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Abstract

Online gaming is more popular than ever before, with a consistently increasing player
population and a trend to build large-scale online games. These large-scale games are
growing in number with increasing virtual-world size, simultaneous player count and
complexity.

The problem with building large-scale games with increasing virtual world size, number of
simultaneous players, and complexity is the cost this requires. It is a financially expensive
task to build and support distributed and scalable online games. In addition to this, it
requires time and extensive research. Often, this research is completed by companies
with no vested interest in sharing or distributing it. This results in a repeated effort to
achieve similar goals. This cost can directly restrict the accessibility of development of
these large-scale online games and experiences.

The goal of this work is to present and evaluate the design of a model and framework
that can be used to create distributed, online games. The framework was implemented
through software and used to build an example distributed online game. This approach
was evaluated with respect to reusability, accessibility, performance and reliability. The
results of this work show that this framework can support 100 concurrent players per
partition with 90ms average event request latency and an event loss rate of 1.33
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“There is an old network saying: Bandwidth problems can be cured with
money. Latency problems are harder because the speed of light is fixed–you
can’t bribe God”

– David Clark, MIT
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1 Introduction

In 2020 the global gaming population was estimated to be around 3.1 billion (DFC
2020). This number is expected to grow as we evolve into a more online-oriented
generation. In 2020 alone, global gaming revenue grew by 23% (Williams 2022), thanks
in no small part to the covid-19 pandemic. These statistics convey the popularity and
growth of the general video game industry.

According to the popular PC game distribution platform Steam (Valve 2022d), of the
ten most popular games played (Valve 2022c), nine are classified as "online” games. Of
these, seven can only be played online. According to these statistics, for the 24 hour
period (26/03/2022), the peak concurrent user counts for the top 3 games were 980
thousand, 720 thousand, 560 thousand, for Counter-Strike: Global Offensive (Valve
2022a), Dota 2 (Valve 2022b) and Elden Ring (Valve 2022b) respectively. In this
example, “concurrent” users refer to the total number of people who have launched the
application for that game. These numbers offer an indication of the concurrent load and
scale at which these games operate. However, these only include accounts logged into
the game from the PC platform, Steam.

To further demonstrate the popularity scale of each game session, consider the industry
leaders Fortnite (2017) (Epic 2022a) and Roblox (2006) (Corporation 2022). For
background on these games, Fortnite is a competitive game where users, also referred to
as “players”, compete in game sessions. The terms users and players will be used
interchangeably in this report. A “game session” consists of a single match that
simultaneously supports up to 100 players in a large virtual space. The last player
standing wins the game. Therefore, each game session is required to scale to 100 players
in a performant and consistent manner as it is a competitive experience. Roblox is a
game that can support up to 700 players per game session. The game session itself is a
virtual space where players can create, chat with other players, and explore
user-generated virtual environments. These numbers represent the scale of concurrent
players within a session in these popular online games.

While these games maintain a high level of scale, with a large number of concurrent
players within each game session performance also needs to be specified. The
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performance measure of focus in this work is latency. According to the ’British Esports
Association’, a latency of between 5 and 60ms is considered suitable for competitive
play within first-person shooter games (FPS), while any higher than 100ms is generally
undesirable for competitive play, but may be suitable for other game types (BSA 2022).
Fortnite is a competitive third-person shooter (TPS) and requires a similar level of
performance to an FPS. Relative to Fortnite, Roblox does not require the same degree
of low latency, with community guides (Anon 2022a) suggesting a latency above 1000ms
will demonstrate visible lag in the game client.

According to the Epic Games 2020 quarterly business review (Epic 2020), Fortnite has
amassed over 350 million registered user accounts, with 80 million monthly active users.
The all-time peak concurrent user count was 15.3 million (FortniteGame 2020) across all
game sessions. This all-time peak came from the introduction of a so called "live-event",
a virtual experience such as a virtual concert or combined effort activity. To reiterate,
concurrent users refer to the number of users who have launched the application for
that game simultaneously. Monthly active users refer to the number of users who have
launched the game application within that month. Roblox has over 230 million
registered user accounts, with an all-time peak concurrent user count of 5.7 million
users (Dean 2022) across all game sessions. These games are massively ambitious and
built using complex and expensive systems that scale to support large numbers of users.
These numbers indicate the massive scale these online games can eventually reach. The
key statistics that most relate to this work are the number of concurrent users. This
data represent the current upper bound for cross-session scale in the industry.

While not the first to introduce large-scale games, Fortnite has popularised the idea of
building bigger. Fortnite is a game that supports a capacity of 100 players in a game
session, with a map size of 3.5km2. This influence can be seen in many highly popular
games today. Examples include EA’s Apex Legends (EA 2022) with 60 player game
sessions and a 4km2, Activision’s Call of Duty: Warzone (Ward 2022) with 150 player
game sessions and a 9km2 game world. Numerous other games continue this trend.
These examples further demonstrate the influence and trend to build large-scale games
with more simultaneous players in a single game session.

Online gaming has now become more ubiquitous than ever before. The games that
support this industry are similarly growing in scale. In addition to this, the line
between a game and a virtual experience is growing increasingly thin. These games and
experiences are becoming more ambitious, with more concurrent players and large,
complex worlds.
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1.1 Problem

This work is concerned with increasing accessibility in the design and implementation of
scalable and consistent online games and similar virtual world experiences. Accessibility
in this work relates to the cost and difficulty in designing and building for scale in
games.

1.2 Motivation

This work is motivated by the following factors:

Firstly, it is motivated by the growing demand for online, large-scale, shared-world
experiences. It has been shown that these online games and virtual world experiences
are increasing in popularity and scale. The increased demand catalyses and exposes
weaknesses in the development process, such as the lack of publicly available standard
practices. A standard approach and framework would greatly benefit the speed and
development process.

Secondly, it is motivated by the difficulty in building distributed online games and
virtual worlds. As these are distributed systems, creating these systems is a non-trivial
task. This is because specific problems begin to arise, such as maintaining consistency
between different views of the game and ensuring the cost of consistency does not
negatively impact the performance and scalability of the game. If there existed a
standard model to define and build scale in online games, this would reduce the
difficulty as many problems would already be addressed or highlighted for concern.

Thirdly, it is motivated by the high cost associated with building these games and
experiences. This cost is both financial and time-related regarding research, design,
implementation and maintenance. An example of cost can be seen from companies like
Meta, which recently invested 50 million dollars (Clark 2021) in developing new
Metaverse technologies and spending vast amounts of time and research into this area.
If there were a set of standard methodologies, then the goal of designing and building
these virtual experiences would be far less costly to reach.

This study is motivated by these three main concerns. Resolving these concerns would
greatly benefit independent developers and organisations that lack the resources
required to fund private research and development necessary to build scale in online
games and other virtual experiences.
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1.3 Approach

Accessibility was increased through the creation of a reusable model which can be
adapted through abstraction to many game types to design online, distributed games
and experiences. The model was applied through a low-cost framework by using
open-source software.

The framework was event-driven and horizontally scaled. The backbone of this
framework was Apache Kafka. This framework was concerned with permitting scale in
virtual worlds while not compromising on consistency and performance; this was
important to allow for competitiveness in games. With this in mind, performance
concerning latency and throughput to support player load should be satisfactory for
various games.

This work was evaluated based on the accessibility of the model and framework by
designing and implementing a toy example using these methods. The toy example
demonstrated the possibility of scale by increasing the number of concurrent players in
a game session and measuring the performance and reliability change. The performance
was measured with respect to latency. Reliability was measured with respect to the rate
of lost requests (in the form of events).

1.4 Challenges

Below are some of the main challenges that this work is faced with addressing:

• Reusability: How the model and framework can be abstract enough to be applied
to multiple types of games yet provide a standard approach.

• Consistency: How the model and framework achieve consistency and to what level
of consistency it can provide.

• Performance: How performance can be achieved at scale and to what level.

1.5 Contributions

This work presents the following contributions:

• A standard model used to design distributed, scalable and consistent online games
and virtual experiences.

• A software framework implemented through the combination of a Python API
and event-driven backbone. The concepts of the model are realized in the API.
This backbone is applied through Apache Kafka.
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• An implementation of an online, distributed, scalable and competitive online game
using the methods proposed in this work.

• A qualitative and quantitative analysis of the model, framework and
implementation as well as recommendations for future work.

1.6 Structure of Report

The report is divided into six chapters:

• Chapter one provides an introduction to the reader to the field relevant to this
study as well as outlining the problem, motivation, approach, challenges and
contributions of this work.

• Chapter two describes the state of the art in this field of study as well as extended
background information.

• Chapter three describes the model, and abstractions core to this work.

• Chapter four details the implementation of the framework, application of the
model and development process of an example game.

• Chapter five describes the evaluation of the model, implementation and
framework through qualitative and quantitative means.

• Chapter six provides the conclusion for this work.
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2 Related Works

This chapter discusses the state of the art in the fields relevant to distributed online
gaming. The objective of this chapter is to perform a review of the field to draw ideas
and concepts which inspire the main contributions of this work. The major areas that
are reviewed in this chapter concern Consistency in distributed systems, Online
multiplayer gaming and the Apache Kafka software product.

2.1 Consistency

A major challenge of this work surrounds consistency. Consistency is the abstract idea
that describes when two or more processes agree on the same value for an item of data.
These processes can be located on the same computer system (i.e. inter-process
communication) or, in the context of distributed systems, separate computer systems
altogether. The agreement refers to both reading and writing to that data. There are
multiple layers to consistency and these are described by consistency models.
Consistency models describe in detail the relationship between processes and data items
to provide a set of theoretical “guarantees” associated with that model. In short, when,
how and to what level of consistency is achieved. However, in nature, there are rarely
absolute guarantees. This section first describes a brief history of consistency followed
by some of these consistency models.

2.1.1 History

In 1985 the study of the distributed shared memory (DSM) allowed for abstraction in
the concept of shared data within a system of distributed computer systems (Cheriton
1985). The concept of inter-process communication was extended to create a theory for
DSM. This was achieved through asynchronous message passing. This created the same
problems encountered in the field of concurrency, inconsistency between what is written
and read by independent processes. From this increasingly common issue, the idea of
consistency models was born. (Steinke & Nutt 2004) phrased consistency models quite
well as “It can be seen as a contract between the memory implementation and the
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program utilising memory”. Consistency models also allowed developers to build
programs for DSMs without requiring knowledge of the underlying memory
implementation (Steinke & Nutt 2004). This benefit of abstraction was noted by this
study and employed in this work through the model, which presents similar abstractions
available to the game developer. (Cheriton 1985) had argued that at the time,
distributed file systems were suitable to handle DSM for most applications, however, we
feel this sentiment has aged poorly, as the requirements of applications have shifted
dramatically with the rise in popularity of internet applications such as internet
banking and card payment technology and generally any website that requires
reasonable scale in modern-day.

2.1.2 Consistency Models

The problem with achieving and maintaining Consistency is notably timeless as over
thirty years later it is one of the focal points of this review. With extensive research,
models have been designed over the years and can largely be separated into two major
categories, data-centric consistency models and client-centric consistency models.
Data-centric Consistency models define a set of guarantees with respect to the data
items, whereas client-centric describes the guarantees with relative to each client of the
shared data.

2.1.3 Data-centric Consistency Models

This subsection describes various data-centric consistency models relevant to this
work.

Strong and Weak Consistency

Data-centric models are defined along a spectrum from "strong" to "weak" consistency.
(Garcia-Molina & Wiederhold 1982) described that strong consistency requires the
schedule of all writes and reads to data items to be consistent across all systems. He
further elaborates that “since a consistent schedule is equivalent to some serial schedule,
all transactions in the schedule read consistent data.” Therefore all updates to data
items would need to be synchronised across all computer systems in the distributed
system.
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Figure 2.1: Consistency example described in (Garcia-Molina & Wiederhold 1982) (re-
drawn), ’red’ describes inconsistency in the state of a node.

Weak consistency is described by (Garcia-Molina & Wiederhold 1982) through a
banking example. The example imagines two nodes of shared data with initial value d,
and three messages M0, M1, M2, where M0 arrives first and M2 arrives last. According
to this definition, weak consistency allows the reading query to read any values that are
consistent, i.e. the deposit and withdrawals result in the balance. Comparing this to
strong consistency, strong can only read the latest consistent value.

Causal Consistency

Causal consistency, first described by (Hutto & Ahamad 1990) as "Causal Memory",
describes a stronger guarantee than Weak consistency. (Hutto & Ahamad 1990) built
from the consistency model from the ideas laid by (Lamport 1978) on partial ordering.
Partial ordering assumes there is some order between events of a process, which means
there is a sub-sequence of events (updates in this case) that might relate a set of events.
If a partial order exists between two updates, then those updates must happen in the
sequence of that partial order. This can be seen as a causal relationship, also referred to
as “happens-before”. In the banking example, M0 needs to happen before M2 so that
the state within each node is consistent. In this work, partial ordering is employed as
the basis for our hypothesis that there is a partial order between events in a partition of
the game and for consistency in gameplay, only those partitions of interest need to be
kept consistent.
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Sequential Consistency

Sequential consistency is a stronger requirement than causal consistency and builds on
this idea. This model requires a total order across all updates within the system. This
was described by (Dubois et al. 1986) through (Lamport 1979) as a solution to
achieving consistency in shared memory between multiple cores in a multi-core
processor. This idea was abstracted and carried over to distributed systems, where it
describes the "Sequential Consistency" model. This model requires the “total order” of
events described in (Lamport 1979) to be recognised by all systems. In the banking
example above, in sequential consistency, each node would process the received events
in the same total order as all other nodes, thus achieving consistency. Sequential
consistency is implemented later in the methods proposed in this work, more specifically
in the model chapter within streams.

Eventual Consistency and CAP

First proposed by (Vogels 2009), "Eventual Consistency" assumes that if there are no
more updates to data items, then all replicas will hold the same consistent values at
some point in the future. Eventual consistency is a stronger requirement than Weak
consistency as it guarantees that the consistent values read will eventually also be the
up-to-date/current values. (Vogels 2009) presented the concept of eventual consistency
as means to enable a “worldwide scale”, and we agree with his hypothesis. This is
because while Eventual Consistency is limited in its use-cases, it demonstrates the
relationship between availability and consistency as defined by the CAP theorem from
(Brewer 2000). The CAP theorem was a conjecture presented by Brewer without
evidence and is heavily citepd in this field. While his observations are considered by
many as fact, the theorem was proved in detail by (Gilbert & Lynch 2002). The CAP
theorem suggests that of the three objectives in distributed systems: “Consistency”,
“Availability”, and “Performance” only two can be achieved. While this theorem has a
proof detailed in (Gilbert & Lynch 2002), the CAP theorem has been observed in the
evaluation of our work.

2.1.4 Client-centric Consistency Models

Client-centric consistency models describe how each client of the system interacts with
the data of the system to gain client-level consistency. In other words it acts a the
contract of consistency between an individual client and the data of the system. Various
kinds of client-centric models are described below.
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Monotonic Reads Consistency

“Monotonic reads”, proposed by (Tanenbaum & Van Steen 2007) is a consistency model
that describes how each client of the system interacts with the data. This model
guarantees that if a client reads a data item, that client will never read a previous
instance of that item. As this is a client-centric model, this guarantee would only stand
for that client process.

Monotonic Writes Consistency

“Monotonic writes”, proposed by (Tanenbaum & Van Steen 2007) is a client-centric
consistency model that guarantees that a client process will partially order their own
updates to a data item in the order they were declared. For example, if a client writes
the value ‘x’ to data item 1 and then writes the value ‘y’ to that same data item, the
client would complete the initial write before starting the second write.

Read-your-writes Consistency

“Read-your-writes” consistency proposed by (Tanenbaum & Van Steen 2007) is a
client-centric consistency model that guarantees the availability of the previous update
of a data item made by that client process. This means that if a client process assigns a
value of ‘y’ to data item 1 then that client process will at least be able to return that
value on a read to data item 1.

Writes-follow-reads Consistency

“Writes-follow-reads” consistency proposed by (Tanenbaum & Van Steen 2007) is a
client-centric consistency model that guarantees a write by a client process will take
place on the last read value or more recent value of a data item.

2.2 Online Gaming

This section represents the research portion in online gaming. First a general
background will be discussed, then latency requirements for various games, current
architectures, distribution strategies, and finally compensatory techniques.

2.2.1 Background

Online gaming is an internet application and has been a growing area of academic and
industrial interest over the last 20 years (Diot & Gautier 1999). Due to a combination
of factors, namely rapid hardware advancement and the mass adoption of the internet,
gaming formed one of the largest revenue shares of the entertainment media industry.
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This, in turn, catalysed the development of new technology and innovation, specifically
inspired advancement in the field of multi-server and distributed internet applications.
Online gaming can be performed over many communication capable mediums such as
WiFi, LAN, Bluetooth, 3G etc. This work focuses on the internet-based form of online
gaming which can come in different architectures, mainly single-server and
multi-server.

2.2.2 Latency Requirements

An interesting quirk of online gaming is that, while different online games can function
in similar ways they can require different performances by their audiences. It should be
noted that there is a distinction between noticeable performance and tolerable
performance. Noticeable latency is the threshold at which latency begins to be felt by
the player. Tolerable latency is the threshold at which the player begins to have an
unpleasant experience within the game. (Brandt 2009) collated the responses of several
research papers on the subjective performance requirements of players. While that work
acts as a good indication of the kinds of requirements these games can have, it is far
from an exhaustive list and as it was published in 2007, gaming demands, in general,
have also changed since then.

Genre Noticeable Latency Tolerable Latency

RTS 250ms 800ms
Sports n/a 500ms
Driving 50ms 100ms

FPS 75ms 100ms
MMORPG n/a 1250ms

Table 2.1: This table displays the latency requirements specified in (Brandt 2009)

To explain the above table 2.1, For each genre above, either one or two games were
analysed in research papers. The genres and research papers are outlined below.

• RTS stands for real-time strategy; this is a game where players command a group
of units to battle the other player’s units. The games surveyed were Age of
Empires and Warcraft III were surveyed in (Bettner & Terrano 2001) and
(Sheldon et al. 2003) respectively.

• The Sports game NFL (2004), a real-time American football game was surveyed in
(Nichols & Claypool 2004).

• The Driving game was custom built for research in (Pantel & Wolf 2002).

• FPS stands for first-person shooter which is a game that requires fast reflexes
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from the player and therefore, lower latency. The game Unreal Tournament
(2003) was researched in (Beigbeder et al. 2004).

• MMORPG is a combination of the genres “Massively Multiplayer Online” and
“Role-playing Game”. These games are large in scale with many concurrent
players but typically do not require fast reactions from the player. The game
researched was Everquest II in (Fritsch et al. 2005).

2.2.3 Single Server Architectures

Initially, multiplayer games of the early 2000s followed a traditional client and server
model, games such as: Halo: CE, Counter Strike, and TF2. This approach was
appropriate to its scale as online games were small and relatively simple. In the case of
Counter-strike, one of the most influential online games of the early 2000s, up to 22
players would communicate to a single centralised server. However, gaming in recent
years appears quite different in comparison to the early 2000s and game worlds, in
general, are becoming increasingly more significant. With more concurrent players in
large shared spaces, scalability becomes the apparent issue. In Battlefield 2042 (2021) ,
a game session can support up to 128 players on a single server (Dev Team 2021). The
game MAG (2010) could support up to 256 players per server (Anon 2022b). This is an
impressive feat, especially for 2010. However, there is no publicly available information
regarding how this was achieved.

2.2.4 Distributed Architectures

In recent years, however, distributed server architectures have become increasingly
popular (Waldo 2008). This is clear from the increased prevalence of Massively
Multiplayer Online games (MMOs). Games such as World of Warcraft, FFXI, Destiny
2. These types of games cannot achieve a “massive” scale from single server
architectures, and so evolved to use multi-server approaches(Webb et al. 2006). (Waldo
2008) makes the important point that developing online games requires a different
approach than other internet applications. This is because online gaming is a part of
the entertainment industry and the primary objective is that it needs to be fun. (Waldo
2008) remarks that “Latency is the enemy of fun” and this is why latency is one of the
main evaluation criteria of the work.

In a broader sense, the type of architecture is causally linked to the type of game. First
Person Shooter (FPS) games are notably smaller in scale, prioritising communication
over complicated logic (Glinka et al. 2008). MMOs require large shared worlds to be
maintained, prioritising scale and complex logic over highly accurate and real-time
communications. This distinction is important as it provides some general guidelines on
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the overall architecture design.

Distributed server architectures can be divided into 2 general groups, multi-server and
peer-to-peer. Multi-server approaches are commonly used today to achieve scale in
online games (Chambers et al. 2010). Multi-server in this context means that the
servers are communicating to create the virtual world experience for the client, while
the servers are privately owned by that organisation.

P2P gaming architectures are inherently enticing as a concept. In theory, they offer
scalability, low overhead, distribution and decentralisation at no service cost to the
game developers. However, as we have already discussed, CAP limits the performance
here. P2P gaming has been explored since the 1990s, (Diot & Gautier 1999) claimed
the validity of scalable distributed P2P architectures to host an online game
synchronised using RTP and IP multicast techniques, however, there were several issues
with this work. For one, the solution was not tested rigorously enough to give
conclusive results, the game application was also quite simple compared to games at
that time, additionally, there was no comparison to the traditional client-server
implementation. However, it was a valid step in the direction of P2P online gaming and
works as a proof of concept.

2.2.5 Distribution Strategies

Distribution strategies are the building blocks of constructing distributed online games.
They describe partitioning and replication of the virtual environment. Distribution
strategies are abstract techniques meant to manage the load on a server or group of
servers. The primary examples of such strategies include Zoning, Instancing and
Sharding (Glinka et al. 2008).

Zoning

Zoning is the concept that a single virtual world ‘map’ is divided into specific
sub-spaces named ‘Zones’. Each Zone is assigned to a single server or server process.
Any communications must go through the server responsible for that zone. These are
effectively area-based partitions of the virtual world within the game. The zoning
concept was adopted by this work to create ‘streams’ found within the model and
implementation. This is because a single leader with multiple followers is similar is the
same model offered by Kafka in topic partitions, discussed later in this chapter.
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Figure 2.2: Zoning illustrated, this figure was extracted from (Glinka et al. 2008).

Instancing

Instancing (Glinka et al. 2008) is the concept of hosting multiple versions of the same
virtual environment within the game, called an ‘instance’. An instance is only created
for a purpose i.e. a client/player enters a specific area that needs to be separated from
the global space. The instance is assigned to a server and destroyed when all
clients/players leave that instance. This is a form of replication on a comparatively
small scale.

Figure 2.3: Instancing illustrated, this figure was extracted from (Glinka et al. 2008).

Sharding

Sharding (Waldo 2008), in this context, means representing the same area on multiple
servers and holding each server responsible for that set of data. Data that a server is
responsible for is called an entity, entities are replicated on the other servers and called
shadow entities. Therefore a client can theoretically request data from one server and
build an image of the game at that time. While the term ‘Sharding’ is used frequently
in the field of distributed systems and distributed databases, substantial evidence points
to the etymology of Ultima Online (Team 2022), where the term was used to describe
replicas within the MMO game.
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Figure 2.4: Zoning illustrated, this figure was extracted from (Glinka et al. 2008).

These orthogonal techniques can also be combined to create complex distributed models
for game worlds (Waldo 2008), for example, one large map can be maintained while
smaller instanced areas (interiors) can be instanced for each player. Zones can also be
overlapped to allow for seamless traversal for the client. This was implemented
successfully in (Waldo 2008) through the distributed system named ‘Darkstar’ from Sun
Microsystems Laboratories. It was a privately funded research project aimed at
designing “server-side infrastructure to exploit the multi-threaded, multi-core chips
being produced” while horizontally scaling over many server nodes. The goal was to
provide the developer with the illusion that they are developing a single-threaded
application. While the Darkstar project was advanced in its multi-threading
performance, it still relied on server nodes to process the state and distributed this state
to clients. However, the proposed methods in this work move the state computation to
the client to reduce the overall cost of such a system. Therefore, purpose-built,
computationally advanced server nodes would not be necessary, especially as they might
be provisioned and underutilised.

2.2.6 Compensatory Techniques

We now focus on the client itself and ‘Compensatory Techniques’ (Smed et al. 2001).
There exist architecture agnostic techniques to reduce the amount of data required by
each client to build a picture of the whole game state. Dead-Reckoning, Tick Frequency,
Interest Management, Message Compression.

Dead-reckoning

Dead-Reckoning is a technique to mitigate the absence of data, such as packet loss.
Originally used in aircraft navigation (Burbeck et al. 1954), it is now applied in some
form to virtually every online game involving movement. If data for a necessary entity
is missing on the client it will make a best-effort guess as to where the entity could be,
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where the data is missing. Various algorithms exist, the trivial solution is to just use
the previous positions. However, some may use a combination of the previous state and
linear/angular speed, with some advanced solutions performing physics simulations
(Epic 2022b).

Tick Frequency

Online games usually involve some form of execution that occurs in a loop, each loop is
referred to as a tick. Tick frequency relates to the rate at which the execution loop
within the game processes updates on the server, this is measured in Hz (Glinka et al.
2008). Tick frequency, therefore, influences the rate at which the client will receive
updates from the server. Increasing the ticks increases network traffic. For most
competitive play 60-120Hz is the ideal range of tick frequency, while 20hz is suited for
more casual experiences. It is also relevant to mention here that clients also use
interpolation techniques to show entities moving smoothly through the world between
ticks (Diot & Gautier 1999).

Interest Management

Interest management is a technique of managing the client’s "Area of Interest" (AOI).
Reducing the AOI of a client is an effort to reduce incoming network traffic (Roehl
1995). Clients express the data they are interested in, i.e. only data for the ‘Zone’
(Roehl 1995) or subspace they are situated in. (Glinka et al. 2008) mentioned this idea
but did not exploit this compensatory technique in their work; this will be explored in
our work, with an example in the implementation chapter. Pub/Sub models
theoretically suit this concept of AOI, where clients can subscribe to the data they are
interested in. This will further be explored in the model of this work in the section
regarding streams.

Message Compression

Message Compression techniques can be employed to reduce bandwidth within the
distributed architecture. This occurs by reducing the size of individual packets of data.
Data compression algorithms can be used (e.g. ’gzip’, ’snappy’, ‘lz4’) to reduce packet
size. (Brandt 2009) identified that compression techniques were used in the games
Quake II and Eve Online and also commented that “compression is an expensive
operation”, and this adds protocol compression lag to the packet while it travels
through the presentation layer. Another approach called ‘bundling’ requires multiple
messages to be aggregated to reduce overall header length. Compression can be an
effective solution to reducing bandwidth. However, we felt this would negatively impact
the model and framework as the frequency of events is so high that any additional lag
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to individual event packets could be multiplicative and detrimental. This was not
implemented in our work as it would require extensive evaluation and is not the
primary focus of our work.

2.3 Apache Kafka

This section will act as a brief introduction to Apache Kafka to convey the important
ideas necessary to understand this work.

2.3.1 Event Streaming

Kafka is an event-stream processing platform developed by Linkedin in 2011. The Kafka
documentation describes event streaming as “the practice of capturing data in
real-time”, forming this data into an event and “storing these events durable for later
retrieval” (Authors 2022). Event streaming effectively allows continuous streaming of
data which can be dealt with in any arbitrary way. Examples of data sources listed by
the (Authors 2022) are databases, sensors, mobile devices and cloud services.

2.3.2 Automation

In an age where business is more software-reliant than ever before, real-time automated
data processing is crucial. The users of these event streams are commonly not human
users but machines and software programs. To this end, the open-source and relatively
mature nature of Kafka has led to its popularity in the tech industry with Airbnb, The
New York Times, Goldman Sachs and Shopify all using Kafka (Authors 2022). This
popularity has resulted in numerous helpful APIs all constructed for several computer
languages such as ‘Kafka-python’(Python) ‘librdkafka’(C/C++), Java and more.

2.3.3 Architecture

Kafka is a distributed system in and of itself, consisting of servers known as brokers and
clients known as producers and consumers. Brokers contain distributed data and are
orchestrated by a Zookeeper node. This grouping of broker and Zookeeper nodes is
called a cluster. Brokers can be geographically distributed or contained within the same
data centre. Each broker has a unique ID within the cluster which is used to perform
identification and health checks, to identify broker outages.
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Figure 2.5: Architecture of an example Kafka cluster, with one zookeeper node, three
brokers and two client nodes.

2.3.4 Kafka Terminology

Key to understanding how Kafka works lie in its terminology. This section will explore
the main concepts through light explanations and illustrations.

Event

An ‘Event’ is the unit of data, also called a message read or written within Kafka. It is
a simple key-value data object with a timestamp. It may also include optional
meta-data headers.

Figure 2.6: Illustration of an event in Kafka composed of key, value, and timestamp.

Producer and Consumer

Producers are clients who send (publish) events to Kafka, while Consumers are clients
who read these events (subscribe). Therefore Kafka follows a Pub/Sub model.
Producers and consumers are naive to each other, allowing scaling through abstraction
as additional nodes can be added without a complex multicast configuration of IP
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addresses. Kafka also provides certain ‘guarantees’ such as “the ability to process events
exactly-once” (Authors 2022) similar to a traditional Queue platform. Kafka is agile as
it can operate in either Pub/Sub or Queue model simultaneously.

Figure 2.7: High level illustration of consumer and producer interaction with Kafka clus-
ter.

Topics

Events are stored in ‘topics’; simply put, these are groupings of events. Topics can have
any number of producers or subscribers. Unlike similar messaging queues such as
RabbitMQ, events are not deleted after being read. Instead, they are stored durably.
The developers of Kafka claim that performance remains constant with respect to data
size contained within the topic (Authors 2022). Each topic can be separately configured
with a wide range of parameters such as “message retention period”, which determines
how long messages are kept before deletion.

Partitions

In Kafka, topics can be partitioned, meaning divided into pieces that can be stored on
separate Kafka brokers. In Kafka, these pieces are called partitions. When an event is
produced to a topic, it is appended to one partition of that topic. The number of
partitions is described by a topic-level configuration value called “num.partitions”. Kafka
guarantees a total order of events for the events within one topic partition, meaning
that all clients and consumers will read the same order for that topic’s partition. When
an event is committed to a topic in Kafka, the event within the partition is assigned an
offset value. This offset value is an identifier that points to the location of that event.
Offsets can be saved for each client, allowing clients to save their read position.
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Figure 2.8: Illustration of topics, partitions, and offsets within a cluster.

Replication

Topics can also be replicated to several brokers. The unit of replication is a partition
within a topic. The “replication factor” topic-level configuration defines the number of
replicas for each partition within that topic. Kafka guarantees that each replica of a
partition of a topic will be stored on different Kafka brokers. Replication in Kafka aims
to support fail-over and availability, as, without this, a broker outage would lose all
data on that broker. As several partitions would exist at once, to preserve consistency, a
single partition controls read/write access to events within that partition, called the
“partition leader”. Events can only be read from and written to the partition leader,
preserving the total order (Lamport 1978) of events.

Lastly, there is the concept of in-sync replicas (ISRs). These are replicas that are
currently up to date within a certain threshold with the partition leader. This threshold
is defined in the topic-level configurations. The goal of ISRs is to prevent writing to the
leader of a partition if there are no valid replicas to receive these updates. Thus writes
are paused until the minimum number of ISRs is reached.

2.3.5 Kafka for Online Games

User actions as well as other events in a game display similar properties to sensor
readings in a distributed system implemented in Kafka. These similarities include
typically small packet sizes, a mass quantity and high frequency. Additionally, online
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gaming requires consistency and this is already achieved in banking and e-commerce
applications that Kafka already serves.

2.4 Summary

This chapter investigated the relevant areas to this work, exploring key concepts,
related work, and current technology. In summary, this chapter explored consistency
and consistency models pertinent to this work, online gaming and current architectures
in addition to related distributed current architectures and distribution strategies.
Finally, the core concepts of Apache Kafka needed to understand the methods presented
in our work were provided. Our work employs these ideas as the core foundation from
which to build the model and implementation of an event-driven and consistent
distributed online framework and game. In the following chapter, the model for this
work will be defined.
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3 Model

The “Model” refers to the definitions and abstractions presented to the programmer to
simplify the creation of distributed online games and similar virtual experiences in this
work. It outlines a set of features implemented within the framework. This model is
deliberately abstract to allow for compatibility with a range of games, designed with
several archetypes of games in mind. These abstractions are provided to increase
reusability. However, this does not mean it will necessarily perform well in
implementation. Through using this model, a standard client-server game can be
modelled using an event-driven distributed system.

3.1 Game State

A game is a state machine, given a set of inputs, for example, user actions, it stores this
information and reacts based on the rules of the game. The state is used to construct a
view for the player, this allows the player to understand the current state of the
game.

Figure 3.1: Game illustrated as a state machine with two states, a magnified view of the
state machine is also displayed.
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3.1.1 Local States

The state can be divided into a set of sub-states. The model will refer to these states as
“Local” states. Each game will have a different approach to breaking down the game’s
state into Local states, it may be based on sectioning the virtual environment such as a
2-dimensional grid, or in a poker game, the games’ state could be divided by players in
the card game. Each Local state will be some piece of the Global state that contains all
information relevant to that locality.

To demonstrate this concept, consider a game set in a large virtual environment. The
game’s state represents the data required to rebuild that game at that point in time.
This state is then divided into a set of Local states. This is achieved by dividing the
virtual environment into regions and assigning a Local state to that region. Each Local
state would be used to show an isolated view of the virtual environment but combined,
the Local states contain the information required to show the virtual environment. This
example will be carried through this section to illustrate concepts within the
model.

Figure 3.2: The state of the game divided into several "local" states.

3.2 Objects

Consider a Local state; this state contains the data for each “Object” within that state.
An object could be a player, an enemy, the game’s score and so on. An object is
essentially a grouping of data items within a state.

Consider a player object in the previous virtual environment example; as the player
provides inputs to the game in real-life (i.e. presses buttons on a keyboard), the game
will process these inputs, update the state, and the user will be shown a view after the
effect of these changes.
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3.2.1 Local Objects

Local objects are objects contained within one Local state of the game. Consider the
virtual environment example again, shown in figure 3.2; if the player object is
positioned in ‘Region #1’, then the data for this object will be stored in ‘Local State
#1’. A visualisation of objects stored in a Local state is shown below.

Figure 3.3: Illustration of a Local object.

3.2.2 Global Objects

A Global object is an object that is contained in all Local states. Local states are
isolated from one another; therefore, they would need to mutually agree on the value of
an object in specific scenarios.

To demonstrate this idea consider the virtual environment example again from figure
3.2. This time there exists a timer that, when depleted, concludes the game for every
player. This timer is represented as an object within the games’ state, a Global object.
In the case where a player is only concerned with one Local state as opposed to all
Local states, the game will not end if the timer isn’t contained within that Local state.
For this reason, the timer is declared a Global object contained in all Local states.
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Figure 3.4: Illustration of a Global object.

3.2.3 Diffuse Objects

A Diffuse object is an object that exists in many Local states but not all. In certain
games, it is important to store an object in several Local states.

Consider the virtual environment example again. In this example, the board has been
divided into four distinct regions. Two regions share one weather system, whereas the
other two share another weather system. In this case, each weather system object will
need to be stored across the two relevant Local states. The weather system objects are
Diffuse, as they exist across more than one Local state.

3.2.4 Abstraction

The words local, global and diffuse, were chosen to maintain a distinction between state
and geographical virtual environment. For example, a card game does not usually have
a virtual environment where some games do. This distinction is important as it allows a
more abstract approach to defining states and objects.

3.2.5 Critical vs. Non-critical

While an object can belong to a state, each object is also defined as critical or
non-critical. A critical object can be owned by a non-critical object. This is necessary
as it allows for modelling a “critical resource”, an item of value for which there is a
limited number, such as an item within a game that only one player can own. This
defines a relationship between objects in the context of the game.

For example, consider a player as a non-critical object and a coin as a critical object.
The player can own a coin, but the coin cannot own a player, illustrated in figure
3.5.
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Figure 3.5: Illustration of Critical and Non-critical objects.

3.3 State Transfer

Online gaming requires some method to transfer state from one game client to another
game client. This is achieved through event-based state transfer, which, in this model,
is composed of a message protocol, an event-driven backbone and event streams.

3.3.1 Message Protocol

The model uses messages to update each object within the state of the game. This
model refers to these messages as “events”. Events obey a standard protocol that defines
the type of event and objects to which the event references. Two event types are defined
in the model, and these will be described here. As the model is designed to be reusable,
more event types can be added as long as they provide purpose and benefit. Events can
be divided into two general types.

Figure 3.6: Illustration of message protocol.

Type 1: {Object}_{Action}_{Object/Objects}

In this event type, an object performs an action on another object or group of objects.
An example of this will be if a player avatar (object) claims (action) a coin
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(object).

Type 2: {Object}_{Action}_{Data}

In this event type, an object performs an action with some data. An example of this
would be if a player (object) were to move (action) to another position (data). These
events should be strictly idempotent when sent to a low-priority stream. Priority
streams are defined in the following sections.

3.3.2 Event-driven Backbone

In this model, once an event is constructed, we require a method to transfer these
events to another game client running in another system. We also require the ability to
transfer these events to many other game clients as we intend to scale up the number of
concurrent players. The solution chosen to solve this problem is to use an event-driven
backbone. Events should be sent to the backbone and be retrieved by other systems.
The reason for this guarantees that events will be sequenced. The detail of this
sequencing will be covered in the next section.

Consider the case of one game client producing events to the backbone, with many
game client retrieving these events. As events are retrieved from the backbone, each
game client should be able to build a state from these events that are consistent with
the other states. This is because events are sequenced in the backbone.

Consider the more common case of many game clients producing events, with all game
worlds consuming these events. Each game client should build a state from these events
consistent with other game client. Sequencing is crucial for consistency in this case, as
concurrent writes will need to be resolved within the backbone.

Figure 3.7: Illustration of multiple game clients producing events to the backbone.
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3.3.3 Event Streams

In order for the game world in a system to transfer events to the backbone, we require
some stream of communication. This model provides two streams of communication,
defined by priority. According to the model, when a game world builds a state from
sequenced events, it should be consistent with other games’ states

Figure 3.8: Illustration of priority streams.

High Priority

This stream should be used when it is vital that all events in the stream be read from
beginning to end to build the correct state. This stream provides sequential
consistency.

To illustrate the example use case for the high priority stream, consider a game world
with two players and one coin, which acts as the critical object. If both players attempt
to claim the coin, they will construct an event message and send this to the high
priority stream. Then, as both players read from the sequenced stream from beginning
to end, both states can agree that one of them claimed the resource first. If both
players instead used the low priority stream, then both players would read the
sequenced events but from different starting positions in the sequence.

Low Priority

This stream should be used when the stream can be read from any point to build the
correct state. This stream provides consistency similar to eventual consistency. Events
sent to this stream must be idempotent as systems may not have prior object states to
mutate.

To illustrate the use case of the low priority stream, consider a game world with two
players, each updating their respective positions. These players are non-critical objects.

29



Therefore as long as systems receive the latest positions of these objects, the state
machine that is the game itself can build a consistent state, as it does not require
historical events for these objects. This is not the case for critical objects.

3.4 Partitioning

The concept of partitioning was previously explored by dividing the state of the game
into multiple Local states. However, this method of partitioning is directly related to
streams and as streams have just been introduced it is relevant to mention its
relationship with partitions.

The goal of partitioning the state into Local states is to increase the availability of the
backbone as there are more backbone nodes to serve requests for events. Partitioning
correctly will help protect performance at scale by increasing the throughput. The price
of partitioning in this way means that there exists no total order between all streams.
However because each Local state contains all information required to build a consistent
view of that state, we have a total order where it is necessary.

Figure 3.9: Illustration of example partitioning strategy for figure 3.2.

Figure 3.9 demonstrates how the partitioning strategy of figure 3.2 is related to the
event-driven backbone. In this example, the virtual environment is partitioned by
region with each partition assigned a low and high priority stream. Two priority
streams are necessary to allow for different read positioning. While this serves as an
example, partitioning can be implemented in a number of arbitrary ways and does not
equate to a region or even a local state.
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3.5 Consistency

This work hypothesises that total order is not necessary across all game events. This
hypothesis is exploited to achieve a total order only where it is necessary to do so. As
such, this model allows for event ordering per object or for any number of objects
through using streams. As mentioned previously, the backbone should be assumed
replicated. It is kept strongly consistent (detailed in the implementation chapter).
Therefore, the consistency for each game client is sequentially consistent as each client
will asynchronously poll the strongly consistent backbone for new events.

3.6 Area of Interest

In certain scenarios of games, game clients do not require the global state at all times.
Consider an expansive virtual environment where each partition is so large in area that
a player can’t view outside of the partition boundary. In this large-scale world, the
player is only concerned with the local state. To this end, in this example, the system
will only need to retrieve the streams for the partition they are “interested” in. In
addition to this, systems can also retrieve streams for multiple partitions if they require
a consistent view for more than one partition.

Figure 3.10: Illustration of area of interest technique.

The benefit of this area of interest design is that game clients only retrieve required
events. This works to reduce the network and computation load on each system, as each
system could potentially retrieve fewer unnecessary events. This can reduce network
and computation load on the backbone by sending fewer unnecessary events.
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3.7 Archetypes

The archetype defines the configuration of the model to fit the game. Each game is
created differently and with a different set of requirements (Brandt 2009); as such, it
will require a tailored approach. The framework is designed so that it is highly
adaptable, allowing for alternations through abstractions. These abstractions aim to
provide a programming model which can be applied to a wide variety of games.

Figure 3.11: Illustration of game genres.

When tailoring the model to fit various game types, the first consideration must be the
requirements of that game. To understand those requirements, games can be separated
into two categories; real-time or turn-based, fig 3.11 provides an example of
classification. Real-time games require a higher performance than turn-based games, as
described by (BSA 2022). It is also mentioned that a real-time first-person shooter
(FPS) requires a latency of between 5 and 60ms to be considered competitive, whereas
a turn-based card game such as ’Hearthstone’ can still be playable at latencies over
100ms. These requirements must be reflected in the model’s configuration. Each game
will have a different requirement, as was seen in (Brandt 2009). The main
configurations of the model will be the tradeoff between performance and availability as
seen in the CAP theorem (Brewer 2000), with proof (Gilbert & Lynch 2002). The
configuration is specific to the backbone, as ncreasing the number of in-sync-replicas
(ISRs) within the backbone also increases the latency in producing events which will
have an impact on all players. Higher ISRs should always be preferred where
performance can be traded for availability.
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4 Implementation

This chapter details each facet of the implementation of this work. Firstly, a high-level
overview of the Framework will be discussed. Then, the process through which the
example game was represented using the model will be detailed. Finally, the
development of both the framework API and game will be explained.

4.1 Framework

In the previous chapter, the Model was defined as a set of abstractions to build a
distributed game. This section will explore how that model was applied to a reusable
framework.

4.1.1 Event-driven Backbone

The core of the Model is the event-driven backbone. This component handles the event
ingestion, sequencing and replication for the game. Two software products were
explored to perform this task; RabbitMQ and Apache Kafka., though both are not
viable options. Apache Kafka was chosen for several reasons. It operates on the dumb
broker/smart consumer model meaning that messages are polled by the consumer
(game) when appropriate. RabbitMQ operates inversely to this, pushing messages to
the consumer process. A failure scenario would lead to unprocessed or out of sequence
messages. Kafka is built with the idea of reading any event at any point in the event
queue, whereas RabbitMQ is not. This means Kafka is much more appropriate to
implement the idea of “Priority Streams” mentioned in the Model, as reading any point
in the event queue is critical.

4.1.2 Framework API

In order to separate the game code from the framework, an API assists with accessing
the backbone. This API handles the Kafka consumer, producer and helper functions as
well as containing configuration details and other relevant Kafka states. The details of
this API will be specified later in this chapter.
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Figure 4.1: Framework API described to connect the game with the event-driven back-
bone.

4.1.3 Event Loop

The event loop also referred to as the “game loop” demonstrates the logical separation
of the game itself from the framework and backbone. The game’s code interfaces with
the framework, and the framework orchestrates the backbone.

The concept of Objects was explored in the Model; these are implemented within the
game as standard programming objects. To update an object in the shared state of the
game, several steps need to occur in a specific sequence. Firstly, an input within the
game creates an event. However, before this update can happen, it needs to be
sequenced within the backbone for consistency. Therefore, if an object is requested to
be updated, it must first access the framework API. This API maps the attempted
update into an event that the Kafka producer will produce to the backbone. This
ensures to a high degree that the event will be sequenced and stored in the queue. The
game code will then interface with the framework to access the Kafka consumer. The
consumer will consume events in a sequence that can be applied to the game. This
whole process is analogous to the idea of a ‘2-Phase Commit’.
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Figure 4.2: Illustration of event loop.

4.1.4 State Transfer

The Model specifies that state transfer occurs through an event-driven message protocol.
For the above event loop to occur, attempted updates to objects are translated by the
framework API to standardised events in a binary string. Events are then passed to the
Kafka producer to transfer events to the backbone, the Kafka cluster.

Events are constructed by the specification in the Model chapter. Type 1 events are
created to signify one object interacting with another. Type 2 events represent one
object interacting with supplied data. It is hypothesised by this work that this
abstraction is sufficient to model all updates within all games.

4.1.5 Priority Streams

The Model presents the abstract concept of streams which are then implemented in
Kafka. Streams are implemented as Topics of one partition in Kafka. High priority
streams are read by the consumer from the earliest offset, where Low priority streams
are read from the latest offset. These offsets are committed to the Kafka cluster by the
framework to continue from the last read offset for each stream.

4.1.6 Partitioning

Partitioning, as specified in the Model, pertains to the idea of separating the global
state into several local states, and we will now explain how this is achieved within the
framework. In the framework, the world of the game is divided into sections called
‘Regions’; each ‘Region’ is granted a high priority stream and low priority stream,
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implemented as separate topics. To create consistency for global objects, these events
are sequenced to a high priority stream that is consumed by all game clients, regardless
of Region. For diffuse objects these events are produced to a high priority stream that
is consumed by game clients whose players are concerned with that region.

4.1.7 Replication

Priority Streams are replicated based on a parameter named replication factor. This is
specified during topic configuration by the framework and different values can be
supplied. In normal operation, two to three replicas are necessary. In addition, Kafka
implements the idea of In-sync-replicas (ISR). The number of which should also be
considered when analysing the performance requirements of the game. Increased
replicas and ISRs will result in increased latency for each commit.

4.1.8 Architecture

Depending on the chosen deployment, the framework can be deployed as either a cluster
within a data centre or distributed cluster, with each user running a Kafka broker node
in that cluster. This choice of deployment is independent of the game’s code or
framework API.

Figure 4.3: Illustration of two backbone deployment options, using players to host nodes
(left), and using cloud services provider to host nodes (right).

As the framework relies on Kafka, one or more zookeeper nodes will be required to
orchestrate the distributed system. This will either be run by a Kafka broker node in
the data centre configuration or at least one player in the distributed cluster
configuration.
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4.2 Application of Model

This section reviews the example game, its requirements, as well as how it can be
represented using the Model.

4.2.1 The Game

To demonstrate the process of building a distributed game, a toy example was created.
This game served for development and evaluation purposes and was not intended to be
elaborate. The game concept was designed to support a large number of players in
real-time. In this game, users would input commands to move their avatars around a
fully observable open world. In this virtual space, there is a limited quantity of coin
objects; these served as critical resources. Players collect coins, and once they are all
collected, the game is over, with the winner or winners having the most coins. With
respect solely to design, this game supports an unlimited number of players. The
performance of this scale will be evaluated in the following chapter.

Figure 4.4: Illustration of the chosen game for implementation.

4.2.2 The Requirements

Before development, the game was categorised and its requirements defined. The game
is meant to be played in real-time; it is competitive and scales to a large number of
players. With this in mind, we can derive the functional requirements. Real-time
suggests that the user expects a high degree of performance. From the user’s
perspective, they should not experience a high degree of latency concerning their actions

37



taking effect in the game. More specifically, the time taken to process the player input
event, commit it within the Kafka cluster and be read from the sequenced events should
not exceed the threshold within the game considered to be noticeable (see noticeable
latency as described in the section section 2.2.2 and figure 2.1). This threshold is chosen
to be 60ms as described in (BSA 2022) as the threshold for competitiveness in games.
In addition to this, the player’s input should reliably reach the cluster to be sequenced.
The game is competitive and so is required to be consistent with the true state of the
game to allow for fairness. The game should be able to support a large number of
players within the same game session. The implementation will be evaluated in the
following chapter with respect to these functional requirements.

In short, the game must display low latency (under 60ms), reliable state transfer,
consistent view between systems, and scale to a large number of players.

4.2.3 The State

Following the model’s standard process, the state was partitioned into regions with local
states. The game space was horizontally sectioned with initially one partition for every
player. This number represented a base standard for availability within this framework
and was selected for the initial implementation. With the state partitioned, the objects
were defined. One player object was required for each player to act as their avatar;
several coins were needed to represent the critical resources. The players are defined as
non-critical objects; the coins are considered critical objects.

Figure 4.5: Illustration of the game state.
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4.2.4 State Transfer

In this implementation, type 1 and type 2 event messaging protocols were used to
transfer states. Type 1 represented the events when a non-critical player object would
lay claim to a critical coin object. These event types used a “Claim” action to identify
claiming the resource. These type 1 events were sent to the region’s high priority
stream. Type 2 events represented the idempotent updates to non-critical objects, such
as players updating their positions around the virtual environment. The action for these
events was “Move”, communicating the objective. The “Data” was an x,y world-space
coordinate. These events were transferred through the low-priority stream.

4.2.5 Partitioning and Replication

As was previously mentioned, initially, one partition per player was decided. This
represented the baseline assumption that one partition per player was sufficient. This is
evaluated in the following chapter. Concerning replication, a replication factor of two
was chosen, with a minimum in-sync replica (ISR) value of two. This means that the
specified replicas are kept identically in line with the leader, allowing for failover.
Ideally, a replication factor of three would be selected. However, this was chosen as a
compromise between performance and availability and reliability.

Figure 4.6: Illustration of how partitioning was implemented via horizontal sectioning.

4.2.6 Consistency

To explain how consistency was achieved in this game, consider the model, consistency
is separated between the event-driven backbone (Kafka) and the states in each user’s

39



system. As the minimum number of ISRs is two, an event must be replicated in two
replicas before a consumer can read it. This is the “Commit” process within Kafka.
This implies strong consistency within the backbone under this configuration.

However, the consistency process for the state contained in each user’s system is
different. These state updates are polled asynchronously in relation to other systems
between frames. While this is not strong consistency, it is sufficient as long as the game
is updated between frames of the game-play itself. Sequential consistency is
implemented for this purpose. As the backbone is kept strongly consistent, this
guarantees event sequencing; a total order of events is achieved for each stream. High
priority streams are read identically for all systems. Low priority streams are read from
different points. However, because the updates to these objects are idempotent and
read in the same total order, as long as the user’s systems are kept up to date with the
backbone, their state is considered consistent. In addition to this, if a system cannot be
kept up to date with the backbone, that user cannot produce events to the backbone
Kafka cluster, as this would act as a detriment to the consistency system.

4.2.7 Area of Interest

This game is operated in two modes for demonstration. The first mode considers the
game fully observable, and the area of interest (AOI) is large enough to show the entire
world-space. For example, this means the entire board. The second mode assumes the
board to be so large that it is not necessary to maintain the state for the entire
world-space, the board. In this second mode, an area of interest is used to limit the
number of events consumed by each user. This aims to reduce the time spent processing
events that are not useful and provide not benefit to the client. This is a strategy to
allow for scalable online games.

Figure 4.7: Illustration of the area of interest (AOI) implementation.
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4.3 Development Process

The framework was used to build a distributed, online game to demonstrate the
development process and accessibility, which is defined with respect to cost and
simplicity. The development process will be detailed in this section. First, the
environment will be detailed, then the framework implementation and finally, the game
implementation.

4.3.1 The Environment

The code for this project was written in Python which permits rapid development. This
was essential for the design and iteration process. An example game was created using
the open-source python package “Pygame” (Authors 2021). This high-level graphics
library builds on top of “SDL” and “OpenGL” to provide a simple graphical interface.
The python module “Kafka-python” (Powers & Arthur 2016) was used in the framework
code to create producers and consumers to access the Kafka cluster.

4.3.2 The Framework API

The high-level framework was specified at the start of this chapter. This section will
detail how that was realised.

The API was implemented through a class named “Network Manager”. This class
contains all data and methods regarding interfacing with the backbone Kafka cluster.
When an object is instantiated from this class, it initialises a producer and consumer.
Initially, the producer will produce to the current region that the user is within.
Similarly, the consumer will consume from the topics for that specified region.
Currently, only one algorithm of partitioning is supported, this is the horizontal
sectioning approach described in the model chapter. The Kafka configurations are
fetched from a supplied configuration file.

The following public methods will be described below:

Form Event Item

1 def form_event_item(self , action , target , low_priority=True):
2 # Creates a type 1 or type 2 event string
3 self.produce_event_item(’{}_{}_{}’.format(self.PID , action , target)

, low_priority)
4 logging.info(’{}_{}_{}’.format(self.PID , action , target))

This method will form an event based on the event types specified in the model. The
first object in both type 1 and type 2 events is the player avatar of the system. The
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action and target object are specified in the method parameters. This method formats
the event item string passed to the “produce_event_item” method.

Produce Event Item

1 def produce_event_item(self , event_item , low_priority=True):
2 #Forwards the event item to the relative stream
3 payload = str.encode(event_item)
4 if low_priority:
5 if self.cache == event_item:
6 return
7 logging.info(’producing: ’+ str(event_item) + ’ ’ + str(self.

prodTopic))
8 self.producer.send(self.prodTopic ,payload)
9 self.cache = event_item

10 else:
11 if self.cache_crit == event_item:
12 return
13 logging.info(’producing: ’+ str(event_item) + ’ ’ + str(self.

prodTopicCritical))
14 self.producer.send(self.prodTopicCritical ,payload)
15 self.cache_crit = event_item

This method will contact the producer contained within the class to transmit the given
event item to the cluster. Depending on the value of “low_priority”, the event will be
sent to the respective priority stream.

Update Events

1 def update_events(self):
2 events = []
3 for msg in self.consumer:
4 e = msg.value.decode("utf -8")
5 events.append(e)
6 self.events = events

This method contacts the assigned topics (streams) and polls for new events. The
events are stored within the Network Managers’ events list property. The events list is
cleared each time this is called. The events list is made accessible to the game code for
custom processing.

Update Streams

1 def update_topic(self , player , override=False):
2 topicNumber = int(( player.object.ypos + player.object.height /2) //

self.regionSize)
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3 if KAFKA_TOPIC.format(topicNumber) != self.prodTopic or override ==
True:

4 #sends mov message to current topic , before switching
5 self.produce_event_item(’{}_{}_{}’.format(self.PID , ’mov’,

topicNumber))
6 logging.info(f’switching topic: {self.prodTopic} :{str(

topicNumber)}’)
7 self.prodTopic = KAFKA_TOPIC.format(topicNumber)
8 self.prodTopicCritical = KAFKA_CRITICAL_TOPIC.format(

topicNumber)
9 self.consTopic = topicNumber

10 self.assign_topic ()
11 logging.info(’switched to topic {}’.format(self.prodTopic))
12 player.setRegion(topicNumber)

Given the player avatar’s position in the world space, this method checks which region
the avatar is in and assign the relevant topics (streams).

4.3.3 The Game

The example game was represented using the model and constructed using the
framework API. It was composed of the initial setup and a game loop.

Initialisation

To initialise the game, several steps were required. Firstly, the relevant Pygame objects
were instantiated, and the module itself was initialised. Next, An argument parser was
created to supply command-line arguments to the game at run-time, such as running
the game in “quiet” mode, meaning nothing would be displayed. This was useful for
testing and evaluation. A “Game Screen” class was created to encapsulate data and
methods relevant to the game’s display.

Furthermore, the “Network Manager” mentioned above was initialised, the world space
was defined, and the walls were created from a supplied map file. The final step in the
initialisation process was the creation of objects as specified in the model. These were
defined as classes, with the “Player” class representing the non-critical user from the
perspective of the game client and the “Enemies” class representing all other non-critical
users. The “Item” class represented the critical coin objects within the game.

Game Loop

The “game loop” represents a continuous main thread of the game. Each loop begins by
drawing and displaying all objects and static entities (like walls) of the world of the
game world. Then the game checks for user input and handles each input accordingly. If
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Object Name Avg. Description Type Critical Status

Player Client’s avatar Local Non-critical
Enemy Other client avatars Local Non-critical
Coin collectable reward Global Critical

Table 4.1: Description of ’Objects’ created in this game.

the user inputs one of the pre-defined directional keys, such as up, down, left, and right
the game captures these events. These events are then formatted and sent to the cluster
for sequencing. The loop then calls the “update_events” method within the Network
Manager object, fetching and storing new events from the cluster. These events are
returned “in sequence” for the game to perform the relevant logic required, such as the
player claiming an object or the player updating their position in the world.

Figure 4.8: Illustration of the event loop in final game code.

Continuing the game loop, the player’s position is checked, and if it is determined that
the player has moved to another region (partition), the relevant topics (streams). Next,
the collisions between game objects are calculated, and if a player collides with a critical
object such as a coin, that player produces an event to the high priority stream to claim
it. Finally, a check is performed to find if the game is over. This is done by checking for
any remaining coin objects; all are collected then the game is over. Suppose the game is
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not yet complete; this loop repeats. A single iteration of the game loop is referred to as
a “frame”.
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5 Evaluation

This chapter describes the evaluation process and evaluation of the contributions of this
work. As such, it is divided into three sections for each contribution: model, framework,
and implementation of the distributed, online game. Within these sections, a
combination of qualitative and quantitative analysis is performed.

5.1 Model

This section evaluates the design of the model. The model is evaluated by its
accessibility and reusability which are more suited to qualitative investigation.
Quantitative evaluation of the model was not completed in this work.

5.1.1 Qualitative

Accessibility

The objective of designing the model was to provide clear and simplified abstractions
for creating a distributed online game. Distributed systems are difficult to build
correctly because building these systems is an involved, multi-step process that involves
complex theory and expert-level knowledge. For this reason, it is considered in this
study that building distributed systems to power distributed games is inaccessible to
those outside of this field, namely game developers. A comparatively simpler and
standard process is presented by building abstractions on top of an event-driven
backbone such as Apache Kafka.

To the user of the model, a standard process is used to design the game before
implementation in the framework. The state is identified, partitioned accordingly and
objects are defined within this state. From that point, the message protocol is
established and the user is presented with priority streams without having to
understand the inner workings of Apache Kafka. Events within a game represent
updates for objects within the game state. This work hypothesises that total order is
not necessary across all game events. This hypothesis is exploited to achieve a total
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order only where it is necessary to do so. As such, this model allows for event ordering
per object or for any number of objects through using streams. This model standardises
the process of designing for scale and presents the user with useful abstractions through
an already considered and proven model.

Accessibility in this model also refers to the low cost of entry. This cost is specified
relative to time and financial cost. By using a standard process, many common issues in
designing distributed online games are already addressed, and by this rationale, time is
potentially saved. By extension, this aims to reduce the cost required to hire for this
design and development process. By using open-source software, there is no direct
financial cost.

Reusability

The model was designed to abstract the details of distributed systems by considering
multiple games and requirements in the design process. While the implemented game
had influenced the model, other games with different archetypes were also considered.
To demonstrate this idea, consider partitioning in the model; in the base example, it is
implemented by dividing the board into equal sections and then using priority streams
for those partitions; however, the board can be partitioned by any approach. In
addition to this, consider the event messaging protocol; any arbitrary action can be
specified to any object or data relevant. This allows for useful abstraction that allows
the model to be applied to a large sample of games. However, while the model may be
used for a large number of games, the implementation may limit its performance.

5.2 Framework

The framework refers to the software implementation of the ideas and abstractions
present in the model. The architecture is formed using Apache Kafka, and the user is
provided access to this architecture through an API. This framework is evaluated based
on its accessibility and reusability. Limitations of this framework will also be
mentioned.

5.2.1 Qualitative

Accessibility

The framework is tightly coupled with the concepts presented in the model, it is
considered similarly accessible. In addition to those points, the framework API was
implemented in Python, which according to a stack overflow survey Anon (2021), is the
3rd most popular programming language. There are limitations to using python, which
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will be discussed in the limitations section. The API successfully abstracted the
communication with Kafka so that the developer does not directly interface with it.
This streamlines the implementation post the model and design stage, simplifying the
overall development process.

Reusability

The abstractions presented in the model were implemented in the framework, and for
these same reasons, the framework is designed to be reusable. However, there are
limitations, and these are addressed below.

Limitations

’Python’ was chosen to implement the framework for various reasons, such as its
popularity Anon (2021) and ease of use as it is a high-level programming language as
well as availability of high-level graphics libraries like ’Pygame’. This helped greatly
during the ideation stage of this work. However, Python is limited by its performance
compared to other languages such as ’C++’ and ’Java’Tamimi (2021) because it is a
higher-level language. Due to the performance overhead of Python, it is not widely used
to create games Carpenter (2022). Unreal Engine, a popular game engine used to make
‘Fornite’ Epic (2022b) uses exposes C++ for its game scripting. Therefore, the
framework would be implemented in a more popular game-development language like
C++ in future work.

5.2.2 Quantitative

The framework was evaluated based on Scalability and Performance. Specifically, the
capacity of a single stream was evaluated to identify the cost of processing an event
through the backbone. Empirical data was gathered through experiments.

Experimental Setup

The experimental setup consisted of simulating a ’player’ by sending 100 sequential
requests using the framework API and recording the latencies as they are processed by
the backbone and received again from the API. The number of concurrent users was
increased and the latencies for each user were recorded. This acts as purely a simulation
to isolate and analyse the performance of the framework without network lag or client
lag.
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Results

The results of the aforementioned experiments are illustrated in figures 5.1 and 5.2,
along with analysis of these figures below.

Figure 5.1: Average latencies for concurrent groups of players, with standard deviation
as error bars, following the above experimental setup.

Figure 5.2: Density distribution of latencies for concurrent groups of players, following
the above experimental setup.

Scalability and Performance

This experiment attempts to evaluate the baseline performance of the framework and
system. Figure 5.1 illustrates the relationship between average latency and concurrent
players for this setup. For 5 players, this average latency sits at around 0.5 ms and
scales up to over 2.5ms for 100 players. As the number of concurrent players increases,
so does the standard deviation, as shown in figure 5.2. Under the heavy load of 100
simulated players in a single stream, the system demonstrates an average latency of
2.5ms at baseline without network delay. The relationship between average latencies
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and concurrent players is demonstrated not to scale equally, as scaling 5 concurrent
users by 20 does not scale 0.5ms to 10ms. This non-uniform scaling suggests scalability
with a performance of less than 3ms.

The data suggests a significant drop in performance of the node between the 70 and 100
players, seen in figure 5.3. It is hypothesised that as a failure in the node. This may be
remedied by increasing the number of available threads to serve requests or buffer size.
If this system is to serve 100 players per partition, vertical scaling would be necessary to
satisfy the number of incoming concurrent requests for this partition. Further testing
with different configurations of virtual machines on Azure would be necessary to
validate this.

5.3 Implementation

5.3.1 Qualitative

Data was collected by creating a test environment and running the game in a cloud
deployment on Microsoft Azure. The number of concurrent players was scaled for each
test. The following is a qualitative analysis based on several experiments.

Experimental Setup

The experimental setup was similar to the previous experiment. This time ‘Players’
were actual clients of the example game described in the implementation chapter. Each
client produced 100 sequential events using the framework API, and the latencies were
recorded. More specifically, the latencies described the time taken from the message
production in the respective client to consuming that event sequenced by the cluster. In
this case, the backbone was deployed on the cloud computing provider Microsoft Azure
in a ‘B2s’ VM (2 CPUs, 4GB memory) to simulate a ‘Data Centre’ deployment. In
addition to measuring latencies, the number of lost events was also recorded. Events
were considered lost when the client produced an event to the framework but could not
read that event from the stream.

Results

This section describes the results of the above experimental approach. Firstly, the
results for performance is presented, secondly the results for reliability are presented.
These are discussed in greater detail in the following section.
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Figure 5.3: Average latencies demonstrated for a data center deployment, with standard
deviation as error bars, following the above experimental setup.

Average latencies for each permutation of concurrent players are compared in figure 5.3.
It is clear to see that there is a great rise in average latency between 70 and 90 players.
This seemingly breaks the steady upward trend seen from 5 to 70 players before that
peak.

Figure 5.4: Closer look at average latencies.

The above figure 5.4 shows a close-up view of figure 5.3. Here the average latencies can
more finely be identified. At 5 players, we see a latency of 15.5ms which increases to
21ms at 50 players. For only a 26% increase in latency we can achieve a 900% increase
in the number of concurrent players per partition (between 5 and 50 players).
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Figure 5.5: Density distribution of latencies for concurrent groups of players (5 to 50),
following the above experimental setup.

Figure 5.6: Density distribution of latencies for concurrent groups of players (50 to 100),
following the above experimental setup.

In the above figures 5.5 and 5.6, the PDFs of latencies can be seen. It should be that
5.5 refers to the range of 5 to 50 concurrent players, and figure 5.6 the range of 50 to
100 players. In addition to this, note the relative scales of density, figure 5.5 describes
densities of over 1, and this is due to the mathematical integral over a length of less
than 1ms. An interesting feature of these two graphs is that they both exhibit similar
trends between adjacent groups of concurrent players.
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Figure 5.7: Event loss rate (events/100 requests) expressed as an average compared with
an increasing number of concurrent players.

Concurrent Players Avg. Loss Rate (events/100) Std. Deviation (events/100)

50 0.000 0.000
70 0.129 0.411
90 0.222 0.757
100 1.33 4.186

Table 5.1: Average event loss rate in tabular form.

Figure 5.7 describes the average loss rate of events sent to the backbone by groups of
concurrent clients. The values for figure 5.7 are also described in table 5.1. Once again
there appears to be a steady trend (between 50 and 90 players) and then a rapid jump
towards the end of the graph (90 to 100 players). It appears some bottleneck is causing
issue here.

Performance and Scalability

The latency test demonstrates the worst-case scenario for this example game with 100
players concurrently writing 100 sequential events to a single partition. According to
the ’British Esports Association’, a latency of between 5 and 60ms is considered
suitable for competitive play within first-person shooter games (FPS), while any higher
than 100ms is generally undesirable for competitive play, but may be suitable for other
game types BSA (2022). FPS games are considered the most demanding relative to
latency and general performance BSA (2022), hence the results will be compared to this
as an upper limit for performance.

From Fig 5.3, it can be seen that average latency lies within the threshold of 5 to 60ms
for up to 70 concurrent players even considering the standard deviation. However, for
90 to 100 concurrent players, this threshold is reached. While the average latencies lie
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below 100ms, the standard deviations express the distribution lies over this number.
Figures 5.5 and 5.6 further demonstrate this distribution of latencies for each group of
players. While this performance is shown to be suitable for under 70 concurrent players
per stream, more testing would be necessary to validate performance for a higher
number of players.

Reliability

The number of lost events was recorded in the same experiment and is visualised in
figure 5.7. Lost events are those that are not committed to the topic, due to buffer
overflow or network failure. For consistent game-play, the player’s actions should take
effect in the context of the game for the user to view the effects of that action. For that
to occur in this system, player events should not become lost after they are produced.
The data suggests that an average event loss rate of just over 1.2% is experienced by
players in the game with 100 concurrent players. Therefore, the user can expect 1 in
every 100 actions they make will be lost by the server. While this is suitable for the
implemented game, it is understood this may not be suitable for others. From figure 5.7
a significant relative increase in average loss rate can be seen between 90 and 100
players, this may be due to a failure within the deployment which would need to be
explored in future work.

5.4 Limitations

This section covers the overall limitations of the methods provided.

Security

Security was not a primary goal for this work and was left unexplored. Future work
would involve securing each stream and providing at least a basic level of security or
encryption.

Dynamic Partitioning

Dynamic partitioning was not implemented in this work and would allow for an
increased level of availability within the system. The example game implementation was
statically partitioned at start-up based on an input parameter that describes the player
limit for that session. This would be a goal for future work.
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Message Compression

Event Compression was left unexplored in this work. Currently, events consist of
plain-text strings converted to binary. A compression system is implemented in Kafka
using several different algorithms, but this was not explored due to lack of time as the
compression and decompression time would also need to be explored and
evaluated.

Maximum Load on Partition

The example game implementation used Kafka as its event-driven backbone. The
overall capacity of the example game is limited by its single partition capacity. This is
because there is a chance that all players will be located in the same partition at once.
While this chance is relatively low, it should be accounted for. By vertically scaling the
nodes of each partition for a larger number of requests, the partition’s ability to handle
maximum load would be greatly improved. Another potential solution would be to
partition during periods of high load dynamically.

Total Ordering Between Partitions

A fundamental limitation of this system comes in the form of total ordering between
partitions. This is not achieved by this system; however, the model provides solutions
to this problem. If total ordering is required for certain events in the game, these can be
described by the model as either “Global” or “Diffuse” objects. While this may be helpful
in certain games, it is not a total solution to total ordering between partitions.

5.5 Summary

This chapter performed an evaluation of the core contributions of this work: The model,
the framework and the implemented distributed online game. The model was reviewed
with respect to accessibility and reusability. The framework was evaluated with respect
to accessibility, reusability, scalability and performance. The implemented game was
evaluated with respect to scalability and performance. Limitations were also discussed
with respect to the framework and the overall approach.
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6 Conclusion

6.1 Summary

Chapter one provided initial background information regarding the online gaming
industry as well as an outline of the problem, motivation, approach, challenges and
contributions. Chapter two provided background on state of the art, which informed
the design and implementation of this work. Chapter three described the reusable
model that can be used to describe how a game can become distributed, as well as the
terms and abstractions that permit reusability. Chapter four discussed the
implementation of these ideas through a framework API as well as the creation of a
distributed online game using these methods. Chapter five contained qualitative and
quantitative analyses of the model, framework and game implementation as well a
comment on the limitations of the methods presented in this work.

6.2 Key Findings

The implemented game was shown to support 100 players in a single partition, with an
average event latency of 90ms and an average event loss rate of 1.33 events per 100
events. This did not meet the performance and reliability requirements necessary for a
competitive first-person shooter (FPS) game. However, reducing the number of players
to 70 satisfied these requirements for a competitive FPS game, as the recorded average
latency was 28.9ms and an event loss rate of 0.12%, as the threshold for acceptable
performance was 60ms.

The reason for this significant relative drop in performance between 70 and 100 players
was hypothesised to be a failure of the Kafka node. The node was hosted on Microsoft
Azure on the lowest tier of virtual machines.
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6.3 Limitations of Work

This work evaluated the performance of a single type of distributed online game.
However, there are a wide variety of games as expressed in the archetypes within the
model. This work was concerned with building an abstract model and framework as
well as an implementation of a distributed game using these methods. As the focus was
not on building games and was more related to the process through which games are
modelled to be distributed, other games were not explored. In addition to this, creating
games is not a trivial task and would require more time.

The game that was explored was implemented through Pygame in the Python language
as was the framework API. However, C++ is a more popular programming language for
building games so a framework in this language would be more practical and as it is a
lower-level language, more efficient in terms of execution time.

6.4 Future Work

In future work, the following areas will be explored:

Different deployment tiers would be investigated to identify the performance deficit
between 70 and 100 concurrent players per partition found in this work. Currently, the
chosen virtual machine is the ‘B2’ model from Azure. While the data centre deployment
was explored in this study, future work will involve investigating the use of the
distributed cluster approach picture in figure 4.3.

This work was concerned with building the model and framework, as well as an example
distributed game for evaluation purposes. The implementation of more games would
need to be explored in future work to validate the proposed methods further.

Future work would reconstruct the framework API in a more popular language for game
development, such as C++ or Java.

Security was not explored in this study and will be explored in future work. In addition
to this, encryption and event compression would also be investigated relative to any
impact on performance these might incur.

6.5 Final Conclusion

This work presented an abstract model that was successfully used to describe a
competitive, distributed online game. That model helped to standardise the process of
creating a distributed online game, increasing accessibility. The model described a
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suitable level of consistency through an area of interest approach. The framework was
composed of an event-driven backbone architecture and Python API. The framework
was successfully applied to implement the modelled, distributed online game. The
framework and implementation were measured and evaluated against performance and
reliability concerning latency and event loss rate. The empirical evidence that was
gathered suggests that the implemented game could support up to 70 concurrent
players in a single partition and still provide an acceptable level of performance and
reliability for competitive, first-person shooters.

These methods increase accessibility by providing an open-source, low cost, standard
approach and modelling and implementing distributed, online games. While designed
with reusability in mind, these methods will be explored through building more games
in future work.

Based on the findings of this study, these methods stand as a valid basis for building
distributed and scalable online games as well as future work and further investigation.
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