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Abstract

Decentralized finance, or DeFi, is an area of financial services provided and operated on a
blockchain. The total trading volume in decentralized exchanges or DEXs exceeds $4 Billion
daily. Derivative trading has grown rapidly in the DeFi ecosystem and is one of the most
popular DeFi services, with the total liquidity locked in derivatives trading being over $1.8
billion. The DeFi ecosystem has much liquidity locked in derivatives trading, especially in
perpetual swap contracts. Perpetual swaps are derivatives that let a trader speculate on
the value of an asset. The algorithms and protocols that currently facilitate the trading
of perpetual contracts are highly innovative; however, they face several problems. A major
problem faced by the existing protocols is their insensitivity and failure to adapt to external
market conditions and market volatility for an underlying asset. This project aims to explore,
design, develop, and evaluate a mechanism that will enable an existing protocol to adapt
to external market conditions for any asset speculated by a perpetual contract. This study
specifically explores and implements a mechanism to configure existing virtual automated
market-making protocols to allow them to adapt to external market conditions. This project
designs and implements a configurable or dynamic virtual automated market maker (vAMM)
protocol for a perpetual swap exchange. The configurable vAMM is built on top of a stock
vAMM protocol design. Experiments are performed on the implemented configurable vAMM
protocol to evaluate if the implemented protocol can solve the existing problem of market
adaptation with the vAMM protocol. The evaluation of the developed configurable or dynamic
vAMM protocol showed that the protocol could adapt to external market conditions. However,
the evaluation also showed that the protocol is not a viable solution and introduces critical
issues that disrupt the core functionalities of a perpetual swap exchange. The implemented
protocol needs additional mechanisms to be developed to solve its limitations. It is found
that addressing these limitations of the implemented protocol can render the dynamic vAMM
protocol a viable solution. This study also discovers the impact of key parameters of an
automated market-making protocol on perpetual swap exchanges and discusses the importance
of these parameters. Finally, this research suggests an algorithm that would automate the
process of configuring a vAMM protocol to help a perpetual swap exchange adapt to market
conditions.
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1 Introduction

Decentralized finance, or DeFi, is an area of financial services that are provided on and
operate on a blockchain. These financial services include but are not limited to derivatives
trading, lending, borrowing, and earning interest trading. A derivative is a financial contract
between two or more traders that derives its value from an underlying asset or group of
assets (3). Since the system is decentralized, it removes intermediaries such as banks,
brokerage firms and exchanges. DeFi creates a more open, fast, transparent financial
ecosystem by removing intermediary parties. Anyone can open an account by setting up
their cryptocurrency wallet, following which they interact with all the financial services
available. Users with wallets do not need to disclose their information and can transfer their
funds without permission. The software development of DeFi is usually open-source. Anyone
can see the source code for the decentralized financial service they are using. This creates a
transparent and authentic system. All the properties mentioned above make DeFi an
essential system that can enhance how existing traditional financial systems operate.

Derivative trading has grown rapidly in the DeFi ecosphere and is one of the most popular
decentralized finance services, with the total liquidity locked in derivatives trading being over
$1.8 billion (4). Since its inception, derivatives trading has grown rapidly in the DeFi
ecosphere. This rapid growth has led to the creation of innovative solutions to tackle various
past and existing problems in the world of DeFi.

1.1 Motivation

DeFi has a lot of liquidity in derivative trading, especially in perpetual trading. The total
trading volume in decentralized exchanges or DEX’s exceeds $4 Billion daily (5). The
algorithms that currently facilitate the trading of perpetual contracts are growing rapidly but
are not perfect. The most optimal solution on the DeFi ecosystem for trading perpetuals on
DEX’s are automated market makers (AMMs) and virtual AMMs (vAMMs). virtual AMM’s
are a relatively new solution and were developed to address the problems regarding the lack
of liquidity in decentralized exchanges. vAMMs were created by the Perpetual protocol team
and were only deployed on the ethereum mainnet in 2020 (6).
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Even though AMMs and vAMMs are highly innovative solutions, they are not the most
optimal mechanisms to facilitate trading and face various issues on several frontiers.
Cryptocurrencies are highly volatile securities and are prone to market volatility. Existing
AMM and vAMM solutions for derivative exchanges are rigid and inflexible. AMM and
vAMM based exchanges cannot adapt to market volatility since they do not have any inbuilt
mechanisms to do so. Not being able to adapt its token prices with external markets for a
derivative exchange causes it to depend heavily on its users to align its token prices with
external mark prices. Most derivative exchanges do not have an extremely high trading
volume for several perpetual markets, and relying on users to align the perpetual markets
with external markets may not always be reliable.

Dynamic vAMM or DvAMM is one solution that is created to allow vAMMs to adapt their
token volumes to reflect external market conditions and replicate external market movement.
This project aims to explore, design, develop, and evaluate a mechanism that enables a
vAMM to be configured to dynamically adjust its token volumes so that it can align a
derivative exchange to external market conditions.

1.2 Outline of the Project

This project aims to design and implement a mechanism that enables configuring a vAMM
to dynamically adjust its parameters so that the vAMM can adapt to external market
conditions. A vAMM is dynamic when configured to adapt to market conditions hence the
term dynamic vAMM.

The project’s objectives include designing and implementing a configurable or dynamic
vAMM for a decentralized perpetual exchange. The dynamic vAMM will be designed to
allow the implemented decentralized perpetual exchange to adapt to external market
conditions. This project also aims to experiment, test and observe the functionality of the
implemented dynamic vAMM to evaluate if the implemented mechanism is a secure,
operational and feasible solution for decentralized perpetual exchanges. This project further
aims to suggest possible metrics or an algorithm that could help automate the process of
configuring the vAMM to market conditions.

1.3 Dissertation Structure

The dissertation is structured as follows

Chapter 2 provides a background of the technologies and financial concepts that a reader
would need to comprehend to understand this dissertation. Chapter 2 explains various
technologies such as Blockchain, Automated Market Makers (AMMs), virtual AMMs and
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more. Chapter 2 also introduces various financial concepts such as futures contracts and
perpetual swaps.

Chapter 3 details and explains the design behind the dynamic vAMM based perpetual swap
exchange.

Chapter 4 discusses how the designed perpetual swap exchange utilizing a dynamic vAMM
was implemented. Chapter 4 details the implementation of core components of the
implemented system and the challenges faced during their development.

Chapter 5 details the evaluation process for the implemented system. Chapter 5 explains the
methodology behind evaluating the dynamic vAMM based perpetual swap exchange.
Chapter 5 then provides the results of the evaluation performed and the discussion of these
results.

Chapter 6 synthesizes the research and discusses the project outcomes. Chapter 6 further
discusses technologies and concepts related to the current project that future projects should
investigate.
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2 State of the Art

This chapter covers the key concepts, techniques, and algorithms necessary to understand
this research project. The concepts and technologies discussed in this chapter are important
as they help understand the design, implementation and evaluation of the system being
explored. Section 2.1 discusses the blockchain technology and the Ethereum blockading.
Section 2.2 describes futures contracts and perpetual swaps and explains how they work.
Section 2.3 discusses decentralized exchanges and details the most popular decentralized
exchanges. Section 2.4 explains the working and core components of existing automated
market-making protocols.

2.1 Blockchain and Ethereum

2.1.1 Blockchain

A blockchain is an expanding list of cryptographically signed, irrevocable transactional
records shared by all participants in a network. Each record contains a timestamp and
reference links to previous transactions. (7)

The blockchain in itself is a data structure that stores transactions. It is similar to a linked
list in that the data is split into containers - the blocks. Each block is connected with its
predecessor with a cryptographically secured reference. This makes the data structure
tamper-evident, changes to old blocks are easy to detect and dismissed(8).

The blockchain is used to store transactions. When a transaction experiences a state change,
the transaction is updated and this new transaction is stored on the blockchain.

The Bitcoin blockchain, tracks the state of units of bitcoin and their ownership. You can
think of Bitcoin as a distributed consensus state machine, where transactions cause a global
state transition, altering the ownership of coins. The state transitions are constrained by the
rules of consensus, allowing all participants to (eventually) converge on a common
(consensus) state of the system, after several blocks are mined (9).

The blockchain only supports ’add’ and ’read ’operations. Therefore the previous
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transactions cannot be updated or deleted. This blockchain property ensures that the
information stored in the blockchain is not tampered with.

2.1.2 The Ethereum Blockchain

Ethereum is a general purpose blockchain. Similar to bitcoin, ethereum is also a distributed
state machine. But instead of tracking only the state of currency ownership, Ethereum
tracks the state transitions of a general-purpose data store, i.e., a data-store that can hold
any data which is expressible as a key–value tuple. (9)

The Ethereum Virtual Machine or EVM The EVM is the part of Ethereum that
handles smart contract deployment and execution. At a high level, the EVM running on the
Ethereum blockchain can be thought of as a global decentralized computer containing
millions of executable objects, each with its own permanent data store (10).

2.1.3 Smart Contracts

Smart Contracts refer to immutable computer programs that run deterministically in the
context of an Ethereum Virtual Machine as part of the Ethereum network protocol—i.e., on
the decentralized Ethereum world computer (11).

2.1.4 Ethereum Tokens

Ethereum blockchain tokens, also known as cryptographic tokens and cryptocurrency tokens,
are transferable digital assets that are built on top of the blockchain (12). Ethereum tokens
can be used to represent physical currencies such as the US Dollar and even physical assets
such as gold. There are set standards for ethereum tokens with the most popular standard
being ERC-20. ERC-20 is a standard interface for fungible (interchangeable) tokens, like
voting tokens, staking tokens or virtual currencies (13). As of Feb 1, 2022, there are
490,216 ERC-20 tokens in circulation (14)

2.2 Futures contracts and Perpetual swaps

2.2.1 Future Contracts

A futures contract is a legal agreement to buy or sell a particular commodity asset, or
security at a predetermined price at a specified time in the future (15). A futures contract is
a financial derivative as it derives its value from an underlying asset or assets. A future
contract allows traders to speculate whether the price of an underlying asset will rise or fall
in the future. An example of an underlying asset could be gold, steel, oil, or food grains.
Each futures contract has an expiration date associated with it.
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Two parties are involved in a futures trade, namely, a buyer and a seller. The trader that
buys a future contract undertakes the ‘long’ position, and the seller undertakes the ‘short’
position. The buyer of the futures contract agrees to buy and acquire the commodity asset
from the seller. In contrast, the seller agrees to sell and deliver the commodity asset at the
date when the futures contract expires. The trader that buys a future contract undertakes
the ‘short’ position.

A futures contract transaction is carried out in a futures exchange. A futures exchange is a
marketplace where a diverse range of commodities futures, index futures, and options on
futures contracts are bought and sold (16). An exchange-traded futures contract specifies
the quality, quantity, physical delivery time and location for the given product. (17) A
sample future contract with specifications can be seen in Figure 2.1.

Important terms and processes related to futures contracts.

1. Leverage: Leverage is the ability to control a large contract value with a relatively
small amount of capital. In the futures market, that capital is called performance
bond, or initial margin, and is typically 3-12% of a contract’s notional or cash value.
(18) For example, a steel futures contract has a value of $100,000. A trader can open
a futures contract and undertake a position by depositing an initial margin of $5,000
(assuming initial margin = 5% of overall contract value). Therefore, a trader has a
20X leverage on the steel futures contract ($5000 X 20 = $100,000). By investing a
notional amount worth 5 percent of the overall contract price, a trader can now realise
profits and losses 20 times worth their initial margin. If the leverage is higher, the risk
associated with a contract increases.

2. Initial Margin and Maintenance Margin: Initial margin or a trade collateral is the
amount of funds required by an exchange to initiate a futures position (19)
Maintenance margin is the minimum amount that must be maintained at any given
time in your account. (19). The initial and maintenance margin is set by the exchange
facilitating the trading of futures contracts. Margin is a form of security to ensure that
profits and losses are realised and correctly exchanged between traders. Margins are
not a down payment or a sign that the trader owns the underlying commodity.

During each trading day, the price of a commodity rises or falls. When the commodity
price rises, the buyer benefits, and the seller experiences a loss and vice versa. To make
sure these profits are realised, profits and losses are transferred between the buyer or
seller at the end of each trading day. The profits or losses are added or subtracted
from their respective accounts. This process is also known as the “daily settlement” or
“Marked to market”. When the amount of funds in a traders account falls below the
maintenance margin, the trader either receives a margin call or is liquidated.
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Figure 2.1: A sample future contract showing a futures contract specifications

(a) Margin call: A margin call refers specifically to a broker’s demand that an
investor deposits additional money or securities into the account so that it is
brought up to the minimum value, known as the maintenance margin. (20)

3. Liquidation: Liquidation is the process of forced closing of a futures contract position.
Liquidation occurs when a traders amount of funds fall below the maintenance margin,
and they cannot add funds to their account to raise their balance above the
maintenance margin.

4. Position: A party trading futures contract can undertake one of two positions when
agreeing to open a futures contract. The positions are long and short. When a trader
or organization takes a long position on a futures contract, they agree to buy the
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underlying asset when the futures contract expires. Similarly, when a trader or an
organization undertakes a short position of a futures trade or contract, they agree to
deliver the specified quantity of the underlying asset that the futures contract is
speculating on. Undertaking long and short positions can be demonstrated by the
following example. Consider that a steel futures contract has a value of $100,000 for
10 1kg bars of steel. The trader that undertakes the long position would supply
$100,000 and the trader that undertakes the short position would supply the 10 1kg
bars of steel.

2.2.2 Perpetual Contracts

Perpetuals are the decentralized finance world’s adoption of futures contracts. Perpetual
contracts allows a trader or party to speculate on the price of an asset and are like futures
contracts. For example, a perpetual contract can be used to speculate on the price of
Ethereum.

The specifications or features of a perpetual contract can be seen in figure 2.3. The features
of Perpetual Contracts are as follows:

1. Expiry of perpetuals: Perpetuals contracts have no expiration date or settlement date.
This means that a trader can hold a perpetual contract for an indefinite amount of
time. This feature of Perpetual contracts makes them more flexible than futures.

2. Settlement: A perpetual contract has a fixed settlement option and can only be
settled using a cryptocurrency. The settlement option is usually the same token or
cryptocurrency used as the margin. An example of the settlement currency can be
USDT which is a blockchain-based cryptocurrency whose tokens in circulation are
backed by an equivalent amount of U.S. dollars, making it a stablecoin with a price
pegged to USD $1.00 (21). In contrast, futures contracts can be settled using two
options. The first option is the underlying commodity asset and the second option is
the cash equivalent of the underlying asset..

3. The underlying asset being speculated on is priced relative to the second asset in
perpetual contracts. Typically, a volatile cryptocurrency such as bitcoin is priced
against a more stable cryptocurrency or a ’stable coin’. A stablecoin is a digital
currency that is pegged to a "stable" reserve asset like the U.S. dollar or gold (22).
Perpetual contracts allow traders to trade on the direction of an asset without actually
purchasing the underlying asset. Suppose more traders open a long position for an
underlying asset ’ETH’, the price of the asset ’ETH’ on the perpetual market rises
relative to USDC. Similarly, if more traders open a short position on an underlying
asset ’ETH’, the asset ’ETH’ price on the perpetual market falls relative to the USD
coin. The price of the asset ’ETH’ relative to USDC on the perpetual market is called
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the mark price of that token pair. Trading on perpetual markets typically reflects the
market sentiment of the trader, and the price of the perpetual market can deviate
from the spot price of an asset (see 2.2.3). Figure 2.2 shows the mark price movement
concerning the number of long and short trades on a perpetual market for the
ETH/USDC token pair.

Figure 2.2: Mark price movement on a perpetual market for ETH/USDC

4. Contract Specifications: Unlike futures contracts, perpetual contracts have no set
specifications. Decentralised exchanges facilitating perpetual contract trading allow
traders to:

(a) Set the quantity of the underlying asset that the trader is speculating on.

(b) Specify the leverage up to a certain limit.

5. Funding rate: As there is no delivery date in perpetual contracts, a funding mechanism
is used to ensure that the price of the underlying asset in a perpetual contract is
anchored to the spot market. The spot market is where cryptocurrencies are traded
immediately between the buyer and seller at the current price. Funding rates are
periodic payments either to long or short traders based on the difference between
perpetual contract markets and spot prices. When the market is bullish, the funding
rate is positive (23), and long traders pay short traders. When the market is bearish,
the funding rate is negative (24) and short traders pay long traders
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Figure 2.3: Perpetual Contract Features or Specifications

2.2.3 Additional Terminology

This section provides some additional terminology which is commonly used while trading
futures and perpetuals.

1. Spot Market: A spot market is a market where assets are traded or exchanged
instantaneously. For example, if 1 ETH is worth 23,250 USD. Trader ’A’ can can buy
1 ETH from Trader ’B’ instantaneously by exchanging 23,250 USD for it.

2. Spot Price: In the example above 1 ETH is worth 23,250 USD in the spot market.
Therefore the spot price of 1 ETH = 23,250 USD . The formal definition of spot price
from investopedia is as follows: "The current price in the marketplace at which a given
asset can be exchanged for immediate delivery. Spot Prices are fairly uniform
worldwide at exchanges when accounting for exchange rate(25)."

3. Mark Price: Mark price is a commonly used term in decentralized perpetual swap
exchanges. Mark price describes the price of the underlying asset (usually more
volatile) relative to another asset (usually more stable) in the perpetual exchange.
Mark prices are local and unique to each perpetual swap exchange. For example, spot
price of ETH/USDC is 1 ETH = 150 USDC and the mark price for the ETH/USDC
perpetual contract is 1 ETH = 100 USD. This implies that if a trader wants to open a
long position, they can deposit 100 USD with 1X leverage to speculate the price of
ETH rising in the future. Suppose after a few months the mark price is 1 ETH = 140
USD, the trader can close their long position and receive a return of 140 USDC
including 40 USDC of profit.
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2.3 Decentralized exchanges DEXs

A decentralized exchange (or DEX) is a peer-to-peer marketplace where transactions occur
directly between crypto traders. DEXs fulfill one of crypto’s core possibilities: fostering
financial transactions that aren’t officiated by banks, brokers, or any other intermediary.
Many popular DEXs, like Uniswap and Sushiwap, run on the Ethereum blockchain
(26).

A DEX is typically a combination of an application layer and a smart contract-based
protocol layer deployed on a blockchain. The application layer connects to the protocol layer
and leverages the functionality of the smart contracts that form the protocol layer. The
smart contract code and application layer code for a DEX is usually open-source and visible
to everyone. For example, Uniswap is the biggest DEX in operation and code for its open
smart contracts can be found on the following GitHub link:
https://github.com/Uniswap/v3-core.

A DEX is not regulated by any authority since there is no central authority that controls the
operations of a DEX. DEXs are autonomous. Since there is no central authority to regulate
a DEX, the exchange rates are calculated using a smart-contract code.

There are 2 types of DEX models used to implement a DEX. The first model is the
traditional order book model used by centralized exchanges, and the second model is an
automated market maker or AMM model. An order book model uses an order book which is
a list of all the open buy/long and sell/short orders for an asset typically organized by price
(27). An order book model uses a matching system to match buy/long requests with
sell/short requests for the traders on the exchange. A DEX implementing an order book
model maintains the order book on the blockchain. Since the order book is stored on the
blockchain, everyone can view it. When a new buy/long trade request is made with a
specific amount, an order book model will try to match the buy/long request with a
sell/short request with the same amounts. If a match is found, a trade is opened. If a match
is not found, the matching system will store the request in the order book and execute the
trade when a matching request is found. The order book model heavily relies on the volume
of trades on an exchange. If the volume of trades on order book-based exchange is low,
some trades may never get executed.

The second type of model is an automated market maker or AMM model. AMMs try to
solve the problems faced by order book models. In centralized exchanges, a market maker
participates in a market to provide liquidity to markets and open trades against user trades.
In DEXs, an AMM plays the role of a market maker. An AMM exchanges tokens with any
trader willing to participate in an exchange. AMMs are implemented using smart contracts
on the blockchain and are composed of several mechanisms to perform their role
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Decentralized exchanges have been making progress over the years but still face issues
regarding liquidity. Various upcoming or existing DEXs face the issue of not having enough
liquidity to facilitate accurate and seamless trading due to low trading volumes. A virtual
AMM model-based exchange is a solution to deal with issues of liquidity on DEXs and is
discussed in detail in section 2.4.

2.4 Automated Market Makers & virtual Automated

Market Makers

2.4.1 Automated Market Makers

Automated Market Makers are a type of decentralized exchange protocol that rely on a
mathematical formula to price assets (28). The function of an AMM is to facilitate trading
on a decentralized exchange.

AMM’s were first introduced in 2017 by Vitalik Buterin as a solution for the lack of liquidity
between centralized and decentralized exchanges. (29). The traditional order book models
implemented by centralized exchanges were not working well with decentralized exchanges
due to the lack of liquidity. Since their introduction, AMM’s have been widely adopted and
are used by the most popular decentralized exchanges such as uniswap and pancakeswap
(30).

The role of AMM’s in DEX’s is the same as the role of Market Makers in centralized
exchanges or CEX’s. In a CEX, market makers provide liquidity for centralized exchanges.
Market makers are usually large financial organizations that provide liquidity to markets.
Having liquid markets would mean that the market has a high volume of trades. For
example, if a seller wants to sell an asset in an illiquid market, there may be no one to buy
that asset. With the addition of market makers, a market maker may be willing to buy the
asset, and therefore they help create a market. Similarly, the role of an AMM is to provide
liquidity to DEX’s to facilitate seamless trading.

Figure 2.4 shows the implementation of an AMM model by UniSwap Version 2.

There are two types of stakeholders that interact with AMM’s:

1. Liquidity Providers or LP’s that provide liquidity to an AMM, and,

2. Traders that interact with an AMM to exchange one token for another (Please refer to
figure 3.1).

To provide liquidity to a DEX, AMM’s require token or coin owners to provide their tokens
or coins as liquidity. The entities that provide their assets as liquidity are known as liquidity
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Figure 2.4: AMM model implemented by UniSwap (1)

providers. In return for depositing their assets, liquidity providers or LP’s return a liquidity
pool token. This process can be observed in Figure 3.1. The liquidity pool token represents
the number of assets an LP has deposited in a liquidity pool. LP’s earn passive income
through the liquidity pool tokens that they hold.

A DEX earns passive revenue in the form of trading fees. This trading fee is paid by traders
each time they initiate a trade on the DEX. The total passive revenue earned by a DEX is
distributed among all the LP’s. The percentage of passive revenue received by an LP
depends on the number of assets deposited by an LP.

When an LP provides assets to a liquidity pool, these tokens or coins provided are added and
stored in the liquidity pool. Liquidity pools are pools of tokens locked in smart contracts
that provide liquidity in decentralized exchanges in an attempt to attenuate the problems
caused by the illiquidity of traditional systems (31). Liquidity pools are a crucial component
of AMM’s as they provide an AMM with funds required to facilitate trades. AMM’s also use
liquidity pools to calculate the price at which a token is trading on the DEX. Liquidity pools
commonly contain a combination of a volatile coin such as bitcoin and a stable-coin such as
USDT. Liquidity pools can also contain stable token pairs where both the tokens stored in
the liquidity pools are stable-coins. Based on the volume of assets in a liquidity pool, an
AMM implements a mathematical function to calculate the price of an underlying
asset.

Another important component to an AMM model is Arbitrageurs. Arbitrageurs are a type of
investor who attempts to profit from market inefficiencies (32). Arbitrageurs exploit price
differences for an asset between spot markets and the AMM to make profits. For example, if
1 ETH is selling for 10 USDT on an AMM and the current spot market price for 1 ETH is
11 USDT, an arbitrageur would aim to make a profit of 1 USDT by buying 1 ETH by
interacting with the AMM and then selling the ETH for 11 USDT on a spot market.
Arbitrageurs are core components of an AMM since they help align the price of an
underlying asset to the spot market by buying and selling for risk-free profits.
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In summary, AMM’s allows traders to buy and sell an underlying cryptocurrency using an
algorithm. This algorithm regulates and sets the asset’s price based on how much of this
asset is available. As more traders hold a ’long’ position on one cryptocurrency, buying the
cryptocurrency becomes more expensive as the supply decreases and demand increases. If
traders short or sell the underlying cryptocurrency more, the cryptocurrency gets cheaper
because there is a higher supply and lower demand

2.4.1.1 Constant Function Market Makers or CFMM’s

CFMM’s are a type of automated market maker that are defined by their trading function
and its liquidity pool reserves (33). CFMM’s ensure that there will always be liquidity present
in a liquidity pool as the trading functions used have a fixed bonding curve for asset price
determination. This curve changes depending on the ratio of assets in a liquidity pool. There
a three main trading functions that are commonly used. These trading functions are

1. Constant Product Market Makers: These market makers operate on liquidity pools
with only 2 assets and not more. The relationship between the two assets is non
linear. The trading function for a constant product MM is:

assetA ∗ assetB = constant

Figure 2.5 shows the relationship between asset volumes and the constant k for the
Constant Product Market Maker.

2. Constant Sum Market Maker: These market makers operate on liquidity pools with
only 2 assets and not more. The relationship between the two assets is linear. The
trading function for a constant sum MM is:

n∑
i=1

Ri = k

Ri represent the reserves of the each asset in the liquidity pool and k represents a
constant value.

Figure 2.6 shows the relationship between asset volumes and the constant k for the
Constant Sum Market Maker.

3. Constant Mean Market Maker: A constant mean market maker is a generalization of a
constant product market maker, allowing for more than two assets. (34). Constant
mean MM’s enable the addition of weights which allows for the addition of two or
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Figure 2.5: Graph of constant product market maker (2)

more assets. The trading function for a constant mean MM is:

n∏
i=1

Ri
wi = k

Ri represent the reserves of each assets in the liquidity pool. Wi represents the weight
of each asset and k represents a constant value (34).

Problems with AMM’s:

• Impermanent Loss: Impermanent loss happens when you provide liquidity to a liquidity
pool, and the price of your deposited assets changes compared to when you deposited
them. The bigger this change is, the more you are exposed to impermanent loss. In
this case, the loss means less dollar value at the time of withdrawal than at the time
of deposit (35).

• Slippage: Slippage occurs when a trade’s size negatively affects a trader’s rate of
return. AMM’s experience slippage when large trades are initiated or if the market is
volatile. This is so because AMM’s typically use CFMM’s with a constant value k. If
the constant k is a low value and a large buy order for an asset is placed on an AMM,
the volumes of the asset in the liquidity pool will be largely affected by the k value,
and the AMM will price this asset at a high value since its supply is diminishing. The
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Figure 2.6: Graph of constant sum market maker (2)

trader may experience a higher price than spot markets and may experience a loss.

• Lack of shared liquidity model: Each AMM has their own dedicated liquidity pool
because of which AMMs cannot share liquidity. If AMMs want to share liquidity, it
would result in large design complexities.

2.4.2 Virtual Automated Market Makers

The concept of virtual AMMs is derived from the mechanisms of AMMs. Virtual AMMs
were created to deal with issues present with AMM, such as Impermanent loss. Rather than
having the concept of liquidity providers and liquidity pools, vAMMs use virtualized tokens
and remove the need for liquidity pools. The VAMM is only used for the asset price
calculation and how this is affected once a trade is executed.

Mechanism of vAMM and how a trade is performed: In VAMM’s, whenever a user
wants to take a long or short position on an asset, they place their position, the VAMM
calculates the price accordingly, and the user’s margin is stored in the vault as collateral.
Since the traders are providing the funds for trading, we do not need liquidity providers,
which solves the problem of impermanent loss since there are no liquidity pools. The traders
themselves provide the funds. The higher the number of traders, the larger is the vault size
and liquidity contained by the DEX. The difference between the implementation of AMMs
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and vAMMs can be seen in figure 2.7. A vAMM does not need a liquidity pool, and the
vault can match any funding issues present. (36)

Figure 2.7: Difference between AMMs and vAMMs - Liquidity Pools and Vault

Differences between real and virtual liquidity pools:

1. Virtual liquidity pools do not store or consist of any real tokens. Virtual liquidity pools
store virtual tokens to represent the value of the real tokens. For example, in a virtual
liquidity pool, the reserves of the token ETH are represented as vETH. Virtual liquidity
pools are only used to calculate the exchange prices of tokens; they do not provide
liquidity.
Real liquidity pools store real tokens. The tokens stored in a real liquidity pool are
exchanged for other tokens.

2. From figure 2.7 we can observe that a virtual liquidity pool is contained inside the
vAMM, whereas a real liquidity pool is stored outside an AMM. A DEX implementing
an AMM allows users to directly interact with the liquidity pool. A DEX implementing
vAMMs is only used for token price calculation and does not allow users to interact
with the virtual liquidity pool.

Example of a vAMM in operation: Let us consider an example of a vAMM that is used
to exchange ETH and USD coin (USDC). The vAMM implements a constant product market
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making function and the formula can be seen in equation 1. vETH represent the number of
virtual ETH tokens and vUSDC represent the amount of virtual USDC tokens.

vETH ∗ vUSDC = k (1)

Initial state of the vamm:

• vETH = 10

• vUSDC = 1000

• k = vETH * vUSDC = 10,000

• Mark price: 1 ETH = 100 USDC

1. Trader ’A’ requests to open a long position on ETH with 10 USDC as collateral with
10X leverage.

(a) Total contract value: 10USDC X 10(leverage) = 100vUSDC

The collateral of 10 USDC is stored in the vault and since the trader ’A’ has gone
long, the reserves of vUSDC are increased by 100. vUSDC increases to 1100 and to
calculate the new vETH reserves, we perform the calculations seen in equation 2

new vETH =
10, 000(k)

1100(new vUSDC )
= 9.09 (2)

vETH allocated to trader A = new vETH − old vETH = 10− 9.09 = 0.91 (3)

On opening the long trade, trader ’A’ gets allocated with 0.91 vETH at an entry price
of 100 USDC per ETH. The new mark price of ETH/USDC is = 121 USDC per ETH.
The mark price is calculated by dividing the vETH reserves with the vUSDC resereves.

2. After a month of requests, the new virtual liquidity pool reserves are:

• vETH = 8.33

• vUSDC = 1200

• k = 10,000

• mark price 1 ETH = 144 USDC

• vault balance = 20 USDC

Trader ’A’ now wishes top close the trade that was opened with 10 USDC collateral
with 100 USDC/ETH as entry price. The 0.91 vETH allocated to trader ’A’ are added
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back to the virtual liquidity pool and we find the new vUSDC reserves and the total
amount that needs to be returned to trader ’A’. The caluclations can be seen below:

new vUSDC = frac10, 000(k)8.33 + 0.91(new vETH) = 1082.25 (4)

total contract return value = old vUSDC−new vUSDC = 1200−1082.25 = 0.91 = 117.75

(5)

total amount returned to trader A =
total contract return value

leverage
=

117.75

10
= 11.775

(6)

From the calculations above, we can see that trader ’A”s return value after closing the
contract is 11.775 USDC. This amount is withdrawn from the vault and returned to
trader ’A’. Since trader ’A’ closed their long position when the mark price was higher
than the entry price for the trade, trader ’A’ earned a profit of 11.775 - 10 USDC =
1.775 USDC.

Issues with a vAMM’s:

1. vAMM’s are a good solution to the issues faced by AMM’s but are not the most
efficient solution. vAMM’s use a trading function to price assets, and the trading
function can be optimised to be at the most liquid zone of the trading function curve.
However, vAMM’s do not allow for the adjustment of the constant in the trading
function and cannot optimise the trading function. The reason for this is the lack of
funds. Since traders deposit their own funds, there is no flexibility available in the
vault of a vAMM to adjust the trading functions.

2. vAMM’s rely on arbitragers and funding payments to bring the asset price on the DEX
equal to the spot price. If a DEX does not have a high trading volume there will be
fewer arbitragers. This issue can be tackled by dynamically adjusting the value of an
asset on a DEX to be the same as the spot price.

Dynamic virtual automated makers or DvAMM’s solve the problem of vAMM’s by
optimizing the trading function. This is done by the dynamic adjustment of the
constant value in the trading function. DvAMM’s also reduce the dependence on
arbitragers by having a price readjustment mechanism so that the price of an asset on
the DEX matches the spot price of that asset.
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2.4.3 Dynamic Virtual Automated Market Makers

In traditional AMMs and vAMMs, there is no mechanism to adjust the mark price of a given
token pair to their spot price. If the cryptocurrency markets are volatile, the spot exchange
rate of one token relative to another can change drastically. AMM and vAMM based
perpetual exchanges have no mechanism to adapt to market conditions and volatility.
Instead, AMM and vAMM based exchanges rely on funding payments and arbitrageurs to
match the mark price to the spot price for a given token pair. These mechanisms can fail
when there are few arbitrageurs trading on the perpetual swap exchange or if the number of
users trading on the perpetual swap exchange is low.

To make vAMM’s more sensitive to external market conditions, dynamic vAMMs are
implemented. Dynamic vAMMs make a vAMM configurable by providing a mechanism to
update the asset reserves and the constant k of the virtual liquidity pool,

To adapt to external market conditions, a dynamic vAMM can update its token reserves and
the K value to match the spot price for a particular token pair. Updating the token reserves
of the dynamic vAMM changes its mark price. The following example demonstrates how a
dynamic vAMM may choose to update a token pair’s mark price to match the spot
price.

• A constant product market marker with vETH and vUSDC tokens is implemented

• Initial token reserves are vETH = 10, vUSDC = 1000, k =10000 and mark price
(vUSDC/vETH) is 1 ETH = 100 USDC

• The spot price of ETH/USDC is 1 ETH = 150 USDC

• The dynamic vAMM wants to update the mark price to match the spot price and
therefore it chooses to configure its virtual token values and k to do so.

• Keeping the vUSDC tokens constatnt, the mark price can be updated by finding new
vETH reserves to update the mark price. The new vETH tokens to reflect mark price
= spot price can be seen in the equation below.

(new mark price )150USDC =
1000 (vUSDC )

new vETH reserves
(7)

• new vETH reserves = 1000/150 = 6.66666.

• On finding the new vETH reserves, the dynamic vAMM can update its K value to be
equal to new-vETH-reserves * vUSDC-reserves = 6.66666*1000 = 6666.66

• The new mark price is udpated and is equal to 1000vUSDC/6.6666vETH = 150.00
USDC per ETH
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Similarly, if a dynamic vAMM wants to reduce the amount of slippage experienced by a
perpetual swap exchange, it can scale up its K value by scaling its virtual token reserves.
One way to scale the k value for constant product market makers is to multiply all the
values in the equation with a particular value.

A dynamic vAMM provides mechanisms to configure a vAMM to adapt to external market
conditions. A dynamic vAMM also provides mechanisms to scale the k value to a higher
value to reduce slippage (6) (37).

This research aims to design, implement, test and evaluate a system capable of adapting its
mark price so that the system can adapt to external market conditions. This research
implements a dynamic vAMM that can scale its virtual token reserves and k values to adapt
to external market conditions to achieve these objectives.

Currently, only one protocol implements a dynamic vAMM in a production environment.
This protocol is known as drift protocol (38) and was launched on October 25, 2021. Drift
protocol has a highly customized way of configuring a vAMM. This research does not build
on drift protocols implementation of a dynamic vAMM and tries to implement a different
way of configuring a vAMM. Drift protocol was discovered halfway through this research
project, and attempting to implement their method of implementing a dynamic vAMM
would require more time.
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3 Design

A proof-of-concept perpetual swap exchange implementing a dynamic vAMM was designed
and implemented to experiment, analyse and evaluate the performance, benefits and pitfalls
of dynamic virtual AMMs. The design of the dynamic vAMM based perpetual swap
exchange is discussed in this chapter

3.1 Overview of the System

The system being designed is a dynamic vAMM based perpetual swap exchange. The
engineered system aims to design and implement a dynamic or completely configurable
vAMM. The designed system will allow the researcher to test and experiment with different
configurations on a vAMM and observe the impact of such configuration changes of the
exchange. The system allows the researcher to:

1. Open and Close long or short perpetual contract requests.

2. View open trades.

3. View the internal state of perpetual swap exchange. This includes viewing the details
of the virtual liquidity pool, the amount of user collateral in the vault, and the total
volume of USDC locked in long and short trades.

4. Manually feed-in spot prices for a token pair for the purpose of experiments. For
example, the researcher can inform the perpetual swap exchange that the spot trading
price of 1 ETH is 100 USDC.

5. Configure the vAMM and adjust the token reserves in the virtual liquidity pool using
the user interface. This feature would allow the researcher to test different
configurations on the vAMM.

The dynamic vAMM based perpetual swap exchange is currently designed to trade the
ETH/USDC perpetual contract. USDC stands for USD coin, and ETH stands for the token
Ether. The system being designed is structured in 2 layers: the application and the dynamic
vAMM (DvAMM) protocol layers.
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1. The Application Layer: The app layer consists of 2 components, the user interface
(UI) and the blockchain layer interaction service (BLIS) . The user interface allows
traders to execute trades and interact with the dynamic vAMM based perpetual swap
exchange. BLIS is designed to communicate user requests from the UI to the DvAMM
protocol layer

2. The Blockchain or DvAMM Protocol Layer: The DvAMM protocol layer is analogous
to the back-end of the perpetual swap exchange. The DvAMM protocol layer consists
of the smart contracts that facilitate perpetual trading on the perpetual swap
exchange. The main responsibility of this layer is to provide services that facilitate
perpetual swaps on the exchange and allow the researcher to test different
configurations on the vAMM. The responsibilities of the blockchain or DvAMM
protocol layer are as follows:

(a) Accurately calculating token exchange prices when a trade is executed with the
help of a dynamic vAMM

(b) Securely storing each user’s funds. When a user opens a trade, these funds are
provided as margin or collateral.

(c) Handling the profit and losses of each user.

(d) Providing a mechanism that allows the researcher to configure the vAMM.

(e) Keeping track of the total amount of liquidity locked in long positions and short
positions. This would allow the perpetual swap exchange to keep track of the
balance between trades.

Figure 3.1 shows the design of the DvAMM based perpetual swap exchange.

3.2 The Application Layer

The goal of the application layer is to provide a user-friendly interface that allows users to
execute trades on the DEX. The application layer design consists of the User Interface (UI)
and the Blockchain Layer Interaction Services. The UI is composed of a user view for users
and a test view for performing experiments on the dynamic vAMM.

3.2.1 User Interface (UI)

The User Interface or UI is designed to allow the system’s users to interact with the various
services provided by the designed system. The UI is designed to be simple, user-friendly and
descriptive so that users of all levels (novice or experts in trading) can easily understand and
use the functionalities provided by the designed perpetual swap exchange.
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Figure 3.1: System Architecture
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The UI is designed with 2 separate views for two user groups. A user view is designed for
traders that want to open or close perpetual contracts on the DvAMM DEX. A test view is
designed for the researcher to interact with and perform experiments on the dynamic
vAMM. The test-view allows a researcher to test and experiment with the dynamic vAMM
to observe the behaviour of the dynamic vAMM when its state changes.

The user view is designed to primarily allow users of the designed system to open new
perpetual contracts and close existing perpetual contracts. The user view allows traders to
view their current open perpetual contract positions. The user view also allows traders to
connect their Ethereum wallets to the designed perpetual swap exchange using metamask.
Metamask is a browser extension that allows traders to connect to their Ethereum wallets
(39). Finally, the user view displays important pieces of information. A details component is
designed on the UI to provide information regarding the current mark price of the token pair
(ETH/USDC) being traded, the amount of funds a trader has stored on the designed
exchange and the amount of funds stored in the Vault. The details component also provides
data regarding the current state of the dynamic vAMM and information about the spot price
of the token pair being traded on the exchange.

The test view is designed to have a few additional features and functionalities over the user
view. The designed additional features allow the user to perform experiments on the
dynamic vAMM by using the UI. The test view allows the researcher to configure the mark
price of the ETH/USDC token pair by interacting with the designed UI. For example, if the
current exchange rate of 1 ETH is 100 USDC, the researcher can update the exchange rate
of 1 ETH = 150 USDC by clicking a button on the UI. Updating a token pair’s mark price
changes the reserves of tokens in the virtual liquidity pool and directly impacts the profits
and losses of users. This feature would enable conducting experiments on the dynamic
vAMM. The test view also provides a feature of a mock oracle to feed in mock spot prices of
the ETH/USDC token pair. The mock oracle on the UI allows the researcher to provide the
spot price of the ETH/USDC token pair to the blockchain or a DvAMM protocol layer.

The test view and user view are designed to have a faucet. A faucet is designed to provide
the researcher and traders with local USDC tokens for testing. The test cryptocurrency will
help the researcher and traders pay for trades when testing the perpetual swap exchange.
Using a local test USDC currency provides a level of convenience for testing the
functionalities of the exchange as users, and the researcher do not need to find faucets to
request funds from to trade and test the designed exchange.

Figure 4.1 shows the user view UI and 4.2 shows the test view UI. The user view UI consists
of the following tabs, components and features:

1. A button to connect to metamask.
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2. Opening a trade tab: The open-trade tab is designed for a trader to specify the
amount of USDC they want to deposit as collateral for taking a long or short position
on ETH. For example, If the price of 1 ETH = 100 USDC on the perpetual exchange
and Trader A wants to take a long position on ETH for 10 USDC, Trader A can input
the amount as 10 USDC on the open trade tab as collateral. Trader A has now taken
a long position on 0.1 ETH

3. View Open Trades tab & Close Trade: The View Open Trades tab allows traders to
view their current open perpetual contract positions. The view open trades tab
displays the following for each trade:

(a) Trade position, i.e. long or short

(b) The amount of underlying asset that a user has taken a long/short position on.

(c) The entry price of the trade or the price of 1 ETH in USDC when a user opens a
trade.

(d) A close trade button to close a trade

4. Details Component: A details component is designed to allow traders to view their
local USDC balance, the Vault’s balance, the mark and spot prices of ETH/USDC and
information regarding the state of the dynamic vAMM. The details component on the
user view also has a deposit button that allows the user to access the faucet and
request funds from

The test view is designed to have additional functionality over the user view to allow the
researcher to test. The additional functionalities available in the test view are:

1. Configure DvAMM tab: This functionality is designed to allow the researcher to
update the exchange rate of a token pair.

2. A Mock Oracle tab

3. A Faucet component: A faucet is designed to provide the researcher with local USDC
tokens for testing.

3.2.2 Blockchain Layer Interaction Service (BLIS)

BLIS is designed for the application layer to communicate and interact with the blockchain
or DvAMM protocol layer. The smart contracts containing the system logic are deployed on
a blockchain, e.g. the Ethereum blockchain. BLIS uses MetaMask to connect to the
blockchain that holds the smart contract code. BLIS is designed to make appropriate
functions calls in the clearinghouse smart contract to perform specific actions that a user
would like to carry out.
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For example, if a trader clicks on the close trade button on the UI, BLIS will first formulate
the user’s request with the required parameters and then transmit the request to the
DvAMM protocol layer. The request will call the closePosition function in the clearinghouse
and pass the required parameters to the closePosition function.

BLIS is designed to hide the complexity of interacting with smart contracts away from the
users of the DEX.

3.3 Blockchain or DvAMM Protocol Layer

The Blockchain or DvAMM protocol layer is designed to house the logic that provides the
functionalities of a perpetual swap exchange. The goal of the DvAMM protocol layer is to
process requests for opening and closing perpetual contracts. The DvAMM protocol layer is
designed to handle perpetual contract requests by implementing a totally configurable
vAMM and a vault. The vAMM is designed to calculate the mark exchange rate of the
tokens whenever a perpetual contract is opened or closed. The vault is designed to hold the
collateral or margin deposited by each user securely. For a DEX implementing a vAMM, the
losses of a short position offset the profits of a long position and vice-versa. A decision was
made during the design process to design and implement an in-house dynamic vAMM. This
project did not build upon existing AMM and vAMM protocols because of the following
reasons:

1. The low number of projects implementing a virtual liquidity pool in a production
environment. There are only 2 protocols – Perpetual Protocol reference and Drift
Protocol reference that implement vAMM based perpetual swap exchanges in
production.

2. Incompatibility:

(a) Drift protocol reference is the only protocol that leverages a dynamic vAMM.
However, Drift Labs have written their smart contracts using Rust and have
deployed their protocol and exchange on the Solana blockchain. The current
project is being built on the Ethereum blockchain, and the smart contracts are
being written in Solidity.

(b) Perpetual Protocol (perp.fi) is built on the Ethereum ecosystem and implements
a vAMM. However, it is not possible to locally deploy and test perpetual
protocols smart contracts since they are not compatible with local deployments.
Building on top of perpetual protocol would require deep knowledge of how
perpetual protocol develops, deploys, and tests its protocol.

(c) Drift and perpetual protocols had an immense amount of smart contracts in their
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codebases. Understanding their entire codebase and building on top of them
would be more difficult than implementing an in-house protocol.

3. To achieve this project’s objectives, this project needs an environment suited to
conducting a series of experiments. The perpetual swap exchange needs to provide
tailored functionality that can help carry out intended experiments on the vAMM.
Building on top of existing protocols would prevent experimenting with different
configurations on the vAMM. It would be complex to build up upon existing vAMM
and AMM protocols. Furthermore, building an in—house protocol will help understand
the advantages and limitations of a dynamic vAMM.

Drift protocol and perpetual protocol served as a reference during the design and
implementation process, even though this project did not directly build upon their
code-bases.

To build a DvAMM protocol layer tailored to the requirements of the current project, it is
important to understand the functional requirements. The purpose of the DvAMM protocol
layer is to process perpetual contract requests with the help of a configurable or dynamic
vAMM and a vault. The vault and dynamic vAMM will help in handling tokens and user
collateral. The functional requirements for this protocol are as follows:

1. The protocol should be able to open and close perpetual contracts.

2. The protocol should provide the exchange rate for a token pair being exchanged on
the perpetual swap exchange. Furthermore, the protocol should adjust the token
exchange rate whenever a perpetual contract is opened or closed.

3. The protocol should securely store all user collateral deposits in a vault.

4. The protocol should have a mechanism to receive spot market exchange prices for a
token pair.

5. The protocol should allow configuring the vAMM so that the perpetual swap exchange
can adapt to market conditions for a given token pair.

6. The protocol should return information regarding the open positions of a user.

7. The protocol should return details about the vAMM token reserves, the total liquidity
locked in the vault and the perpetual swap exchange rates for a given token pair.

4 components were designed to satisfy the functional requirements of the DvAMM protocol
layer. Figure 3.2 shows a high overview of the designed operations for each component of
the DvAMM protocol layer. Each of these components will be discussed in further detail in
the sections below.
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Figure 3.2: Overview of Operation of the DvAMM Protocol Layer Components
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3.3.1 Clearinghouse

The clearinghouse is designed to enable user interactions with the perpetual swap exchange.
The clearinghouse is responsible for initializing local user accounts on the exchange and
implementing opening and closing perpetual contract requests. The clearinghouse is
designed to accept user collateral payments from a local user account on the exchange and
securely deposit the collateral in the vault. The collateral or margin payments are accepted
in USDC.

The clearinghouse smart contract is also designed to allow users to store funds for trading
on the designed exchange. Users can use funds from their local exchange accounts to
provide collateral for opening a new perpetual contract. A later version of the protocol layer
would aim to provide the functionality of users providing collateral directly from their
browser connected blockchain wallets using ERC-20 tokens as it provides a more seamless
and trustworthy trading experience. The clearinghouse is designed to securely return a user’s
profits and losses when they close an open position to their local perpetual exchange USDC
wallet/account. The clearinghouse is also responsible for returning details about the vault,
token reserves in the vAMM and the mark price of a token pair. The clearinghouse is
responsible for handling funding payments in drift and perpetual protocols. However, a
design choice was made not to include funding payments in the current design. Funding
payments are not designed and implemented because of time constraints. Designing and
implementing the core functionality of the dynamic vAMM is more critical for this study
than implementing funding rates. This study aims to design and implement a dynamic
vAMM to observe the effect of configuring a vAMM on the exchange as a whole.
Implementing funding payments would require more time and would not contribute to
achieving the research objectives.
Table 3.1 describes the external and internal functions designed to be provided by the
clearinghouse and their purpose.

3.3.2 Dynamic vAMM

A dynamic vAMM is a totally configurable vAMM. The purpose of the vAMM is to provide
a price discovery mechanism for the exchange rates of a token pair. In simple terms, the
vAMM is designed to calculate the price of one token relative to the other.
The vAMM consists of a virtual liquidity pool that keeps track of the number of virtual
tokens (for example, virtual ETH and virtual USDC). The vAMM design implements the
constant product market maker (CPMM) in a trading function. A CPMM is only able to
handle two tokens at a time. Therefore, the design will only be able to handle 2 tokens at a
time.
The formula for a CPMM can be seen in equations 1 and 2. Equation 2 elaborates on
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Table 3.1: Clearinghouse smart contract function specifications.

Function External/Internal Purpose

Open Position External

Open a long or short perpetual contract
for a given user. Deposit the collateral for
the open position in the vault. Keep a record
of the transaction

Close Position External

Close a long or short perpetual contract
for a given user. Withdraw the collateral
from the vault for the trade being closed,
and securely return it to the user’s account.
Keep a record of the transaction

Get Pool Details External

Return the details of token reserves
in the vAMM, return the amount of USDC
in the vault, and return the price of 1 ETH
in USDC.

Get total volume of open
long and short positions

Internal.
Not exposed to users

Return the total amount of USDC contributing
to long trades and the total amount of USDC
contributing to short trades.

equation 1 where x represents the volatile asset reserves stored in the virtual liquidity pool
and similarly y represents the stable asset reserves i.e. USDC. k is a constant and is designed
to be equal to the product of the stableAssetReserves and volatileAssetReserves.

x ∗ y = k (1)

volatileAssetReserve ∗ stableAssetReserve = k (2)

price =
stableAssetReserve (number of USDC tokens)

volatileAssetReserve (number of ETH tokens)
(3)

In the current design, the token pair used is ETH and USDC. Therefore, the job of the
vAMM is to keep discovering the price of ETH relative to USDC as perpetual contracts are
opened and closed. ETH would represent the volatileAssetReserves and USDC would
represent the stableAssetReserves in equation 2. The mechanism to discover the price of 1
ETH is USDC in the designed trading function can be seen in equation 3. A vAMM can be
initialized for more token pairs if the system admins or the researchers decide to do so.

The perpetual swap exchange rate for a token pair changes as a trade is opened or closed.
When a trade is opened, the vAMM takes in the value of the user collateral. The vAMM
allocates vETH tokens to a user based on the user collateral for the trade. The allocated
vETH tokens represent the amount of ETH a user has opened a trade on. When a trade is
closed, the vAMM takes in the amount of vETH tokens a user had bet on. Since the trade
is being closed, the vAMM adds the allocated vETH tokens back to the liquidity pool. The
vAMM then returns the amount of vUSDC tokens that represent the value of the vETH

31



tokens added back to the pool. This process can be seen in figure 3.3

Figure 3.3: Mechanism of token exchange price calculation using a vAMM

3.3.2.1 Configurational vAMM

In traditional AMMs and vAMMs, there is no mechanism to adjust the mark price for a
given token pair. The lack of flexibility in traditional AMMs and vAMMs reduce their ability
to adapt to market conditions. The DvAMM protocol is designed to provide mechanisms to
recalibrate liquidity and token pair mark prices based on spot prices for a token pair.

The protocol being designed aims to develop and test a more flexible vAMM. To make a
vAMM more flexible, it needs to be configurable. A vAMM can be configured by scaling the
value of either the volatile asset reserves or the stable asset reserves seen in equation 2.
Scaling either token reserves updates the mark price of the token pair(see equation 3). After
scaling the token reserves, the value of the constant k is also updated to be equal to the
product of the new token reserves.

The protocol being designed scales the volatile asset reserves to change the exchange rate
for a token pair. The protocol being designed provides functionality to adjust the mark price
to be closer to or equal to the spot price for a given token pair by adjusting the value of the
volatile asset reserve and k. This functionality is only available to the researcher so that
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different vAMM configurations and their potential effects on the protocol and users can be
studied. The functions designed to configure the vAMM and their descriptions are provided
in table 3.2

Table 3.2: Functions designed to configure the vAMM

Function Parameters Purpose

Update Mark Price to Spot Price None

Updates the mark price for a given
token pair to the spot price.
For example, if the mark price is
1 ETH = 100 USDC and the
spot price is1 ETH = 200 USDC,
calling this function will
update the mark price to
1 ETH = 200 USDC

Update Mark Price on demand

Provide the new exchange
rate that you want for
the given token pair.
For example, if you want to
update the price of 1 ETH to
115 USDC. Provide 115 USDC
as the parameter

Updates the mark price for a given
token pair to the amount of USDC
provided as a parameter.

3.3.3 Vault

The smart contract vault is designed to hold the collateral deposits securely for the open
perpetual contracts for all users. The design for the vAMM and vaults are drawn from
perpetual protocols design. For a vAMM based exchange, traders provide liquidity to each
other by depositing collateral (40). This collateral needs to be stored by the smart contract
vault The vault is designed to accept user collateral deposits when a new perpetual contract
is opened. The vault is also designed to return a user’s profits and losses when a user closes
an open perpetual contract. The vAMM and vault smart contract are also designed to
ensure that there will never be a situation where the vault will not have enough collateral to
pay back all the traders trading against a vAMM (36)

3.3.4 Oracle

The DvAMM protocol needs to have a mechanism to discover the spot price for a token
pair. To discover the spot price for a token pair, the DvAMM protocol layer is designed to
have an oracle that feeds it the spot price for a token pair. An initial attempt was made to
integrate chainlink oracles to provide the spot price for ETH/USDC, the token pair currently
implemented on the exchange. However, a real oracle providing real-time spot price data
feeds was not integrated because each request to an oracle required payment in
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cryptocurrency. Therefore, a mock oracle was designed and implemented to feed mock spot
prices.

3.3.5 Challenges

Ethereum smart contract development is mainly done using the programming languages
Vyper, Solidity and Yul (41). The smart contracts for the DvAMM protocol layer are
designed with Solidity as the intended programming language. The smart contracts are
designed using Solidity since it has a larger development community (42) and a lot of
learning resources readily available. Designing and implementing smart contracts in Solidity
raises a few design challenges. The challenges introduced are:

1. Arithmetic Precision: Solidity does not allow floating-point representation, and this
causes precision and rounding errors (43). A perpetual exchange requires high
precision and low rounding errors.

2. Solidity does not allow for string comparisons.

3. External functions cannot return struct types.

The challenges mentioned above should be considered, and the designed smart contracts
should tackle these challenges appropriately when being developed.
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4 Implementation

This chapter discusses how the designed perpetual swap exchange utilizing a dynamic
vAMM was implemented. The researcher details the implementation of core components of
the application and blockchain layer and the challenges faced during their development. This
chapter further talks about the reasoning and tradeoffs behind implementation decisions.
The proof-of-concept perpetual swap exchange is developed using a bottom-up approach
where smaller functionalities or programs are developed individually, and these small
functionalities or programs are integrated to form a wider system (44).

The code implementation for the designed perpetual swap exchange was built on top of a
tutorial to build an AMM based exchange (45) (46). Section 4.1 details how the application
layer and the application layer’s components were implemented. Section 4.2 discusses the
implementation of the smart contract-based blockchain or DvAMM protocol layer.

4.1 Application Layer

The application layer is developed using Javascript, React and Ethers. React is a javascript
library used for building user interfaces (47). Ethers is a javascript library for interacting with
the Ethereum Blockchain, and its ecosystem (48).
The implementation of various components forming the application layer is described in
sections 4.1.1 and 4.1.2, respectively. Section 4.1.1 describes the implementation of the UI,
and section 4.1.2 describes the implementation of BLIS.

4.1.1 User Interface (UI)

A user-friendly UI is implemented for the perpetual swap exchange. The UI is developed
using a component-based architecture approach using react.js. Each component developed
represents a different screen or tab of the UI. For example, the open trade tab in figure 4.1
is developed as a component in react.js. As mentioned in the design section, the UI consists
of 2 separate views: the user view for the traders and the test view for the researcher.
Figures 4.1 and 4.2 show the user view and test view implemented by the system.
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Figure 4.1: Perpetual Swap Exchange User View UI: Open Trade Tab

Figure 4.2: Perpetual Swap Exchange Test View UI: View Trade Tab
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The user view seen in figure 4.1 provides an open trade tab and a view trade tab. The open
trade tab enables a trader to open a trade by providing the collateral a trader wants to
deposit and the leverage a trader wants on the perpetual contract. The view trade tab seen
in figure 4.2 shows a trader their open perpetual contracts. The connect to metamask
button allows traders to connect the perpetual exchange to their metamask browser
blockchain wallet.

The current implementation of the perpetual swap exchange implements a local USDC
token and does not use the ERC-20 USDC token. A local USDC token is implemented
because it allows the researcher to have an unlimited token supply to perform experiments
on the implemented system. The researcher does not need to find and request funds from
external faucets to open and close trades on the system.

A trader needs to deposit USDC into their local perpetual swap exchange account and use
these funds as collateral to open or close perpetual contracts. A trader can deposit funds
fusing the “Deposit USDC” button seen in figure 4.1. The “Deposit USDC” button opens up
a modal displaying a faucet. The users can request local USDC tokens from this
faucet.

The details component can be seen in figures 4.1 and 4.2. The details component displays
essential information such as the current USDC balance in a trader’s local exchange
account, the state of the virtual liquidity pool, vault balance and spot and mark price for the
ETH/USDC token pair.

The test view can be seen in figure 4.2. .The test view consists of additional features that
make the experimentation process simpler for the researcher. The implemented test view
provides 3 additional tabs compared to the user view. These three tabs are "Configure
vAMM", "Mock Oracle" and "Faucet" and can be seen in figure 4.2. The mock oracle tab
allows the researcher to feed a custom spot price for the token pair being exchanged on the
perpetual swap exchange. The mock oracle tab can be seen in figure 4.3. Setting a custom
spot price from the UI over manually setting a mock price in the smart contract code will
provide some convenience in performing configuration changes on the vAMM.

Figure 4.3: Perpetual Swap Exchange Test View UI: Mock Oracle Tab
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The "Faucet" tab is implemented to allow the researcher to request the desired amount of
USDC tokens directly along with the “Deposit USDC” button. The faucet tab can be seen in
figure 4.4. The Faucet tab formulates a request to the smart contract code in the protocol
layer for the requested amount of USDC.
The USDC tokens provided by the faucet do not have any real monetary value.

Figure 4.4: Perpetual Swap Exchange Test View UI: Faucet Tab

The implemented test view allows the researcher to change the configuration of the vAMM
through the "Configure vAMM" tab. The purpose of configuring a vAMM is to adapt the
mark price of a token pair to the spot price. The "Configure vAMM" tab seen in figure 4.5
allows the researcher to update the mark price of ETH/USDC. The researcher can update
the mark price by either providing the new exchange rate of the token pair or by clicking on
the button "Update Mark Price to Spot Price".

Figure 4.5: Perpetual Swap Exchange Test View UI: Configure vAMM Tab

The perpetual swap exchange being implemented only allows for opening and closing
ETH/USDC perpetual contracts for this project. Perpetual markets for different token pairs
can be created by initializing a new DvAMM for each desired token pair. However, due to
time constraints, more perpetual markets were not implemented. Since this research aims to
explore dynamic vAMMs and observe the effects of configuration changes on a vAMM, one
perpetual contract or market will be sufficient to perform the study.
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4.1.2 Blockchain Layer Interaction Service (BLIS)

BLIS is implemented for the application layer to communicate and interact with the smart
contracts implemented in the DvAMM protocol layer. The application layer needs to
communicate with the DvAMM protocol layer to carry out all the system’s functionalities
being developed.

BLIS is implemented using the design mentioned in section 3.2.2. BLIS is developed using
ethers.js. Ethers.js enables BLIS to interact with smart contracts deployed on the
blockchain. The smart contract code for the DvAMM protocol layer is deployed on the
rinkeby ethereum testnet (49)

Ethers.js is a javascript library for interacting with the Ethereum Blockchain (48). The
system implemented uses the contract interaction API provided by ethers.js to connect to
the code deployed on the blockchain. The contract interaction API provided by ethers.js
allows for a straightforward way to serialize calls to a smart contract deployed on a
blockchain and to deserialize the results of the call to the smart contract (48). Ethers js
provides a contract object which is an abstraction of the smart contract code that has been
deployed to a blockchain. BLIS communicates with the smart contract based DvAMM
protocol layer by creating an instance of the contract object provided by ethers.js and passes
the following parameters to the instance of the contract object:

1. The object the address of the smart contract the application layer needs to connect to

2. The application binary interface or abi of the smart contract the application layer
needs to connect to, and

3. The wallet address of the user attempting to connect with this smart contract

If an instance of the contract object is created successfully, ethers.js contract interaction API
will return an abstraction of the smart-contract code that is deployed on the rinkeby testnet.
The application layer can now interact with the smart contract methods that provide the
functionalities of the DvAMM protocol layer.
BLIS connects the application layer to the DvAMM protocol layer smart contracts. The
perpetual exchange only needs to interact with the clearinghouse smart contract to provide
the functionality offered by the user view UI. The researcher needs to interact with the
DvAMM smart contract directly to test various configurations on the vAMM. The code
snippet that enables BLIS to connect to a smart contract deployed on the blockchain using
ethers.js can be seen in figure 4.6

An exapmple of an ethers.js smart contract method call can be seen in figure 4.7

BLIS could also be implemented using Web3.js. Web3.js is a similar javascript library to
ethers.js. Ethers.js was chosen as the preferred library for implementing BLIS due to better

39



Figure 4.6: BLIS connection process to a smart contract deployed on the blockchain

Figure 4.7: Ethers.js function call for opening a trade

web performance and faster loading times as compared to Web3.js (50). Ethers.js was also
the implementation choice for BLIS due to the better quality of documentation and learning
tutorials (50).

4.2 Blockchain or DvAMM Protocol Layer

This section provides an in-depth explanation of how the DvAMM protocol layer is
implemented.

The smart contracts forming the DvAMM protocol layer were developed and deployed using
Remix. Remix is an easy-to-use IDE that makes the process of developing, deploying, and
administering smart contracts for Ethereum like blockchains simple (51). The smart
contracts developed were first deployed to a local Ethereum blockchain provided by Ganache
(52). The functionalities of the smart contracts were thoroughly tested on the local
blockchain, following which the smart contracts were deployed to the rinkeby Ethereum
testnet (49) using Remix IDE.

The smart contracts forming the DvAMM protocol layer are written using the programming
language Solidity. The Solidity compiler version used to compile smart contracts is 0.8.13.
The implemented smart contracts use the SafeMath library provided by OpenZeppelin.
Solidity does not allow for floating-point literals, and all calculations are either performed
using integers or fixed-point numbers (53). Therefore, Arithmetic operations in Solidity wrap
on overflow and this can easily result in bugs in the smart contract code (54) The SafeMath
library validates arithmetic operations to ensure that any arithmetic operation does not lead
to an overflow or underflow.

The implementation of all components forming the DvAMM protocol layer is described
between sections 4.2.1 and 4.2.5, respectively. Section 4.2.1 discusses the implementation of
the Clearinghouse and its functionalities. Section 4.2.2 explains how the dynamic vAMM
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was implemented and how the DvAMM protocol layer accepts and makes configuration
changes to the dynamic vAMM. Section 4.2.3 describes how the smart contract
implementing the Vault handles user collateral. Section 4.2.4 explains how the mock oracle
provides mock spot prices to the DvAMM protocol layer.

4.2.1 Clearinghouse

The clearinghouse is responsible for the opening, closing, and recording perpetual contracts.
The clearinghouse is also responsible for returning information about open perpetual
contracts of a user and for returning details about the vault, token reserves in the virtual
liquidity pool, the mark price and spot price for the ETH/USDC token pair.

The clearinghouse is implemented as a Solidity smart contract. Each functionality offered by
the clearinghouse is implemented as a function in Solidity code. For example, the
clearinghouse smart contract implements the openLongPosition method seen in figure 4.10
to open a new long position perpetual contract.

All the events and functions implemented by the clearinghouse smart contract can be seen in
table 4.1. This section explains the logic and execution behind each function implemented
by the clearinghouse smart contract. The clearinghouse stores the collateral amount for each
new perpetual contract in the vault smart contract. The clearinghouse smart contract
imports the smart contract code for the vault.

Table 4.1: Clearinghouse Functions and Events

Functions

openLongPosition(uint256, uint256)
openShortPosition(uint256, uint256)
closePosition(Position, uint256, uint256, uint256, uint256)
getTrade(uint256)
getPoolDetails()
getMyHoldings

Events PositionOpened(address, Position, uint256, uint256, uint256, uint256)
PositionClosed(address, Position, uint256, uint256, uint256, uint256)

The clearinghouse smart contract imports the dynamic vAMM smart contract code as the
clearinghouse needs to use the functionality provided by the dynamic vAMM to open and
close perpetual contracts. The clearinghouse stores details of all open perpetual contracts in
a struct called ’Trade’. The purpose of the struct ’Trade’ Is to store contract specifications
of each open perpetual contract. The position of each trade (long or short) is represented
through an enum called ’Position’. A ’Position’ can either be long or short. The struct
’Trade’ and enum ’Position’ can be seen in figure 4.8.

The clearinghouse stores information regarding open perpetual contract for each trader using
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Figure 4.8: Clearinghouse struct Trade and enum Position

a mapping called ’allTradesofTrader’. ’allTradesofTrader’ maps the address of a trader or a
user to an array of the struct Trade. ’allTradesofTrader’ can be considered a hashmap of
key-value pairs where the key is the address of the trader. The values are the open perpetual
contracts of the trader. The struct trade represents the open perpetual contracts. The
mapping ’allTradesofTrader’ can be seen in figure 4.9 The address of a trader is the address
of the metamask wallet account a trader connects to the system.

Figure 4.9: Clearinghouse mapping allTradesofTrader to map the address of a trader to an
array of the Trades

The clearinghouse initialises an account for each trader on the perpetual swap exchange.
This account stores USDC that a trader would like to use for trading on the exchange. A
trader’s balance on the perpetual swap exchange is stored using a mapping
’userTokenUSDCBalance’. ’userTokenUSDCBalance’ maps a trader’s address to their
perpetual exchange USDC balance. The mapping ’userTokenUSDCBalance’ can be seen in
figure 4.9.

The current implementation of the clearinghouse maintains a record of a trader’s USDC
balance on the perpetual swap exchange itself and does not use the ERC-20 USDC token.
This implementation choice was made because it allows the exchange to provide local tokens
to open and close trades. Implementing a local token removes the complexity of finding an
external faucet to request funds from. External faucets do not provide a large number of
tokens, making it difficult to open trades with a large margin or collateral.
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The main purpose of the clearinghouse is to open and close perpetual contracts. The
clearinghouse implements 2 functions to open new perpetual contracts and 2 functions to
close existing perpetual contracts.

4.2.1.1 Opening a perpetual contract

The functions that implement the functionality of opening new perpetual contracts are
’openLongPosition’ and ’openShortPositon’. ’openLongPosition’ is responsible for
implementing the logic for opening a new long position perpetual contract. Similarly,
’openShortPositon’ is responsible for is responsible for implementing the logic for opening a
new short position perpetual contract. The ’openLongPosition’ and ’openShortPositon’
functions can be seen in figures 4.10 and 4.11.

Figure 4.10: Clearinghouse method to open a long perpetual contract
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openLongPosition is implemented to handle the case when a trader submits a request with
collateral and leverage to open a new long position perpetual contract. The function
openLongPosition in the clearinghouse first checks if the trader has enough USDC balance
to deposit the collateral for opening a long perpetual contract. If the trader has enough
balance, the collateral or margin amount for the trade is deducted from the user’s local
USDC account. The trade’s collateral or margin amount is then deposited in the Vault.
Once the collateral has been deposited, openLongPosition calculates the total contract value
of the long perpetual contract being opened.

The total contract value of a perpetual contract is the collateral amount times leverage.
The leverage for each trade is set to 1 by default. In the current implementation, the
maximum leverage accepted for a trade is 5X.
The total contract value is in virtual USDC (vUSDC) tokens, and it is passed to the dynamic
vAMM to return the number of virtual ETH (vETH) tokens a trader has bet on. When a
trader opens a long position, the trader is fundamentally betting on the price of ETH to rise
in the future. openLongPosition calls the function ’updateVAMMOpenLongPosition’ to
receive the total number of vETH tokens a trader has bet on based on the total long
position contract value. The ’updateVAMMOpenLongPosition’ is provided by the dynamic
VAMM smart contract and is imported by the clearinghouse. The working of
’updateVAMMOpenLongPosition’ is discussed in detail in section 4.2.2.

After receiving the total vETH tokens that a trader has opened a long position on,
openLongPosition creates a ’Trade’ object with the perpetual contract details. The newly
created ’Trade’ object is then pushed to the ’allTradesofTrader’ mapping, which stores the
open perpetual contracts for a trader.

openLongPosition stores the total liquidity a trader has locked in long position perpetual
contracts. openLongPosition also updates the total liquidity locked in the perpetual swap
exchange for long position perpetual contracts. An event PositionOpened is emitted at the
end of the function. Event PositionOpened is emitted to store a record of the contract
specifications on the blockchain. The function returns that amount vETH tokens that the
contract is opening a position on to communicate that the perpetual contract has been
opened.

The clearinghouse implements the function openShortPositon to handle requests for opening
short perpetual contracts. The logic and sequence of actions that the function
openShortPositon implements is identical to the function openLongPosition.

When a trader opens a short position, a trader is essentially betting that the price of ETH is
bound to fall from its current valuation in the future. openShortPositon calls the function
’updateVAMMOpenShortPosition’ to receive the total number of vETH tokens a trader has
bet on based on the total short position contract value. The
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Figure 4.11: Clearinghouse method to open a short perpetual contract

’updateVAMMOpenShortPosition’ seen in figure 4.11 is provided by the dynamic VAMM
smart contract and imported by the clearinghouse. The working of
’updateVAMMOpenLongPosition’ is discussed in detail in section 4.2.2.

Like the function openLongPosition, openShortPositon creates and pushes a ’Trade’ object
to the mapping ’allTradesofTrader’. openShortPosition then updates the liquidity a trader
has locked in short position perpetual contracts and the total liquidity locked by the
perpetual swap exchange in short position perpetual contracts. An event PositionOpened is
emitted to store a record of the contract specifications on the blockchain. Finally, the
function returns the amount of vETH tokens that the short contract is opening a position on
to communicate that the perpetual contract has been opened.

4.2.1.2 Closing a perpetual contract

The function that implements the functionality of closing a perpetual contract is called
’closePosition.’ The function closePosition is responsible for implementing the logic for an
existing long or short perpetual contract. The code for the closePosition method can be
seen in figures 4.12 and 4.13.

The closePosition function expects parameters regarding the perpetual contract that it needs
to close out. The closePosition function applies the parameters passed to it to find the
contract the trader has requested to close in the mapping ’allTradesofTrader’. If a matching
perpetual contract is found in the mapping ’allTradesofTrader’, closePosition first checks the
position of the contract the trader has requested to close. Based on the position of the
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Figure 4.12: Clearinghouse method to open a close a perpetual contract.

contract that needs to be closed, relevant code blocks are executed to close that contract.
Figure 4.12 shows the smart contract code for closing a long position perpetual contract and
figure 4.13 shows the code for closing a short position perpetual contract.

If the trader has requested the closing of a long position perpetual contract, the
closePosition method calls the function ’updateVAMMCloseLongPosition’ seen in figure 4.13
to receive the return value of the perpetual contract. The return value of the perpetual
contract is received as vUSDC tokens. The vUSDC tokens indicate the return value of the
contract in actual USDC tokens, and this value is stored in the variable
’contractValuevUSDC’ seen in figures 4.12. The amount of USDC to be returned to the user
is calculated by value dividing ’contractValuevUSDC’ with the leverage value of the contract
being close. After calculating the amount of USDC to be returned to the user, this amount
is withdrawn from the vault. The withdrawn amount from the vault is then added to the
trader’s local USDC exchange account.

After depositing the contract return value to the trader’s local account, the perpetual
contract being closed is deleted from the mapping ’allTradesofTrader’. The total liquidity
the trader closing the perpetual contract has locked in long positions is updated. The
perpetual swap exchange’s total liquidity locked in long positions is also updated. An event
PositionClosed is emitted to store a record of the closed contract on the blockchain. Finally,
the function returns the amount of USDC withdrawn from the vault to communicate that
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Figure 4.13: Clearinghouse code block to implement closing a short perpetual contract

the long position perpetual contract is closed.

The logic implemented to close a short position perpetual contract is identical to that
implemented to close a long position perpetual contract. Figure 4.13 shows the smart
contract code executed to close a short position.

4.2.1.3 Viewing a Trader’s Open Perpetual Contracts

The clearinghouse is responsible for returning information about open perpetual contracts of
a trader. The clearinghouse method that implements the functionality of returning details of
open perpetual contracts of a trader is called ’getTrade’. The smart contract code for the
method ’getTrade’ can be seen in figure 4.14.

The information of all open trades for a trader is stored in the mapping ’allTradesofTrader’.
The information for each trade of a trader can be accessed individually by passing in the
trade index.
The getTrade method returns the details of one open perpetual contract for a trader.
getTrade takes in the index of a trade as a parameter. The getTrade method then uses this
index to extract information from the mapping ’allTradesofTrader’ and returns it to the
caller.

The application layer calls the getTrade method in a loop to fetch information about all the
open perpetual contracts of a trader. The application layer loops from index 0 to the total
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Figure 4.14: Clearinghouse ’getTrade’ method to return details of an open perpetual contract.

number of trades -1 to fetch information regarding all the open perpetual contracts for a
user.

The function getTrade is implemented in such a manner because solidity does not allow
returning an array of structs. The method is implemented to only return details of one trade
at a time to work around this limitation. The application layer can then call the getTrade
method in a loop for getting details of each open perpetual contract.

4.2.1.4 Viewing System Information

The clearinghouse is responsible for returning details about the vault, token reserves in the
virtual liquidity pool, the mark price and spot price for the ETH/USDC token pair.

The clearinghouse function implemented to return these details is called ’getPoolDetails’.
The function ’getPoolDetails’ returns the number of virtual USDC and virtual ETH tokens,
the balance of the vault, the mark price of the ETH/USDC token pair and the spot price of
ETH/USDC. The smart contract code for the method ’getPoolDetails’ can be seen in figure
4.15.
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Figure 4.15: Clearinghouse ’getPoolDetails’ method.

4.2.1.5 Viewing the USDC balance in a trader’s local perpetual exchange ac-
count

The clearinghouse is responsible for returning the USDC balance in a trader’s local perpetual
exchange account. The clearinghouse function to return a trader’s USDC balance is called
’getMyHoldings’. The smart contract code for the method ’getMyHoldings’can be seen in
figure 4.16.

4.2.1.6 Fetching the total liquidity locked in long and short positions in imple-
mented system

The clearinghouse implements logic to return the total liquidity locked in long and short
positions in the implemented perpetual swap exchange. The function responsible for
returning the total liquidity locked by the exchange is called
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Figure 4.16: Clearinghouse method to get the USDC balance in a trader’s local perpetual
exchange account.

’getTotalLiquidityInLongShortPosition’. The smart contract code for the method
’getTotalLiquidityInLongShortPosition’be seen in figure 4.17.

Figure 4.17: Clearinghouse method total liquidity locked in long and short positions.

4.2.2 Dynamic vAMM

The Dynamic vAMM implemented is configurable. The implemented dynamic vAMM smart
contract is responsible for:

1. Providing the number of vETH tokens a contract has opened a long position on. In
simpler terms, providing the total number of vETH tokens that a trader has bet on
based on the total contract value.

2. Providing the number of vUSDC tokens when a perpetual contract is closed. The
amount of vUSDC tokens represents the value of the perpetual contract when it was
closed.

3. Updating the virtual liquidity pool whenever a perpetual contract is opened or closed
on the implemented perpetual swap exchange.

4. Providing the number of vETH and vUSDC tokens in the virtual liquidity pool.

5. Providing the mark price of the ETH/USDC token pair.
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6. Configuring the dynamic vAMM to adjust the mark price for the ETH/USDC token
pair on the perpetual swap exchange. The DvAMM adjusts to an indicated mark price
by changing the value of the constant k in equation 1 .

The dynamic vAMM is implemented as a Solidity smart contract. Each functionality offered
by the dynamic vAMM is implemented as a function in Solidity code. For example, the
dynamic vAMM smart contract implements the updatePoolBalance method seen in figure
4.21 to update the virtual token reserves of the virtual liquidity pool.

All the functions implemented by the dynamic vAMM smart contract can be seen in table
4.2. Each section below explains the logic and execution behind each function implemented
by the dynamic vAMM smart contract.

Table 4.2: Dynamic vAMM Functions

Functions

updatePoolBalance(uint256, uint256)
updateVAMMOpenLongPosition(uint256)
updateVAMMOpenShortPosition(uint256)
updateVAMMCloseLongPosition(uint256)
updateVAMMCloseShortPosition(uint256)
getvUSDCreserve()
getvETHreserve()
markEthPriceInUSDC()
updateMarkPriceToSpotPrice()
updateMarkPriceUserInput(uint256)
configureDvAMM(uint256, uint256)

Events
updatedMarkPrice(uint256, uint256)
updatedPoolReservesConfigDvAMM(uint256, uint256)

4.2.2.1 Contract Initialization

The variables used in the dynamic vAMM smart contract and their initialization can be seen
in figures 4.18 and 4.19

The dynamic vAMM smart contract imports the SafeMath library to perform arithmetic
calculations. By design, the dynamic vAMM stores the virtual liquidity pool in it. The
implemented virtual liquidity pool comprises virtual USDC (vUSDC) and virtual ETH
(vETH) tokens.

The implemented dynamic vAMM smart contract stores the vUSDC and vETH token
reserves in 2 variables called ’vUSDCreserve’ and ’vETHreserve’, as seen in figure
vETHreserve. ’K’ is an arithmetic constant equal to the product of the token reserves stored
in the virtual liquidity pool. par The dynamic vAMM (DvAMM) implements a constant
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Figure 4.18: Dynamic vAMM smart contract variables.

product market maker (CPMM). Equation 1 shows the formula of the CPMM implemented
by the dynamic vAMM smart contract.

vETHreserve ∗ vUSDCreserve = K (1)

Figure 4.19: Dynamic vAMM smart contract constructor to initialise variables.

For this study, the initial mark price for the ETH/USDC token pair is 1 ETH = 100 USDC.
This mark price is chosen as it makes it simpler to understand calculations and updates to
the virtual token reserves when perpetual contracts are opened or closed. Figure 4.19 shows
the initialization values of the virtual token reserves. The virtual USDC token reserve is
initialised to 1,000,000 tokens, and the virtual ETH token reserve is initialised to 10,000
tokens. The initial mark price can be derived from applying the formula in equation 2 and is
equal to 1,000,000 divided by 10,000, which is equal to 100 USDC per ETH.

price =
vUSDCreserve

vETHreserve
(2)

The initial token volumes are set to high values to lower the effect of opening perpetual
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contracts with high collateral. For example, consider a virtual liquidity pool with 100 virtual
USDC tokens (vUSDCreserve =100) and 1 virtual ETH token (vETHreserve = 1). The
current mark price of this market is 1 ETH = 100 USDC. Let us assume that the spot price
for ETH/USDC is the same as the mark price. If the dynamic vAMM receives a request to
handle opening a trade with 90 vUSDC as collateral, the token reserves of the virtual
liquidity pool will be greatly affected. Executing this trade would drastically change the
mark price, and the delta between the spot and mark price for the token pair will be
extremely high.

The token reserves are set to a high initial value to prevent such situations. As the volume
of traders using the system grows, these values can be scaled up equally such that the mark
price remains consistent.

Solidity does not support floating-point literals. To enable the system being implemented to
handle floating-point numbers, a variable called ’PRECISION’ is initialized. The variable
’PRECISION’ can be seen in figures 4.18 and 4.19. ’PRECISION’ is used to represent the
fractional part of a number.

Every integer or number in the smart contract is multiplied by the precision value. The value
of precision seen in fig 4.18 is six zeroes. This implies that each integer or number variable
in the smart contract has an accuracy of up to six digits after the decimal point. For
example, 100.123456 would be represented as 100123456 in Solidity.

The application layer stores the value of ’PRECISION’ as well. Whenever the application
layer receives an integer from the DvAMM protocol layer, it divides the value by precision to
place a decimal place on the number. Figure 4.20 shows how the application layer code
handles integers returned by the DvAMM protocol layer.

Figure 4.20: Handling of floating point numbers in the Application layer.

4.2.2.2 Updating virtual liquidity pool token reserves

The dynamic vAMM is responsible for updating the token reserves of the virtual liquidity
pool. The dynamic vAMM updates the virtual token reserves by implementing the method
’updatePoolBalance’. The smart contract code for ’updatePoolBalance’ can be seen in
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figure 4.21. updatePoolBalance uses the parameters passed to it to update the existing

Figure 4.21: Dynamic vAMM ’updatePoolBalance’ function .

vUSDC and vETH reserves.

4.2.2.3 Updating the dynamic vAMM - Opening new perpetual contract

The dynamic vAMM is responsible for updating the virtual liquidity pool and returning the
value of the underlying asset, i.e. the number of vETH tokens that a trader has opened a
contract on based on the contract’s total value in USDC. The functions
’updateVAMMOpenLongPosition’ and ’updateVAMMOpenShortPosition’ implement the
logic to update the virtual liquidity pool and return the number of vETH tokens when a
trader opens either a long or short perpetual contract.

The smart contract code for updateVAMMOpenLongPosition and
updateVAMMOpenShortPosition can be seeing in figures 4.22 and 4.22.

Figure 4.22: Dynamic vAMM ’updateVAMMOpenLongPosition’ method.

The method updateVAMMOpenLongPosition is called by the Clearinghouse smart contract
when a trader requests to open a long perpetual smart contract. The function accepts an
unsigned integer as its parameter. The unsigned integer represents the total contract value
of the perpetual contract opened (in vUSDC tokens).
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When a long perpetual contract is opened, a trader is fundamentally betting that the value
of ETH is going to rise relative to USDC. A trader is willing to deposit collateral with
leverage in USDC to bet on a certain number of ETH tokens.
Based on the current mark price of ETH/USDC and current token reserves in the system,
the updateVAMMOpenLongPosition function helps return the number of vETH tokens that
a trader has opened a long position on. If the value of ETH in the system rises after a
perpetual contract is opened, a trader will earn a profit by closing this perpetual contract.
Similarly, if the mark price of ETH in USDC falls after a perpetual contract is opened, a
trader will incur a loss by closing this perpetual contract.

updateVAMMOpenLongPosition uses the total contract value (vUSDC) to update the
vUSDC reserves of the liquidity pool. The new vETH reserves are then calculated by
dividing the constant K by the new vUSDC reserves. The difference between the old vETH
and new vETH reserves indicates the number of vETH tokens that a long perpetual contract
is betting on. This value is stored in a variable called ’vETHboughtFromPool’.

The method updateVAMMOpenLongPosition also updates the virtual liquidity pool with the
new vUSDC and vETH reserves by calling the method updatePoolBalance seen in figure
4.21. Finally, the value stored in the variable ’vETHboughtFromPool’ is returned to the
Clearinghouse.

The method updateVAMMOpenShortPosition is called by the Clearinghouse smart contract
when a trader requests to open a short perpetual smart contract. The function accepts an
unsigned integer as its parameter. The unsigned integer represents the total contract value
of the perpetual contract opened in vUSDC tokens. The code for
’updateVAMMOpenShortPosition’ can be seen in figure 4.23.

Figure 4.23: Dynamic vAMM ’updateVAMMOpenShortPosition’ method.

When a short perpetual contract is opened, a trader is fundamentally betting that the value
of ETH is going to fall relative to USDC.
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Let us consider a simple example to understand how shorting works. Trader ’A’ has 3 ETH,
and the current price for 1 ETH = 100 USDC. Trader ’A’ sells the 3 ETH they own to a
bank in exchange for 300 US dollars (USD), believing that the price of ETH is going to fall.
3 months later, trader ’A’ wants to buy the 3 ETH they had sold to the bank. The price of
1 ETH had fallen to 90 USDC in the 3 months (mark price = 90 USD/ETH). Therefore, to
buy 3 ETH again, the trader needs to exchange 270 USD (3 ETH X 90 USDC) with the
bank selling ETH.
Trader ’A’ fundamentally made a profit of 30 USDC on the 3 ETH because if trader ’A’ had
held 3 ETH instead of selling it, the trader would have made a loss on the valuation of ETH
3 months into the future. Similarly, if the price of ETH had risen to 110 USD/ETH, trader
’A’ would have made a loss since they sold ETH for a cheaper rate and bought it back for
more.

The function updateVAMMOpenShortPosition works similarly to trader A’s example above.
Under the hood, updateVAMMOpenShortPosition gives vUSDC tokens to a trader from the
virtual liquidity pool for selling it vETH. Therefore, the vUSDC reserves of the virtual
liquidity pool are reduced by a value equal to that of the total contract value (product of
collateral in USDC and leverage). The new vETH reserves are then calculated by dividing
the constant K by the new vUSDC reserves. Since the pool gave away vUSDC tokens, the
number of vETH tokens in the liquidity pool has increased. This is so because the product
of vUSDC and vETH tokens has to always be equal to K.

The method updateVAMMOpenShortPosition then calculates the vETH tokens that a user
has opened a short position on by subtracting the new vETH reserves by the old vETH
reserves. This value is also equivalent to the number of vETH tokens added to the virtual
liquidity pool and is stored in the variable ’vETHsoldToPool’ inside the method.

The method updateVAMMOpenShortPosition finally updates the virtual liquidity pool
reserves and returns the value stored in ’vETHsoldToPool’ to the Clearinghouse.

4.2.2.4 Updating the dynamic vAMM - Closing a perpetual contract

The dynamic vAMM is responsible for updating the token reserves of the virtual liquidity
pool whenever a perpetual contract is closed. The dynamic vAMM is also responsible for
returning the contract’s total value in USDC when the perpetual contract is closed. The
total value of a contract is derived from the number of vETH tokens that a contract had
opened a position on and the current mark price of the ETH/USDC token pair. The
functions’ updateVAMMCloseLongPosition’ and ’updateVAMMCloseShortPosition’
implement the logic to update the virtual liquidity pool and return the number of vUSDC
tokens representing the value of the contract when a trader closes a long or short perpetual
contract. The smart contract code for updateVAMMCloseLongPosition and
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updateVAMMCloseShortPosition can be seeing in figures 4.24 and 4.25.

Figure 4.24: Dynamic vAMM ’updateVAMMCloseLongPosition’ method.

The method updateVAMMCloseLongPosition is called by the Clearinghouse smart contract
when a trader requests to close an open long position perpetual smart contract. The
function accepts the number of vETH tokens that the contract had ’longed’ on.

Closing a long perpetual contract is analogous to selling or adding the vETH tokens a
contract had bet on back to the liquidity pool.

updateVAMMCloseLongPosition takes the vETH that tokens the long perpetual contract had
bet on and them back to the vETH reserve of the virtual liquidity pool. The new vUSDC
reserves are then calculated by dividing the constant K by the new vETH reserves. Since the
pool gained vETH tokens, the number of vUSDC tokens in the liquidity pool has decreased.
This is so because the product of vUSDC and vETH tokens must always be equal to K.

updateVAMMCloseLongPosition then finds the total value of the vETH tokens added back
to the pool by finding the difference between the old and new vUSDC reserves. This value is
also equivalent to the total contract value when closing the long perpetual contract.

The method updateVAMMCloseLongPosition finally updates the virtual liquidity pool
reserves and returns the value of the closed contract to the Clearinghouse.

The method updateVAMMCloseShortPosition is called by the Clearinghouse smart contract
when a trader requests to close an open short position perpetual smart contract. The
function updateVAMMCloseShortPosition accepts the number of vETH tokens that the
contract had ’shorted’ on.
The smart contract code for the function updateVAMMCloseShortPosition can be seen in
figure 4.25

Opening a short contract is analogous to selling a security (here vETH tokens) to the virtual
liquidity pool. Closing a short perpetual contract is analogous to “buying back” or taking
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Figure 4.25: Dynamic vAMM ’updateVAMMCloseShortPosition’ method.

vETH tokens from the virtual liquidity pool.

updateVAMMCloseShortPosition takes the number of vETH tokens that the perpetual
contract being closed had ’shorted’ on and subtracts this value from the vETH reserve of
the virtual liquidity pool. The new vUSDC reserves are then calculated by dividing the
constant K by the new vETH reserves. Since the pool lost vETH tokens, the number of
vUSDC tokens in the liquidity pool has increased. This is so because the product of vUSDC
and vETH tokens must always be equal to K.

updateVAMMCloseShortPosition then finds the total value of the vETH tokens added back
to the pool by finding the difference between the new and old vUSDC reserves. This value is
also equivalent to the total contract value when closing the short perpetual contract.

The method updateVAMMCloseShortPosition finally updates the virtual liquidity pool
reserves and returns the value of the closed short contract to the Clearinghouse.

4.2.2.5 Providing token reserve information and the mark price of ETH/USDC
token pair

The dynamic vAMM implemented is responsible for providing the number of vETH and
vUSDC tokens in the virtual liquidity pool. The dynamic vAMM function to return the
vUSDC token reserve in the virtual liquidity pool is called ’getvUSDCreserve’. The dynamic
vAMM function to return the vETH token reserve in the virtual liquidity pool is called
’getvETHreserve’. The smart contract code for the functions ’getvUSDCreserve’ and
’getvETHreserve’ can be seen in figure 4.26

The dynamic vAMM implemented is also responsible for providing the mark price of the
ETH/USDC token pair. The dynamic vAMM function to return the mark price of 1ETH in
USDC is called ’markEthPriceInUSDC’. The smart contract code for the function
’markEthPriceInUSDC’ can be seen in figure 4.27
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Figure 4.26: Dynamic vAMM ’getvUSDCreserve’ and ’getvETHreserve’ functions.

Figure 4.27: Dynamic vAMM ’markEthPriceInUSDC’ method.

4.2.2.6 Configuring the dynamic vAMM

The purpose of implementing a dynamic vAMM is so that it can be configured. A dynamic
vAMM helps a perpetual swap exchange adjust the mark price for a token pair to its spot
price or close to its spot price. A perpetual swap exchange is more adaptable to market
conditions if it can adjust its own mark price closer to the spot price for a token pair.

The system implemented uses a dynamic vAMM to adjust the mark price of the implemented
token pair (ETH/USDC) to the spot price. The dynamic vAMM adjusts the mark price for a
given token pair by configuring the virtual liquidity pool’s reserves for the token pair.
The perpetual swap exchange implements the ETH/USDC token pair. The mark price for
the token pair can be found using the formula seen in equation 3.

The mark price of a token pair is adjusted by scaling the value of the vUSDC token reserves
and the constant k seen in equation 4.

markPrice =
vUSDCreserve

vETHreserve
(3)

vETHreserve ∗ vUSDCreserve = K (4)

The current DvAMM implementation updates the mark price by keeping the number of
vETH tokens fixed and adjusting the number of vUSDC tokens. For example, the spot price
is 50 USDC per ETH and mark price is 100 USDC per ETH. The number of vUSDC tokens
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is 1000, vETH tokens are 10 and k = 10,000. To update the mark price to be equal to the
spot price, we can use the formula seen in equation 5. new-vUSDCreserve = 10(vETH) * 50
(spot price) = 500. The new vUSDC reserve is 500, and the vETH reserve is 10. The mark
price can be derived from equation 3 and is equal to 500 vUSDC/10vETH = 50
USDC/ETH. The new value of the constant K = 500*10 = 5000.

new vUSDCreserve = newMarkPrice ∗ current vETHreserve (5)

The dynamic vAMM implements the function ’updateMarkPriceToSpotPrice’ to adjust the
mark price of ETH/USDC to the spot price of ETH/USDC. The smart contract code for the
function ’updateMarkPriceToSpotPrice’ can be seen in figure 4.28.

Figure 4.28: Dynamic vAMM ’updateMarkPriceToSpotPrice’ method.

updateMarkPriceToSpotPrice first fetches the spot current spot price of the token pair. The
function then finds the number of new vUSDC token reserves to update the mark price.
Following this, the dynamic vAMM is configured by calling the function ’configureDvAMM’.
configureDvAMM updates the vUSDC token reserves and the value of the arithmetic
constant K. After configuring the virtual liquidity pool token reserves and K, an event called
’updatedPoolReservesConfigDvAMM’ is emitted to store a log of the configuration changes
of the dynamic vAMM.

The smart contract code for the function ’configureDvAMM’ and event
’updatedPoolReservesConfigDvAMM’ ’can be seen in figures 4.29 and 4.30.

After the DvAMM has been configured, the function updateMarkPriceToSpotPrice checks if
the new mark price is equal to the spot price. If the new mark price and spot price are equal,
an event ’updatedMarkPrice’ is emitted to store a log of the old and new mark prices. The
code for the event ’updatedMarkPrice’ can be seen in figure 4.30

The dynamic vAMM also implements a function to update the mark price of the

60



Figure 4.29: Dynamic vAMM ’configureDvAMM’ method.

Figure 4.30: Dynamic vAMM ’updatedPoolReservesConfigDvAMM’ and ’updatedMarkPrice’
events.

ETH/USDC token pair to a user-provided price. The function to implement this is called
’updateMarkPriceUserInput’ and the smart contract code for this function can be seen in
figure 4.31.

The logic implemented by the function ’updateMarkPriceUserInput’ is the same as the
method ’updateMarkPriceToSpotPrice’. The only difference between the two functions is
that one function updates the mark price to be equal to the provided user input, and one
function updates the mark price to be equal to the spot price.

4.2.3 Vault

The Vault is responsible for securely holding the collateral deposits for all open perpetual
contracts. This section explains the logic and execution behind each function implemented
by the Vault.

The current implementation of the Vault maintains a record of the total number of USDC
tokens locked in open perpetual contracts on the perpetual swap exchange itself. The
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Figure 4.31: Dynamic vAMM ’updateMarkPriceUserInput’ function.

perpetual swap exchange implements a local USDC token and does not use the ERC-20
USDC token. The reasoning behind this implementation choice can be found in sections
4.1.1 and 4.2.1.

The Vault is implemented as a Solidity smart contract. The Vault implements two functions
and two events. All the events and functions implemented by the vault smart contract can
be seen in table 4.3.

Table 4.3: Vault Functions and Events

Functions deposit(uint256, address)
withdraw(uint256, address)

Events vaultDeposit(address, uint256)
vaultWithdraw(address, uint256)

The vault smart contract is responsible for depositing and securely storing the collateral for
all open perpetual contracts. The function that handles the new perpetual contract
collateral deposits into the USDC vault is called ’deposit’. The implementation for the
function ’deposit’ can be seen in figure 4.32.

The vault smart contract is responsible for securely withdrawing and returning a trader’s
collateral along with the profit and loss incurred when a perpetual contract is closed. The
function that handles the withdrawal of USDC tokens from the USDC vault is called
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’withdraw’. The implementation for the function ’withdraw’ can be seen in figure 4.32.

Figure 4.32: Vault smart contract ’deposit’ and ’withdraw’ functions.

4.2.4 Mock Oracle

The mock oracle is responsible for providing functionality that allows the researcher to feed
mock spot prices for the ETH/USDC token pair. The mock oracle is implemented as a
Solidity smart contract. The mock oracle implements two functions and one event. All the
events and functions implemented by the vault smart contract can be seen in table 4.4.

Table 4.4: Mock Oracle Functions and Events

Functions
getSpotPriceETHinUSDC()
setSpotPrice(uint256)

Events oraclePriceUpdatedEvent(uint256)

The mock oracle implemented is responsible for returning the spot price of the ETH/USDC
token pair. The mock oracle is also responsible for setting the spot price of the ETH/USDC
token pair based on the input price it receives. The mock oracle implements two functions
called ‘getSpotPriceETHinUSDC’ and ‘setSpotPrice’ to fulfil these responsibilities. The
implementation of these functions can be seen in figure 4.33.

The current mock oracle smart contract implementation stores the spot price of the
ETH/USDC token pair in a variable called ‘oracle1ETHinUSDC’. The method
getSpotPriceETHinUSDC returns the value stored in the variable oracle1ETHinUSDC. The
method setSpotPrice sets the value of the variable oracle1ETHinUSDC and returns the
updated value stored in the variable oracle1ETHinUSDC.
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Figure 4.33: Methods implemented by the mock oracle smart contract.
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5 Evaluation

This chapter details the evaluation process for the implemented system. This chapter
explains the methodology behind evaluating the dynamic vAMM based perpetual swap
exchange. This chapter then provides the results of the evaluation performed and the
discussion of these results.

This chapter evaluates the implemented system and discusses its strengths, limitations, and
feasibility. This chapter suggests solutions to address the limitations of the implemented
system and suggests useful metrics help and parameters that would automate the process of
configuring a vAMM based on current market conditions.

Following the methodology, results and discussion sections, this chapter finally critically
reviews the implemented DvAMM based perpetual swap exchange. Section 5.1 discusses the
methodology behind evaluating the system. Section 5.2 provides the results obtained on
evaluating the implemented system. Section 5.3 discusses the results obtained and section
5.4 critically reviews the implemented system.

5.1 Methodology

A series of experiments are performed to evaluate the implemented perpetual swap exchange
and the dynamic vAMM. The experiments are performed to test the functionality and
reliability of the implemented perpetual swap exchange. The experiments evaluate if the
dynamic vAMM based perpetual exchange can adapt to external market conditions or not.
This study implements a dynamic vAMM protocol to test if the protocol can adapt to
current market conditions and to find the protocol’s limitations.

To implemented system is evaluated by performing multiple sets of experiments with
different initial parameter values. The parameter that is varied at the start of each set of
experiments is the constant K seen in equation 1. Varying the value of K is equivalent to
changing the values of the virtual liquidity pool reserves. The different sets of intial
parameter values used to perform experiments on the system can be seen in tables 5.1 and
5.2
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vETHreserve ∗ vUSDCreserve = K (1)

The values of K, vETH and vUSDC tokens are varied at the start of each set of experiments
because these values impact the behaviour of the implemented system. The value of K with
respect to the size of a trade determines the variation a trade causes on the virtual liquidity
pool token reserves. If a trade vastly alters the token reserves of a virtual liquidity pool, the
mark price of an exchange will diverge extremely from the spot price for that token pair.
Therefore, the value of K and token reserves affect the trading experience for the users of
the implemented system.

It is important to evaluate the system for different initial configurations to observe how the
dynamic vAMM handles several scenarios. Performing experiments with different K values
and token reserves will also allow this study to determine an optimal strategy to pick the K
value.

The implemented system is evaluated based on how the dynamic vAMM behaves when the
system is made to adapt to market conditions. Various experiments are performed on the
system to observe how well the DvAMM based protocol can handle updates to the mark
price for the implemented token pair (vETH/vUSDC). These experiments can be seen in
5.2. The experiments are performed to observe if trades can be liquidated once the mark
price of a token pair is updated. The experiments also observe the impact on profits and
losses of traders when the mark price of a token pair is updated.
External market conditions are provided as the spot price for ETH/USDC by the oracle to
the system.

The experiments performed essentially update the mark price of ETH/USDC at different
stages of trading on the perpetual swap exchange. Performing such experiments allows the
researcher to observe the system’s behaviour under various scenarios. For example, an
experiment is performed to observe the system’s behaviour when only 1 long perpetual
contract is open, and the researcher updates the mark price of the system to be equal to the
spot price.

The experiments evaluate the system under extreme scenarios (edge cases). Performing
edge case experimentation allows this research to evaluate the performance and behaviour of
a dynamic vAMM protocol under extreme scenarios. The dynamic vAMM protocol also
needs to handle all possible cases that an AMM and vAMM protocol can handle.

The experiments seen in tables 5.1 are performed to test if the implemented dynamic vAMM
based system can perform the role of a fully functional vAMM based perpetual exchange
correctly. In the set of experiments seen in table 5.1, we do not update the mark price or
token reserves manually. The experiments evaluate if the system performs correctly under
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various scenarios. Each experiment in table 5.1 has an expected result or behaviour. If the
implemented system does not yield results or behaviour equivalent to the expected results, it
indicates flaws in the implemented system.

Tables 5.1 and 5.2 shows the list of experiments performed on the implemented DvAMM
based perpetual exchange to evaluate it.

Table 5.1: Experiments to test if the implemented dynamic vAMM based system can perform
as a fully functional vAMM based perpetual exchange.

No. Experiment Description Expected Results/Behaviour

Initial Parameters: vUSDC = 100,000, vETH = 1000, Mark Price 100 USDC, K = 100,000,000

1.1

Open 3 long positions
from one user account
with random amounts
of collateral for each trade.
Close all long trades in any
order

Long trades should open seamlessly.
The vault balance should be updated.
The dynamic vAMM calculations and
exchange rates should be formulaically correct.

All trades should close seamlessly. The system
should not prevent the liquidation of any trades
due to low funds in the vault. The vault balance
should be 0 after all trades are closed.

1.2

Open 10 long trades from 5
trader accounts with random
amounts of collateral for
each trade. Close all long trades
in any order

Long trades should open seamlessly The vault
balance should be updated. The vAMM
calculations and exchange rates should be
formulaically correct.
All trades should close seamlessly.
The vault balance should be 0 after
all trades are closed.

2.1

Open 3 short positions from
one user account with
random amounts of collateral
for each trade.
Close all short trades
in any order.

Short trades should open seamlessly.
The vault balance should be updated. The dynamic
vAMM calculations and exchange rates should be
formulaically correct.

All trades should close seamlessly, and the system
should not prevent the liquidation of any trades
due to low funds in the vault. The Vault balance
should be 0 after all trades are closed
.

2.2

Open 10 long trades
from 5 trader accounts
with random amounts of
collateral for each trade.

Close all long trades randomly.
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Table 5.1 continued from previous page
No. Experiment Description Expected Results/Behaviour

3

Open 10 long and 10 short trades
in random order from 5 accounts
with equal amounts of collateral
for each trade (100 USDC).
Close all trades in random order.

All contracts should open seamlessly.
The vault balance should be updated.
The dynamic vAMM calculations
and exchange rates should be formulaically correct.
All trades should close seamlessly.
The system should not prevent
the liquidation of any trades due to
low funds in the vault

4.1

Total number of user accounts
opening and closing trades = 5

Open Perpetual Contracts
in the following order:

Short trades = 5. (1 trade per account)
Long trades = 10. (2 trades per account)
Collateral for each trade = 100 USDC

Liquidity in Longs >Liquidity in Short

Closing Perpetual Contracts
Close all short trades first followed by
long trades after.

All contracts should open seamlessly.
The vault balance should be updated
with the opening of each contract.
Dynamic vAMM calculations and
exchange rates should be formulaically correct.

All trades should close seamlessly.
Since liquidity in long trades is greater
than the liquidity locked in short trades
and all short trades are closed first, all
shorts should receive a loss on their
trade collateral.
All long trades should receive a profit on
their trade collateral.
The exchange should not prevent the liquidation
of any trades due to low funds in the vault.
The Vault balance should be 0 after all the
trades are closed.

4.2
Simulate experiment 4.1 again and
close all long trades first
followed by short trades

Similar results as experiment 4.1should be observed.
The only difference being that short traders should
not experience losses on their trade collateral.
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Table 5.1 continued from previous page
No. Experiment Description Expected Results/Behaviour

5.1

Total number of user accounts
opening/closing trades = 5

Open Perpetual Contracts
in the following order:

Long trades = 5. (1 trade per account)
Short trades = 10. (2 trades per account)
collateral for each trade = 100 USDC

Liquidity in Shorts >Liquidity in Longs

Closing Perpetual Contracts:
Close all long trades first
followed by short trades.

All contracts should open seamlessly.
The vault balance should be updated with the
opening of each contract.
The dynamic vAMM calculations and exchange
rates should be formulaically correct.

All trades should close seamlessly.
Since the liquidity in short trades is greater than
the liquidity in long trades and short trades are
closed first, all long trades should receive a loss on
their trade collateral.
All shorts trades should receive a profit on their
trade collateral.
The exchange should not prevent the liquidation of
any trades due to low funds in the vault.
The Vault balance should be 0 after all the trades
are closed.

5.2
Simulate experiment 5 again and
close all short trades first
followed by long trades

Similar results as experiment 5.1 should be
observed. The only difference should be long traders
should not experience losses on
their trade collateral.

Table 5.2: Experiments to evaluate the behaviour of the DvAMM based system when the
mark price is updated

No. Experiment Description

Initial Parameters: Mark Price = 100 USDC/ETH
Set 1. vUSDC = 1000 , vETH = 10, K = 10,000.
Set 2. vUSDC = 100,000 , vETH = 1000, K = 100,000,000.
Set 3. vUSDC = 10,000,000 , vETH = 100,000 , K = 1,000,000,000,000.

1

Open 1 long position from one user account with collateral = 100 USDC.
Note the mark price after the trade execution.
Update Mark Price to be greater than the current mark price.

Close the long position trade and observe the behaviour.
Expected Result: The trader should receive a profit on trade closure since the mark
price rose after the trader had opened a long position
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Table 5.2 continued from previous page
No. Experiment Description

2

Intialize system parameters (vETH, vUSDC)
Open 1 short position from one user account with collateral = 100 USDC.
Note the mark price after the trade execution.
Update Mark Price to be less than the current mark price.

Close the short position trade and observe the system’s behaviour.

Expected Result: The trader should receive a profit on trade closure since the value
of ETH decreased in USDC after the trader had opened their trade.

3

Initialise system parameters (vETH, vUSDC)
Open 1 long position from one user account with collateral = 100 USDC.
Note the mark price after the trade execution.
Update Mark Price to be less than the current mark price.

Close the long position trade and observe the system’s behaviour.

Expected Result: The trader should receive a loss on trade closure since the mark
price the value of ETH in USDC fell after the trader had opened a long position

4

Intialize system parameters (vETH, vUSDC)
Open 1 short position from one user account with collateral = 100 USDC.
Note the mark price after the trade execution.
Update Mark Price to be greater than the current mark price.

Close the short position trade and observe the system’s behaviour.

Expected Result: The trader should receive a loss on trade closure since the value
of ETH increased in USDC after the trader had opened their trade.
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Table 5.2 continued from previous page
No. Experiment Description

5

Intialize system parameters (vETH, vUSDC)

Open 10 long and 10 short positions from five user accounts. Each account will open
1 long trade and 1 short trade. Open long and short trades alternatively.
The collateral of each trade is100 USDC.

The mark price after all trades are open should be equal to the initial mark price.

Update Mark Price to be greater than the current mark price.
Close all positions in any order.

Observe if the system can handle trade closures when the mark price is updated
and the liquidity of long and short trades is the same.

Repeat the experiment by reducing the mark price w.r.t current mark price after
all trades have been opened. Close all positions in random order.

6

Intialize system parameters (vETH, vUSDC)

Open 5 long and 10 short positions from 10 user accounts. Each account will open
at least 1 short trade. Accounts can open long trades at random
The collateral of short trades is 100 USDC and long trades is 200 USDC.
Open trades in random order.

The liquidity locked in long trades should be equal to the short trades.
Update Mark Price to be greater than the current mark price.
Close all positions in any order.

Observe if the system can handle trade closures when the mark price is updated and
the liquidity locked in long and short trades is the same but the no. of trades isn’t.

Repeat the experiment by reducing the mark price w.r.t current mark price after
all trades have been opened. Close all positions in random order.
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Table 5.2 continued from previous page
No. Experiment Description

7

Intialize system parameters (vETH, vUSDC)

Open 5 long and 5 short trades from any number of user accounts in any order.
Choose the collateral of each trade at random and ensure the liquidity locked in
long trades is greater than 10% of the liquidity locked in short trades.
Note the mark price after all trades are open

Update Mark Price to be greater than the current mark price. Close all positions in
random order

Observe if the system can handle trade closures when the mark price is updated and
the liquidity locked in long and short trades is not the same.

Repeat the experiment by reducing the mark price w.r.t current mark price after
all trades have been opened. Close all positions in random order.

8
Repeat experiment 7 and ensure that the liquidity locked in short trades is greater than
atleast 10% of the liquidity locked in long trades.

9
Perform experiments 7 and 8 and ensure that the difference in the liquidity locked
in long and short trades is less than 10%.

10

Intialize system parameters (vETH, vUSDC)

Open unequal number of long and short trades with multiple user accounts.
Perform trades with high, medium and low collateral values.
Ensure that the difference in liquidity locked in long and short trades is greater than
20%

Note the mark price after all trades are open
Update Mark Price to be greater than the current mark price. Close all positions in
random order

Observe if the system can handle trade closures when the mark price is updated and
the liquidity locked in long and short trades is not the same.

Repeat the experiment by reducing the mark price w.r.t current mark price after
all trades have been opened. Close all positions in random order.
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5.2 Results

This section provides the results of the experiments performed to evaluate the implemented
DvAMM based perpetual swap exchange.

The results from performing the experiments seen in table 5.1 can be found in table 5.3.e
The experiment numbers seen in table 5.3 corresponds to the experiment numbers seen in
table 5.1.

The results generated from performing experiments mentioned in table 5.2 can be found in
5.4. The experiment numbers seen in table 5.4 corresponds to the experiment numbers seen
in table 5.2.
Apart from the results obtained in 5.4, there are 2 common results attained on performing
the experiments seen in table 5.2 for all 3 sets of initial parameter values. The common
results attained are as follows:

1. It is observed that opening a position with the same collateral for all three sets of initial
parameters seen in table 5.4 causes the mark price to diverge differently for each set.
It is observed in all experiments that opening a long/short trade with the same
collateral for all 3 sets of parameters causes the mark price to diverge more when the
value of K is low compared to when the value of K is high.

2. It is observed that the slippage experienced by the exchange is highest when the
system is initialised with set 1’s parameter values (lowest K, vETH and vUSDC
values). When the system is initialised with set 3’s parameter values (highest K, vETH
and vUSDC values), the slippage experienced is the lowest when opening and closing
multiple trades in parallel.
Slippage is the difference between the expected price of an asset when making a trade
and the price at which the trade is actually executed (37). On performing the
experiments seen in 5.2, it is observed that the size of K and virtual liquidity pool
reserves are inversely proportional to the levels of slippage observed.

Table 5.3: Results of experiments performed to test if the implemented system can accurately
perform functionalities of a vAMM based perpetual exchange.

Experiment No. Result Obtained from experiments
Comparing
results obtained
with expected results

Initial Parameters: vUSDC = 100,000, vETH = 1000, Mark Price 100 USDC, K = 100,000,000
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Table 5.3 continued from previous page

Experiment No. Result Obtained from experiments
Comparing
results obtained
with expected results

Experiments
1.1 and 1.2

Long trades open seamlessly.
The vault balance is updated as each trade is opened.
The dynamic vAMM calculations and
exchange rates are formulaically correct.

The calculations are verified by performing them by
hand

All trades close seamlessly. The system
does not prevent the liquidation of any trades
due to low funds in the vault. The vault balance
is 0 after all trades have been closed

The results obtained
by performing
experiments 1.1 and
1.2 match
the expected results
of these
experiments seen
in table 5.1

Experiments
2.1 and 2.2

Short trades open seamlessly.
The vault balance is updated correctly as each trade
is opened.
The dynamic vAMM token reserve calculations are
correct when a long or short contract is opened.
The calculations are verified by using Microsoft(MS)
excel. The formula used by a constant product market
maker (CPMM) is entered into excel and the calculation
for each trade is performed and compared
simultaneously on excel and the implemented system

All trades close seamlessly, and the system
does not prevent the liquidation of any trades
due to low funds in the vault. The Vault balance
is 0 after all trades are closed.

The results obtained
by performing
experiments 2.1 and
2.2 match
the expected results
of these
experiments seen in
table 5.1
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Table 5.3 continued from previous page

Experiment No. Result Obtained from experiments
Comparing
results obtained
with expected results

Experiment 3

All contracts open seamlessly.
The vault is updated correctly as each trade is
opened.
The dynamic vAMM token reserve calculations are
correct when a long or short contract is opened.
The calculations are verified by using(MS)
excel. The formula used by a constant product market
maker (CPMM) is entered into excel and the calculation
for each trade is performed and compared
simultaneously on excel and the implemented system

All trades close seamlessly. The system does not
prevent the liquidation of any trades due to
low funds in the vault. The Vault balance is 0 after all
trades are closed.

The results obtained
by performing
experiment 3 matches
the expected results
of this experiments seen
in table 5.1

Experiment 4.1

All contracts open seamlessly.
The vault is updated correctly as each trade is
opened.
The dynamic vAMM token reserve calculations are
correct when a long or short contract is opened.
The calculations are verified by using excel.

All trades close seamlessly.
All short trades experience a loss. The value
returned on closing a short trade is less than
the deposited collateral on the trade
All long trades experience a profit. The value
returned on closing a long trade is more than
the deposited collateral on the trade

All trades close seamlessly. The system does not
prevent the liquidation of any trades due to
low funds in the vault. The Vault balance is 0 after all
trades are closed.

The results obtained
by performing
experiment 4.1
matches the expected
results of this
experiment seen in
table 5.1
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Table 5.3 continued from previous page

Experiment No. Result Obtained from experiments
Comparing
results obtained
with expected results

Experiment 4.2

Similar results to experiment 4.1 are obtained.
The difference in results is that short traders do not
experience a loss. The amount returned on closing a
short trade is never less than the collateral deposited
for that short trade

The results obtained
by performing
experiment 4.2
matches the expected
results of this
experiment seen in
table 5.1

Experiment 5.1

All contracts open seamlessly.

The vault is updated correctly as each trade is
opened.
The dynamic vAMM token reserve calculations are
correct when a long or short contract is opened.
The calculations are verified by using excel.

All trades close seamlessly.
All long trades experience a loss. The value
returned on closing a long trade is less than
the deposited collateral on the trade
All short trades experience a profit. The value
returned on closing a short trade is more than
the deposited collateral on the trad

The system does not prevent the liquidation of any
trades due to low funds in the vault. The Vault balance
is 0 after all trades are closed.

The results obtained
by performing
experiment 5.1
matches the expected
results of this
experiment seen in
table 5.1

Experiment 5.2

Similar results to experiment 5.1 are obtained.

The difference in results is that long traders do not
experience a loss. The amount returned on closing a
long trade is never less than the collateral deposited
for that long trade

The results obtained
by performing
experiment 5.2
matches the expected
results of this
experiment seen in
table 5.1
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Table 5.4: Results of experiments performed to evaluate the behaviour of the DvAMM based
system when the mark price is updated

Experiment
No.

Experiment Results and Observations

Initial Parameters: Mark Price = 100 USDC/ETH
Set 1:. vUSDC = 1000 , vETH = 10, K = 10,000.
Set 2: vUSDC = 100,000 , vETH = 1000, K = 100,000,000.
Set 3:. vUSDC = 10,000,000 , vETH = 100,000 , K = 1,000,000,000,000.

Experiment
1

The system cannot close the long position for all 3 sets of initial parameters.

The vault does not have enough balance to pay out the collateral and profit
that would be received from closing the position

Experiment
2

The system cannot close the short position for all 3 sets of initial parameters.

The vault does not have enough balance to pay out the collateral and profit
that would be received from closing short the position

Experiment
3

The system liquidated and close out the long position for all 3 sets of
initial parameters.

The trader receives a loss on trade closure since the price of ETH in USDC
fell after the long trade was opened.
The vault has some additional balance left after the trade is closed.

Experiment
4

The system liquidated and closed out the short position for all 3 sets of
initial parameters.

The trader receives a loss on trade closure since the price of ETH in USDC
rose after the short trade was opened.
The vault has some additional balance left after the trade is closed

Experiment
5

The system successfully opened all trades and had 2000 USDC in it’s vault
after all trades were opened.
The mark price was equal to the inital mark price of 100 USDC/ETH.

The DvAMM based system successfully closed all positions.
Updating the mark price altered the profit and loss margins recieved on
the trades.
The balance of the vault is 0 after all trades have closed.
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Table 5.4 continued from previous page
Experiment

No.
Experiment Results and Observations

Experiment
6

The system successfully opened all trades and had 2000 USDC in its vault
after all trades had opened.

The system is able to eventually close out all the trades when the mark
price is updated to be higher than its current value after opening all trades.
The system is also able to eventually close out all the trades when the mark
price is updated to be lower than its current value after opening all trades.

The trades had to be closed in a certain order for all trades to be liquidated.
There were cases experienced during trade closure where one large
profitable trade could not be closed until some smaller or loss-making
trades were closed.

After closing all trades in a certain order, the balance of the vault is 0
The results obtained for all 3 sets of initial parameter values are identical
with the only difference being the profit and loss margins.

Experiment
7

The system fails to close out or liquidate trades after closing out a few trades.

The implemented system always experiences a scenario where there are
some trades left that cannot be closed out.
The system is left in a state more trades cannot be closed
until newer trades are opened that add liquidity to the vault. Even then, the
system always remains in a state where all open trades can never be closed.

The vault does not have enough balance to pay out the collateral and profit or
loss that would be received from closing the remaining open positions.

On repeating this experiment by updating the mark price to be lower than its
current value after opening all trades, the system is observed to eventually
close out all open positions. However, the system does experience cases
where it cannot close out certain trades until more trades are opened or
closed.

The same results are obtained on performing experiment 7 for all 3 sets
of initial parameter values
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Table 5.4 continued from previous page
Experiment

No.
Experiment Results and Observations

Experiment
8

On performing experiment 8 and updating the mark price to be lower than its
current value after opening all trades, it is observed that the system always
experiences a scenario where there are some trades left that cannot be
closed out or liquidated. The vault does not have enough balance to
pay out the collateral and profit or loss that would be received from
closing the remaining open positions.

On repeating this experiment by updating the mark price to be higher than
its current value after opening all trades, the system is observed to
eventually close out all open positions. However, the system does
experience situations where it cannot close out certain trades until more
trades are opened or closed.

The system behaviour observed on performing experiment 8 for all 3 sets
of initial parameter values is the same.
However, the first set of initial parameter values experiences higher slippage
for smaller collateral values (for e.g, a trade with collateral =500USDC)

Experiment
9

The system behaviour observed in performing experiment 9 is the same
as the system behaviour experienced in experiments 7 and 8.

There is a difference in results between experiments 7,8 and 9. It is observed
that by reducing the difference in liquidity between long and shorts below
10% increases the total volume of trades (in USDC) that can be closed before the system
cannot close more trades when the mark price of the system is updated such that it
profits positions that have more liquidity locked in compared to the other position.
When the mark price update profits the position with lesser liquidity,
it is observed that all trades close eventually. There number of trades blocked from being
closed are lesser as well. The
same system behaviour is observed for all 3 sets of initial parameters
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Table 5.4 continued from previous page
Experiment

No.
Experiment Results and Observations

Experiment
10

On performing experiment 10 and updating the mark price to be either
lower or higher than its current value after opening all trades,
it is observed that the system mostly reaches a state where
there are some trades left that cannot be closed out or liquidated.
When all open trades are closed in a random order, the system always
reaches a state where some trades cannot be closed due to a lack of funds
in the vault.
The system is able to close out all trades eventually when the liquidity
locked in long and short trades is the same. However, when closing
trades randomly under equal liquidity conditions, there are some open
trades that cannot be closed out but others can.

Trades with a high collateral value introduced higher slippage in the system
for sets 1 and 2 with respect to set 3. The system behaviour observed for all
3 initial parameter sets are the same.

5.3 Discussion

This section discusses the results obtained in section 5.2 and evaluates the system based on
its strengths, weaknesses, and limitations. This section further suggests solutions to address
the limitations of the implemented system.

Section 5.3.1 discusses the system’s performance when the mark price of the system is left
unchanged. Section 5.3.2 details the impact of the K value on the system’s performance.
Section 5.3.3 evaluates the system’s performance when the mark price of the system is
configured. Section 5.3.4 addresses the limitations and weaknesses of the system and
suggests solutions to tackle the system’s limitations. Section 5.3.5 discusses the strengths of
the implemented system and section 5.3.6 summarises the results discussed in this
section.

5.3.1 System Performance when system’s token reserves remain

unchanged

Dynamic vAMM based perpetual exchanges need to correctly perform all the operations of a
fully functional vAMM based perpetual exchange. Experiments seen in table 5.1 are
performed to verify that the implemented dynamic vAMM based perpetual swap exchange
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can operate as a fully functional vAMM based DEX.

The set of experiments seen in table 5.1 are performed with the virtual liquidity pool reserves
and mark price of ETH/USDC set at the start of the experiment. The token reserves and
mark price of the implemented system are never changed between or after any experiment.
From the results obtained(see table 5.3), it is observed that the DvAMM always updates the
virtual liquidity pool reserves accurately. The results seen in table 5.3 demonstrate that the
vault always stores the correct amount of collateral when a trade is opened or closed. From
the results seen in table 5.3, it is further observed that the implemented system is always
able to liquidate trades and return the profits and losses along with the trade collateral to a
user. There is never a scenario where the DvAMM based system cannot pay out a trader
and close an open position when the token reserves of the system are not changed. It is also
observed that the system never charges a trader more than the collateral a trader wishes to
deposit for a trade.

The results obtained in table 5.3 verify that the implemented system can perform all
operations of a virtual automated market-making protocol correctly. The results obtained in
table 5.3 from performing experiments seen in table 5.1 verify that the dynamic vAMM
based protocol can handle edge cases and normal scenarios that a vAMM based exchange
would face in a production environment.

5.3.2 Impact of K value on the system’s performance

This section discusses the importance of the K value in the implemented constant product
market maker based DvAMM exchange.

Each experiment seen in table 5.2 is performed 3 times with different initial virtual token
reserves and K values each time the experiment is repeated. This section discusses the
difference in results obtained from performing these experiments with different initial
parameter values. The results of performing the experiments seen in table 5.2 can be seen in
section 5.2.

From the results seen in section 5.2 it is observed that the slippage experienced by traders
on the system is inversely proportional to the value of the constant K. For an opening with a
particular collateral, a dynamic vAMM with a lower K value experiences higher slippage,
whereas a dynamic vAMM with a high K value experiences lower slippage.

Slippage is caused by three factors, volatility, trade size, and lack of liquidity (37).

Market volatility for a perpetual token pair and the trade size cannot be controlled by the
system implemented. However, the lack of liquidity can be easily mitigated by controlling
liquidity. Liquidity is the ease with which an asset can be bought or sold without affecting
its price (37).
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Since the implemented system has a virtual liquidity pool for its assets (ETH), the system
can be initialized with a high value of virtual tokens (vETH) for its assets. Slippage can be
reduced by increasing the amount of vETH, vUSDC and consequentially K. With a high
amount of vETH tokens, the ease of buying ETH without affecting its price increases.

However, setting the value of K and virtual liquidity pool tokens has consequences. If the
mark and spot price divergence is high and K is too high, arbitrageurs will not have
adequate funds to keep the DvAMM mark price in line with the spot price (6).

From the results seen in section 5.2 it is also observed that the mark price divergence for a
particular trade size is inversely proportional to the value of the constant K. The following
example will provide a better understanding of the results obtained regarding mark price
divergence. Suppose the current mark price is 1 ETH = 500 USDC. When a long trade with
collateral = 500 USDC is opened, the following mark price divergence rates are attained for
all 3 sets of initial parameters seen in table 5.4

1. Set 1, K=1000: The mark price changes from 100 to 225 USDC/ETH on opening the
trade. A 125 % change in the mark price is observed.

2. Set 2, K = 100,000: The mark price changes from 100 to 101.0025 USDC/ETH on
opening the trade. A 1.01% change in the mark price is observed.

3. Set 3, K = 10,000,000: The mark price changes from 100 to 100.01 USDC/ETH on
opening the trade. A 0.01% change in the mark price is observed.

The mark price divergence rate can be controlled by setting the value of K high. However,
as mentioned above, setting K too high will have a negative impact on arbitraging.
From the results and discussion regarding K values and virtual token reserves, it is important
to understand that the K value initialized determines the slippage levels experienced by
traders and arbitraging incentives. If K is low, the slippage and mark price divergence is
high. If K is high, slippage and the mark price divergence for bigger trades is low; however,
the arbitrageurs and arbitraging incentives are affected.

More research is needed to determine the ideal token reserves and K values for a vAMM
based exchange. The K value needs to be set and optimized such that it balances slippage
and arbitraging depending on the trading volume on the exchange. The implemented
dynamic vAMM can have functionality added such that it dynamically scales K depending
on the trading volume on the exchange to balance out slippage and arbitraging. Dynamic K
scaling was not implemented since it requires data and analysis of how users would use the
system in production. Using user data and trading volume information, a mechanism can be
implemented to choose an optimal K value and then use a dynamic vAMM to scale the K
value accordingly.
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5.3.3 System Performance when the system’s virtual token re-

serves change

Dynamic vAMMs are created to make existing vAMM solutions more adaptable to present
external market conditions. This study implements a dynamic vAMM based perpetual swap
exchange to analyse the working of a dynamic vAMM. The implemented perpetual swap
exchange implements the core functionality of a dynamic vAMM which allows it to scale its
virtual liquidity pool token reserves to adapt to external market conditions.

The experiments seen in table 5.2 test the functionality of the implemented DvAMM
protocol when the virtual liquidity pool token reserves are updated during the normal
functioning of the protocol. These experiments are performed to evaluate the implemented
protocol’s functionality and explore the shortcomings of the current implementation and
dynamic vAMMs overall.

The scaling of the mark price in all experiments is performed to observe the behaviour of the
system in scenarios where the mark price of the token pair (ETH/USDC) is not equal to the
spot price, and the mark price is updated to be equal to the spot price to adapt to the
external market conditions for the token pair. The results of these experiments demonstrate
the impact of updating the mark price on the process of closing trades, opening existing
trades and the users.

The results of the experiments performed on the implemented system can be seen in table
5.4. From the results, it is observed that there are various scenarios where the system
cannot close out perpetual contracts when a trader requests to close their open position,
after the mark price of the implemented system is updated.

From the results of experiment 5 seen in table 5.4, it is observed that the implemented
system is able to close out all open trades when the liquidity locked in both positions is
equal, the number of long and short contracts are equal, and the collateral deposited in each
long and short trade are equal.

The results of experiments 1 and 2 show that the implemented DvAMM protocol cannot
handle closing out open trader positions when there is only one type of position open, and
updating the mark price benefits this type of position. In such cases, the vault does not have
sufficient funds to pay out all traders. If all positions need to be closed out, the vault will
need additional funds or a mechanism to pump money or tokens into it.

The results of experiments 3 and 4 seen in table 5.4 show that the implemented DvAMM
protocol can smoothly handle closing out open trader positions when there is only one type
of position open, and updating the mark price does not benefit this type of position. In such
cases, the vault will have sufficient funds to pay out all traders and have some remaining
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balance after all trades are closed out.

From the results of experiment 6 it is observed that when the liquidity in long and short
positions on the system is equal, the implemented system is able to close out all long and
short open positions eventually. The system does not experience a situation where, if there
are 2 positions open, at least one of them can be closed. However, the DvAMM protocol
does experience situations where some open trades cannot be closed, and the traders cannot
be liquidated since the vault does not have enough funds to close these positions. These
trades are dependent on other trades closing first such that these blocked trades can be
closed. The system will eventually allow all trades to close out, but some unwanted
dependencies between open trades are introduced when all open trades are being closed.
If a new trade on the system is opened, it may enable the blocked trade to be closed since
the new trade added liquidity to the vault. However, opening new trades does not solve the
issue of several contracts being dependent on other contracts to be closed so that they can
be closed.

The results of experiments 7, 8, 9 and 10 can be seen in table 5.4 . In experiments 7, 8, 9
and 10, the liquidity locked in long and short positions is imbalanced. In such experiments,
when the mark price is updated to profit the position with higher liquidity, it is observed that
the implemented DvAMM based exchange cannot close any more open contracts after
closing out a few open contracts. From the results of experiments 7, 8, 9 and 10, it is
observed that the system always reaches a state where several remaining open contracts can
never be closed.
The only case where the implemented DvAMM protocol will be able to close out all open
contracts is when external funds are added to the vault. Liquidity provided to the vault from
opening new trades does not count as external funds.
Despite the number of trades being equal in experiments 7, 8 and 9, the implemented
DvAMM protocol cannot close out all trades. This observation from experiments 7, 8 and
9’s results indicates that the liquidity locked in both positions is a better indicator than the
number of trades to determine if there will be scenarios where the implemented system will
not be able to close contracts after a certain point.

From the results of experiments 3, 4, 7, 8, 9 and 10, when the mark price is updated such
that it introduces losses to the position with higher liquidity, it is observed that the vault has
some funds remaining in it after all trades have been closed. This is because all trades in the
exchange collectively experience a net loss, i.e., the positions with higher liquidity experience
a higher loss, and the vault needs to return lesser USDC to these trades. Therefore, the
vault has some remaining funds when all trades.

The experiments performed in table 5.2 evaluate if the implemented system can perform as
a fully operational perpetual swap exchange when the implemented protocol is made to
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adjust its mark price to adapt to external market conditions. The implemented system is not
considered fully operational when the system cannot close one or more open contracts due
to insufficient funds in the vault.

From the discussion of the results of these experiments above, this study confirms that the
implemented DvAMM exchange cannot function as a fully operation perpetual swap
exchange when the DvAMM protocol is made to update its mark price.

There is only one scenario experienced where the implemented DvAMM exchange is fully
operational, and the system can adjust its mark price to the spot price without facing any
problems. This scenario is experienced when the liquidity locked in both positions is equal,
the number of long and short contracts is equal, and for each long trade with a certain
collateral value, there is a short trade with the same collateral deposited. For all other
scenarios, the system faces problems where it is blocked from closing contracts or can only
eventually close out all open contracts since some contracts are dependent on others to be
closed first.

This study observes that the implemented DvAMM protocol is locked from closing existing
open contracts when there is an imbalance in the liquidity locked in long and short perpetual
contracts on the exchange. The implemented exchange reaches a point where the vault does
not have enough funds to close one or more remaining open contracts. The system
experiences scenarios where the long-short imbalance and mark price changes will still allow
the system to close out all contracts eventually. However, in eventual contract closure, some
contracts cannot be closed until other contracts are closed first.

This study finds that when the mark price of the implemented protocol is changed, the
imbalance between the liquidity locked in long and short positions is inversely proportional to
the value of open positions that can be liquidated. If the imbalance in liquidity between both
positions is low, the implemented protocol can liquidate more trades in terms of their
monetary value. If the imbalance between both positions is high, the implemented protocol
will liquidate lesser trades in terms of their monetary value.
This observation only holds true when at least 1 long and 1 short position is open.

Similarly, from the discussion of the results above, it is observed that when the imbalance in
liquidity between both positions is low, the implemented system has a higher chance of
eventually closing out and liquidating all open positions and the dependencies between trade
closures are low. Conversely, when the imbalance in liquidity between both positions is high,
the implemented system has a lower chance of eventually closing out and liquidating all
open positions, and the dependencies between trade closures are high.
This observation only holds true when at least 1 long and 1 short position is open.

If the implemented perpetual swap exchange has liquidity locked in only one type of position,
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the implemented exchange will either be able to close out all positions or the exchange will
be locked from closing after closing a few. The implemented exchange will be able to close
out all positions when the changing the mark price causes it to move in the opposite
direction the traders had bet on (see results of experiments 3 and 4 in table 5.4 and their
discussion above). The implemented exchange will not be able to close out several open
positions when changing the mark price causes it to move in the direction the traders had
bet on (see results of experiments 1 and 2 in table 5.4 and their discussion above).

The implemented DvAMM based perpetual swap exchange faces problems with contract
closure when the mark price of the token pair (ETH/USDC) implemented is updated.
Situations where the implemented exchange cannot close open contracts are not healthy for
the traders and the implemented exchange. Users of the exchange will get frustrated with
the implemented system if they cannot close their positions. Users who are earning profits or
are experiencing a loss would like to exit their position, and being unable to do so locks their
liquidity forcibly.
Situations where the implemented exchange cannot close open are problematic for the
exchange as traders will keep losing more money than they put into the protocol. In a
vAMM based exchange, user collaterals provide the exchange liquidity to facilitate trading.
One traders’ loss pays out the profits of another. Suppose one trader faces losses higher
than their collateral, another trader or a set of traders would profit from these losses. The
exchange would have to pay out the profits of the trader earning profits since one trader has
experiences losses greater than the money they put into the protocol and cannot be
liquidated.

5.3.3.1 Summarizing the system’s performance when mark price of ETH/USDC
is changed

On evaluating the implemented DvAMM exchange based on its ability to function correctly
when the exchange’s mark price is configured, it is found that the implemented exchange
succeeds to operate as a fully functional exchange when 3 conditions are met. These
conditions are:

1. The total liquidity locked in long and short open perpetual contracts is equal.

2. The number of long and short open perpetual contracts is equal.

3. An open long perpetual contract with a specific amount of deposited collateral is
always matched with an open short perpetual contract with an equal amount of
collateral deposited

However, the implemented DvAMM based perpetual swap exchange fails to operate as a
fully functional perpetual swap exchange when all the 3 conditions above are not fulfilled,
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and the mark price of the system is configured using the implemented DvAMM. In 7 out of
10 experiments seen in tables 5.2 and 5.4, the implemented system cannot close some or all
open contracts due to a lack of funds in the vault. The implemented system locks the trades
of a trader.

Overall the implemented DvAMM based perpetual exchange fails to operate as a fully
functional perpetual swap exchange since the implemented DvAMM based exchange was not
implemented such that the above 3 conditions are always true when a trade is opened.

If the conditions mentioned above are enforced on the implemented system, the DvAMM
based exchange will function like an order-book model based exchange rather than an
automated market-making protocol based exchange. Implementing the DvAMM system with
the aforementioned conditions would be impractical and inefficient. Enforcing the conditions
above would cause the system to lose all the advantages that an AMM based protocol
provides. AMM protocols were invented to solve the issues of low liquidity faced by
order-book models in decentralized exchanges. Therefore, enforcing conditions on the
current system would not be a viable solution to solve the problems that render the current
DvAMM implementation not fully operational.

For a dynamic vAMM exchange to be fully functional, the DvAMM exchange should allow
new contracts to open and close at any point a trader desires. The dynamic vAMM
exchange should be able to adapt its mark price of a token pair to the spot price and still be
able to close out all open contracts accurately with the correct returns based on the new
mark price.

To address the limitations and to make the implemented DvAMM based perpetual exchange
fully operational, new solutions and mechanisms need to be designed and implemented. The
limitations and weaknesses of the implemented system and their potential solutions are
discussed in section 5.3.4

5.3.4 Addressing the limitations and weaknesses of the imple-

mented system

This section discusses the limitations and weaknesses observed in the implemented dynamic
vAMM based perpetual swap exchange and suggests solutions regarding the limitations of
the implemented system.

The suggested solutions discussed in this section aim to provide insight to systems that aim
to implement dynamic vAMMs in the future for their unique property of being able to adapt
to external market conditions.
The suggested solutions discussed in the sections below provide insight into the challenges of
implementing a dynamic vAMM protocol for scaling the mark price of a token pair, and
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possible mechanisms to solve these challenges.

Section 5.3.4.1 suggests a mechanism that allows the protocol to collect additional funds to
backup the vault so that the vault does not block trade closures when a token pair’s mark
price is updated.

From the discussion of results in section 5.3.3, it is observed that the implemented DvAMM
system faces problems closing open contracts when the mark price of the ETH/USDC was
updated. Section 5.3.4.2 suggests a checking mechanism that allows a DvAMM protocol to
check if the vault and the suggested fee collection mechanism discussed in section 5.3.4.1
can support the update to the mark price of a token pair. Supporting an update to the mark
price of a token pair means that the DvAMM protocol can handle closing all open perpetual
contracts after the mark price of that token pair has been updated.

Based on the fee collection and checking mechanisms, section 5.3.4.3 discusses when should
a system consider updating its mark price so that it can adapt to present market conditions.
Section 5.3.4.4 details an algorithm to automate the process of configuring the mark price of
a token pair based on all the proposed solutions in 5.3.4.1, 5.3.4.2 and 5.3.4.3.

5.3.4.1 Insurance funds through transaction fees or taker fees

The current implementation of the dynamic vAMM protocol cannot work as a fully
functional perpetual swap exchange because scaling the mark price affects profits and losses
of open trades. The profits and losses for each trader are withdrawn from the vault.
Therefore, adjusting the mark price for a token pair can negatively impact the vault where
the vault may not have enough funds to pay out all traders if all traders decide to close their
perpetual contract.
To make the system fully functional and to address the limitations the system faces when its
mark price and virtual liquidity pool token reserves have changed, a backup funding
mechanism is suggested so that the vault can pay out traders when a trade is closed.

To ensure that the vault has funds to close open contracts, the system needs to have a
mechanism to provide additional funds to the vault so that traders are not blocked from
closing their open positions and trade can be liquidated. This mechanism can gather funds
by collecting a small fee each time a trader opens a trade. The fee charged is a small
percentage of the trade collateral and not the total value of the trade being opened. The fee
charged by the implemented system can be called either a ‘transaction fee’ or a ‘taker fee’
(55) and can be stored in a smart contract similar to the vault.

The initial fee charged by the system will be set to 0.1% of the total collateral being
deposited. The initial fee is set to 0.1% based the fee perpetual protocol (56) and OKX
exchange (57) charges its users. The transaction or taker fee stored will act as insurance for
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paying out traders whenever the mark price of a token pair needs to be adjusted to the spot
price of that token pair.

Having a transaction fee reduces the incentive to trade on a perpetual exchange. To ensure
that the implemented system has lower fees, it is important to consider the aspect of
dynamic fee percentages. If the trading volume on the exchange is high and the amount of
fees stored by the exchange is high, the fee percent charged should be reduced. Inversely, if
the number the trading volume on the exchange is low and the fee stored by the exchange is
low, the fee percentage should be the highest, i.e., 0.1

5.3.4.2 A mechanism to check the feasibility of updating the system’s mark
price

Implementing the concept of charging a dynamic fee each time a contract is opened will
contribute to an “insurance fund” to back up the vault. However, this insurance fund will
not guarantee that the system will have sufficient funds to pay out all traders if they decide
to close their open perpetual contract after the mark price has been adjusted. Therefore,
this study suggests an additional checking mechanism to inspect if the DvAMM protocol can
update its virtual liquidity pool reserves and mark price such that the update does not
prevent the closing of any open contracts.

Before the mark price of a token pair in a DvAMM protocol is adjusted to match the spot
price, the DvAMM protocol needs to know if the vault and fees collected can handle closing
out all open contracts once the update to the mark price is performed.
Hence, a checking mechanism needs to be implemented to check if the total combined funds
from the collected fees and vault would be able to handle closing out all open trades with
the potential new mark price. The protocol will need to discover and calculate two key
values to implement such a checking mechanism. These values are:

1. The total amount of funds stored in the vault and the total amount collected as fees.

2. The combined total amount of funds that will have to be returned to the users by the
dynamic vAMM protocol if all current open contracts are closed.
This total return amount will be calculated based on the new value of the mark price
that the system wants to update to.
Performing this calculation will provide the DvAMM protocol with an idea of how
much money the system needs to have before it can update the mark price

Example 5.3.4.2 below demonstrates why the values mentioned above are important to
discover. Example 5.3.4.2 below also demonstrates a checking mechanism that will use the
values mentioned above to discover if the mark price update will let contracts close or
not.
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Example 5.3.4.2:
Consider the following market conditions in a DvAMM based perpetual exchange for
ETH/USDC:

• Mark price: 1 ETH = 100 USDC.

• Spot Price: 1 ETH = 150 USDC

• The current vault balance can fund the closing of all open trades

Suppose the system wants to update its mark price to the spot price to adapt to market
conditions for ETH/USDC. Before updating the mark price, the system needs to check if the
vault and fees collected can handle closing out all open contracts once the mark price is
updated. The system can carry out the following steps to perform this check:

1. The system will first need to simulate and find the total amount that will need to be
returnedto the traders if all open contracts are closed when the mark price is 1 ETH=
150 USDC and vETH, vUSDC token reserves reflect this mark price. The amount
found can be called ‘potentialContractReturnValue’.

2. To guarantee that the protocol can perform contract closures after mark price update,
the funds stored in the ‘vault + fees’ must be greater than the
‘potentialContractReturnValue’.

3. If the ‘vault + fees’ >= ‘potentialContractReturnValue’, the system can safely update
the mark price to the spot price. If ‘vault + fees’ < ‘potentialContractReturnValue’,
then updating the mark price will potentially lead to scenarios where the vault and
fees combined will not be able to fund the closure of one or more open trades.

5.3.4.3 Parameters to determine when the mark price should be configured

The problems that cause the implemented DvAMM system not to be a fully functional
configurational exchange can be solved by combing the solutions suggested in sections
5.3.4.1 and 5.3.4.2.

Assuming that the developed system implements the insurance fund mechanism and a
checking mechanism to communicate to the exchange that the mark price can be updated
to the spot price, it is important to understand when the mark price of the implemented
system should be updated.

It is impractical to configure the mark price of a dynamic vAMM exchange whenever it is
possible for the exchange to do so without locking users from closing trades. If a dynamic
vAMM is constantly configured, it will deplete the exchange’s insurance fund. If the fee pool
is depleted, the DvAMM based exchange will not be able to configure the mark price when
the functionality is needed more. For example, it is more important for a system to be able
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to configure its mark price when the mark price has diverged more than 15% from the spot
price (mark-spot spread > 15%) compared to when the mark-spot price divergence is only
5% mark-spot spread < 5%).

The purpose of having a configurable or dynamic vAMM is to ensure that an exchange can
adapt its mark price to external market conditions and is more flexible to volatile price
changes. When the mark-spot spread of a token pair in a perpetual exchange is low, the
difference between the mark and spot prices can be reduced through funding payments and
arbitrageurs.

Implementing a dynamic vAMM benefits an exchange when the mark-spot spread of a
perpetual exchange is high. Cryptocurrencies such as ETH and BTC are volatile assets (58)
(59) and the prices of these cryptocurrencies changes sharply based on market sentiment
(59). The mark-spot spread of an ETH/USDC or BTC/USDT perpetual contract can
drastically increase at any point in time due to the volatility of ETH and BTC. A dynamic
vAMM is valuable and should be configured to reduce the mark-spot spread in high
mark-spot price divergence scenarios. For the dynamic vAMM to be ready for mark price
configuration changes, the fee pool should not be depleted and should have sufficient funds.
Suppose a dynamic vAMM is constantly configured to balance our small mark-spot spreads.
In that case, the exchange’s insurance fund will deplete quicker, and the dynamic vAMM will
be rendered unconfigurable in periods of high volatility.

Drift protocol’s preliminary analysis indicated that a good time to adjust the mark price
closer to the spot price is when the mark-spot spread is less than 10%, and the imbalance
between long and short traders is high resulting in high funding rates (38).
Hence a good starting point for an exchange implementing a safe and fully functional
DvAMM would be to follow Drift protocols conventions on when to configure the mark price
of a token pair.

Every perpetual contract is unique, and the price volatility profile of each token or
cryptocurrency is different. Therefore, the metrics to determine when it is a good time to
configure the mark price of a token pair to be closer to the spot price would depend on how
volatile a token is itself. An exchange would have to analyse the volatility profile and trading
patterns of a perpetual contract on the exchange before deciding the best metrics to
configure the mark price of that contract. An exchange would also have to analyse the
volume of liquidity, arbitraging rate, and fund rates for a perpetual token pair to understand
when the best time would be to configure the mark price for this perpetual token pair.

In summary, various parameters such as the mark-spot spread, long-short imbalance, funding
rates, token pair volatility and token pair perpetual trading demand need to be analysed to
determine when an exchange should configure the mark price of a token pair. Intensive
research for each perpetual token pair would need to be performed to determine the best
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values of these parameters, such that configuring the mark price of a token pair benefits an
exchange.

5.3.4.4 A potential solution to automating mark price configurations

The current implementation of a DvAMM based exchange provides a semi-manual
mechanism to configure the mark price of a token pair. The implemented mechanism to
configure the mark price is semi-manual as the researcher only needs to click a button on
the UI to configure the mark price and does not need to manually change the token reserves
to update the mark price to a desired value.

Semi-manually configuring the mark price of a token pair on an exchange introduces
additional risks in the form of human errors. Therefore, to mitigate risks associated with
semi-manually configuring the mark price of an exchange, an automated mechanism to
configure the mark price of a token pair should be designed, developed, and tested.

Let us assume that the limitations of the implemented DvAMM based exchange are
mitigated by the solutions suggested in sections 5.3.4.1 and 5.3.4.2, and the system knows
the necessary parameters to determine when the mark price of the ETH/USDC token pair
should be configured. Based on these assumptions, this study suggests a potential algorithm
to automate the process of configuring the mark price of the implemented system. The
suggested algorithm is detailed below:

Step 1: Check system parameters that indicate when the mark price should be configured, to
determine if the mark price of ETH/USDC should be updated to its spot price. For
example, check if ETH/USDC mark-spot spread>10% and long-short imbalance >
50%.

Step 2: If system parameters indicate that the mark price should be updated to the spot price,
perform the following steps:

(a) Using the checking mechanism (see section 5.3.4.2) check if the total combined
funds (collected fees + vault) are sufficient to handle closing out all open trades
if the mark price is updated to the spot price.

i. If the total combined funds are sufficient to handle closing out all open
trades, update the mark price to be equal to the spot price using the
DvAMM. Jump to step 3

ii. If the total combined funds are not sufficient to handle closing out all open
trades the spot price, find a value closest to the spot price that the mark
price can be updated to and store this value in a variable
‘closestPossibleMarkPrice’. Inform the system admins that the mark price
cannot be updated to be equal to spot price and the closes spot price

92



configuration is the value stored in ‘closestPossibleMarkPrice’. Jump to step
3.

• Note: The system admins can then inform this algorithm or another
system to configure mark price = ‘closestPossibleMarkPrice’ or not.

Step 3: Perform step 1 after waiting for a certain time interval.

5.3.5 Strengths of the implemented DvAMM based system

This sections, discusses the strengths of the system that are observed based on the
experiments performed on the system and their results.

A strength of DvAMM based exchange is its ability to allow the values of K and the virtual
liquidity pool token reserved to be scaled manually to reduce the amount of slippage and
increase the volume of assets in the pool. Increasing the number of assets in the liquidity
pool increases the ease of trading an asset without affecting its price and reduces the
slippage faced by traders. Another strength of the system is that it provides the potential for
dynamically scaling K. The current system implementation scales the value of K to adjust
the mark prices. However, a mechanism to scale the token reserves and K value can be
formulated based on the current implementation. The implemented system provides insights
into how future projects may look to configure K values for balancing slippage and
arbitraging incentives. Dynamically scaling K is better than manually scaling K and virtual
token reserves because manual scaling of system parameters, especially in production
environments, will lead to increased operational and trading risks. A strength of the current
implementation is that it opens the door to exploring mechanisms to scale K for various
beneficial purposes.

Another strength of the implemented DvAMM based exchange is that the system explores a
simple and easy to implement mechanism to allow the mark price of a perpetual contract
token pair to be adjusted. The mechanism implemented to configure the mark price of
tokens correctly adjusts the mark price of a token pair to the desired spot price without any
errors. The implemented mechanism enables an exchange to adapt to market conditions for
a token pair. It is true that the implemented system overall is not fully functional due to
contract closure problems and requires additional mechanisms to render it fully functional.
However, the system does implement a mechanism that is light, has fast execution times
and is simple to understand.

5.3.6 Summarising the discussion of results

The discussion section first discussed the system’s performance when the mark price was not
configured in section 5.3.1. Section 5.3.1 discussed the results observed in table 5.3
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presented in the Results section (section 5.2). From the current implementation, we found
that the implemented DvAMM based exchange performed as a fully functional exchange
when the mark price was not left unchanged. Section 5.3.2 discussed the impact of the K
value on the system’s performance.
Section 5.3.3 discussed the results observed in table 5.4 presented in the Results section
(section 5.2). It was found that the implemented DvAMM based exchange failed to operate
as a fully functional perpetual swap exchange when the mark price was configured.
Section 5.3.4 discusses the limitations of the system and discusses the reasons behind the
system failing to operate as a fully operational perpetual swap exchange. Section 5.3.4
addressed the discussed limitations by suggesting possible solutions to solve the problems
faced by the implemented system. The solutions provided in section 5.3.4 provide insight on
how to develop a fully functional DvAMM based exchange that can configure its mark price
without locking users from closing trades. Finally, section 5.3.5 discusses the strengths of
the implemented DvAMM based exchange.

5.4 Critical Review of the Implemented System

This section critically reviews the implemented DvAMM based perpetual swap exchange
based on the design and implementation of the system and results obtained by
experimentation on the system.

A major shortcoming of the implemented system is that it does not implement liquidations.
In the current implementation of the DvAMM based exchange, if a trader’s total return
amount for a perpetual contract goes below the collateral (i.e., collateral + profit/loss <=
0), the system does not automatically close out the perpetual contract. Since liquidations
are not implemented as a part of the system, this research does not study the impact of
liquidations on contracts when the mark price of a token pair is configured. If liquidations
were implemented, this research would have observed the impact of mark price configurations
on perpetual contract liquidations. Furthermore, if liquidations were implemented, this study
would be able to suggest mechanisms or solutions regarding how a dynamic vAMM based
exchange could handle liquidations when the mark price of a token pair is configured.

Another shortcoming of the implemented system is that the current implementation does
not provide any mechanisms to simulate multiple users opening and closing perpetual
contracts on the implemented system. Since each contract had to be manually opened and
closed by the researcher, performing experiments was slower, and only a certain number of
trades could be performed at a certain point of time from a limited number of accounts.
Simulating multiple users trading on the implemented system would have enabled this
research to perform a more diverse range of experiments. Simulating trades on the
implemented system from multiple user accounts would also allow the DvAMM based
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exchange to be exposed to and tested on various scenarios rather than just a few
predetermined edge case scenarios. Therefore, simulating user trades would have helped this
study evaluate the system based on a more diverse range of experiments.

A minor problem with the system’s implementation is that the system does not implement
and use ERC20 tokens but rather uses a locally built token for the purposes of testing.
Implementing a local token removes the complexity of finding an external faucet to request
funds from. With a local token and faucet, this research can study the impact of large trade
sizes on the implemented system. However, implementing ERC20 tokens would have enabled
the implemented system to create perpetual markets that are not just based on USDC. For
example, a perpetual market for ETH/LINK (chainlink) or LINK/BAT (basic attention
token) could have been created. Implementing multiple perpetual markets.

The system developed implements most of the functionalities of a perpetual swap exchange
and focuses sharply on the functionality this study focuses on, which is the dynamic
configuration of a vAMM, allowing a vAMM to adapt its state to external market
conditions. Mitigating the above-mentioned shortcomings would have allowed the
implemented system to be more production-ready. It would have allowed the system to be
tested on multiple scenarios and multiple simultaneous users trading.
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6 Conclusion

Decentralized derivative trading through automated market making is relatively new and in
its early stages of growth. Despite AMMs and vAMMs being highly innovative solutions,
they are not the most optimal solutions and are insensitive to external market conditions and
the internal conditions of the system implementing them. Existing vAMM protocols
manually scale the K value and virtual liquidity pool token reserves of a vAMM to balance
the tradeoffs between slippage and arbitraging incentives (6). Manually scaling K leads to
higher operational risks. Lower risk and improved mechanisms are needed to configure a
vAMM so that vAMM based solutions are more optimal, flexible, and sensitive to external
market conditions.

This research aimed to design, implement, test, and evaluate a perpetual swap exchange by
implementing a mechanism that configures a vAMM to dynamically adjust its parameters so
that the vAMM can adapt to external market conditions.
A mechanism to configure token reserves and the K value of a vAMM was designed and
implemented on a perpetual swap exchange. The dynamic vAMM was built on top of the
design of a stock vAMM. The configurable or dynamic vAMM enabled the implemented
perpetual swap exchange to adjust its mark price for the ETH/USDC perpetual contract to
its spot price. Having the functionality to adjust the mark price through a dynamic vAMM
implementation allowed the implemented system to adapt to market volatility for the
ETH/USDC token pair.

A set of experiments were then performed on the implemented DvAMM based perpetual
swap exchange to evaluate the performance, limitations, and feasibility of the implemented
dynamic vAMM.
It was found that the implemented dynamic vAMM can easily adjust its token volumes and
K to adapt its mark price to any given spot price. However, the evaluation showed that the
implemented dynamic vAMM failed to perform as a viable solution for perpetual swap
exchanges because configuring the mark price of the implemented system would lock several
perpetual contracts from being closed on the exchange. The reason for perpetual contracts
being locked from being closed after configuring mark price was because of insufficient funds
in the vault to support contract closures.
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This study also found that the implemented system performed correctly when the DvAMM
was never configured. The experiments performed on the system also showed that the
DvAMM could be a viable solution for mark price adaption if some conditions were enforced
on the system. However, it was found that enforcing these conditions on the exchange
would turn into an order book model based exchange.

The reasons behind the failure of the implemented DvAMM as a viable and sustainable
solution for perpetual swap exchanges were examined. Potential solutions were suggested to
address the limitations of the vault having insufficient funds when the mark price is
configured. It was discovered that having an insurance fund (formed by transaction or taker
fee on each trade) backing the vault could potentially solve the issues of lack of funds in the
system when the mark price is configured. Mechanisms to know when to configure the
system’s mark price and mechanisms to check if it is possible to update the system’s mark
price were proposed. Finally, an algorithm was proposed to automate the process of
configuring the mark price of the implemented system.

The performance of the implemented system suggests that the dynamic vAMMs need
additional mechanisms to be designed and implemented along with them so that a perpetual
exchange can adapt to external market conditions.
The implemented DvAMM token reserve and K value adjustment mechanisms are not a
complete solution for perpetual exchanges to adapt to market conditions. The dynamic
vAMM needs additional mechanisms to support it to be a sustainable and fully functional
solution. The supporting mechanisms include having an insurance fund, a mechanism to
check if it is safe to configure the DvAMM and a mechanism to discover the best
parameters to configure the mark price of a token pair. These mechanisms need to be
explored and tested to develop a complete DvAMM solution.

The implemented dynamic vAMM is not a complete solution to address the problems of the
inflexibility of vAMMs. To make DvAMMs a complete solution, additional mechanisms need
to be designed, adding more complexity to the system. However, DvAMMs are a step
forward towards exploring the DeFi perpetual swaps ecosphere and finding a solution to
solve various existing problems in the automated market-making ecosystem.

6.1 Future Work

The exploration of dynamic vAMMs performed in this dissertation opens doors to multiple
areas that need to be researched in the future to develop viable solutions that enable
automated market-making protocols to adapt to market volatility. The proposed areas of
future work and research are proposed below:
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6.1.1 Different approaches to configuring vAMMs

The current research configures a vAMM to adapt a perpetual contract’s token pair price to
its mark price by scaling the virtual liquidity pool tokens and K values. However, this is only
one method wherein a vAMM can be configured to adapt mark prices to spot prices. This
research suggests that multiple methods to configure a vAMM should be explored in the
future. Having multiple techniques to achieve the same goal will allow for the fabrication of
more robust and viable solutions to dynamic automated market-making

6.1.2 Parameters to discover the best time to configure a vAMM

This research explored a potential mechanism for the system to know when its mark price
should be updated to the spot price. Various parameters and values must be known so that
a system or a system admin can be aware of when the mark price needs to be configured.
Based on the study performed, this dissertation suggests that it is important for future
studies to explore and find the most suitable parameters that would assist in determining the
best scenarios to configure a vAMM.

6.1.3 A system or mechanism to check if a DvAMM based ex-

change can update its mark price

For a dynamic vAMM based system, it is important to know that updating the mark price of
a token pair will not block trade closures. Methods to design and implement algorithms or
mechanisms to perform such checks need to be researched. Configuring a vAMM would be
safer and more secure if a robust and efficient mechanism could be developed to perform the
checks mentioned above.

6.1.4 Impact of configuring a vAMM on trade liquidations

This research evaluated the performance of configuring the mark price of a token pair via a
DvAMM on the implemented system. This research found that configuring the mark price
can result in open trades being forcefully liquidated since the margin of these trades falls
below the deposited collateral. This dissertation suggests that future projects should
investigate approaches on how to handle liquidations caused by mark price updates because
forced liquidations may lead to distress amongst the users of a dynamic vAMM based
exchange.

6.1.5 Optimal K value

The current research discusses the impact of the K value on a vAMM based system.
Adjusting or initializing the K value to be optimal would benefit AMM-based derivative
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exchanges as it would help them balance out slippage rates and arbitraging incentives. This
research suggests that future studies should explore parameters, methods, and algorithms
that would help an AMM or vAMM based exchange find the most optimal K value for that
exchange at a particular time. This dissertation suggests that future research projects should
also find strategies and methods to dynamically scale the K value of an AMM or vAMM to
balance the rate of slippage and arbitraging.
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