x03): Used to label a track, often with the instrument intended for the

track. After the length, string text is used to define the name. For example, if the

ƛƴǎǘǊǳƳŜƴǘ ƴŀƳŜ ƛǎ ά.ŀǎǎέΣ ǘƘƛǎ ǿƛƭƭ ōŜ ŜƴŎƻŘŜŘ ŀǎ !{/LL ŎƘŀǊŀŎǘŜǊǎΦ !ǎ track name is

a meta-event, the message starts with 0xFF; followed by 0x03, for the type track

name; then 0x04 to represent the data length - 4 bytes, as there are 4 ASCII characters;

ǘƘŜƴ ŦƛƴŀƭƭȅΣ ǘƘŜ !{/LL ǎǘǊƛƴƎ ά.ŀǎǎέΦ

¶ Instrument Name (0x04): As the track name event exists, this meta-event is not used

much. The use is the same.

¶ End of Track (0x2F): Non-optional meta event to signal the end of a track. It does not

have any data bytes: 0xFF2F00

¶ Set Tempo (0x51): This defines the tempo in microseconds per quarter-note and can

ōŜ ǳǎŜŘ ǘƻ ŎŀƭŎǳƭŀǘŜ ŀ ǎƻƴƎΩǎ ōŜŀǘǎ ǇŜǊ ƳƛƴǳǘŜ όōǇƳύΦ ¢Ƙƛǎ ŜǾŜƴǘ ǿƛƭƭ ŀƭǿŀȅǎ ƘŀǾŜ о

bytes of data, for example: 0xFF03 + 0x07A120. This specifies a tempo of 500,000

microseconds per beat, which is equivalent to 120 beats per minute: ὄὖὓ

ρπ φπ. If this message is missing, a default tempo of 500,000 µs/quarter-

note is assumed.

¶ Time Signature (0x58): Defines the time signature, or beats per bar, of a song. The

length of this message is always 4 bytes, made up of 2 bytes for the numerator of the

signature, 2 bytes for the denominator of the signature, 2 bytes for the number of

MIDI clocks in a metronome click, and the number of notated 32nd notes per

beat/quarter note. The denominator is given as a negative power of 2, i.e. 2-d. To

define a time signature of 4 quarter(1/4) notes per bar, with 24 MIDI clocks per quarter

8

note, and naturally 8 32nd notes per quarter note, the following byte code is used:

0xFF5804 + 0x04 + 0x02 + 0x18 + 0x08, where 0x02 results in the denominator of 4.

¶ Key Signature (0x59): Always a length of 2 bytes, with the number following the length

specifying the number of flats if negative and the number of sharps if positive. 0

indicates a key of C. The second data byte specifies a major key if 0, and minor key if

1, i.e. 0xFF5902 + 0x01 + 0x00 translates to a G major key.

Meta-events such as tempo and tƛƳŜ ǎƛƎƴŀǘǳǊŜ ŀǊŜ ǎǘƻǊŜŘ ƛƴ ŀ aL5L ŦƛƭŜΩǎ ŦƛǊǎǘ ǘǊŀŎƪΣ while

subsequent tracks contain the instrumental performances with the track name and end of

track meta messages.

2.1.2.2.2 MIDI Events

MIDI events are specified to be on a channel, from 1 to 16 (which is coded as N-1, where N is

channel number). The two most common MIDI events are Note Off and Note On. Both have

a similar structure, with two data bytes that specify note number and key velocity. Note

numbers range from 0 ς 127, with a convention of Note 0 being C-1 and Note 127 being G9,

where all notes are 1 semitone apart, this distribution is shown in Table 4. The subscript

denotes octaves, -1 being a much lower frequency than 9, as seen in Figure 4. Velocity, also

ranging from 0-127 defines the speed at which a key is pressed/released. This relates to the

volume of a key press, where a Note On message with a high velocity is perceived as louder.

If a Note On message has a velocity of 0, this is equivalent to a Note Off message. Example

MIDI events are shown in Table 3.

Table 3 Example usage of ΨNote OnΩ and ΨNote OffΩ Channel Voice Messages

 Status Byte Data Bytes

Note Number Key velocity

Note On 0x90 0x3C 0x40

Note On, Channel 1 Note 60 = C4 Average-level
velocity

Note Off 0x80 0x3C 0x40

Note Off, Channel 1 Note 60 = C4 Average velocity

Note Off
(alternative)

0x90 0x3C 0x00

Note On, Channel 1 Note 60 = C4 Off velocity

There are many other messages that are MIDI events, n in the status byte is the channel

number i.e. channel 1:

¶ Aftertouch (0xAn for Polyphonic Key; 0xDn for Channel): Pressure on a key while being

held. The polyphonic status byte refers to pressure on an individual key. Channel

aftertouch defines pressure for a whole channel.

¶ Pitch Bend (0xEn): Varying the pitch of the note played.

¶ Program Change (0xCn): Specify the type of instrument to be used for the given

channel.

¶ Control Change (0xBn): Control various functions in a synthesizer, such as pedals and

effects.

9

o Channel Mode Messages: An extension of Control Change. Functions such as

turning all sound off and resetting all controllers on a channel.

2.1.2.2.3 System Exclusive (Sysex) Events

Sysex events, or system exclusive messages, allow a manufacturer to define additional events

specific to their synthesizer, which may not exist already in the MIDI format. They begin with

0xF0, followed by a variable length number, like delta time, to define the number of bytes to

be transmitted, and end with 0xF7. The MIDI Association has made addenda to the original

MIDI standard since its release, such as MIDI Tuning messages, which take on the sysex format

(MIDI Manufacturers Association, 1999). However, the implementation of this is optional, and

many software synthesizers do not recognize them as seen on a list of DAW plugins for

microtonal tuning on the Xenharmonic Wiki (Xenharmonic Wiki, 2021), where other tuning

methods than MIDI Tuning Standard are common.

2.1.3 MIDI Summary

Now that the standard MIDI file structure has been introduced, the next section will explore

ŘƛŦŦŜǊŜƴǘ ƛƴǘŜǊǇǊŜǘŀǘƛƻƴǎ ƻŦ ǘƘŜ aL5L ƴƻǘŜǎΦ 9ŀŎƘ aL5L ƴƻǘŜ ǊŜŀŘ ŦǊƻƳ ΨbƻǘŜ hƴΩ ŀƴŘ bƻǘŜ hŦŦΩ

events corresponds to a frequency. However, this frequency can vary based on which tuning

system is used.

2.2 TUNING

2.2.1 Frequency/Cents

The pitch of a note in music is determined by the frequency of its wave. To define how music

is played, one note is defined to be a set pitch, and others are tuned in relation to it. In

modern, western, music, it is common to tune A4, the A above middle C to 440Hz. This is

standardized in (International Organization for Standardization, 1975). To describe the

difference in pitch, or interval, between two notes, frequency ratios can be used. A 2:1 ratio,

describes an octave. This is the same note, played at a higher pitch. For example, with the

standard of A4 = 440Hz, one octave higher, A5, is 880Hz. Every octave is divided into twelve

notes, the interval between each is known as a semitone. Simple integer ratios such as an

octave are known as just intervals. However, it is impossible to define all possible intervals as

a ratio of small integers.

Cents are a logarithmic measurement of intervals. An octave is measured to be 1200 cents.

An interval of n cents, between two frequencies f1 and f2 is calculated as shown in Equation

1. In equal temperament, the interval of a semitone is constant, so that notes represented by

a semitone are 100 cents apart.

Equation 1 Calculating an interval between two frequencies, in cents

ὲ ρςππÌÏÇ
Ὢ

Ὢ

2.2.2 Musical Systems

Instruments such as pianos are limited in the number of notes it can play, by the number of

keys it has. This is the same for a MIDI synthesizer. The MIDI standard only allows for the use

10

of 128 notes. By default, these notes are defined to be spaced 1 semitone apart. Table 4 shows

what notes the MIDI notes correspond to by default. The interval of a semitone can vary based

on the tuning system used.

Table 4 Default distribution of MIDI notes

Note/ Octave -1 0 1 2 3 4 5 6 7 8 9

C 0 12 24 36 48 60 72 84 96 108 120

Cʒ /D ʐ 1 13 25 37 49 61 73 85 97 109 121

D 2 14 26 38 50 62 74 86 98 110 122

D /ʒ Eʐ 3 15 27 39 51 63 75 87 99 111 123

E 4 16 28 40 52 64 76 88 100 112 124

F 5 17 29 41 53 65 77 89 101 113 125

Fʒ / Gʐ 6 18 30 42 54 66 78 90 102 114 126

G 7 19 31 43 55 67 79 91 103 115 127

Gʒ / A ʐ 8 20 32 44 56 68 80 92 104 116 128

A 9 21 33 45 57 69 81 93 105 117 -

A /ʒ Bʐ 10 22 34 46 58 70 82 94 106 118 -

B 11 23 35 47 59 71 83 95 107 119 -

Figure 4 Comparison of a C over multiple octaves (User:Angr, 2021).

2.2.2.1 Just Intonation

In just intonation, the intervals between note frequencies are based on small-integer ratios.

Table 6 and Figure 5 show the intervals that make up a twelve-tone scale. Each of these

intervals are 1 semitone apart. Just intonation intervals are completely in tune with the note

11

they are played with. However, due to the non-uniform intervals, the tuning cannot be

applied to fit different combinations of notes. For example, the major third interval from a C,

is an E, with a ratio of 5:4. The major third is 4 semitones above unison. If the C is tuned to a

frequency of 300Hz, the E has a frequency of 375Hz. The major third of an E would then be

Gʒ /A ,ʐ at a frequency of 468.75Hz. That is another 4 semitones, so that the new note is 8

semitones above the original. However, this is also the minor sixth interval from the original

C, which should be tuned to a ratio of 8:5, which is 480Hz. This shows that it is impossible to

have just intervals between all notes of the song, and a compromise needs to be made to

keep the intervals approximate to their original but be applicable to all played notes. This

altering of intervals is known as temperament.

Table 5 Example comparing intervals and semitones.

Major third (4 semitones) Major third (4 semitones)

C Cʒ/Dᶼ D D /ʒEᶼ E F Fʒ/Gᶼ G Gʒ/Aᶼ

Minor sixth (8 semitones)

Figure 5 Equal temperament and just intonation compared by intervals.

2.2.2.2 Equal Temperament

Twelve-tone equal temperament (12-TET) is the most common tuning system used in western

music. It splits an octave into 12 equal intervals, 100 cents, or 21/12 apart. 12-TET is meant to

approximate just intervals, while also being compatible with any key and scale. As the

12

intervals are equal, there are no issues with the melody of the music creating pitch drift or

uneven intervals.

2.2.2.3 Trade-Offs Between Traditional Scales

Figure 5 and Table 6 show the differences between equal temperament and just intervals in

a twelve-tone scale. Both have benefits and drawbacks. While equal temperament is never in

perfect tune, just intonation also has this issue when music is not played in one single key.

(van Steenhoven, 2010) gives many examples of different tuning systems, which are all limited

due to the constraints of physical instruments.

Table 6 Comparing 12-TET with just intonation (Wikipedia, 2021)

Name Exact value
in 12-TET

Decimal
value in
12-TET

Cents Just
intonation
interval

Cents in
just
intonation

Difference

Unison (C)
ς ρ

1 0 мѷ1 = 1 0 0

Minor second

(Cʒ /D)ʐ
ς Ѝς

1.059463 100 мсѷ15 =
мΦлссссΧ

111.73 -11.73

Major second
(D)

ς Ѝς
1.122462 200 фѷ8 = 1.125 203.91 -3.91

Minor third

(Dʒ /E)ʐ
ς Ѝς

1.189207 300 сѷ5 = 1.2 315.64 -15.64

Major third
(E)

ς Ѝς
1.259921 400 рѷ4 = 1.25 386.31 +13.69

Perfect fourth
(F)

ς Ѝσς
1.33484 500 пѷ3 =

мΦоооооΧ
498.04 +1.96

Tritone

(Fʒ /G)ʐ
ς Ѝς

1.414214 600 тѷ5 = 1.4
млѷ7 =
1.42857...

582.51
617.49

+17.49
-17.49

Perfect fifth
(G)

ς

Ѝρςψ

1.498307 700 оѷ2 = 1.5 701.96 -1.96

Minor sixth

(Gʒ /A)ʐ
ς Ѝτ

1.587401 800 уѷ5 = 1.6 813.69 -13.69

Major sixth
(A)

ς Ѝψ
1.681793 900 рѷ3 =

мΦсссссΧ
884.36 +15.64

Minor
seventh

(A /ʒB)ʐ

ς Ѝσς
1.781797 1000 мсѷ9 =

мΦтттттΧ
996.09 +3.91

Major
seventh (B)

ς

Ѝςπτψ

1.887749 1100 мрѷ8 = 1.875 1088.27 +11.73

Octave (C)
ς ς

2 1200 нѷ1 = 2 1200.00 0

13

2.2.3 Soft Synths and Tuning (scl/kbm)

Most synthesizers apply equal temperament tuning by default and need to be configured to

change at what frequency tones are played. A list of DAW plugins that allow microtonal tuning

can be found on the Xenharmonic Wiki (Xenharmonic Wiki, 2021), the most common tuning

methods are scl/kbm files and tun file. This project will use the former, the Scala scale file

format and keyboard mappings, which are documented at (de Coul, 2021) and (Scala help:

Mappings, 2021).

It will use Scala scale files (scl) and keyboard mapping (kbm) files to inform the synthesizer

what frequency to tune a note to. In both scl and kbm, an exclamation mark (!) specifies a

comment. The first non-comment line in the scale file format is a description of the scale. The

second line contains the number of note tunings specified in the file. All further lines describe

pitch intervals. When an interval is given in cents, it needs to contain a period, if an interval

is given as a frequency ratio it must be given as an integer, or fraction separated by a slash.

The unison interval, 1/1 or 0.0 cents, is left out in a scale file. For example, a .scl file describing

12-TET is shown in Listing 1. The program of the project will provide cents values for all 128

MIDI notes.

! D: \ 12 Tone Equal Temperament.scl
!
12 Tone Equal Temperament | ED2 - 12 - Equal division of harmonic 2 into 12 parts
 12
!
 100.00000
 200.00000
 300.00000
 400.00000
 500.00000
 600.00000
 700.00000
 800.00000
 900.00000
 1000.00000
 1100.00000
 2/1

Listing 1 Example of the contents of a scale format (scl) file.

The kbm, or keyboard mapping file, define how the intervals provided in a scale file map to a

MIDI instrument. For example, the 12-TET scale above, could correspond to the twelve-tone

C scale, starting at middle C, or MIDI note 60. An example kbm file for when the scale is tuned

relative to standard A440Hz, is given in Listing 2.

14

! Template for a keyboard mapping

!
! Size of map. The pattern repeats every so many keys:

12

! First MIDI note number to retune:
0

! Last MIDI note number to retune:

127
! Middle note where the first entry of the mapping is mapped to:

60

! Reference note for which frequency is given:
69

! Frequency to tune the above note to (floating point e.g. 440.0):

440.0
! Scale degree to consider as formal octave (determines difference in pitch

! between adjacent mapping patterns):

12
! Mapping.

! The numbers represent scale degrees mapped to keys. The first entry is for

! the given middle note, the next for subsequent higher keys.
! For an unmapped key, put in an "x". At the end, unmapped keys may be left out.

0

1
2

3

4
5

6

7

8
9

10

11

Listing 2 Example of the contents of a keyboard mapping (kbm) file.

2.2.4 Tuning Summary

The tuning section examined how frequencies are allocated to notes for music, and a format

that a software synthesizer can use to apply customized tuning. The next section will talk

about how the frequencies of multiple music notes interact, and how they can be measured

to be more, or less, pleasant than another.

2.3 CONSONANCE/DISSONANCE

2.3.1 What is Consonance/Dissonance?

In relation to an interval in music, consonance relates to how pleasant or agreeable two

sounds are together. Dissonance is the opposite and can sound imperfect (Lahdelma & Eerola,

2020). For reasons not fully understood humans simple, small integer, ratios between

frequencies sound the most consonant (Schellenberg & Trehub, 1994). As the frequency ratio

moves away from these small integer ratios, humans perceive the sound to be more

dissonant.

2.3.2 Graph and Formulae Behind Sensory Dissonance vs. Frequency Ratio

Sethares (Sethares W. , 1993) introduces Equation 1, a formula to calculate dissonance

between two sinusoidal frequencies:

15

Equation 2 Dissonance between two sinusoids.

ὨὪȟὪȟὺȟὺ ὺὺ Ὡ ȿ ȿ Ὡ ȿ ȿ

Where f1 and f2 ŀǊŜ ǘƘŜ ǎƛƴǳǎƻƛŘǎΩ ŦǊŜǉǳŜƴŎƛŜǎΣ ŀƴŘ Ǿ1 and v2 are their respective amplitudes;

ὥ σȢυ, ὦ υȢχυ; ί
ᶻ

ȟ
, where Ὠᶻ πȢςτ, ί πȢπςρ, and ί ρω.

When a tone is played, it is made up of the fundamental frequency, or pitch, and partials. The

partials are higher frequencies than the pitch frequency, with smaller amplitudes. Figure 6

shows the difference between a pitch and the timbre of a note. How these partials are

distributed in the frequency spectrum depends on what instrument, or synthesizer, they are

played on.

Figure 6 Example of difference between pitch and timbre.

To calculate the dissonance of a timbre, and any other notes played at the same time. The

dissonances can be summed up as shown in Equation 3.

Equation 3 Sum of the dissonances of timbre and simultaneous notes played.

Ὀ
ρ

ς
ὨὥὪȟὥὪȟὺȟὺ

, where ά is the number of fundamental frequencies played together i.e. pitches of separate

notes, and ὲ is the number of partials of each timbre. ὥ and ὥ represent the ratio between

a partial frequency and the fundamental frequency, Ὢ and Ὢ, respectively. For example, if a

timbre is made up of 3 sinusoids, or partials, of the frequencies 500Hz, 1000Hz and 1500Hz,

where 500Hz is the pitch, or fundamental frequency, f, then a would be [1, 2, 3], so that a*f

is [500, 1000, 1500]. The amplitudes ὺ and ὺ include the smaller amplitudes of the partials.

16

Figure 7 Example of a dissonance curve.

Figure 7 shows the dissonance between a note with 500Hz pitch, with 6 partials and a range

of higher pitch frequencies with 6 partials up to 1150Hz, using Equation 3, so that ά ς,

and ὲ φ. Example values for one calculation, between pitches f1, 500Hz, and f2, 1000Hz,

are given in Table 7. The figure shows the trend that small integer ratio intervals have smaller

dissonance.

Table 7 Values corresponding to an example dissonance calculation, between 2 notes, with 6 partials each.

a f v a*f1 a*f2

1 500 1.00 500 1000

2 1000 0.88 1000 2000

3 - 0.77 1500 3000

4 - 0.68 2000 4000

5 - 0.60 2500 5000

6 - 0.53 3000 6000

2.3.3 Consonance/Dissonance Summary

This section covered how music can be quantified to be pleasant or unpleasant. The next

section will use this information inside an optimization algorithm to reduce dissonance in a

tune.

2.4 DYNAMIC TUNING

2.4.1 Iteration Algorithm

Equation 3 can be used throughout a tune, to reduce the dissonance of simultaneous notes,

or chords, in a MIDI file. Sethares (Sethares W. , 1994) proposes the use of a gradient descent

17

algorithm as a solution. Equation 4 is an iteration which updates a played frequency

descending the steepest gradient.

Equation 4 Iteration of a gradient descent algorithm to reduce dissonance.

ὪὯ ρ ὪὯ ‘
ὨὈ

ὨὪὯ

Where Ὢ is one of ά frequencies played at a given time; А is the step size, and the gradient

approximates the partial derivative of the sum of dissonances, with respect to Ὢ.

А is chosen so that the gradient, changes the frequency at an appropriate rate, so that

dissonances decrease without changing the identity of the tune.

2.4.1.1 Gradient Calculation

The calculation of the gradient proposed by Sethares (Sethares W. , 1994) is shown in

Equation 5.

Equation 5 Gradient / Partial derivative of dissonance sum.

ὨὈ

ὨὪ

Ὠ

ὨὪ
ὨὥὪȟὥὪȟὺȟὺ

Where m is the number of notes/pitches, n is the number of partials. Here fi is constant so

that the fundamental frequency of the note adapted in ǘƘŜ ŀƭƎƻǊƛǘƘƳ ƛǎ ΨŦ1ΩΦ ¢ƘŜ ŘŜǊƛǾŀǘƛǾŜ ƻŦ

the elements within the triple sum are shown in Equation 6.

Equation 6 Derivative of the equation for dissonance between two sinusoids.

Ὠ

ὨὪ
ὨὪȟὫȟὺȟύ

ừ
Ử
Ừ

Ử
ứ ὺύ

ὥὨᶻ

Ὢί ί
ÅØÐ

ὥὨᶻὪ Ὣ

Ὢί ί

ὦὨᶻ

Ὢί ί
ÅØÐ

ὦὨᶻὪ Ὣ

Ὢί ί
ȟ Ὢ Ὣȟ

ὺύ
ὥὨᶻὫί ί

Ὢί ί
ÅØÐ

ὥὨᶻὪ Ὣ

Ὢί ί

ὦὨᶻὫί ί

Ὢί ί
ÅØÐ

ὦὨᶻὪ Ὣ

Ὢί ί
ȟ Ὢ Ὣȟ

πȟ Ὢ Ὣȟ

2.4.2 Dynamic Tuning Summary

This section explored an algorithm to reduce dissonance in a combination of notes. The next

chapter will discuss how information from this section and the rest of the chapter can be used

in practice.

18

3 IMPLEMENTATION

3.1 READING AND PREPARING MIDI NOTES

3.1.1 Parsing

The custom program for this project is written in the Python programming language. Python

was chosen due to Mido4, which is a convenient library to deal with messages in a MIDI file.

The program takes in a MIDI file, which can be found on websites such as BitMidi5.

To store information on the played notes, my ŎǳǎǘƻƳ ΨbƻǘŜaŜǎǎŀƎŜΩ Ŏƭŀǎǎ ƛǎ used. The

ΨbƻǘŜaŜǎǎŀƎŜΩ Ŏƭŀǎǎ Ƙŀǎ the following attributes:

¶ Note number.

¶ When the note was turned on.

¶ ¢ƘŜ ΨbƻǘŜ hƴΩ ǾŜƭƻŎƛǘȅΦ

¶ When the note was turned off.

¶ What channel the event was on.

¶ What track the note is played on.

When parsing through the MIDI ŦƛƭŜΣ ŀ ƭƛǎǘ ƻŦ ΨbƻǘŜaŜǎǎŀƎŜΩ ƻōƧŜŎǘǎ is created for every track

ŎƘǳƴƪΦ ²ƘŜƴ ŀ ΨbƻǘŜ hƴΩ MIDI ŜǾŜƴǘ ƛǎ ǊŜŀŘΣ ŀ ƴŜǿ ΨbƻǘŜaŜǎǎŀƎŜΩ ƛƴǎǘŀƴŎŜ ƛǎ ŎǊŜŀǘŜŘ. The

Řŀǘŀ ǿƛǘƘƛƴ ǘƘŜ ΨbƻǘŜ hƴΩ ƳŜǎǎŀge for channel, note number, and velocity are saved to the

attributes as part of the objectΩs constructor, along with the track number it was played on,

and the total delta time that has elapsed before the event. ²ƘŜƴ ŀ ΨbƻǘŜ hŦŦΩ ƳŜǎǎŀƎŜ ƛǎ ǊŜŀŘΣ

the progǊŀƳ ƭƻƻƪǎ ŦƻǊ ǘƘŜ ƭŀǎǘ ΨbƻǘŜaŜǎǎŀƎŜΩ ǘƘŀǘ ǿŀǎ ǇƭŀȅŜŘ ǿƛǘƘ ǘƘŜ ǎŀƳŜ ƴƻǘŜ ƴǳƳōŜǊΣ

on the same trŀŎƪ ŀƴŘ ŎƘŀƴƴŜƭΦ ¢ƘŜ ƴƻǘŜ ƻŦŦ ǘƛƳŜ ŀǘǘǊƛōǳǘŜ ƻŦ ǘƘŀǘ ΨbƻǘŜaŜǎǎŀƎŜΩ ƛƴǎǘŀƴŎŜ ƛǎ

ǘƘŜƴ ǎŜǘ ǘƻ ǘƘŜ ǘƻǘŀƭ ŘŜƭǘŀ ǘƛƳŜ ǇŀǎǎŜŘ ōŜŦƻǊŜ ǘƘŜ ΨbƻǘŜ hŦŦΩ ƳŜǎǎŀƎŜ ǿŀǎ ǊŜŀŘΦ

My program keeps track of the total delta time that has passed, by summing the delta time

in every MTrk event for every track chunk. This total delta time is reset to 0 for every new

track. However, the maximum delta time is stored to a new variable, so that the length of the

tune can be calculated for debugging purposes. ὝὭάὩ Ὥὲ άίȢ ὔόάὦὩὶ έὪ ὝὭὧὯί z

 ὝὩάὴέ АίȾήὲ Ⱦ ὈὭὺ ὸὭὧὯίȾήὲ Ⱦ ρπππ, ǿƘŜǊŜ ǘŜƳǇƻ ƛǎ ǊŜŀŘ ŦǊƻƳ ǘƘŜ Ψ{Ŝǘ ¢ŜƳǇƻΩ

meta-event, as described in Meta-Events, and division is read from the header chunk, as

described in Header Chunk.

The program aƭǎƻ ǊŜŀŘǎ Ψ¢ǊŀŎƪ bŀƳŜΩ ƻǊ ΨLƴǎǘǊǳƳŜƴǘ bŀƳŜΩ ŜǾŜƴǘǎΣ ŀǎ ŘƛǎŎǳǎǎŜŘ ƛƴ Meta-

EventsΦ LŦ ŜƛǘƘŜǊ ŜǾŜƴǘ Ŏƻƴǘŀƛƴǎ ŀ ǎǳōǎǘǊƛƴƎ ƻŦ ΨŘǊǳƳΩΣ ǘƘŜ ΨbƻǘŜaŜǎǎŀƎŜΩ ƭƛǎǘ it is contained in

is filtered out of the final list passed to the algorithm. This is because drum sounds do not

follow the pattern of most instruments of being described as notes that have a pitch, and they

are not tuned to a specific frequency. While they are represented by note numbers in MIDI

files, these note numbers do not correspond to the notes in Table 4. The synthesizer would

assign the notes to ǎƻǳƴŘǎ ǎǳŎƘ ŀǎ ǘƘŜ ΨǎƴŀǊŜΩ ƻǊ ΨƘƛ-ƘŀǘΩΦ !ǎ the MIDI tracks relating to the

4 Source Code: https://github.com/mido/mido/ Documentation: https://mido.readthedocs.io/
5 https://bitmidi.com/

https://github.com/mido/mido/
https://mido.readthedocs.io/
https://bitmidi.com/

19

playing of drums carry different information to the other tracks, they would skew the general

key of the song, without adding valuable information, in relation to tuning of individual

instruments.

Figures 8, 9, 10, and 11 show examples of plots generated to show the MIDI note spread

across different tracks in various MIDI files. These graphs will be used as a reference for the

range of notes in tracks by comparisons between tuning systems. Some songs, such as in

Figure 11 are more chaotic, with tracks that span a large variety of notes. The song in Figure

8 has much less tracks, and the notes tend to have a smaller range.

Figure 8 Notes from a MIDI adaptation of John Denver - Take Me Home, Country Roads.

20

Figure 9 Notes from a MIDI adaptation of John Lennon ς Imagine.

Figure 10 Notes from a MIDI adaptation of Klaus Badelt - He's A Pirate.

21

Figure 11 Notes from a MIDI adaptation of Queen - Bohemian Rhapsody.

3.1.2 Simultaneous Notes

When the MIDI ŦƛƭŜ Ƙŀǎ ōŜŜƴ ǊŜŀŘ ǘƻ ǘƘŜ ŦƛƴƛǎƘΣ ŀƴŘ ŀƭƭ ΨbƻǘŜ hƴΩ ŀƴŘ ΨbƻǘŜ hŦŦΩ ŜǾŜƴǘǎ ƘŀǾŜ

ōŜŜƴ ŀǎǎƛƎƴŜŘ ǘƻ ŀ ΨbƻǘŜaŜǎǎŀƎŜΩΣ ǘƘŜ ƭƛǎǘ ƻŦ ƻōƧŜŎǘǎ Ƙŀǎ ǘƻ ōŜ ǎƻǊǘŜŘ ǎƻ ǘƘŀǘ ƴƻǘŜǎ played at

the same time can be tuned to be more harmonious. This is the case when the note_on_time

attribute ƻŦ ŀ ΨbƻǘŜaŜǎǎŀƎŜΩ ƛǎ equal to another played on the same instrument track.

Simultaneous notes are grouped by this attribute, within the list of notes in a track, and then

sorted again so that the notes are in ascending order within the groups.

Figures 12, 13, 14, and 15 show examples of plots generated to show simultaneous notes

played in MIDI files. ¢Ƙƛǎ ǎƘƻǿŎŀǎŜǎ ǘƘŜ ǇǊƻƎǊŀƳΩǎ ŀōƛƭƛǘȅ ǘƻ ƎǊƻǳǇ ƴƻǘŜǎΦ ¢ƘŜȅ ŀǊŜ ŀƭǎƻ ǳǎŜŦǳƭ

in determining how notes are related to each other and for spotting trends for how many

notes are grouped and over which range in a song. The number and range of simultaneous

22

notes in Figure 15 are much larger than in Figure 12. This indicates that the latter may see

more of a dissonance reduction.

Figure 12 Sample of simultaneous notes highlighted from a MIDI adaptation of John Denver - Take Me Home, Country Roads.

23

Figure 13 Sample of simultaneous notes highlighted from a MIDI adaptation of John Lennon ς Imagine.

Figure 14 Sample of simultaneous notes highlighted from a MIDI adaptation of Klaus Badelt - He's A Pirate.

24

Figure 15 Sample of simultaneous notes highlighted from a MIDI adaptation of Queen - Bohemian Rhapsody.

3.2 ALGORITHM

3.2.1 Baseline Frequencies and Cents

My algorithm works off the baseline frequencies of equal temperament. These frequencies

are shown in Figure 16. This plot also showcases the exponential scaling of frequencies as the

notes increase, which is the reason for the logarithmic scaling of cents. As the MIDI note

number increases, the frequencies scale more. The adjustments to frequency tunings need to

adjust according to this.

25

Figure 16 Baseline frequencies used before tuning.

3.2.2 Tuning track by track

The tuning algorithm of Equation 4 is applied track by track. The step size is adjusted based

on the distribution of the simultaneous notes played within a track. The gradient calculation

will be larger for higher dimension, large variance gradient calculations, e.g. if there are 4

notes played at once, ranging over more than an octave. To limit this from happening, a

maximum change of 4 cents is enforced. This way the wide variation in the frequencies cannot

be blown out of proportion by one or two large gradients, as the change will be reduced.

Cents are used so that the change is proportional to the exponential frequency scaling seen

in Figure 16.

Some experimental tweaks were made to fine tune the algorithm:

¶ If the change of a note frequency exceeds a threshold, the rate of change is limited

e.g. a total change over multiple iterations that would result in a frequency varying by

over 50 cents will be limited. ¢Ƙƛǎ ǘǿŜŀƪ ǿŀǎ ƪŜǇǘΣ ǘƻ ƪŜŜǇ ǘƘŜ ǎƻƴƎǎΩ ƳŜƭƻŘƛŜǎΦ

¶ If a change in frequency results in higher dissonance, the change will first be inversed,

so that the negative change to a frequency will instead be positive. If this change

results in improved dissonance the change is kept, otherwise no change is made. This

tweak proved useful to decrease dissonance in a tune and was kept.

¶ As the partials of the final synthesizer are unknown, the same values as in Table 7 are

used to create the timbre of the tuning frequencies. This tweak was kept, to reflect

26

the application to a synthesizer more truly than just comparing dissonance between

pitches.

¶ I tried to fix a random note for every chord of simultaneous notes with the intent that

if a frequency is fixed and others adapt relative to it, the algorithm will execute

quicker. However, this did not yield much improvement, and I removed it.

¶ I used a logarithmic step size scaling before the implementation of a maximum cents

change. My program indexed an array of step sizes based on the current note played,

so that larger frequencies see proportional changes. This became obsolete with the

implementation of limiting change to 4 cents and was removed.

My algorithm stops iterating over a note pitch, when all note pitches at one point in time

change less than 0.1 Hz from their previous iteration. When all simultaneous notes in all tracks

meet this criteria, the scale file and keyboard mapping files are generated, as discussed in

section 2.2.3. Unique pairs of these files are generated for every track, so that they can be

applied on an instrument-by-instrument basis.

As these tuning files only allow one frequency for every note per file, a lot of my tuning

ŀƭƎƻǊƛǘƘƳΩǎ ǇƻǘŜƴǘƛŀƭ ƛǎ ǿŀǎǘŜŘΦ Lǘ Ƙŀǎ ǘƘŜ ǇƻǘŜƴǘƛŀƭ ǘƻ ǇǊƻǾƛŘŜ ǘƘŜ ƭƻǿŜǎǘ ŘƛǎǎƻƴŀƴŎŜ

frequency combinations for notes at any point of a song, however the final implementation

used by a synthesizer only uses one of these frequency combinations. The algorithm operates

on the basis that a note frequency is retuned in real time. This issue arises due to a lack of

options for MIDI note retuning. The new MIDI Polyphonic Expression (MIDI Manufacturers

Association, 2018) ǇǊƻǾŜǎ ǘƻ ōŜ ŀ ǇǊƻƳƛǎƛƴƎ ƻǇǘƛƻƴ ǘƻ ƛƳǇǊƻǾŜ ǘƘŜ ŀƭƎƻǊƛǘƘƳΩǎ ŜŦŦŜŎǘƛǾŜƴŜǎǎ

when applied to a synthesizer and exploring the application of this could be the next step for

future work.

3.2.3 Comparison Metrics

In order to quantify the success of the algorithm, the dissonance measure of Equation 3 is

calculated for notes played at all points of the song, before any adjustments to frequency are

made, and again after. The dissonance sum across all simultaneous notes can then be

compared between tuning systems to find which gives the smallest overall dissonance.

As an experiment, the frequencies resulting from dynamic tuning are compared track by track

to the dissonance of a universal equal temperament tuning such as in Figure 16, and a just

intonation tuning, tuned relative to C. Figure 17 shows the just intonation frequencies used

for comparison to the dynamic tuning. The intervals used are those in Table 6, and tuned so

that C is the unison/octave interval. The comparison will act as a control to show if my

implementation of dynamic tuning will also have reduced dissonance compared to other

tunings than its baseline.

27

Figure 17 Just intonation frequencies used for comparison.

3.2.4 Hyperparameter Tuning

Parameters such as the value of maximum change in cents per iteration can be evaluated with

the dissonance measure. The reason cents are used, is because of the exponential scaling of

frequency for the notes; a 1 Hertz frequency change is more significant at lower frequencies

than higher frequencies. Figure 18 and Table 8 show the difference between dissonances

when changing the maximum cent change value. It is shown that 4 cents per iteration have

the lowest resulting dissonance for this tune, and this result is similar in other tunes. 4 cents

are close to 0.5Hz, when the fundamental frequency is 200 Hz; around 1 Hz when it is in the

400s; over 2 Hz in the 900s etc. Limiting the frequency change to 4 cents allows the algorithm

to find a local dissonance minimum, which may not be found when large changes are made

at once. It also stops the gradient from exploding after multiple iterations of large changes.

28

Figure 18 Comparison of impact from changes in the maximum cent change hyperparameter to total dissonance.

Table 8 Comparison of impact from changes in the maximum cent change hyperparameter to total dissonance.

Track Maximum cent change

1 2 3 4 5 6 7 8

4 38.88 37.10 34.85 34.41 34.42 34.69 34.64 34.80

5 0.61 0.61 0.60 0.62 0.60 0.65 0.62 0.63

6 51.55 51.76 52.56 52.86 52.87 53.66 53.03 53.66

8 0.89 0.89 0.93 0.93 0.95 1.03 1.02 1.06

9 0.42 0.42 0.42 0.42 0.42 0.43 0.42 0.43
92.36 90.79 89.35 89.25 89.26 90.47 89.73 90.58

3.3 MIDI IN PRACTICE
It is now possible to take the original MIDI file, along with the generated scale file (scl) and

keyboard mapping (kbm) files, and apply them to a software synthesizer, such as those

mentioned in section 2.1.1. I tested this with success using the Surge plugin inside the

REAPER6 digital audio workstation.

3.4 IMPLEMENTATION SUMMARY
Now that the method of my dynamic tuning algorithm was explained, the next chapter will

explore and discuss the results of its application. It will be compared to the baseline, twelve-

tone equal temperament, and a control, just intonation, tuned relative to C.

6 https://www.reaper.fm/

https://www.reaper.fm/

29

4 RESULTS & DISCUSSION

4.1 DISSONANCE COMPARISON

4.1.1 Results

The following figures and tables showcase the dissonances calculated between all

simultaneous notes on a track by track basis. Observations will be made after each figure and

table pair, with a more general and detailed discussion following.

Figure 19 Dissonance comparison for a MIDI adaptation of John Denver - Take Me Home, Country Roads.

Table 9 Dissonance comparison for a MIDI adaptation of John Denver - Take Me Home, Country Roads.

Track Equal Temperament Dynamic Tuning Just Intonation (C)

4 39.89 34.41 39.59

5 0.82 0.62 0.74

6 59.78 52.86 60.44

8 1.24 0.93 1.01

9 0.49 0.42 0.48
102.20 89.25 (-12.67%) 102.26 (+0.05%)

30

Figure 19 and Table 9 show large relative decreases in the dissonance when using my tuning

approach ς Dynamic Tuning. It saw a total 12.67% decrease compared to equal temperament,

with track 4 and track 6 having a high proportion of the decrease. Track 4 and track 6 are the

biggest tracks in the MIDI file. Therefore, they make up 12.4 out of the 12.95 dissonance

decrease, or 95.75%. The control, just intonation, has a similar total dissonance than equal

temperament. TǊŀŎƪ п ƛǎ ƭŀōŜƭƭŜŘ ŀǎ ŀ Ψ.ŀǎǎΩ ǘǊŀŎƪΤ ǘǊŀŎƪ р ŀǎ ΨDǳƛǘŀǊΩΤ ǘǊŀŎƪ с ŀƭǎƻ ŀǎ ΨDǳƛǘŀǊΩΤ

ǘǊŀŎƪ у ŀǎ Ψ±ƛƻƭƛƴΩΤ ǘǊŀŎƪ ф ŀǎ ΨaŜƭƻŘȅΩΦ

Figure 20 Dissonance comparison for a MIDI adaptation of John Lennon ς Imagine.

Table 10 Dissonance comparison for a MIDI adaptation of John Lennon ς Imagine.

Track Equal Temperament Dynamic Tuning Just Intonation (C)

1 136.85 130.11 128.52

2 6.70 5.90 6.59

3 9.30 8.03 8.04

4 0.26 0.23 0.26

5 9.02 8.59 8.39

6 123.36 105.07 123.29
285.49 257.92 (-9.66%) 275.09 (-3.64%)

Figure 20 and Table 10 show a MIDI file containing 6 tracks. The larger changes in dissonance

happen in Track 1, 2, 3, 5, and 6. Dynamic tuning has a 9.66% reduction in dissonance over

31

equal temperament. Of this change, track 1 and track 6 make up 6.74 and 18.29, respectively,

out of the 27.57 total change. This is a 90.8% dissonance reduction from 2 of the 6 tracks.

Here, just intonation also saw a dissonance reduction of over 3% compared to equal

temperament, which is smaller than my dynamic tuning implementation by 6%.

Figure 21 Dissonance comparison for of Klaus Badelt - He's A Pirate.

Table 11 Dissonance comparison for of Klaus Badelt - He's A Pirate.

Track Equal Temperament Dynamic Tuning Just Intonation (C)

1 59.40 54.82 58.95

2 150.42 150.42 148.50

3 0.57 0.39 0.54
210.39 205.62 (-2.67%) 208.00 (-1.14%)

In Figure 21 and Table 11, a song with 3 instrument tracks is examined. The tracks with

significant changes to dissonance, track 1 and track 2, refer to the right hand and left hand of

a piano, respectively, according to MIDI meta-events. For this song, dynamic tuning saw a

small reduction in dissonance, 2.67%, compared to equal temperament. The just intonation

scale used as a control had almost half of that reduction. In track 2, no reduction in dissonance

is seen in dynamic tuning, so that all reduction is because of reducing dissonance from track

1. For comparison, in just intonation, the reduction is more evenly distributed.

32

Figure 22 Dissonance comparison for a MIDI adaptation of Queen - Bohemian Rhapsody.

Table 12 Dissonance comparison for a MIDI adaptation of Queen - Bohemian Rhapsody.

Track Equal Temperament Dynamic Tuning Just Intonation (C)

1 4.40 2.25 4.18

2 0.51 0.42 0.50

3 375.59 443.50 363.24

4 111.19 65.55 109.55

5 120.85 144.97 115.53

6 29.07 31.09 28.14

7 23.08 22.69 21.04

8 9.54 8.62 9.01

9 11.23 8.17 11.03

10 10.14 7.38 9.97

11 0.20 0.37 0.19

13 36.23 35.48 35.60
732.02 770.49 (+5.26%) 707.98 (-3.28%)

Figure 22 and Table 12, show the comparison of dissonance change of a complex song, with

12 different tracks. These ǘǊŀŎƪǎΣ ƛƴ ƻǊŘŜǊΣ ŀǊŜ ƭŀōŜƭƭŜŘ ŀǎ Ψ[ŜŀŘ ±ƻŎŀƭƛǎǘΩΣ Ψ[ŜŀŘ ±ƻŎŀƭƛǎǘ нΩΣ

ΨtƛŀƴƻΩΣ Ψ.ŀǎǎΩΣ Ψ{ǘǊƛƴƎǎΩΣ Ψ/ƘƻƛǊΩΣ Ψ.ǊŀǎǎΩΣ ΨIƻǊƴΩΣ Ψ[ŜŀŘ DǳƛǘŀǊΩΣ Ψ[ŜŀŘ DǳƛǘŀǊ 9ƪƻΩΣ ΨhǊŎƘŜǎǘǊŀ IƛǘΩΣ

Ψ¢ƛƳǇŀƴƛ 5ǊǳƳΩΦ hŦ ǘƘŜǎŜ мн ǘǊŀŎƪǎΣ ф ǘǊŀŎƪǎ ƘŀǾŜ ŀ ŘƛǎǎƻƴŀƴŎŜ ƻǾŜǊ оΦ IŜǊŜ Řȅƴŀmic tuning

sees an increase in dissonance over equal temperament. While there is a decrease in most

tracks, track 3, track 5, and track 6 see increases large enough to shift the total into positive

numbers. Without a change in these 3 mentioned tracks, dynamic tuning would have reduced

33

dissonance by 55.48, or 7.58%. Just intonation sees a decrease in dissonance compared to

equal temperament, however, in tracks other than track 3, 5, and 6, dynamic tuning has less

dissonance.

4.1.2 Discussion

In general, the algorithm manages to fulfil its purpose of reducing dissonance across all tracks.

The largest relative dissonance decrease is seen in Figure 19 and Table 9. Here dissonance

decreased by over 12% over 5 tracks. The biggest changes in dissonance are seen in Track 4

and Track 6, which are labelled as bass and guitar tracks respectively. As can be seen in Figure

8, they are both tracks that span about an octave. My dynamic tuning system seems to work

well for tracks with a small variety and range of notes. It could therefore be suited to tuning

guitar and bass tracks, as these instruments span less octaves in the real world than, for

example, pianos.

Otherwise, the smallest dissonance decrease is shown in Figure 21 and Table 11. This could

be due to the file being simpler, leaving little room for improvement. There is no change

shown in track 2, which corrŜǎǇƻƴŘǎ ǘƻ ǘƘŜ ΨƭŜŦǘ ƘŀƴŘΩ ƻŦ ŀ Ǉƛŀƴƻ ŀŎŎƻǊŘƛƴƎ ǘƻ ǘƘŜ ƳŜǘŀ-

messages. This track only plays octaves, i.e. notes 12 semitones apart. Figure 7 shows that

octaves have the lowest possible dissonance already, and the equal temperament tuning

already uses a just interval octave, as seen in Table 6. Therefore, no improvement can be

made to track 2.

On average, my dynamic tuning solution results in about a ~5% decrease in dissonance. This

improves to an over 8% decrease in dissonance when the 3, out of 26, outlier tracks that saw

an increase are left unchanged.

The only file that resulted in dissonance after dynamic tuning, is in Table 12 or Figure 22. This

could be down to the song being quite chaotic when compared to the others used for testing.

The largest discrepancy can be found in Track 3, which is the piano track, according to the

ŦƛƭŜΩǎ ƳŜǘŀ ƳŜǎǎŀges. Figure 11 shows that this is an expansive track, ranging over 40 ς 50

notes. It seems that the algorithm does not perform well under these circumstances.

The dissonance comparisons show that the algorithm is better at decreasing dissonance in a

song when the range of notes is small. For tracks where equal temperament tuning is already

close to the just interval, for example the octave and major fifth, the total dissonance of equal

temperament and dynamic tuning will be similar.

An issue with using the dissonance measurement method for comparing between equal

temperament, just intonation and the dynamic tuning is that it only considers the vertical

relationship between notes. The dissonance is only calculated between notes that are played

at the same time, but ignores adjacent notes, that are played close in time and may still be in

ǘƘŜ ƭƛǎǘŜƴŜǊΩǎ ŜŀǊΦ Lǘ ƛǎ ǇƻǎǎƛōƭŜ ǘƘŀǘ ǿƘŜƴ ŘƛǎǎƻƴŀƴŎŜ ōŜǘǿŜŜƴ ƴƻǘŜǎ ŀŘƧŀŎŜƴǘ ƛƴ ǘƛƳŜ ƛǎ

considered, the results could differ.

Another caveat of this method is the use of estimated partials, as in Table 7. For a more exact

measurement of dissonance, on a synthesizer by synthesizer basis, the timbre of notes of

34

each should be examined. It is possible that the outcome of the pitch adjustments will differ

if the partials used by the instrument are different.

4.2 EXAMPLE CHANGES

4.2.1 Results

This section will inspect frequency changes of different tracks of MIDI files after they were

dynamically tuned by my program. These tracks were also explored in section 4.1.1. To

visualize the changes, a small range of the most frequent notes, within the tracks with the

biggest changes in dissonance, of each tune, will be examined. Notes without change will be

omitted from the tables, as they were not used in the tracks at all. Observations will be made

after each figure and table pair, with a more general and detailed discussion following.

Figure 23 Frequency comparison in track 4 of John Denver - Take Me Home, Country Roads.

35

Table 13 Frequency comparison in track 4 of John Denver - Take Me Home, Country Roads.

Note Frequency/Hz Difference compared to baseline (12-TET)

30 47.55 1.30

31 50.38 1.38

33 56.55 1.55

34 59.91 1.64

35 63.47 1.74

36 67.25 1.84

37 71.24 1.95

38 75.48 2.06

40 84.72 2.32

42 95.10 2.60

43 100.75 2.76

45 113.09 3.09

Figure 23 and Table 13 show notes between note 30 (Fʒ 1) and 45 (A2). To reduce dissonance,

my dynamic tuning algorithm, has increased the frequencies of the notes compared to

twelve-tone equal temperament. The increase in frequencies, is in proportion to the

magnitude of frequencies. Note 30 saw an increase of 1.3 Hz, to a frequency of 47.55. Note

45 is over twice the frequency, and saw over twice the frequency change as well, a change of

3.09 Hz.

36

Figure 24 Frequency comparison in track 6 of John Denver - Take Me Home, Country Roads.

Table 14 Frequency comparison in track 6 of John Denver - Take Me Home, Country Roads.

Note Frequency Difference compared to baseline (12-TET)

55 201.51 5.51

57 226.14 6.14

59 251.43 4.48

60 268.36 6.73

61 282.29 5.11

62 301.14 7.47

64 338.86 9.23

66 376.75 6.76

67 402.96 10.96

The examined notes in Figure 24 and Table 14 range from MIDI note 55 (G3) and note 67 (G4).

These notes saw a variation in increases to reduce dissonance. The smallest increase was note

59, with 4.48 Hz. The largest increase was 10.96 Hz for note 67. Note 59 is played more in the

track than note 67, as seen in Figure 8. As the sample size for note 59 is larger, it could be

converging to a frequency closer to its original.

37

Figure 25 Frequency comparison in track 1 of John Lennon ς Imagine.

Table 15 Frequency comparison in track 1 of John Lennon ς Imagine.

Note Frequency Difference compared to baseline (12-TET)

50 150.25 3.41

52 167.41 2.59

53 179.49 4.88

55 200.93 4.94

56 201.92 -5.73

57 214.93 -5.07

58 239.63 6.55

59 250.26 3.31

60 268.91 7.28

62 300.42 6.75

64 323.53 -6.09

65 358.17 8.95

Figure 25 and Table 15, shows notes 50 (D3) to 65 (F4). To reduce dissonance, my tuning

system has both increased and decreased frequencies. The changes range from -6.09 Hz to

+8.95 Hz, to the equal temperament baseline. Notes with larger changes, such as note 64 and

note 60, seem to be more regularly played in groups of 3 ς 5 than notes with smaller changes

such as note 59 and 52. The latter two notes are also often played alone.

38

Figure 26 Frequency comparison in track 6 of John Lennon ς Imagine.

Table 16 Frequency comparison in track 6 of John Lennon ς Imagine.

Note Frequency Difference compared to baseline (12-TET)

36 67.34 1.94

40 84.72 2.32

41 89.76 2.45

42 95.25 2.75

48 134.49 3.68

49 134.79 -3.80

In Figure 26 and Table 16, most notes show increasing frequency. However, note 49 decreases

to a similar frequency to note 48. These two notes are never played together, so the algorithm

is not trying to create a unison interval. In fact, note 49 is only played twice, both times with

note 36. Note 36 and 49 are 13 semitones apart. It seems that my algorithm is tuning their

frequencies closer to being 12 semitones apart, by tuning 36 up and 49 down. This would be

a just interval octave, the lowest dissonance interval, apart from unison.

39

Figure 27 Frequency comparison in track 1 of Klaus Badelt ς IŜΩǎ ! tƛǊŀǘŜ.

Table 17 Frequency comparison in track 1 of Klaus Badelt ς IŜΩǎ ! tƛǊŀǘŜΦ

Note Frequency Difference compared to baseline (12-TET)

65 357.33 8.10

67 403.00 11.01

69 446.83 6.83

70 479.21 13.04

72 537.93 14.68

73 569.95 15.58

74 595.25 7.92

76 677.73 18.48

77 717.97 19.51

79 794.69 10.70

Figure 27 and Table 17 frequencies from note 65 to 79 are shown. There is a pattern of the

magnitude of frequency increase being proportional to frequency magnitude. However, notes

69 (A4), 74 (D4), and 79 (G5), do see smaller relative increases. These notes are close to their

just intonation tuning, relative to C. The MIDI key signature meta message (see section on

Meta-Events) mentions that this song is in the key of F major7, however C major also contains

7 Major scales contain notes 0, 2, 4, 5, 7, 9, 11 semitones above the key, i.e. all èmajoré and èperfecté intervals

in Table 6.

