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ABSTRACT

Keep Your Eye On The Ball: Mobile Tennis Analysis
Tom Mulligan

Supervised by: Dr. Kenneth Dawson-Howe

SCHOOL OF COMPUTER SCIENCE AND STATISTICS, TRINITY
COLLEGE DUBLIN

The game of tennis has a playing population of about 87 Million people, at this point in time there
is no product capable of accurately analysing a game of tennis for the casual player. In this report, we
propose a Multi-Camera Mobile Tennis Analysis framework for the casual tennis player, which would
deliver capabilities currently unavailable outside of the professional game.

Our proposed system features up to four Mobile Phones, each oriented so as to carry out their own
analysis of the game at hand. By communicating their findings to each other, each device has a
complete picture of the events unfolding throughout the game - In tracking both the players and the
ball within multiple camera views, our proposed system would be able to provide useful performance
indicators such as the locations of ball bounces, heat maps of the player’s movement throughout the
court, as well as classifications of the types of shots made.

Within the scope of this project, we are implementing a multi-camera ball tracking and bounce de-
tection system for two devices. More specifically, the objectives of this project are as follows: The
detection of a tennis court within multiple camera views; the detection and tracking of a tennis ball
within multiple camera views; the determination of bounces points, through multiple views.
Through the testing of our Court and Bounce Detection Systems, we found the former located key
points throughout the court within an error of about five pixels, while the latter system’s performance
in detecting bounces varied greatly depending on the lighting conditions - In overcast conditions using
multiple camera views, 64.7% of bounces were correctly detected, while those bounces were on average
about eight pixels away from their true locations. In sunny conditions, 73% of bounces were detected,
while an error of over 10 pixels was recorded.

Having implemented our desired functionalities, a number of significant obstacles were exposed.
Sources of error such as lens distortion, variable frame rates and insufficient camera resolutions all
led to our implemented systems carrying error that would be unacceptable for a genuinely trust-
worthy Tennis Analysis System. Significantly, such errors are intrinsic to the usage Mobile Devices
for video processing, and thus poses the question: Can the Mobile platform be comfortably used in the

implementation of Tennis Analysis?.
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Chapter 1

Introduction

In the following section, we will highlight the main objective and motivations of this study, as well as

an Executive Summary of what can be expected throughout this report.

1.1 Objective

The objective of this project is to investigate the use of multiple mobile devices for the development of
a Mobile Tennis Analysis system. In particular, our intention is to implement multi-camera tracking
of a tennis ball’s movement and bounces throughout a tennis court. By carrying out research and
development in this area, we hope to set the groundwork for the future implementation of a highly

available Mobile Tennis Analysis application for the casual player.

1.2 Motivation

In professional sports, the ability to analyse and critique player performance levels has been revolu-
tionary in how teams and individuals have improved their game[l]. No longer is the focus exclusively
on improved materials, equipment, and training regimes - Instead, fields such as Machine Learning
and Computer Vision have found themselves at the forefront of performance advancement in sport.
Famous technologies such as Sony’s Hawkeye are used for their ball tracking and line-calling abili-
ties in competitions such as the US Open, Australian Open and Wimbledon. Since the early 2000s
this technology has seen a gradual inclusion into the sport, with the peak being the 2020 Australian
Open[2], where Hawkeye Live was used to effectively replace all officials at the event during the Covid-

19 Pandemic - The professional game is now unrecognisable to previous generations.[3)

Whilst there is no doubting the effectiveness of these technologies, as well as their popularity
amongst some of the largest sporting franchises, they are far beyond what the casual player can afford
and expect to use themselves. Hawkeye Live, which makes use of the PA system to issue announce-
ments throughout the game, uses 12 cameras positioned throughout the court to watch the tennis ball

itself, alongside six foot-fault cameras as well as a large amount of both remotely based officials and



INTRODUCTION 1.3. EXECUTIVE SUMMARY

] MAURESMO SERVE DIRECTION v LIKHOVTSEVA !
Ace @ 1stServe 2nd Serve

(a) A serve report produced by Hawkeye, during Wim-

bledon 2005. Tmage credit: BBC (b) Hawkeye Line Calling. Image credit: Mirror.co.uk

computers to ensure accuracy and smooth operation. [4]

This project is focused on the development of a low-cost tennis performance analysis application.
Swingvision, a popular iOS application providing tennis play analysis, has recently received commen-
dations for its performance as a tool for tennis players to comprehensively review several aspects of
their own game. Despite the application’s success, much of what it claims to do is outside of what
would be deemed practical and realistic. For example, Swingvision claims to be able to gain accurate
readings of shot placement for a single’s tennis game. The application itself requires that the user’s
phone is placed at a point (on a tripod[5]) which can gain a clear viewpoint of the whole tennis court.
This is however extremely difficult unless the camera is placed well above the height of what an average
person can see. The height at which a mobile phone could be placed would suggest a decent viewpoint
of the nearest side of the tennis court, but an obstructed viewpoint of the far side — Bringing much of

what Swingvision claims to accomplish into question.

Top Spin
Forehand

Figure 1.2: An advertised example of the SwingVision application. Image credit: SwingVision

1.3 Executive Summary

In this report, the belief is held that creating a system to rely on a single mobile phone is a marketing
tactic, rather than a genuine breakthrough in personal tennis analysis. As such, the development of a

system using multiple camera viewpoints around a court is required to create a truly functional tennis
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analysis system. Thus, it is the belief of the researcher that there has not been a true breakthrough
in tennis analysis applications for the casual player. With a playing population of about 87 million

people, there is large scope for development in this area.

Immediately following this chapter, a review of the applications and research in the area of tennis
analysis and multi-camera applications to sports in general is included [2] In each highlighted piece of
research, comments on the study’s suitability to the casual setting as well as this project in particular,
are included. Also in this chapter, an overview of the Computer Vision theories relevant to this project

are discussed.

Instead of relying on a single mobile phone, this project focuses on using multiple devices positioned
on the tennis posts, where each device carries out its own analysis, with a collective understanding
of the game at-hand generated via the "fusing” of information gathered from each view. In the next
chapter, a full-scale implementation of the targeted system is described, where an illustration of how
a system would be implemented with multiple mobile devices to provide a means of tracking the ball
and the players within a game is also discussed in depth. By carrying out real-time classifications of
shots made throughout the game, as well providing information pertaining to the movement patterns
throughout the court, the intention is that this system would provide true professional-grade capabil-
ities. To finalise this chapter, a summary of the aspects of this full scale system that this report will

focus on are included .

Next, the design of this project’s Court Detection system is recounted. This system is designed
with the intention of localising a series of court points throughout the visible tennis court. The
correct operation of this system is crucial to the accuracy of the Multi-View court detection system.
As such, a three-step refinement process for localising each point of interest throughout the tennis
court is described. Following the detection of the tennis court within the scene, a description of the
implementation of the Ball Bounce Detection system , where each camera view attempts to search
for and track the tennis ball is included. By tracing the movement of the ball throughout the scene,
ball bounces are localised within each view . In order to gain a more complete outlook of the
location of the ball with respect to the court, information is shared via a top down ”perspective”
view of the court, allowing the system to more accurately expose bounce locations, irrespective of an
individual camera’s view of the court . For each subsection included in this description of the
design of the system, a brief review of the related research in each area is included
Following this, the process of testing the implemented systems is discussed. Beginning with a short
description of the footage used for testing, including comments on the scenarios covered, a detailed
account of the process of gathering ground truth for each piece of recorded footage (with a particular
emphasis on the errors associated) is included. Moving on from this, the various errors intrinsic to the

development of a tennis analysis application within the casual setting are outlined. In addition, the
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encountered errors associated with the choice of methodologies for each logical step in the design of
the implemented systems are highlighted. Closing out the evaluation chapter, performance metrics,
results and an accompanying discussion of the performance Court Detection, Single View Bounce
Detection and Multi-View Bounce Detection systems are all included

In this report, a background to the problem and application of tennis analysis, a description of the
chosen methods for court detection and bounce detection (for single and multiple views), as well as
an evaluation of the implemented system’s design, and associated final conclusions are discussed. For
the Court Detection System, it was found that the designed method yielded an overall error of 5
pixels between the detected Court Points and their intended locations. Additionally, it was found that
depending on the lighting conditions, and whether the effect of variable frame rate came into play, the
accuracy and precision of the Bounce Detection System to detect bounces varied from close to 100%,

to about 60%.
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Figure 1.3: Our system’s interface. Top left: Camera view from the left tennis
post. Bottom left: Camera view from the right post. Rightmost: Top Down
(plan) view of the court, via a preset template (Credit to ShutterStock).

— - —

—_

"Projected" Ball
Bounce

Figure 1.4: A detected ball-bounce. Both trajectories from the individual frames
are projected to the planar view. The interpreted bounce location is also displayed
(purple).
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Figure 1.5: Some time later, the detected seventh bounce of that passage of play. Other purple points
indicate previous bounces



Chapter 2

Background

With the objective of exploring the usage of multiple mobile devices for the development of a mobile
tennis analysis system, driven by the lack of availability of a true tennis analysis solution for the casual
player, we must now explore the background of this topic, and the works that have contributed to its

study.

2.1 Tennis

For a complete description of the rules of Tennis, see the US Tennis Association.

For later reference, an illustration of the standard tennis court is included below:

Figure 2.1: Illustration of the tennis court. Image credit: Tennis Uni

2.2 Previous Work

This section of the paper presents a review of related literature and innovations in the field. Firstly,
we will focus on the research relating to the requirements of our use case. Following on from this, we
will investigate the implementations of current Tennis Analysis systems, with a particular emphasis
on how applicable each related innovation is to the average tennis player. Finally, we will summarise

those aspects most suitable to build a mobile-capable implementation.


https://www.usta.com/en/home/improve/tips-and-instruction/national/tennis-scoring-rules.html

BACKGROUND 2.2. PREVIOUS WORK

2.2.1 Multi-camera tracking

In Vision-related problems for Sports Analysis, the incorporation of state-of-the-art multi-camera
surveillance techniques has proved to be useful for tracking both the ball and the players in a given
sport. A key problem to face when tracking in sports is to overcome the issue of occlusion. In Tennis,
this is a significant problem when attempting to track the game with a single camera, as there will
often be either a player or net in the way of clearly seeing the ball. As such, it is far more effective to
work towards tracking with multiple cameras. Whilst this paper is concerned with the implementation
of a tennis-based mobile analysis application, we believe that there is value in research papers based
on other sports such as Basketball. For this section we are purely interested in the use of multi-camera

surveillance techniques across sport.

Studies by Nieto et al.[6] and Xu et al.[7] have both focused on differing techniques for tracking
targets of their respective sports. Each of these studies have placed a strong emphasis on the theme
of multi-camera tracking, and the difficulties associated. The former study was dedicated to building
a system capable of automatically detecting and tracking both the tennis balls and players in a game.
Due to the nature of tennis, it was decided by the researchers to position cameras in such a way
that each individual viewpoint would cover an individual player’s field. This way, the fusion process
associated with combining recognised targets in different frames was relatively simple as at any given
time, only a single player (in a singles game) would be visible. For a given target, Nieto et al. opted
to combine (average) all of the x and y coordinates, from each camera frame, related to the target,
resulting in ”fused coordinates” for 2D tracking. Unfortunately, the study’s overly simplified approach
gave way to poor and unpredictable results. Due to poorly calibrated cameras with vastly different
lenses, there was a significant error associated when tracking player movement. Additionally, since
this paper was primarily concerned with player tracking, there was no consideration of partial or full
occlusion in the research. Despite this, the study did find that a weighted-average approach for the
fusion process would be much more successful, and that cameras raised as high as possible would

(unsurprisingly) result in far better tracking results.

Having learned from Nieto et al’s earlier research, Wu et al. decided on a much more complex,
and successful, approach to provide efficient 2D tracking even when targets were occluded in certain
frames. While no details are provided on the type and configuration of the cameras used, this study
does make great improvements in its fusion process to enable 2D tracking in a basketball game. Wu
et al. cleverly adapted a camera calibration approach[8] to essentially calculate a mapping of visible
points between each camera around the basketball court. This gave the researchers a technique of
tracking the basketball within a frame, even if it was occluded by a player. These learned mappings

were calculated ahead of time, by establishing at least seven corresponding points between two cam-
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era frames. Combined with Deep Learning-based detection techniques, this intricate methodology

provided Wu et al. with high precision values of about 0.8, when compared to ground truth.

When considering important aspects such as occlusion, we can see that a complex approach such
as what is adopted by Wu et al., is required. In the case of Tennis, an approach that overcomes the

likely problem of occlusion is very worth considering.

2.2.2 Commercial Applications

Since the early 2000s, well known technologies such as Hawk-Eye[9] have been widely used for Tele-
vision Broadcasting purposes, where the real time statistics they measure are presented to viewers
live. Hawk-eye has recently seen more widespread usage during the Covid-19 pandemic, due to its
highly-accurate officiating capabilities. In the system’s original publication, N.Owens et al. claimed
the technology to be affordable, easily installed and ”near real-time” in its operation. At the time of
its original commercialisation, the impressive technology which was made up of four state of the art
calibrated cameras, paved the way for its eventual large scale adaptation across other sports such as
Rugby, GAA and Soccer [I0]. While the technology is the pseudo industry-standard for line calling
and performance analytics, it does not offer a product or price range for the average consumer, with
some estimates of its cost being up to 500,000 euros per year for the GAA to deploy it[11]. Such
inaccessibility has prompted a recent popularity in developing more cost-effective and available Tennis

Analysis and Coaching applications.

Thanks to the ever growing processing power that Mobile Phones are equipped with, analysis
and coaching services for the more casual players are beginning to see use in tennis. SwingVision[5],
an iOS application promising to deliver Professional-grade Tennis analysis capabilities, received com-
mendations in 2021 for its game tracking and score keeping capacity. The product claims to provide
high level information on both the tennis players themselves as well as the tennis ball in motion in
real-time. These details include: the ball speed; spin on the ball; the stroke used; player footwork
and movement patterns. However, when the nature of the product itself is considered, some of these
claims seem outlandish. With the application requiring just a single mobile phone mounted at a height
around which the average person might stand, the ability to discern ball placement from one end of
a tennis court to another, as well as the ability to accurately track the player’s foot movement seems
very unlikely. The application features no pan, tilt or zoom capability, and whilst the latest iPhone
camera technology provides a 12MP wide camera [12], the net of the tennis court still occludes a large
proportion of what a single camera can hope to see. We can see that despite SwingVision producing
a coaching and analysis application for the average tennis player, there is still some need for a more

accurate and reliable analysis system.
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2.2.3 Research Applications

Unsurprisingly, many researchers and academics have also sought to create Vision-based applications
for Tennis coaching and analysis. Particularly comprehensive solutions such as O’Connaire et al’s
TennisSense[13] as well as research carried out by Messelodi et al.[I4], Vinyes [I5], and Reno et
al.[T6] have all sought to create systems that combine a number of methodologies, aiming to bring
solutions to a host of problems. TennisSense, the oldest of these systems, and a study carried out
in collaboration with Tennis Ireland, set about creating a coaching system to ”facilitate efficient
browsing” or events throughout a play session. The system itself made use of a multitude of high
quality cameras, including an overhead camera to ”detect moving objects” and provide a clear angle
for visualising ”tactical shots and movement.” Using the acquired low level data, TennisSense would
detect ball hits and track player movement around the court. While the results for this early study were
promising, it’s complicated camera arrangement (nine situated around the court) was unfortunately
restricted to a single indoor tennis court. Additionally, only the single overhead cameras is used for
the ball and player tracking techniques, resulting in very limited data for further processing. With
improvements in camera quality and processing power, studies by Reno et al. and most recently,
Messelodi et al., have all incorporated more sophisticated systems that deliver accurate tracking and
recognition systems that cope well in both indoor and outdoor environments. Both studies make use
of four cameras situated throughout the tennis court to gain sufficient data for full 3D reconstruction
of the tennis ball’s movement. The purpose of which allowed Reno et al. to accurately identify events
involving the ball. For example: Bounces; racket strikes; serves. Messelodi et al. took this high level
data acquisition a step further by constructing a ”Supervisor” module that would extract data such
as the type of Stroke, ”player occupancy and movement maps”, as well as information relating to the
spin put on the ball. Unfortunately, due to the research being implemented and commercialised as
EYES-ONJI7], it is not known how exactly Messelodi et al. obtain these details. Finally, Vinyes et
al. perform a similar high level analysis, except with the addition of Deep Learning-based models
to make in depth classifications on stroke types and service types. Though the addition of state-of-
the-art models make for an attractive research point; the lack of available data, even when using the

THETIS[18] data set, meant that many of the classification’s metrics suffered from poor performance.

Rather significantly, despite the particular success of Meseloldi et al’s study and the research title
suggesting a "Low Cost” alternative, all three of these implementations are still far beyond what a
casual tennis player would hope to use themselves. All of these studies required powerful external
Computers, connected to at least four high quality cameras positioned at exact predefined locations
on the court. There is no denying these project’s applicability to a Tennis Club setting, but for a

quick plug-and-play configuration these systems are no longer suitable.
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2.3 Computer Vision Techniques

2.3.1 Colour Spaces

Traditionally, we represent images using the three channel RGB (Red, Green, Blue) representation.
Whereby, at each point in an image (pixel) there will be a grading of 0-255 for each of the three
primary colours. Whilst it is useful for us to carry separate information regarding each of these
channels, there are other colour representations that allow us to encode colour as a single channel.
Such representations also allow us to quantify variables such as hue (colour), luminance (brightness)
and saturation (colour intensity). We call these images, HLS images [I9]. Normally each of these
channels would be represented on a scale of 0-255, though in OpenCV E| the hue channel is given
values from 0-179. Significantly, the minimum and maximum values of Hue are just one unit away.
See the figure below. Throughout much of this project, we chose to use HLS image representations
due to the ease of use it provides when attempting to restrict the amount of visible colours in the
image. For example, we can anticipate ahead of time that a tennis ball will appear at a Hue of around

30 (yellow).

4 Luminance

"'m..____‘___d_,_ﬂs‘

|

~

Figure 2.2: The HLS colour space. Credit: Dr. Kenneth Dawson-Howe

Thttps://github.com/opencv/opency
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Figure 2.3: The OpenCV Hue Range. Image credit: OpenCV

Throughout the Development of the Bounce Detection System chapter, we will regularly refer to

Y

the act of applying a "mask” to an image. The applied mask is typically a ”binary” image. i.e. Black

and white only. This process is described by the following figure:

Figure 2.4: An example of image masking with a binary AND operation.

2.3.2 Region Segmentation

When considering distinct objects within an image, we face the issue of actually deciphering what
pixels are connected to one another. The connected areas are referred to as regions, and unlike what
may initially be assumed, finding these regions is not a trivial problem. Before actually approaching
the problem of labeling distinct regions, we must first break the image down into two distinct parts:
foreground and background (more on this later). Simply put, the foreground of the image will contain
pixels each with a value of 255, while those background pixels will have a value of 0. Determining

the foreground and background of an image is a whole other problem. Commonly, there are two [20]
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approaches to determining connectedness between any given pixels in a binary image: 4-adjacency
and 8-adjacency. The former considers only those points immediately adjacent (non-diagonal), while

8-adjacency considers all neighbors (eight in total).

Figure 2.5: 4-adjacency (left) .vs 8-adjacency (right)

The issue here is that if we apply either of the two approaches, we do not achieve the intended result.
Instead, the best approach is to use a combination of the two techniques given different scenarios. This
gives rise to the Connected Components Analysis algorithm (CCA), which is a two-pass technique
that labels points based on previously neighboring pixels. In OpenCV, CCA is implemented using the

findContours() [21] function. Below are some example outputs:

Trinity College Dublin
Colaiste na Trionoéide, Baile Atha Cliath
The University of Dublin

Trinity College Dublin
Coldiste na Trionéide, Baile Atha Cliath
The University of Dublin

Figure 2.7: Segmented regions found in the image, using OpenCV’s findContours

2.3.3 The Pinhole Camera Model

The most simple model of a camera is that of the Pinhole Camera Model. In this abstraction, the
lens of the camera is seen as a pinhole to a flat plane behind it. By taking all light from the scene in
front of it, the pinhole projects the image at hand onto the image plane itself. For this very simple

case, any given point in the 3D world, visible through the pinhole, can be modeled to the 2D plane.
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Figure 2.8: The pinhole camera model. Image credit: Kenneth Dawson-Howe

2.3.4 Perspective Transformations

When each point of the 3D world is projected onto this 2D plane, we are carrying out what is referred
to as a Perspective Projection. If it happens that the object at hand is not face-on to the camera, and
we wish to transform the projected 2D image to face directly to the image plane, we can carry out a
transformation known as a perspective transformation. By taking four matching points between the
original image and the to-be-transformed image, we can construct a mathematical operation to apply

to the entire image - Effectively translating the region of interest to a face-on view.

Figure 2.10: The same image, with the
Figure 2.9: A sample tennis court image court projected face-on to the frame

2.3.5 Background Models

From a human perspective, detecting moving objects in a piece of video footage might seem somewhat
obvious. In reality, we have to deal with a host of problems such as brightness changes, our distance
to objects, video distortion and background changes. Solving each of these problems, and providing a
framework to robustly deliver the foreground of moving pixels separate to a background is very difficult.
Especially, for example, if the background also happens to be moving. The Gaussian Mixture Model

(GMM), proposed by Stauffer and Grimson [22] is an unsupervised learning technique that provides a
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robust framework for handling background pixels which might observe periodic motion (trees moving,
water rippling). Each point in the scene is defined as either foreground or background, with each point
handed a weighting based on how often that point has appeared throughout the history of frames.

Those points with a weight higher than a given figure are referred to as background pixels.

Figure 2.12: The extracted foreground of
Figure 2.11: A sample tennis court image the same image

2.3.6 Edges

Edges represent those points of an image where we observe sharp changes in luminance. Whilst for
the human eye the localisation of these points might be trivial, robustly detecting edges of interest
to the user and filtering out others is a task in which a large number of Vision techniques attempt
to solve. In this section we will discuss the localisation of these edge points, as well as the further

processing of such points to identify lines within the image.

Figure 2.13: Single channel (greyscale) image

Edge Detection

With respect to this project, we will consider the detection of images within single channel (greyscale)

images, where each point has a gradient associated to how sharp the change in luminance is. First
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Figure 2.15: The Vertical Partial Deriva- Figure 2.16: The Horizontal Partial
tive Derivative

Figure 2.17: Resultant gradient image

derivative edge detectors are those techniques which output a local maximum to identify edge points.
These detection techniques involve the calculation and combination of two partial derivatives, their
combination to form a combined image, as well as the thresholding and suppression (filtering) of
non-maximum points. The technique considered in this project is the Sobel Edge Detector. This
particular method requires the usage of two specific partial derivatives, followed by the combination
of their outputs to give the resultant gradient image. Since images do not exist within a continuous
domain, partial derivatives are not calculated in the traditional sense. Instead, partial derivatives are

calculated as a result of a convolution of a kernel across each point of the image.

1 2 1 -1 0 1
hp=] 0 0 0 hy(p=1-2 0 2
-1 -2 -1 -1 0 1

Figure 2.14: The Sobel Partial Derivative kernels. Image credit: Kenneth Dawson-Howe

Non Maxima Suppression

To filter our noise from those central edge points that we want to consider, Non-Maxima Suppression
is carried out by iterating through each edge point in the image, and taking only those edge points

whose gradient is greater than either two of its neighbours.
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2.3.7 Line Detection

Using the edge points generated using the techniques discussed in the previous section, lines can be

extrapolated from within the observed using the following methods:

RANSAC

Random Sample Consensus (RANSAC)[23] is a more modern technique used to estimate the param-
eters of a given model (line, circle or otherwise), amidst the existence of outliers. For the detection
of lines, the technique aims to randomly select two points from a set of observations which give the
best ”consensus” for the existence of a line. The figure below, describes how with each iteration, a
random sample of two points are taken to form a line model, where all those points lying within a
certain distance from the line are taken as forming a ”consensus” for the existence of the line. Given

a big enough consensus, the line model is re-calculated using each of the points included.

 J
]

Figure 2.18: The RANSAC method. Image credit: Dr. Kenneth Dawson-Howe

2.3.8 Optical Flow

To augment the ability to track objects moving through a scene, the motion field (how points move
from frame to frame) can be computed. This 2D field of motion, which assumes brightness constancy
over a given time, is called optical flow. This field illustrates to us the apparent motion direction and
magnitude for each point in a scene. In order to reduce the cost associated with searching for related
points between two frames, a region of (2w+1 by 2w-+1) is taken about the previous location (where
w is the region width). By looking at the direction of the change and the magnitude of change, we

can compute Optical Flow [24].
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Optical Flow

Figure 2.19: An illustration of the motion field obtained via Optical Flow.
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Chapter 3

System Overview

Having discussed and analysed the various relevant works to our study, we can now further explore
the design of this project. In this section, we will highlight how a full-scale implementation may be
described and marketed as a product, as well as a closer look at a more narrowed-down list of desired
functionalities for such a product. For each listed functionality, we will then provide detail of how
such capabilities could be attained. Finally, we will summarise a set of goals that we are setting out

to implement for this particular project.

3.1 Product Description

As a final product, our system would give the average tennis player the ability to easily track their
own performance throughout a game. By combining functionality to watch player movement, detect
ball height and bounces as well as the ability to perform line calling, we are targeting capabilities
rarely seen outside of the professional game. This system works by utilising the impressive camera
quality and processing power of modern smartphones. By positioning the players’ smartphones at
both ends of the net, watching both ends of the court, we can gain a complete view of the tennis
game being carried out. Each of these phones perform tracking and recognition tasks on their side of
the court. With the detected information (court details / player movement and shots / ball location)
then combined to retrieve a more complete and accurate outlook of the game at hand. With the high
availability of mobile processing power, we believe our combination of multiple smartphone viewing
angles allows for levels of performance not currently available to the average tennis player. (Note:
Mock-up pictures of this product’s interface and functionality are included in:

In summary, the desired functionalities of this product would be:

e Detect and recognise separate players.

e Track player’s movement throughout the court, and deliver classifications on the different shots

made by each player.
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e Detect the tennis ball, track its movement and height above the court as well as its bounce

locations on the court.

e Following a game’s completion, provide heat maps of each player’s movement through the court,

as well as a map of the ball’s bounce locations following shots made by each player.

e Given the information gathered from the game, provide information on how likely a given player
is to succeed in a) a serve from a certain part of the court b) returning a given type of shot, ¢)

earning points from making a certain type of shot.

3.2 Project Description

In order to provide detail on how each of these desired functionalities would be implemented, we will
now discuss the physical make-up of this system, as well as some detail of the system architecture and

communications.

Field of View

Figure 3.1: An illustration of the proposed camera arrangement

3.2.1 Hardware

For us to build a system that is capable of gaining a complete outlook of a tennis game, using mobile
devices, we have decided to use multiple phones positioned on the tennis posts, looking outwards to
the court’s service lines. At a maximum, there will be four phones positioned on these posts for a
doubles game We intend for this system to be implemented in Android, with the focus being
an application that communicates to multiple other devices also carrying the software. Each device
must carry an ultrawide lens capable of recording in 1080p at 30fps. The phones themselves can be

positioned using flexible tripods.
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3.2.2 Event-based data

In order to gain truly complete information related to the tennis ball and the players in the game, each
device carries out its own analysis of the key events throughout the game (shots, ball bounces, player
movements). In more detail, a flow of steps required to be completed by each device is described in
figure As a brief outline, each device begins by searching for and detecting the tennis court within
view. Once a list of points throughout the court (intersections of court lines) have been identified,
each device can then begin searching for and tracking both the player and the ball. As event-based
data, bounce points are identified throughout the court and shots made by the player(s) are detected.
Using the previously identified court points as a way of relating two views of the same court section
together, the detected information in each view is fused together. By considering the combined
information from two views, we can identify the ball’s height above the ground by considering the
relationship between the separate interpretations of the ball’s location Additionally, by looking at
two separate interpretations of a ball’s bounce point, we can estimate a more accurate interpretation
of the true bounce point. Finally, since we can expect small movements in the cameras during play
(from the ball striking the net), the Court Detection step is repeated by carrying out searches local

to each of the previously identified court points.

3.2.3 Communication

Within each group of devices, there will be an assigned ”master” device, where each other device will
communicate its findings to. Each device, including the master device will carry out the necessary
Computer Vision and Machine Learning algorithms to attain the details required for the game at
hand. WiFi Direct, a faster and more secure successor to Bluetooth, is to be used as a medium of

communication [25].

3.2.4 Performance report

Using these event-based details, information of greater interest to the user can be generated. By
compiling the collected information throughout the game, heat maps of player and ball movement can
be generated. Additionally, with enough data over a number of games, we can provide predictions on

how likely a given player is to earn or lose points from a given shot.

3.2.5 Project Focus

What is presented here is an overall outlook into the design of a fully implemented mobile tennis
analysis tool. For the scope of this project however, we will only consider the usage of two devices,
pointed at a single side of the court. More specifically the following aspects of this overall system are

targeted:
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3.2. PROJECT DESCRIPTION
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1. The detection of a tennis court within multiple camera views.

2. The detection and tracking of a tennis ball within multiple camera views.

3. The determination of bounces points, through multiple views.

Court View
Low Level v
Event-Based )
Data Court Detection

L

Ball Detection

Flayer Detection
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Ball Tracking and
Bounce Detection
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Player Tracking and
Shot Detection

Event-based data
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HER
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Communication

Figure 3.2: An illustration of the proposed flow of events for a single device.



Chapter 4

Development of the Bounce Detection
System

Having proposed a full-scale Tennis Analysis Application for mobile, as well as our own more specific
goals for this project, we are now in a position to describe the details of the development of our
system. For this project, OpenCV 4.5.3 was used to implement our solution. The C++ distribution
of this software was chosen for use, due to language’s performance benefits when compared to Python.
Primarily, the OnePlus 8T, with its 123 degree ultrawide lens was used to record footage. As a
Secondary device, the Samsung A51 was used. All devices used were capable of recording from their
ultrawode lens at 30fps, in 1080p resolution. In this section, we will begin by providing an overview

of the theory related to our work, as well as a detailed breakdown of the following steps:
1. Court Detection
2. Ball Detection and Tracking

3. Synchronisation
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4.1 Court Detection

Before carrying out any analysis on the game of tennis at hand, our devices must first locate the tennis
court itself. This is done by searching for, finding and tracking a set of key points throughout the

court.

4.1.1 Previous Work

In the late 1990s, Sudhir et al.[26] proposed a system to automatically retrieve information from tennis
broadcast video. As part of this, the study worked at detecting the court itself by colour, and detecting
the court lines by a custom ”line growing” technique. The researchers compiled a set of assumed RGB
values for each type of court surface (carpet, clay, hard or grass), and would compare a section of the
frame under view to each of these known colours to determine if the court was under view. Following
a successful court detection, the researchers carried out their ”line detection technique, which took as
inputs a starting point and a line-growing direction.” This technique attempted to search for straight
line segments through a given number of directions. In a similar manner, Tien et al [27] relied on
using the most dominant colour under view to search for the court in a frame. Unfortunately, while
both studies claimed high accuracy in broadcast footage, no quantitative results were provided. Such
research also relied too heavily on assumptions regarding the conditions at hand, and would not, in
their base form, be suitable for implementation outside of a professional setting. Some years later,
Farin et al.[28] built their court detection model with an emphasis on white pixels appearing on the
court lines. By isolating these pixels and applying the Hough transform, the researchers applied a
heuristic to retain only those white pixels whose neighboring darker pixels appear a given distance
away With the reduced number of candidate lines, associations were then made between those
found lines and lines existing in a real tennis court. Like the previous study, no quantitative results
were provided. This study did however make a significant improvement in the computation time of
court detection and tracking, with near real-time performance observed on relatively weak hardware
by today’s standards. Vinyes et al.[29] took significant inspiration from this study, but added some
extra steps to ensure the removal of the tennis net from consideration. The study included a method
of determining the confidence of detection, having also observed the lack of numerical results from
previous studies. Despite the extra computation time, Vinyes reported about 70% detection accuracy

across frames, with significant error also recorded for court lines slightly worn away.
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(a) (b)

Figure 4.1: The court line heuristic used by Farin et al. This simple rule assumed a constant court
line width in the broadcast footage. Image credit: Farin et al.

4.1.2 Our technique

Locating the court

In setting out to locate the key points (court line intersections) throughout the court, it was decided
that the court sections themselves would first be located. To do this, we considered the dominant
colour within the visible scene. By first converting our original RGB frame to a HLS representation
we searched for the most dominant colour within the image by generating a hue histogram of the
frame and taking the greatest bin Where the index of this bin was the most dominant hue within
the image. We also applied upper and lower bounds (+5 and -20 respectively) to this hue value to
allow for noise within the colour of the court itself to also be considered. Significantly, we also had to
consider very high hue values, since the colour red takes both very high and very low valies in the HL.S
image representation. In addition, upper and lower bounds of luminance (lightness) and saturation
(colour intensity) also had to be applied. By allowing for a range of luminance and saturation values,
our Court Detection System was built with robustness to shadows and sandy patches in the court
(brighter regions). Due to the nature of this implementation, a number of different combinations
of luminance and saturation bounds had to be experimented with for a given view. For example,
upper and lower bounds of 40 and 175, and 25 and 255 were observed for luminance and saturation
respectively for an overcast view in the primary camera. In the same conditions, bounds of 20 and
175 were observed for luminance, with values of 70 and 255 observed for the secondary camera - In
the secondary camera, it was found that the white of the court lines would regularly blend together
with the orange court, as such we required a stricter colour strength for the orange court.

Next, by taking a mask of the image with this identified hue (within some range), we obtained a
binary image containing the court regions as well as some noise in the background of the scene [4.4]
Finally, using OpenCV’s findContours() function, along with a set of rules (restricting the length of
court sections to be greater than 780 pixels) relating to the expected aspect ratio of each section, we
obtained a region for each court section.

Having identified each court region, we also implemented a system to check the coordinates of the

highest point in the NEAR region to identify which side of the court the camera is placed on. If this
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Figure 4.2: A tennis court used for the development and test-
ing of our Court Detection System.
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Figure 4.4: Binary image produced by taking
Figure 4.3: A hue histogram taken from the only those pixels containing a hue within a set
above image. range.

point had an x-coordinate less than half the width of the image, we assumed the camera to be placed

on the left side of the court. Otherwise, we assumed the camera to be placed on the right side.

Identifying each court region.

Having obtained each court region, court line intersections were first estimated as existing on the
extremities (corners) of each court region. Before carrying this out however, each section needed to be
correctly labeled as their equivalent section in a real-life court. This was achieved by stepping through
the image from left to right in certain increments (image width divided into 15 increments), where a
search upwards through the image was carried out at each step. During each search, the intersecting

court sections were registered and stored. A set of rules could then be applied

1. If a search has only encountered a single court section, then identify that section as the "NEAR”

section.

2. If a search has encountered two sections, then identify the first section as the "NEAR” section

and identify the second as the "BACK MIDDLE” section.
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3. If a search has encountered three sections, then identify the first section as the "NEAR” section
and identify the second as the "MIDDLE NEAR” and the third as the "BACK MIDDLE”

section.

4. If a search has encountered four sections, then the third encountered section can either be the
"BACK MIDDLE” or "MIDDLE NEAR” section. As such, we can only say that the first, second
and fourth identified sections are: "NEAR”, "MIDDLE NEAR” and "FAR”.

5. If a search has encountered all five sections, then label each in the following order: "NEAR”,

"BACK MIDDLE”, "MIDDLE NEAR”, "MIDDLE FAR”, "FAR”.

For efficiency reasons, the search was carried out in 15 steps through the image from left to right. If
the search were to be carried out more frequently, it is likely that only the final rule would be required
to identify each court section. Notably, this search assumed that all court sections are detected in the

first place.

Figure 4.5: An illustration of court-section recognition.

Initial court point estimates

Having identified each court region, the next task was to make an initial estimate of each relevant
court point (intersection of court lines). For this, an additional set of rules was observed to determine

each point, given an identified section:

1. Near Section: "Near B” was found as the contour with the lowest y-coordinate (coordinate

system measured from top left of the image). To find ”Near A”, both the contours with the
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largest and smallest x-coordinates were first taken. (To allow for this to work for images from
either the left or right side of the court, it was required that we take both of these points.) Then,

out of those two points, whichever was closer to ”Near B” was identified as ”Near A”.

2. Middle Near Section: In a similar way to the above rule, the contour point with the lowest y-
value was first taken. Then to find the ” Near Mid” point, both the contours with the largest and
smallest x-coordinates were first taken, with the point closest to the contour with the smallest

y-coordinate being taken as ”Near Mid”.

3. Middle Far Section: To find ”Far Mid,” the contour point with the smallest y-coordinate

was taken.

4. Far Section: To find the "Far” court point, the contour with the smallest y-coordinate was

taken.

Figure 4.6: The labels used for each point. Each of these points are the final, refined versions.

Making refinements

With each estimated key point, there will be a small error associated between itself and the true
location. For this system, we required as close to perfectly accurate as possible, thus each point
needed to be refined to fit closer to their ”true” location.

To do this, we needed to consider the geometry of the court lines local to each estimated court point.
Firstly, using each of the previously estimated points, a search was carried out in two directions along
the contours from the initial estimate to calculate two separate lines. With each search, RANSAC
(See: [2.3.7)) was used to determine the line equations for each of the two located lines. By calculating

the intersection of these two lines, we obtained our first refinement of each court point.
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C2 —C1
Linter =
mip —ma

Yinter = M1Tinter T C1

Figure 4.7: Finding the intersection of two lines

To further refine the location of each court point, the true court lines within the image were then
considered. As part of this, the width of each relevant court line needed to be found. Due to the
angle of the camera, an approximate width for the court lines could not be assumed. Instead, it was
required that the inner and outer boundaries of each true court line were found. For this, Sobel Edge
detection and Non Maxima Suppression (see: [2.3.6) were used to extract a gradient image from the
current frame. Using the lines obtained from the previous step, a number of perpendicular lines were
taken at specified intervals along each previously estimated line. By searching through each of these
perpendicular lines, tracking how the gradient increased and decreased in magnitude, and utilising the
already-solved line equations from the previous step, two new line interpretations could be taken along
the outside of the court lines. By taking the intersection of these new lines, the outer intersections
of the court lines were determined. Notably, since the court lines were very difficult to detect on the
far corner of the court, the best option to refine the far court point was to simply subtract (or add,
depending on the side of the court) three pixels from the point’s x location, and subtract a further
three from the point’s y-coordinate.

Depending on the particular point, we decided to refine it as the intersection of either the inner
or outer boundaries of a pair of court lines. The nearest two court points to the camera were refined
as being on the outside boundary, while the middle court points were refined to the inner court lines.
This of course could be done in either fashion. See the figure below for a visual flow of events for

finding the inner intersection of two court lines.
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Figure 4.8: An illustration of the flow events through our Court Detection System.

4.2 Ball Detection and Tracking

In a game of tennis, we can expect the ball to move quickly across the court. At high speeds for a

camera with a low shutter speed, the circular ball shape will begin to resemble more of a yellowish
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ellipse. Many of the popular ball tracking systems [9][30][31] rely on high resolution footage at steep
angles to the court. By taking footage in these angles, analysis systems are able to avoid losing the ball
as it passes different scenery and lighting. Additionally, researchers can define a somewhat consistent
ball size throughout the court. Unfortunately, these issues are unavoidable with our chosen camera

setup. As such, we require a robust system that is appropriate to our imperfect recording scenario.

4.2.1 Previous Work

Since the late 1990s, researchers have attempted to address each of these problems to deliver a robust
and deployable Tennis Analysis System. Pingali et al. [31], and later O’Connaire et al[13], formulated
a ball tracking system based on the ball’s location, physical size and movement. In order to generate
a collection of potential ball candidates in each frame, both studies used frame differencing and
thresholding to isolate any candidates within view. The former team of researchers chose to search
within a window of the expected ball location, where any ball candidates found within the window
would be checked to see that they fit the expected aspect ratio and size. To aid this, the ball’s expected
location would be calculated based on its observed velocity. Using multiple camera views, the ball’s
3D position was found by triangulating multiple camera viewpoints. The bounce of the ball was then
defined as when the ball’s velocity in the z-component changed from negative to positive. While
no quantitative results were provided, Pingali et al suggested excellent, near real-time performance.
O’Connaire et al followed a similar technique, but implemented a history of ball locations, where each
location found to lie in a ”semi-linear path,” would be stored to provide the ability to interpolate a ball
position amidst occlusion. The researchers found that their own method, which relied on an indoor
court with an overhead camera, performed very well with the precision and recall of ball hits at about
94%. Finally, a study submitted last year by Conor Gilmartin[32], aiming to produce a tennis shot
placement report from a single camera, applied a somewhat similar technique of ball tracking through
the storage of its location history. By comparing the ball’s actual location, to its predicted location,
based on its history, Gilmartin filtered out candidate balls in the recorded footage. Ball bounce
detection was implemented as the intersection between upward and downward ball trajectories. In

high quality footage, a satisfactory precision of 84% was found.

31



IMPLEMENTATION 4.2. BALL DETECTION AND TRACKING

Figure 4.9: Ball history and the predicted ball position, as implemented by Gilmartin. Image credit:
Conor Gilmartin

4.2.2 Our technique

For each of the headings below, a flow chart is included, detailing the approach of each method

Single Camera Ball Detection and Tracking

To begin, we needed to locate the moving pixels within the image. To do this, we extracted the
foreground image from the moving scene using Gaussian Mixture Modeling (see: [2.3.5)) . With the
binary image output from this technique, we applied a masking on the original image, which gave
us all those moving pixels within the RGB frame. With this resultant colour image, we applied a
conversion of the image to the HLS representation, where we applied another mask filtering out all
those pixels which did not contain the expected ball Hue (60 degrees). In the following binary image
(see: , we then applied the findContours() method as implemented with OpenCV, to obtain all
those ”candidate” regions which represented potential tennis ball regions within the image. To further
filter out those candidate ”balls” within the scene, we then applied size and circularity constraints on
each contour to result in an image containing only those regions which truly represented a tennis ball.
Following a successful detection of the ball within the current frame (see: , the ball’s location is
saved to enable a more efficient search within a window of where the ball can be expected to be in the

subsequent frame. Effectively, this allowed us to ”track” the ball through frames.
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Figure 4.10: Court scene. Figure 4.11: Foreground of the scene.

Ball Current |
Location; | Next frame's search
+ | window I

Figure 4.12: Resultant pixels following the Figure 4.13: An illustration of the ball’s track-
Hue mask. ing window.
4T A
Clircularity = ?—2

Figure 4.14: Equation for circularity, where 1 is the circumference of the region.

Single Camera Ball Bounce Detection

By tracking the ball’s location through multiple frames, we were able to observe the vertical and
horizontal components of the ball’s trajectory. In very simple terms, we consider a ball bounce to be a
change in the ball’s vertical trajectory from downwards to upwards. In development and testing, this
simple rule proved robust to upward shots made by the player, since a change of horizontal trajectory
from outwards to inwards (of the net) would be detected during a shot. If a shot was detected,
then a perceived bounce was ignored five frames either side of the detected shot. While this method
gave us a rough idea of both the frame and the location of where the bounce was considered to have
taken place, if the bounce of the ball happened between two subsequent frames we would not
have an accurate picture of where the ball has bounced. To ensure we captured the correct bounce
location, Conor Gilmartin’s technique was adapted to suit this current implementation. Very simply,
this method involves the calculation of two straight lines immediately before and after the estimated
bounce point, where the intersection of these two lines gives the true bounce location. If it was found
that the originally estimated bounce point was closer to the court (larger y-coordinate) than the newly

refined bounce point, then the estimated bounce was taken as the true location.

33



IMPLEMENTATION 4.2. BALL DETECTION AND TRACKING

As an example, see In this illustration, a change in vertical trajectory from downwards to
upwards is detected at point 3. Using straight lines computed from 1-2 and 4-5, the intersection can

be found as the true bounce point.

Figure 4.15: A correctly estimated bounce Figure 4.16: A bounce point taken as the intersec-
point. tion of the downward and upward trajectory.

Figure 4.17: An interpolated bounce detected in
footage

Multi-view Bounce Detection

Having carried out court detection, as well as the ball and bounce detection within each camera view,
the next step was to combine each of the views to obtain a top-down view of the court at hand. Firstly,
using the detected court points from the previous section, we carried out a perspective projection of
each camera view (see: [2.3.4). To do this, we were required to sort each of the identified court points
by their x-coordinate, from smallest to largest if the view in question was on the left side of the court,
or from largest to smallest if the view was on the right side. This way, each point could be directly
related to their equivalent point in a list of coordinates for the template ”"top down” court. While
this produced a top down view of the entire court, including the tennis ball (within a certain distance
of the court itself), we were only interested in the transformed coordinates of the originally detected

ball locations. By performing this perspective projection on each camera view, we gained a useful
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bi-product where the tennis ball seen in the primary and secondary cameras could be projected so
as to appear within the top-down view. Considering the figure below both the blue and red

trajectories are mapped to the top-down view.

Figure 4.18: Combining the ball-information from each of the views to a top-down perspective.

By considering the path of each perspective projected ball in the top down view, we observed four
separate interpretations of the bounce point. Firstly, by applying the same perspective projection
to the bounce located in each individual view, each interpreted bounce point in the primary and
secondary views were mapped to the top down (plan) view. The third interpretation was estimated
as being the midpoint between the projected bounce points found in each of the individual views
(see: . As a final interpretation, we calculated the bounce point as a weighted average of each
individually determined bounce location, as projected to the top-down view (see: . To calculate
this, we took into account the size the tennis ball appeared in each view. The following formulae were
observed where: Xyyq.4 is the weighted average x-coordinate, ds;.. is the absolute difference in ball
sizes, Siarge is the size of the larger ball, X,,4c is the x-coordinate of the larger ball and X,q is the

x-coordinate of the smaller ball. The same convention is observed for the y-coordinate equivalent.

(1 + o )Xlarge + Xsmall

Slarge

XWavg = d.
L (L4 )
(1 + ;i:;e )Harge + Yémall
YWavg =

dsize
1 + (1 + Sla'rge)
It is worth noting that if one of the views failed to locate a bounce within five frames of the time a
bounce was initially detected, both the midpoint and weighted average interpretations would take the

location of the bounce that had been reported by either view. Additionally, it was decided that if only
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Figure 4.19: Top-down bounce point esti- Figure 4.20: Top-down bounce point esti-
mated as the midpoint of the two single-view mated as the weighted mean of the two single-
bounce estimates, mapped to the perspective view bounce points, mapped to the perspec-
view. tive view.

a single bounce was detected, the system would wait a total of ten frames from the initial detection
for a detected bounce in the other view. If no matching bounce was detected in the other view within

ten frames, then the initially detected bounce was taken.

4.3 Synchronising the views

Unfortunately, when recording with mobile phones instead of dedicated video cameras, we are adding
a large amount of complexity to how frames are processed. For example, if a phone were to experience
a spike in CPU usage, it might happen that frames are dropped from the recording [33]. With even
a slight difference in the timing of frames from each view, it is necessary that the system we develop
is able mitigate the risk of this happening in the first place, as well being able to accommodate for
the inevitable small errors in the timing of each video. While the videos being one or two frames out
of sync would not pose a huge issue to the operation of our system, the accumulation of error would
result in the incorrect interpretation of events happening throughout the tennis game.

While it could be assumed that the problem of multi-camera synchronisation is one that is commonly
addressed in research concerning the application of multi-view tennis analysis systems, it is instead
either assumed that frames from separate views are at all times synchronised, or just ignored altogether.

For our system, including the full scale implementation as a mobile application on multiple phones,
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we can consider synchronous issues from both video processing and timing error in the instant that

video recording commences on each device.

4.3.1 Previous Work

As a method of synchronising videos based on the dynamics of the scene at hand, Irani et al.[34] and
Elhayek et al.[35] both focused their research on carrying out synchronisation based on the matching
of visual features related to the trajectories of moving points within the scene. Irani et al. introduced
the notion of using trajectory-based features for matching within the scene, with a particular emphasis
on its benefits related to ”sub-frame” accuracy. I.e. synchronisation between multiple views that is
not wholly reliant on exact frames, rather the information drawn through a collection of subsequent
frames. While the researchers were steadfast in the benefits of their solution, including synchronising
views at different zooms as well as different types of sensors (e.g. visible and infra-red light), Elhayek
et al. made significant advancement some years later. This study adapted the notion of time-based
alignment based on trajectories of moving objects, by instead searching for trajectories of any moving
points within the scene. While this approach undoubtedly adds complexity, it meant that multiple
videos could be synchronised without having to rely on any one moving object. Considering the nature
of our project, where there is no guarantee of a moving object (player or ball) at any one point in
time, this approach would be more suitable for implementation.

Also worth consideration is the synchronisation of multiple videos based on audible features (i.e. a
serve or ball bounce).

Video alignment via audio ”fingerprint” was presented by Weda et al.[36], whereby fingerprints (32
bit binary string representing 11.6ms of audio) would be created and compared to other recordings.
The study found that perfect synchronisation could be achieved with videos of at least three seconds
overlap of a single audio signal. Casanovas et al.[37] included both the audio and visual features in
their multi-camera synchronisation strategy, with the emphasis being that audio-visual events (those
visual events that included an audio feature) would provide better anchor points to identify temporal
shifts (offset between frames). This did however add a dependency on those visual features related
to "sharp” audio spikes actually being identified. Across data-sets of footage for concerts, basketball
matches and even office spaces, the study reported admirable performance with precision of about
94% and recall of 83%.

While each of these studies presented valuable techniques for dealing with synchronous issues through
time, the research only accounted for predictable drift between two separate recordings (from different
frame rates) or from different start times of footage - Misalignment due to unpredictable events

throughout the run-time of the footage was never addressed
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4.3.2 Our technique

Due to the time constraints of this project, only a simple synchronisation strategy was implemented.
This was based entirely on the time in which bounces were detected in the primary and secondary
cameras. For example, if the primary camera detected a bounce two frames ahead of the secondary,
then for the next two frames considered in overall video, only frames from the secondary camera were
considered. This way, the secondary camera was effectively ” fast-forwarded” to align with the primary.
Since this method only based its synchronisation on a single event that took up a very small number
of frames through the entire run-time of the footage, the videos still tended to drift apart in a way
that could not be predicted.

As such, to implement a truly functional synchronisation scheme, other visual (or audio) events would

have to be considered (see: .
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Chapter 5

Evaluation

Having described the development of our system, from the implementation of a Court Detection
system, to the method behind a single and multi-camera ball tracking and bounce detection procedure,
the next logical step is to discuss the performance of each. In this section, we will begin by describing
the process in which we recorded footage and generated ground truth. Next, we will outline the various
errors intrinsic to the problem of Mobile Tennis Analysis for the casual game, as well as those errors
associated to our choice of devices and methods. Following this we will provide our metrics used to
assess the performance of our system, describe our testing procedure, as well as provide a complete

overview of the numerical results we have found.

5.1 Test Footage

In obtaining footage for testing, a mobile phone was placed on top of each tennis post, pointed towards
the centre of the baseline on a given side of the court. The ”primary” device used was a OnePlus 8t,
while the secondary was a Samsung A51. Each phone was set to record at 1080p in 30fps with their
respective ultrawide lenses. The device’s positions were fixed using a flexible tripod, while (close to)
simultaneous commencement of recording was helped by using Bluetooth clickers. The tennis play
itself was at a beginner-intermediate standard - At 30fps there was never a stage where the ball’s
speed impacted its ability to be tracked. Footage was recorded in two courts, which will be denoted

as Court A and Court B respectively (see: [5.1)).
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Figure 5.1: A view of the courts used in testing. Image credit: Google Maps

5.2 Ground Truth

In order to carry out testing, we first required ground truth to compare the output of our algorithms
against. For this, a custom testing framework was designed and built to allow for the generation of
ground truth as well as the testing of our system’s performance. This truth was accumulated by sur-
veying both friends and family (four in total), and collecting their interpretations of the exact bounce
location within our recorded footage. For each piece of recorded footage, ground truth was recorded
for the primary, secondary and top-down views. l.e. For each piece of footage, four interpretations
of each bounce were sampled, in both the primary, secondary and top down views. Ground truth for
Court Detection was also determined in the same way, though with just a single interpretation of each
point.

The comparisons were made in each of the three domains:

1. Primary View Ground Truth vs Bounces detected in the Primary View
2. Secondary View Ground Truth vs Bounces detected in the Secondary View

3. Top down View Ground Truth vs Bounces detected from the Weighted Average Interpretation,
and the Midpoint Interpretation.

To make sure that the truth across all three domains could be compared, the primary and secondary
bounces, as well as the Ground Truth were also mapped to the top down view prior to comparison.
This way, we could explore the similarities and differences between the performance of each of the
four types of bounce detections (primary, secondary, midpoint and weighted average).

Our testing framework was implemented with C++, while our surveying tool was built with Python

3.10. The latter tool was built to output a series of CSVs for the observed bounces in the primary,
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secondary and top down views. The former testing framework then accepted these CSVs and compared
each of the detected bounces against their respective truth. In a similar way, ground truth was also
recorded to compare the localisation of court points in our Court Detection system. Both tools used

OpenCV.

5.2.1 Reliability and Intrinsic Error

As with any survey, we can expect some level of human error and inaccuracy related to the recorded
ground truth. Given a piece of recorded footage, the participant was asked to click the exact location
that they perceived the ball to bounce at. While we ensured that the recorded footage itself was played
at a slow enough rate (60 millisecond delay between each frame) to allow for reaction times, we still
saw variation in the location recorded by the participant. The geometry of the cameras themselves
relative to the court, also contributes both to the reliability and the associated error of the ground
truth - We found that participants would regularly interpret balls to have bounced on the wrong side
of the center service line When this was reviewed later, we ourselves found it difficult to
determine which side of the line the ball had actually landed on. In both pieces of recorded footage,
the true bounce was not visible in a single frame. Instead, the bounce was "missed,” and the prior
and subsequent frames would trick the eye into interpreting the bounce point wrongly. Interestingly,
the bounce point localisations for both of the single camera views as well as the top down view were
all noticeably different to their respective ground truth. This raised the important observation: In
recording ground truth for an application such as this, the devices used in recording should not be

subject to the same errors encountered by the devices in which we hope to test.

Figure 5.2: A perceived bounce from the per- Figure 5.3: That same bounce, from the right-
spective of the left-side view side view

Similarly, in recording ground truth for the top-down view, we were unfortunately forced to accept
that a significant amount of error would be present in the recorded truth. Since we had no real-
life birds-eye perspective of the court to offer authentic ground truth, the closest we could come to
obtaining truth was to manually record as close to perfect court points as we could, then perform
a perspective projections on each view, blend together the resultant frames and record truth as the

points in which the ball was seen to bounce. This is far from ideal, since in recording ground truth we
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are again including a significant amount of error associated with our ability to select the appropriate
court points, as well as other errors associated in the production of the top down view (see: .
In addition, the two projected tennis balls often do not converge to a single point, resulting in the
participant of the survey having to make a rough estimation of where they believe the true bounce

location to be.

5.3 Sources of Error

5.3.1 Sensor Distortion and Error

Before considering the error intrinsic to each of the steps in our Bounce Detection system, we must
first consider how our choice of equipment introduces error - In this section, we will highlight errors
related to sensor distortion, camera movement, synchronisation issues, resolution and colour clarity.
Such errors are unavoidable to vision applications on the mobile platform. Those same errors would

largely be mitigated or entirely non-existent in a professional setting with higher-end equipment.

Image Distortion

Barrel Distortion Pincushion Distortion

Figure 5.4: An illustration of lens distortion. Image credit: clickitupanotch

When using any type of wide lens, image distortion [5.4] is likely to be visible along supposedly
straight lines. This effect is produced as a bi-product of the lens attempting to absorb as much of the
scene within view to a single frame [38]. While the post-processing applied by the camera software
in mobile devices will fix much of the distortion in the image, we can still observe some distortion in
individual views, as well as the top down (plan) view (see: and. In our case, neither the camera
software nor the sensors themselves were the same in each device, as such we observed differing and
inconsistent effects of distortion in the combined view. Unfortunately, by relying on ultrawide lenses
we are introducing some amount of error into how accurate our line-calling (determining whether a

ball is in or out) ability would be for a ball bounce in the top-down view.
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Figure 5.6: The same distortion visible

Figure 5.5: Image distortion visible from the from the top-down perspective. In this
secondary secondary camera, where the yellow perspective the secondary camera is on
lines indicate true straight lines. the upper tennis post.

Camera Movement

While the flexible tripods used to secure each mobile device provided ample stability in the recorded
footage, we did see subtle movements of the camera views through time. This movement was exag-
gerated when the ball hit the net itself, as well as when a gust of wind blew through the court. Again,
we see how the application of tennis analysis to a casual setting faces many obstacles that could be
ignored in a professional setting. While the movement of cameras through time immediately reduces
the accuracy of the located court points and hence the perspective projection applied to the court, we

describe how a system designed to track these court points would mitigate the error introduced: [6.3}

Synchronisation Issues

As described in we saw how the usage of mobile devices for the analysis of video footage is an
especially difficult task due to the design choice of variable frame rates for video in a mobile setting.
This unpredictable behaviour is also compounded by having two separate mobile devices with largely
different software and hardware platforms. While a small difference in the alignment of frames between
the two separate videos would not throw the system completely off in its detection of bounces, larger
separation over the course of a number of minutes would result in mistimed interpretations of bounces.
Additionally, a more exaggerated difference in alignment without a dedicated synchronisation system
means that a history of events needs to be stored within each device to ensure that those same events

can be compared when possible. Since we also rely on the top down view to create ground truth
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for our system, the existence of a sychronisation issue between the two frames inevitably results in

improper ground truth recorded for later testing.

Colour and Resolution

In using two different camera sensors, we are also establishing some risk in how capable our system
is in its ability to analyse a given scene. Our primary camera, the Oneplus 8t, features a higher
megapixel (16MP) ultrawide sensor than the secondary’s 12MP equivalent. The difference in the two
is significant, and presented issues in how able the system was in its ability to extract information
from the scene. In the screenshots below taken during an overcast day, we can see that despite
there being adequate contrast between the orange court and the white lines, the secondary camera
would incorrectly process the colours within the scene, and blend the colour together. The same effect
visible in the primary camera, though to a lesser extent. It is worth noting that that both cameras
record at the same resolution of 1080p. At this resolution, the court points on the far side of the court
suffer greatly in terms of the sharpness between the court colours and overall quality of the picture.

We believe that this resolution is insufficient for the application of a truly accurate Mobile Tennis

Analysis System.

Figure 5.7: A zoomed-in image of the Figure 5.8: A zoomed-in image of
far-side court lines, as viewed from the the far-side court lines, as viewed
primary camera. from the secondary camera.

Additionally, the secondary camera would often misinterpret the colour of the moving tennis ball
entirely. In footage recorded in a high-lighting scenario, the ball was often displayed as a white circle

instead of the expected yellowish hue.
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Figure 5.9: The ball processed as white by the Secondary Camera.

5.3.2 Court Detection Error

In carrying out Court Detection, the system performed the following three steps, depending on the
point we are searching for: Court Point Estimation; Initial Refinement; Second Refinement. Here, we

will discuss the error that featured in two of these steps:

1. Court Point Estimation: Often when seeking to the find each court section, and their respec-
tive extremities, the court sections themselves would contain noise in their colour that results
in misshaped outputs. This was particularly noticeable during days with poor lighting. It was
found that on the far side of the court, in all conditions, the number of pixels per square cen-
timetre of the image was simply not sufficient, often resulting the blending of the white, orange
and green court colours This poor resolution meant that the far-side court points would

regularly be thrown off their intended location [5.10][5.11]

2. Initial Refinement: Having made an estimation of each court point, the system then made
a refined estimate of the location by taking each neighbouring contour, extracting a line along
each of these contours, and finding their intersection. The error in this step was found to rely
on the choice of the threshold when using RANSAC. I.e. the maximum distance that points can
be included in consideration to a candidate line. It was found that a threshold of seven pixels

yielded the best results.
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Figure 5.10: Noise visible between the
white, orange and green boundaries, giv-
ing incorrect interpretations of the initial
estimated far-side court point. Figure 5.11: The far-side court point

5.3.3 Bounce Detection error

Missed Ball Detections

The primary source of error in a single camera view was missed ball detections. If the detection of
a ball failed, it would happen that the bounce detection would either fail entirely out of the system
being unaware of the ball’s location, or in the event of a few missed detections, the bounce point would
be misinterpreted. For example, if two of the immediate ball locations following (or prior to) a bounce
are not detected, then those points that are eventually detected will be used to identify the bounce
point, resulting in an improper localisation.

In testing, we found that the ball would be missed from detection in high-lighting (sunny) scenarios,
and when the ball was passing the sky or other low contrast backgrounds [5.13] At the time when
footage was recorded during the fair-weather day, the sun was facing the player. As such, the side of

the ball facing the sun appeared pure-white, and thus escaped detection [5.9

Multi-View Bounce Detection Error

In the top down view, errors were carried forward from the Court Detection and Single-View Bounce
Detection steps. In addition, a significant amount of error presented itself at this stage from our
choice of obtaining the weighted average of the two interpretations of each bounce In the high-
lighting (fair-weather) scenario, the secondary camera would often struggle to correctly detect the
ball’s bounce location if it was on the opposite side of the court. What we found was that our linear
approach to determining the weighted average bounce location placed too much of a weighting on the
smaller ball sizes detected, causing the weighted average location to be thrown off by weaker detections
made by a camera further away from the ball To summarise, it was intended that the weighted
average bounce points would avoid the issues that bounces from the midpoint of each individual view

would face. Unfortunately, by only considering a linear method of creating the Weighted Average, we
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True Bounce Location

Weighted Average Bounce
Point

Figure 5.12: An example of a poor detection in the secondary camera, significantly worsening the
accuracy of the Weighted Average Bounce Point

I |

Figure 5.13: A ball (circled manually in pink) rendered nearly invisible against its background.

allow for incorrect interpretations to carry a significant impact on the result. The perspective issue
of correctly localising the bounce location in individual views (as discussed in: [5.2.1)), also has an
impact on the bounce points determined using multiple views. In an ideal scenario, each of the two

individually projected balls in the planar view would converge to a singular point, allowing for a quick
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and simple determination of the associated bounce point in that view. Unfortunately, the perspective
issue seen in individual views was also visible in the planar view, resulting in a much more ambiguous
location of the true bounce point. This ambiguity also meant that Ground Truth determined in the

Planar view also suffered significant inaccuracy

Figure 5.14: An example of the two plan-view balls not converging to a point.

5.4 System Performance

5.4.1 Metrics

As a measure of performance of our Court Detection system, we used the euclidean distance (in pixels)
between the detected point and the true point as the error of a detection.

To Measure the success of our Bounce Detection System, we considered two aspects: A) Whether
a bounce wass detected within a similiar time as the ground truth (classification). B) How accurate
was the bounce localisation.

With respect to a single view, we considered a True Positive (TP) to be a bounce detected within
five frames of the mean frame number (out of the four recorded instances of ground truth) for that
particular bounce (in that particular domain). If the bounce were to be detected, but outside of the
five frame threshold, then this was referred to as a False Positive (FP). If there was no bounce detected
at all, then a False Negative (FN) was assumed. The obvious omission here is a true negative (TN),
but in our use case we were not interested in the correct negative classifications of bounces, thus we

omitted this figure from consideration. Otherwise, it would be calculated as all those frames in a piece
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of footage that do not contain bounces. Using the figures mentioned above, we used the following

metrics to quantify the performance of our Bounce Detection System:

Precision = __IP
TP+ FP
Accuracy = TP
FP+TP+ FN

Precision gave an impression of the ability for the Bounce Detection system to detect bounces
within five frames of the recorded ground truth, while accuracy took into account those bounces that

were missed entirely, thus giving an overall picture of the system’s performance.

In terms of the accuracy of detected ball bounces, we observed the following procedure:

1. Calculate the Standard Deviation of each bounce in the Ground Truth, for each view. This
involved finding the mean observed bounce, out of the sample size of four, and calculating the

standard deviation, for each of the primary, secondary and top down domains (views).

2. Calculate the x and y coordinates from the mean truth, to the detected location for that bounce.
Le. ((303,295) — (295, 286)) to give a set of coordinates (8, 9). This was carried out for each type
of detected bounce (primary, secondary, midpoint of primary and secondary, weighted average

of primary and secondary).

3. Using this list of coordinates for each type of detection, plot the resultant points.

4. Take the mean of the standard deviations calculated for each view (from step 1), and plot the

1st and 2nd standard deviations.

5. For further information, calculate the median of the error between the detected bounces and

their related mean truth.

5.4.2 Court Detection Performance

When testing court detection, we considered two separate tennis courts, Court A and Court B. Court
A was located beside trees and foliage, with a noticeably lower quality to the court colours. This court
was recorded in both sunny and overcast weather. Court B, a newer court, was surrounded by other

courts. There was a much stronger contrast between the white, orange and green of this court.

Below are the included results for Court Detection on a sunny day for Court A and B. As well the

results for the detection on an overcast day for Court A.
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Truth Detected

X y X y Error (px)
Near A 1824 480 | 1827 480 3
Near B 1649 456 | 1645 453 )
Near Mid | 1443 519 | 1441 517 2.828427
Far Mid 745 385 | 739 384 6.082763
Far 986 370 | 962 369 24.02082

Mean | 8.186403

Table 5.1: Court B, viewed in sunny weather, with the primary camera.

Truth Detected
x y X y Error (px)
Near A 95 371 | 56 373 2.236068
Near B 235 363 | 232 366 4.242641
Near Mid | 462 446 | 460 444 2.828427
Far Mid 1119 373 | 1115 372 4.123106
Far 894 337 | 880 336 14.03567
Mean | 5.493182

Table 5.2: Court B, viewed in sunny weather, with the secondary camera.

Truth Detected

x y X y Error (px)
Near A 159 473 | 158 472 1.414214
Near B 330 462 | 323 464 7.28011
Near Mid | 541 537 | 550 537 9
Far Mid 1213 448 | 1220 450 7.28011
Far 980 419 | 973 417 7.28011

Mean | 6.450909

Table 5.3: Court A, viewed in overcast weather, with the primary camera.

Truth Detected

x y X y Error (px)
Near A 1662 365 | 1650 365 12
Near B 1511 356 | 1507 357 4.123106
Near Mid | 1333 432 | 1320 431 13.0384
Far Mid 675 356 | 680 359 5.830952
Far 901 320 | 901 324 4

Mean | 7.798492

Table 5.4: Court A, viewed in overcast weather, with the secondary camera.
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Truth Detected

x y x y Error (px)
Near A 51 500 | 49 500 2
Near B 237 484 | 232 486 5.385165
Near Mid | 466 559 | 466 557 2
Far Mid 1152 457 | 1151 457 1
Far 914 431 | 913 430 1.414214

Mean | 2.359876

Table 5.5: Court A, viewed in sunny weather, with the primary camera.

Truth Detected

x y x y Error (px)
Near A 1756 461 | 1759 461 3
Near B 1595 443 | 1594 440 3.162278
Near Mid | 1403 508 | 1403 506 2
Far Mid | 750 395 | 748 396 2.236068
Far 972 374 | 968 373 4.123106

Mean | 2.90429

Table 5.6: Court A, viewed in sunny weather, with the secondary camera.

From each of these tables, a mean of means for error is given as: 4.99px

The above tables are included as a demonstration of the results of our court detection system, and
the oftentimes unpredictable nature of Court Detection.

Court A in sunny conditions stood out with the best performance here. We believe the high
accuracy recorded for this court is a consequence of the tree cover providing slightly lower lighting
than Court B, which was recorded in the same conditions. The slightly lower lighting resulted in an
ideal scenario where court lines were nicely contrasted against other colours, but not overexposed to
the point where the boundaries of the lines carried noise. This noise was visible in the results for Court
Detection on Court B, during the same sunny conditions. The poor performance in detecting the far
point on this court can be explained by figure [5.17] where the extremity of the far region is mistaken
to be the corner circled in the image below. Interestingly, the primary camera performed worse than
the secondary for Court B, which might point out that despite the Primary ultrawide sensor being of
markedly higher quality, both inevitably suffered from the same lack of resolution at the far side of
the court.

The issues of resolution and noise in the processing of the court colour presented itself in the
results for Court A recorded on an overcast day. Across both cameras, there are consistent small
displacements in detected court points, stemming from the located lines in the first round of refinement.
Due to the lower lighting, the sharpness of colours around the court lines gave a poor interpretation
of the true orientation. These mistaken line orientations then resulted in an incorrect intersection

taken as the second refinement. A second possibility for the poor estimations of court lines is the
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existence of distortion in the image, though upon inspection there is no obvious effect near to the

court intersections.

Figure 5.15: Located court points for Court A, taken from the Primary Camera
on a overcast day.

Figure 5.16: Located court points for Court A, taken from the Secondary Camera
on a overcast day.

Overall, the relatively high error throughout each of the courts suggests that a more accurate
Court Detection methodology is required when dealing with so many sources of error. In particular,
we believe a stricter approach needs to be taken in terms of fitting a court "model”, instead of having to
rely on locating points throughout the court amidst the impacts of poor resolution, colour processing
and lens distortion We believe that had we used higher resolution video from each camera (e.g.

2K video), the effect of whether the day was sunny or overcast would be lessened.

52



Evaluation 5.4. SYSTEM PERFORMANCE

Figure 5.17: Wrongly estimated ”Far” court point.

Figure 5.18: A display of the error between the "true” (red) and detected (blue) court points, for Court
A, using the secondary camera on an overcast day. Note how for ”far” points, a more exaggerated
error is observed, rendering the plan view from these detected points unusable - Again indicating that
a higher video resolution would be preferable

5.4.3 Bounce Detection Performance

Below are the results of our Bounce Detection System, for both single views, as well as for both
interpretations in the top down-view (Midpoint and Weighted Average). In each case, we consider the
performance of the system, both in its ability to detect the existence of bounces (within five frames

of the recorded truth), as well as its ability to accurately localise those bounces. When carrying out
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the perspective projection step for this portion of testing, we used the ground truth from our testing

in the previous section. If we had used our own detected court points, the Bounce Detection system

would have been almost unusable due to the high error observed

Bounce Detection (Classification)

Overcast Weather

Table 5.7: Primary view classification
performance in overcast weather

Detected
Pos Neg
Pos 17 1

Truth

Neg | 0 n/a

Table 5.9: Top down (midpoint &
weighted average) view classification per-
formance in overcast weather

Detected
‘ Pos Neg
Pos | 11 1

Truth

Neg | 6 n/a

Sunny Weather

Table 5.11: Primary view classification
performance in sunny weather

Detected
Pos Neg
Pos | 15 0

Truth

Neg | 0 n/a

Table 5.13: Top down (midpoint &
weighted average) view classification per-
formance in sunny weather

Detected
Pos Neg
Pos 11 0

Truth

Neg | 4 n/a

Table 5.8: Secondary view classification
performance in overcast weather

Detected
Pos Neg
o Pos | 17 1
i
= Neg| 0O n/a

Table 5.10: Performance metrics for each
view in overcast conditions.

Primary | Secondary | Top
Precision | 1 1 0.647
Accuracy | 0.94 0.94 0.61
Table 5.12: Secondary view classification
performance in sunny weather
Detected
Pos Neg
o Pos 6 9
=
= Neg| 0 n/a
Table 5.14: Performance metrics for each
view in sunny conditions.
Primary | Secondary | Top
Precision | 1 1 0.73
Accuracy | 1 0.4 0.73

In overcast weather, both the primary and secondary cameras performed nicely, with just a single

False Negative recorded overall. In the fused top down view result we noticed a markedly poorer

precision and accuracy, caused directly as a result of the secondary video stream becoming misaligned
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and recording bounces a number of frames later than the primary. This resulted in a series of False
Positives recorded in the top down views (for both the midpoint and weighted average interpretations).
Even with our implemented synchronisation system, the video stream from the secondary camera still
managed to misalign. This result suggested that a more comprehensive Synchronisation Scheme was
required.

In the fair weather (sunny) tests, we found an overall poorer ability to detect and track the tennis
ball. As mentioned earlier, we believe this to be caused by the ball becoming overexposed in the high
lighting and turning pure white in each camera view. Since our multi-view bounce detection system
was able to accept a single view’s bounce interpretation 10 frames later than the initial detection if
the other view failed, there was inevitably a sizable delay in the recorded times for each bounce in the
top down view. Overall, this resulted in the top down view suffering a poorer precision and accuracy
than the equivalent overcast results. It should be noted that a synchronisation issue was not observed

in this footage.
Bounce Detection (Accuracy)

To fully test our system’s ability to correctly localise a bounce, we have accepted both True and False
Positives as part of our accuracy testing. While the latter group are considered as misclassifications,

the ability for the system to localise them close to the recorded ground truth is still important.
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Primary View Bounces vs Truth
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Figure 5.19: Court Detection accuracy (in pixels) for overcast weather.
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Figure 5.20: Court Detection accuracy (in pixels) for sunny weather

As an aside, the smaller standard deviation observed in the midpoint and weighted bounce plots
can be explained by the way in which that truth was recorded, where the topdown view itself (ideally)
presents two balls converging to a singular point, the bounce point to be selected by the participant
is more obvious than either the primary or secondary views.

Throughout both the overcast and sunny groups of scatter plots, the effect that ”skipped” bounces
had as outliers in both the primary and secondary views was observed. Such extremities were far
more noticeable in the latter group of plots, where due to the poor level of detection for the ball

and its bounces, the "skipping” effect made frequent appearances. In a correct application, such
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bounces would not be considered as detected bounces, but again, since in this section of testing we are
interested in the system’s ability to accurately localise bounces, it seemed appropriate that they be
included. Also in both groups, we saw marginally better performance for the Weighted Average bounce
interpretations, with more shots landing within two standard deviations. However, this difference in
accuracy between this method and the Midpoint Bounce interpretation is too small to suggest much
of an advantage in choosing one over the other. In order to mitigate the effect of poor detections from
a camera further from the ball within the scene, we believe a stronger weighting than our own linear
procedure is required. Alternatives to our own method could be a polynomial or exponential weighting
scheme to better offset the effects of a poor secondary bounce detection. That being said, this would
not be required if the level of detection throughout different lighting conditions was consistently high.
In the sunny group of plots, the outliers are more numerous and extreme in their distance from the
origin. Again highlighting the systems poorer performance in high-lighting conditions. Alongside
these outliers, is a generally poorer performance when compared to the equivalent plots in overcast
conditions - In the table below is a direct comparison between the median errors for each view. The

median error was chosen as opposed to the mean in order to nullify the effect of outliers in both

groups.
Primary | Secondary | Midpoint | Weighted Average
Overcast | 9.85 12.083 8.25 8.06
Sunny 15.62 12.0386 10.69 10.69

With these results, it can be noted that for sunny conditions: a) the median error from the origin is
the same for both the Midpoint and Weighted Average observations; and b) the primary view seems to
perform worse than the secondary. These results can be explained by the fact that in sunny conditions,
it would happen that only one of the views detected a bounce, and as was mentioned in [5.4.3] if it
is the case that just a single view detects the a bounce, then that location will be used by both the
Midpoint and Weighted Average observations. As such, they share a number of bounce locations.

Throughout all of our results, it was also observed that the ball’s distance from the net did not
affect the level of error found in the detection. Across both overcast and sunny conditions, a mean R?
value (measure of spread between the points and an overlayed regression line) of 0.05 and 0.295 were
found respectively, with the latter exhibiting a trend of lower error further from the net. However,
we don’t believe this suggestion is significant. considering the small amount of data as well as the

presence of large outliers. The scatter plots related to this discussion have been included in
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Chapter 6

Conclusion

At the beginning of this report, we discussed how despite the popularity of Tennis Analysis systems
such as Hawkeye in the professional game, there is still no truly reliable system available to the casual
player . Following this, we discussed the relevant works in the areas of Tennis Analysis and Multi-
Camera tracking, as well as the Computer Vision theories related to the development of our systems
. With this mind, we proposed a full-scale Mobile Tennis Analysis System, capable of tracking a
tennis ball and players throughout multiple views, with the intention of delivering functionalities such
as the classification of shots made throughout a game (forehand, backhand, serve etc.), the localisation
of bounces within the court, and the generation of useful performance-related statistics such as player
or ball-bounce heat-maps. Other useful performance indicators such as shot-success/failure rates
and the likelihoods of earning/losing points from a given shot were proposed. With this full-scale
implementation in mind, we finalised our System Overview, with a more focused list of objectives for
this project , aimed at analysing a single side of the court with two cameras. In the next chapter,
we discussed the development of our Court and Bounce Detection systems, with each section featuring
a brief overview of the related works . Also in this chapter, we highlighted our implementation of a
simplistic view-synchronisation system - A problem we felt required a more robust solution in future.
Finally, we provided a complete description of the variety of errors encountered both in relation to our
choice of devices, as well in relation to our Court and Bounce Detection Systems. Which we followed,
by providing the results of each of these systems .

Having reviewed the performance of our Court and Bounce Detection Systems, and highlighted
the errors encountered in each, we can now conclude this report with a review and critique of our

work with respect to each of our initially stated objectives.

6.1 Critique and Review

The detection of a tennis court within multiple camera views.

To begin, we believe that our implementation of a Court Detection system, despite the high number

of errors present within the functionality, broadly achieved what we set out to do. Regardless, it
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is important that we highlight how obstacles such as: lens distortion; camera movement; inadequate
camera resolution; unpredictable colour processing affect our system. We believe that the first of these
is solvable with an implementation to track court lines associated to each located point (see: . Lens
distortion can also be addressed via the calibration [39] of each lens prior to video processing, though
since we were focused on delivering systems that could be used by casual tennis players, calibration
seemed beyond what should be included. The latter two however are intrinsic to our choice of devices,
and would only be solved by choosing the highest quality devices available at this time. Despite our
Court Detection System using two separate rounds of refinement, we still observed a global (across
all points) mean error of about 5 pixels. While error is small in relation to a 1920x1080 sized image,
there is a severe impact on the accuracy of the planar view of the court. With respect to our own
implemented methods locating the court, the usage of heuristics to identify each court section and to
extract the initially estimated court points, meant that the adaptability to other scenarios may not

always be guaranteed.

The detection and tracking of a tennis ball within multiple camera views.

In terms of the detection of the moving tennis ball through multiple views, we are satisfied with the
performance of our system. Since we had neither ground truth of whether the ball appeared within
a scene, nor of where it appeared, we had no way of testing the system’s ability to localise the ball
within a scene. While this was not ideal, the primary focus of our system was to localise bounces,
and as a bi-product of testing our Bounce Detection System, the ability to correctly detect the ball
location was also tested. Nevertheless, the weather conditions and background had a significant effect
on whether the ball could be consistently detected. And as we saw in high-lighting (sunny) days, the
ball would often disappear entirely as it moved through the scene. As a critique however, the usage of
RANSAC to better identify the ball as a moving circle within the scene would have been a valuable
addition. Also, the over reliance on the physical features of the ball meant that detecting the ball was
especially difficult given its appearance in high lighting. As such, a more suitable system might have
been to track the ball based only on its shape, and how it moves through the scene. I.e. the ball should
take a somewhat predictable path through an image, setting it apart from most other moving objects.
Finally, since our system was only tested on footage of play at a beginner-intermediate standard, we
have no guarantee that the same approach or choice of devices would carry the same results for a
higher play standard. In fact, it is likely by recording at 30fps, the ball will become untrackable as it

will resemble more of a greenish ellipse within frames.

The determination of bounces points, through multiple views.

Our primary and overall objective of this project was to implement a multi-camera bounce detection

system for mobile devices. We believe that our work to develop and explore the implementation of
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this system has been successful. In working towards the development of this system, we introduced
the idea of using multiple mobile camera views to determine bounce points in a top down, planar
view. We also highlighted the various issues and shortcomings associated with the Bounce Detection
system. In particular we brought attention to how the misalignment between separate camera streams
resulted in poor classification accuracy and precision, with results 0.61 and 0.647 recorded respectively.
This de-synchronisation affect came into play rather unpredictably, and resulted in a situation where
we were totally at the mercy of whether the variable frame rate effect decided to take hold during
recording. As a large source of ambiguity in the determination of bounce points, we found how each
individual view would often have a different interpretation of the location of a ball bounce, which
meant that in the associated top down perspective, the two balls would not appear to converge to a
point. This effect exposed the difficulty in determining the true bounce location, and added further
levity to the motivation of finding a truly reliable bounce detection system. We saw how our choice of
applying a linear weighting in finding the weighted average, resulted in poorer detections as a result of
weaker detections made by a camera further from the ball being weighted too strongly. Additionally,
we saw how the ball’s distance from the tennis net did not greatly effect the accuracy of the system
in localising bounces, rather it was the system’s ability to consistently locate the moving ball in
different environments that affect the accuracy, irrespective of distance from the net. As a significant
critique of our approach, the lack of correct ground truth in the evaluation of our systems meant that
the testing that was carried out, was put under significant doubt since the accuracy of the recorded
truth was under serious doubt. Given more time for this project, a far more suitable alternative to
gathering ground truth would have been to position a high-quality camera at a relatively high angle
to the court, where a more accurate picture of the location of bounces could be ascertained. Finally,
and importantly, we highlighted how our own method of gathering ground truth using our imperfect
camera setup is not a practice that should be repeated in future. Instead, we ascertain that it would
be far more useful if a separate video camera, of higher quality than 1080p, be positioned at a height
relative to the half of the court under question. This way, perspective issues in the bounce locations,
as well as resolution problems for balls at a higher distance from the mobile phones would be avoided

in the recording of ground truth.

6.2 Conclusions

As of writing this report, despite the high availability of Tennis Analysis systems to the professional
game, there is still no true Mobile Tennis Analysis System available to the casual tennis player. With
this in mind, we proposed a multi-camera Tennis Analysis system for mobile, which would utilise up
to four mobile phones to generate a complete overview of a players’ performance throughout a game

of tennis by detecting ball bounces and carrying out shot classifications.
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Having carried out a thorough evaluation of our implemented systems, we can now address the
question: Can the Mobile platform be comfortably used in the implementation of Tennis Analysis?
As we discussed in by choosing to use mobile phones in our system, we are exposing ourselves
to a host of errors, all of which affected our own systems, and would also cause issues in a future
full-scale implementation - Fundamental requirements such as being to judge whether a ball is in or
out, or being able to accurately specify the moment in which a ball struck the court, would be greatly
troubled by variable frame-rates in mobile devices, as well as insufficient resolutions and distortion
existing across supposedly straight lines. Overall, with our chosen devices and video resolutions of
1080p, we believe that until those errors are close to negligible, such a system would not be suitable
for a genuinely trustworthy Mobile Tennis Analysis System.

As an interesting point of discussion, it is also worth considering the extent to which an imple-
mented Tennis Analysis System can be trusted in its ability to officiate a game through the determi-
nation of bounce points and other game-related statistics. At the onset of the Covid-19 pandemic,
Hawk Eye Live was granted complete officiating control over line calling in tournaments such as the
US and Australian Open. Unfortunately, the ability for this technology to accurately officiate the
game has since been a regular source of complaint throughout the tennis community [40] [41]. While
the sophistication of Hawk Eye remains exemplary, there still does not exist proof that the system can
be wholly trusted to give accurate line calling abilities. With such a lack of transparency, the question
about whether any Tennis Analysis System can deliver truly accurate capabilities.

In spite of this, we are happy with our systems’ ability to carry out each of our previously out-
lined requirements. In building our implementations, from Court Detection through to Multi-Camera
Bounce detection, we not only explored the performance of our own methods to achieve our outlined
objectives, we also gained an insight into the various obstacles that are unavoidable and intrinsic to
the problem of Mobile Tennis Analysis. it is the view of the researcher that having carried out this
research and development, and having exposed the large amount of errors present in working with this
type of application, (something that is more often avoided in discussions for similar applications) this

report is ultimately a valuable piece of research.

6.3 Future Work

Since this project considers just the Court and Bounce Detection systems of the overall suggested
implementation, we have the following suggestions for future work, both for the development of the
full-scale Mobile Tennis Analysis product, as well as in relation to the obstacles highlighted throughout

this report:

1. Higher Resolution-capable mobile devices: As was discussed in a significant issue

faced in the development of our Court Detection system was the insufficient resolution for ul-

62



CONCLUSION 6.3. FUTURE WORK

trawide video recordings. Whilst 1080p has been the industry standard in video for some time
now, we saw how the low pixel density around the ”far” Court Point led to difficulty in detecting
those court points, as well as an exaggerated effect in the top down (plan) view of the court.
Thus, in order to develop a truly functional system for Tennis Analysis, the usage of devices

with higher resolution capabilities would be preferred.

2. Court Detection via a preset Court ”Model”: In addition to requiring a higher image
resolution, we believe the Court Detection System also requires a stricter more repeatable tech-
nique for determining the court within the scene. For this, the application of a court "model”
is proposed, whereby using the initially estimated court points, a preset court model could be
overlayed onto the estimated court points, and refined to the point where the number of white
court-line pixels covered by the overlaying model is maximised. Such an approach was first

proposed and followed by Mora [42].

Figure 6.1: An example of the Court Model technique observed by Mora

3. Synchronisation System: In we discussed how given two mobile devices, a number of
variables such as the start time of the video streams, and (unpredictably) the variable frame-rate
design choice by manufacturers, results in a situation where we can expect misalignment between
multiple videos of the same scene. In order to address this, we believe a more comprehensive
approach is need to be taken for synchronising the view - Instead of just relying on the bounce
to synchronise video streams, other events such as sounds in the court, player movements or

events on the opposing side of the court could be used as a means of re-aligning footage.

4. Court-point Tracking System: As was discussed in [5.3.1] a significant issue faced in this
project is the movement of cameras during recording. This error resulted in the incorrect per-

spective transformation of each individual view to the planar view. As a suggestion for future
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work, we propose a method of tracking each located Court Point, by searching perpendicularly
along the previous court line locations until those same lines have been relocated. This way, the

implemented system can maintain its accuracy to the originally located court points.

Figure 6.2: An illustration of the suggested Court Update procedure.

5. More reliable Ground Truth: In testing our Bounce Detection system, we required the

use of manually chosen Court Points to generate our Ground Truth. This method of creating
our truth was inherently flawed, and a far more suitable alternative for future work would be to

record Ground Truth from a high quality camera, positioned looking downwards at the court.

. Ball Height Determination: At the earlier stages of this project, it was proposed that

part of this research investigate the determination of the ball’s height above the court, using
the two fused planar views of the court. In an ideal scenario, without any synchronisation or
perspective issues, the two projected balls will approach and converge to a singular point. As
part of this process, the two balls can be seen to take a linear path, as their distance from each
other gradually closes to zero. With this information, it is feasible that the balls’ distance apart,
could be modelled with the true ball’s distance above the ground, so as to give a robust technique
of ball height determination at any point in the court. Unfortunately, this task is made more
difficult by the synchronisation issue we have discussed in this report, as well as the fact that

the projected balls will regularly not converge to a singular point

. Player Tracking and Shot Classification: A useful addition to this project would have

been the implementation of a Player Tracking and Shot Classification system. As a bi-product
of our Bounce Detection System, the player moving throughout the scene was visible within the
foreground This player could be tracked based on the colour of their clothes, and using
Optical Flow[2:3.8] a system could be built to consider the flow vectors around the player’s racket-
hand. For example, a movement of the player’s racket-arm across their body from right to left
moving upwards would be a forehand shot, while the opposing motion would be a back-hand.

This is obviously over-simplified since we are assuming that the player is right-handed, however
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10.

11.

by looking at the length of each upper-limb of the player, it would be possible to determine the
hand that the player chooses to hold their racket in. Such a system would certainly be within

the scope of future work.

Player Performance Reports: As was discussed in the System Overview Chapter, a popular
addition to full-scale Mobile Tennis Analysis Application would be player movement and ball
bounce heat maps, as well as compiled information relating to how a player responds to (or
carries out) certain types of shots. With the current implementation, heat maps of bounce
points throughout the court would be trivial, however in order to deliver information relating to
how well a player performs with different shots would require the opposing player to be tracked

simultaneously. Which naturally leads to the next suggestion for future work -

Four-Camera Tennis Analysis: In the proposed complete-implementation, we described
the use of a maximum of four cameras in the case of a doubles game. As a piece of future work,
the initial task of implementing the same Court and Bounce detection systems for an additional
two cameras would not be much of a challenge, however the challenge of synchronising each
of the four views to (roughly) the same scene would prove difficult. Overall, the addition of
an additional two cameras for the opposing side of the court would allow for a more complete
outlook of events throughout a game, as well as the generation of information relating to players’

ability to earn or lose points, given a type of shot.

Real Time Capabilities: For the implementation of this project, developing a system capable
of analysing the scene in real time was not one of our priorities. Having layed out a foundation
for future works in this area however, the development of a more optimal application, capable of
carrying out its analysis on a game of tennis in real time would encourage its later production as a
mobile application. The use of GPU acceleration with OpenCV, as well as the use of pre-trained
Machine Learning models would be important inclusions in working towards the development of

a real-time system.

Mobile Development and Optimisation: Finally, we hope that our Court and Ball Detec-
tion Systems, as well as our proposed full-scale implementation, encourage future work towards
the development of Mobile Tennis Analysis System, implemented on either Android or iOS. Such
an application would be capable of each of the functionalities highlighted in [3] - Ball tracking
and bounce detection through multiple views, player tracking and Shot Classification through
multiple views, score keeping and line calling. On top of this, the application would be capable
of delivering useful performance related statistics and visualisations, as mentioned above. A
significant portion of work for development of this system for mobile, would be the communica-

tion between multiple devices to accurately distribute a complete knowledge base of the game
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6.3. FUTURE WORK

at-hand, throughout a maximum of four devices. For this, we suggest a device is allocated as
the ”lead” device within a session to compile the information found in each of the others, where
a secure channel of communication is established between these devices through the use of WiFi

Direct.

Figure 6.3: An example of the two projected balls converging to a single point.



Bibliography

1]

2]

[10]

Mar 2018. URL https://onlinemasters.ohio.edu/blog/

how-technology-is-revolutionizing-sports-training/. Accessed: 2022-03-07.

Feb 2021. URL https://www.espn.com/tennis/story/_/id/30877297/

hawk-eye-live-gains-more-support-australian-open. Accessed: 2022-03-07.

Kevin Loria. Science is creating super-athletes — and making sports unrecogniz-
able to previous generations, Aug 2015. URL https://www.businessinsider.com/

how-science-and-technology-are-changing-sports-2015-8. Accessed: 2022-03-07.

Robert Wood. Hawkeye tennis line-calling system, Feb 2022. URL https://www.topendsports.

com/sport/tennis/hawkeye.htm. Accessed: 2022-03-07.
n.d. URL https://swing.tennis/. Accessed: 2022-03-07.

Rafael Martin Nieto and Jose Maria Martinez Sanchez. An automatic system for sports analytics
in multi-camera tennis videos. In 2013 10th IEEFE International Conference on Advanced Video
and Signal Based Surveillance. IEEE, 2013. doi: 10.1109/avss.2013.6636679. URL https://dx.
doi.org/10.1109/avss.2013.6636679.

Wanneng Wu, Min Xu, Qiaokang Liang, Li Mei, and Yu Peng. Multi-camera 3d ball tracking
framework for sports video. IET Image Processing, 14(15):3751-3761, 2020. ISSN 1751-9659. doi:
10.1049/iet-ipr.2020.0757. URL https://dx.doi.org/10.1049/iet-ipr.2020.0757.

Banglei Guan, Yingjian Yu, Ang Su, Yang Shang, and Qifeng Yu. Self-calibration approach to
stereo cameras with radial distortion based on epipolar constraint. Appl. Opt., 58(31):8511-8521,
Nov 2019. doi: 10.1364/A0.58.008511. URL http://www.osapublishing.org/ao/abstract.
cfm?URI=ao-58-31-8511.

N. Owens, C. Harris, and C. Stennett. Hawk-eye tennis system. In 2003 International Conference

on Visual Information Engineering VIE 2003, pages 182-185, 2003. doi: 10.1049/cp:20030517.

Oct 2021. URL https://www.hawkeyeinnovations.com/index.htmll


https://onlinemasters.ohio.edu/blog/how-technology-is-revolutionizing-sports-training/
https://onlinemasters.ohio.edu/blog/how-technology-is-revolutionizing-sports-training/
https://www.espn.com/tennis/story/_/id/30877297/hawk-eye-live-gains-more-support-australian-open
https://www.espn.com/tennis/story/_/id/30877297/hawk-eye-live-gains-more-support-australian-open
https://www.businessinsider.com/how-science-and-technology-are-changing-sports-2015-8
https://www.businessinsider.com/how-science-and-technology-are-changing-sports-2015-8
https://www.topendsports.com/sport/tennis/hawkeye.htm
https://www.topendsports.com/sport/tennis/hawkeye.htm
https://swing.tennis/
https://dx.doi.org/10.1109/avss.2013.6636679
https://dx.doi.org/10.1109/avss.2013.6636679
https://dx.doi.org/10.1049/iet-ipr.2020.0757
http://www.osapublishing.org/ao/abstract.cfm?URI=ao-58-31-8511
http://www.osapublishing.org/ao/abstract.cfm?URI=ao-58-31-8511
https://www.hawkeyeinnovations.com/index.html

BIBLIOGRAPHY

[11]

[14]

[16]

[17]

18]

Martin Breheney. Huge annual costs of hawk-eye technology a major turn-off
for gaa, Jun 2011. URL https://www.independent.ie/sport/gaelic-football/
huge-annual-costs-of-hawk-eye-technology-a-major-turn-off-for-gaa-26755869.

html.
Oct 2021. URL https://www.apple.com/ie/iphone-13-pro/.

Ciaran O Conaire, Philip Kelly, Damien Connaghan, and Noel E. O’Connor. Tennissense: A
platform for extracting semantic information from multi-camera tennis data. In 2009 16th Inter-
national Conference on Digital Signal Processing. IEEE, 2009. doi: 10.1109/icdsp.2009.5201152.
URL https://dx.doi.org/10.1109/icdsp.2009.5201152.

S. Messelodi, C. M. Modena, V. Ropele, S. Marcon, and M. Sgro. A Low-Cost Computer Vi-
sion System for Real-Time Tennis Analysis, pages 106-116. Springer International Publishing,
2019. ISBN 0302-9743. doi: 10.1007/978-3-030-30642-7_-10. URL https://dx.doi.org/10.
1007/978-3-030-30642-7_10.

Silvia Vinyes Mora. Computer Vision and Machine Learning for In-Play Tennis Analysis:
Framework, Algorithms and Implementation. Thesis, Department Of Computing, 2017. URL

https://www.doc.ic.ac.uk/~wjk/publications/vinyes-2018.pdf.

V. Reno, N. Mosca, M. Nitti, T. D’Orazio, C. Guaragnella, D. Campagnoli, A. Prati, and E. Stella.
A technology platform for automatic high-level tennis game analysis. Computer Vision and
Image Understanding, 159:164-175, 2017. ISSN 1077-3142. doi: 10.1016/j.cviu.2017.01.002. URL
<GotoISI>://W0S:000404422100013.

n/a EYES-ON. Eyeson, Oct 2021. URL https://www.eyeson.tennis/.

Sofia Gourgari, Georgios Goudelis, Konstantinos Karpouzis, and Stefanos Kollias. Thetis: Three
dimensional tennis shots a human action dataset. In 2013 IEEE Conference on Computer Vision

and Pattern Recognition Workshops, June 2013.
Kenneth Dawson-Howe. Images, page 18-19. John Wiley and Sons, 2014.
Kenneth Dawson-Howe. Connectivity, page 67-70. John Wiley and Sons, 2014.

Opencv: Finding contours in your image, n.d. URL https://docs.opencv.org/3.4/df/d0d/

tutorial_find_contours.html.

Chris Stauffer and W Eric L Grimson. Adaptive background mixture models for real-time track-
ing. In Proceedings. 1999 IEEE computer society conference on computer vision and pattern

recognition (Cat. No PR00149), volume 2, pages 246-252. IEEE, 1999.


https://www.independent.ie/sport/gaelic-football/huge-annual-costs-of-hawk-eye-technology-a-major-turn-off-for-gaa-26755869.html
https://www.independent.ie/sport/gaelic-football/huge-annual-costs-of-hawk-eye-technology-a-major-turn-off-for-gaa-26755869.html
https://www.independent.ie/sport/gaelic-football/huge-annual-costs-of-hawk-eye-technology-a-major-turn-off-for-gaa-26755869.html
https://www.apple.com/ie/iphone-13-pro/
https://dx.doi.org/10.1109/icdsp.2009.5201152
https://dx.doi.org/10.1007/978-3-030-30642-7_10
https://dx.doi.org/10.1007/978-3-030-30642-7_10
https://www.doc.ic.ac.uk/~wjk/publications/vinyes-2018.pdf
<Go to ISI>://WOS:000404422100013
https://www.eyeson.tennis/
https://docs.opencv.org/3.4/df/d0d/tutorial_find_contours.html
https://docs.opencv.org/3.4/df/d0d/tutorial_find_contours.html

BIBLIOGRAPHY

[23] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Commun. ACM, 24(6):381-395,
1981. ISSN 0001-0782. doi: 10.1145/358669.358692. URL https://doi.org/10.1145/358669.
358692,

[24] Kenneth Dawson-Howe. Dense Optical Flow, page 182-185. John Wiley and Sons, 2014.
[25] n.d. URL https://www.wi-fi.org/discover-wi-fi/wi-fi-direct.

[26] G. Sudhir, J. C. M. Lee, and A. K. Jain. Automatic classification of tennis video for high-level
content-based retrieval. In Proceedings 1998 IEEE International Workshop on Content-Based
Access of Image and Video Database. IEEE Comput. Soc, 1997. doi: 10.1109/caivd.1998.646036.
URL https://dx.doi.org/10.1109/caivd.1998.646036.

[27] Tien Ming-Chun, Wang Yi-Tang, Chou Chen-Wei, Hsieh Kuei-Yi, Chu Wei-Ta, and Wu Ja-Ling.
Event detection in tennis matches based on video data mining. In 2008 IEEE International
Conference on Multimedia and Ezpo. IEEE, 2008. doi: 10.1109/icme.2008.4607725. URL https:
//dx.doi.org/10.1109/icme.2008.4607725.

[28] Dirk Farin, Susanne Krabbe, Peter de With, and Wolfgang Effelsberg. Robust camera calibration
for sport videos using court models, volume 5307 of Electronic Imaging 2004. SPIE, 2003. URL
https://doi.org/10.1117/12.526813.

[29] Silvia Vinyes Mora. Computer Vision and Machine Learning for In-Play Tennis Analysis:
Framework, Algorithms and Implementation. Thesis, Department of Computing, 2017. URL

https://www.doc.ic.ac.uk/~wjk/publications/vinyes-2018.pdf.

[30] Fei Yan, W Christmas, and Josef Kittler. A tennis ball tracking algorithm for automatic annota-
tion of tennis match. In British machine vision conference, volume 2, pages 619-628. University

of Surrey, 2005.

[31] G. Pingali, A. Opalach, and Y. Jean. Ball tracking and virtual replays for innovative tennis
broadcasts. In Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.
IEEE Comput. Soc, 2000. doi: 10.1109/icpr.2000.902885. URL https://dx.doi.org/10.1109/

icpr.2000.902885.

[32] Conor Gilmartin. Producing a tennis shot placement report by detecting bounce points in tennis

shots. n.d., 2021.

[33] Dec2019. URL https://momofilmfest.com/smartphone-iphone-filmmaking-what-is-variable-frame-


https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://www.wi-fi.org/discover-wi-fi/wi-fi-direct
https://dx.doi.org/10.1109/caivd.1998.646036
https://dx.doi.org/10.1109/icme.2008.4607725
https://dx.doi.org/10.1109/icme.2008.4607725
https://doi.org/10.1117/12.526813
https://www.doc.ic.ac.uk/~wjk/publications/vinyes-2018.pdf
https://dx.doi.org/10.1109/icpr.2000.902885
https://dx.doi.org/10.1109/icpr.2000.902885
https://momofilmfest.com/smartphone-iphone-filmmaking-what-is-variable-frame-rate-vfr/

BIBLIOGRAPHY

[34] Yaron Caspi, Denis Simakov, and Michal Irani. Feature-based sequence-to-sequence matching.
International Journal of Computer Vision, 68(1):53-64, 2006. ISSN 0920-5691. doi: 10.1007/
$11263-005-4842-z. URL https://dx.doi.org/10.1007/s11263-005-4842-z.

[35] A. Elhayek, C. Stoll, K. I. Kim, H. P. Seidel, and C. Theobalt. Feature-Based Multi-video
Synchronization with Subframe Accuracy, pages 266-275. Springer Berlin Heidelberg, 2012.
ISBN 0302-9743. doi: 10.1007/978-3-642-32717-9 27. URL https://dx.doi.org/10.1007/
978-3-642-32717-9_27.

[36] Prarthana Shrstha, Mauro Barbieri, and Hans Weda. Synchronization of multi-camera video
recordings based on audio. In Proceedings of the 15th ACM International Conference on Multi-
media. ACM Press, 2007. doi: 10.1145/1291233.1291367. URL https://dx.doi.org/10.1145/
1291233.1291367.

[37] Anna Llagostera Casanovas and Andrea Cavallaro. Audio-visual events for multi-camera syn-
chronization. Multimedia Tools and Applications, 74(4):1317-1340, 2015. ISSN 1380-7501. doi:
10.1007/s11042-014-1872-y. URL https://dx.doi.org/10.1007/s11042-014-1872-y.

[38] Nasim Mansurov. What is lens distortion?, Aug 2013. URL https://photographylife.com/

what-is—-distortion.

[39] Camera calibration, n.d. URL https://docs.opencv.org/4.x/dc/dbb/tutorial_py_

calibration.htmll

[40] lovetennis. Jelena  ostapenko  unhappy  with  hawk-eye live -  ten-
nis  news, Jan 2021. URL  https://www.lovetennis.com/tennis-news/

jelena-ostapenko-complains-about-hawk-eye-live-during-opening-round-win/.
[41] Feb 2021. URL https://tennishead.net/hawk-eye-is-not-at-all-accurate-gilles-simon-blasts-el

[42] Silvia Vinyes Mora. Computer Vision and Machine Learning for In-Play Tennis Analysis:
Framework, Algorithms and Implementation. Thesis, Department of Computing, 2017. URL

https://www.doc.ic.ac.uk/~wjk/publications/vinyes-2018.pdfl


https://dx.doi.org/10.1007/s11263-005-4842-z
https://dx.doi.org/10.1007/978-3-642-32717-9_27
https://dx.doi.org/10.1007/978-3-642-32717-9_27
https://dx.doi.org/10.1145/1291233.1291367
https://dx.doi.org/10.1145/1291233.1291367
https://dx.doi.org/10.1007/s11042-014-1872-y
https://photographylife.com/what-is-distortion
https://photographylife.com/what-is-distortion
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://www.lovetennis.com/tennis-news/jelena-ostapenko-complains-about-hawk-eye-live-during-opening-round-win/
https://www.lovetennis.com/tennis-news/jelena-ostapenko-complains-about-hawk-eye-live-during-opening-round-win/
https://tennishead.net/hawk-eye-is-not-at-all-accurate-gilles-simon-blasts-electronic-line-calling-and-umpiring-standards/
https://www.doc.ic.ac.uk/~wjk/publications/vinyes-2018.pdf

Appendix A

Sample Application

A.1 Sample Interface

Forehand : Topspin

Speed : 23 km/h

Figure A.1: A sample display of a fully implemented Mobile Tennis Analysis Application..



APPENDIX A SAMPLE INTERFACE

Player Name: Tom
Total Points Earned: 300
Total Points Lost: 220
Serve Accuracy: 78%

Forehand Accuracy: 87%

Backhand Accuracy: 67%

Forehand Shots:
I

Figure A.2: A sample interface for that same application, where information performance-related
information and a history of shots are displayed.



Appendix B

Bounce Detection

B.1 Error of Bounce Points vs Distance from the net

Bounce Point Error (px) vs Distance From Net (Overcast Conditions)

Primary Bounce Error vs Distance from net Secondary Bounce Error vs Distance
from net
i; ° 350
s - 300
5 30 o ? 250 5
325 £ 200 =
£ 20 e R*=0.0075 E 150
i . . £ 100
£ . e e B R2=0.0248
= s .8 e L = so — 00248
q e = 0 L E———_ o esod .
100 150 200 250 200 350 100 150 200 250 300
Distance from net (px) Distance from net {px)
Midpoint Bounce Error vs Distance Weighted Average Bounce Error vs
from net Distance from net
350 120
& 300 ® 100 ®
5 250 5w b
5 200 5
£ 1m0 i @
2 o L ® E kX R?=0.0106
£ 50 R2=0.0193 s 20 - g——t—
0 e L = e — 0 S a®ts o [fge
100 150 200 250 300 350 100 150 200 250 300

Distance from net (px) Distance from net (px)



APPENDIX B

BOUNCE DETECTION

Bounce Point Error (px) vs Distance From Net (Sunny Conditions)
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