
Machine Learning-based Intrusion Detection for

Virtual Infrastructures

Mayank Arora, BAI

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Integrated Masters in Computer Engineering

Supervisor: Dr. Stefan Weber

April 2022

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Mayank Arora

April 19, 2022

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Mayank Arora

April 19, 2022

Machine Learning-based Intrusion Detection for

Virtual Infrastructures

Mayank Arora, Integrated Masters in Computer Engineering

University of Dublin, Trinity College, 2022

Supervisor: Dr. Stefan Weber

There has been a shift from running applications in virtual machine-based environments
to container-based environments in recent years. Although this shift has provided a
better platform for deploying scalable applications, the tools to secure container-based
environments from unknown attacks are still being developed.

This research has focused on enhancing security for applications deployed in Kuber-
netes. In particular, a Network-based Intrusion Detection System (NIDS) was proposed
that uses an autoencoder, an unsupervised artificial neural network, to flag potentially
anomalous packets. The autoencoder was trained on packets flowing through a Kuber-
netes node running an application, which created a baseline for normal behaviour. For
testing the IDS, various port scans and dictionary attacks were launched against the appli-
cation deployed in the virtual infrastructure. The IDS accurately detected the deviation
from expected behaviour and categorised the packets as anomalous.

As part of the evaluation, we also compared autoencoders against other unsupervised
detection algorithms such as IsolationForest and DBSCAN, and a supervised learning
approach. Preliminary results show that a combination of signature-based and machine
learning approaches is necessary for a comprehensive detection of intrusions in Kubernetes
cluster.

Acknowledgments

First and foremost, I would like to thank my supervisor Stefan Weber for his unbelievable

support, patience and guidance throughout the project.

The completion of this project could not have been possible without the support of

my incredible partner Noor and my friends Abhinav, Piyush, Ian, Iga, Ciara, Conor,

Dáire, Mark and David. Thank you for listening to all of my rantings and ravings about

Kubernetes and being there to go for coffee at a moment’s notice.

Finally, I’d like to thank my family for their unwavering support and belief in me

throughout these twenty years of my academic journey. No mum, I’m not doing a PhD.

Mayank Arora

University of Dublin, Trinity College

April 2022

iv

Contents

Abstract iii

Acknowledgments iv

Chapter 1 Introduction 1

1.1 Problem area . 1

1.2 Research objectives . 2

1.3 Structure of the report . 2

Chapter 2 State of the Art 3

2.1 Background . 3

2.1.1 Virtual Infrastructure . 3

2.1.1.1 Brief history of containers 3

2.1.1.2 Need for containers . 4

2.1.1.3 VMs vs containers . 4

2.1.1.4 Kubernetes architecture 5

2.1.1.5 Kubernetes networking . 7

2.1.2 Machine Learning . 8

2.1.2.1 Types of machine learning algorithms 8

2.1.2.2 Classification of anomaly detection 9

2.1.2.3 Anomaly detection using density based clustering 10

2.1.2.4 Anomaly detection using neural network 12

2.1.2.5 Anomaly detection using tree-based technique 12

2.1.3 Intrusion Detection System . 13

2.1.3.1 Taxonomy of cyber attacks 13

2.1.3.2 Classification of an IDS based on analysed activity 14

2.1.3.3 Classification of an IDS based on detection method 15

2.1.3.4 Classification of an IDS based on behaviour on detection . 15

2.1.3.5 Anomaly-based NIDS . 15

v

2.2 Related projects . 17

2.2.1 Monitoring Kubernetes Clusters With Dedicated Sidecar Network

Sniffing Containers . 17

2.2.2 Application of Machine Learning with Traffic Monitoring to Intru-

sion Detection in Kubernetes Deployments 18

2.2.3 Unsupervised Network Intrusion Detection Systems: Detecting the

Unknown without Knowledge . 18

2.2.4 Unsupervised Packet-based Anomaly Detection in Virtual Networks 19

2.3 Summary . 19

Chapter 3 Design 20

3.1 Deployment platform . 20

3.1.1 Local deployment . 20

3.1.2 Cloud deployment . 20

3.1.3 Docker images . 21

3.2 Architecture of the NIDS . 21

3.3 Collecting data . 22

3.4 Machine learning enivironment . 23

3.5 Workflow . 24

3.6 Summary . 25

Chapter 4 Implementation 26

4.1 Deployment of Kubernetes cluster . 26

4.1.1 Local deployment . 26

4.1.2 Cloud deployment . 27

4.1.3 Differences in local vs cloud deployment 29

4.2 Implementing system architeture . 29

4.2.1 Tcpdump container . 29

4.2.1.1 Type of pod . 29

4.2.1.2 Capturing tcpdump . 31

4.2.1.3 Sending pcap file to pcap-service 32

4.2.1.4 Creating tcpdump docker image 33

4.2.1.5 Deploying and collecting data 34

4.2.2 Pcap service . 35

4.2.2.1 Flask server . 35

4.2.2.2 Processing pcap . 36

4.2.3 Model service . 37

vi

4.2.3.1 Preprocessing data . 37

4.2.3.2 Predicting scores . 39

4.2.4 MySQL database . 41

4.2.5 Back-end service . 42

4.2.5.1 Flask server . 42

4.3 Simulating an attack . 43

4.3.1 Port scanning . 44

4.3.2 Dictionary attack . 46

4.4 Creating machine learning models . 49

4.4.1 Data collection . 50

4.4.2 Data preprocessing . 51

4.4.2.1 Processing pcap . 51

4.4.2.2 Processing CSV . 56

4.4.3 Clustering using DBSCAN . 57

4.4.4 Anomaly detection using Isolation Forest 59

4.4.4.1 Anomaly detection using packet flow 59

4.4.4.2 Anomaly detection using packet data 61

4.4.5 Autoencoders . 62

4.4.5.1 Training an autoencoder model 62

4.4.5.2 Scoring . 63

4.4.6 Supervised Learning . 66

Chapter 5 Evaluation 68

5.1 Evaluating machine learning models . 68

5.1.1 Clustering using DBSCAN . 68

5.1.1.1 Dimensionality reduction 68

5.1.1.2 Evaluating DBSCAN . 69

5.1.2 Isolation Forest . 70

5.1.3 Autoencoders . 70

5.1.3.1 Model 1 . 71

5.1.3.2 Model 2 . 73

5.1.3.3 Model 3 . 74

5.1.3.4 Model 4 . 75

5.1.3.5 Model 5 . 76

5.1.3.6 Limitations of autoencoders 77

5.1.4 Supervised learning . 77

5.2 Evaluating the architecture . 78

vii

5.2.1 Limitations of the prototype . 78

5.2.1.1 Tcpdump container . 78

5.2.1.2 Pcap service . 78

5.2.1.3 Model service . 79

5.2.1.4 MySQL database . 79

5.2.1.5 Backend service . 79

5.2.2 Improved architrecture for the prototype 79

Chapter 6 Conclusions & Future Work 82

6.1 Conclusion . 82

6.2 Future work . 83

6.2.1 NIDS prototype . 83

6.2.2 Machine learning . 83

6.3 Reflection . 84

Bibliography 84

Appendices 89

.1 Difference in sending requests from different pods 90

.2 Code for polling script in tcpdump-container 91

.3 YAML files for MySQL in Kubernetes . 92

.4 Console outputs of Nmap and WPScan . 96

.5 Falco scanner in Kubernetes . 97

.6 Calculating packet flow using destination IP 98

viii

List of Tables

4.1 Final packet features selected for the NIDS 36

4.2 Processing of packet features in table 4.1 38

4.3 Total packets captured for training and testing ML models 50

4.4 All features extracted from a packet for this project 56

4.5 Features of the best autoencoder model . 62

5.1 Features selected for different models . 71

5.2 Summary of evaluation of autoencoder models 72

ix

List of Figures

2.1 VM based architecture . 4

2.2 Container based architecture . 5

2.3 Components of a Kubernetes cluster . 6

2.4 Networking in a Kubernetes node with Kubenet plugin) 7

2.5 ARP requests captured on cbr0 . 8

2.6 Taxonomy of machine learning algorithms 9

2.7 Illustration of DBSCAN . 11

2.8 Kmeans vs DBSCAN . 11

2.9 Architecture of an autoencoder . 12

2.10 Visualisation of Isolation Forest . 13

2.11 Mitre attack framework 2020 . 14

2.12 Classification of different anomaly based intrusion detection techniques . . 17

3.1 Micro-services based architecture of the protoype 21

3.2 Workflow of a Kubernetes developer . 24

4.1 Console output of minikube start . 27

4.2 Console output of kubectl . 27

4.3 Deploying configuration for AKS . 28

4.4 Environment variables in tcpdump-container 32

4.5 Features extracted from the pcap being stored in CSV 37

4.6 Protocol in packet being one hot encoded 38

4.7 Strcuture of the data frame being stored in MySQL 40

4.8 Screenshot of webpage displaying top 1000 anomalous packets 43

4.9 Tcpdump output of the nmap scan in Wireshark 46

4.10 Wireshark output of packets from attacker’s IP during WPScan attack . . 47

4.11 Output of the WPScan . 49

4.12 Normal vs Attack packet flow . 50

4.13 Azure networking IP ranges . 55

4.14 Data points created for visualising DBSCAN 57

x

4.15 Predicted anomalies by DBSCAN for figure 4.14 58

4.16 Output of DBSCAN on normal data flow 59

4.17 Isolation Forest for predicting attack data flow 61

4.18 Score distribution of packets in training data 64

4.19 Score distribution of packets during attack 65

4.20 Score distribution of packets with attacker’s IP 65

5.1 Performance comparison of various dimensionality reduction algorithms . 69

5.2 Score distribution of packets during attack (model 1) 72

5.3 Score distribution of packets with attacker’s IP (model 1) 72

5.4 Score distribution of packets during attack (model 2) 73

5.5 Score distribution of packets with attacker’s IP (model 2) 73

5.6 Score distribution of packets during attack (model 3) 74

5.7 Score distribution of packets with attacker’s IP (model 3) 74

5.8 Score distribution of packets during attack (model 4) 75

5.9 Score distribution of packets with attacker’s IP (model 4) 75

5.10 Score distribution of packets during attack (model 5) 76

5.11 Score distribution of packets with attacker’s IP (model 5) 76

5.12 Confusion matrix for supervised learning 78

5.13 Performance comparison of different packet analysing libraries 79

5.14 A better data processing model . 80

1 Sending request from a pod to a service . 90

2 Sending request from tcpdump-container pod 90

3 Console output of the WPScan scan . 96

4 Output of the Nmap scan script . 97

5 Console output of Falco scanner while running NIDS 98

xi

Acronyms

AKS Azure Kubernetes Services.

API Application Programming Interface.

ARP Address Resolution Protocol.

CIDR Classless Inter-Domain Routing.

DBSCAN Density-Based Spatial Clustering of Applications with Noise.

HIDS Host-based Intrusion Detection System.

IDS Intrusion Detection System.

ML Machine Learning.

NIDS Network-based Intrusion Detection System.

NPDF Normal Packet Data Flow.

PAIP Packets with Attacker’s IP.

PDA Packets During Attack.

VM Virtual Machine.

xii

Listings

4.1 YAML file creating a deployment for a privileged pod 31

4.2 Kterm alias for getting a bash shell into a pod 31

4.3 Bash script to capture packets on bridge cbr0 using tcpdump 32

4.4 Snippet of polling code to send files using requests library in Python 33

4.5 Dockerfile for tcpdump-container image . 34

4.6 Bash commands for multi-platform build on docker 34

4.7 Kubectl command to create a resource using a YAML file 34

4.8 Bash commands for multi-platform build on docker 34

4.9 Python code for receiving files via POST request 36

4.10 Snippet of YAML file for pcap service that shows how to run a command

to start scripts . 37

4.11 Code for creating packet flow feature from timestamp 39

4.12 Python code to laod a CSV file into MySQL database 40

4.13 Creating pcap table in MySQL to store CSVs 41

4.14 Setting local infile to true to load files . 42

4.15 SQL command to retrieve top 1000 anomalous packets going out of the

cluster . 42

4.16 SQL command to retrieve data list of IPs trying to contact port 3306, the

open port for MySQL . 43

4.17 Nmap script to scan open ports on a website 44

4.18 Snippet of console output of the nmap scan script 46

4.19 WPScan command for password attack . 46

4.20 Snippet of console output of WPScan . 48

4.21 Dockerfile for Pcap service . 51

4.22 Console output of above above function . 52

4.23 Console output of above above function . 52

4.24 Extracting IP.src from from a packet . 53

4.25 Extracting flags set in a TCP packet . 53

4.26 Extracting raw packet data . 54

xiii

4.27 Classying IP as external or internal . 55

4.28 creating blobs . 58

4.29 Python code to create packet flow feature using a unix timestamp 60

4.30 Creating a model using Isolation Forest implementation in sklearn 60

4.31 Keras code to create the architecture of Figure 2.9 62

4.32 Predicting scores using model . 63

4.33 Scores for normal data . 64

4.34 Keras code to create the architecture of Figure 2.9 66

4.35 Keras code to create the architecture of Fi 66

5.1 A better way to parse packets using Scapy 78

1 Dockerfile for Pcap service . 92

2 YAML file for creating PV and PVC for a MySQL database 93

3 YAML file for a MySQL database . 94

4 Python snippet to calculate packet flow using destination IP of the packet 99

xiv

Chapter 1

Introduction

This research aims to investigate the performance of various anomaly-based Machine

Learning (ML) algorithms that can be used in a Network Intrusion Detection System

(NIDS) for virtual infrastructures.

Section 1.1 provides an overview of the current cybersecurity landscape and the need

to enhance the security of Kubernetes containers. Section 1.2 defines the objectives of the

research, and section 1.3 briefly explains the structure of the report.

1.1 Problem area

In 2021, the total number of internet users stood at 4.9 billion, up from 4.6 billion the

previous year (1). Widespread adoption of potentially vulnerable applications among this

growing userbase can become a target of cyberattacks. In 2021 alone, there was a 125%

increase in the incident volume of cyber-attacks. These trends show that cyberattacks

could potentially increase at a much faster rate in the coming years.

In the last two decades, there has been a shift from organizations running applications

on physical servers to using cloud providers for managed virtual servers and, now, to

deploying applications in container-based virtual infrastructures. This has also given

cybercriminals a larger attack surface. Kubernetes, a popular platform for managing

containerized workloads, has become a significant target for cybercriminals. It has been

seen that cybercriminals may attempt to use Kubernetes to harness a network’s underlying

infrastructure for computational power for purposes such as cryptocurrency mining (2)(3).

Also, misconfigurations in these virtual deployments can lead to vulnerabilities that can

be exploited by a cyber attacker (4).

1

1.2 Research objectives

Given the current state of increasing cyber security attacks and the shift to container-

based environments for deploying applications, the primary objective of this project was

to determine a way to enhance the security of a Kubernetes cluster against unknown

attacks. This research explores several anomaly-based ML algorithms which can be used

to create a NIDS for a virtual infrastructure like Kubernetes. This research also explored

the feasibility and limitations of an ML-based NIDS against ’real world’ threats in a cloud

environment.

1.3 Structure of the report

This section describes the chapters in the document.

• Chapter 2 provides the background information for this project and describes the

anomaly detection algorithms like IsolationForest, DBSCAN and Autoencoders. It

also describes four projects that were related to this project.

• Chapter 3 describes the design decisions taken to create a prototype for anomaly-

based NIDS. It also explains the data collection process for machine learning models

and the various tools and libraries needed to create a machine learning environment.

• Chapter 4 describes the whole implementation process of the prototype in detail,

from creating and deploying NIDS to AKS to implementing various machine learning

models.

• Chapter 5 evaluates the machine learning approaches and gives their limitations. It

also evaluates the NIDS and gives architecture for a better prototype.

• Chapter 6 gives overall conclusions for the project and highlights the critical findings.

It also talks about potential future works regarding the project that would enhance

the capabilities of the NIDS.

2

Chapter 2

State of the Art

This chapter introduces the current state of the art in Kubernetes, machine learning

and various kinds of Intrusion detection systems. Section 2.1 provides the background

information for the things implemented in the project. Section 2.2 explains the projects

that were similar to this research and their limitations, and section 2.3 provides the

summary for this chapter.

2.1 Background

This section provides the context for the research done and the prototype implemented.

Section 2.1.1 provides the history and needs for container-based applications and moves

to Kubernetes and its internal networking. Section 2.1.2 explains in detail the various

several anomaly-based ML algorithms, and section 2.1.3 talks about the various types of

intrusion detection systems and how they can be classified based on different attributes.

2.1.1 Virtual Infrastructure

2.1.1.1 Brief history of containers

The concept of containers first emerged in 1979 with the Unix V7 operation system. It

introduced the chroot system call, which changed the root directory of a process and its

children to a new location, which was essentially the beginning of process isolation (5). In

the early 2000s, Linux VServer (6) introduced kernel level isolation on a physical machine

and in 2006, Google introduced the concept of Process Containers(7) which aimed to

isolate the resource usage of a collection of processes. In 2015, Docker opened its container

format and runtime libcontainer, which accelerated the development of containers and

container-based solutions(8).

3

2.1.1.2 Need for containers

In the early 1990s, organizations had to run their application code on physical servers.

They did not have any way to define boundaries on a resource, giving rise to resource

allocation issues for application code running on the same hardware. A solution to this is

scaling vertically, i.e., increasing resources on a machine, and horizontally, i.e., increasing

the number of machines. However, this method was rather expensive, and it was difficult

for organizations to maintain on-premise servers.

In the early 2000s, virtualization technology had matured, and it was possible to run

multiple Virtual Machines on one physical server. It allowed companies better unitization

of expensive resources and the ability to scale up and down according to their needs.

Around the 2010s, the rise of service-oriented architecture (SOA) and containers changed

the way applications we run. Although they were similar to VMs, they were lightweight,

which reduced the time to spin up a container, and their reduced size meant one physical

machine could handle many containers.

2.1.1.3 VMs vs containers

A Virtual Machine(VM) emulates a physical computer; it has a dedicated amount of

memory, CPU, and storage borrowed from the host computer. A VM is always partitioned

on a computer to not interfere with the host OS(9). Even if a VM is compromised, other

VMs running on the same machine remain unaffected. A hypervisor, which runs on the

host OS, acts as a middleman and allows multiple VMs to run on a single machine. It

allocates the infrastructure a VM requires to run. VMs may also include a complementary

software stack to run on the emulated hardware, providing a complete snapshot of the

system(10). A VM image is usually many gigabytes in size.

Figure 2.1: VM based architecture (11)

A container is an executable piece of software that runs on a container engine. A

4

container image, which is executed on container engines to create containers, includes

everything needed to run an application: code, runtime, system tools, system libraries

and settings.(12). A containerized app perceives that it has the OS—including CPU,

memory, file storage, and network connections—all to itself (13). Multiple containers can

share the host OS kernel and libraries.

Figure 2.2: Container based architecture(11)

While a VM virtualizes the underlying hardware, a container virtualizes the underlying

OS(10). The main argument for using containers instead of VMs is how lightweight the

former is. As each VM includes a separate operating system image, it adds a significant

amount of overhead on the memory and storage of the host machine. This reduces the

speed of the software development lifecycle(14). As containers share the host OS and

libraries, a container image is only megabytes in size and thus very lightweight as compared

to a VM image. It has a faster spin-up time which improves a developer’s ability to iterate

faster. If there is an existing monolithic application to manage and requires complete

isolation and enhanced security, VMs are a better choice for that use case. Containers only

offer process-level isolation and are more suitable for microservices-based architecture.

2.1.1.4 Kubernetes architecture

Kubernetes is a portable, extensible, open-source platform for managing containerized

workloads and services. (15). It provides a framework to run distributed systems in a

resilient manner. It also helps in service discovery and load balancing. If traffic to a

container is high, it can automatically horizontally scale up the service, distribute the

load and keep the deployment stable. One of the major features is self-healing, i.e. it

automatically restarts failed containers and replaces containers that do not respond to

health checks. Traffic is not sent to a container until it is ready to serve requests.

5

Figure 2.3: Components of a kubernetes cluster(15)

A Kubernetes cluster consists of nodes that can run containerized applications. A

worker node hosts pods, the smallest deployable units in Kubernetes. A pod can contain

one or more containers. As seen in figure 2.3, a Kubernetes deployment consists of a

control plane, which manages the worker nodes.

The components of a control plane are:

• API Server: The API server exposes the Kubernetes API. It acts as the front end

of the control plane.

• Etcd: It is a highly available and consistent key-value data store that manages all

the cluster data.

• Kube-scheduler: It helps with the scheduling of pods on nodes. While scheduling

pods, it considers the resource requirements, affinity specifications (a spec to deploy

a pod to a particular node) and policy constraints.

• Kube-controller-manager: It is the control plane component that runs the controller

process, which can be a node controller, endpoints controller, and job controller.

The responsibilities of all the controllers are different; for e.g. a node controller is

responsible for responding when a node goes down.

A Kubernetes cluster consists of multiple worker nodes, whose components include:

• Kubelet: It is an agent that runs on each node, ensuring that the pods on the node

are healthy.

6

• Kube-proxy: It is a network proxy that implements part of the Kubernetes service

concept. It does that by maintaining network rules which allow communication to

and from a pod.

• Container runtime: Container runtime is the software that helps run containers on

a node.

2.1.1.5 Kubernetes networking

In Kubernetes, each node has its network namespace, root netns as shown in figure 2.4.

It has its own ethernet interface eth0. Also, each pod has its own IP address where every

pod in the cluster can contact it. Hence a pod has its own network namespace, as shown by

pod1 netns and pod2 netns. The namespaces of the two pods are isolated. The network

namespaces of pods also have their own eth0. To facilitate inter pod communication, a

pod must have access to the root netns. This is done using a virtual ethernet pipe pair;

for example, the eth0 of the pod is connected to root netns via vethxx. This virtual

ethernet device acts as a tunnel between these two namespaces.

Figure 2.4: Networking in a Kubernetes node with Kubenet plugin

The virtual ethernet device is connected to a bridge cbr0 to enable inter pod com-

munication. An example of pod 1 communicating with pod 2 on the same node is as

follows(16):

1. Pod 1 creates a message with the destination IP of pod2. Since the destination is

not one of the containers running in the pod, it is sent to its eth0. This interface

7

is at one end of the virtual ethernet pipe pair and serves as a tunnel. Hence, this

packet is forwarded to the root namespace of the node.

2. The bridge cbr0 resolves the destination pod IP to its MAC address using Address

Resolution Protocol (ARP) protocol. A tcpdump output of ARP protocol on cbr0

on a node in Microsoft Azure is shown in figure 2.5.

3. After storing the mapping of IP and MAC address in the ARP cache, the packet

is forwarded to pod 2 via the virtual pipe pair, and it reaches eth0 of the pod 2

namespace.

Figure 2.5: ARP requests captured via tcpdump on cbr0 bridge in
Azure. The Pod CIDR for this cluster was 10.244.0.0/16

For a pod that wants to communicate across nodes, the first step is identical . However,

when the packet reaches the bridge, the packet is redirected to the default gateway eth0

of the node as the pod IP is not on the current network. The packet travels through the

cloud provider’s infrastructure, reaches the second node’s eth0 and is forwarded to the

bridge. Using ARP, the bridge determines to which pod the packet will be forwarded.

2.1.2 Machine Learning

Machine learning (ML) is the art and science of creating computer systems that learn and

improve with experience. (17). It is one of the most rapidly growing fields, lying at the

intersection of computer science and statistics and the core of artificial intelligence (AI).

2.1.2.1 Types of machine learning algorithms

Machine learning algorithms learn patterns in the data provided to them, and usually, the

data is considered key to constructing a machine learning model (18). The data can be

structured, i.e. stored in a tabular format or unstructured, i.e. has no predefined format

like audio files or images.

The machine learning algorithms can be classified into four categories(19):

8

• Supervised Learning: In supervised learning, the data is labelled, and it is the task

of the machine learning model to learn the function that maps the given input to

the label. Most supervised learning tasks are classification, i.e., separating the data

and regression, i.e. fitting the data.

• Unsupervised Learning: Unsupervised learning algorithms analyse the unlabelled

dataset and try to learn patterns without the need for human interference. Most

common unsupervised algorithms include clustering, dimensionality reduction and

anomaly detection.

• Semi-supervised Learning: Semi-supervised learning is a hybrid approach of super-

vised and unsupervised learning. It operates on both labelled and unlabelled data.

A possible way to use semi-supervised learning is to perform clustering on unlabelled

data and apply labels to the identified clusters. This creates labels for the data, and

hence the approach can be further used to train a supervised learning model.

• Reinforcement learning: This type of algorithm enables a software agent to analyse

the environment and, based on it, automatically learn the most optimal behaviour in

it. The agent is incentivised to learn good behaviour by providing it with rewards

and discouraged to perform actions that are not optimal in an environment by

penalising it.

Figure 2.6: Taxonomy of machine learning algorithms: Source: (19)

For this project, the main focus was using unsupervised learning to detect anomalies.

Hence the further sections focus on the algorithms used for anomaly detection.

2.1.2.2 Classification of anomaly detection

”Anomalies are patterns in data that do not conform to a well-defined notion of nor-

mal behaviour”(20). Anomalies, based on the type of data, can be classified into three

categories(20):

9

• Point Anomalies: If a single data point is different from the rest of the dataset, that

instance can be considered anomalous. For example, in credit card fraud detection,

if a transaction is unusually high than the other transactions ever made by a person,

that would classify as a point anomaly.

• Contextual Anomalies: If a data instance is anomalous in a particular context and

not in itself, then that point is a contextual anomaly. For example, having a temper-

ature of −1◦C in the middle of winter in Delhi, the capital of India, is not anomalous,

but in May, it is as the average temperature is over 38◦C .

• Collective Anomalies: If a collection of data points related to each other are anoma-

lous with respect to the rest of the dataset, then those points are considered anoma-

lous. Their individual occurrence might not be anomalous, but their occurrence

together can be regarded as anomalous.

Anomaly detection can be done in a supervised, semi-supervised and unsupervised

fashion, depending upon data availability. As stated in (20), finding a labelled dataset

that is accurate and representative of all kinds of behaviours is expensive. Also, the

anomalous behaviour is more dynamic, which means that new kinds of anomalies might

arise for which there is no labelled data. Hence, supervised learning was not further

explored for this project as it is similar to building predictive models.

The algorithms that operate in an unsupervised fashion are more widely applicable as

unlabelled data is far more prevalent than labelled data. These techniques assume that

normal data is far more frequent than anomalous data. Unfortunately, these techniques

also suffer from a high false-positive rate, especially for those data points on the boundary

of ’normal’ behaviour. An output of an anomaly detection algorithm can be a label, i.e.

normal or anomalous or can be a score, i.e. a degree to which an instance is considered

an anomaly.

2.1.2.3 Anomaly detection using density based clustering

Density-based Spatial Clustering of Applications with Noise (DBSCAN) is a density-based

clustering algorithm that can be used to detect anomalies in a dataset. The DBSCAN

algorithm relies on two parameters, i.e. the minimum number of neighbours for a data

point minPts and epsilon ϵ, an arbitrary radius for minPts(21). If a data point has more

neighbours than minPts, that point is considered a core point. All the neighbours within

radius ϵ of the core point are considered to be part of the same cluster(direct density

reachable). If any neighbours of the core point are also a core point, their neighbours

are transitively included (density reachable), which in essence means that the clusters

10

combine to form a bigger cluster. The non-core points, i.e. border points, are part of

the reachable density set. Points that are not density reachable from any core point are

considered noise or, in this case, anomalies.

Figure 2.7: Illustration of DBSCAN algorithm. Source: (21)

In figure 2.7, the minPts is set to 4 and ϵ is the radius of the circle around the points.

Point A is a core point, while points B and C are border points. Points B and C are part

of the same cluster as they are density reachable. Point N is not reachable by any point,

hence is an anomaly.

Figure 2.8: Kmeans clustering vs DBSCAN. Source: (22)

Figure 2.8 illustrates the difference between a distance-based clustering algorithm like

Kmeans vs DBSCAN. In K-Means, the number of centroids has to be assumed, and the

goal of the algorithm is to minimise the sum of distances between the points and their

centroid. Whereas in DBSCAN, the numbers of clusters are inferred from the shape of

the data.

11

2.1.2.4 Anomaly detection using neural network

For utilising neural networks for unsupervised anomaly detection, autoencoders can be

used(23). An autoencoder is a multilayer feed-forward network with the same number

of input and output neurons. The middle layer of an autoencoder is a bottleneck layer,

which forces the model to compress data. Once the data is compressed, the model tries to

reconstruct the input. A model is trained on normal data points, so it learns to reconstruct

them. The error during this reconstruction determines if a data point is anomalous or

not.

For example, each data point xi is reconstructed using the model during the testing

phase. The model generates an output oi with the same number of features n as the

input(20). The reconstruction error of a datapoint δi can be defined using RMSE. This

score can directly be used as an anomaly score for the data point.

δi =

√
1
n
Σn

i=1

(
xi−oi
σi

)2

Figure 2.9: Architecture of an autoencoder

2.1.2.5 Anomaly detection using tree-based technique

Isolation forest(24) is an unsupervised anomaly detection technique based on the idea

of ’isolating’ anomalies. Most model-based approaches build a profile based on normal

12

instances, then identify the instances not conforming to the model as anomalies. On the

other hand, Isolation forest takes advantage of characteristics of an anomaly, which are

that they are far less common in a dataset and have attributes much different than that

of normal instances.

An Isolation Forest algorithm builds an ensemble of trees, and the instances with a

shorter average path from the root node are classified as anomalies. As seen in the figure

2.10, an anomaly denoted by x0 takes far fewer partitions to isolate, i.e. shorter path in

a tree than xi. The partitions in that example randomly select an attribute and split the

value between the min and max values of the selected attribute. It was seen in that using

1000 tress, the average path length of x0 was 4.02 and for xi was 12.82 respectively, showing

anomalies have shorter path lengths. Also, it was seen that Isolation Forest performs and

scales much better than distance-based methods for high dimensional dataset(24).

Figure 2.10: Visualisation of Isolation Forest: Source (24)

2.1.3 Intrusion Detection System

To create an IDS, it is first necessary to know the types of cyberattacks, as discussed

in section 2.1.3.1. An IDS can be classified into different categories based on analysed

activity as explained in section 2.1.3.2, intrusion method as examined in section 2.1.3.3).

Furthermore, behaviour on detecting intrusion is discussed in section 2.1.3.4.

2.1.3.1 Taxonomy of cyber attacks

To create an IDS to protect a system against cyberattacks, it is first imperative to know

what techniques cyber attackers use. The MITRE ATT&CK (Adversarial Tactics, Tech-

niques, and Common Knowledge) framework is a knowledge base of adversary tactics and

techniques based on real-world observations. (25)

13

Figure 2.11: MITRE ATT&CK Matrix for Enterprise 2020. Source:
(26)

The behavioural model presented by ATT&CK contains the following core compo-

nents:

• Tactics: They are short term goals of an adversary during the attack

• Techniques: They are the various techniques employed to achieve those tactics

This framework reflects cyber attackers’ various steps from reconnaissance to execution

and finally impact, and the various platforms they target. This framework can be used

to create an IDS that targets specific attack vectors and evaluate their performances.

2.1.3.2 Classification of an IDS based on analysed activity

An IDS can be classified into two categories based on what activity it analyses, Network

Intrusion Detection System (NIDS) and Host Intrusion Detection System (HIDS).

A NIDS monitors and gathers network traffic information about incoming and outgoing

internet traffic for a system at a router or host level. It can detect and log suspicious

events like port scanning, policy violations based on specific rules and unknown source

and destination traffic (27). One of the points to note about NIDS is that when the

network is saturated with traffic, NIDS might drop packets and create a potential ’hole’

(28). Also, a NIDS might not work when the network traffic is encrypted.

HIDS monitors and analyses the internals of a host machine. It tracks changes made

to registry settings and critical system configuration, log and content files, alerting to any

unauthorised or anomalous activity.(27) The major drawback of this monitoring system

is that it can be quite resource-intensive(29).

14

2.1.3.3 Classification of an IDS based on detection method

An IDS can be classified by the way it detects malicious activity. It can either be signature-

based or anomaly-based.

Signature-based detection tries to find sequences and patterns that match a particular

attack signature. An attack signature can be found in network packet headers and in data

sequences that match recognised malware or malicious patterns. An attack signature can

also be identified in specific sequences of data or series of packets, as well as in destination

or source network addresses(30). It uses a list of Indicators of Compromise (IOCs) to

match the signature and detect an intrusion. Hence, the major disadvantage of this type

of detection method is that it can only detect known signatures. Also, a signature-based

method is only as good as its database of IOCs, so keeping the database updated is also

an issue.

Anomaly-based detection systems aim at detecting unusual activity within the system.

They do this by creating a normal behaviour profile, and if any deviation is detected, an

alert is created. Profiles can be either static or dynamic and developed for many attributes,

e.g., failed login attempts, processor usage, the count of e-mails sent, etc. (29). One of the

significant benefits of this approach is that is it useful in detecting new vulnerabilities.

However, this approach also generates a lot of false positives. Also, this approach is

dependent on the strength of user profiles; if there is a weak profile on user behaviours,

this approach does not work.

2.1.3.4 Classification of an IDS based on behaviour on detection

An Intrusion detection system can be active or passive. An active IDS can activate

countermeasures to prevent further escalation of the attack. A passive intrusion detection

system only generates alerts when malicious activity is detected. Most IDS in use are

passive components due to the complexity of automated countermeasures, and the risk of

unintended consequences in case of inappropriate countermeasures (31) (32).

2.1.3.5 Anomaly-based NIDS

As stated in section 2.1.3.3, an anomaly-based intrusion detection system tries to detect

abnormal activities in the system by generating a user profile/ behavioural model of

the normal baseline behaviour. According to the type of processing on this behaviour,

anomaly detection techniques can be broadly classified into three types (33):

• Statistical based: In this technique, the network activity is captured and analysed

based on the number of types of packets of each protocol sent/received, traffic rate,

15

number of IP connections, etc. The current captured data is compared with the

previously trained generated profile for the anomaly detection process. An anomaly

score is generated based on the comparison of these datasets. Univariate models (34)

modelled the parameters into independent variables, and later multivariate models

(35) models that considered correlations between two things were proposed.

• Knowledge-based: The knowledge-based approach can be classified further into

three categories, Expert systems, which audit data based on certain predefined

rules(34), a Finite State Machine (FSM), which models a sequence of states and

the transitions between those states(36) and Description Languages that use N-

grammars, UML for modelling the FSM.

• Machine learning-based: Machine learning-based techniques use the data captured

to create a model that enables recognising and classifying patterns. It can be done

in a supervised fashion, i.e. with labelled data and in an unsupervised fashion, i.e.

with unlabelled data. The performance of a model can be improved by training it

on more data(18). These models are very flexible and adaptable. Hence, this is a

very attractive approach, but one downside of this approach is that these models

are resource-intensive to train, the quality of data matters a lot, and they do not

provide a reason why a particular detection decision has been taken.

The fundamental idea of an anomaly-based IDS is that it is not possible to characterise

what malicious activities look like. The new aim should be to model or learn legit activities

and treat everything else as potentially hostile.

16

Figure 2.12: Classification of different anomaly based intrusion detec-
tion techniques based on nature of creating bhaviour model. Figure
source:(33)

2.2 Related projects

2.2.1 Monitoring Kubernetes Clusters With Dedicated Sidecar

Network Sniffing Containers

This research project(37) uses the concept of sidecars, i.e. a container that runs on the

same pod as the application container, shares the same network namespace and can be

used for enhancing the capability of the main container. Sidecar containers were used

to sniff packets from a pod to perform deep packet inspection. This project used rule-

based packet signature analysis to detect anomalous packets and display the output to a

dashboard. The main limitation of this approach is that it is rule-based and would not

be able to detect an attack that is not in its rules successfully. Another downside of this

approach is capturing requests on a pod, not on a Kubernetes node, which includes more

information about inter pod and external communication.

17

2.2.2 Application of Machine Learning with Traffic Monitoring

to Intrusion Detection in Kubernetes Deployments

This recently completed dissertation (38) by Irene addresses some of the problems in (37).

In this project, the packets were captured on a Kubernetes node instead of pods and a

supervised machine learning classifier algorithm was trained to predict normal packets

from anomalous ones.

The main downside of this approach was that the anomalous packets were self-generated

and were not actual attack data. Also, a supervised machine learning model needs to be

trained on actual anomalous packets and getting a labelled dataset is prohibitively expen-

sive, as stated in (20). The implemented solution uses limited packet features and does

not take into account the packet flow.

2.2.3 Unsupervised Network Intrusion Detection Systems: De-

tecting the Unknown without Knowledge

In this paper(39), the researchers created a UNIDS (Unsupervised Network Intrusion

Detection Systems) that uses unsupervised learning to detect previously unknown attacks

based on traffic flow. This NIDS does not need any labelled traffic or even training.

The novel approach in this paper was using unsupervised clustering outliers detection

algorithms on a smaller amount of data. In the KDD99 networks attack dataset, UNIDS

was able to detect more than 90% with a very low false-positive rate of less than 3.5%.

This was achieved by:

• Detecting an anomalous time slot: The captured packets were aggregated into multi-

resolution time flows, and time series were built on these flows. A change detection

algorithm is used on volume metrics (number of bytes, number of packets, and

number of flows per time slot). The algorithm flags a data flow as anomalous if the

derivative of any of these metrics exceeds a threshold computed from the variance

of previous anomaly-free flows. This helps limit the frequency of the clustering step

as that is much more computationally expensive.

• Outlier detection using an ensemble of multi-clustering algorithms: In a time slot

flagged as anomalous, outliers are detected using Sub-Space Clustering, Density-

based Clustering, and Evidence Accumulation Clustering techniques. It marks the

degree of abnormality and builds an outliers ranking.

• Marking anomalies: Using a threshold detection approach, the top-ranked outliers

are marked as anomalies.

18

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

This paper shows that unsupervised learning is a viable approach for a NIDS. However,

in this research, the features of the packet were not considered.

2.2.4 Unsupervised Packet-based Anomaly Detection in Virtual

Networks

This paper (40) analyses Isolation Forest and Local Outlier Factor to perform packet-

based anomaly detection. To capture data, the researchers created a VM based cloud

environment using OpenStack and deployed a MySQL database and a PHP script for

contacting the top 500 websites to simulate real-world traffic. Anomalies were injected

into the traffic using scapy, a python framework for packet manipulation which changed

the IP version, protocol, set different flags and unused IP addresses. The packet data was

captured, and the Ethernet, IP and TCP/UDP features of the packet were extracted to

create a dataset. The underlay network of the architecture was also changed to check if

the algorithms would detect that as an anomaly.

Anomaly detection algorithms like Isolation Forest and Local Outlier Factor were

applied to the dataset. It was observed that changes in the network environment, i.e. ad-

dition/deletion of VMs and change in underlay protocols make the algorithm flag normal

packets as anomalies.

2.3 Summary

Based on section 2.1 and 2.2, it can be seen that although the fields of machine learning

and cyber security have advanced a lot in recent years individually, more work needs to

be done to integrate them to defend against cyber attacks. This chapter provided a brief

overview of Kubernetes and inter-pod communication. It also describes ML algorithms

that can be used for anomaly detection like Isolation forest, DBSCAN and autoencoders.

It explains the different kinds of IDSs available and their classification based on analysed

activity, detection method and behaviour on detection. In section 2.2, four recent projects

were analysed, and their limitations were explained, which this project aims to overcome.

19

Chapter 3

Design

This chapter describes the various design decisions to create a prototype for a machine

learning-based NIDS. Section 3.1 discusses the various deployment platforms for Kuber-

netes. In section 3.2, the microservices-based architecture of the prototype is described,

and section 3.3 explains the data collection process from the deployed application. Section

3.4 provides an overview of the various libraries and packages used for creating a machine

learning environment to create a model for the NIDS.

3.1 Deployment platform

Kubernetes, as discussed in section 2.1.1, is a platform that helps run the containerized

images. This framework has matured over the years; it has excellent support and can be

deployed to test applications locally and in the cloud.

3.1.1 Local deployment

A Kubernetes cluster can be deployed locally using minikube(41). Minikube is a single

node cluster that makes it easier to test an application before deploying it to the cloud.

It requires Docker or a virtual machine environment running locally. This environment is

suitable for testing as the YAML files for local and cloud deployments are almost identical.

3.1.2 Cloud deployment

To test the prototype against real-world threats, deploying the application to the cloud

is imperative. Many cloud providers like Amazon Web Servies(AWS), Microsoft Azure,

Google Cloud and Digital Ocean offer a managed Kubernetes cluster service. Azure

Kubernetes Services (AKS) was chosen for the project because, being a student, Azure

20

gives enough credits to get a cluster started. AKS makes it simple to deploy a Kubernetes

cluster with a Kubenet configuration. The AKS Comand Line Interface (CLI) allows

creating, upgrading, or deleting a cluster with a single command. Although Amazon

Elastic Kubernetes Service (EKS) can run more nodes in a cluster than AKS (42), to test

the feasibility of this prototype, running one node in the cluster was sufficient. AKS also

has an auto-repair feature that scans and updates unhealthy nodes in a cluster. Hence

AKS was considered a suitable platform for this project.

3.1.3 Docker images

A Docker image is a file with an executable code that can create a container on Docker’s

container runtime system. A docker image can support multiple CPU architectures. As

the local machine (M1 based Macbook Pro) has an ARM64 architecture and the cloud

deployment is usually Linux/AMD64 based, Docker images needed multiplatform support

for this project.

3.2 Architecture of the NIDS

This prototype leverages the micro-services architecture to splits the application into

multiple services that perform fine-grained functions.

Figure 3.1: Proposed micro-services based architecture of the prototype

21

The microservices architecture would enable the creation of independently deployable

components that allow the ability to scale up/down depending on the network traffic.

The NIDS data processing pipeline consists of

• Tcpdump-container: It sniffs the data packets from the cbr0 bridge, saves them to

a pcap file, and sends the file via a POST request to the pcap-service.

• Pcap-service: It receives the file, extracts important features from it, and converts

it to a CSV. This CSV file was then sent to the model service via a POST request

for further processing.

• Model-service: This service contains pods running a TensorFlow container. It pre-

processes the CSV and uses a pre-trained model to predict whether a packet is

anomalous or not. It then loads the CSV into the MySQL database.

• MySQL database: MySQL database stores the packet information from the CSV

and its corresponding scores. This can be within the Kubernetes cluster or can be

a managed Azure MySQL database. A SQL database was preferred over a NoSQL

database as the data would be structured.

• Backend service: This service fetches the data from the MySQL database and could

display the anomalous scores on a webpage. This can be run locally on our machine

or in the cluster, independent of the other data processing pipeline.

Python, a high-level programming language, was used to create this pipeline. It has

a vast collection of packages that simplify prototyping and rapid development. Flask, a

micro-web framework, was used to create servers for receiving files. Unlike other frame-

works like Django, Flask does not have much boilerplate code or requires particular tools

or libraries. This would have the added benefit of keeping docker images smaller in size.

3.3 Collecting data

WordPress, a free and open-source content management system, was used to collect data

and test the NIDS. It has a diverse userbase, from small businesses to Fortune 500 compa-

nies. According to their website, as of April 2022, 43% of the web is built on WordPress.

The WordPress application uses a PHP backend with a MariaDB database. To deploy

the WordPress on the Azure Kubernetes cluster, Helm charts were used. A Helm chart is

one single Kubernetes YAML file comprising different Kubernetes resources. Using Helm,

an old, vulnerable version of WordPress was deployed. As vulnerabilities were known,

22

www. Python.com
https://flask.palletsprojects.com/en/2.1.x/
https://wordpress.com/

they could be exploited to generate anomalous traffic, which the NIDS should be able to

detect.

A pod was created in the root namespace of a node, which ran a custom tcpdump

image. This pod was used to collect packets from the cbr0 bridge to generate data for

training the machine learning model. After collecting data for 10 minutes, the tcpdump

script was stopped, and the data collected in a pcap file was transferred to the local

machine. After rerunning the tcpdump script, a scanner for WordPress vulnerabilities

like WPScan was used against the application run to generate accurate world anomalous

data. This data was then transferred to the local machine, which would be valuable in

testing the model.

3.4 Machine learning enivironment

As the programming language of choice for this project was Python, creating an ML

environment using its various libraries was ideal. It has a well documented and vast

ecosystem to develop and deploy a machine learning model, which is the core of the

NIDS. The various components of the environment include:

• Virtual environments: Creating a virtual environment was necessary as it allows

Python packages to be installed in an isolated location for a particular application

rather than being installed globally. This isolation ensures that a dependency for

one project does not interfere with a dependency for another project. Conda1,

an open-source environment management system, was used to create and manage

virtual environments. Specifically, for an M1 based MacBook MiniForge, a conda

installer was used as it provided native ARM64 support.

• Scapy2: It is a powerful packet manipulation program written in Python that would

allow to read and obtain necessary information from the .pcap files generated in

3.3. After gathering data from packets, they can be written to a CSV for further

processing.

• Pandas3: Pandas is a python library that helps with data analysis, preprocessing

and manipulation. It has built-in support for reading and writing CSV files. CSV

files can be loaded into a Pandas DataFrame object which has numerous inbuilt

tools and functionalities that would help extract valuable features and simplify data

manipulation.

1https://docs.conda.io/en/latest/
2https://scapy.net
3https://pandas.pydata.org

23

• Matplotlib4: It is a plotting library used to create visualizations in Python.

• Scikit-Learn 5: Scikit-learn is an open-source machine learning library that can be

used to create and test various machine learning approaches. It supports various pre-

processing, classification, clustering and dimensionality reduction techniques, which

would be helpful for this project.

• Keras 6: Keras provides a deep learning API for implementing artificial neural nets.

It offers a consistent API and useful abstractions, which is ideal for prototyping.

• Jupyter notebooks 7: It is an open-source web application that allows users to cre-

ate documents with code, equations, and visualizations. It allows users to execute

Python commands in a cell, the output of the cell is saved locally and is displayed

underneath it. This notebook can also be exported as a python file, and the pre-

processing functions can be extracted to create the pipeline for NIDS. This process

will help keep everything consistent.

3.5 Workflow

Figure 3.2: Workflow of a developer using kubernetes

4https://matplotlib.org
5https://scikit-learn.org/stable/
6https://keras.io
7https://jupyter.org

24

The workflow used for designing and deploying the prototype described in 3.2 is as follows:

• User writes the application code and uses Docker to create a multiplatform image

using Dockerfile. This image is then pushed to a container registry like Docker Hub.

• To create a Kubernetes pod using the image, the user can specify the name of the

container in the Deployment object and to expose the services running in the pod

within the cluster, can create a Service object. These objects are specified in a

YAML file.

• The user can connect to a Kubernetes cluster via a terminal and can use kubectl

to send the YAML file via an API request.

• The resources specified in the YAML file are created in the Kubernetes cluster on

worker nodes.

3.6 Summary

This chapter provided an overview of the types of deployments considered for this project

and how a local environment can be created to test images locally on minikube, and

Microsoft Azure can be used to deploy images on the cloud. Also, as the CPU architecture

of the local machine and cloud architectures are different, multiplatform images were

needed. Also, the data collection mechanism using WordPress and a tcpdump container

for training machine learning models were discussed. Then, a high-level overview of the

architecture of NIDS and the workflow used to deploy an application was explained.

25

https://hub.docker.com/

Chapter 4

Implementation

In this chapter, the various components of the chapter 3 are described in-depth and

implemented in a local as well as a cloud environment1.

Section 4.1 explains how to create a local and a cloud environment for Kubernetes

and the differences between them. Section 4.2 goes in-depth on a data processing pipeline

for this project was implemented, and 4.3 describes how an attack was simulated on a

cluster to collect anomalous packets. Section 4.4 talks about the various machine learning

approaches implemented to detect an attack on a cluster.

4.1 Deployment of Kubernetes cluster

A Kubernetes cluster can be deployed locally for development and testing as explained

in section 4.1.1 and on the cloud, specifically on Azure Kubernetes Services (AKS) as

described in 4.1.2. Some notable differences between a local and cloud deployment are

touched upon in section 4.1.3.

4.1.1 Local deployment

Using Minikube, a single node Kubernetes cluster can be deployed locally. It supports

Windows, Linux and macOS and is available in x86-64 and ARM-based architectures.

In macOS, the brew package manager can be used to download the minikube tool. It

was necessary to have Docker running to start the service. As of April 2022, downloading

Docker Desktop also installs Kubernetes command-line tool kubectl, which helps interact

with the cluster via a command-line interface.

1The code for this project is available on https://github.com/hotshot07/thesis

26

https://brew.sh/
https://github.com/hotshot07/thesis

Figure 4.1: Output of $minikube start command, running it for the first
time will download an image that may take some time.

Running the command $minikube start for the first time downloads the minikube

docker image and starts a cluster locally.

To test if everything was working, $kubectl get pods -o wide --all-namespaces

was run, and it showed a list of all pods running in the kube-system and kube-dashboard

namespace. The system components had the status Running as shown in figure4.2; hence

the cluster was ready for container deployments.

Figure 4.2: Console output of running the above $kubectl get pods
command. Here ’k’ is an alias for kubectl

4.1.2 Cloud deployment

To deploy a Kubernetes cluster in Azure, Kubernetes Service, a service provided by Azure

was used. The subscription type and resource group were specified in the ’Create Resource’

section. A description of managing Azure resources can be found on the Microsofts Azure

setup guide webpage. In the cluster details, the preset cluster configuration was set

as Dev/Test. The node count was set to 1, and autoscale was turned off as packet

capturing from multiple nodes was out of scope for this project. For this project, the

A4 v2 configuration of the node was chosen as it has four cores and eight gigabytes

of memory, which was sufficient for compute-heavy and memory-intensive tasks for a

prototype.

27

https://azure.microsoft.com/en-us/services/kubernetes-service/
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-setup-guide/organize-resources

Figure 4.3: Deployment configuration of the AKS cluster for hosting
the prototype

The rest of the parameters were left default; especially in the Network configuration,

it was necessary to have Kubenet set as default to test the application. Kubenet is the

basic network plugin for Linux which creates the ’cbr0’ bridge and veth pair for each pod

with the host end of each pair connected to ’cbr0’ as discussed in section 2.1.1.5.

After pressing the Review + create button, Azure allocated a VM based on the

’Node size’, which acts as the worker node. After a few minutes, the status of the cluster

is Succeeded(Running). To connect to the cluster via CLI, azure-cli was installed

using $brew install azure-cli on macOS. After clicking on the Connect option on

the webpage of the cluster and running the commands specified in the terminal, the local

machine could now communicate with the azure cluster. The context for Kubernetes was

28

set to the cluster name in ~/.kube/config automatically, and kubectl command could

now be used to interact with the cluster similarly to a local deployment.

4.1.3 Differences in local vs cloud deployment

Although the local and cloud development environments both have the Kubernet con-

figuration, the bridge’s name is different. On the local machine, the bridge’s name that

enables inter pod communication is ’docker0’, while it is ’cbr0’ on cloud deployment. Also,

after creating a Loadbalancer resource in the Kubernetes cluster, it is the cloud provider’s

job to provide the user with an IP address of an external load balancer where the user

can interact with the service. For local deployment, the service will have <pending> in

the External IP section when a user executes $kubectl get services. To resolve this,

$minikube tunnel command can be used. The IP/Port configuration shown can then

be used to interact with the service.

As of April 2022, some images like the official tensorflow image and bitnami WordPress

helm chart are still not supported on ARM architecture.

4.2 Implementing system architeture

This section goes into depth on how this architecture described in Section 3.2 was imple-

mented. Section 4.2.1 goes into details on how the network traffic was captured on the

host using a privileged pod, and section 4.2.2 talks about how a pcap file was converted to

a CSV. Section 4.2.3 goes into detail about the steps taken to use a pre-trained machine

learning model to predict if a data packet was anomalous or not, and section 4.2.4 ex-

plains how to create and store data from a CSV into a MySQL container in Kubernetes.

Section 4.2.5 explains how to connect to a database hosted in Azure and display results

on a webpage.

4.2.1 Tcpdump container

The motivation behind creating this pod was to capture network traffic from the ’cbr0’

ethernet bridge. After capturing the data in a pcap file, the pod sends the file to pcap-

service for further processing. This process continues until the tcpdump script is stopped.

4.2.1.1 Type of pod

To capture the data from the bridge on a Kubernetes node, the pod needs to be in the

root namespace of the node. Usually, pods are created in the default namespace or a

29

https://hub.docker.com/r/tensorflow/tensorflow/
https://github.com/bitnami/charts/issues/7305
https://github.com/bitnami/charts/issues/7305

user-defined namespace and don’t have access to the ’cbr0’ bridge. Knsiff, a Kubernetes

plugin can be used to start a remote capture in any namespace, including the node’s

namespace using tcpdump and Wireshark. However, there are better ways to capture

network traffic in the root namespace.

• Using a privileged pod: Each pod in the Kubernetes has certain assigned privileges.

By default, the Kubernetes pod is not allowed to access any devices on the host

VM, but a pod’s privilege can be elevated using the Pod Security Policies.

• Using debugger pod: A debugger pod can be created in the node’s namespace, which

has access to all the virtual ethernet ports in the network namespace.

apiVersion: apps/v1

kind: Deployment

metadata:

name: tcpdump-container

labels:

app: tcpdump-container

spec:

replicas: 1

selector:

matchLabels:

app: tcpdump-container

template:

metadata:

labels:

app: tcpdump-container

spec:

hostIPC: true

hostNetwork: true

hostPID: true

containers:

- image: hotshot07/tcpdump-container:latest

name: tcpdump-container

command: ["sleep", "infinity"]

securityContext:

privileged: true

capabilities:

30

https://github.com/eldadru/ksniff
https://kubernetes.io/docs/concepts/security/pod-security-policy/#host-namespaces

add: ["SYS_PTRACE", "SYS_RAWIO",

"NET_ADMIN", "SYS_ADMIN"]

restartPolicy: Always

Listing 4.1: YAML file creating a deployment for a privileged pod

In listing 4.1 2, a privileged pod with access to hostIPC, hostNetwork and hostPID

was created. The image used to create the pod contains the scripts to initialise network

traffic capture. To get a shell into a pod, the Lens IDE could be used, but a better

approach using a terminal was to create an alias as shown in 4.2 that takes in the name

of the pod as an argument to get a shell into it.

kterm () {

kubectl exec --stdin --tty "$1" -- /bin/bash

}

Listing 4.2: Kterm alias for getting a bash shell into a pod

4.2.1.2 Capturing tcpdump

To capture packets from the ’cbr0’ bridge, the bash script in listing 4.3 was used. The

tcpdump command in listing 4.3 captures on the ’cbr0’ interface for 30 seconds, and the

W option specifies the maximum number of files after which a file is rotated, set to 1.

It does not convert the addresses into names when the -n option is specified. This was

necessary because the IP of a pod could be used as a feature for the machine learning

model. The output was then stored to pcap-file directory using the above filename and,

after the tcpdump was completed, moved to a different directory, pcap-to-send. This step

was done to avoid accidentally enqueueing a pcap file to send to the pcap service being

written by tcpdump.

trap "exit" INT TERM

trap "kill 0" EXIT

while :

do

date_time=$(date +"%d-%m-%y-%s")

filename="pcap-${date_time}"

tcpdump -i cbr0 -G 30 -W 1 -n -vv -tttt -w pcap-file/${filename}.pcap

2Due to limitations of the LaTex package ’minted’, captions of the code could not be longer

31

mv pcap-file/${filename}.pcap pcap-to-send/${filename}.pcap

done

Listing 4.3: Bash script to capture packets on bridge cbr0 using tcpdump

4.2.1.3 Sending pcap file to pcap-service

On the pcap-to-send directory, a polling script is run 1, which looks for new files and

sends them to pcap-service via a POST request. If the pcap-service is down, the file is

added back to the queue. As shown in .1, this pod cannot call the service directly by using

the service name and port. However, every pod has the name of the service and port in

its environment variables, as shown in 4.4. These environment variables are stored in a

dictionary when the polling script is started, and the SERVICE and PORT variables store

the name of the pcap-service. The python requests library enables the script to send a

request to the pcap-service.

Figure 4.4: Environment variables in a tcpdump container. Note: For
these environment variables to be created, it is imperative to deploy the
service before creating a pod.

32

env_dict = os.envget

SERVICE = env_dict["PCAP_INTERNAL_SERVICE_SERVICE_HOST"]

PORT = env_dict["PCAP_INTERNAL_SERVICE_SERVICE_PORT"]

def send_file(path):

try:

with open(path, "rb") as file:

file_dict = {"uploaded_file": file}

try:

response = requests.post(

f"http://{SERVICE}:{PORT}/file",

files=file_dict

)

return response.status_code

except Exception as e:

logging.error(e)

except Exception as e:

logging.error(e)

Listing 4.4: Snippet of polling code to send files using requests library in Python

4.2.1.4 Creating tcpdump docker image

To create a docker image containing the tcpdump-script (Listing 4.3) and the polling

script(Listing 1) ,an ubuntu base image was chosen(Listing 4.5). This was because it had

the apt-get package manager and bash, which was useful for downloading new packages

and debugging while in the container environment. As shown in the docker file, the

scripts were copied to the ./scripts directory and two new folders used by the scripts

were created. Required packages and python were installed and, for debugging purposes,

also had net-tools and vim installed.

FROM ubuntu:18.04

COPY tcpdump-script.sh polling.py ./scripts/

RUN mkdir ./scripts/pcap-file

RUN mkdir ./scripts/pcap-to-send

RUN apt-get update && apt-get install -y tcpdump

net-tools python3 python3-pip vim

33

RUN pip3 install requests

Listing 4.5: Dockerfile for tcpdump-container image

To create a multiplatform image using this Dockerfile, a new builder instance in Docker

was instantiated that could run multiple builds in parallel. This command was only run

only once; the default builder instance is the latest one just created after running the com-

mand. After this, the second command in the code snippet 4.6 uses the newly created

builder instance and creates an image for Linux/amd64 and Linux/arm64 based architec-

tures. This image was tagged <dockerhub_username>/tcpdump-container:latest and

pushed to DockerHub.

$docker buildx create --use

$docker buildx build --platform linux/amd64,linux/arm64 --push

-t hotshot07/tcpdump-container:latest .

Listing 4.6: Bash commands for multi-platform build on docker

4.2.1.5 Deploying and collecting data

After the image was created, it was used to create a Deployment resource in the Ku-

bernetes cluster using the YAML file in snippet 4.1. This resource was deployed to the

cluster using listing 4.7. After the pod was created in the cluster, using kterm alias and

tcpdump-containers’ pods name, a shell into the pod was created, and the polling and

tcpdump script was started. Although both scripts could be started from the YAML

configuration, this was not implemented to have more control over the scripts and change

the tcpdump parameters for testing.

$kubectl apply -f <name-of-yaml-file>.yaml

Listing 4.7: Kubectl command to create a resource using a YAML file

If the aim was to collect data for training a machine learning model, only the tcpdump

script could be run, and the files could be copied from the pcap-to-send directory to

a local directory. This could be done using the kubectl cp command as shown in 4.8.

This command copies the files from the container and saves them to the local machine in

<local-dir-path>.

$kubectl cp default/<name-of-pod>:/scripts/pcap-to-send <local-dir-path>

Listing 4.8: Bash commands for multi-platform build on docker

34

4.2.2 Pcap service

This service aims to receive pcap files, extract valuable features using the Scapy package,

and convert the file into a CSV for further processing. Section 4.2.2.1 explains how a

server was created that receives a file in Flask, and Section 4.2.2.2 briefly talks about how

a pcap was processed using the Scapy package and converted to CSV.

4.2.2.1 Flask server

To create a server that receives files, Flask was used. As explained in 3.2, Flask can

create a server in very few lines of code. Having one route was sufficient for this service,

as the only purpose of this server was to receive files. To implement that was relatively

straightforward, as shown in the code snippet 4.9.

import os

from flask import Flask, request

from werkzeug.utils import secure_filename

import logging

logging.basicConfig(level=logging.DEBUG)

FILE_FOLDER = "./received-files"

app = Flask(__name__)

app.config["FILE_FOLDER"] = FILE_FOLDER

@app.route("/file", methods=["GET", "POST"])

def main():

if request.method == "POST":

file = request.files["uploaded_file"]

filename = secure_filename(file.filename)

file.save(os.path.join(app.config["FILE_FOLDER"]

, filename))

logging.info("File saved: " + filename)

return "file-received"

35

if __name__ == "__main__":

app.run(host="0.0.0.0", port=5000)

Listing 4.9: Python code for receiving files via POST request

It was crucial to run the server on host ”0.0.0.0”; otherwise, the requests from outside

the container are not received by the service.

4.2.2.2 Processing pcap

This script was similar to the polling script in listing 1. It polls the ./received-files

directory to check if any new files were received. If new files were in the directory, the

file’s path was put into a queue. When the queue was processed, the file was converted

into a CSV using the convert_pcap_to_csv function.

The convert_pcap_to_csv function uses Scapy to extract data from the pcap file.

The rdpcap function provided by Scapy was used to iterate over the packets in the pcap

file. This packet was passed as a constructor argument for the Packet class. In Scapy’s

implementation, packets can be broken down into Layers. A TCP packet, for example,

would have an Ethernet layer, IP layer, TCP layer and Raw layer containing data. Fea-

tures from the different layers can be extracted and stored in a dictionary. Also, some

packet features like length and timestamp of capture are extracted and returned in a dic-

tionary. The code for this is explained in section 4.4.2.1. The extracted features shown in

table 4.1 were the final features chosen for the ML model. The process of selecting these

features is explained in the section 5.1.3.

Feature Datatype Description
Length int Total length of the packet

Timestamp float utcstimestamp of packet capture
ip.src string Source IP address of packet

source internal int Set to 1 if packet from inside cluster
source external int Set to 1 if packet from outside cluster

ip.dst string Destination IP address of packet
destination internal int Set to 1 if packet from inside cluster
destination external int Set to 1 if packet from outside cluster

protocol string TCP/UDP
protocol.sport int Source port
protocol.dport int Destination port

Table 4.1: Final packet features selected for the NIDS

36

Figure 4.5: Features extracted from the pcap are stored in a CSV in
the format shown above.

While creating a CSV from the list of dictionaries, the dictionary’s keys were the

headers, while the values were row items. The CSV file was written to a ./processed-files/

directory. The function returned the path of the newly created CSV. This path was then

used as an argument to the send file function, which sends the file to model-service.

Deployment of this and the rest of the services are not discussed as the process to

deploy all the services were similar. After creating a multiplatform docker image, the

required scripts were run from the deployment configuration specified in the YAML file,

as shown in listing 4.10.

containers:

-name: pcap-csv

image: hotshot07/pcap-service:latest

imagePullPolicy: Always

command: ["/bin/sh", "-c"]

args: ["python3 pcap_server.py & python3 process_pcap.py"]

Listing 4.10: Snippet of YAML file for pcap service that shows how to run a command to
start scripts

4.2.3 Model service

The model service’s function was to receive the CSV generated by the pcap-service, pre-

process the CSV’s data, and generate a score for the different packets using the pre-trained

autoencoder model. It then loaded the CSV into the MySQL database. To create an im-

age of this service, a tensorflow:2.7.1 base image was used. The implementation of

creating the autoencoder model is discussed in section 4.4.5.

4.2.3.1 Preprocessing data

Model service had a structure that is quite similar to the structure of the pcap service.

It had the same Flask server as in the pcap service(4.9) for receiving CSV files and had a

37

similar script to poll for new files. After the CSV file path was dequeued for processing,

using process_and_run_prediction function the packets are scored.

These preprocessing steps were chosen after many iterations on autoencoder models

as discussed in section 5.1.3. The packet features from table 4.1 were the final features

chosen, and their preprocessing is shown in table 4.2

Feature Pre-processing step
Length Unprocessed

Timestamp Unprocessed
ip.src Split into 4 octects

source internal Unprocessed
source external Unprocessed

ip.dst Split into 4 octects
destination internal Unprocessed
destination external Unprocessed

protocol One hot encoded
protocol.sport Unprocessed
protocol.dport Unprocessed

Table 4.2: Processing of packet features in table 4.1

The IPs were split into four octets, and the protocol, which consisted of TCP or UDP

values, was one-hot encoded. Many features were left unprocessed as they were already

in the proper format; for example, the source_internal was created in such a way in

that it was already in a categorical format as it had only 1 or 0 values.

Figure 4.6: asdfasdasd

After initial preprocessing, another feature packet flow was created. This feature

was engineered as it was seen in 4.4.4 that packet flow is an excellent feature for anomaly

detection. This feature is the number of packets flowing through the node every 10

seconds. If 2000 packets were flowing between time t and t+1, every packet during the

38

time is assigned a value of 2000. Another approach was also considered where the packet

flow from individual IP source and destination was created, as shown in the appendix .6,

but that feature did not perform as well as expected for this dataset.

time_df is the new dataframe which

has timestamp from unprocessed_df

time_df = pd.DataFrame(unprocessed_df["timestamp"])

time_df["packet"] = 1

time_df["timestamp"] = time_df["timestamp"].apply(lambda x:

datetime.fromtimestamp(x))

time_df = time_df.set_index("timestamp")

time_df = time_df.resample("10s").sum()

packet_flow_list = []

for x in list(time_df["packet"]):

packet_flow_list += [x] * x

processed_df["packet_flow"] = packet_flow_list

Listing 4.11: Code for creating packet flow feature from timestamp

4.2.3.2 Predicting scores

After initial preprocessing, the features were converted into float64 datatype. Using

StandardScaler method in sklearn, the features were standardised by removing the mean

and scaling to unit variance. The pre-trained autoencoder model, which was trained

on normal data to create a baseline for normal behaviour was loaded using Keras. A

prediction vector was created using model.predict function. Every array in this vector

was the reconstruction of the packet according to the autoencoder model.

For determining if a packet is anomalous, a score was assigned to each packet. Root

Mean Square Error (RMSE) was used for creating a score. This score represents the error

between the actual packet and its reconstruction. A higher score means the model could

not generate a reasonable reconstruction of the packet, as it had not seen a packet like this

before. After assigning a score, a Universally Unique IDentifier (UUID) was generated for

39

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

each packet to differentiate packets when being stored in a database. This CSV was then

saved to a processed_csvs folder, and the path for the CSV was returned (see figure 4.7

for structure of the CSV).

Figure 4.7: The structure of the data frame being stored in MySQL
database

After the CSV was saved, it was loaded into the database using python’s MySQL

connector package. If the loading of data was successful, the file was deleted from the

server. The snippet to load a CSV file to a MySQL database is shown in listing 4.12.

create a connection, using config dictionary

cnx = mysql.connector.connect(**config)

cursor = cnx.cursor()

logging.info(f"Connected to MySQL database} \

sending {path_to_processed_csv}")

csv_import = (f"""LOAD DATA LOCAL INFILE '{path_to_processed_csv}'

INTO TABLE pcap_table

FIELDS

TERMINATED BY ','

ENCLOSED BY '"'

LINES TERMINATED BY '\n'

"""

)

cursor.execute(csv_import)

cnx.commit()

Listing 4.12: Python code to laod a CSV file into MySQL database

40

4.2.4 MySQL database

To create a MySQL database, the mysql:oracle docker image was used. To store the

data in a database inside the Kubernetes cluster, Kubernetes PersistentVolume (PV) and

PersistentVolumeClaim (PVC) resources were needed. PVs are resources in the cluster,

while PVCs are requests for those resources and act as claim checks to the resource.

The code to create a PV, PVC and Deployment resource in Kubernetes using is given in

Appendix .3.

After shelling into the running pod and launching a container, the MySQL credentials

were used for logging into the database. The table pcap_table was created in the pcap

database using the commands as shown in 4.13

CREATE DATABASE pcap;

USE pcap;

CREATE TABLE pcap_table(

uuid VARCHAR(36) NOT NULL,

utctimestamp DOUBLE PRECISION,

packet_length VARCHAR(100),

ip_src VARCHAR(50),

source_internal VARCHAR(10),

source_external VARCHAR(10),

ip_dst VARCHAR(50),

destination_internal VARCHAR(10),

destination_external VARCHAR(10),

protocol VARCHAR(10),

protocol_sport VARCHAR(10),

protocol_dport VARCHAR(10),

score DOUBLE,

PRIMARY KEY (uuid)

);

Listing 4.13: Creating pcap table in MySQL to store CSVs

After creating the table, it was imperative to run the command shown in 4.14 to allow

files to be loaded into the database.

SET GLOBAL local_infile = true;

41

Listing 4.14: Setting local infile to true to load files

4.2.5 Back-end service

The back-end service was created to interact with the database and display the scores.

As this service is not a part of the data processing pipeline, it could be hosted locally. By

exposing the MySQL service as a LoadBalancer, the backend service was able to connect

and interact with the DB using the external IP of the MySQL service. Due to the project’s

time constraints, the functionalities of this service could not be fully implemented.

4.2.5.1 Flask server

The Flask server connects with the MySQL database using the mysql connector Python

package. To display the top 1000 anomalous packets, it then queries the database with

listing 4.15

SELECT utctimestamp, packet_length,ip_src, source_internal,source_external,

ip_dst,destination_internal,destination_external,

protocol,protocol_sport, protocol_dport, score

FROM pcap_table

WHERE protocol = 'TCP'

AND destination_external = 1

AND score > 1

ORDER by score desc, packet_length desc

LIMIT 1000

Listing 4.15: SQL command to retrieve top 1000 anomalous packets going out of the
cluster

42

Figure 4.8: Screenshot of webpage displaying top 1000 anomalous pack-
ets. The SQL query for populating the table is shown in listing 4.15

The value returned from the query above was turned into a dictionary and served on

a webpage using a dynamically resizable table. This statement was run to check if any

packets had been sent from the exposed MySQL database to another IP.

Select ip_dst, count(*) as count

from pcap_table

where protocol_sport = 3306

and destination_external = 1

group by ip_dst

order by count desc

Listing 4.16: SQL command to retrieve data list of IPs trying to contact port 3306, the
open port for MySQL

4.3 Simulating an attack

To get anomalous data and test the machine learning model, an attack was simulated on

the WordPress application. Section 4.3.1 talks about various port scanning techniques

using nmap and how they can be used to detect a host OS. Section 4.3.2 describes how

WPScan, a WordPress site scanner, was used to launch a dictionary attack against the

website hosted on Azure Kubernetes Services.

43

4.3.1 Port scanning

A port scanning tool is a standard tool in an attacker’s library. Port scanners help an

attacker identify any open ports on an IP that can potentially be exploited.

To run a port scan, Nmap, a very popular open-source port scanning tool, can be used.

It provides several techniques like Ping scan, TCP half-open scan, and Xmas scan. It can

even launch aggressive scans to detect a Hosts OS. For this project, a script with multiple

nmap scans was created to simulate different kinds of scans possible by the attacker.

HOST='<IP-of-deployed-website>'

#TCP SYN scan

nmap -sS $HOST

#TCP connect scan

nmap -sT $HOST

#Probe open ports to determine service/version info

nmap -sV $HOST

#Enable OS detection

nmap -O $HOST

#A: Enable OS detection, version detection, script scanning,

#and traceroute

nmap -A $HOST

Listing 4.17: Nmap script to scan open ports on a website

This nmap script was run from a Kali Linux machine, and it was able to figure out the

open ports on the deployed WordPress application and the OS type, as shown in snippet

of the output 4.18. proxychains4 can also be used to port scan using a proxy server

to hide the IP address, but this was not used in the implementation as using free proxy

servers seemed risky. Snippet of the console output is given in 4.18, and the full output

is given in appendix .4.

Nmap done: 1 IP address (1 host up) scanned in 11.04 seconds

Starting Nmap 7.92 (https://nmap.org) at 2022-04-07 17:28 IST

Nmap scan report for 20.31.228.177

Host is up (0.020s latency).

Not shown: 998 filtered tcp ports (no-response)

44

PORT STATE SERVICE VERSION

80/tcp open http Apache httpd 2.4.48 ((Unix) OpenSSL/1.1.1d PHP/7.4.21)

|_http-server-header: Apache/2.4.48 (Unix) OpenSSL/1.1.1d PHP/7.4.21

| http-robots.txt: 1 disallowed entry

|_/wp-admin/

|_http-title: Mayank's Blog! – Just another WordPress site

|_http-generator: WordPress 5.7.2

443/tcp open ssl/http Apache httpd 2.4.48 ((Unix) OpenSSL/1.1.1d PHP/7.4.21)

|_http-title: Mayank's Blog! – Just another WordPress site

| ssl-cert: Subject: commonName=example.com

| Not valid before: 2012-11-14T11:18:27

|_Not valid after: 2022-11-12T11:18:27

| http-robots.txt: 1 disallowed entry

|_/wp-admin/

|_http-server-header: Apache/2.4.48 (Unix) OpenSSL/1.1.1d PHP/7.4.21

|_http-generator: WordPress 5.7.2

|_ssl-date: TLS randomness does not represent time

Warning: OSScan results may be unreliable because we could not find at least

1 open and 1 closed port

Device type: general purpose

Running (JUST GUESSING): Linux 4.X|5.X|2.6.X (87%)

OS CPE: cpe:/o:linux:linux_kernel:4.0 cpe:/o:linux:linux_kernel:5

cpe:/o:linux:linux_kernel:2.6.32

Aggressive OS guesses: Linux 4.0 (87%), Linux 4.15 - 5.6 (86%),

Linux 5.0 (86%), Linux 5.0 - 5.4 (86%), Linux 5.3 - 5.4 (85%),

Linux 2.6.32 (85%), Linux 5.0 - 5.3 (85%)

No exact OS matches for host (test conditions non-ideal).

Network Distance: 25 hops

TRACEROUTE (using port 80/tcp)

HOP RTT ADDRESS

1 5.40 ms 10.10.0.1

2 5.45 ms 089-100-107150.ntlworld.ie (89.100.107.150)

3 6.20 ms 089-101-115225.ntlworld.ie (89.101.115.225)

4 6.21 ms 089-100-182198.ntlworld.ie (89.100.182.198)

5 7.25 ms ie-dub01a-rc1-ae-15-0.aorta.net (84.116.238.249)

6 6.20 ms ie-dub02a-ri1-ae-73-0.aorta.net (84.116.134.110)

7 17.50 ms ae68-0.ier02.dba.ntwk.msn.net (104.44.198.115)

8 6.25 ms ae25-0.icr02.dub07.ntwk.msn.net (104.44.239.35)

9 19.46 ms be-122-0.ibr02.dub07.ntwk.msn.net (104.44.11.73)

10 87.63 ms be-7-0.ibr01.ams30.ntwk.msn.net (104.44.17.57)

11 18.27 ms be-1-0.ibr02.ams30.ntwk.msn.net (104.44.16.147)

12 ... 24

25 21.85 ms 20.31.228.177

45

Listing 4.18: Snippet of console output of the nmap scan script

Figure 4.9: Tcpdump output of the nmap scan in Wireshark

4.3.2 Dictionary attack

To launch a password dictionary attack against the deployed WordPress site, WPScan was

used. WPScan is an open-source security scanner to detect vulnerabilities in a WordPress

website. It can detect the kind of WordPress theme, the plugins installed and if they are

out of date, etc. It can also find users on a website via scanning blog posts. Against these

users, a password dictionary attack can be launched.

For a password dictionary, a common dictionary rockyou.txt was used, which con-

tains the most commonly used passwords in plaintext. Using the command below shown

in listing 4.19, a dictionary attack can be launched for $HOST, which enumerates all the

users on the WordPress website and tries the username-password combination. For the

purposes of generating the figure, the password was added to rockyou.txt. WPScan was

successfully able to find the username-password combination of the WordPress application

deployed. During this attack, this anomalous data was captured via tcpdump as shown

in figure 4.10. Snippet of the console output is given in 4.20, and the full output is given

in appendix .4.

HOST='<IP-of-deployed-website>'

wpscan --url $HOST --enumerate u --passwords rockyou.txt --max-threads 50

Listing 4.19: WPScan command for password attack

46

Figure 4.10: Wireshark output of packets from attacker’s IP during
WPScan attack

__ _______ _____

\ \ / / __ \ / ____|

\ \ /\ / /| |__) | (___ ___ __ _ _ __ ®
\ \/ \/ / | ___/ ___ \ / __|/ _` | '_ \

\ /\ / | | ____) | (__| (_| | | | |

\/ \/ |_| |_____/ ___|__,_|_| |_|

WordPress Security Scanner by the WPScan Team

Version 3.8.20

Sponsored by Automattic - https://automattic.com/

@_WPScan_, @ethicalhack3r, @erwan_lr, @firefart

[+] URL: http://20.31.228.177/ [20.31.228.177]

[+] Started: Thu Apr 7 17:42:42 2022

Interesting Finding(s):

[+] Headers

| Interesting Entries:

| - Server: Apache/2.4.48 (Unix) OpenSSL/1.1.1d PHP/7.4.21

| - X-Powered-By: PHP/7.4.21

| Found By: Headers (Passive Detection)

| Confidence: 100%

[+] robots.txt found: http://20.31.228.177/robots.txt

| Interesting Entries:

| - /wp-admin/

| - /wp-admin/admin-ajax.php

| Found By: Robots Txt (Aggressive Detection)

| Confidence: 100%

[+] XML-RPC seems to be enabled: http://20.31.228.177/xmlrpc.php

47

.

.

.

[+] Enumerating Users (via Passive and Aggressive Methods)

Brute Forcing Author IDs - Time: 00:00:00 <=====================

=================================> (10 / 10) 100.00% Time: 00:00:00

[i] User(s) Identified:

[+] mayank

| Found By: Author Posts - Author Pattern (Passive Detection)

| Confirmed By:

| Rss Generator (Passive Detection)

| Wp Json Api (Aggressive Detection)

| - http://20.31.228.177/wp-json/wp/v2/users/?per_page=100&page=1

| Rss Generator (Aggressive Detection)

| Author Sitemap (Aggressive Detection)

| - http://20.31.228.177/wp-sitemap-users-1.xml

| Author Id Brute Forcing - Author Pattern (Aggressive Detection)

| Login Error Messages (Aggressive Detection)

[+] Performing password attack on Xmlrpc against 1 user/s

[SUCCESS] - mayank / arora

Trying mayank / arora Time: 00:00:07 <= > (195 / 59385) 0.32% ETA: ??:??:??

[!] Valid Combinations Found:

| Username: mayank, Password: arora

Listing 4.20: Snippet of console output of WPScan

48

Figure 4.11: The difference between server response when incorrect cre-
dentials are entered vs when credentials are found

4.4 Creating machine learning models

This section goes into detail about how various machine learning models were imple-

mented. To create a machine learning environment on M1 Mac that utilises the GPU, a

video 3 by Jeff Heaton was followed, which explains in detail how to set up an environment

locally.

Section 4.4.1 briefly explains how the data was collected for training and testing the

machine learning models. Section 4.4.2 describes in detail how the data was cleaned

and processed using Scapy and Pandas. Section 4.4.3 goes into detail about how SVD

and DBSCAN were tested for unsupervised clustering, and section 4.4.5 goes into detail

about how an autoencoder was implemented. Section 4.4.4 explains how packet flow was

a helpful feature by implementing Isolation Forest, an unsupervised machine learning

technique. Section 4.4.6 talks about how a supervised learning model was implemented

to test the feasibility of using a supervised model.

3video link

49

https://www.youtube.com/watch?v=_CO-ND1FTOU

4.4.1 Data collection

Two data collection sessions were done to collect data for machine learning models. In the

first session, the normal baseline behaviour of the WordPress application was observed

for 10 minutes. All the packets were captured via tcpdump on ’cbr0’. A total of 140538

packets were received in this time frame. Also, there are 1549 packets in this data with

the attacker’s IP (browsing the blog, not attacking currently).

In the second session, to collect anomalous data for testing the model, The port

scanning and dictionary attacks as described in section 4.3 were run. This time, the

password was removed from the password dictionary so that the enumeration would go

on for a longer duration of time. A total of 1070554 packets were received. Out of these

packets, 41824 packets had ’ip.dst’ of the Kali Linux machine from where the attack was

launched. Summary of the total packets captured in shown in table 4.3.

Figure 4.12: Packet flow during normal time vs attack. The first two
spikes observed are the Nmap Scans, and from 350 seconds onwards,
the dictionary attack was launched

Type of data Total packets captured
Normal data flow 140538
Attack data flow 1070554

Packets with attackers IP 41824

Table 4.3: Total packets captured for training and testing ML models

50

4.4.2 Data preprocessing

This section details how a pcap file was converted to CSV for training machine learning

models.

4.4.2.1 Processing pcap

A Packet class was created to get all of these features from all the packets and maintain

consistency with a extract_data function. This function gets the data from the packet

and writes it to a CSV. To extract useful features from a pcap, Scapy was used. rdpcap

can be used to iterate over all the packets in the pcap file. To see the structure of the first

packet in the list, .show() can be called on the packet variable, which shows the different

layers of the packet.

def preprocess(path):

pcap = rdpcap(path)

for packet_var in pcap:

print(packet_var.show())

break

if __name__ == '__main__':

preprocess_path('<name_of_file>.pcap')

Listing 4.21: Dockerfile for Pcap service

###[Ethernet]###

dst = a6:4d:66:07:0e:f8

src = 16:78:bc:af:56:36

type = IPv4

###[IP]###

version = 4

ihl = 5

tos = 0x0

len = 82

id = 23589

flags = DF

frag = 0

ttl = 64

51

proto = tcp

chksum = 0xc88e

src = 10.240.0.4

dst = 10.244.0.11

\options \

###[TCP]###

sport = 10250

dport = 49190

seq = 166982416

ack = 1524731990

dataofs = 8

reserved = 0

flags = PA

window = 501

chksum = 0x1637

urgptr = 0

options = [('NOP', None), ('NOP', None),

('Timestamp', (164084236, 3145284487))]

###[Raw]###

load = '\x17\x03\x03\x00\x19\\xf5\\x9c\\xc1\x0e#IH

\\xf7q+m\\xbb}\\xa2\\xbdQ\\xbb\\xa2\\xb71

\\xb0\x13\tp\r'

Listing 4.22: Console output of above above function

A packet in scapy is in the form of layers as shown in 4.22, above the packet has

Ethernet, IP, TCP and Raw layers. Every layer has its fields that can be extracted. In

4.7, printing packet.layers() would generate a list of classes of layers

[<class 'scapy.layers.l2.Ether'>, <class 'scapy.layers.inet.IP'>,

<class 'scapy.layers.inet.TCP'>, <class 'scapy.packet.Raw'>]

Listing 4.23: Console output of above above function

The names of these layers can be extracted by using layer.__name__. This can

be stored in a variable layer_name, and while iterating over layer names, features of a

particular layer can be extracted, as shown in 5.1. Running this code for the packet in

Listing 4.22 would 10.240.0.4.

for layer in self.packet.layers():

packet_layer = self.packet[layer.__name__]

52

layer_name = layer.__name__

if layer_name == "IP":

self.packet_dict["ip.src"] = packet_layer.fields.get("src")

...

Listing 4.24: Extracting IP.src from from a packet

Flags from a packet in scapy can be extracted using code in snippet 4.31.

The flags set in the packet are returned in character

format, which is the key in the flag_dict dictionary. The common

name of the flag is returned by self.flag_dict.get(str(flag))

flag_dict = {

"F": "FIN",

"S": "SYN",

"R": "RST",

"P": "PSH",

"A": "ACK",

"U": "URG",

"E": "ECE",

"C": "CWR",

"?": "UNK",

}

for flag in self.packet.sprintf("%TCP.flags%"):

flag_type = self.flag_dict.get(str(flag))

Listing 4.25: Extracting flags set in a TCP packet

The data from the packet can also be extracted from the Raw packet layer. The

packets are in a byte string format but can be converted to hex and further converted

to integer processing. In the code snippet, the length of the packet data and the first 10

bytes of the packets are

#packet_layer.fields.get('load') is of the form

#b'\x17\x03\x03\x00\x19\xf5\x9c\xc1\x0e#IH\xf7q+m\xbb}

\xa2\xbdQ\xbb\xa2\xb71\xb0\x13\tp\r'

53

#first 10 bytes extracted and converted to hex

#1703030019f59cc10e23

hex are then converted to integers

using hex lambda and stored in different key_value pairs,

resulting in 20 features

hex_lambda = lambda x: int(x,16)

if layer_name == 'Raw':

self.packet_dict['load.count'] = len(packet_layer.fields.get('load'))

current_load = str(packet_layer.fields.get('load')[:10].hex())

if current_load != str(0):

for i, ch in enumerate(current_load):

self.packet_dict[f'load_{i}'] = hex_lambda(ch)

Listing 4.26: Extracting raw packet data

Another function was created to check if the IP.src and IP.dst came from within the

cluster or outside to provide context to a machine learning model about the IP addresses.

Azure provides the IP ranges of pods, services and other internal services.

54

Figure 4.13: Azure networking IP ranges

def check_if_ip_is_internal_or_external(self,ip, kind = None):

if not ip:

return None

split_ip = ip.split('.')

if split_ip[0] == '172' and split_ip[1] == '17':

self.packet_dict[kind + '_internal'] = 1

return

if split_ip[0] == '10' and split_ip[1] == '0':

self.packet_dict[kind + '_internal'] = 1

return

if split_ip[0] == '10' and split_ip[1] == '244':

self.packet_dict[kind + '_internal'] = 1

return

else:

self.packet_dict[kind + '_external'] = 1

return

55

Listing 4.27: Classying IP as external or internal

The total number of features that were extracted from the CSV are shown in the table

4.4

Packet feature Data extracted
General length,timestamp
Ethernet eth.src, eth.dst, eth.type

IP ip.src, ip.dst, ip.version,ip.proto,ip.len, ip.ihl, ip.tos, ip.ttl
Protocol protocol, protocol.sport, protocol.dport
Flags FIN, SYN, RST, PSH, ACK, URG, ECE, CWR, UNK

Source ip type source pod, source external
Destination ip type destination pod, destination external

Raw load.count, first 10 bytes of data

Table 4.4: All features extracted from a packet for this project

4.4.2.2 Processing CSV

After the CSV was generated from the pcap, this CSV needed to be further processed

before being used for machine learning purposes.

The Ethernet address was split across : and converted into hex using a lambda function

lambda x: int(x,16). The IP address was split across . to get four octets as features.

Here, the IP and Ethernet features are not considered categorical features but rather

numerical features. Hence, One hot encoding was not used. This was done to keep the

number of input features the same across all inputs. Also, as this was being tested for a

real-world environment, the number of new IPs hitting the service could change; hence

having IPs and Ethernet addresses as categorical features and one hot encoding them

could result in a massive dataset.

The rest of the columns were not further processed as they were already in the required

format. A packet flow feature was also generated, as shown in 4.11. This resulted in a

total of 73 features per packet. Initially, all of the features were used, but it was seen that

reducing the features created a better-unsupervised machine learning model.

After this, all the columns except categorical ones were scaled using StandardScaler

and converted to float64 datatype so that the data could be fed into the machine learning

model.

56

4.4.3 Clustering using DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is an unsuper-

vised density-based clustering technique that can be used to detect outliers. To visualise

this algorithm, the make_blobs function in scikit-learn was used to generate isotropic

gaussian blobs(43). For this example, 1000 sample data points were generated with one

centre and a standard deviation of 0.4 as shown in 4.14.

Figure 4.14: Data points created for visualising DBSCAN using
make blobs function

Then a dbscan object was instantiated using the scikit-learn implementation of DB-

SCAN with an epsilon of 0.2 and minimum samples of 20. Epsilon is the parameter for

choosing the distance between two samples for one to be considered as in the neighbour-

hood of the other, while minimum samples are the number of samples in a neighbourhood

to be considered a core point. A point is a core point if there are at ¡number-of-samples¿

points in its surrounding area with radius epsilon.

x, y = make_blobs(n_samples=1000, centers=1, cluster_std=.4,

center_box=(0,0))

dbscan = DBSCAN(eps = 0.2, min_samples = 20)

predictions = dbscan.fit_predict(x)

anomaly_indices = np.where(predictions == -1)

anomaly_values = x[anomaly_indices]

57

Listing 4.28: creating blobs

After running the fit predict function provided by DBSCAN on the generated test

data, it classified the data points into two categories, 0 for data points that were part of

a cluster and -1 for anomalies. The index of features with -1 was plotted with red colour

as shown in 4.15.

Figure 4.15: Predicted anomalies (in red) by DBSCAN for figure 4.14

This example shows that DBSCAN can be used for anomaly detection. To fit the

model on normal data, the number of features of the dataset had to be reduced. This

is because it would be easier to visualise the outliers on a 2D or 3D plot and easier

for the algorithm to compute the outliers. For dimensionality reduction, TruncatedSVD

was used. This transformer performs linear dimensionality reduction and is efficient with

sparse matrices. Many features in the dataset were categorical and were one hot encoded;

hence, SVD was seen as a better algorithm. Hence, TruncatedSVD, an implementation

of SVD by scikit-learn, was used for feature reduction.

For the first iteration, two output features were chosen. The DBSCAN was imple-

mented on the normal training dataset to detect outliers. The normal dataset consisted

of 123K samples. It could find 16 anomalies and was able to categorise everything into

a cluster as shown in figure 4.16. The total time taken for SVD and clustering was less

than 10 seconds.

58

Figure 4.16: Output of DBSCAN on normal data flow. Blue data points
(-1) are predicted anomalies in this dataset

For anomaly prediction on the attack dataset, which consisted of about 1 million

samples, TruncatedSVD was completed in less than 5 seconds. However, even after 1

hour, the DBSCAN fit prediction was not complete. It could be evaluated that this model

does not scale well; hence a clustering-based approach was abandoned as this approach

would not be able to deal with the high volume of traffic flow.

4.4.4 Anomaly detection using Isolation Forest

4.4.4.1 Anomaly detection using packet flow

After the first few iterations of autoencoders were not able to give a high score to anoma-

lous packets, this approach was considered. Here, the features of the packets were not

considered; only the number of packets flowing through ’cbr0’ per second was calculated.

This was done by creating a new pandas series from the timestamp feature of the nor-

mal data data frame and creating a packet column with each row = 1, signifying one

packet. The index was then set to the DateTime column, and the df was resampled and

summed on it, with the time period equal to 1 second. As the total time of the tcpdump

capture was 10 minutes, the total rows in the data frame were 600. The same process was

also done for the dataset that contains the anomalous data, which was also captured for

10 minutes as described in 4.4.1.

59

from datetime import datetime

resampled_time = normal_time['timestamp'].

apply(lambda x:datetime.fromtimestamp(x))

resampled_time_series = pd.to_datetime(resampled_time,

format='%Y-%m-%d %H:%M:%S')

df = pd.DataFrame(resampled_time_series)

df['packet'] = 1

df = df.set_index('timestamp')

df = df.resample('1S').sum()

Listing 4.29: Python code to create packet flow feature using a unix timestamp

Isolation forest, an unsupervised outlier detection technique, was trained on this nor-

mal data. For training this dataset, the default values of the IsolationForest model were

used, with a change in contamination value. Contamination represents the proportion of

outliers in the dataset. As the number of outliers in the training dataset is expected to

be really low, this was set to 0.01.

from sklearn.ensemble import IsolationForest

model=IsolationForest(n_estimators=100, max_samples='auto',

contamination=float(0.01), verbose = 0)

model.fit(df.values)

Listing 4.30: Creating a model using Isolation Forest implementation in sklearn

After training the model on normal data, a prediction was run on data with anomalous

values. As the packet flow during that time was much higher, the model was expected to

categorise those points as anomalies, which it successfully does. The normal vs anomalous

data flow can be found in figure 4.12 described earlier.

60

Figure 4.17: Isolation Forest bring used to predict attack packet data
flow

As the approach of this project focused more on packet data rather than packet flow,

this approach was not further analysed, but it can be seen that predicting anomalies

in traffic data can be done and, in practice, is a much better approach. This approach

also gave the idea of using packet flow as a feature in autoencoders, which significantly

increased the scores of the anomalous data packets, hence improving the model.

4.4.4.2 Anomaly detection using packet data

For this apporach4, the model was trained on the subset of data as shown in table 4.5. This

reason for choosing this subset of features is explained in evaluations of the autoencoder

model in section 5.1.3.

Every parameter was set to default values, and this model was trained on the ’normal

data flow’ dataset and predictions were run on the ’attack data flow’ dataset. There were

1,070,554 packets in the dataset, out of which the model predicted that there were 186545

outliers. Interestingly, all the 41824 packets with the destination IP of the attack machine

were in these 186545 predictions. To further test the Isolation Forest on this data, another

model was created, but this time the contamination was set to 0.04. 5. Out of the 53639

packets it predicted as outliers, it was seen that all the 41824 packets were again in this

dataset. Further evaluation is done in section 5.1.2

4This model was implemented few days before the submission, hence it could not be analysed in depth.
However, this is an interesting approach hence included in this dissertation

5proportion of outliers calculated by approximate value of 41824/1070554

61

Packet data type Feature
General length,timestamp

IP ip.src, ip.dst,
Protocol protocol, protocol.sport, protocol.dport

Source ip type source pod, source external
Destination ip type destination pod, destination external

Time packet flow

Table 4.5: Features of the best autoencoder model

4.4.5 Autoencoders

Autoencoder is a neural network-based approach; hence, to implement an autoencoder

model, Keras was used. After the initial data preprocessing, no more preprocessing was

required. Various autoencoders with different architectures and input data were imple-

mented throughout the project. Only the model with the best classification of packets

from the attacker’s IP is shown for this section with features shown in table 4.5 . Evalu-

ation of the most different models used is in the section 5.1.3

4.4.5.1 Training an autoencoder model

After the data preprocessing step, the values from a data frame can be extracted to an

array form using its df to train an autoencoder model.values attribute. The shape

of the input vector and the output vector of the model was the number of features, i.e.

df.values[1]. The architecture of an autoencoder model is shown in figure 2.9.

model = Sequential()

model.add(Dense(10, input_dim=df.values.shape[1], activation='LeakyReLU'))

model.add(Dense(3, activation='LeakyReLU'))

model.add(Dense(10, activation='LeakyReLU'))

model.add(Dense(df.values.shape[1]))

model.compile(loss='mean_squared_error', optimizer='adam')

model.fit(x_normal_train,x_normal_train,verbose=1,epochs=25)

model.save("autoencoder_model")

Listing 4.31: Keras code to create the architecture of Figure 2.9

After initialising the model, it is compiled using the mean squared error loss. Adam

optimiser was chosen as it is regarded as one of the best optimisers that work out of the

box(44). As the input and output vectors were the same, hence in model.fit(), the x and y

62

parameters are the same. For this dataset, after 20 to 25 epochs, the loss function usually

converged; hence 25 epochs were chosen. After the training, an autoencoder model was

saved so that it could be used in the data processing pipeline.

4.4.5.2 Scoring

After a model was trained, it was used to generate predictions of the normal dataset. The

distributions of this score over all the packets were then used to generate a baseline.

normal_df -> unprocessed dataframe

processed_normal_df -> processed dataframe

normal_values = processed_normal_df.values

normal_predictions = model.predict(normal_values)

normal_score_list = []

for index , x in enumerate(normal_predictions):

normal_score_list.append(np.sqrt(metrics.mean_squared_error

(normal_values[index],normal_predictions[index])))

Listing 4.32: Predicting scores using model

In this example, a histogram of the scores is generated using the normal scores list.

This list was also added as a column to the training data frame, further used to generate

statistics for the scores. These scores can help in describing a baseline for the model. In

this example, the 99.9th quantile is 0.90. So any packet with a score of more than that

could be possibly classified as anomalous.

63

Figure 4.18: Score distribution of the packets in training data based on
scores generated by the autoencoder model

>>> normal_df['score'] = normal_score_list

>>> normal_df['score'].describe().apply(lambda x: format(x, 'f'))

count 140538.000000

mean 0.130965

std 0.124563

min 0.027543

25% 0.049564

50% 0.087578

75% 0.155795

max 1.662013

>>>normal_df['score'].quantile(0.995)

0.9091844430714451

>>>attack_df['score'].quantile(0.932)

>>>1.0046321075064268

Listing 4.33: Scores for normal data
Similarly, scores for the dataset containing the attack can be tested. As this is a

prediction, the mean of the predictions is slightly higher, so the distribution was shifted

towards the right. Some packets were scored as high as 6, but 93.2% of all the scores were

less than 1.004. Hence, the baseline of 1 from the initial dataset was a good indicator.

64

Figure 4.19: Score distribution of packets during attack based on scores
generated by the autoencoder

After this, the scores of the attacker’s IP were isolated. If the model could predict a

high enough score distribution for these packets, that model was classified as a ”model of

interest”; if not, it was discarded. For this model, the mean was 1.38, and no packet was

classified as less than the initial baseline defined of 1.

Figure 4.20: Score distribution of packets during the attack with at-
tacker’s IP, based on scores generated by the autoencoder

>>>attack_machine_packets=attack_df[attack_df["ip.dst"]

=='<ip-of-attackers-machine>']

65

>>>attack_df['score'].describe().apply(lambda x: format(x, 'f'))

count 41824.000000

mean 1.380329

std 0.053284

min 1.176635

25% 1.354040

50% 1.365800

75% 1.437380

max 1.463493

Listing 4.34: Keras code to create the architecture of Figure 2.9

4.4.6 Supervised Learning

A supervised learning approach was also implemented to check if that is viable for clas-

sifying attack vectors. To create the training dataset, twenty thousand samples from the

data frame with the attacker’s IP were taken and merged with the normal df. The normal

df was given a class of 0, while packets with the attacker’s IP were given a class of 1.

After preprocessing the data frame, they were split using StratifiedShuffleSplit class

in sklearn, which helps maintain the proportion of samples in the training and testing

dataset. If there were 160K samples(140K normal + 20K malicious) and the proportion

of test size was 0.2, then the training dataset would consist of 112K of normal data with

16K of malicious data.

All the data features except raw load from the table 4.4 were included in this approach.

This prediction was also made using a neural net as well.

model = Sequential()

model.add(Dense(30, input_dim=train_set.shape[1], activation='relu'))

model.add(Dense(12, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam',

metrics=['accuracy'])

model.fit(train_set, labels, epochs=10, batch_size=64)

Listing 4.35: Keras code to create the architecture of Fi

66

The model was easy to train but had an unusually high accuracy of 99.8% just after

training on ten epochs. Further evaluation of the model is discussed in section 5.1.4.

67

Chapter 5

Evaluation

5.1 Evaluating machine learning models

5.1.1 Clustering using DBSCAN

5.1.1.1 Dimensionality reduction

After preprocessing the data, there were 72 features present in the dataset. For visualizing

the clusters on a 2D/3D plane, the dimensions of this dataset had to be reduced to 2/3,

respectively. Four algorithms from the sklearn.decomposition were selected and tested

on the ’Attack data flow’ dataset to choose a dimensionality reduction algorithm. The

four algorithms chosen were:

• Principal Component Analysis (PCA)

• Truncated singular value decomposition (TruncatedSVD)

• Fast Independent Component Analysis (ICA)

• Kernel PCA (with RBF kernel)

This test was to check which algorithm can reduce dimensions of the dataset from 72

to 3 fastest 1. Every algorithm had to reduce the first 50,100,200,500, 1000, 5000, 10000,

and 20000 data samples in the dataset. The graph for the comparison is given in figure

5.1

1Comparison done on 2021 Apple M1 Pro MacbookPro with ARM architecture 10 Core CPU @
3.2GHz

68

Figure 5.1: Performance comparison of various dimensionality reduction
algorithms

It could be seen that for a small dataset, i.e. under 1000 samples, all algorithms can

reduce the size in 10-1 range. However, as the dataset size increased, it could be seen

that the TruncatedSVD algorithm was the fastest. Even for a million samples with more

than 72 features, it took the algorithm 2.43 seconds. It benefited from being efficient

with sparse datasets, which many columns of the ’Attack data flow’ datasets were. Hence

TruncatedSVD algorithm was chosen for this project.

5.1.1.2 Evaluating DBSCAN

After reducing the dataset’s features using TruncatedSVD, DBSCAN was used for un-

supervised clustering on the dataset to detect anomalies. Although clustering can be

used to detect anomalies in an unsupervised fashion as described in (45) and as shown in

figures 4.14 and 4.15, for this project, this approach was not ideal. For a dataset where

the number of clusters was already known, anomaly detection might be more accurate

and a more viable approach. However, analysing clusters is hard for this approach and is

more time and memory intensive with respect to this project. Also, it is possible that the

clusters would be different for each dataset; hence this approach was not a viable option

here.

69

5.1.2 Isolation Forest

Isolation Forest was used on packet flow and packet data to find anomalies. A model

was trained on normal data flow, and predictions were run on attack data flow. As the

number of packets during the attack increased significantly, Isolation Forest could find the

anomalies easily, as seen in figure 4.17. One thing to note is that this analysis was done

on 10 minutes of data. In real-world environments, the data flow changes significantly;

for example, a website might have heavy traffic from 9 AM to 6 PM but little to no traffic

from 12 AM to 6 AM. So, a model needs to be trained to learn this pattern of behaviour.

Clustering techniques can also be used to detect anomalous behaviour in packet flow, as

seen in (39). Nevertheless, this gave the idea that packet flow is an important feature to

consider; this feature was part of the best autoencoder model.

When Isolation Forest was used to predict anomalies using packet data, preliminary

results show that it performs exceptionally well, having fewer false positives than the best

autoencoder model. It was seen that when the contamination factor was set to ’auto’,

it predicted a lot more packets as anomalous. However, when the correct contamination

value was given, it identified all the packets with the attacker’s IP as anomalous. Perhaps,

this might be because it flagged every new IP seen as anomalous. Further analysis needs

to be done.

5.1.3 Autoencoders

For this project, more than 12 autoencoder models were tested. The critical difference in

all these iterations is the features selected, as shown in table 5.1. The last row, ’Truncat-

edSVD’, represents if the features were reduced using the algorithm. The key to evaluating

these models is the baseline created from the distribution of regular packets and how far

the score distribution of packets with the attacker’s IP is with respect to the rest of the

’attack data flow’.

To evaluate these models, a few parameters were chosen. As these scores were on

distribution, it was tricky to define a baseline. After evaluating the data, it was seen that

a score at 99.5% percentile of the Normal Packet Data Flow (NPDF) would be an ideal

choice. A high percentile was chosen because little to no packets in the NPDF data frame

were anomalous, but some scores generated by the model were anomalously high, so this

score disregards the top 0.5% scores.

The goal of the autoencoder model was to create a high enough score for packets

with the destination IP of the attacker while keeping most of the packets below the

baseline created. Hence, The mean and standard deviation of the scores from Packets

During Attack (PDA) was taken as a metric. Scores of the Packets with the Attacker’s

70

Features Model 1 Model 2 Model 3 Model 4 Model 5
Packet length ✓ ✓ ✓ ✓ ✓
Ethernet source ✓ ✓

Ethernet destination ✓ ✓
Ethernet type ✓
IP source ✓ ✓ ✓ ✓

IP destination ✓ ✓ ✓ ✓
IP version ✓
IP protocol ✓ ✓
IP length ✓ ✓ ✓
IP ihl ✓ ✓ ✓
IP tos ✓ ✓ ✓
IP ttl ✓ ✓

Protocol ✓ ✓ ✓ ✓ ✓
Protocol source port ✓ ✓ ✓ ✓ ✓

Protocol destination port ✓ ✓ ✓ ✓ ✓
Flags ✓ ✓

Origin of IP.src ✓ ✓ ✓
Origin of IP.dst ✓ ✓ ✓

Load: Number of bytes ✓ ✓ ✓
Load: First 20 bytes ✓ ✓

Packet flow ✓
TruncatedSVD ✓ ✓

Table 5.1: Features selected for different models

IP (PAIP) were also isolated, and their mean was recorded. Also, the percentile of the

mean of PAIP was recorded. This was done to see how many packets in PDA were below

the majority of PAIP.

A good model for anomaly detection would have the mean of scores of PDA much

below the baseline, while the mean of PAIP would be much higher than the baseline.

Also, if the percentile of the mean of PAIP was above the 96th percentile, that would be

ideal as there are 4% of the packets in PDA are anomalous. A table summarizing this

analysis can be seen in table 5.2.

5.1.3.1 Model 1

For the first model, the features that were different in each of the packets and the total

number of bytes in the packet data were chosen. A model with 3 hidden layers was chosen,

the first, second and third layers having 10, 3 and 10 neurons, respectively. After training

the model on normal packet data, this model was able to differentiate the attacks’ IP,

placing the mean in the 95th percentile of scores predicted. This was a good start, but

71

Model 1 Model 2 Model 3 Model 4 Model 5
Baseline(99.5 percentile of NPFD) 3.268 1.3562 0.3 0.16 0.72

Mean of scores (PDA) 1.256 1.167 0.21 0.017 0.48
Std. deviation of scored (PDA) 0.647 0.607 0.12 0.013 0.23

Mean of scores (PAIP) 1.984 1.83 0.31 0.05 1.38
Percentile of mean of scores (PAIP) 95th 91st 77th 96th 98th

Table 5.2: Summary of evaluation of autoencoder models

this model did not include the packet’s flags data and the packet’s load.

Figure 5.2: Score distribution of packets during attack based on scores
generated by autoencoder-model 1

Figure 5.3: Score distribution of packets during the attack with at-
tacker’s IP, based on scores generated by autoencoder-model 1

72

5.1.3.2 Model 2

After including all the possible features except packet flow, as it had not been analyzed

yet, there were a total of 72 features. Having 72 features made the training of the model

and processing speed of generating scores significantly slow; hence the number of features

had to be reduced. For feature reduction, TruncatedSVD was used because of its high

performance, as shown in figure 5.1. After reducing the number of features to 30, the

model was trained, and predictions were made on attack data. Here, the model performs

worse than Model 1. This might be because of the choice of dimensionality reduction

algorithm and the introduction of many features that did not suit the model.

Figure 5.4: Score distribution of packets during attack based on scores
generated by autoencoder-model 2

Figure 5.5: Score distribution of packets during the attack with at-
tacker’s IP, based on scores generated by autoencoder-model 2

73

5.1.3.3 Model 3

In the next iteration, to test the significance of IP and Ethernet features of the packets,

they were removed, and the model was just trained on the rest of the packet features.

The total number of features was 49; hence Truncated SVD was used again for feature

reduction. Here, the features were also normalized between 0 and 1 instead of using

Standard Scalar, hence the lower overall scores of the model. After training the model,

it was seen that it performed significantly worse than the previous iterations, placing the

mean scores of the packet in the 72nd percentile.

Figure 5.6: Score distribution of packets during attack based on scores
generated by autoencoder-model 3

Figure 5.7: Score distribution of packets during the attack with at-
tacker’s IP, based on scores generated by autoencoder-model 3

74

5.1.3.4 Model 4

Not seeing any increase in models performance with many features or changing the nor-

malization technique, a model was created on the most basic features: IP source, IP

destination, type of protocol, ports, and packet length. Interestingly, this model per-

formed significantly better than all the other iterations before it, placing the mean of

PAIP in the 96th percentile. It was observed that having fewer features is much better.

Figure 5.8: Score distribution of packets during attack based on scores
generated by autoencoder-model 4

Figure 5.9: Score distribution of packets during the attack with at-
tacker’s IP, based on scores generated by autoencoder-model 4

75

5.1.3.5 Model 5

After creating the model in 5.1.3.4, features were added one by one to create the best

possible model for the given data. The origin of IP.src/dst as a feature and introducing

packet flow gave the best results. It had 18 features; hence no feature reduction was

required. This model gave sufficiently higher scores of PAIP, placing the mean of the

packets in the 98th percentile of PDA.

Figure 5.10: Score distribution of packets during attack based on scores
generated by autoencoder-model 5

Figure 5.11: Score distribution of packets during the attack with at-
tacker’s IP, based on scores generated by autoencoder-model 5

76

5.1.3.6 Limitations of autoencoders

As with any other unsupervised learning technique, this approach produces a lot of false

positives. Even the best model(section 5.1.3.5) gave a score of above 0.72 (the selected

baseline) to 77007 packets. That makes it 35883 false positives. 2 During testing, it

was also noted that it gave a high score to every new IP it saw. There were many

requests with destination IP of Azure Datacentre located in Netherlands3 which had a

high score. To verify this, it was seen that only 66 packets with ’source internal’ == 1

and ’destination internal’ == 1 had a score greater than the baseline. The rest of the

packets had at least one external IP as source or destination.

That is the major limitation of using autoencoders for NIDS. It needs to be trained

and retrained in an online fashion on a lot of data for creating a good baseline so that

IP values from expected data sources like Azure do not get a high score. Using just an

autoencoder model for a NIDS is not ideal. However, this model, in combination with

others like Isolation Forest or a supervised model trained on attack dataset, might give

much better accuracy in detecting intrusion.

5.1.4 Supervised learning

After training the dataset and evaluating it on the dataset containing the attack, the

model had an unusually high accuracy of 99.8 on the test dataset%. This was very

suspicious, as the model was able to get this accuracy in less than ten epochs. Labels for

the PDA were then predicted using the model, and it had an accuracy of 96.25%. This

was interesting, as only the 4% of the packets were actually anomalous, so even if the

model predicted every packet as normal, it would still have an accuracy of 96%. When

precision and recall of the model were calculated using the confusion matrix in 5.12, it

was seen that the model had a precision of 74% and recall of just 6%.

This model might show improvements if the number of features was reduced, as seen

in section 5.1.3.5. Due to the project’s time constraints and as the focus was on using

unsupervised learning to classify anomalous packets, this approach was not evaluated

further.

2Another thing to note was that the external IP of my local machine was very close to the IP of
the Kali Linux machine as they were on the same network. This also might have made making good
predictions harder for the model.

3Some IPs include 40.113.176.128, 13.69.106.212, 13.69.106.208

77

Figure 5.12: Confusion matrix for the supervised learning implementa-
tion. There were 39280 packets actually positive predicted as negative,
which beings the recall to just 6%

5.2 Evaluating the architecture

5.2.1 Limitations of the prototype

5.2.1.1 Tcpdump container

Initially, for sending packets sniffed by the tcpdump, a message streaming service like

Kafka was considered4. However, this approach was not thought to be ideal then, as it

would generate a lot more network traffic. A possible way to mitigate that is to capture

only the TCP/UDP packets via tcpdump/tshark filters. Due to the time constraints of

the project and unfamiliarity with configuring Kafka in a Kubernetes cluster, this was

not implemented.

5.2.1.2 Pcap service

The pcap service receives the pcap files and converts them into a CSV. Scapy, the python

package used for reading and analysing the data from pcap, is relatively slow (see figure

5.13) and memory intensive compared to other packet analysers. It was realised that

rdpcap, the method used to read the pcap files, first stores the file in memory. This can

be prevented by using the sniff command in offline mode.

def method_filter_HTTP(pkt):

#Your processing

sniff(offline="your_file.pcap",prn=method_filter_HTTP,store=0)

#https://stackoverflow.com/questions/10800380/scapy-and-rdpcap-function

Listing 5.1: A better way to parse packets using Scapy

4This can be implemented, as shown in a tutorial by Robin Moffatt

78

https://rmoff.net/2020/03/11/streaming-wi-fi-trace-data-from-raspberry-pi-to-apache-kafka-with-confluent-cloud//

A better solution might be to use Libtins, a C++ library designed with packet sniffing

efficiency in mind. Dpkt, a Python package, can also be used as it is faster than scapy.

It was not used for this project as scapy had better documentation and features.

Figure 5.13: The time taken for a library to parse 500000 packets from
a pcap file(46). Source: Libtins benchmark

5.2.1.3 Model service

The model service receives the CSV file generated, preprocesses it for machine Learning

and generates scores for the packets. Managing data frames within this cluster can be

optimised to reduce memory. Also, a separate node inside this cluster that uses GPU

acceleration can be used to further increase the speed of scoring packets.

5.2.1.4 MySQL database

It was sufficient to have a MySQL database inside the cluster for a prototype. How-

ever, as the number of services in a cluster increases, the tcpdump data would increase

exponentially and having a managed SQL DB is a better solution.

5.2.1.5 Backend service

The backend service currently has limited functionality because of the project’s time

constraints. A better UI that shows the packet data flow and a dashboard that can filter

out packets based on IP Addresses and automatically create a list of suspicious IPs can

be created.

5.2.2 Improved architrecture for the prototype

This prototype currently works for a single node. Although this solution can be scaled

to multiple nodes, given the memory-intensive tasks, the cluster would have issues deal-

79

http://libtins.github.io/benchmark/

ing with a random increase in packet flow. When the password dictionary attack was

launched, there were more than 1 million packets collected in less than 10 minutes. Even

when scaled up with multiple replicas of each service, the current architecture could not

handle the increased load, and the pods failed, resulting in data loss.

Figure 5.14: High-level architecture for a prototype of a better data
processing pipeline

A new architecture is proposed to mitigate this that would handle the load in a much

better fashion and is more scalable. Every node can have a tcpdump pod running on it,

which streams the data to a Kafka topic ’pcap topic’. The pcap topic can have multiple

partitions to store data coming in from various streams. This data can be consumed by

the Kafka Worker 1, which would convert the data captured into the required format.

After conversion, this data can then be sent to the packet features topic, which the

Kafka worker 2 would consume. This worker can aggregate the data based on either

the number of packets or time, and run predictions on the data using one ML model or

multiple models with weighted voting.

These packets and their generated scores can then be stored in a distributed NoSQL

datastore. NoSQL provides flexibility in defining the structure of the data stored, and if

a new feature is added/removed in the data processing pipeline, the database would be

easily able to handle it. On this datastore, a job can be run to aggregate data for a day

and send it to a Model Trainer VM (not shown in the figure), which has access to GPUs

that can train different machine learning models in an online fashion and replace the ones

80

in Kafka worker 2 on a periodic schedule. This can be done as the baseline behaviour

of an application can change from week to week, and using this setup, it might be able to

update the baseline behaviour.

Another aggregation job can be run on the database every K number of minutes, which

updates a statistics table that stores the most commonly used stats. A frontend service

that a network admin or researcher can see helpful information on can be created, which

interacts with the database via the backend API. This can consist of multiple services

depending upon the team’s needs.

81

Chapter 6

Conclusions & Future Work

6.1 Conclusion

The primary objective of this research project was to investigate the performance of vari-

ous unsupervised machine learning algorithms that were trained with network traffic from

Kubernetes deployments and to evaluate the trained models against real-world attacks

like port scans and dictionary attacks. Anomaly-based ML algorithms like DBSCAN,

Isolation Forest and autoencoders were tested for this approach. It was seen that au-

toencoders could be trained to detect anomalies using various packet features. It was also

noticed that packet flow is an essential feature and can be used in conjunction with packet

data to increase a models’ performance for detecting anomalies.

It was observed that Isolation Forest performed extremely well as an anomaly de-

tection algorithm. Trained on a normal packet flow, it easily identified the data flow

as anomalous during the attack. This algorithm was also trained on features of normal

packets. Interestingly, if it was modelled with the correct parameter for expected anoma-

lies in the dataset, it outperformed the autoencoder by classifying every packet with the

attacker’s IP as anomalous, giving 67% fewer false positives than the best autoencoder

model.

However, both Isolation Forest and autoencoders suffer from a high number of false

positives; 22% of Isolation Forest predictions and 46% of autoencoder predictions were

false positives. A common attribute of the Isolation Forest and autoencoder technique

was that they classified every new IP that was not in their training dataset as an anomaly.

This hypothesis was tested by deploying a WordPress application and an autoencoder-

based NIDS using Azure Kubernetes Services. Various nmap scans and a password dic-

tionary attacks were launched against the WordPress application, and although the NIDS

gave high scores to the packets with the attacker’s IP, a much higher score was given to

82

IPs from the Azure datacentre1. Hence, it is evident that a NIDS based on unsupervised

anomaly detection would generate a high number of false positives, leading to alert fatigue

if each predicted anomalous packet generates an alert.

DBSCAN, a density-based clustering algorithm, was also analysed for this project. As

DBSCAN is much faster for low dimensional datasets, the dataset features were reduced

to 2 using SVD, but still, it was seen that it was far too slow to use in a NIDS. Even after

an hour, the DBScan could not complete classifying 1 million data instances into clusters.

Hence this approach was not further analysed.

6.2 Future work

The future work for this research can be divided into two components, the first being

the prototype of NIDS as explained in 6.2.1 and the second being the machine learning

approaches described in the section 6.2.2.

6.2.1 NIDS prototype

Currently, the NIDS prototype revolves around sending pcap and CSV files from one

service to another. This is very inefficient and not scalable. To solve this, a better NIDS

architecture is proposed in section 5.2.2 that uses Kafka message streams and a pub-

sub architecture to send data from one microservice to another. Ironically, the current

prototype and proposed architecture both suffer from a severe security risk, i.e. privileged

pods(see appendix .5). If an attacker gains access to this pod, it has access to the nodes’

resources and kernel capabilities(47). To mitigate this, one possible solution is to use

network logging services provided by cloud providers; for example, Google’s Kubernetes

Engine provides network policy logging(48). However, this approach would reduce the

number of features captured when compared to the features captured by a tcpdump.

6.2.2 Machine learning

As stated in section 6.1, the number of false positives in an anomaly-based NIDS is very

high, which might lead to alert fatigue. A possible solution to this is whitelisting/removing

the Azure IPs before being fed into the model and training the model in an online fashion,

enabling it to adapt to new data. Another solution is to use multiple machine learning

models with weighted voting to predict if a packet is anomalous. In section 5.1.3, it was

evaluated that having many features decreases the accuracy of an autoencoder model.

1The baseline score of the model was around 1, the packets from the attacker’s IP for a score of around
1.6 to 1.8 while Azure datacentre IPs got a higher score of around 3-4 consistently

83

Hence, one model can be trained on just packet load, another on packet features and

combining this with a packet flow would possibly reduce the number of false positives(49).

This approach also might prevent against ”tunneling”, i.e. placing the data of a packet

of one protocol into the payload of another packet.

6.3 Reflection

This research project was a great learning experience for me. I got the opportunity to

learn and deploy applications using containers, both locally on minikube and Azure. I also

learned about the basics of network security and how cybercriminals can exploit various

vulnerabilities in a website. This research project was my first end to end machine learning

project as well, and deploying a prototype of a NIDS gave me an idea of how ML models

can be used in real-world applications.

84

Bibliography

[1] Johnson, Joseph: Number of internet users worldwide 2005-

2021 — Statista. https://www.statista.com/statistics/273018/

number-of-internet-users-worldwide/. Version: 2021

[2] Tung, Liam: Hackers target kubernetes to steal data and processing power.

now the NSA has tips to protect yourself. https://www.zdnet.com/article/

hacker-target-kubernetes-to-steal-data-and-processing-power-now-the-nsa-has-tips-to-protect-yourself/.

Version:Aug 2021

[3] Team, RedLock C.: Lessons from the cryptojacking attack at Tesla. https://

redlock.io/blog/cryptojacking-tesla. Version:Aug 2018

[4] Greig, Jonathan: Researchers find new attack vector against Kubernetes Clus-

ters via misconfigured Argo workflows instances. https://www.zdnet.com/article/

researchers-find-new-attack-vector-against-kubernetes-clusters-via-misconfigured-argo-workflows-instances/.

Version: Jul 2021

[5] Osnat, Rani: A brief history of containers: From

the 1970s till now. https://blog.aquasec.com/

a-brief-history-of-containers-from-1970s-chroot-to-docker-2016.

Version: Jan 2020

[6] Welcome to linux-vserver.org. http://linux-vserver.org/Welcome_to_

Linux-VServer.org

[7] corbet: Process containers. https://lwn.net/Articles/236038/. Version:May

2007

[8] Williams, Alex: Docker donates container format and runtime code,

joins with coreos to form standards group. https://thenewstack.io/

docker-donates-container-format-and-runtime-code-joins-coreos-to-form-standards-group/.

Version: Feb 2019

85

https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
https://www.zdnet.com/article/hacker-target-kubernetes-to-steal-data-and-processing-power-now-the-nsa-has-tips-to-protect-yourself/
https://www.zdnet.com/article/hacker-target-kubernetes-to-steal-data-and-processing-power-now-the-nsa-has-tips-to-protect-yourself/
https://redlock.io/blog/cryptojacking-tesla
https://redlock.io/blog/cryptojacking-tesla
https://www.zdnet.com/article/researchers-find-new-attack-vector-against-kubernetes-clusters-via-misconfigured-argo-workflows-instances/
https://www.zdnet.com/article/researchers-find-new-attack-vector-against-kubernetes-clusters-via-misconfigured-argo-workflows-instances/
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
http://linux-vserver.org/Welcome_to_Linux-VServer.org
http://linux-vserver.org/Welcome_to_Linux-VServer.org
https://lwn.net/Articles/236038/
https://thenewstack.io/docker-donates-container-format-and-runtime-code-joins-coreos-to-form-standards-group/
https://thenewstack.io/docker-donates-container-format-and-runtime-code-joins-coreos-to-form-standards-group/

[9] What is a virtual machine and how does it work: Microsoft azure. https://azure.

microsoft.com/en-us/overview/what-is-a-virtual-machine/#overview

[10] Buchanan, Ian: Containers vs virtual machines. https://www.atlassian.com/

continuous-delivery/microservices/containers-vs-vms

[11] Clancy, Molly: Docker containers vs. VMS: Pros and cons of containers

and Virtual Machines. https://www.backblaze.com/blog/vm-vs-containers/.

Version:Oct 2021

[12] Use containers to Build, Share and Run your applications. https://www.docker.

com/resources/what-container/. Version:Mar 2022

[13] What is a container? https://azure.microsoft.com/en-us/overview/

what-is-a-container/

[14] Jones, Doug: Containers vs. Virtual Machines (VMS): What’s the difference?

https://www.netapp.com/blog/containers-vs-vms/. Version:Mar 2018

[15] What is kubernetes? https://kubernetes.io/docs/concepts/overview/

what-is-kubernetes/. Version: Jul 2021

[16] Mitevski, Kristijan: Tracing the path of network traffic in Kubernetes. https:

//learnk8s.io/kubernetes-network-packets. Version: Jan 2022

[17] Jordan, M. I. ; Mitchell, T. M.: Machine learning: Trends, perspectives, and

prospects. In: Science 349 (2015), Nr. 6245, 255-260. http://dx.doi.org/10.1126/

science.aaa8415. – DOI 10.1126/science.aaa8415

[18] Pereira, F. ; Norvig, P. ; Halevy, A.: The Unreasonable Effectiveness of Data.

In: IEEE Intelligent Systems 24 (2009), mar, Nr. 02, S. 8–12. http://dx.doi.org/

10.1109/MIS.2009.36. – DOI 10.1109/MIS.2009.36. – ISSN 1941–1294

[19] Sarker, Iqbal H.: Machine learning: Algorithms, real-world applications and re-

search directions. In: SN Computer Science 2 (2021), Nr. 3, S. 1–21

[20] Chandola, Varun ; Banerjee, Arindam ; Kumar, Vipin: Anomaly Detection:

A Survey. In: ACM Comput. Surv. 41 (2009), jul, Nr. 3. http://dx.doi.org/10.

1145/1541880.1541882. – DOI 10.1145/1541880.1541882. – ISSN 0360–0300

[21] Schubert, Erich ; Sander, Jörg ; Ester, Martin ; Kriegel, Hans P. ; Xu,

Xiaowei: DBSCAN revisited, revisited: why and how you should (still) use DBSCAN.

In: ACM Transactions on Database Systems (TODS) 42 (2017), Nr. 3, S. 1–21

86

https://azure.microsoft.com/en-us/overview/what-is-a-virtual-machine/#overview
https://azure.microsoft.com/en-us/overview/what-is-a-virtual-machine/#overview
https://www.atlassian.com/continuous-delivery/microservices/containers-vs-vms
https://www.atlassian.com/continuous-delivery/microservices/containers-vs-vms
https://www.backblaze.com/blog/vm-vs-containers/
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://azure.microsoft.com/en-us/overview/what-is-a-container/
https://azure.microsoft.com/en-us/overview/what-is-a-container/
https://www.netapp.com/blog/containers-vs-vms/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://learnk8s.io/kubernetes-network-packets
https://learnk8s.io/kubernetes-network-packets
http://dx.doi.org/10.1126/science.aaa8415
http://dx.doi.org/10.1126/science.aaa8415
http://dx.doi.org/10.1109/MIS.2009.36
http://dx.doi.org/10.1109/MIS.2009.36
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1145/1541880.1541882

[22] Sharma, Abhishek: How does DBSCAN clustering work?: DBSCAN

clustering for ML. https://www.analyticsvidhya.com/blog/2020/09/

how-dbscan-clustering-works/. Version:Oct 2020

[23] Sakurada, Mayu ; Yairi, Takehisa: Anomaly Detection Using Autoencoders with

Nonlinear Dimensionality Reduction. In: Proceedings of the MLSDA 2014 2nd Work-

shop on Machine Learning for Sensory Data Analysis. New York, NY, USA : Asso-

ciation for Computing Machinery, 2014 (MLSDA’14). – ISBN 9781450331593, 4–11

[24] Liu, Fei T. ; Ting, Kai M. ; Zhou, Zhi-Hua: Isolation forest. In: 2008 eighth ieee

international conference on data mining IEEE, 2008, S. 413–422

[25] MITRE ATT&CK®. https://attack.mitre.org/

[26] McAfee: What is the MITRE ATT&CK framework? https:

//www.mcafee.com/enterprise/en-us/security-awareness/cybersecurity/

what-is-mitre-attack-framework.html

[27] Network intrusion detection system: Managed ids. https://www.redscan.com/

services/managed-intrusion-detection-system/. Version:Dec 2021

[28] Vacca, John R.: Network and system security. Elsevier, Inc, 2014

[29] Liao, Hung-Jen ; Richard Lin, Chun-Hung ; Lin, Ying-Chih ; Tung,

Kuang-Yuan: Intrusion detection system: A comprehensive review. In:

Journal of Network and Computer Applications 36 (2013), Nr. 1, 16-24.

http://dx.doi.org/https://doi.org/10.1016/j.jnca.2012.09.004. – DOI

https://doi.org/10.1016/j.jnca.2012.09.004. – ISSN 1084–8045

[30] Rezek, Michael: What is the difference between signature-based and

behavior-based intrusion detection systems? https://accedian.com/blog/

what-is-the-difference-between-signature-based-and-behavior-based-ids/.

Version: 2022

[31] Kiennert, Christophe ; Ismail, Ziad ; Debar, Herve ; Leneutre, Jean: A

Survey on Game-Theoretic Approaches for Intrusion Detection and Response Opti-

mization. In: ACM Comput. Surv. 51 (2018), aug, Nr. 5. http://dx.doi.org/10.

1145/3232848. – DOI 10.1145/3232848. – ISSN 0360–0300

[32] Anwar, Shahid ; Mohamad Zain, Jasni ; Zolkipli, Mohamad F. ; Inayat, Zakira

; Khan, Suleman ; Anthony, Bokolo ; Chang, Victor: From Intrusion Detection to

87

https://www.analyticsvidhya.com/blog/2020/09/how-dbscan-clustering-works/
https://www.analyticsvidhya.com/blog/2020/09/how-dbscan-clustering-works/
https://attack.mitre.org/
https://www.mcafee.com/enterprise/en-us/security-awareness/cybersecurity/what-is-mitre-attack-framework.html
https://www.mcafee.com/enterprise/en-us/security-awareness/cybersecurity/what-is-mitre-attack-framework.html
https://www.mcafee.com/enterprise/en-us/security-awareness/cybersecurity/what-is-mitre-attack-framework.html
https://www.redscan.com/services/managed-intrusion-detection-system/
https://www.redscan.com/services/managed-intrusion-detection-system/
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2012.09.004
https://accedian.com/blog/what-is-the-difference-between-signature-based-and-behavior-based-ids/
https://accedian.com/blog/what-is-the-difference-between-signature-based-and-behavior-based-ids/
http://dx.doi.org/10.1145/3232848
http://dx.doi.org/10.1145/3232848

an Intrusion Response System: Fundamentals, Requirements, and Future Directions.

In: Algorithms 10 (2017), Nr. 2. http://dx.doi.org/10.3390/a10020039. – DOI

10.3390/a10020039. – ISSN 1999–4893

[33] Garćıa-Teodoro, P. ; D́ıaz-Verdejo, J. ; Maciá-Fernández, G. ;

Vázquez, E.: Anomaly-based network intrusion detection: Techniques, sys-

tems and challenges. In: Computers Security 28 (2009), Nr. 1, 18-28.

http://dx.doi.org/https://doi.org/10.1016/j.cose.2008.08.003. – DOI

https://doi.org/10.1016/j.cose.2008.08.003. – ISSN 0167–4048

[34] Denning, Dorothy ; Neumann, Peter G.: Requirements and model for IDES-a

real-time intrusion-detection expert system. Bd. 8. SRI International Menlo Park,

1985

[35] Ye, Nong ; Emran, Syed M. ; Chen, Qiang ; Vilbert, Sean: Multivariate statisti-

cal analysis of audit trails for host-based intrusion detection. In: IEEE Transactions

on computers 51 (2002), Nr. 7, S. 810–820

[36] Estevez-Tapiador, Juan M. ; Garcia-Teodoro, Pedro ; Diaz-Verdejo, Je-

sus E.: Stochastic protocol modeling for anomaly based network intrusion detection.

In: First IEEE International Workshop on Information Assurance, 2003. IWIAS

2003. Proceedings. IEEE, 2003, S. 3–12

[37] Karode, Sameer P.: Monitoring Kubernetes Clusters With Dedicated Sidecar Net-

work Sniffing Containers, Trinity College, University of Dublin, Diplomarbeit, 2020

[38] Tony, Irene A.: Application of Machine Learning with Traffic Monitoring to In-

trusion Detection in Kubernetes Deployments, Trinity College, University of Dublin,

Diplomarbeit, 2021

[39] Casas, Pedro ; Mazel, Johan ; Owezarski, Philippe: Unsuper-

vised Network Intrusion Detection Systems: Detecting the Unknown with-

out Knowledge. In: Computer Communications 35 (2012), Nr. 7, 772–783.

http://dx.doi.org/https://doi.org/10.1016/j.comcom.2012.01.016. – DOI

https://doi.org/10.1016/j.comcom.2012.01.016. – ISSN 0140–3664

[40] Spiekermann, Daniel ; Keller, Jörg: Unsupervised packet-based anomaly

detection in virtual networks. In: Computer Networks 192 (2021), 108017.

http://dx.doi.org/https://doi.org/10.1016/j.comnet.2021.108017. – DOI

https://doi.org/10.1016/j.comnet.2021.108017. – ISSN 1389–1286

88

http://dx.doi.org/10.3390/a10020039
http://dx.doi.org/https://doi.org/10.1016/j.cose.2008.08.003
http://dx.doi.org/https://doi.org/10.1016/j.comcom.2012.01.016
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2021.108017

[41] Minikube start. https://minikube.sigs.k8s.io/docs/start/

[42] Perry, Yifat: Eks vs AKS: Head-to-head. https://cloud.netapp.com/blog/

aws-cvo-blg-eks-vs-aks-head-to-head. Version:Aug 2021

[43] DataTechNotes: Anomaly detection example with DB-

SCAN in python. https://www.datatechnotes.com/2020/04/

anomaly-detection-with-dbscan-in-python.html. Version:Apr 2020

[44] Schmidt, Robin M. ; Schneider, Frank ; Hennig, Philipp: Descending

through a Crowded Valley - Benchmarking Deep Learning Optimizers. In: CoRR

abs/2007.01547 (2020). https://arxiv.org/abs/2007.01547

[45] Syarif, Iwan ; Prugel-Bennett, A. ; Wills, Gary: Unsupervised Clustering

Approach for Network Anomaly Detection, 2012. – ISBN 978–3–642–30506–1

[46] Fontanini, Matias: Libtins. http://libtins.github.io/benchmark/

[47] Kamara, Or: Hack my mis-configured Kubernetes -

Privileged Pods. https://www.cncf.io/blog/2020/10/16/

hack-my-mis-configured-kubernetes-privileged-pods/. Version: Feb 2022

[48] Documentation: Using network policy logging nbsp;—nbsp; Kubernetes En-

gine Documentation nbsp;—nbsp; google cloud. https://cloud.google.com/

kubernetes-engine/docs/how-to/network-policy-logging

[49] Mirsky, Yisroel ; Doitshman, Tomer ; Elovici, Yuval ; Shabtai, Asaf: Kitsune:

An Ensemble of Autoencoders for Online Network Intrusion Detection. In: CoRR

abs/1802.09089 (2018). http://arxiv.org/abs/1802.09089

89

https://minikube.sigs.k8s.io/docs/start/
https://cloud.netapp.com/blog/aws-cvo-blg-eks-vs-aks-head-to-head
https://cloud.netapp.com/blog/aws-cvo-blg-eks-vs-aks-head-to-head
https://www.datatechnotes.com/2020/04/anomaly-detection-with-dbscan-in-python.html
https://www.datatechnotes.com/2020/04/anomaly-detection-with-dbscan-in-python.html
https://arxiv.org/abs/2007.01547
http://libtins.github.io/benchmark/
https://www.cncf.io/blog/2020/10/16/hack-my-mis-configured-kubernetes-privileged-pods/
https://www.cncf.io/blog/2020/10/16/hack-my-mis-configured-kubernetes-privileged-pods/
https://cloud.google.com/kubernetes-engine/docs/how-to/network-policy-logging
https://cloud.google.com/kubernetes-engine/docs/how-to/network-policy-logging
http://arxiv.org/abs/1802.09089

Appendix

.1 Difference in sending requests from different pods

For testing this, a basic hello-node application was deployed.

Figure 1: Sending request from a pod to a service

Figure 2: Sending request from tcpdump-container

90

https://kubernetes.io/docs/tutorials/hello-minikube/#create-a-deployment

.2 Code for polling script in tcpdump-container

import time

import os

import queue

import requests

jobs = queue.Queue(maxsize=1000)

env_dict = os.environ

SERVICE = env_dict["PCAP_INTERNAL_SERVICE_SERVICE_HOST"]

PORT = env_dict["PCAP_INTERNAL_SERVICE_SERVICE_PORT"]

set_of_files = set()

def check_new_files(path):

list_of_new_files = []

for f in os.listdir(path):

filename = os.path.join(path, f)

if filename not in set_of_files:

list_of_new_files.append(filename)

set_of_files.add(filename)

return list_of_new_files

def send_file(path):

try:

with open(path, "rb") as file:

file_dict = {"uploaded_file": file}

try:

response = requests.post(

f"http://{SERVICE}:{PORT}/file",

91

files=file_dict

)

return response.status_code

except Exception as e:

print(e)

except Exception as e:

print(e)

while True:

new_files = check_new_files("pcap-to-send/")

if len(new_files) != 0:

for file in sorted(new_files):

if str(file).endswith(".pcap"):

jobs.put(file)

print(f"{file} is in queue")

time.sleep(5)

if not jobs.empty():

path = jobs.get()

status_code = send_file(path)

if str(status_code) == "200":

print(f"{path} is being sent to pcap-service")

os.remove(path)

else:

jobs.put(path)

print(f"{path} is being re-added to queue")

Listing 1: Dockerfile for Pcap service

.3 YAML files for MySQL in Kubernetes

apiVersion: v1

kind: PersistentVolume

metadata:

name: mysql-pv-volume

92

labels:

type: local

spec:

storageClassName: manual

capacity:

storage: 10Gi

accessModes:

- ReadWriteOnce

hostPath:

path: "/mnt/data"

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

name: mysql-pv-claim

spec:

storageClassName: manual

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 10Gi

Listing 2: YAML file for creating PV and PVC for a MySQL database

This resource was then mounted to the container, as shown in the snippet for the

Deployment YAML.

spec:

containers:

- image: mysql:oracle

name: mysql

env:

- name: MYSQL_ROOT_PASSWORD

value: <password>

ports:

- containerPort: 3306

name: mysql

93

volumeMounts:

- name: mysql-persistent-storage

mountPath: /var/lib/mysql

volumes:

- name: mysql-persistent-storage

persistentVolumeClaim:

claimName: mysql-pv-claim

Listing 3: YAML file for a MySQL database

94

95

.4 Console outputs of Nmap and WPScan

Figure 3: Output of the WPScan for dictionary attack to generate
anomalous data

96

Figure 4: Output of the Nmap script 4.17

.5 Falco scanner in Kubernetes

A Falco security scanner was installed on the node using Helm2 with the default ruleset,

and it identified the tcpdump container running in a privileged pod as a security risk as

shown in figure 5.

2Chart available at: https://github.com/falcosecurity/charts/tree/master/falco

97

Figure 5: Console output of Falco scanner while running NIDS

.6 Calculating packet flow using destination IP

This packet flow code assigns a packet flow based on the destination IP of the packet.

total_packet_list = []

for ts in range(min_timestamp, max_timestamp , 10):

interval = 9

if ts + interval > max_timestamp:

interval = max_timestamp - ts

get all the rows for the interval

time_df = time_analysis[time_analysis['timestamp_int']

.between(ts, ts+interval)].copy()

create a dictionary from the dataframe

ip_value_count_dict = time_df['ip.dst'].value_counts().to_dict()

apply the dictonary values to the IPs

time_df['packet_flow_10_s'] = time_df['ip.dst'].apply

(lambda x: ip_value_count_dict[str(x)])

create a list that will be used for appending to the final

dataframe

for x in list(time_df['packet_flow_10_s']):

98

total_packet_list.append(x)

Listing 4: Python snippet to calculate packet flow using destination IP of the packet

99

	Abstract
	Acknowledgments
	Chapter Introduction
	Problem area
	Research objectives
	Structure of the report

	Chapter State of the Art
	Background
	Virtual Infrastructure
	Brief history of containers
	Need for containers
	VMs vs containers
	Kubernetes architecture
	Kubernetes networking

	Machine Learning
	Types of machine learning algorithms
	Classification of anomaly detection
	Anomaly detection using density based clustering
	Anomaly detection using neural network
	Anomaly detection using tree-based technique

	Intrusion Detection System
	Taxonomy of cyber attacks
	Classification of an IDS based on analysed activity
	Classification of an IDS based on detection method
	Classification of an IDS based on behaviour on detection
	Anomaly-based NIDS

	Related projects
	Monitoring Kubernetes Clusters With Dedicated Sidecar Network Sniffing Containers
	Application of Machine Learning with Traffic Monitoring to Intrusion Detection in Kubernetes Deployments
	Unsupervised Network Intrusion Detection Systems: Detecting the Unknown without Knowledge
	Unsupervised Packet-based Anomaly Detection in Virtual Networks

	Summary

	Chapter Design
	Deployment platform
	Local deployment
	Cloud deployment
	Docker images

	Architecture of the NIDS
	Collecting data
	Machine learning enivironment
	Workflow
	Summary

	Chapter Implementation
	Deployment of Kubernetes cluster
	Local deployment
	Cloud deployment
	Differences in local vs cloud deployment

	Implementing system architeture
	Tcpdump container
	Type of pod
	Capturing tcpdump
	Sending pcap file to pcap-service
	Creating tcpdump docker image
	Deploying and collecting data

	Pcap service
	Flask server
	Processing pcap

	Model service
	Preprocessing data
	Predicting scores

	MySQL database
	Back-end service
	Flask server

	Simulating an attack
	Port scanning
	Dictionary attack

	Creating machine learning models
	Data collection
	Data preprocessing
	Processing pcap
	Processing CSV

	Clustering using DBSCAN
	Anomaly detection using Isolation Forest
	Anomaly detection using packet flow
	Anomaly detection using packet data

	Autoencoders
	Training an autoencoder model
	Scoring

	Supervised Learning

	Chapter Evaluation
	Evaluating machine learning models
	Clustering using DBSCAN
	Dimensionality reduction
	Evaluating DBSCAN

	Isolation Forest
	Autoencoders
	Model 1
	Model 2
	Model 3
	Model 4
	Model 5
	Limitations of autoencoders

	Supervised learning

	Evaluating the architecture
	Limitations of the prototype
	Tcpdump container
	Pcap service
	Model service
	MySQL database
	Backend service

	Improved architrecture for the prototype

	Chapter Conclusions & Future Work
	Conclusion
	Future work
	NIDS prototype
	Machine learning

	Reflection

	Bibliography
	Appendices
	Difference in sending requests from different pods
	Code for polling script in tcpdump-container
	YAML files for MySQL in Kubernetes
	Console outputs of Nmap and WPScan
	Falco scanner in Kubernetes
	Calculating packet flow using destination IP

