
An Investigation of Knowledge Tracing Algorithms

as Learner Simulators

Billy McKenna

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Computer Engineering, MAI

Supervisor: Prof. Vincent Wade

April 2022



Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Billy McKenna

April 19, 2022



Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Billy McKenna

April 19, 2022



An Investigation of Knowledge Tracing Algorithms

as Learner Simulators

Billy McKenna, Master of Computer Engineering, MAI

University of Dublin, Trinity College, 2022

Supervisor: Prof. Vincent Wade

The development and research of adaptive learning systems is greatly hindered by the re-
quirement for significant amounts of learners to interact with the systems. Many adaptive
learning systems are built using machine learning technologies and require a significant
number of learners’ interactions to train and evaluate the systems. The use of knowledge
tracing algorithms as learner simulators offers a potential solution to this problem, in
particular for recommendation systems that recommend questions to a learner according
to how the learner responds to other questions. Knowledge tracing algorithms can be
used as learner simulators to simulate learners’ responses to questions. It is hoped that
knowledge tracing algorithms can realistically simulate how learners respond to questions
and reduce the number of real learners and responses per learner required to train and
evaluate these adaptive learning recommendation systems.

Current research fails to evaluate knowledge tracing algorithms as learner simula-
tors. Research focuses on evaluating the performance of knowledge tracing algorithms
for knowledge tracing as opposed to learner simulation. It is currently unknown how
accurately learner simulators can simulate the responses of learners to questions. This
dissertation investigates the use of knowledge tracing algorithms as learner simulators to
simulate the responses of learners to questions. The research seeks to discover how well
knowledge tracing algorithms can perform as learner simulators.

In an extensive evaluation of knowledge tracing algorithms as learner simulators, it
was found that the best performing learner simulators can simulate the responses of
learners with an average accuracy of 76% for the two learner simulation tasks defined.



The two learner simulation tasks defined reflect the number of responses that would
be required to be simulated during training and evaluation of these adaptive learning
recommendation systems. The evaluation and analysis conducted also produced a number
of other interesting findings including how the accuracy of learner simulators can be
increased further, how the performance of knowledge tracing algorithms for knowledge
tracing can inform us about their performance as learner simulators and which knowledge
tracing algorithms are most suitable for the simulation of learners’ responses.

Overall, the accuracy achieved by the best performing learner simulators is a promising
indication that knowledge tracing algorithms have the ability to realistically simulate
learners’ responses to questions. It is hoped that this level of accuracy is suitable for
reducing the number of real learners and responses per learner required for the training
and evaluation of adaptive learning recommendation systems that recommend questions
according to learners’ responses.
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Chapter 1

Introduction

Personalized education is the tailoring of educational content to an individual’s needs.

It is a contrast to the traditional “one-size-fits-all” approach and offers great potential

for improvements to educational experiences (U.S. Department of Education Office of

Educational Technology (2010)).

Adaptive learning is a method of delivering personalized education. Adaptive learn-

ing aims to offer personalized learning experiences by adapting the learning experience

according to information about the learner. Examples of learner information that can

be used to adapt the learning experience include a learner’s responses to questions, a

learner’s preferences or a learner’s learning style (Xie et al. (2019)). Adaptive learning

can be used to adapt the learning experience in different ways such as the provision of

adaptive feedback (Awais Hassan et al. (2019)), the early detection of at-risk students

(Wolff et al. (2014)) or the recommendation of content (Nurjanah (2016);Raghuveer et al.

(2014)). The current ability and future potential of adaptive learning to improve educa-

tional experiences is evident in research. Learner performance has shown to be improved

when adaptive feedback is provided to the learner (Awais Hassan et al. (2019)), students

that complete problems adapted to their personal interests have been shown to solve the

problems faster and more accurately (Walkington (2013)) and the recommendation of

content according to different information known about the learner has been observed to

have great potential (Raghuveer et al. (2014)).

Evidence has shown that adaptive learning is a promising method of improving edu-

cational experiences and is being used to transform education. However, a major problem

hindering the development and evaluation of adaptive learning systems is the require-

ment for significant amounts of learners. Many of the adaptive learning systems are built

using machine learning technologies. During training, the underlying machine learning

models learn how to adapt the learning experiences by observing learner’s behaviour from
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interactions with the systems. Furthermore, in the evaluation of most adaptive learning

systems many learners are also required. To fairly compare how learners are affected by a

non-adaptive system and an adaptive system, or to compare how learners are affected by

different adaptive systems, many learners must be sourced to interact with the systems.

The problem of machine learning technologies requiring significant amounts of data

for training and testing has been addressed in other research areas with the generation of

synthetic data. An example of a technology that can generate synthetic data for various

research areas is a generative adversarial network (GANs) (Goodfellow et al. (2014)).

GANs can create synthetic images expanding datasets for computer vision problems or

generate synthetic text producing data for natural language processing applications (Pan

et al. (2019)). However when it comes to the generation of synthetic data for adaptive

learning, generating synthetic data becomes a very difficult task. As opposed to generating

a static synthetic image or a static synthetic sentence, dynamic synthetic learner behaviour

must be generated. The type of synthetic learner behaviour required to be generated also

depends on the training and evaluation requirements of the adaptive learning system. For

example, in order to train or evaluate an adaptive learning system it may need to observe

whether a learner answers different questions correctly or incorrectly or which learning

material a learner would indicate preferences for. As a result, the generation of synthetic

data for adaptive learning is a very difficult task.

The use of knowledge tracing algorithms as learner simulators offers a potential so-

lution in the generation of synthetic learner behaviour. Knowledge tracing algorithms

can predict the response of a learner to a question given the responses of the learner to

questions previously completed. As a result, knowledge tracing algorithms can be used

to simulate learners’ responses to questions. In the area of knowledge tracing, a learner’s

response is defined as an indication of whether a learner answers a question correctly

or incorrectly. It is a Boolean variable. This dissertation uses the same definition for a

learner’s response. The term is used throughout this dissertation to refer to a Boolean

indication of whether a learner answers a question correctly or incorrectly. As mentioned

previously, there are many different types of adaptive learning systems and the learner be-

haviour required to be simulated for each can differ greatly. A popular adaptive learning

system that requires learners’ responses for training and evaluation is a recommendation

system that recommends questions to a learner according to how the learner responds to

other questions (Farrell (2020); Liu et al. (2019)). As a result, this dissertation focuses on

the use of knowledge tracing algorithms as learner simulators for the training and eval-

uation of this type of adaptive learning system. The synthetic learner behaviour being

considered is a learner’s response to questions. While the potential for learner simulators

to be designed and implemented to simulate different learner behaviours is acknowledged,
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when referring to learner simulators or the use of knowledge tracing algorithms as learner

simulators this dissertation is referring to software that can simulate learners’ responses

to questions.

It is hoped that the learner simulators being considered can realistically mimic how

a real learner would respond to questions and be used to train and evaluate the recom-

mendation systems similar to how a real learner would. The goal is not to eliminate the

requirement for real learners in the training and evaluation of adaptive learning recom-

mendation systems but to significantly reduce the number of real learners required and

reduce the number of questions each real learner must respond to. Furthermore, through

the use of knowledge tracing algorithms as learner simulators a learner’s responses to

many different sequences of questions can be observed independent of each other. The

use of knowledge tracing algorithms as learner simulators offer a potential solution in

the generation of synthetic learner behaviour for adaptive learning, in particular for the

training and evaluation of adaptive learning recommendation systems that recommend

questions according to learners’ responses. If these learner simulators can realistically

simulate this learner behaviour they could solve a major problem hindering the develop-

ment and research of adaptive learning systems.

1.1 Motivation

The potential benefits of using knowledge tracing algorithms as learner simulators is

evident. Knowledge tracing algorithms possess the ability to simulate the learner be-

haviour required to train and evaluate adaptive learning recommendation systems that

recommend questions according to learners’ responses. If the algorithms can realistically

simulate learners’ responses, they can significantly reduce the number of real learners

required to train and evaluate these systems. However, currently there is little research

into the use of knowledge tracing algorithms as learner simulators. Farrell (2020) and

Liu et al. (2019) used knowledge tracing algorithms as learner simulators to train and

evaluate adaptive learning recommendation systems that recommend questions accord-

ing to learners’ responses. However, their research does not investigate the accuracy of

the learner simulators used. It is unknown how realistically the learner simulators used

respond to questions in comparison to how real learners would respond. Their research

relies on the current evaluation of knowledge tracing algorithms in literature.

Current evaluation of knowledge tracing algorithms evaluates their performance for a

knowledge tracing task. A knowledge tracing task involves the modelling of a learner’s

knowledge state as they answer questions and predicting the next response of the learner

as each question is answered. For the knowledge tracing task, the learner’s response to

3



each question in a sequence of questions is predicted. As the learner’s response to each

question is predicted, the knowledge state of the learner is updated by observing the

learner’s true response to the question. As a result, a knowledge tracing task can be

described as predicting the next response of a learner given their past responses. The

recommendation systems being investigated require learners’ responses to a sequence of

questions during training and evaluation (Farrell, 2020; Liu et al., 2019). As a result,

a knowledge tracing algorithm used as a learner simulator must be able to predict and

simulate a learner’s response to each question in a sequence of questions. However, the

learner’s true response to each question is not available. As a result, the knowledge state

of the learner can not be updated as it is for a knowledge tracing task. The simulated

responses must be used to update the knowledge state of the learner. Since the knowledge

state of the learner will never be updated with the true responses of a learner, some initial

knowledge state of a learner is required. The learner simulator would simulate responses

according to how a learner with that knowledge state would respond to questions. Since

a knowledge state is inferred from the observed responses of a learner, the responses of

a learner to some questions are required. As a result, this dissertation defines a learner

simulation task as simulating the responses of a learner to a sequence of questions given

their past responses to questions. The performance of a knowledge tracing algorithm for

a learner simulation task will be informative as to how realistically the algorithm can

simulate learners’ responses when training and evaluating the recommendation systems

being considered. Evaluation and comparative analysis of knowledge tracing algorithms

for knowledge tracing tasks is present in research (Farrell (2020);Gervet et al. (2020)).

However, there is currently no evaluation of knowledge tracing algorithms for learner

simulation tasks. As a result, it is unclear whether the results of research such as that

produced by Farrell (2020) and Liu et al. (2019) would be similar to the results achieved if

real learners were used. Furthermore, it is unclear whether knowledge tracing algorithms

can realistically simulate how a real learner would respond to a sequence of questions.

Investigating the performance of knowledge tracing algorithms as learner simulators is the

first step in discovering whether they are a solution to the data problem facing adaptive

learning.
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1.2 Research Question

The problems outlined in the motivation inspired the research question of “How well do

knowledge tracing algorithms perform as learner simulators?”. 1

This overall research question is tackled by addressing the following project objectives:

• Investigate and carry out a literature review of state-of-the-art knowledge tracing

algorithms and their potential use in simulating learners’ responses. This objective

will review adaptive learning recommendation systems that recommend questions

according to learners’ responses, current state-of-the-art use of knowledge tracing

algorithms to simulate learners’ responses, state-of-the-art knowledge tracing algo-

rithms, the evaluation methodologies used for knowledge tracing algorithms, the

reported performance of knowledge tracing algorithms and the different properties

and data requirements of knowledge tracing algorithms.

• Conceive, design, and implement learner simulators using knowledge tracing algo-

rithms and an experimental framework for the evaluation of the learner simulators.

• Conduct evaluation and comparative analysis of the knowledge tracing algorithms as

learner simulators.

1.3 Research Methodology

The research methodology followed for this research project was design-based research.

This research methodology consists of the investigation of a problem, the development of

a solution to the problem and the evaluation of the proposed solution. The problem this

research project is addressing is the requirement for large amounts of learners’ responses

for the training and evaluation of adaptive learning recommendation systems that recom-

mend questions according to learners’ responses. The proposed solution to this problem

is the use of knowledge tracing algorithms as learner simulators to simulate learners’ re-

sponses. The solution is developed by designing and implementing learner simulators

built using knowledge tracing algorithms. The method of evaluating this solution is to

investigate how well the implemented knowledge tracing algorithms perform as learner

simulators. This is achieved through the implementation of an evaluation framework and

conducting evaluation and comparative analysis of the implemented learner simulators.

1In this dissertation, the performance of a knowledge tracing algorithm as a learner simulator refers
to the simulation of learners’ responses for the purpose of training and evaluating the adaptive learning
recommendation systems being considered
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1.4 Contributions

This research looks to contribute to the research area in several ways. It is hoped that

the research conducted will provide insight into whether the use of knowledge tracing

algorithms as learner simulators offers a solution to the data problem facing adaptive

learning, allow for the results of past research to be better understood, allow for future

research to be conducted, and offer inspiration for the generation of complex dynamic

synthetic data in other research areas.

The evaluation of the performance of knowledge tracing algorithms as learner sim-

ulators will indicate whether they offer a solution to the data problem facing adaptive

learning. It is hoped that the learner simulators can realistically simulate learners’ re-

sponses and be used to train and evaluate the recommendation systems similar to how a

real learner would. The goal is not to eliminate the requirement for real learners in the

training and evaluation of adaptive learning systems but to significantly reduce the num-

ber of real learners required and reduce the number of questions each real learner must

respond to. The performance of knowledge tracing algorithms for knowledge tracing tasks

is a promising indication that they may perform well as learner simulators. However, it

is expected that the performance of knowledge tracing algorithms will decrease as they

are used as learner simulators. Given some number of past responses of a learner to ques-

tions, the algorithms are required to simulate the responses of the learner for a sequence

of questions as opposed to a single question. Measuring the accuracy of knowledge trac-

ing algorithms for learner simulation tasks will be informative of whether they can be

used for the training and evaluation of adaptive learning recommendation systems that

recommend questions according to learners’ responses.

By evaluating the performance of knowledge tracing algorithms as learner simulators

the results of past research such as that conducted by Farrell (2020) and Liu et al. (2019)

will be better understood. Liu et al. (2019) used knowledge tracing algorithms as learner

simulators to train and evaluate a number of adaptive learning recommendation systems.

The results of their research demonstrated that the learner simulators learned more ef-

fectively using their recommendation system, CSEAL, than the other recommendation

systems evaluated. In the research conducted by Farrell (2020), a recommendation sys-

tem was trained and evaluated with a learner simulator. The results of this research

showed the learner simulator learned more effectively when recommended questions by

the author’s recommendation system than it did from baseline recommendation strate-

gies. In both cases, it is unknown how realistically the learner simulators used respond to

questions in comparison to real learners. As a result, it is unknown whether the results

of their research would be similar to the results achieved if real learners were used. By
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evaluating the performance of knowledge tracing algorithms as learner simulators it will

be better understood whether the results of their research would be similar to the results

achieved if real learners were used. If knowledge tracing algorithms are found to simulate

learners’ responses with a high accuracy, we can assume the recommendation systems

that allow learner simulators to learn more effectively are the recommendation systems

that would allow a real learner to learn more effectively.

A third contribution of this research project is that it will allow for future research to

be conducted. Once the accuracy of knowledge tracing algorithms as learner simulators

is understood, further research can be conducted investigating what level of accuracy is

suitable for the training of the adaptive learning recommendation systems being consid-

ered. It is likely that the learner simulators do not have to perfectly replicate how a

real learner would have responded to a question in order to train an adaptive learning

recommendation system. It is likely that the learner simulator instead must respond to

questions in a similar manner to how real learners would. Understanding the performance

of the knowledge tracing algorithms as learner simulators is the first step in discovering

whether they are a solution to the data problem facing adaptive learning. Once the ac-

curacy of the learner simulators is understood, the level of accuracy required can then be

investigated.

Finally, conducting an investigation into the use of knowledge tracing algorithms as

learner simulators may offer inspiration for the generation of complex dynamic synthetic

data in other research areas. As mentioned previously, the availability of training and

test data is a problem faced by machine learning technologies in many research areas.

Some research areas such as computer vision and natural language processing solve the

problem through the generation of static synthetic data Pan et al. (2019). However,

generating synthetic data for human behaviour in dynamic adaptive environments, such

as for adaptive learning, is much more difficult. Other research areas such as medicine,

transport and e-commerce may be able to generate the synthetic behaviour of patients,

commuters and consumers in a similar manner to how synthetic learner behaviour is being

generated for adaptive learning.

1.5 Dissertation Outline

The next chapters of this dissertation are organised as follows:

• Chapter 2 presents the literature review of state-of-the-art knowledge tracing algo-

rithms and their potential use in simulating learners’ responses.

• Chapter 3 documents the design and implementation of the learner simulator and
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the underlying knowledge tracing algorithms used.

• Chapter 4 documents the evaluation of the knowledge tracing algorithms as learner

simulators. This chapter contains details of the datasets used for evaluation, the

metrics used for evaluation, the experimental setup of each experiment, the results

of each experiment and a discussion of the results.

• Chapter 5 presents the conclusions drawn from the research, identifies limitations

of the research and discusses potential future work.
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Chapter 2

State of the Art

2.1 Adaptive Learning Recommendation Systems

As mentioned previously, this dissertation focuses on adaptive learning recommendation

systems that recommend questions according to learners’ responses. The adaptive learning

recommendation systems designed and implemented by Farrell (2020) and Liu et al. (2019)

are examples of such systems.

Both systems use reinforcement learning to train an agent to recommend questions.

Reinforcement learning is an example of a machine learning technology that requires a

significant amount of learners’ responses when used for adaptive learning recommenda-

tion systems that recommend questions according to learners’ responses. Reinforcement

learning consists of an intelligent agent learning a desired behaviour in an interactive

environment. Through a trial-and-error process, an agent learns using feedback from its

actions. This feedback takes the form of rewards assigned to the agent. The goal for the

agent is to find a suitable policy that would maximize the total reward of the agent. A

policy is a function that returns the actions the agent should take. Reinforcement learn-

ing is a machine learning technology that has seen great success in recent years in many

areas such as gaming and robotics (Arulkumaran et al., 2017; Li, 2017). Reinforcement

learning has been used to create AI that can outperform human players when playing

games. An example of this is AlphaGO (Silver et al., 2016), the first computer program

to defeat a human professional player in the game of Go. In the area of robotics, reinforce-

ment learning is being used to enable a robot to learn from its actions in an environment

to create its own control system (Levine et al., 2015, 2016). Reinforcement learning is

hoped to achieve similar success in adaptive learning. As a result, it is being used for

adaptive learning recommendation systems such as those implemented by Farrell (2020)

and Liu et al. (2019). However as mentioned previously, it requires a significant amount
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of learners’ responses. In application areas such as gaming and robotics, reinforcement

learning benefits from the availability of large amounts of dynamic data. The dynamic

data is the feedback from the agent’s actions in the interactive environment. In gaming,

an agent can explore countless different moves and the game will respond according to the

moves made. In robotics, a robot can make countless different movements and observe

the response of the physical environment to its movements. However for the adaptive

learning recommendation systems being considered, an agent needs to recommend many

different questions and observe the response of learners to those questions. Sourcing lots

of learners’ responses to many different questions is very difficult.

Reinforcement learning has been applied to provide adaptive learning solutions such

as the reinforcement learning system RILS proposed by Raghuveer et al. (2014). However,

this system was built for a Massive Open Online Courses (MOOC) environment where

there are a significant number of existing users. The significant number of users available

to interact with the system would provide the required environment to train and evaluate

the reinforcement learning agents. It is very difficult for developers and researchers to get

access to this number of learners, in particular in the early stages of development of adap-

tive learning systems. Furthermore, the research conducted by Raghuveer et al. (2014)

was still limited by the number of learners available for training and testing. Where data

containing learners’ responses to questions is available, the data is static. Datasets gen-

erally contain learner sequences. A learner sequence is a sequence of questions completed

by a learner and the learner’s responses to those questions. The data is static as it can’t

be updated to contain the responses of a learner to new questions. Since a reinforcement

learning agent learns using a trial-and-error process, it would recommend many different

questions to a learner. Its policy would be updated according to the responses of the

learner. The response of the learner to any question recommended would be required.

As a result, the static data cannot be directly used to train the reinforcement learning

agents of the recommendation systems being considered. A means of generating learners’

responses to different questions is required. As a result, the use of knowledge tracing al-

gorithms as learner simulators is particularly beneficial for training and evaluating these

recommendation systems built using reinforcement learning.

In terms of how these recommendation systems recommend questions, the system

implemented by Farrell (2020) seeks to maximize the educational gain of a learner while

reducing information overload. Maximizing the educational gain of a learner consists

of improving their proficiency in skills in the course. Reducing information overload

consists of reducing the number of questions the learner must complete. The goal of the

recommendation system is to recommend the least number of questions required to best

improve the performance of the learner in the course. The recommendation process is

10



separated into a pre-test, recommended questions and post-test. The pre-test is taken by

the learner prior to the recommendation of questions. This allows the recommendation

agent to evaluate the initial knowledge state of the learner. Once the pre-test is completed,

the agent can recommend a question. The agent then analyses the response of the learner

to the question. The agent continues to recommend questions until it decides the learner is

ready to complete the post-test. The responses of the learner to the questions of the post-

test allows the agent to evaluate the change in performance caused by the recommended

questions being completed. The agent is rewarded for improvements in the learner’s

performance from pre-test to post-test. The agent is penalized for the number of questions

it recommended. The recommendation system implemented by Liu et al. (2019) seeks to

recommend learning paths that maximize learning effectiveness. A learning path is a

sequence of question recommended to a learner. Similar to the recommendation system

designed and implemented by Farrell (2020), the recommendation process is separated into

a pre-test, recommended questions and post-test. The learning effectiveness is a measure

of how the learner’s score improved from the pre-test to the post-test. This system does

not only recommend questions according to learners’ responses but also according to

the knowledge structure of the questions and skills in the course. However, since the

knowledge structure is not updating as questions are being recommended this is not data

that would need to be simulated. In both cases, the recommendation process consists of

a pre-test, recommended questions and post-test. As a result, the training and evaluation

of both systems requires learners’ responses to the pre-test, recommendation questions

and post-test.

2.2 Learner Simulators

As mentioned previously, the use of knowledge tracing algorithms as learner simulators of-

fers a potential solution in simulating learners’ responses for training and evaluating adap-

tive learning recommendation systems that recommend questions according to learners’

responses. However, there is currently limited research in the area.

The research of Farrell (2020) investigated knowledge tracing algorithms and the use

of knowledge tracing algorithms as learner simulators for training an adaptive learning

recommendation system. As mentioned above, an adaptive learning recommendation sys-

tem was implemented by Farrell (2020). As part of this research, a comparative analysis

of knowledge tracing algorithms was conducted and a learner simulator was implemented

using the knowledge tracing algorithm Bayesian Knowledge Tracing (BKT). BKT is dis-

cussed further in section 2.3. The implemented recommendation system was trained and

evaluated using the learner simulator. The results of this research showed the learner
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simulator learned more effectively when recommended questions by the author’s recom-

mendation system than it did from baseline recommendation strategies. While a learner

simulator was implemented and used to train and evaluate an adaptive learning recom-

mendation system, the performance of the learner simulator was not investigated. It is

unknown how realistically the learner simulator used simulated the responses of learners.

The comparative analysis of knowledge tracing algorithms conducted evaluated their per-

formance for knowledge tracing as opposed to learner simulation. The research relies on

the evaluation of knowledge tracing algorithms for knowledge tracing to give an indication

of how realistically knowledge tracing algorithms can simulate learners’ responses.

The challenge of training an adaptive learning recommendation system was acknowl-

edge by Liu et al. (2019) in the implementation of their recommendation system. The

authors solved the data problem by implementing two learner simulators. One simulator

was rule based using Item Response Theory (IRT) (van der Linden and Hambleton, 1997).

IRT assumes that the knowledge state of a learner is constant as they complete questions.

In reality a learner’s knowledge state evolves as they answer questions. As a result, as-

suming the knowledge state of a learner is constant as they answer questions would likely

lead to unrealistic simulation of the learner’s responses. The second simulator used the

knowledge tracing algorithm Deep Knowledge Tracing (DKT) Piech et al. (2015). DKT

is discussed further in section 2.3. Knowledge tracing algorithms model the change in the

knowledge state of a learner as they complete questions. Modelling a learner’s knowledge

state as a dynamic variable that updates with the completion of each question is a more

realistic representation than modelling a constant knowledge state. As a result, it would

likely provide more realistic simulation of learners’ responses. Despite the use of learner

simulators to train and evaluate different recommendation systems in this research, the

research offers a limited insight into the operation of the learner simulators and lacks eval-

uation of their performance as learner simulators. Again it is unknown how realistically

the learner simulators used simulated learners’ responses.

In both cases the research demonstrates the use of knowledge tracing algorithms as

learner simulators to train and evaluate adaptive learning recommendation systems. How-

ever, the performance of the learner simulators used is not investigated. It is hoped that

learner simulators can realistically simulate how a real learner would respond to ques-

tions and can be used to train and evaluate recommendation systems similar to how a

real learner would. However, it is unknown how realistically the learner simulators used

responded to questions in comparison to how real learners would respond. Their research

relies on the evaluation of knowledge tracing algorithms for knowledge tracing tasks. As

detailed in section 2.3.2 this method of evaluation does not necessarily provide an accurate

indication of the performance of knowledge tracing algorithms as learner simulators. As
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a result, it is unclear whether the results of the research would be similar to the results

achieved if real learners were used. Furthermore, it is still unclear whether knowledge

tracing algorithms can realistically simulate how a learner would respond to a sequence

of questions.

2.3 Knowledge Tracing Algorithms

This section includes an overview of knowledge tracing algorithms, a description of the

current evaluation methodologies used for knowledge tracing algorithms and detailed de-

scriptions of the algorithms BKT and DKT. DKT, a variation of DKT and a variation

of BKT are implemented as learner simulators for this research project. As a result,

detailed descriptions of BKT and DKT are provided in this section. Further details on

design choices are outlined in chapter 3.

2.3.1 Overview of Knowledge Tracing Algorithms

Knowledge tracing is the modelling of a learner’s knowledge state as the learner com-

pletes questions. The knowledge state of a learner is a latent variable that is inferred

from the observable variable, a learner’s responses to questions. As mentioned previously,

a learner’s response refers to whether the learner answered a question correctly or incor-

rectly. Knowledge tracing algorithms are often used to predict the response of a learner

to a question given past responses.

The first knowledge tracing algorithm was introduced by Corbett and Anderson (1994).

The knowledge tracing algorithm introduced was BKT. Since the introduction of BKT

in 1994, there has been lots of research conducted in the area of knowledge tracing and

predicting learners’ responses. This resulted in the implementation of many new algo-

rithms as well as improved variants of the original BKT algorithm. BKT and its variants

are often considered benchmark knowledge tracing algorithms. New algorithms are often

compared with BKT or its variants. The initial advancements in knowledge tracing and

predicting learners’ responses consisted of what are commonly considered probabilistic or

logistic algorithms. An example of a popular logistic algorithm that was implemented

to compete with the original BKT algorithm was Performance Factor Analysis (PFA)

introduced by Pavlik et al. (2009). The algorithm was introduced as an alternative to

knowledge tracing for predicting learners’ responses. Pavlik et al. (2009) reported that

PFA slightly outperformed their implementation of BKT for the prediction of learners’ re-

sponses to questions. However, future research such as the comparative analysis of the two

algorithms conducted by Farrell (2020) suggests the contrary. BKT was found to outper-
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form or have equal performance to PFA . Piech et al. (2015) sparked the beginning of the

implementation of many deep learning models for knowledge tracing with the introduc-

tion of Deep Knowledge Tracing (DKT). This paper reported that DKT achieved a 25%

gain in AUC over the benchmark knowledge tracing algorithm BKT. In the subsequent

years following the introduction of DKT, variations of DKT and new deep knowledge

tracing algorithms were implemented. When a new knowledge tracing algorithm is in-

troduced, the authors of the newly introduced algorithm often report the algorithm they

have introduced to outperform benchmark and state-of-the-art algorithms such as BKT

and DKT. However, comparative analysis later conducted often finds performance differ-

ences to be overstated or even finds the current benchmark or state-of-the-art algorithms

to outperform the newly introduced algorithm.

The comparative analysis conducted by Gervet et al. (2020) finds many of the per-

formance differences between knowledge tracing algorithms in literature to be overstated.

Furthermore, classical algorithms such as BKT were found to outperform the state-of-

the-art algorithms for some datasets when newer variations were used. The particular

focus of their research was an investigation of when deep knowledge tracing algorithms

should be used as opposed to probabilistic or logistic algorithms. A variety of different

algorithms were compared and their performance in predicting learners’ responses was

compared across nine different datasets. The general findings were that DKT peformed

best on five of the nine datasets while a logistic regression model named Best-LR per-

formed best on the remaining datasets. From the results it was concluded that logistic

regression models perform best on smaller datasets as they underfit the larger datasets.

Meanwhile, deep learning models performed best on large datasets as they overfit the

smaller ones. Another interesting finding of this research was that Self-Attentive Knowl-

edge Tracing (SAKT), a knowledge tracing algorithm presented by Pandey and Karypis

(2019), was outperformed by DKT on all datasets. This was a contrast to the results

reported in the paper introducing SAKT (Pandey and Karypis, 2019). The comparative

evaluation conducted by Gervet et al. (2020) also found BKT to outperform DKT on two

of the datasets, This is an interesting finding considering the introductory paper of DKT

reported a 25% gain in AUC over BKT (Piech et al., 2015).

The work of Gervet et al. (2020) provides an adequate summary of the state-of-the-

art knowledge tracing algorithms through their comparative analysis. However, there

are several other recently invented knowledge tracing algorithms not evaluated in their

research. Knowledge tracing algorithms introduced in the last two years include Context-

Aware Attentive Knowledge Tracing (AKT) (Ghosh et al., 2020), Relation-Aware Self

Attention for Knowledge Tracing (RKT) (Pandey and Srivastava, 2020), a variation of

Separated Self-Attentive Neural Knowledge Tracing (SAINT+) (Shin et al., 2021), Deep
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Knowledge Tracing with Transformers (DKTT) (Pu et al., 2020) and Deep Self-Attentive

Knowledge Tracing DSAKT (Zeng et al., 2021). While these models were not included

in the research conducted by Gervet et al. (2020), all of the models are compared with

SAKT in their respective papers with results suggesting they outperform the model. Fur-

thermore, all models except DKTT are compared to DKT with results suggesting they

outperform DKT. None of these knowledge tracing algorithms from 2020 or 2021 are

compared with each other. As a result, each of these algorithms could be considered

state-of-the-art knowledge tracing algorithms. However, as seen with the comparative

evaluation conducted by Gervet et al. (2020) it is often the case that the reported perfor-

mance differences between new knowledge tracing algorithms and current state-of-the-art

or benchmark algorithms can be overstated.

When considering the use of knowledge tracing algorithms as learner simulators there

are a number of factors to be considered. Most knowledge tracing algorithms require a

dataset containing the responses of learners to questions for training. The parameters of

the knowledge tracing algorithms are calculated during training using the data. These

parameter values are used to predict the response of a learner to questions. The knowledge

tracing algorithms must be trained on the responses of learners to questions that they

will be used to predict responses for. As a result, when used for learner simulation the

knowledge tracing algorithms will need to be trained on learners’ responses to questions

in the course, i.e., questions that can be recommended. As mentioned previously, the goal

of learner simulators is not to eliminate the requirement for real learners but to reduce the

number of real learners required and to reduce the number of questions each real learner

would be required to respond to. For example the responses of learners’ in a particular

class could be recorded, and the knowledge tracing algorithms could use this data to

simulate responses for questions related to the same content. These simulated responses

could be used to train a recommendation system that will be used to recommend that

content in the near future. Each knowledge tracing algorithm also requires different data

to be present in the dataset. Algorithms such as SAINT+ and DKTT use the time taken

by a learner to answer a question when predicting the response of a learner. This is not

suitable for a learner simulator as the learner simulator would be required to also simulate

the time taken to answer the question. Many recent deep knowledge tracing algorithms

also focus on improving the interpretability of DKT. This is not necessarily the most

important feature of a knowledge tracing algorithm that is required to simulate learners’

responses as realistically as possible.
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2.3.2 Evaluation of Knowledge Tracing Algorithms

As mentioned previously, current research evaluates knowledge tracing algorithms for a

knowledge tracing task. A knowledge tracing task involves the modelling of a learner’s

knowledge state as they complete questions and predicting the next response of the learner

as each question is completed.

Knowledge tracing algorithms are trained and evaluated on a dataset containing

learner sequences. As mentioned previously, a learner sequence is considered a sequence of

questions answered by a learner and the learner’s response to each question. The datasets

are split into training and test sets, typically using a 80:20 partition. During training, the

parameters of the knowledge tracing algorithms are calculated. The trained knowledge

tracing algorithms are evaluated by predicting the responses of the learners present in

the test to each question in their corresponding learner sequence, i.e., each question they

answered. Predicting the learner’s response consists of predicting the probability that the

learner answers the question correctly. For each prediction, the algorithm observes all

past questions and responses in the learner sequence and infers the knowledge state of

the learner. The predicted responses to each question in each of the learner sequences are

compared with the true responses. AUC is the metric generally calculated and reported

in literature. AUC is a measure of how well the algorithm can distinguish between the two

classes, correct and incorrect, when making predictions. To summarize the evaluation of

knowledge tracing algorithms for a knowledge tracing task, a knowledge tracing algorithm

predicts the probability that a learner’s answer to the next question is correct given their

past questions and responses. This evaluation methodology is used in the evaluation of

knowledge tracing algorithms in literature.

The results achieved using this evaluation methodology are not necessarily an accurate

indication of how knowledge tracing algorithms perform as learner simulators. During

a knowledge tracing task, a knowledge tracing algorithm uses the true responses of the

learner to all past questions to update the learner’s knowledge state and predict a response.

When simulating learners’ responses for the training and evaluation of a recommendation

system, the true responses of a learner to all past questions will not be present. As a learner

simulator, the knowledge tracing algorithms are required to simulate the responses of a

learner to questions that true responses of the learner are not available for. As a result, the

knowledge state of the learner must be updated by simulated responses as opposed to true

responses. This is the key difference between knowledge tracing and learner simulation.

For knowledge tracing, an incorrectly predicted response will not have an effect on the

next prediction made. For learner simulation, an incorrectly simulated response can

have a negative effect on the future responses simulated. As a result, simulating learners’

16



responses is a much more difficult task than knowledge tracing. Since the knowledge state

of the learner will never be updated with true responses as questions are answered, some

initial knowledge state must be inferred for the learner and used to inform the simulations.

This would take the form of a limited amount of a learner’s responses to previously

completed questions. This dissertation defines a learner simulation task as simulating the

responses of a learner to a sequence of questions given their past responses to questions.

The performance of a knowledge tracing algorithm for a learner simulation task will be

informative as to how realistically the algorithm can simulate learners’ responses when

training and evaluating the recommendation systems being considered. Currently, there

is no evaluation of knowledge tracing algorithms for learner simulation tasks present in

literature.

2.3.3 Bayesian Knowledge Tracing

BKT models the latent knowledge state of the learner as a set of binary variables. Each

variable represents whether a learner knows or does not know a particular skill. As a result,

the learner has a knowledge state for each skill for the range of skills being examined.

The knowledge state of the learner for each skill is considered to be independent of one

another. A Hidden Markov Model (HMM) is used to update the set of binary variables

using a learner’s responses to questions related to skills. BKT assumes each question

being completed by a learner has one skill associated with it.

The BKT algorithm has four model parameters:

• p(L0), the initial probability that the learner knows the skill.

• p(G), the probability of the learner answering a question correctly despite not know-

ing the skill. This is considered a guess by the learner.

• p(S), the probability of the learner answering a question incorrectly despite knowing

the skill. This is considered a slip by the learner.

• p(T ) the probability the learner learns the skill having answered a question related

to the skill.

These parameters must be set for each skill being considered. The parameters are often

set using historical logs containing learners’ responses to questions related to the skills

being considered. Badrinath et al. (2021) offers a popular python library for Bayesian

knowledge tracing algorithms. This library uses expectation maximization to fit the

parameters from historical logs containing learners’ responses.
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Once the parameters are set for each skill, they can be used to update the knowledge

state of the learner as the learner responds to questions related to the skills. Before the

first question is completed by learner u, the probability of the learner learning the skill

k is set to the value of p(L0) for skill k as seen in Equation 2.1. As each question t is

answered by learner u, Equation 2.2, Equation 2.3 and Equation 2.4 are used to update

the knowledge state of the learner. Equation 2.2 and Equation 2.3 use the observed

response of the learner to the question. Having observed the responses of the learner to

questions up to t, the probability that the learner answers the question t + 1 correct is

given by p(Ct+1) as seen in Equation 2.5. This allows for BKT to be used to predict the

response of learner u to a question related to skill k given the past responses of learner u

to questions related to skill k.

p(L1)
k
u = p(L0)

k (2.1)

p(Lt|obs = correct)ku =
p(Lt)

k
u · (1− p(S)k)

p(Lt)ku · (1− p(S)k) + (1− p(Lt)ku) · p(G)k
(2.2)

p(Lt|obs = incorrect)ku =
p(Lt)

k
u · p(S)k

p(Lt)ku · p(S)k + (1− p(Lt)ku) · (1− p(G)k)
(2.3)

p(Lt+1)
k
u = p(Lt|obs)ku + (1− p(Lt|obs)ku) · p(T )k (2.4)

p(Ct+1)
k
u = p(Lt+1)

k
u · (1− p(S)k) + (1− p(Lt+1)

k
u) · p(G)k (2.5)

Some limitations of the BKT algorithm are that it requires each question being com-

pleted to be explicitly tagged with a knowledge state and the knowledge state of the

learner for each skill is modelled independently. The explicit tagging of questions with

skills can cause unknown relationships between questions and skills to not be modelled.

Modelling the knowledge state of the learner for each skill independently can be an unre-

alistic modelling of knowledge states for learners in real world environments. It is often

the case that the knowledge state of the learner for one skill is strongly related to another.

2.3.4 Deep Knowledge Tracing

DKT models the latent knowledge state of the learner “using large vectors of artificial

‘neurons’, and allows the latent variable representation of student knowledge to be learned

from data rather than hard-coded” Piech et al. (2015, p. 1). A Recurrent Neural Network

(RNN) is used by DKT to model the latent knowledge state of the learner. A RNN is a
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type of artificial neural network used for sequential data, e.g., a sequence of questions and

a learner’s responses to those questions. Using an artificial network to model the latent

knowledge state of the learner means DKT can model more complex representations of

the learner’s knowledge state in comparison to BKT. While BKT models the knowledge

state of the learner for each skill independently, DKT models all knowledge states jointly.

The DKT algorithm can be used to predict the response of a learner to a question, given

the responses of the learner to previously completed questions. For DKT the knowledge

tracing task can be formalized as p(at+1 = 1|Xt, qt+1), namely predict the probability that

the learner’s answer to the next question at+1 is correct given their past t interactions

Xt = (x1, x2, ..., xt) and information about the next question qt+1. Each past interaction

xi = (qi, ai) is a tuple containing the question information and the learner’s answer to

the question where qi is the question information relating to the ith question and ai is

the learner’s answer to the ith question. The learner’s answer to the ith question, ai, is

either 0 or 1 corresponding to a incorrect or correct answer. Question information q is

typically represented by a question ID or a skill ID. When a question ID is used, DKT

is predicting the response of the learner to a specific question. When a skill ID is used,

DKT is predicting the response of the learner to a question related to a specific skill.
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Chapter 3

Design & Implementation

3.1 Overview of the Approach

This research focuses on designing a learner simulator that is capable of using different

knowledge tracing algorithms to simulate learners’ responses. This learner simulator is

designed to be appropriate for the training and evaluating of adaptive learning recom-

mendation systems that recommend questions according to learners’ responses.

As mentioned in section 2.1, the recommendation systems the learner simulator is

being designed for recommend a sequence of questions and also provide the learner with

some form of examination. Examples of these recommendation systems are the systems

designed and implemented by Farrell (2020) and Liu et al. (2019). Both these systems

provide the learner with a pre-test, recommended questions and post-test. In order to

be trained and evaluated the systems require learners’ responses to the pre-test, recom-

mended questions and post-test.

The pre-test contains a learner’s responses to questions that were completed before

any questions have been recommended. It represents the initial knowledge state of the

learner. As mentioned previously, a knowledge tracing algorithm used as a learner simula-

tor requires an initial knowledge state for the learner. As a result, the decision was made

that a learner’s responses to the questions in the pre-test should be sourced and used to

initialize the knowledge state of the learner simulator. The learner simulator can then

simulate the responses of the learner to the recommended questions and post-test using

this initial knowledge state. The responses of the learner to the pre-test can be manually

configured or a record of a real learner’s responses to the questions could be used. Man-

ually configuring the learner’s responses to the questions of the pre-test allows for the

creation of a fictional learner. By manually selecting the responses of the learner to the

questions, the initial knowledge state of the learner simulator is being configured for spe-
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cific questions or skills. The learner simulator should respond to questions similar to how

a learner with that knowledge state would. Alternatively, using the recorded responses of

a real learner to the questions initializes the learner simulator with the knowledge state

of that real learner. The learner simulator should then respond to questions similar to

how that real learner would have.

3.2 Requirements of the Learner Simulator

Since different knowledge tracing algorithms are being investigated, the learner simulator

must be configurable with different knowledge tracing algorithms. As mentioned above,

the underlying knowledge tracing algorithm of the learner simulator requires an initial

knowledge state of the learner in order to make predictions. As a result, the learner

simulator requires a sequence of questions and the responses of a learner to those questions

from which the initial knowledge state of the learner can be inferred, i.e., the pre-test. The

knowledge state of a learner is dynamic and changes as a learner completes questions. As

a result, a learner simulator must update the knowledge state of the learner as it simulates

responses to questions.

3.3 Design

The learner simulator was designed according to the requirements listed above. Figure

3.1, displays an illustration of the inputs and outputs of the learner simulator.

In order to allow the learner simulator to be configured with different knowledge

tracing algorithms, the first input of the learner simulator is a trained knowledge tracing

algorithm. The knowledge tracing algorithm must be trained on data containing the

responses of learners to questions or questions associated with skills that responses may

need to be simulated for.

To allow for the learner simulator to contain an initial knowledge state of the learner

that can be used by the knowledge tracing algorithm to make predictions, the second

input is an initialization sequence. This initialization sequence is equivalent to the pre-

test of the recommendation process. It is a sequence of questions and a learner’s responses

to the questions. As mentioned previously, the responses of the learner to these questions

can be manually configured or a record of a learner’s responses to a sequence of questions

can be used.

The final input of the learner simulator is the simulation sequence. The simulation

sequence consists of a sequence of questions that responses must be simulated for. This

is equivalent to the recommended questions and the post-test of the recommendation
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Figure 3.1: Illustration of the inputs and outputs of the learner simulator

process. Fig 3.1 depicts the learner simulator receiving a sequence of questions to be

simulated. This assumes that the recommendation system is recommending a sequence

of questions as opposed to recommending a single question, analyzing the response of the

learner, and repeating the process. However, the learner simulator is still appropriate

for simulating a response to a single question, outputting the simulated response and

repeating the process.

The output of the learner simulator is a sequence of simulated responses to each

question in the simulation sequence. The simulated response is either 1 or 0 corresponding

to the learner answering the question correctly or incorrectly respectively.

3.3.1 Simulating Responses

The trained knowledge tracing algorithm is used to simulate the learner’s response to each

question. For each question in the simulation sequence the knowledge tracing algorithm

receives the initialization sequence and the current question as inputs. The knowledge

tracing algorithm infers the knowledge state of the learner from the initialization sequence

and predicts the response of the learner to the current question. The predicted response is

a value between 0 and 1 that represents the probability of whether the learner answered

the question correctly. The predicted response is mapped to a simulated response by

converting the prediction to a value of 0 or 1. A threshold of 0.5 is used for mapping

the probability to a learner’s response. For predictions greater than 0.5, the simulated
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response is 1. For predictions less than or equal to 0.5, the simulated response is 0.

The value of 0 indicates the learner answered the question incorrectly. A value of 1

indicates the learner answered the question correctly. As mentioned in the requirements,

the learner simulator must update the knowledge state of the learner as it simulates

responses to questions. As a result, the question and simulated response are appended

to the initialization sequence updating the knowledge state of the learner. The process is

repeated for each question in the simulation sequence.

3.4 Implementation

The learner simulator was implemented according to the outlined designs using Python.

Three knowledge tracing algorithms were chosen to be evaluated as learner simulators

for this research project. As a result, the learner simulator was implemented according

to the operation of the knowledge tracing algorithms. Each knowledge tracing algorithm

models the latent knowledge state of the learner differently and predicts the response

of the learner to a question differently. The knowledge tracing algorithms chosen were

Bayesian Knowledge Tracing with Forgetting (BKT+F), DKT and a modified version of

DKT that has been named DKT+ for this dissertation.

3.4.1 BKT+F

BKT+F is a variation of BKT that includes an extra parameter p(F ), the probability that

a learner forgets a skill they know. Once standard BKT infers that a learner has learned a

skill, the inferred knowledge state will not be changed. Even if a long sequence of incorrect

answers for questions related to a particular skill are observed, the learner’s knowledge

state will still be modelled as knowing the skill. However, when the forgetting parameter

is included the knowledge state of the learner can move from the learner knowing the

skill to the learner not knowing the skill. As a result, if the learner performs poorly

for a skill after already learning it they can forget the skill. Furthermore, if the learner

completes a number of question unrelated to a particular skill that skill can be forgotten

by the learner. The forgetting parameter allows for more realistic modelling of a learner’s

knowledge state. Results of comparative evaluations show BKT+F outperforms standard

BKT for knowledge tracing tasks (Farrell, 2020; Khajah et al., 2016). Since Bayesian

knowledge tracing algorithms predict the learner’s response to a question according to

the skill associated with it, each question is required to be represented by a skill ID.

Skill ID is the input of the algorithm in terms of previously completed questions and the

question a response must be predicted for. As a result, BKT+F predicts the response of
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a learner to a question related to a specific skill.

BKT+F was chosen to be investigated as a learner simulator because it is an improved

variation of the benchmark knowledge tracing algorithm BKT. It offers a simplistic and

easily interpreted method for modelling the knowledge state of a learner when compared

with deep knowledge tracing algorithms. Furthermore, comparative analysis of knowledge

tracing algorithms such as that conducted by Farrell (2020) and Gervet et al. (2020) have

shown BKT and its variations are competitive with deep knowledge tracing algorithms

when evaluated on certain datasets.

BKT+F was implemented using the python library pyBKT (Badrinath et al. (2021)).

This library provides different variations of the BKT model that can be initialized and

trained. The training of the model consists of using expectation maximization to fit the

model parameters from inputted historical logs containing learners’ responses as explained

in section 2.3.3. The library also contains helper functions for evaluating the model and

for making predictions. The pyBKT library is focused on providing the ability to train

and test knowledge tracing algorithms for knowledge tracing tasks as opposed to learner

simulation tasks. As a result, the code is not optimized for simulating responses. This

results in slow simulation times as discussed later in section 4.1.5. This research was fo-

cused on the operation of the learner simulators and an investigation of their performance

in terms of the accuracy of simulated responses. As a result, significant time was not

spent enhancing the implementation of BKT+F to reduce simulation times.

3.4.2 DKT

As mentioned in section 2.3.4, the question information inputted into DKT to represent

the previously completed questions and the question a response must be predicted for can

be the question ID or the skill ID of the skill associated with the question. When question

ID is used, DKT is predicting the response of the learner to a specific question. When a

skill ID is used, DKT is predicting the response of the learner to a question related to a

specific skill.

DKT was chosen to be investigated as a learner simulator as the comparative analysis

of knowledge tracing algorithms conducted by Gervet et al. (2020) demonstrated it is a

state-of-the-art knowledge tracing algorithm. It offers a complex method of modelling

the knowledge state of the learner that allows for the relationships between different

questions and skills to be learned by the algorithm. However, the modelling of the learner’s

knowledge state is not easy to interpret. This offers a contrast to the BKT+F algorithm.

The source code provided by Gervet et al. (2020) was used for DKT. 2 The DKT model

2https://github.com/theophilee/learner-performance-prediction
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used for the learner simulator was trained using the default hyper-parameters provided,

which were selected by the original authors through 5-fold nested cross validation. Their

implementation of DKT was updated for the learner simulator.

3.4.3 DKT+

DKT+ is a variation of DKT implemented by Gervet et al. (2020). The modifications

to standard DKT were inspired by the research of Lee and Yeung (2019). Their research

proposed a new method for encoding the knowledge states and skills. While DKT rep-

resents the question with either the question ID or the skill ID, DKT+ represents the

question with both the question ID and the skill ID. Both the question ID and the skill

ID are inputted to the model for the previously completed questions and for the question

a prediction must be made. As a result, DKT+ predicts the response of the learner to a

specific question related to a specific skill.

DKT+ was chosen to be investigated as a learner simulator as it is unclear whether

the results presented for DKT in the extensive comparative analysis of knowledge tracing

algorithms conducted by Gervet et al. (2020) was for standard DKT or this variation.

Furthermore, the research of Lee and Yeung (2019) suggests the new method for encoding

the knowledge states and skills improves the performance of DKT.

The source code provided by Gervet et al. (2020) was used for DKT+. 2 The default

hyper-parameters selected by the original authors through 5-fold nested cross validation

were again used. Their implementation of DKT+ was updated for the learner simulator.

3.5 Summary

To summarize, a learner simulator capable of training and evaluating adaptive learning

recommendation systems that recommend questions according to learners’ responses was

designed and implemented. The learner simulator can be configured with the knowledge

tracing algorithms BKT+F, DKT or DKT+. The learner simulator receives an initial-

ization sequence, equivalent to the pre-test, and simulates responses to each question in

the simulation sequence, equivalent to a combination of the recommended questions and

post-test. The initialization sequence can be manually configured or a historic record of

a learner’s responses to questions can be used.
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Chapter 4

Evaluation

In the pursuit of answering the overall research question of, “How well do knowledge

tracing algorithms perform as learner simulators?”, four experiments were conducted cor-

responding to the following four evaluation questions:

• How well do knowledge tracing algorithms perform for knowledge tracing tasks?

• How well do knowledge tracing algorithms perform for learner simulation tasks?

• How does the length of the simulation sequence effect the performance of the learner

simulators?

• How does the length of the initialization sequence effect the performance of the

learner simulators?

The first experiment looks to answer the question of “How well do knowledge tracing

algorithms perform for a knowledge tracing task?”. As mentioned previously, the current

evaluation of knowledge tracing algorithms in literature answers this question. These

results are reproduced to allow for the analysis of the difference in performance between

the implemented knowledge tracing algorithms for a knowledge tracing task. The dif-

ference in performance for a knowledge tracing task is compared with the difference in

performance for learner simulation tasks. Comparing these results, it can be investigated

whether the performance of knowledge tracing algorithms for a knowledge tracing task

can be informative about their performance as learner simulators.

The second evaluation question looks to directly evaluate the performance of knowl-

edge tracing algorithms as learner simulators. While knowledge tracing algorithms are

currently evaluated in literature for knowledge tracing tasks, they are not evaluated for

learner simulation tasks. In order to understand how realistically a knowledge tracing
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algorithm can simulate the responses of learners, the knowledge tracing algorithms are

evaluated for learner simulation tasks. This experiment evaluates the performance of the

implemented learner simulators for two different learner simulation tasks.

The third evaluation question investigates how the performance of a learner simulator

changes as the simulation sequence length changes. As mentioned previously, the simula-

tion sequence contains the questions a learner simulator must simulate responses for. It

is expected that the performance of the learner simulator will decrease as it is required to

simulate more responses.

Finally, the effect of the initialization sequence length on the performance of the learner

simulator is investigated. The initialization sequence contains the questions and responses

used to initialize the learner simulator with an initial knowledge state. It is expected that

the performance of the learner simulator will increase as the number of questions and

responses used to initialize the knowledge state of the learner increases.

4.1 Datasets and Data Processing

To answer the four evaluation questions, experiments were run on datasets containing

learner sequences. As mentioned previously, a learner sequence is a sequence of questions

answered by a learner and the learner’s responses to those questions. As outlined in section

3.4, the knowledge tracing algorithms implemented represent the questions with either the

question ID, the skill ID of the skill associated with the question, or a combination of

both. As a result, each dataset is required to have a question ID, skill ID, and response

of the learner, 0 or 1, available for each question. Furthermore, datasets that are publicly

available, used in the evaluation of knowledge tracing algorithms in literature and that

cover a range of different subjects and learner types were considered requirements for the

datasets used in this evaluation.

The evaluation of knowledge tracing algorithms in past research, such as that con-

ducted by Piech et al. (2015), has produced results containing errors. The errors were

caused by the data processing methods used. In particular, the errors were caused by the

repetition of multi-skill questions in learner sequences. When a question had more than

one skill associated with it, the question was repeated multiple times in a learner sequence

with a single skill ID associated with it each time. The repetition of questions in a learner

sequence results in improved performance for deep knowledge tracing algorithms such as

DKT. Xiong et al. (2016) identified this problem and proposed a solution by generating

a new skill for any combination of skills associated with a single question in the data.

Gervet et al. (2020) adopted this solution in their evaluation of knowledge tracing algo-

rithms. With this solution, a repeated question in the learner sequence associated with
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multiple skills is replaced with a single question associated with the newly generated skill.

While this solves the problem of removing repeated questions, it creates a new problem.

By introducing new skills to represent combinations of skills the data is being altered

and information is being lost. The deep knowledge tracing algorithms, DKT and DKT+,

may not suffer significantly from this loss of information as they have the ability to

discover the underlying relationships between questions and skills. These models may be

able to learn that the newly generated skill is closely related to each individual skill it is

a combination of. As a result, they may be able to use the responses of the learner to

questions associated with the individual skills to inform their prediction of the learner’s

response to a question associated with the newly generated skill. However, BKT+F

would likely experience significant decreases in performance. As mentioned in section

2.3.3, Bayesian knowledge tracing algorithms model the knowledge state of the learner for

each skill independently. When predicting a learner’s response to a question associated

with a skill, Bayesian knowledge tracing algorithms only use the responses of the learner

to questions associated with that skill to inform their prediction. As a result, BKT+F

would not be able to use the responses of the learner to questions associated with the

individual skills to inform its prediction of the learner’s response to a question associated

with the newly generated skill. Generating new skills for the combination of skills removes

valuable information for BKT+F that would cause a decrease in its performance. As a

result, this solution to the multi-skill question problem was deemed unsatisfactory. In

order to avoid the problem presented by multi-skill questions but faithfully maintain the

structure of the data, datasets containing only single-skill questions were considered. As

a result, each question in the three datasets selected is associated with a single skill.

4.1.1 ASSISTments 2015

This data was collected from the ASSISTments online learning system. The ASSISTments

2015 dataset contains the repsonses of grade school students across the United States of

America to a variety of math questions. The dataset contains 14,228 learners, 100 different

questions and 100 different skills. There are a total of 656,154 learners’ responses to

questions in the dataset.

4.1.2 Spanish 2013

The Spanish 2013 dataset was collected as part of the research conducted by Lindsey

et al. (2014). The dataset contains the responses of middle school students in Colorado

to a variety of Spanish exercises. The dataset contains 182 learners, 409 questions, 221

skills and 578,726 total responses.
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4.1.3 Statics 2011

The data of the Statics 2011 dataset was collected from students enrolled in a statics

course at Carneige Mellon University. The dataset contains the responses of the university

students to statics questions. Statics is an engineering subject focused on the study of

particles and rigid bodies that are in equilibrium. The dataset contains 282 learners, 1,223

questions, 98 skills and 189,297 learners’ responses to questions.

4.1.4 Comparison of Datasets

Table 4.1 displays the number of learners, questions, skills and responses for each dataset.

The ASSISTments 2015 dataset contains significantly more learners than Spanish 2013

and Statics 2011 as seen in Table 4.1. However as seen from the number of responses,

each learner in the Spanish 2013 and Statics 2011 datasets responds to more questions.

Datasets Learners Questions Skills Responses
ASSIStments 2015 14,228 100 100 656,154
Spanish 2013 182 409 221 578,726
Statics 2011 282 1,223 98 189,297

Table 4.1: The number of learners, questions, skills and responses for each dataset

4.1.5 Data Processing

The data processing methods used by Gervet et al. (2020) were used for this evaluation.

This data processing consisted of removing learners with less than 10 responses and re-

moving responses to questions associated with skills labelled “NAN”. The datasets were

split into training and test sets according to a 80:20 partition.

One problem faced during experimentation was the slow run-time of BKT+F. BKT+F

was implemented using the pyBKT library (Badrinath et al., 2021). For both the training

and testing of the algorithm for knowledge tracing BKT+F was significantly slower than

DKT and DKT+. The slow training and testing of BKT+F is likely due to the indepen-

dent modelling of each learner’s knowledge state for each skill in the dataset. BKT+F

is essentially creating a model for each learner for each skill. Despite the slow training

and testing times for knowledge tracing, evaluation of the algorithms could be carried out

in a reasonable time. However, when BKT+F is applied to learner simulation tasks the

time taken to test the algorithm is increased further. For each response to be simulated

the underlying knowledge tracing algorithm must update the knowledge state with the

simulated response. Current implementations of knowledge tracing algorithms, such as
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those provided by the pyBKT library, are focused on providing the ability to train and

test knowledge tracing algorithms for knowledge tracing tasks. As mentioned in section

3.4.1, the code is not optimized for learner simulation tasks. This research project was fo-

cused on the operation of the learner simulators and an investigation of their performance

in terms of accuracy of simulated responses. Significant time was not spent optimizing

the simulation times of the algorithms. As a result, evaluation of BKT+F for learner

simulation tasks on the full test sets could not be carried out in reasonable times.

To address the slow simulation times of BKT+F and ensure experiments could be

run in a reasonable time each experiment was run twice. The top five learner sequences

of each test set for each of the knowledge tracing algorithms were extracted from the

test sets. The top five learner sequences for a respective algorithm are the five learner

sequences the algorithm performs best on for knowledge tracing. The learner sequences

considered as top five learner sequences were required to contain more than 60 questions

and confined to a maximum of 500 questions. Since BKT+F could not be evaluated as

a learner simulator on the full test set in a reasonable time, it was evaluated on the top

five learner sequences. To allow for comparisons each experiment was run twice, once for

the top five learner sequences of each test set and once for the full test set.

4.2 Metrics

The two metrics used to evaluate the performance of the knowledge tracing algorithms

for knowledge tracing and learner simulation were AUC and accuracy. The knowledge

tracing algorithms can be considered classifiers. The task they are being applied for is

binary classification. The two classes are whether the response of a learner to a question

is a correct or incorrect answer. The knowledge tracing algorithms predict the probability

that the learner answered the question correctly, a value between 0 and 1. The learner

simulator uses the knowledge tracing algorithm to make this prediction and then converts

the prediction to a response according to the threshold 0.5 as explained in section 3.3.1.

Accuracy is the percentage of correct classifications for the total number of classifica-

tions made. As a result, it offers a useful metric when analysing the performance of the

learner simulators. The metric presents how many simulated responses were the same as

the true responses of the learners. It gives an indication of how realistically the learner

simulators can simulate the responses of learners. As a result, this metric was used for

Experiment 2, where the performance of the knowledge tracing algorithms for learner

simulation tasks was evaluated. Since accuracy considers the classification made by the

model as opposed to the predicted probability, it offers limited insight into the perfor-

mance of the knowledge tracing algorithms. For example for a question that the learner
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answered correctly, a prediction close to the threshold, such as 0.4, and a prediction far

from the threshold, such as 0.1, are considered equally poor predictions when accuracy is

used. However, an algorithm that predicts a probability of 0.4 is closer to achieving the

correct classification in this example.

AUC stands for area under the ROC curve and is a metric commonly used to measure

performance in classification problems. A ROC curve is a plot of true positive rate vs.

false positive rate for various decision thresholds of a classifier. The decision threshold of

a classifier is the boundary that separates the classification of a point as a certain class.

As mentioned above, a threshold of 0.5 was used for simulating the learners’ responses.

Overall, AUC is a measure of how well the algorithm can distinguish between the two

classes, correct or incorrect. Unlike accuracy which considers the class predicted, AUC

considers the probability predicted. For example for a question that the learner answered

correctly, an algorithm that produces a prediction close to the threshold, such as 0.4,

would have a higher AUC than an algorithm that produces a prediction far from the

threshold, such as 0.1. As a result, AUC can provide a better insight into the predictive

performance of the knowledge tracing algorithms. As a result, this metric was used for

each experiment.

4.3 Experiment 1: How well do knowledge tracing

algorithms perform at knowledge tracing tasks?

4.3.1 Experimental Setup

Each knowledge tracing algorithm was trained on the training set of each dataset. Each

knowledge tracing algorithm was evaluated twice, once on the top five learner sequences of

the test set and once on the full test set. For each learner sequence the knowledge tracing

algorithm predicted a response to each question in the sequence. For each prediction, the

algorithm received all available past questions and responses in the sequence as inputs

and received the current question as an input. The algorithm then predicted a response

to the current question. This was repeated for each question in the learner sequence.

The predicted responses of the learners for each question in the learner sequences were

compared with the true responses of the learners for those questions and the AUC of the

predictions was calculated. As outlined in section 3.4, the representation of the questions

as inputs, depends on the knowledge tracing algorithm. BKT+F uses the skill ID of the

skill associated with a question. DKT+ uses both the question ID and skill ID. DKT can

use either the question ID or skill ID. The input that resulted in the best performance

for each dataset was used by DKT. The inputs used were skill ID for ASSISTments 2015
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and Spanish 2013, and question ID for Statics 2011.

4.3.2 Results

The AUC of each knowledge tracing algorithm for the top five learner sequences of each

test set is displayed in Fig. 4.1. For the ASSISTments 2015 dataset, DKT+ is the

best performing model with an AUC of 0.956 while BKT+F performs worst with an

AUC of 0.900. For Spanish 2013, DKT is the best performing algorithm with an AUC

of 0.863 while DKT+ is the worst performing algorithm with an AUC of 0.834. When

the algorithms are applied to the dataset Statics 2011, DKT+ is the best performing

algorithm with an AUC of 0.886 and BKT+F is the worst performing algorithm with an

AUC of 0.793. A complete breakdown of the AUC achieved by each knowledge tracing

algorithm for the top five learner sequences of each test set can be found in Appendix

A.1. The average AUC of each knowledge tracing algorithm across the top five learner

sequences of each test set is displayed in Table 4.2. When considering the average AUC

achieved across the top five learner sequences of each test set, DKT is the best performing

algorithm for knowledge tracing. It achieved an average AUC of 0.895. DKT closely

follows in performance with an average AUC of 0.892. Finally, BKT+F achieved an

average AUC of 0.849 across the three datasets. The difference in average AUC between

the best performing algorithm, DKT, and the worst performing algorithm, BKT+F, is

0.046.

Figure 4.1: The AUC of each knowledge tracing algorithm for the top five learner se-
quences of each test for the knowledge tracing task
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Knowledge Tracing Algorithm Average AUC
BKT+F 0.849
DKT 0.895
DKT+ 0.892

Table 4.2: The average AUC of each knowledge tracing algorithm for the top five learner
sequences of the test sets for the knowledge tracing task

The AUC of each knowledge tracing algorithm when evaluated for the full test sets

is displayed in Figure 4.2. DKT is the best performing algorithm on the ASSISTments

2015 dataset achieving an AUC of 0.730. BKT+F is the worst performing algorithm with

an AUC of 0.703. For the Spanish 2013 dataset, BKT is the best performing algorithm

with an AUC of 0.839 while DKT+ is the worst performing algorithm with an AUC

of 0.830. For Statics 2011, DKT+ achieves the highest AUC, 0.827, while BKT+F is

the worst performing algorithm with an AUC of 0.713. A complete breakdown of the

AUC achieved by each knowledge tracing algorithm for each of the full test sets can be

found in Appendix A.1. The average AUC of each knowledge tracing algorithm across the

three test sets is displayed in Table 4.3. DKT+ is the best performing knowledge tracing

algorithm when considering the average AUC achieved across the three datasets when

all of the test set is used. It achieved an average AUC of 0.794. DKT closely follows in

performance with an average AUC of 0.793. BKT+F achieved an average AUC of 0.752.

The difference in average AUC between the best performing algorithm, DKT+, and the

worst performing algorithm, BKT+F, is 0.042.

Knowledge Tracing Algorithm Average AUC
BKT+F 0.752
DKT 0.793
DKT+ 0.794

Table 4.3: The average AUC of each knowledge tracing algorithm for the full test sets for
the knowledge tracing task
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Figure 4.2: The AUC of each knowledge tracing algorithm for each full test set for the
knowledge tracing task

4.4 Experiment 2: How well do knowledge tracing

algorithms perform at learner simulation tasks?

4.4.1 Experimental Setup

As mentioned in chapter 3, a learner simulator has three inputs; a trained knowledge

tracing algorithm, an initialization sequence and a simulation sequence. Each of the

knowledge tracing algorithms trained for the first experiment are inputted to a learner

simulator. This creates three learner simulators, one for each knowledge tracing algorithm.

A learner simulation task consists of simulating the responses of a learner to a sequence

of questions given an initial knowledge state for the learner. As a result, the learner

simulation task depends on the initialization sequence and the simulation sequence. A

configuration of the initialization sequence length, the number of questions and responses

used to initialize the learner, and the simulation sequence length, the number of questions

responses must be simulated for, defines a learner simulation task.

For this experiment two learner simulation tasks were defined by defining two com-

binations of initialization and simulation sequence lengths. The adaptive learning rec-

ommendation systems presented by Farrell (2020) and Liu et al. (2019) influenced the

choice of initialization and simulation sequence lengths. As mentioned in section 2.1, the

recommendation system designed by Farrell (2020) provides a learner with a pre-test,

recommended questions and a post-test. The pre-test is equivalent to the initialization
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sequence and the recommended questions and post-test are equivalent to the simulation

sequence. In this recommendation system the pre-test consisted of 20 questions, the

maximum number of questions that could be recommended was 20 and the post-test

consisted of 20 questions. The recommendation systems evaluated by Liu et al. (2019)

were configured to recommend sequences of 20 questions for comparative experiments.

Further experiments investigated sequences of questions of lengths ranging between 5 and

40 questions. Influenced by these adaptive learning recommendation systems, the lengths

of initialization and simulation sequences for two learner simulation tasks were defined.

Learner Simulation Task 1 was defined to have an initialization sequence length of 10

questions and responses and a simulation sequence length of 20 questions. Learner Sim-

ulation Task 2 was defined to have an initialization sequence length of 20 questions and

responses and a simulation sequence length of 40 questions.

DKT and DKT+ were evaluated twice for each learner simulation task, once on the

top five learner sequences of the test sets and once on the full test sets. BKT+F was

evaluated for each learner simulation task on the top five learner sequences of the test

sets. Each learner sequence was divided into sub-sequences. Each sub-sequence contained

60 questions. The sub-sequences were equal in length to the maximum number of initial-

ization questions, 20, and the maximum number of question for which responses must be

simulated, 40. These sub-sequences were further divided into an initialization sequence

and simulation sequence according to the learner simulation task. For each sub-sequence

the learner simulator receives the initialization sequence as input and outputs a simu-

lated response to each question in the simulation sequence. The simulated responses of

the learner for the questions in the simulation sequence were compared with the true re-

sponses of the learner for those questions and the AUC of the predictions and the accuracy

of the simulated responses were calculated.

4.4.2 Results

The performance of each knowledge tracing algorithm as a learner simulator on the top

five learner sequences of each test set is displayed in Fig. 4.3 and Fig. 4.4. Fig. 4.3

displays the AUC and accuracy of each algorithm for Learner Simulation Task 1. Fig. 4.4

displays the AUC and accuracy for Learner Simulation Task 2.
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Figure 4.3: The AUC and accuracy of each learner simulator for the top five learner
sequences of each test set for Learner Simulation Task 1

Figure 4.4: The AUC and accuracy of each learner simulator for the top five learner
sequences of each test set for Learner Simulation Task 2

The average AUC of each learner simulator across the three datasets for the two

learner simulation tasks is presented in Table 4.4. DKT is the best performing algorithm

for learner simulation when considering the average AUC achieved across the the top five

learner sequences of each test set for the two learner simulation tasks. The algorithm

achieved an average AUC of 0.811. DKT+ performs second best with an average AUC

of 0.798. Finally, BKT+F achieved an average AUC of 0.675. The difference in average

AUC between the best performing algorithm, DKT, and the worst performing algorithm,

BKT+F, is 0.136.

The average accuracy of each learner simulator across the three datasets for the two

learner simulation tasks is presented in Table 4.5. In terms of the average accuracy of

each learner simulator across the top five learner sequences of each test set for the two

learner simulation tasks, DKT+ is the best performing model. It achieved an average

accuracy of 0.789. DKT achieved the second highest average accuracy, 0.781. BKT+F

was the least accurate learner simulator with an average accuracy of 0.690. In terms of

how the algorithms accuracy varied across the datasets and the learner simulation tasks,

the accuracy of BKT ranged from 0.621 to 0.797, the accuracy of DKT ranged from 0.661

to 0.867 and the accuracy of DKT+ ranged from 0.688 to 0.866.

A complete breakdown of the AUC and accuracy of each knowledge tracing algorithm
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as a learner simulator on the top five learner sequences of each test set for each learner

simulation task can be found in Appendix A.2.

Learner Simulator Average AUC
BKT+F 0.675
DKT 0.811
DKT+ 0.798

Table 4.4: The average AUC of each learner simulator for the top five learner sequences
of the test sets and the two learner simulation tasks

Learner Simulator Average Accuracy
BKT+F 0.690
DKT 0.781
DKT+ 0.789

Table 4.5: The average accuracy of each learner simulator for the top five learner sequences
of the test sets and the two learner simulation tasks

The performance of DKT and DKT+ as learner simulators on each of the datasets

for the full test set is displayed in Fig. 4.5 and Fig. 4.6. Fig. 4.5 displays the AUC and

accuracy of each algorithm for Learner Simulation Task 1. Fig. 4.6 displays the AUC and

accuracy for Learner Simulation Task 2.

Figure 4.5: The AUC and accuracy of each learner simulator for each test set for Learner
Simulation Task 1
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Figure 4.6: The AUC and accuracy of each learner simulator for each test set for Learner
Simulation Task 2

DKT+ is the best performing algorithm for learner simulation when considering the

average AUC achieved across the three datasets and two learner simulation tasks when the

full test set was used. The algorithm achieved an average AUC of 0.738. DKT achieves

an an average AUC of 0.711. The average AUC of each learner simulator across the three

datasets for the two learner simulation tasks is displayed in Table 4.6.

The average accuracy of each learner simulator across the three datasets for the two

learner simulation tasks is displayed in Table 4.7. In terms of the average accuracy of

each learner simulator across the three datasets for the two learner simulation tasks,

DKT+ is the best performing model. It achieved an average accuracy of 0.764. DKT is

less accurate with an accuracy of 0.761. In terms of how the algorithms accuracy varied

across the datasets and the learner simulation tasks, the accuracy of DKT ranged from

0.710 to 0.797 and the accuracy of DKT+ ranged from 0.704 to 0.797.

A complete breakdown of the AUC and accuracy of each knowledge tracing algorithm

as a learner simulator on the full test sets for each learner simulation task can be found

in Appendix A.2.

Knowledge Tracing Algorithm Average AUC
DKT 0.711
DKT+ 0.738

Table 4.6: The average AUC of each learner simulator for the full test sets and the two
learner simulation tasks

38



Learner Simulator Average Accuracy
DKT 0.761
DKT+ 0.764

Table 4.7: The average accuracy of each learner simulator for the full test sets and the
two learner simulation tasks

4.5 Experiment 3: How does the length of the

simulation sequence effect performance?

4.5.1 Experimental Setup

For this experiment each learner sequence was divided into a sub-sequence of 60 questions

as it was for the second experiment. The sub-sequence was divided into an initialization

and simulation sequence. The initialization sequence was fixed at a length of 20 ques-

tions. The simulation sequence length was varied from 1 to 40 questions. The simulated

responses of the learner simulators for the questions in the simulation sequence were

compared with the true responses of the learner for those questions and the AUC was

calculated. The experiment was conducted for the top five learner sequences of each test

set using all three learner simulators and for the full test sets using DKT and DKT+.

4.5.2 Results

The effect of the simulation sequence length on the AUC of each knowledge tracing algo-

rithm as a learner simulator is displayed in Fig. 4.7 and Fig. 4.8.

Fig. 4.7 displays the change in AUC for each algorithm for the top five learner se-

quences as the simulation sequence length is increased. In general, there is an overall

decrease in AUC for an increase in simulation sequence length. The overall decrease in

AUC exhibits noisy behaviour. In general, the decrease in AUC is greater for the initial

increase in simulation sequence length. The effect of the simulation sequence length on

the AUC of BKT+F for the top five learner sequences of Spanish 2013 is an exception to

the general trend. The AUC of the learner simulator increases for an initial increase in

simulation sequence length.

Fig. 4.8 displays the change in AUC for DKT and DKT+ when evaluated on the full

test sets. An overall decrease in AUC for an increase in simulation sequence length is

again observed. The decrease experienced for an increase in simulation sequence length

for the full test set is less than the decrease experienced for the top five learner sequences.

The decrease in AUC as simulation sequence length increases experiences less noise.
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(a) ASSISTments 2015 (b) Spanish 2013 (c) Statics 2011

Figure 4.7: The AUC of each learner simulator vs. simulation sequence length for the top
five learner sequences of each test set

(a) ASSISTments 2015 (b) Spanish 2013 (c) Statics 2011

Figure 4.8: The AUC of each learner simulator vs. simulation sequence length for each
full test set

4.6 Experiment 4: How does the length of the

initialization sequence effect performance?

4.6.1 Experimental Setup

For this experiment, each learner sequence was divided into a sub-sequence of 60 questions

as it was for the second and third experiment. The sub-sequence was divided into an

initialization and simulation sequence. The simulation sequence was fixed at a length

of 20 questions. The initialization sequence length was varied from 1 to 20 questions in

intervals of 5 questions. The simulated responses of the learner simulators for the questions

in the simulation sequence were compared with the true responses of the learner for those

questions and the AUC was calculated. The experiment was conducted for the top five

learner sequences of each test set for all three learner simulators and for the full test sets

for DKT and DKT+. The evaluation of DKT for the top five learner sequences of Statics

2011 was rerun using different inputs due to the results produced.
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4.6.2 Results

The effect of the initialization sequence length on the AUC of each knowledge tracing

algorithm as a learner simulator is displayed in Fig. 4.9, Fig. 4.10 and Fig. 4.11.

Fig. 4.9 displays the change in AUC for each learner simulator for the top five learner

sequences as the initialization sequence length is increased. In general, there is an overall

increase in AUC for an increase in initialization sequence length. In general, the increase

in AUC is greater for the initial increase in initialization sequence length. The effect of

the initialization sequence length on the AUC of DKT for the top five learner sequences

of Statics 2011 is an exception to the general trend. There is no change in AUC for an

increase in initialization sequence length. Fig. 4.10 displays the change in AUC for an

increase in initialization sequence for the different inputs of DKT. When DKT uses skill

ID as the input there is an initial increase in AUC for an increase in initialization sequence

length.

Fig. 4.11 displays the change in AUC for DKT and DKT+ when evaluated on the

full test sets. An overall increase in AUC for an increase in initialization sequence length

is again observed. The increase experienced for an increase in initialization sequence for

the full test set is less than the increase experienced for the top five learner sequences for

ASSISTments 2015 and Statics 2011.

(a) ASSISTments 2015 (b) Spanish 2013 (c) Statics 2011

Figure 4.9: The AUC of each learner simulator vs. initialization sequence length for the
top five learner sequences of each test set
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Figure 4.10: The AUC of DKT with different inputs vs. initialization sequence length for
the top five learner sequences of Statics 2011

(a) ASSISTments 2015 (b) Spanish 2013 (c) Statics 2011

Figure 4.11: The AUC of each learner simulator vs. initialization sequence length for each
full test set

4.7 Discussion

4.7.1 Comparing Knowledge Tracing Algorithms for

Knowledge Tracing and Learner Simulation

In terms of knowledge tracing, the deep knowledge tracing algorithms, DKT and DKT+,

are the best performing algorithms in terms of average AUC across the three datasets.

Despite DKT and DKT+ achieving a greater average AUC than BKT+F, BKT+F is still

competitive with the deep knowledge tracing algorithms for knowledge tracing. When

considering the full test sets, the difference in average AUC between BKT+F and the best

performing algorithm, DKT+, is 0.042. Furthermore, the performance of the knowledge

tracing algorithms depends on the dataset. BKT+F was the best performing algorithm for

Spanish 2013 slightly outperforming the deep knowledge tracing algorithms. Meanwhile,

the deep knowledge tracing algorithms slightly outperformed BKT+F for ASSISTments

2015 and significantly outperformed BKT+F for Statics 2011.

When the algorithms are tested on the top five learner sequences of the test set for

knowledge tracing, performance increases as expected. The deep knowledge tracing al-
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gorithms outperform BKT+F to a similar degree in terms of average AUC across the

three datasets. The difference in average AUC between BKT+F and the best performing

algorithm, DKT+, is 0.046.

The average AUC of the algorithms for learner simulation presented in the second

experiment can be compared with the average AUC of the algorithms for knowledge

tracing. A comparison of these results gives an indication of whether the performance of

knowledge tracing algorithms for knowledge tracing can inform us about their performance

as learner simulators.

Figure 4.12: The average AUC of each algorithm for the top five learner sequences of each
test set for knowledge tracing and learner simulation

DKT and DKT+, are the best performing algorithms in terms of average AUC across

the top five learner sequences of each test set for the two simulation tasks. BKT+F is

less competitive with the deep knowledge tracing algorithms for learner simulation than

it was for knowledge tracing. The difference in average AUC between BKT+F and the

best performing algorithm, DKT, is 0.137. Fig. 4.12 displays the average AUC achieved

by each algorithm for knowledge tracing and learner simulation across the top five learner

sequences of each test set. Comparing the AUC of the algorithms for knowledge tracing

and learner simulation, it appears the performance of the algorithms for knowledge trac-

ing can inform us to a degree about which algorithms will be best for learner simulation.

The deep knowledge tracing algorithms outperform BKT+F in both experiments. Fur-

thermore, the best performing algorithm in terms of average AUC is the same for learner

simulation as it is for knowledge tracing. DKT achieved the highest average AUC for

the top five learner sequences for both knowledge tracing and learner simulation. DKT+
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achieved the highest average AUC for the full test sets for both knowledge tracing and

learner simulation. However, the difference in average AUC between BKT+F and the

deep knowledge tracing algorithms is significantly greater for learner simulation than for

knowledge tracing as seen in Fig. 4.12. BKT+F is competitive with the deep knowledge

tracing algorithms for knowledge tracing, in particular when applied to certain datasets.

However, as learner simulators the deep knowledge tracing algorithms outperform BKT+F

to a much greater degree.

BKT+F being less competitive with the deep knowledge tracing algorithms for learner

simulation than it was for knowledge tracing may be due to BKT+F modelling the knowl-

edge state of the learner for each skill independently. When predicting a learner’s response

to a question associated with a skill, Bayesian knowledge tracing algorithms only use the

responses of the learner to questions associated with that skill to inform their predic-

tion. For the evaluation of the algorithms for knowledge tracing the knowledge state of

the learner continuously increases as the responses for questions further in the learner

sequence are predicted. As a result, for predictions of responses to questions further in

the learner sequence some information about the knowledge state of the learner for the

skill of the current question is likely to be available. In contrast, for learner simulation

the initial knowledge state is fixed and the knowledge state is only updated with sim-

ulated responses. As a result, BKT+F relies on questions in the simulation sequence

being associated with skills that questions in the initialization sequence are also associ-

ated with in order to make informed predictions. In contrast, the deep knowledge tracing

algorithms have the ability to learn the underlying relationships between different skills

and questions. Questions associated with different skills than those present in the simu-

lation sequence can still inform the predictions of the deep knowledge tracing algorithms

if underlying relationships are present.

4.7.2 The Performance of Knowledge Tracing Algorithms as

Learner Simulators

The results of the second experiment inform us how accurately knowledge tracing al-

gorithms can simulate the responses of a real learner given an initial knowledge state

of the learner. The results indicate that the best performing learner simulators, DKT

and DKT+, can simulate learners’ responses across the three datasets with an average

accuracy of 76% for the two learner simulation tasks defined. The two learner simula-

tion tasks defined reflect the number of questions that would be required to be simu-

lated during training and evaluation of the adaptive learning recommendation systems

being considered. This is a promising result that gives an indication of how realistically
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learner simulators built using knowledge tracing algorithms can mimic the responses of

real learners when responding to questions for these adaptive learning recommendation

system. When the learner simulators DKT and DKT+ are applied to the top five learner

sequences of each test set, their accuracy increases as expected. The average accuracy

of DKT+ increases from 0.764 to 0.789 while the average accuracy of DKT increases

from 0.761 to 0.781. When considering the maximum accuracy in the range of accuracy

achieved by DKT and DKT+ for the top five learner sequences and two learner simulation

tasks, DKT reached an accuracy of 0.867 and DKT+ reached an accuracy of 0.866. The

increase in accuracy when learner simulators are applied to the top five learner sequences

and the maximum accuracy achieved demonstrates that the accuracy of learner simulators

can increase depending on the learner sequences it is simulating responses for. This indi-

cates that their is potential for the accuracy of learner simulators to be increased further

when used for training and evaluating adaptive learning recommendation systems. It is

likely that the top five learner sequences contain positive sequence structure character-

istics that are allowing more accurate predictions to be made by the knowledge tracing

algorithms. Examples of these positive sequence structure characteristics might be the

repetition of questions associated with the same skill or the repetition of questions asso-

ciated with strongly related skills throughout the sequence. Since the adaptive learning

recommendation systems will be generating the sequence of questions to be completed

by the learner simulators, they can ensure the sequences contain positive sequence struc-

ture characteristics which will allow for increased learner simulator accuracy. Overall,

the accuracy of the deep knowledge tracing learner simulators presented in these results

is a promising indication that knowledge tracing algorithms can realistically mimic the

learner behaviour required to train and evaluate adaptive learning recommendation sys-

tems that recommend questions according to learners’ responses. It is hoped that this

level of accuracy is suitable for reducing the number of real learners and the number

of responses per real learner required for the training and evaluation of these adaptive

learning recommendation systems.

In terms of the accuracy of the BKT+F learner simulator, it achieved an average

accuracy of 0.690 when simulating responses for the top five learner sequences. BKT+F

does not outperform the other algorithms as a learner simulator for any of the datasets

or for either of the simulation tasks. The results indicate that the deep knowledge trac-

ing algorithms are the best choices as learner simulators when simulating the responses

of learners. As mentioned previously, the significant difference in performance between

BKT+F and the deep knowledge tracing algorithms for learner simulation is likely due

to BKT+F modeling the knowledge state of the learner for each skill independently.

Evaluation of the performance of the knowledge tracing algorithms as learner simula-
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tions is focused on their simulation of learners’ responses for the purpose of training adap-

tive learning recommendation systems that recommend questions according to learners’

responses. As a result, the evaluation methodology looked to replicate the initialization

and simulation sequences that would be present in the environment of these recommen-

dation systems. Evaluation involved evaluating knowledge tracing algorithms as learner

simulators for two learner simulation tasks. These simulation tasks reflected the number

of questions that could be used for initialization and the number of responses that would

need to be simulated when training and evaluating these systems. While the number of

questions being used for initialization and the number of responses being simulated may

be an accurate reflection of what would occur during training and evaluation of these

systems, the structure of the sequences used for evaluation may not be an accurate reflec-

tion of the structure of the sequences that would be presented to the learner simulator

during training and evaluation of these systems. The datasets used contain the responses

of learners to questions from different tutoring systems and courses. The structure of

the sequence of questions being completed by learners in these systems may differ to the

structure of the sequence of questions that would be completed by learners using the

recommendation systems being considered. As a result, the reported learner simulator

performance may differ when learner simulators simulate responses in the environment of

the recommendation system. However, it is likely that the structure of the sequence of

questions present will be beneficial for learner simulator performance. The pre-test will

likely contain questions associated with a limited range of skills. The questions that can be

recommended may be confined to questions associated with the skills present in the pre-

test. The post-test will contain questions related to the same skills as those present in the

pre-test. There will be a high repetition of the same skills and strongly related questions

throughout the sequence. As a result, it is likely that the knowledge state inferred from

the pre-test or initialization sequence will be very informative for predicting the responses

of the learner to questions in the simulation sequence, i.e., the recommended questions

and post-test. The evaluation setup may not be a perfect reflection of the environment

present in the recommendation systems being considered. However, it provides insight

into how the learner simulators would perform in that environment. Furthermore, it is

believed the accuracy of the learner simulators would be higher in the real environment

due to the structure of the sequences of questions present.
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4.7.3 The Effect of Simulation Sequence Length and

Initialization Sequence Length on Performance

As seen from the results of the third experiment, in general, AUC decreases as simulation

sequence length increases. Prior to experimentation it was expected that the performance

of the knowledge tracing algorithms would decrease as the number of responses to be sim-

ulated increases. An exception to the general trend observed is the initial increase in the

AUC of BKT+F as simulation sequence length increases for the top five learner sequences

of the Spanish 2013 dataset. A possible explanation for this increase in performance as

the number of responses to be simulated increases is due to BKT+F modeling the knowl-

edge state of the learner for each skill independently. As stated previously, BKT+F relies

on questions in the simulation sequence being associated with skills that questions in the

initialization sequence are associated with in order to make informed predictions. It may

be the case that for the Spanish 2013 dataset, the initial questions the algorithm must

simulate responses for are not associated with many skills present in the initialization

sequence. As the algorithm simulates more responses it may increase the chance of the

algorithm encountering questions associated with skills that questions in the initialization

sequence are also associated with. As a result, the algorithm can make more informed

predictions.

The results of the final fourth experiment demonstrate the general trend that perfor-

mance increases as the initialization sequence increases. This trend was expected to be

observed. Increasing the length of the initialization sequence provides more information

for the algorithms to use to model the initial knowledge state of the learner allowing for

more informed predictions to be made. An exception to this general trend was the change

in AUC of DKT for an increase in initialization sequence length for the dataset Statics

2011 when DKT uses question ID as an input. DKT experienced no change in AUC as

the initialization sequence length increased.

When using question ID as an input, DKT has the ability to learn about the underlying

relationships between different questions. The strongest relationships between questions

would likely be the skill associated with the questions. DKT can use the response of

the learner to one question to inform its prediction for another question provided there is

some underlying relationship present between the questions, e.g., they are both associated

with the same skill. When DKT is operating in this manner, increasing the initialization

sequence would be expected to increase performance. This operation of DKT assumes

that the response of the learner to similar questions, the knowledge state of the learner, is

the feature of the model that has the greatest impact on the prediction. However, it may

be the case that for this particular dataset the specific question being answered may be
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the feature of the model that has the greatest impact on the prediction. This situation

may occur if questions in the dataset vary greatly in terms of difficulty. The difficulty

of the question may be more informative than a learner’s knowledge state in terms of

how a learner would respond to a question. This offers a potential explanation as to why

increasing the initialization sequence has no effect on performance when question ID is

used as the input for Statics 2011. When skill ID is used the model no longer has the

specific question being answered as a feature. Instead a prediction is being made for some

question related to a specific skill. As a result, the length of the initialization sequence

has a greater impact on performance.
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Chapter 5

Conclusions & Future Work

5.1 Conclusions

The research conducted consisted of an investigation of knowledge tracing algorithms as

learner simulators. It was noted that there are many different types of adaptive learning

systems and the learner behaviour required to train and evaluate each can differ greatly.

Furthermore, the potential for learner simulators to be designed and implemented to simu-

late different learner behaviours was also acknowledged. However, for the purposes of this

research, learner simulators were defined as software that can simulate learners’ responses

to questions, where a learner’s response was defined as an indication of whether a learner

answers a question correctly or incorrectly. The use of knowledge tracing algorithms as

learner simulators was identified as a potential solution for simulating learners’ responses

which can be used to train and evaluate adaptive learning recommendation systems that

recommend questions according to learners’ responses. However, it was recognised that

current research lacks evaluation of knowledge tracing algorithms as learner simulators.

As a result it was unknown how realistically learner simulators built using knowledge

tracing algorithms can simulate learners’ responses.

The research conducted was aimed at answering the question of “How well do knowl-

edge tracing algorithms perform as learner simulators?” In the pursuit of answering this

question a literature review of state-of-the-art knowledge tracing algorithms was first

conducted. Learner simulators that use knowledge tracing algorithms were designed and

implemented as well as an evaluation framework for the learner simulators. The learner

simulators were designed and implemented to use the benchmark and state-of-the-art

knowledge tracing algorithms BKT+F, DKT, and DKT+. Finally, an evaluation and

comparative analysis of the knowledge tracing algorithms as learner simulators was con-

ducted. As a result, each of the research objectives were carried out.
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The evaluation of the learner simulators found that the best performing learner simu-

lators, DKT and DKT+, can simulate learners’ responses across the three datasets with

an average accuracy of 76% for the two learner simulation tasks defined. The two learner

simulation tasks the learner simulators were evaluated for reflect the number of questions

that would be required to be simulated for adaptive learning recommendation systems that

recommend questions according to learners’ responses. This level of accuracy is promis-

ing and gives an indication of how realistically learner simulators built using knowledge

tracing algorithms can simulate learners’ responses for the adaptive learning recommen-

dation systems investigated. Evaluation of the learner simulators also found that the

accuracy of the learner simulators depends on the initialization and simulation sequence.

There is the potential for the accuracy of the learner simulators to be increased by using

initialization and simulation sequences containing positive sequence structure character-

istics. Examples of positive sequence structure characteristics may include the repetition

of questions associated with the same skill or the repetition of questions associated with

strongly related skills.

In terms of comparing the different learner simulators, the average accuracy of the

learner simulators, DKT and DKT+, for the simulation of the responses of each learner

in the test sets across the two learner simulation tasks is approximately equal. BKT+F

is outperformed by these algorithms for learner simulation. It is speculated that the

difference in performance is due to BKT+F modelling the knowledge state of the learner

for each skill independently. It lacks the ability to learn the underlying relationships

between different questions and skills, an ability the deep knowledge tracing algorithms

possess. These results suggest knowledge tracing algorithms that can learn the underlying

relationships between different skills and questions are more appropriate learner simulators

than algorithms that model skills independently.

Finally, it was observed that the performance of knowledge tracing algorithms for

knowledge tracing can inform us to a degree about their performance as learner simu-

lators. For both knowledge tracing and learner simulation the deep knowledge tracing

algorithms, DKT and DKT+, outperformed BKT+F. However, the difference in perfor-

mance between the deep knowledge tracing algorithms and BKT+F was much greater for

learner simulation tasks.

Overall, the performance of knowledge tracing algorithms as learner simulators pre-

sented in this research is a promising indication that knowledge tracing algorithms can

realistically mimic the behaviour of real learners required to train and evaluate adaptive

learning recommendation systems that recommend questions according to learners’ re-

sponses. It is hoped that this level of accuracy is suitable for reducing the number of

real learners and responses per learner required for the training and evaluation of these
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adaptive learning recommendation systems.

5.2 Limitations of Approach and Research

The research conducted investigated how well knowledge tracing algorithms performed as

learner simulators in terms of simulating the responses’ of learners to questions. In par-

ticular the research focused on simulating learners’ responses for the purpose of training

and evaluating adaptive learning recommendation systems that recommend questions ac-

cording to learners’ responses. As a result, the evaluation methodology looked to replicate

the environment that would be present in the recommendation system being considered.

While the number of questions being used for initialization and the number of responses

being simulated is an accurate reflection of what would occur during training and evalua-

tion of these systems, the sequences of questions present in the datasets used for evaluation

may not be an accurate reflection of the sequences of questions that would be presented

to the learner simulator during training and evaluation of these systems. As a result of

this limitation, the reported performance of the learner simulators may be different than

their performance simulating learners’ responses for the recommendation system being

considered. However, it is believed performance may increase when the learner simulators

are applied to the real environment due to the structure of the questions that would be

present.

A second limitation of this research was the slow simulation time of the learner sim-

ulator configured with BKT+F. As a result of this slow simulation time, BKT+F could

not be evaluated as a learner simulator on the full test sets. Despite this limitation, the

results produced in the research provided insight into the performance of BKT+F as a

learner simulator.

A final limitation of this research is the evaluation of the knowledge tracing algorithms

on datatsets containing questions only associated with a single skill. The exclusion of

datatsets containing multi-skill questions was necessary in order to prevent the repetition

of past errors in research. However, the restriction for questions to only be labeled with

a single skill is a limitation of the knowledge tracing algorithms used and the learner

simulators implemented. In reality, questions often have multiple skills associated with

them. As a result, having the ability to label questions with multiple skills allows for

more realistic representation of questions and skills.
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5.3 Future Work

The research carried out evaluated the performance of BKT+F, DKT and DKT+ as

learner simulators. BKT+F is a benchmark knowledge tracing algorithm. It offers a

simplistic modelling of a learner’s knowledge state that is easily interpreted. DKT and

DKT+ are state-of-the-art knowledge tracing algorithms that offer a complex modelling

of a learner’s knowledge state that is difficult to interpret. Future research could inves-

tigate the performance of more state-of-the-art knowledge tracing algorithms as learner

simulators. Examples of algorithms that could be investigated are Best-LR presented

by Gervet et al. (2020), AKT introduced by Ghosh et al. (2020), RKT implemented by

(Pandey and Srivastava, 2020) and DSAKT invented by Zeng et al. (2021).

Another area for future work is an in-depth analysis of the effect of sequence struc-

ture on the performance of learner simulators. This research has identified the effect of

sequence structure on the accuracy of simulated learners’ responses. It is believed certain

characteristics of the sequence of questions being used for initialization and simulation,

such as the repetition of many questions with the same or similar skills, could increase the

performance of the learner simulators. These effects of the sequence structure could be in-

vestigated, in particular considering the structure of the pre-tests, recommended questions

and post-tests that would be present in adaptive learning recommendation systems.

The results of this research present how accurately learner simulators configured with

different knowledge tracing algorithms can simulate the responses of learners for the de-

fined simulation tasks. The accuracy achieved by the best performing learner simulators

is a promising indication that knowledge tracing algorithms have the ability to realisti-

cally simulate learners’ responses to questions. It is hoped that this level of accuracy is

suitable for reducing the number of real learners and responses per learner required for

the training and evaluation of adaptive learning recommendation systems that recom-

mend questions according to learners’ responses. Future research could now investigate

this. An adaptive learning recommendation system that recommends questions according

to learners’ responses could be trained with learner simulators. Different recommenda-

tion systems could be trained with different learner simulators varying in accuracy, e.g,

BKT+F, DKT and DKT+. Real learners could then be used to evaluate the performance

of the trained recommendation system. Through this process it could be determined what

level of accuracy is required for learner simulators.
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Appendix A

Experimental Results

A.1 Experiment 1: How well do knowledge tracing

algorithms perform at knowledge tracing tasks?

Dataset Knowledge Tracing Algorithm AUC
ASSISTments 2015 BKT+F 0.900
ASSISTments 2015 DKT 0.950
ASSISTments 2015 DKT+ 0.956
Spanish 2013 BKT+F 0.855
Spanish 2013 DKT 0.863
Spanish 2013 DKT+ 0.834
Statics 2011 BKT+F 0.793
Statics 2011 DKT 0.871
Statics 2011 DKT+ 0.886

Table A.1: The AUC of each knowledge tracing algorithm for the top five learner sequences
of each test set
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Dataset Knowledge Tracing Algorithm AUC
ASSISTments 2015 BKT+F 0.703
ASSISTments 2015 DKT 0.730
ASSISTments 2015 DKT+ 0.725
Spanish 2013 BKT+F 0.839
Spanish 2013 DKT 0.836
Spanish 2013 DKT+ 0.830
Statics 2011 BKT+F 0.713
Statics 2011 DKT 0.813
Statics 2011 DKT+ 0.827

Table A.2: The AUC of each knowledge tracing algorithm for each full test set

A.2 Experiment 2: How well do knowledge tracing

algorithms perform at learner simulation tasks?

Dataset Knowledge Tracing Algorithm AUC Accuracy
ASSISTments 2015 BKT+F 0.594 0.631
ASSISTments 2015 DKT 0.737 0.661
ASSISTments 2015 DKT+ 0.824 0.813
Spanish 2013 BKT+F 0.720 0.621
Spanish 2013 DKT 0.829 0.78
Spanish 2013 DKT+ 0.768 0.703
Statics 2011 BKT+F 0.701 0.797
Statics 2011 DKT 0.849 0.867
Statics 2011 DKT+ 0.816 0.859

Table A.3: The AUC and accuracy of each learner simulator for the top five learner
sequences of each test set for Learner Simulation Task 1
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Dataset Knowledge Tracing Algorithm AUC Accuracy
ASSISTments 2015 BKT+F 0.582 0.625
ASSISTments 2015 DKT 0.780 0.719
ASSISTments 2015 DKT+ 0.815 0.804
Spanish 2013 BKT+F 0.756 0.675
Spanish 2013 DKT 0.825 0.795
Spanish 2013 DKT+ 0.735 0.688
Statics 2011 BKT+F 0.695 0.789
Statics 2011 DKT 0.846 0.864
Statics 2011 DKT+ 0.828 0.866

Table A.4: The AUC and accuracy of each learner simulator for the top five learner
sequences of each test set for Learner Simulation Task 2

Dataset Knowledge Tracing Algorithm AUC Accuracy
ASSISTments 2015 DKT 0.662 0.710
ASSISTments 2015 DKT+ 0.673 0.705
Spanish 2013 DKT 0.788 0.797
Spanish 2013 DKT+ 0.777 0.794
Statics 2011 DKT 0.698 0.777
Statics 2011 DKT+ 0.777 0.797

Table A.5: The AUC and accuracy of each learner simulator for each full test set for
Learner Simulation Task 1

Dataset Knowledge Tracing Algorithm AUC Accuracy
ASSISTments 2015 DKT 0.656 0.712
ASSISTments 2015 DKT+ 0.670 0.704
Spanish 2013 DKT 0.773 0.795
Spanish 2013 DKT+ 0.760 0.788
Statics 2011 DKT 0.686 0.774
Statics 2011 DKT+ 0.772 0.796

Table A.6: The AUC and accuracy of each learner simulator for each full test set for
Learner Simulation Task 2
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