Trinity College Dublin
Colaiste na Trionoide, Baile Atha Cliath
The University of Dublin

School of Computer Science and Statistics

SAFE AND EFFICIENT LANE

CHANGING IN AUTONOMOUS

VEHICLES USING ARTIFICIAL
INTELLIGENCE

SAKSHAM AGARWAL

April 19th, 2022

SUPERVISOR: DR. MELANIE BOUROCHE

A dissertation submitted in partial fulfilment
of the requirements for the degree of
MAI (Computer Engineering)

http://www.scss.tcd.ie

Declaration

| hereby declare that this dissertation is entirely my own work and that it has not been
submitted as an exercise for a degree at this or any other university.

| have read and | understand the plagiarism provisions in the General Regulations of the
University Calendar for the current year, found at http://www.tcd.ie/calendar.

| have also completed the Online Tutorial on avoiding plagiarism ‘Ready Steady Write', located
at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

Signed: Saksham Agarwal Date: 19th April, 2022

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

Abstract

Autonomous vehicles are now a part of daily life. While considering hard constraints such as
traffic rules and collision avoidance, an autonomous driving system should be able to max-
imize comfort, safety, and efficiency. The primary factor in 94 percent of all fatal crashes
is human error. So, reassuringly, greater use of autonomous vehicles could limit humans’
mistakes and eliminate millions of otherwise avoidable deaths. With an increase in traffic
congestion, air pollution also increases. Object detection and object classification algorithms
allow self-driving cars to recognize things, comprehend circumstances, and make decisions.
Better ML models are needed to improve their safety and motion planning. The primary goals
and objective of this project titled’ Safe and efficient lane changing in Autonomous vehicles
using Artificial Intelligence’ is to implement Artificial Intelligence techniques to improve the
safety in which Autonomous vehicles change lanes, thus reducing accidents and improving
the motion planning, taking into account the different surrounding factors that affect the
trajectory of Autonomous vehicles. Through the use of SUMO urban mobility software, this
dissertation will implement Deep Reinforcement learning methods in a simulation environment
using Q-learning methods like Deep Q Networks and Policy optimization Reinforcement Learn-
ing methods like Advantage Actor-Critic (A2C) and Proximal Policy Optimization(PPO), and
the results of these methods are evaluated using different parameters. Reward parameters are
defined, including comfort, safety, and efficiency. These three metrics allow us to implement
a solution where an ego vehicle can make a lane-changing decision from an action space in
a reinforcement learning environment in a mandatory lane-changing scenario. After evalu-
ating the learning performance of different RL methods mentioned above, it was deduced
that Policy Optimization-based Reinforcement Learning models tend to perform better than
Q learning methods. Policy-based RL methods tend to learn the value of the policy by steps
of exploration in the Reinforcement Learning environment. In contrast, Q learning methods
learn independent of the agent’'s action in the environment. New Q learning methods like
Double DQN and DQN can improve their performance compared to DQN being used without
any add-ons. The results and findings and the implementation of the approach are further
discussed in the report.

Acknowledgements

| would firstly like to express my heartfelt gratitude to Dr. Mélanie Bouroche (Assistant
Professor, School of Computer Science and Statistics) for her constant support and
providing guidance throughout the duration of this project. Her willingness to lend her time
and expertise so generously has been very greatly appreciated, and without her feedback and
assistance, the completion of this final year dissertation would not have been possible.

| would also like to thank my parents for supporting me and motivating me throughout this

project, without which | would not have been able to complete it.

Contents

1

Introduction 1
1.1 Context and Research Motivation 1
1.2 Problem Statement 2
1.3 Project Goals 2
1.4 Structure of Report 3
Literature Review 4
2.1 Lane Changing Behaviour on Freeways 4
2.1.1 Lane Changing Behavior on Multilane Freeways 4
2.1.2 Lane Changing Decision Algorithm 5
2.1.3 Different types of Lane change 6
2.2 Using Reinforcement Learning Techniques 6
2.2.1 Types of RL algorithms 7
2.2.2 RL experiments with safety actions 7
2.2.3 Using Deep Q Network Technique 9
2.2.4 Using Proximal Policy Optimization Deep RL method 10
2.3 Using Computer Vision Techniques 12
2.3.1 Implementation and Experiment 13
2.3.2 Results and Evaluation L. 14
Methodology 15
3.1 Introduction 15
3.2 Design . . . 15
3.3 OpenAl Gym Environment 16
3.3.1 StateSpace 18
3.3.2 ActionSpace 18
3.3.3 Reward function 18
3.3.4 Simulation 20
3.4 Implementation 20
341 DQN 21

342 A2C ..
343 PPO . . .
3.5 Difficulties and Challenges faced

4 Results and Evaluation
4.1 Metrics
41.1 Case: Targetspeed =100

5 Conclusion and Future Work
5.1 Conclusion
52 Future Work

A1l Appendix
Al.l Gantt Chart
A1.2 Evaluation of Reward metrics: Target Speed=50
A1.3 Evaluation of Reward metrics: Target Speed=200
Al.4 Some Preliminary experiments done using NEAT

24
24
24

31
31
32

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Lane Changing in Autonomous Vehicles

Lane changing decision flow chart
RL agent in an Environment Space
Categorization of RL Algorithms
Steps used in DQN approach
Neural network layer
Architecture of PPO lane change method

A three Lane Design created with NetEdit
RL Agent with surrounding Vehicles

Psuedo code for Proximal Policy Optimization Algorithm

Comfort metric using DQN technique
Comfort metric using A2C technique
Comfort metric using PPO technique
Comfort metric performance: RL methods vs Constant Lane Change

Safety metric using DQN technique
Safety metric using A2C technique
Safety metric using PPO technique
Safety metric performance: RL methods vs Constant Lane Change

Efficiency metric using DQN technique

4.10 Efficiency metric using A2C technique

4.11 Efficiency metric using PPO technique

4.12 Efficiency metric performance: RL methods vs Constant Lane Change

Al.1 Gantt chart showing the plan of action for MAIl project

A1.2 Comfort metric performance: RL methods vs Constant Lane Change

A1.3 Safety metric performance: RL methods vs Constant Lane Change

Al.4 Efficiency metric performance: RL methods vs Constant Lane Change

A1.5 Comfort metric performance: RL methods vs Constant Lane Change

vi

© ~N O O

10
11

16
20
22

25
25
26
26
27
27
28
28
29
29
29
30

36
36
37
37
38

A1.6 Safety metric performance: RL methods vs Constant Lane Change 38

A1.7 Efficiency metric performance: RL methods vs Constant Lane Change 39
A1.8 Comfort metric performance: RL methods vs Constant Lane Change 39
A1.9 Simple tracks created during preliminary experiments 40
Al.10Rewards generated using NEAT simulation for both the tracks 40

vii

List of Tables

2.1 Performance Results

viii

1 Introduction

Autonomous vehicles are now a part of daily life. Different assistance technologies, such as
adaptive cruise control (ACC) or traffic-jam help, are already available from car
manufacturers. On public highways, test vehicles with various levels of automation are
already being tested. While taking into consideration hard constraints such as traffic rules
and collision avoidance, an autonomous driving system should be able to maximize comfort
and safety. Highways are highly dynamic environments, making it impossible to predict all
state evolutions involving the activity of other agents and limiting predictions to the short
term. The vehicle, on the other hand, can collect data from its previous experiences and

should use this data to better its decision-making strategy.(1)

1.1 Context and Research Motivation

For autonomous vehicle decision-making, machine learning techniques have outperformed
several rule-based systems. Machine learning is difficult to implement due to the risk of
performing harmful actions and slow learning rates. Many of these concerns should be
addressed by offering a reinforcement learning-based technique paired with formal safety
verification to verify that only safe actions are selected at all times. Some of these
techniques are studied in this research project to propose an effective solution to make

autonomous vehicles safe.

Due to the influence of surrounding traffic participants, traffic rules, and inconsistent

optimization requirements, motion planning for autonomous vehicles is difficult. Separating
the planning task into high-level decision-making and maneuver implementation is one way
to deal with this complexity. High-level decision making involves building a system of rules

and deducing the optimal maneuver online.(2)

According to current trends, object recognition and detection are considered one of the most
significant tasks of Autonomous Vehicles. One such use is traffic sign recognition, commonly

employed in automotive systems such as Advanced Driver Assistance Systems (ADAS) and,

more recently, in autonomous vehicles. However, because of road situation's complex and
dynamic nature, it faces numerous problems in its detecting process. This is because of
limitations due to camera Angle of View(AOV). There might be instances where road signs
are not present in different conditions resulting in camera impairment, thereby affecting the
ability of the AV to detect road signs timely and accurately.(3) (4)

The advancement of computing power and the increased availability of data have prepared
the way for the application of machine learning approaches to decision-making in recent
years. Machine learning allows vehicles to learn from data and refine their learning strategy,
and one such technique is Reinforcement Learning. Creating a simple yet adequate depiction
of the environment can greatly speed up the learning process. Furthermore, ensuring that
the vehicle only executes safe maneuvers, i.e., does not cause a collision, adds to the
design’s complexity. When performing learning in real traffic with other traffic participants,

safety is incredibly important.

1.2 Problem Statement

The prospect of a future where we don’t have to drive is very appealing to
many.Approximately 1.3 million people die each year due to road traffic crashes and the
primary factor in 94 percent of all fatal crashes is human error.(5) So, reassuringly, greater
use of autonomous vehicles could limit humans’ mistakes and eliminate millions of otherwise
avoidable deaths. With an increase in traffic congestion, air pollution also increases.Object
detection and object classification algorithms allow self-driving cars to recognize things,
comprehend circumstances, and make decisions. Better ML models are needed to improve

their safety and motion planning.

1.3 Project Goals

The primary goals and objective of this project titled 'Safe and efficient lane changing in
Autonomous vehicles using Artificial Intelligence’ is to implement Artificial Intelligence
techniques to improve the safety in which Autonomous vehicles change lanes, thus reducing
accidents and improving the motion planning taking in account the different surrounding

factors that affect the trajectory of Autonomous vehicles.

Figure 1.1: Lane Changing in Autonomous Vehicles

1.4 Structure of Report

Here is an overview of how this thesis is structured into the subsequent chapters:-

e Chapter 2 will provide information on related work done in Autonomous lane changing

and the background of knowledge required to build the project.

e Chapter 3 will cover the design choices for this project, related technical workings for

the proposed design and the experimental methods used for the project
e Chapter 4 will cover the results obtained as part of the ran experiments.

e Chapter 5 will conclude the thesis and talk about any future scope of this project.

2 Literature Review

This chapter gives us context on work done in Safe and Efficient Lane changing using
Artificial Intelligence Techniques and helps us understand some concepts related to this
project. Different Artificial Intelligence techniques have been used in the past to improve the
safety and efficiency of autonomous vehicles, and the subsequent sections in this chapter

review the work done on this topic in recent years.

2.1 Lane Changing Behaviour on Freeways

Freeways form an essential aspect of the transportation infrastructure. When traffic exceeds
capacity, however, it becomes crowded. As a result, capacity is a critical traffic variable. To
address these issues, it would be beneficial if the driver behavior could be anticipated and
traffic dynamics could be forecasted. This could be valuable for road design or driver

behavior improvement. (3) (6)

2.1.1 Lane Changing Behavior on Multilane Freeways

Most microscopic simulation models start with the desired speed and then adjust the lane if
necessary. The most common tiny lane-change algorithms are rule-based and
discrete-choice-based models. Different gap acceptability requirements have been considered
in rule-based models, taking into account the variability across drivers. Many lane-changing
models use multiple parameter sets to account for driver variability. It has been discovered
that different methods are used by different type of drivers when it comes to car-following
behavior. It has been found that people drive on the freeway using the four tactics listed
below. (6)

e Strategy 1: On a freeway stretch, drivers set a preferred speed and maintain it as
much as feasible. They shift lanes and overtake if necessary to maintain their
momentum. They keep their desired speed during the overtaking attempt as well.

This technique is also known as "speed leading".

e Strategy 2: Drivers set the desired speed and maintain it as much as possible, much
like in the previous approach. They might switch lanes to pass a slower car. In
contrast to the speed leading technique, the drivers increase their speed while
overtaking rather than maintaining the original desired speed. This tactic is referred to

as "speed leading with overtaking".

e Strategy 3: Drivers select a chosen lane and adjust their speed to match that lane’s
speed, although within certain limits (the standard, acceptable range is around 40

km/h). This is known as "lane leading".

e Strategy 4: Drivers "go with the flow" since they don't have a designated lane or

desired speed in mind. This is also known as "traffic leading".

(6)
2.1.2 Lane Changing Decision Algorithm

One of the autonomous vehicle’s most important driving behaviors is lane-changing in a
highway scenario. Vehicle lane-changing is primarily used to increase driving performance
and safety. The self-driving car uses a multi-sensor fusion algorithm to detect its
surroundings, chooses the best route after deciding to change lanes, and then does a risk
assessment on the selected course, determining whether the current lane change action
meets the safety requirements. The lane shifting action will be performed if the initial

conditions are met else, the car's following state will be maintained. (3) (7)

Environmental
awareness data

A
Lane change
intentions

occur

Maintain

current lane
A

Lane change
path selection

Y
Judge the risk No
of lane change

Yes

Lane change

Figure 2.1: Lane changing decision flow chart

(7)

2.1.3 Different types of Lane change

One of the most critical aspects of motorway driving is a lane change. Drivers change lanes
for various reasons, including increasing speed or switching into the correct lane before the
following turning action downstream. A lane change can be classed as mandatory or
discretionary based on the driver's motivation. When a driver wants to move their respective
vehicle from its current lane to a target lane for a right or left turn or lane closure, it is
known as a Mandatory Lane Change(MLC). A discretionary lane change (DLC) occurs when
a driver wants to go faster, have a longer following distance, have a better line of sight, or

have a better riding quality in the target lane.(8)

Lane Changing Decision Variables

A lane change can be described as a four-step procedure, whether mandatory or
discretionary:-

1) Motivation;

2) Selection of target lane;

3) Checking for the possibility of the movement;

(1)
(2)
(3)
(4) The actual movement;

2.2 Using Reinforcement Learning Techniques

Reinforcement learning is a form of Machine Learning that rewards and punishes desired and
undesirable behavior. RL is a machine learning subfield that studies approximate optimum
decision-making in natural and artificial systems. A reinforcement learning agent is capable
of perceiving and interpreting its surroundings, taking actions, and learning through trial and

error.

Agent }
state reward action

S, R, A
R.(
S.. | Environment]4—

\

yY

A A

Figure 2.2: RL agent in an Environment Space

(9)

2.2.1 Types of RL algorithms

When talking about Reinforcement learning models, they are mainly categorized into
model-based RL and model-free RL algorithms. The primary difference between these
categories of models is that the model-free RL algorithms only try to make predictions based
on the current state values, whereas the model-based RL algorithms try to make predictions

of the future state of the model to try to to generate a best possible action.

These can be seen below in Fig 2.3

RL Algorithms
s + ~
T 1
Maodel-Free RL Model-Based RL
P .
8 L B i .S -
¥ L]]]
Policy Optimization Q-Learning Learn the Model Given the Maodel
Policy Gradient DON World Models \—b AlphaZero
DDPG
A2C [/ A3C Cc51 124
> D3 <
PPO QR-DQN MBMF
SAC
TRPO — — HER I—' MBVE

Figure 2.3: Categorization of RL Algorithms
(10)

2.2.2 RL experiments with safety actions

Many machine learning techniques have been developed for Autonomous Vehicles to improve
user experiences while maximizing comfort and safety. In 1989, one of the first machine
learning algorithms for self-driving cars was proposed. They created an autonomous land
vehicle based on neural networks that use camera and laser range inputs to stay on the road.
The vehicle Stanley, capable of driving at very high speeds in diverse and unstructured
off-road environments using machine learning and probabilistic reasoning for planning, made
another substantial contribution to the road following in the DARPA competition. On the
other hand, Stanley could only drive in static situations and could not deal with dynamic
challenges. (2) (11)

In another experiment,(12) RL was used to operate autonomous vehicles in real-time. For

teaching a controller to steer an automobile based on continuous inputs, they used the

Neural Fitted Q lteration (NFQ) approach(13). However, while the policy can steer the car,

it is not ideal.

A case study demonstrated that an agent can learn a low-level control task from scratch
using RL. They trained an agent how to maneuver a front wheel to drive as near a
predetermined track as feasible. However, they were not able to teach the agent to avoid
scene objects in every situation. This research utilized a policy-gradient technique to safely
train an agent to follow a front vehicle. The agent learned steering and braking control
based on three continuous input aspectsl. Even though it has been proven that learning
low-level control works, complex scenarios with several other dynamic constraints remain
difficult. Furthermore, there are established control approaches for maneuver execution that

can be used instead to concentrate on high-level decision-making. (2)

Branka Mirchevska, Christian Pek, Moritz Werling, Matthias Althoff, and Joschka Boedecker
proposed a DQN-based RL approach for safe high-level decision-making for autonomous
driving on highways in their paper High-level Decision Making for Safe and Reasonable

Autonomous Lane Changing using Reinforcement Learning. (2)

e According to their proposed approach, it teaches how to make high-level judgments
while a low-level system executes lane change or lane-keeping on highways with an

arbitrary number of lanes.

e use a minimal representation of the environment to decrease the dimensionality of the

state space for quick learning, and

e Include safety checks in the system to guarantee that the agent only performs safe

operations.

Safe actions are defined as a distinct collection of Actions(A) that include the following:

e Al: Perform the lane change to the left
e A2: Stay in the same lane

e A3: Perform the lane change to the right

The RL agent aims to get as close as possible to the specified velocity. On the other hand,
different driving objectives can be included. This system provides collision-free learning even

in real traffic by adding a computationally efficient safety verification tool. Researchers were

able to train a small neural network and demonstrate the effects of their learning strategy by
comparing the RL agent against an existing rule-based technique. They chose A(Actions)
because they wanted to train the RL agent to make high-level decisions in highway settings,
and these actions are the bare minimum for that. After selecting one of these actions from
the RL agent at a particular time step t, the safety system evaluates the action's safety. If

the action is safe, the underlying system handles the low-level execution. (2)

2.2.3 Using Deep Q Network Technique

To approximate the Q state-action value function, they adopt the Deep Q Network (DQN)
technique (13), which is based on Q-learning but uses the power of neural networks. Batch
mode reinforcement learning is a sub-field of dynamic programming-based reinforcement
learning. It was initially used to describe a version of RL in which the agent is provided a

batch of transition samples from which to build the best policy.

To approximate the Q state-action value function, they adopt the Deep Q Network (DQN)
technique (13), which is based on Q-learning but uses the power of neural networks. A
sub-field of dynamic programming-based reinforcement learning was used in this experiment
to describe a version of RL known as batch mode reinforcement learning. In this the agent is
provided a batch of transition samples from which to build the best policy. These steps can
be depicted in the following Figure 2.4:-

Batch learning task

[1. DATA]Tra"s"“’“" [2. LEARNING]]P""“’ [3. APPLICATION]

COLLECTION | (s,a,r,5) J

Figure 2.4: Steps used in DQN approach

(2)

e Collection of data samples

e In order to learn the best feasible policy from the source data, the batch mode RL
Algorithm is used. and

e Using the learned policy to solve a specific problem.

(2)

The neural network layer can be seen in the Figure 2.5 below

13 input 2 hidden layers 3 output

neurons 100 neurons each neurons
Leading
vehicle rel_d; —»
in the rel_d, —»
left lane
a
Q(s, a=left) -
Q(s, a=keep) Qfs,a) B8 a Execute
RE —= » >
agent |:Vm — Q(s, a=right) check RELZ: N M
a
Following X

vehiclein |rel_ds —»
the right rel_d,
lane

—

Figure 2.5: Neural network layer

(2)

This RL-based technique for autonomous vehicles in safe and efficient lane changing shows
that it can achieve high velocities closer to the intended speed limit while never causing an
accident. It outperforms the baseline model rule-based agent. Other related works in
Intelligent vehicle Automatic Lane Changing include a Lateral Control Method based on
Deep Learning and Computer Vision for traffic signal and lane identification in autonomous

vehicles to ensure driver safety and reduce road accidents. (2) (14)

2.2.4 Using Proximal Policy Optimization Deep RL method

While various rule-based solutions for solving lane change problems for autonomous driving
have been developed, their effectiveness is often limited due to the inconsistency and
complexity of the driving environment. Deep reinforcement learning (DRL) has demonstrated
potential performance in many application fields. Therefore machine learning-based methods
offer an option. The study’s researchers present an automated lane change method based on
proximal policy optimization and deep reinforcement learning in this paper, which shows
significant gains in learning efficiency while maintaining stable performance. In difficult
situations, such as dense traffic, the trained agent can develop a smooth, safe, and efficient
driving policy to make lane-change judgments. The proposed policy’s effectiveness is

demonstrated using task success and collision rate indicators.(15)

The simulation findings show that lane change techniques may be learned quickly and done
safely, smoothly, and efficiently. Deep RL algorithms’ implementations of lane change
techniques are frequently hampered by their poor learning rates. This difficulty is solved in

(2) and talked more about in detail in 2.2.3 by employing a minimum state representation

10

with only 13 continuous features, which allows for a faster learning rate when training a
DQN. While these methods are focused on modifying the feature space, more effective RL
algorithms can also be used to speed up learning rates and reduce policy learning

variation.

Although deep reinforcement learning approaches can maximize the intended reward, they
do not always ensure safety during learning and execution. To overcome the issues
mentioned above, the researchers propose a deep reinforcement learning method based on
safe proximal policy optimization (PPO), which incorporates the policy with a safety
intervention module in this paper. Using PPO-based deep reinforcement learning, this work
aims to build a decision-making technique to enable automatically required lane change

maneuvers with the goals of safety, efficiency, and comfort.(15)

The above mentioned goals can be defined below as:
(1) Comfort: Evaluation of Jerk
(2) Efficiency: Evaluation of least time required to travel the maximum distance

(3) Safety: Determining the likelihood of crashes and near-collisions.

Reinforcement learning can train an agent how to interact with its surroundings to maximize
the predicted cumulative rewards for a particular task. The value-based and policy-based
methods are the two types of RL algorithms. While value-based approaches can use neural
networks to approximate the value function in an off-policy way, policy-based methods can
directly maximize the quantity of advantage while remaining stable during function
approximations. As a result, the focus of this research is on policy-based RL

approaches.(15)

Learner Model

Aﬂﬂatiou Environment: SUMOQ ﬁu\im.‘ll Policy Optimization Alge -t'if]nx

Input Layer Hidden Layers Dutput Layer
TraCl - A L)
. » A —
Ege - | AR FND)
» Vehicln | ' =
":"I SN TR . Lateral
I__.'-l . N . 1) Artion
P o I e)
€ [.) . i) Long
"] P - '
Surr. i U AT Actlon
Vehicles | o = p=
- a L}

Figure 2.6: Architecture of PPO lane change method
(15)

11

The system has two primary components: a learner model and a simulation. The learner
model, in particular, use PPO to teach the ego-vehicle (agent) a high-level policy for
decision-making tasks while interacting with the surrounding traffic. The simulation
environment, which comprises the road network, traffic, and various task scenarios, is
created using the SUMO (Simulation of Urban Mobility) (16) high-fidelity microscopic
traffic simulation suite, and it is utilized to interface with the training agent. We can access
vehicle information in the road network, perform high-level decisions in the learner model,
and take into consideration vehicle dynamics created in the simulation model using SUMO

and its accompanying traffic control interface (TraCl).

The ego-vehicle receives its current state and the state of its surrounding vehicles from the
SUMO environment through TraCl, and these states are passed through the policy network
to enable safe, smooth, and efficient driving behaviors on highways. The ego-vehicle then
uses the created policy network to determine high-level lateral and longitudinal actions,
which it then transmits back to SUMO to simulate the vehicle's path in the next time step

and compute the relevant reward.(15)

2.3 Using Computer Vision Techniques

The researchers of this paper apply computer vision to track road surface markings and
provide AVs with an additional layer of data for making decisions. They used YOLOV3 to
train their detector to recognize 25 classes of road markings. Over 25,000 images were used
in this experiment, which demonstrated a robust performance in terms of accuracy and
speed of detection. The results will consolidate the traffic sign recognition system, ensuring
better reliability and safety throughout AV operations. A new algorithm using Deep Learning
technology in Artificial intelligence (Al) application is implemented and tested

successfully.(17)

A computer vision-based road surface marker identification system was used as an additional
data source for AVs to make judgments in this approach. The system is a Google
Collaboratory cloud service-based custom trained YOLOv3 object detector that employs
Darknet detections. Using over 25,000 images, the detector was taught to recognize 25
different road surface markings. Darknet is an open-source neural network framework
written in C and CUDA and maintained by Joseph Redmon. It is quick to set up and
supports both CPU and GPU computing. YOLO (You Only Look Once) is a bounding box
regression heads and classification technique object identification algorithm. It is a real-time
object detection model based on convolutional neural networks.(18) Its structure is made up

of SxS grid cells, including classifiers and regressors.

12

2.3.1 Implementation and Experiment

For the detector to be properly taught to detect objects, deep learning methods require a
good dataset of images and labels. Gathering and labeling the images is part of the data set
preparation procedure. Researchers used Google images to download approximately 25,000
images of various road surface markers for the data collection. To train a roust classifier,
they used photos with a variety of backdrops and lighting conditions and random objects
and the appropriate road surface markers. The road surface markers are partially obscured in
some of the photographs, some road surface marks overlap with others, and some are

halfway in the frame.

An automation tool called Labeling was used to label the images. Using the Labeling tool,
the researchers annotated all the images with the YOLO data set structure and generated a
corresponding XML file for each image. The data set were then divided into two parts: 90
percent of the images are set for training, while the remaining 10 percent are set for testing.

In the data set, road surface marks were divided into 25 categories.

They used pre-trained convolutional weights on ImageNet for the training. Using these
weights as beginning points allows the network to learn more quickly. Weights from the

darknet53 mode were used.

The yolov3.cfg file, which comes with the darknet code, is used to train the YOLO dataset,
a demo configuration file. This configuration file contains the training parameters. They set
the following variables to match the needs of the detector in order to train the road surface
marks dataset efficiently. The neural network weights are iteratively changed during the
training phase based on the number of mistakes made while training the dataset. They used
a small subset of the images in one iteration because it was impossible to use all of the
images in the training set at once while updating the weights. This is referred to as the
batch size. The batch parameter specifies the size of the training batches. They chose a
batch size of 64, which means that 64 images are used in one iteration to update the neural
network's parameters. The researchers also set the subdivisions to 16, which allows for
processing the fraction of the batch size at one time in the used GPU. The learning rate
parameter controls how aggressively the neural network learns based on the provided batch
of data. It is usually a number in the range of 0.01 to 0.000. The lesser the information, the
higher the rate, and as the neural networks see more data, the weights need to change less
aggressively. It, therefore, needs to decrease over time. This decrease in learning rate is

specified in the configuration file as the policy and steps.(17)

13

2.3.2 Results and Evaluation

The trained data was tested with 10 percent of images,i.e., 2500 images, which resulted in a
mean average precision score of 70.07 percent. The network performance was evaluated
using seven parameters: Precision, mean Average Precision (mAP), Recall, F1 Score and

Quality. Each of the terms are defined below:-

Precisi TruePositive (1)
recision = — —
TruePositive + FalsePositive

TruePositive

Recall(Sensitivity) =
ecall(Sensitivity) TruePositive + FalseNegative

Precision * Recall
F1 =2
Score * (Precision + Reca//) (3)

TruePositive

lity =
Quality TruePositive + FalsePositive + FalseNegative

A number of metrics can be deduced from the above equations from which a number of
conclusions can be drawn.These are True and False Positive values, Precision and map
scores, f1 scores, quality and False Negative scores. The Convolutional Neural Networks

Performance results from the above study is shown below in Table 2.1.

Table 2.1: Performance Results

Parameter Value

True Positive(TP) 2408
False Positive(FP) 42
False Negative(FN) 18

Precision 98.28%

MeanAveragePrecision(mAP) | 70.07%

Recall(Sensitivity) 99.25%

F1 Score 98.50%

Quality 97.56%

14

3 Methodology

This chapter gives us context on the design choices made in this project. The
implementation’s functional approach will be studied, and different types of Reinforcement
learning models used in the proposed solution will be discussed. The tools and simulation
environments and key terms related to them will also be discussed in detail in this
chapter.

3.1 Introduction

Using Deep Reinforcement Learning algorithms, this project tries to teach a car how to
self-drive on the road. The simulation will be carried out using the SUMO traffic
simulator(16) and TraCi, a Python module. On a route where overtaking is done via lane
change, we examine a stretch of highway with a specific number of lanes and a certain
number of cars following each other. We will concentrate on one car that we have control
over which will be our RL agent. Using the Deep RL, the automobile must decide whether
or not to change lanes. It has the option of going left, right, or staying in the same lane. We
will create an environment using Open Al gym (19) which is a toolkit , used primarily for

Reinforcement Learning research.

3.2 Design

In the domain of Autonomous Driving using Reinforcement Learning techniques, the car,
which acts as the primary agent, needs to have an environment and learn from its
surroundings factors, including other cars and different lanes, to perform better actions
depending on the problem it is trying to solve. In the case of Lane changing, the car needs
to learn from its previous actions and choose whether to stay on the current lane, make a
lane change toward the right or make a lane change toward the left while also maintaining
its optimal speed. For this purpose, a three-lane track was created using Sumo and Netedit.

Using the TraCi python module, the parameters for the simulation can be set and modified.

15

The simulation track can be seen below in Fig 3.1.

sumoconfig.sumo.cfg - SUMO 1.4.0 - O

JJ Eile Edit Settings Locate Simulation Windows Help

EERIEES [ek

” Scale Traffic: I—lill“J = |

%Q-.?g|realwarld VQ|ﬁ‘

***Starting server on port 38889 *** j
Loading net-file from 'fhome/saksham/Downloads/SUMO_lane_change_RL/gym_sumo/gym_sumofenvs/../..[. /network/trackftrack.net.xml' ... done {Ims).

Loading additional-files from '/home/saksham/Downloads/SUMO_lane_change_RL/gym_sumo/gym_sumojenvs/../../../;network/track/track.add.xml' ... done (1ms). J
Loading done.

'fhome/saksham/Downloads/SUMO_lane_change_RL/gym_sumo/gym_sumo/envs/../../../network, = - |x:-133.09. y:86.07 |x:-133.09. y:86.07

Figure 3.1: A three Lane Design created with NetEdit

3.3 OpenAl Gym Environment

Reinforcement learning (RL) deals with making decision sequences. Reinforcement learning
implies the presence of an agent in a given environment. The agent performs an action at
each phase, and the environment observes and rewards it. As the agent interacts with the
environment, an RL algorithm aims to maximize some measure of the agent's total reward.
The environment is characterized as a stochastic Markov decision process in the RL field.
The episodic context of reinforcement learning, in which the agent’s experience is split into a
sequence of episodes, is the emphasis of OpenAl Gym.The agent's initial state is sampled at
random from distribution in each episode, and the interaction continues until the
environment achieves a terminal state. In episodic reinforcement learning, the goal is to
maximize the total reward expectation per episode while achieving a good performance in as

few episodes as possible. (19)

It can be seen from Fig 2.2 that we have a learning agent that reacts to its surroundings. A

numerical reward from the environment accompanies the new state. As a result, the agent

16

observes the new condition and acts once more. It is rewarded once more and advanced to
the next state. This reward informs the agent if the action was positive or negative. For
example, if the agent is playing a game and their scores improve after acting, the reward
favors the agent and motivates it to repeat the action in the same situation. If the agent’s
score drops, it is penalized for not repeating the activity. The cycle continues, and the agent
finally learns the dynamics of the environment after many trials and errors. The pattern
repeats, and after many trials and errors, the agent finally learns the characteristics of the
environment and aims for ever-higher scores, resulting in a practically optimal policy for that

environment.

The end performance of an RL algorithm in a given environment can be measured along two
dimensions: first, the final performance, which can also be referred to as the average reward
for each episode after the training of the model is complete; second, the time required to

learn which can also be referred as sample complexity.(19)

Taking reference from the above section 2.2.4, a learner model and a simulation environment
are the system'’s two main components. The learner model, in particular, teaches the target
vehicle (agent) to learn while interacting with the traffic around it. A high-fidelity
microscopic traffic simulation suite called SUMO (16)is used to create the simulation
environment, which comprises the road network, traffic, and various task scenarios. The
target vehicle obtains its current state and the state of its surrounding vehicles from the
SUMO environment through TraCi. These states are transferred through the policy to enable
safe, smooth, and efficient driving behaviors on highways. The target vehicle determines the
action based on the developed policy, which is then sent back to SUMO to model the

vehicle's movement in the following time step and compute the relevant reward.

The environment was created with a discrete set of Action space which will be talked about
in detail in further subsequent sections. There are 4 primary functions in relation to an

environment which are called whenever a timestep action is completed:-

(1) env.reset() :- This function resets the state of the environment and obtains initial

observations set.
(2) env.render() :- This function helps to visualise the environment

(3) env.step() :- This function applies an action chosen from the action space to the
environment. This function will send the action state, whether to stay on the current
lane or change the lane to the environment, compute the simulation steps, update the
environment parameters, compute the rewards, and return the environment’s state,

reward, and other information. This is one of the most critical functions in the

17

implementation.

(4) env.close() :- This function closes down the render frame.

3.3.1 State Space

As seen from Fig 2.2, for an agent to act. It needs to explore the state and then choose
from a list of corresponding action spaces. In this environment, the state space comprises a
total of 37 features. Out of this vector space, five comprise the RL agent, which includes
parameters like distance, speed, acceleration, and position. Both the lateral and longitudinal
positions are taken into account for the RL agent. The rest of the feature space is comprised
of 8 surrounding vehicles around the ego vehicle. Each surrounding vehicle has four features:

speed, distance, acceleration, and lateral position.

3.3.2 Action Space

For the environment, the action space is made up of 3 decisions which can be performed by
the RL agent:-

(1) Maintain the current lane
(2) change lane to the right

(3) change lane to the left

3.3.3 Reward function
The computative reward is calculated on the basis of 3 objectives defined in section 2.2.4
which are safety, efficiency and comfort(15). The reward functions for the three objectives

are defined below as:-

(1) Comfort: Evaluation of Jerk

3

RL'Ufnj'(.’) = — 'l'f_\'{f ‘)_ — ﬁ '('I_\v(jl)2

(2) Efficiency: Evaluation of least time required to travel the maximum distance

18

Riime (1) = — 6t
Rl'um'“} = _l-'i:!l: - P:l
R.T,uﬂ'd |:f_:| = - |V'| - 1IIIIIu':".'trr-t'en'l

Rr_."._l"{r] = Wp- R.'Jm-:'“] +wy- R-!tlflfl:r] + Wy R.T,'Jr-ru:! EE_:'

(3) Safety: Determining the likelihood of crashes and near-collisions.

anr'_c'u!/i.\.‘irm it D < (l‘\-
R('ul/i\‘iun =
—100 if collision

(15)

In point 1, a, and a, are respectively the lateral and longitudinal jerk for comfort reward and
a , (3 are the corresponding weights for them.This incentive mechanism was added to avoid
the vehicle's rapid acceleration or deceleration, which could cause discomfort to the
occupants. In point 2, Rj,.e is defined as the ego vehicles lateral position with respect to the
desired vehicles position and Rspeeq is defined as ego vehicles speeds with respect to desired
vehicles speed.In point 3, when computing reward for safety, if the ego vehicles manages to
maintain safe distance with respect to other vehicles, it will reward with a value +1 else

would reward a negative value -100.

Compute Reward Function

The reward function considers three parameters for which it computes reward values. They
are Comfort, Efficiency, and safety. For Comfort, the function computes jerk, which is done
by taking the difference between the current speed and target speed, multiplying it by lane
width, and then adding a penalty for changing lanes. The lane width is calculated by
another utility function that takes in two parameters: the lane id and vehicle name. It
returns an integer value representing how wide the lane is on this particular stretch of road
to help calculate reward values. There is a third function that takes weights to be applied to
these parameter values to calculate rewards, and it returns a tuple with comfort reward,

efficiency reward, and safety reward.

19

3.3.4 Simulation

The simulation aims to get the agent to run in a congested environment without colliding
with other vehicles. The target speed of our RL agent(red card) can be modified at which
the agent performs a lane change action. Thirty-five autonomous vehicles other than the
target vehicle (red car), which also acts as our RL agent, were introduced to the simulation
to create moderate traffic to create a virtual traffic scene. The RL agent would be able to
vary the maximum speed at which it can perform a lane change. The ego vehicle, which is
the RL agent, observes the given state at a particular time S; and performs an action from a
predefined action space at a specific timestep that corresponds to the lane change
action.Once this action has been completed, the agent advances to the next state S;,; and

is awarded a reward based on the outcome of the previous step. This can be seen in Fig
3.2.

0 1.4.0 o
H@ File Edit Settings Locate Simulation Windows Help =& %

=& = HJ o HJ Time: _HJ Delay (ms): lﬁugj .

“ Scale Traffic: l—li”” D|
$ Al @ Deatwond - O || |

==TSLAIUNY SEIVEl ON POIL 3666 77 =l
Loading net-file from 'fhome/saksham/Downloads/SUMO_lane_change_RL/gym_sumo/gym_sumo/envs/../..\../;networkjtrackftrack.net.xml' ... done (1ms).
Loading additional-files from ‘fhome/saksham/Downloads/SUMO_lane_change_RL/gym_sumo/gym_sumojenvs/../../../network/track/track.add.xml' ... done (1ms

Loading done. -
4] | »

",lhume,lsakshamlDownk]adsfSUMG_Iane_change_RL,lgym_suma,‘gym_sumo,lenvsl..,l..,‘..,‘ne = 36 |x:-191.10. y:100.34 ‘x:-lgl.lu, y:100.34

Figure 3.2: RL Agent with surrounding Vehicles

3.4 Implementation

To regulate the lane-changing behavior in Autonomous vehicles in this project, we will
employ model-free RL algorithms. Value-based (Q-learning and QL with NNs = DQN) and
policy gradient (A2C, PPO) algorithms are two types of model-free algorithms. The goal of
value-based RL approaches is to find the best Q-value function. Q-learning is an example of

a value-based RL algorithm. In policy gradient, on the other hand, the desired objective

20

function is directly maximized. Although policy gradient approaches are wasteful in terms of
sample size, they are better capable of learning challenging tasks than value-based RL

algorithms.Both value-based and policy gradient algorithms are used in this project.

Two other agents are also used in this project to compare the behavior of Reinforcement
learning models with constant models. The constant lane change model and a random agent
act as a baseline model to compare our results. The constant lane change model will
perform a constant lane change action at each timestep. Although this is not a correct
measure to check for safety actions when performing a lance change, this is implemented to
compare the trained deep RL model performances. A random agent model is also
implemented. As the name suggests, it takes a random action from the sample into the
environment and acts randomly from the given action space at each timestep. These both

are implemented to compare the performances of deep RL models.

3.4.1 DQN

A lot of reference for DQN model has been taken from section 2.2.3 in the
implementation. The use of stable-baselines3(20), which is a Reinforcement Learning library

for python has been made for the training purposes.

3.4.2 A2C

A2C refers to Advantage Actor Critic method. It is an on policy RL method. To understand
about it, we need to take a brief look at A3C method as well. A3C stands for Asynchronous
Advantage Actor critic method.A3C uses asynchronous parallel training, in which many
workers in parallel settings update a global value function separately. Exploration of the
state space is made more effective and efficient using asynchronous actors. A2C, on the
contrary, only has one worker and does not support asynchronous functionality. A2C is a
policy gradient algorithm that belongs to the on-policy family of algorithms. That is, it is
learning the value function for one policy while following it, or, to put it another way, it
cannot learn the value function for another policy while following it. Suppose it employs
experience replay, for example. In that case, it will apply a different policy as learning from
too old data uses knowledge generated by a policy (i.e., the network) that is slightly
different from the current state. (20)(21).

21

3.4.3 PPO

PPO(Proximal Policy Optimization) uses an on-policy approach to train a stochastic
policy.It is an on policy algorithm and can be used well with custom environments using
discrete action spaces. This means it investigates using the most recent version of its
stochastic policy to sample activities. Both the initial conditions and the training technique
influence the level of unpredictability in action selection. The policy often grows less random
over time as the update rule encourages it to use the benefits it has already discovered. This
could lead to the policy becoming stuck in an optimal local state. The Psuedo code for PPO
algorithm can be seen below in Fig 3.3.(19)(20)

Algorithm 1 PPO-Clip

1: Input: initial policy parameters 6y, initial value function parameters ¢y

2: for k=0,1,2,... do

3 Collect set of trajectories Dy = {7;} by running policy 7, = m(f}) in the environment.
Compute rewards-to-go R;.
Compute advantage estimates, At (using any method of advantage estimation) based
on the current value function Vj, .
6: Update the policy by maximizing the PPO-Clip objective:

I

PICNED
(%) = A" (54, ay), = A% (54, ,
k1 = ATGIAX o \Dk|T E E min (Tek aulse) k(se, ar), gle, A™ (s at)))

TED t=0

typically via stochastic gradient ascent with Adam.
7: Fit value function by regression on mean-squared error:

.\ 2
s =i 3 3= (1))

typically via some gradient descent algorithm.
8: end for

Figure 3.3: Psuedo code for Proximal Policy Optimization Algorithm
(19)

3.5 Difficulties and Challenges faced

Getting the setup of Sumo Environment locally was one of the main issues | faced during
this project. SUMO works well on Linux-based platforms, and for a simulation involving
multiple surrounding variables, the Reinforcement Learning approaches can take much time.
There are also a few limitations and considerations that must be considered when
performing RL-based research. Although this project required many complex environment

scenarios, Reinforcement learning approaches can be an overkill for more straightforward

22

problems. Another factor to consider is that RL-based approaches assume that the
environment should be Markovian. Finally, Training RL-based models can take much time
and computational power and are not always stable. The approximate time to train different
RL-based approaches with varying parameters in a vectorized environment took between 8
and 12 hours. Creating a custom Open Al gym environment for the reinforcement
Learning-based approach was also tricky. Taking reference from previous work done in this
field has helped to implement this project. One more significant issue | faced was the
amount of computational power required. The simulations froze in between the experiment
randomly, and most of the experiments | conducted using RL techniques were with the
Sumo GUI turned off.

23

4 Results and Evaluation

This chapter will discuss the results obtained from the implementations using the techniques
discussed in Chapter 3. Different Plots and graphs for different types of reward functions
have been plotted, and learning performance for each RL approach has been identified over

a period of time for different metrics like comfort, efficiency, and safety.

4.1 Metrics

The computative reward functions defined above in section 3.3.3 will be evaluated with
different RL approaches over a period of time for different metrics like the speed at which
the RL agent(the ego vehicle) performs a lane change action. The results will be evaluated
keeping the weight parameters for different values as well the network layers constant and

only changing the target speed.

4.1.1 Case: Target speed = 100

Since we are taking a highway scenario, keeping the speed 100 seems to be most optimal for
testing purposes. Different metrics will be evaluated using different RL approaches. For this

case, these are calculated over a period of 20000 timesteps.

24

Comfort

Comfort Rewards

Comfort Rewards

Learning performance of DQN

0.010 - —-- DQN

0.005 A
0.000 A

SONALEPAWSTLA A AWV Ao
NV A A LAY

—0.005 -

—-0.010 -

—-0.015 1

—-0.020

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps

Figure 4.1: Comfort metric using DQN technique

Learning performance of A2C

— A2C
0.005 A

0.000 -

—0.005 -

—-0.010 -

—-0.015 1

—-0.020 -

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps

Figure 4.2: Comfort metric using A2C technique

25

Learning performance of PPO

0.010 - PPO
0.005
0.000 -
~0.005
~0.010
~0.015

Comfort Rewards

—-0.020 -
—-0.025 -

—0.030 1

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps

Figure 4.3: Comfort metric using PPO technique

Learning performance

PPO
— A2C
0.02 A —-- DQN
—=- Constant

0.00

—-0.02 1

Comfort Rewards

—0.04 1

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps

Figure 4.4: Comfort metric performance: RL methods vs Constant Lane Change

It can be seen that for the comfort metric, the learning performance of A2C and DQN tend
to perform better than PPO and constant lane change.Comfort metric is used to evaluate
jerk, the lower the jerk, the better the performance and comfort will be. As evidently seen
from Fig. 4.4. It can also be seen that Proximal Policy Optimization method does not work
best for comfort metric and as the timesteps increase, its loss in performance increases. This

can be seen in Fig.4.3

26

Safety
The next metric which would be evaluated is safety. This is one of the most critical

evaluation metrics in terms of the research as we are trying to propose a solution where lane

changes actions are deemed safe, and the collision is reduced to a minimum.

Learning performance of DQN

—-- DON

4_

2_
S |, e AN YO T WY T WY T P WY WOTY
g oJ A (] " Y
= bt
s |y
[as
i)
S -2
[Fp]

4

6

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps
Figure 4.5: Safety metric using DQN technique
Learning performance of A2C

4 — A2C

2_
ﬁ Y Y \B AR B A \ 4
S 0
a
[
L
[1+]
[Fp] _27

4

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps

Figure 4.6: Safety metric using A2C technique

27

Learning performance of PPO

PPO
4_
2,
%]
e
(1]
3 01
o
&
2]
w -2
74_
0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps
Figure 4.7: Safety metric using PPO technique
20 Learning performance
PPO
— A
10 —-- DON
——- Constant
o
5 0- wmmmww badki
E ! 1] :
(v
L
& -10
720_

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps

Figure 4.8: Safety metric performance: RL methods vs Constant Lane Change

It can be seen from Fig.4.8 that PPO and A2C models are performing better than DQN. As
the model is trained, the loss in DQN performance is increasing, and A2C and PPO are
keeping steady. It can also be deduced from Fig. 4.7 that in terms of safety, PPO provides a

better convergence rate.But both A2C and PPO models are sensitive to changes.
Efficiency

This metric is used to determine if the RL agent can make safe and efficient lane change

actions while also covering the maximum distance in the least amount of time.

28

Learning performance of DQN

—-- DQN
-0.020
[}
e
g —0.0251
& |
> 3 1 A Y. I.J o i ;
: A A A
£ —0.030 YL | M L\ \
ki W“VN ‘Mﬂf h{ J\\Mxﬂm LAY,
w
—0.0351
—-0.040 . . : . . ; . .
0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps
Figure 4.9: Efficiency metric using DQN technique
Learning performance of A2C
— A2C
—0.020 -
4
S —0.025 -
=
8]
o
>
E ~0.030 1
g
o
—0.035 -
—0.040 +— . . ; . . ; . .
0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps
Figure 4.10: Efficiency metric using A2C technique
Learning performance of PPO
—0.0200 1 PPO
—0.0225 -
& —0.0250+
g
2 -0.0275-
o
g ~0.0300 1
o
£ —0.0325
w
~0.0350 1
~0.0375 1

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps

Figure 4.11: Efficiency metric using PPO technique

29

Learning performance

PPO
~0.020 - — A2C
. —-- DON
4} J (=== Constant
T 00254 | ‘ _. |
= p ! \ [
18}
[+
g -0.030
c
g
Y
=
W -0.035 -
-0.040 -

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps

Figure 4.12: Efficiency metric performance: RL methods vs Constant Lane Change

It can be deduced that, when it comes to efficiency, the loss performance of all the models is
very high, and nothing particular can be concluded from these graphs in Fig.4.12. Although
out of all the models, it can be seen PPO model in Fig. 4.11 seems to be the most steady

and stable in terms of loss.Both PPO and A2C seem to be performing than DQN technique.

It can also be seen from the evaluation of all the three reward metrics that in applying
in-policy RL methods like A2C and PPO, the learning performance is better than the Q
learning-based DQN method. As also learned earlier in the sections of 2.2.3 and 2.2.4, more
in-policy-based RL algorithms are being used as they know the value of the policy by steps
of exploration in the environment. In contrast, Q learning or off-policy algorithms learn the
policy values independent of the agent’s actions in the environment. It can be also noted
that the poor performance of DQN is because it is not being implemented with any add-ons.
DQN alone on Its own is unstable, but new Q learning methods like DDQN and DQN with

replay memory can improve its performance.

30

5 Conclusion and Future Work

This chapter will give context about the work done in this thesis and its key learnings.
Essential learnings from this research study will be highlighted, and this chapter will be

concluded with a discussion on work to be done on this project in the future.

5.1 Conclusion

This research study provided an opportunity to explore the current evolutions in
Autonomous lane changing. Since this is an emerging field and with several innovations
happening, it is crucial to propose a solution that can help reduce accidents and collisions in
Autonomous vehicles. Efficient Autonomous vehicles can contribute to the environment by
reducing air pollution, traffic accidents, and congestion. Many developing countries are now
supporting infrastructure for Autonomous vehicles, and these AVs can solve many problems

for them.

In this thesis, Chapter 1 gave us an insight into the problem in the current time and
introduced the readers to the context of this research topic, and explained to them the need

to propose an effective solution in this field.

Chapter 2 talks about the current state of work being done in this field. Exploring what has
already been done in this field helped design the solution and present the findings. Exploring
the current state of work also made it possible to explore and think about what has not been

done and try to implement that.

Chapter 3 introduces the design concepts and choices made in this study. It talks about
Action space, State-space, reward functions, and how they are used in the Open Al gym
environment. It also talks about the different RL methods used in this project and the

choice considerations for using them.

Chapter 4 discusses the results and findings of the project and concludes that policy-based

31

reinforcement learning methods tend to perform better than Q learning-based methods in

the implementation.

Chapter 5 is giving a summary of the work done as part of this research and will talk about

future work to be done in this project.

5.2 Future Work

The proposed approach’s current implementation only considers a single RL agent that
controls the ego vehicle for mandatory lane change scenarios. Future work would include
creating multiple RL agents trying to interact with each other, increasing the complexity but

improving the decision choices, leading to better lane-changing scenarios.

More emphasis is also needed on the safety check algorithm to ensure the action that the RL
agent is taking is safe or not. The current implementation only considers the Euclidean
distance and the relative speeds between two vehicles, and the choice is based on it.
However, better algorithms need to be formulated to ensure safety checks before making a
lane change decision. These are a few things that need to be worked on in the future of this
project to make sure the lance changing is perfectly safe and avoid as many collisions as

possible, also ensuring that the optimal speed is reached for the vehicle.

32

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

Cristina Menéndez-Romero, Franz Winkler, Christian Dornhege, and Wolfram Burgard.
Maneuver Planning and Learning: a Lane Selection Approach for Highly Automated
Vehicles in Highway Scenarios. In 2020 IEEE 23rd International Conference on
Intelligent Transportation Systems (ITSC), pages 1-7, September 2020. doi:
10.1109/ITSC45102.2020.9294190.

Branka Mirchevska, Christian Pek, Moritz Werling, Matthias Althoff, and Joschka

Boedecker. High-level Decision Making for Safe and Reasonable Autonomous Lane
Changing using Reinforcement Learning. In 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), pages 2156-2162, November 2018. doi:
10.1109/ITSC.2018.8569448. ISSN: 2153-0017.

David Bevly, Xiaolong Cao, Mikhail Gordon, Guchan Ozbilgin, David Kari, Brently
Nelson, Jonathan Woodruff, Matthew Barth, Chase Murray, Arda Kurt, Keith Redmill,
and Umit Ozguner. Lane Change and Merge Maneuvers for Connected and Automated
Vehicles: A Survey. IEEE Transactions on Intelligent Vehicles, 1(1):105-120, March
2016. ISSN 2379-8904. doi: 10.1109/TIV.2015.2503342. Conference Name: IEEE

Transactions on Intelligent Vehicles.

Suhyeon Gim, Sukhan Lee, and Lounis Adouane. Safe and efficient lane change
maneuver for obstacle avoidance inspired from human driving pattern. IEEE
Transactions on Intelligent Transportation Systems, pages 1-15, 2020. doi:
10.1109/TIT'S.2020.3034099.

World Health Organization. Road traffic injuries.
www.who.int/news-room/fact-sheets/detail/road-traffic-injuries, June
2021.

V. L. Knoop, M. Keyvan-Ekbatani, M. de Baat, H. Taale, and S. P. Hoogendoorn.
Lane Change Behavior on Freeways: An Online Survey Using Video Clips. Journal of
Advanced Transportation, 2018:9236028, June 2018. ISSN 0197-6729. doi:

33

www.who.int/news-room/fact-sheets/detail/road-traffic-injuries

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

10.1155/2018/9236028. URL https://doi.org/10.1155/2018/9236028. Publisher:

Hindawi.

Kanggiang Ouyang, Yong Wang, Yangiang Li, and Yunhai Zhu. Lane change decision
planning for autonomous vehicles. In 2020 Chinese Automation Congress (CAC), pages
6277-6281, 2020. doi: 10.1109/CAC51589.2020.9327195.

Matthew Vechione, Esmaeil Balal, and Ruey Cheu. Comparisons of mandatory and
discretionary lane changing behavior on freeways. International Journal of
Transportation Science and Technology, 7, 03 2018. doi: 10.1016/j.ijtst.2018.02.002.

Shweta Bhatt. Reinfocement learning.

www . kdnuggets.com/2018/03/5-things-reinforcement-learning.html, June
2018.

Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei Aron,
James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoffmann, et al.
Stanley: The robot that won the darpa grand challenge. Journal of field Robotics, 23
(9):661-692, 2006.

Martin Riedmiller, Mike Montemerlo, and Hendrik Dahlkamp. Learning to drive a real

car in 20 minutes. In 2007 Frontiers in the Convergence of Bioscience and Information
Technologies, pages 645-650. IEEE, 2007.

Martin Riedmiller. Neural fitted q iteration—first experiences with a data efficient neural
reinforcement learning method. In European conference on machine learning, pages
317-328. Springer, 2005.

Li Haixia and Li Xizhou. Flexible lane detection using cnns. In 2021 International
Conference on Computer Technology and Media Convergence Design (CTMCD), pages
235-238, 2021. doi: 10.1109/CTMCD53128.2021.00057.

Fei Ye, Xuxin Cheng, Pin Wang, Ching-Yao Chan, and Jiucai Zhang. Automated lane
change strategy using proximal policy optimization-based deep reinforcement learning.
In 2020 IEEE Intelligent Vehicles Symposium (IV), pages 1746-1752, 2020. doi:
10.1109/1V47402.2020.9304668.

Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang
Flotterod, Robert Hilbrich, Leonhard Liicken, Johannes Rummel, Peter Wagner, and
Evamarie Wiellner. Microscopic traffic simulation using sumo. In The 21st IEEE
International Conference on Intelligent Transportation Systems, pages 2575-2582.
IEEE, November 2018. URL https://elib.dlr.de/127994/.

34

https://doi.org/10.1155/2018/9236028
www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html
https://elib.dlr.de/127994/

[17] Irvine Valiant Fanthony, Zaenal Husin, Hera Hikmarika, Suci Dwijayanti, and
Bhakti Yudho Suprapto. Yolo algorithm-based surrounding object identification on
autonomous electric vehicle. In 2021 8th International Conference on Electrical
Engineering, Computer Science and Informatics (EECSI), pages 151-156, 2021. doi:
10.23919/EECSI53397.2021.9624275.

[18] Tian-Hao Wu, Tong-Wen Wang, and Ya-Qi Liu. Real-time vehicle and distance
detection based on improved yolo v5 network. In 2021 3rd World Symposium on
Artificial Intelligence (WSAI), pages 24-28, 2021. doi:
10.1109/WSAI51899.2021.9486316.

[19] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[20] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and
Noah Dormann. Stable-baselines3: Reliable reinforcement learning implementations.
Journal of Machine Learning Research, 22(268):1-8, 2021. URL
http://jmlr.org/papers/v22/20-1364.html.

[21] Volodymyr Mnih, Adria Puigdoménech Badia, Mehdi Mirza, Alex Graves, Timothy P.
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for
deep reinforcement learning. 2016. doi: 10.48550/ARXIV.1602.01783. URL
https://arxiv.org/abs/1602.01783.

35

http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/abs/1602.01783

Al Appendix

Al.1 Gantt Chart

The Gantt Chart Below summarises the action plan to be followed during this project.

projecT: Al in Lane Changing
STUDENT NAME. SAKSHAM AGARWAL

=} T CTTETET S B < ' © ~ LI - =

T PV - P P N N N Sa | ST=]32 SIS 31 338X [2]8]=

Sl sl lsls|ls|s Sz Slslsl s Sl sl sl slslslslslisls

Task name Stard date End date 8| 8|8 |8 =} 8|8 |8 8| 8 8|8 88|88 B B & =} B 8 g 18 |8

= = = = = = = = B = = = B ERER = = B = = = = | 3|3
PROJECT 1 13/09/21 19/04/22
Exploaration of the topic 13/09/21 27/09/21
Research 28/09/21 01/11/21
Literature Review 01/11/21 01/02/22
Exploring simulation frameworks 15/01/22 15/02/22
Model creation 01/02/22 06/03/22
Testing and results 06/03/22 01/04/22
Writing thesis 15/03/22 19/04/22

Figure Al1.1: Gantt chart showing the plan of action for MAI project

Al.2 Evaluation of Reward metrics: Target Speed=50

Comfort
Learning performance
0.04 PPO
— A2C
0.02 —.. DON
5 ——- Constant
g X
S 0.00 4 "
=
U
o
£ -0.02 |
L
£
S -0.04
—0.06 1

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of Steps

Figure A1.2: Comfort metric performance: RL methods vs Constant Lane Change

36

Safety

Learning performance

201 —— PPO
— A2C
10 —-- DQN
=== Constant
g -
g 07
=
9]
[
& =10+
(4]
w
20
—30 1

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of Steps

Figure A1.3: Safety metric performance: RL methods vs Constant Lane Change

Efficiency
Learning performance
—0.015 ~ — PPO
—_— A2C
—0.020 - ‘ —-- DON
ﬁ i li —=—- Constant
% —0.025 A }
P
g -0.030-
v
g
& -0.035 \
—=0.040

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of Steps

Figure Al.4: Efficiency metric performance: RL methods vs Constant Lane Change

37

A1.3 Evaluation of Reward metrics: Target Speed=200

Comfort

Learning performance

0.04 1

0.02 4

0.00 4

—0.02 1

Rewrads

—0.04 1

—0.06 -

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps

Figure A1.5: Comfort metric performance: RL methods vs Constant Lane Change

Safety

Learning performance

20

10 4

Rewrads

_30 i

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps

Figure A1.6: Safety metric performance: RL methods vs Constant Lane Change

38

Efficiency

Learning performance

—0.020

—0.025 1

—0.030

Rewrads

—0.035 1

—0.040

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps

Figure A1.7: Efficiency metric performance: RL methods vs Constant Lane Change

Comfort

Learning performance

0.04 4

0.02 4

0.00

—0.02 1

Rewrads

—0.04 1

—0.06 -

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of Steps

Figure A1.8: Comfort metric performance: RL methods vs Constant Lane Change

Al.4 Some Preliminary experiments done using NEAT

During the initial phases, when | was getting difficulties in setting up the SUMO
environment locally and was failing to produce some results, | created two tracks using the
python pygame environment. | tried running some simulations for discretionary lane change

movements using the NEAT reinforcement learning algorithm in pygame environment.

39

Track-1 Track - 2

Figure A1.9: Simple tracks created during preliminary experiments

Comparison between fitness metric
1200000

1000000
800000

600000

Rewards

400000

200000

0
1 2 3 4 5 6

~

Track 1 =——Track 2

Track rotations

Figure A1.10: Rewards generated using NEAT simulation for both the tracks

40

	Introduction
	Context and Research Motivation
	Problem Statement
	Project Goals
	Structure of Report

	Literature Review
	Lane Changing Behaviour on Freeways
	Lane Changing Behavior on Multilane Freeways
	Lane Changing Decision Algorithm
	Different types of Lane change

	Using Reinforcement Learning Techniques
	Types of RL algorithms
	RL experiments with safety actions
	Using Deep Q Network Technique
	Using Proximal Policy Optimization Deep RL method

	Using Computer Vision Techniques
	Implementation and Experiment
	Results and Evaluation

	Methodology
	Introduction
	Design
	OpenAI Gym Environment
	State Space
	Action Space
	Reward function
	Simulation

	Implementation
	DQN
	A2C
	PPO

	Difficulties and Challenges faced

	Results and Evaluation
	Metrics
	Case: Target speed = 100

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Gantt Chart
	Evaluation of Reward metrics: Target Speed=50
	Evaluation of Reward metrics: Target Speed=200
	Some Preliminary experiments done using NEAT

