

Making personal data Solid

An evaluation of the capabilities of Solid in enterprise-level

application development

Dylan Storey

A Dissertation presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

MAI Computer Engineering

Supervisor: Prof. Declan O’Sullivan

April 2022

School of Computer Science and Statistics

Declaration

☐ I agree that this thesis was completed in line with the plagiarism provisions in

the General Regulations of the University Calendar for the current year, found

at http://www.tcd.ie/calendar.

☐ I have completed the Online Tutorial on avoiding plagiarism ‘Ready Steady

Write’, located at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

☐ I agree that this thesis will not be publicly available but will be available to TCD

staff and students in the University’s open access institutional repository on the

Trinity domain only.

Signed:

Date:

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

Acknowledgements

I would like to acknowledge Prof. Declan O’Sullivan for continued support and advice

throughout this project. I would also like to thank with Prof. Lucy Hederman, Prof. Gaye

Stephens, researchers at Adapt and in Trinity College for their insights into professional

practice in the healthcare sector and data engineering.

Further acknowledgements must be extended to the Solid community for their continued

support and encouragement to continue this project, particularly Emelia Smith and Justin

Bingham for their assistance and insights into working professionally with Solid.

Finally, I would like to acknowledge my absolute gratitude to my family and friends who have

shown constant support throughout this year to complete this project.

Abstract
The healthcare industry is under increasing threat from ransomware attackers for its large

volumes of valuable and sensitive data stored on fragmented systems, managed by ill-

equipped system administrators. Trends have shown that this pattern has grown over the

course of the COVID-19 pandemic via new exploits and worldwide collection of health data

related to vaccinations. This project has attempted to address a solution for this problem by

developing a concept application to store and access health data in decentralised data

storage using the Solid Protocol.

Several applications have already been released using the Solid Protocol, proving that

development in the space is possible. However, this project differed slightly from other

approaches in that it attempted to build an enterprise application for the healthcare industry,

dealing with extremely sensitive data and aimed for use by individuals across several

healthcare processes.

By way of this development, the capabilities of Solid with regard to building complex

organisational applications were evaluated. It was found that Solid technologies are capable

of most fundamental development tasks, but a few critical shortcomings with the current

implementations would deter most organisations from investing the additional time and

resources required to develop a commercial product with Solid.

Contents
Chapter One ... 1

1. Introduction .. 1

2. Solid Concepts ... 3

2.1 Solid Applications ... 3

2.2 Solid Resources ... 4

3. Background .. 5

3.1 The Semantic Web .. 5

3.2 Linked Data ... 6

3.3 Decentralisation ... 7

4. Motivation ... 8

5. Research Question ... 10

6. Overall Goal and Objectives ... 11

Chapter Two ... 13

7. Literature Review ... 13

Section Overview ... 13

7.1 Decentralisation ... 13

7.2 State of the Art of Solid .. 16

7.3 Security in Healthcare IT Systems ... 21

Chapter Three ... 24

8. Design .. 24

Section Overview ... 24

8.1 Phase 1 – Exploration ... 24

8.2 Phase 2 – Application Planning ... 27

9. Implementation ... 36

Section Overview ... 36

9.1 Setup ... 36

9.2 Login and Health Data Configuration ... 37

9.3 Uploading Records .. 40

9.4 Accessing Records .. 43

9.5 Managing Record Access .. 44

9.6 Deployment ... 46

Implementation Summary .. 48

Chapter Four ... 49

10. Evaluation ... 49

Section Overview ... 49

10.1 Application Evaluation ... 49

10.2 Evaluation of Contribution to Solid ... 55

10.3 Solid Evaluation ... 57

Evaluation Summary .. 61

Chapter Five ... 62

11. Conclusion .. 62

12. Future Work .. 64

12.1 Future Work in Solid .. 64

12.2 Future Development Work ... 64

13. Final Remark .. 66

References ... 67

Appendices ... 79

A1 – Original Application Requirements .. 79

A2 – Application Gantt Chart ... 82

A3 – Development Diary .. 83

A4 – Application Demonstration Presentation .. 99

List of Figures
Figure 1 - Sharing data with Solid [7] .. 3

Figure 2 - Solid applications accessing Pod data [78] ... 4

Figure 3 - RDF knowledge graph example .. 5

Figure 4 - Linked datasets example [105] .. 6

Figure 5 - Number of incidents per sector (April 2020 - July 2021) [33] 8

Figure 6 – Decentralisation of organisations per region [114] .. 15

Figure 7 - PodPro tool in use ... 20

Figure 8 - Number & value of ransomware attacks observed by ENISA (April 2020 - July

2021) [33] .. 22

Figure 9 - Use case diagram ... 30

Figure 10 - Application data inside Pod ... 33

Figure 11 – Application authentication flow ... 34

Figure 12 - Login process flow .. 37

Figure 13 - Institution metadata example in Turtle ... 38

Figure 14 - Register process flow .. 39

Figure 15 - Application home page.. 40

Figure 16 - Upload appointment process flow ... 41

Figure 17 - Upload diagnosis, prescription or general record process flow 42

Figure 18 - Access medical records process flow .. 43

Figure 19 - Pod diagram ... 44

Figure 20 - Manage record access flow .. 45

Figure 21 - Insurance request flow .. 46

Figure 22 – Test run specification ... 50

Figure 23 - Mean & standard deviation of feedback form results ... 53

List of Tables
Table 1 - Solidcommunity.net authorisation levels ... 27

Table 2 - Developed basic operations ... 27

Table 3 - List of user types for application ... 28

Table 4 - Draft of application use cases .. 29

Table 5 - Application test user credentials & WebIDs .. 48

Table 6 - Distribution of code in application implementation .. 48

Table 7 - Application technical critiques .. 51

Table 8 - Demonstration feedback form questions .. 52

Table 9 - Application procedural critiques.. 54

Table 10 - Inrupt Solid library critiques .. 59

Table 11 - Solid specification critiques .. 60

Table 12 - Gitter chat activity ... 61

Table 13 - Stack Overflow Solid interactions ... 61

Document Organisation
This dissertation is broken up into five chapters; each containing a varying amount of

sections and sub-sections. Where a section is notably large, it is prefixed with an outline of

the contained sub-sections. There are also four appendices related to the project, included

at the end of the dissertation.

Chapter One details an introduction to the project, including descriptions of common

terminology and the goals that the project hopes to achieve.

Chapter Two describes the state-of-the-art in research areas that the project has an impact

on, including strengths and shortcomings of other projects in related areas.

Chapter Three describes the process of designing and implementing the primary work item

of this project and describes the capabilities of the developed product.

Chapter Four describes the methods and results of evaluating the project.

Chapter Five summarises the results of the project evaluation and provides an outline of

work remaining in the project.

Appendix 1 lists the initial requirements that were designed for the developed application.

Appendix 2 shows the project Gantt chart that was used as a schedule for development

work.

Appendix 3 is the diary of notes maintained throughout developing the application.

Appendix 4 shows slides from the presentation that was used in demonstration sessions

during the project evaluation.

Making Personal Data Solid Introduction 1

Chapter One

1. Introduction
In the modern day, where huge amounts of personal data is shared with and between

applications with or without our knowledge or consent [13, 14], self-regulated data

distribution is an area that should be of huge importance to developers. This has been

expressed by analysts of today’s web for a number of years, but concerns grow louder and

more widespread as big tech companies gather an increasing amount of personal data

about the individual to enable model-driven product targeting.

Solid [7] is an emerging technology that offers a potential solution to this problem by keeping

the individual as the owner and controller of the data; heralding a degree of personal data

ownership and portability that has not been seen since the conception of the internet. This is

made possible by a set of standards and tools that access data stored in a single,

decentralised web store, accessible from anywhere on the web.

Solid applications are front-end interfaces which allow users to access and update data held

in these data stores. While most of the currently available Solid applications [40] have been

designed to show that the technology is suitable for use in recreational and social settings,

none have been designed for use by a complex organisation. This project will attempt to

evaluate the maturity of the Solid specification from the perspective of a software developer

by designing and implementing a proof-of-concept application for the healthcare industry

which could benefit from the advantages that Solid offers.

This industry has been selected for two reasons. Firstly, healthcare operates with the most

sensitive and private data, tightly regulated by data protection legislation and procedures

used in professional practice. An aim of this project is to investigate how the technologies of

Solid are capable with handling sensitive data. Secondly, the healthcare industry has been a

growing target for ransomware attacks due to the large volumes of valuable patient data held

in hospital systems. An attack on the Irish healthcare service in 2021 caused widespread

disruptions to healthcare services and estimated millions of euro in damages. This project

will attempt to address this problem by offering the sector an alternative to traditional data

storage techniques, by storing data using the Solid approach. The concept application will

then be validated by professionals in the healthcare industry to evaluate its potential usability

in the sector.

Making Personal Data Solid Introduction 2

By developing this application, an evaluation of the entire Solid ecosystem will be gathered

to identify potential strengths and weaknesses from the perspective of a software developer.

This ecosystem will be assisted in any way possible throughout the project and beyond, to

foster engagement from future developers and advance the realisation of the many

advantages that it offers to society.

Making Personal Data Solid Solid Concepts 3

2. Solid Concepts
Solid (SOcially LInked Data) is a set of standards and tools created in 2016 as an academic

project by a team at MIT [8], led by the creator of the W3C and World Wide Web itself, Sir

Tim Berners-Lee. Solid describes itself as a ‘mid-course correction’ for the Web as it

functions today [9], where Berners-Lee believes it could be a realisation of his original vision

of allowing users to exchange public and private data securely. It is designed for use in the

Semantic Web [10], the next generation of the internet still very much in early adoption. As

such, Solid relies heavily on principles of Linked Data [11] and best practices recommended

by the W3C [12].

Solid offers the ability to securely store any type of personal data in Pods, currently available

from a small set of trusted Pod Providers [52] or by hosting an individual Pod server, which

must adhere to the Solid Protocol [58]. Pod Providers currently provision Pod storage at

various geographical locations around the world, free of charge.

Pods are personal decentralised web stores where access to any part of the contained data

can be granted or revoked by the Pod owner. In this sense, one of the key advantages of

Solid storage is that data only exists in a single location, where the owner can tightly control

the access that other individuals or applications have. An illustration of sharing sections

Solid Pod data is shown below in Figure 1.

Figure 1 - Sharing data with Solid [7]

2.1 Solid Applications
Applications which implement the Solid specification to interact with data stored in Pods are

called Solid applications. These applications facilitate user authentication with a varying

amount of Pod Providers, depending on the specific application implementation. This means

that in the context of Solid applications, Pod Providers assume the role of identity providers.

Making Personal Data Solid Solid Concepts 4

Therefore, unless an application implements a custom Solid server to provide Pods to users,

there is no need for Solid applications to be involved with user credentials.

Pods essentially become an interrelated collection of application data for Solid applications,

where applications access data stored in Pods to serve some purpose to users. This access

to Pod data is subject to what has been granted by the owner of any given Pod. An example

of how three Solid applications interact with sections of an individual’s data stored in their

Pod is shown below in Figure 2.

Figure 2 - Solid applications accessing Pod data [78]

2.2 Solid Resources
Resources in Solid are defined as a space of URIs [6] in which data can be accessed by a

HTTP [107] request. Resources could be an individual file or object, or a collection of objects

contained within another Resource. Four Resource types will be referenced throughout this

project, with descriptions gathered from official sources [6, 91, 45]:

Container – This is a Resource that can contain other Resources or Containers, analogous

to a folder on a traditional file system. Containers have their own access rules for the

contained Resources. The URI for a Container ends with a slash (‘/’). A Solid Container

behaves according to the Linked Data Platform (LDP) Basic Container type found in the LDP

Vocabulary [127].

Thing – A set of data or properties about a particular entity, e.g. a novel. Things are saved

as part of a SolidDataset.

SolidDataset – A Resource that contains a set of Things, e.g. novels written by an author.

Auxiliary Resource – A Resource to provide supplementary information about another

Resource such as metadata, authorisation conditions or shape constraints.

Making Personal Data Solid Background 5

3. Background
Aside from Solid, this project relies heavily on some background knowledge of three core

concepts:

1. The Semantic Web

2. Linked Data

3. Decentralisation

These concepts will be briefly explained in this section.

3.1 The Semantic Web
The Semantic Web is the next logical step for the Web where data becomes readable both

by humans and machines. This will be achieved by transitioning from the document-based

approach to data representation that is used today, to a graph-based approach where data

and relationships between data are defined in a machine-readable format known as

Resource Description Framework (RDF) [37, 62]. RDF syntax is based around triples of

information, where a data entity (subject) is associated by some relationship (predicate) to

some value (object); which can be either another data entity or a literal value. Individual data

entities and relationships in RDF are located by unique HTTP IRIs [107].

Groups of RDF triples form knowledge graphs of information that define one or more

resource. An example of a simple knowledge graph describing an individual is shown below

in Figure 3. Here the subject of each triple is ‘Person#2913’, which has a unique IRI. These

triples reference either a literal value or another IRI, of which other statements could be

made in a separate knowledge graph.

Figure 3 - RDF knowledge graph example

Making Personal Data Solid Background 6

In the Semantic Web, collections of resources in RDF are known as vocabularies or

ontologies [104] and they provide a number of definitions for entities in a particular domain.

These ontologies provide a class-like structure to entities, including data and relationship

constraints.

Ontologies create a Web of Data similar to data that would be found in conventional

databases. By defining data in a format that machines can process, it will enable computers

to do most of the work in finding related data and will allow systems to be developed to

exchange information easier across the Web [103].

3.2 Linked Data
To make this Web of Data a reality, a huge amount of data needs to be available in this

format that can be reached from any part of the Web, where data from individual datasets

can interact with each other for querying and enriching the collective knowledge of real-world

entities. This aggregation of related datasets is known as Linked Data [11, 35].

Linked Data must be reachable by tools used in The Semantic Web, for example, the

SPARQL query language [106]. This discovery of other datasets, for creating inferences

based on shared knowledge, is a pivotal aspect of Linked Data. A visual representation of

this collection of datasets is available at The Linked Open Data Cloud [105].

An example of the Linked Open Data Cloud as it was in September 2010 is shown below in

Figure 4. This shows how datasets across industries are connected with each other to

varying degrees. The number of linked datasets has risen from 203 to 1301, as of May 2021.

Figure 4 - Linked datasets example [105]

Making Personal Data Solid Background 7

3.3 Decentralisation
The concept of decentralisation in this project refers to the natural progression of the internet

if The Semantic Web becomes widespread, using Linked Data stored in Solid Pods or other

decentralised data stores. Data will no longer be replicated and isolated across individual

organisations’ databases; and will return to the control of the individual, where it can be

shared out to parts of the web as required.

Solid Pods can be hosted virtually anywhere, meaning that data would be accessible from

anywhere on the web. This means that Solid can be thought of as decentralised data

storage and traditional database storage can be thought of a centralised data storage.

Service providers on a decentralised web would access data across this array of individual

stores (instead of owning it), to provide functionality that would benefit individuals more than

the current model which compels organisations to aggregate independent data silos about

their users.

Decentralising the web will not be an easy task. It requires a massive amount of data

migration from existing databases, architecture shifts for web services and a complete

redefinition of data protection legislation. This will need to be a gradual and considerate

process, addressing areas of particular need first.

Making Personal Data Solid Motivation 8

4. Motivation
The Solid Project is appealing to any individual with an interest in privacy and data control.

True data ownership and transparency of access to data are ideals that seem distant in

today’s perspective; where dominant tech corporations fight to gather the maximum amount

of data about the individual. With these collections of personal data, they are often the target

for hacker groups [130, 131] or choose to sell it to third parties [13]. Solid offers a fix for

these problems, but widespread adoption will only come if a service is made available to the

public that offers functionality unsupported by anything other than Solid.

Data protection and security in the healthcare sector has become a topic of major concern in

recent years [1, 2], particularly after a data breach of the state-owned healthcare system in

Ireland (HSE) suffered a cyberattack that saw hundreds of individuals’ personal data leaked

online [3]. This attack was made possible and attractive to perpetrators by storing volumes of

sensitive data on fragmented and vulnerable IT systems used by the HSE [4]. It caused

huge disruptions to healthcare across the country [5] as well as millions of euro in estimated

damages [3].

This trend has been seen across Europe, as the European Union Agency for Cybersecurity

(ENISA) [51] stated in the report published in 2021 that there has been a “surge in

healthcare sector related data breaches” due to the collection of scientific information related

to the COVID-19 vaccine, and will continue to be heavily targeted by ransomware groups as

long as the pandemic lasts [33]. Figure 5 below shows the distribution of ransomware

incidents as reported by ENISA, where healthcare is the fourth-highest on the list.

Figure 5 - Number of incidents per sector (April 2020 - July 2021) [33]

Making Personal Data Solid Motivation 9

An application developed using principles from the Solid Protocol [6] offers a potential

solution to this problem by allowing users to securely store decentralised data in online

personal web servers and grant or revoke access to other users as required [7].

By developing an application that could store patient data in Solid pods, it would eliminate

the need for a single collection of data held in medical institution systems, and make the

healthcare sector less of an appealing target to attackers.

Making Personal Data Solid Research Question 10

5. Research Question
The research question that this project will attempt to answer is as follows:

“To what extent is it feasible to develop an enterprise application with Solid?”

For this dissertation, the healthcare domain has been chosen as a challenging environment

for which to try to develop a prototype enterprise application using Solid standards.

Making Personal Data Solid Overall Goal and Objectives 11

6. Overall Goal and Objectives
The overall goal of this work is to evaluate the maturity of the Solid specification as it stands

today from the perspective of a software developer. This will be primarily evaluated by the

technologies currently supported by the Solid specification, quality of the available

documentation and the activity and support of the developer community.

A number of objectives to achieve this goal are listed below with targets that will allow a

reasonable evaluation of the Solid specification when achieved. These targets will be

referenced later in the evaluation of the project.

O1. Develop a functional application which will serve the purpose of storing and accessing

medical health records in a Solid data Pod.

Target ID Description

T1.1 Allow explicitly authorised users to view medical records belonging to an

individual.

T1.2 Allow explicitly authorised users to grant permissions to other users to view

or update medical records.

T1.3 Allow implicitly unauthorised users basic access to certain information in the

event of an emergency.

O2. Evaluate the practical usability of the developed application with test users experienced

with the healthcare sector and/or data engineering.

Target ID Description

T2.1 Establish live testing environment for the developed application to be

hosted on.

T2.2 Validate application functionality with individuals currently working in

healthcare informatics.

T2.3 Develop a PSSUQ for application test users and present results.

T2.4 Compare PSSUQ results with those from a similar application developed

using traditional technologies.

Making Personal Data Solid Overall Goal and Objectives 12

O3. Obtain ethical approval for the desired functionality of the proposed application.

Target ID Description

T3.1 Consider all aspects of the ethical implications, both short-term and long-

term, that the application may have on the end user and society.

T3.2 Complete Ethics Committee project checklist and a subsequent ethical

application form, if required.

O4. Maintain a detailed diary of any obstacles faced while developing with Solid and

solutions or mitigations employed.

Target ID Description

T4.1 Log lessons learned/tasks completed for each day of development.

T4.2 Discuss effectiveness of the Solid documentation and/or Solid community in

developing features or overcoming obstacles.

O5. Help to grow the Solid developer community by engaging with development topics as

much as possible.

Target ID Description

T5.1 Engage with other Solid developers to discuss solutions for common issues

and share experiences.

T5.2 Earn two trust member levels in the Solid community forum [15].

T5.3 Make application code repository public and list achievements to the

community, enabling Solid developers to use the application source code in

their own development.

Making Personal Data Solid Literature Review 13

Chapter Two

7. Literature Review

Section Overview
This project touches on a wide range of topics and therefore, research had to be placed into

a large domain to gain an adequate understanding of how the developed application would

fit into the current landscape. This chapter describes the approach to researching this

landscape. Each subsequent section describes the approach to finding literature for that

area, as well as a description of the state of the art and efforts that are being made to

advance the field. The three domains that are most relevant to this project are listed as:

7.1 Decentralisation.

7.2 State of the art of Solid.

7.3 Security in healthcare IT systems.

The societal implications of widespread decentralisation are considered in section 7.1, along

with the current status of enterprise decentralisation. Next, the current state of Solid is

described in section 7.2, evaluated in terms of the documentation supplied to developers,

technical literature on Solid and similar projects discovered through engagement with the

Solid community. Finally, some security cases in healthcare IT systems are examined in

section 7.3 to identify the current threats that the industry faces and determine if there are

gaps or critical areas that this project could help to address.

7.1 Decentralisation
Decentralisation has been a topic of interest for web analysts for many years, many of whom

have fears for the state of data privacy as it stands today. However, the term

‘decentralisation’ has multiple meanings across literature that make finding work relevant for

this project difficult. For example, decentralisation can mean the distributing of power and

decision-making away from a central government to regional authorities [128]. Another

definition of the term as described by the co-founder of the popular cryptocurrency,

Ethereum, is for a system with individual nodes co-operating towards a collective purpose

[129].

In the context of this project, decentralisation refers to the process of transferring vast

amounts of data from centralised databases, either online or privately accessed, to

decentralised data stores. This is no easy feat, but it would bring a level of transparency with

Making Personal Data Solid Literature Review 14

data control and portability that is desirable in the current climate; where data is replicated

and stored across an unknown number of service providers’ private storage.

7.1.1 Societal Implications

The need to move from the today’s web, known as Web 2.0 [53], towards a better solution

has been expressed by many analysts in recent years. The inventor of the web itself [54] has

written multiple articles expressing concerns for the web as it has evolved from its creation

[55,25,26], where his calls to action have become more urgent in recent years.

One resource that has been particularly helpful in understanding the status of

decentralisation are the publications by Ruben Verborgh [21], a Professor of decentralised

Web technology in Ghent and an Ecosystem Architect at Inrupt [19]. One interesting

publication [22] discusses the need for decentralising the web by highlighting ongoing

problems such as the echo chambers in modern social media companies each using a

centralised approach [23], or the “filter bubble” [24] effect that is happening on modern

search engines where personalised user models effectively hide content in an attempt to

maximise engagement. These claims are reinforced by letters written by Berners-Lee, who

states that we need increased transparency with where our data goes [25] and expresses

concerns for the future of the web if we continue on our current path [26].

This publication references another blog post by David Rosenthal [27], an established

researcher in data storage, who claims that “it isn’t about the technology”, and the obstacle

in decentralising web is not in the technology to do so, namely Solid pods, but in the

reluctance of dominant tech companies that do not want to release the vast amounts of

personal data that entirely drives their advertising business models. Another publication by

Verborgh [28] drives a similar point; that to elicit widespread Solid pod use, there will need to

be more cooperation with technical research from dominant companies. This is very

interesting because it seems that the reluctance of the big tech companies is a hindrance to

the adoption of Solid and decentralisation as a whole.

However, in another post from Verborgh [108], he hints that this will ultimately be a good

thing. If big tech companies can’t attract new users by the possession of information about

current users, it will spur competition and force them to become innovative with other

appealing aspects of a service, such as added functionality, a user-friendly interface or

proper data security.

Some other publications in Verborgh’s work were very helpful in understanding Linked Data

concepts and its role in the next generation of the web [30]. He is truly at the front of

advancing the adoption of Linked Data and Solid, for both the developer community [29] and

the average user [78], by providing advice for developers and explaining what the transition

Making Personal Data Solid Literature Review 15

to Solid would mean for end users, including granular control of data and true data

portability.

7.1.2 Enterprise Decentralisation

In a report on the state of data in 2022 [114] that surveyed 400 companies, published by

Enterprise Managements Associates, it was shown that organisations in the EMEA region

(Europe, Middle East, Africa) are the leaders in adopting a decentralised architecture.

However, other regions have signalled that this is the direction that they would like to move

to in the coming year, shown below in Figure 6.

Figure 6 – Decentralisation of organisations per region [114]

This report continued to state that 31% of respondents claimed that data constantly being

moved and changed makes finding data difficult. Decentralisation of data on the Semantic

Web would definitely address both of the concerns listed above, since data will exist in a

single location and will only enriched by the addition of new data.

Furthermore, multi-use data storage techniques such as object storage [115] is the most

influential aspect of buying cloud data storage for 30% of respondents. Object storage

shares some of the same principles as decentralised storage in Solid, in that data held in

object storage is self-contained with a unique identifier accessed by the HTTP protocol.

Therefore, it seems from this report that many companies would be willing to embrace

decentralised data storage with Solid.

An example of a company accelerating decentralisation, and a good source of articles about

decentralisation for organisations, are at the website of Janeiro Digital [70]. This is a

company attempting to help businesses or entire systems transition from traditional data

storage to decentralised storage. They partner with Solid when it comes to storage but

perform all the data collection, integration and presentation using their proprietary XForm

software [71]. Their work is particularly relevant to this project as the advantages that

decentralising the healthcare industry are listed [79] as:

Making Personal Data Solid Literature Review 16

1. No burdens of data privacy for healthcare providers.

2. Patient ownership and control of their health data.

3. Possibilities for insights across vast amounts of patient data via “decentralised

intelligence”.

The last point here is particularly attractive, as it suggests that a shared pool of anonymous

patient health data could assist the medical community in accelerating research projects.

The applications of shared decentralised data are not limited to the healthcare industry; as

one can easily imagine the appeal of a globally shared representation of real-world data to

agriculture or engineering. However, this of course relies on equal participation from nations

around the world, many of which would not have the technical infrastructure to create Linked

Data en masse.

7.2 State of the Art of Solid
As Solid is still evolving and in early adoption, finding related work proved to be very difficult.

Searches on any of the major technical paper databases such as IEEE or ACM do not return

any publications on Solid and results are adulterated due to overlapping applications of the

term ‘solid’. However, various technical specifications of the Solid protocol, a previous

dissertation on this topic by Akashdeep Lamba [16], articles written by the Solid community

and the projects of other Solid developers have been the most valuable resources for

researching the area.

7.2.1 Documentation

The most useful technical resources for the entire Solid specification are found in the Solid

Technical Reports repository [58]. This contains individual reports for all aspects of using

Solid, from the authorization flow (built on top of Open ID Connect 1.0 specification [59]), to

the notifications protocol for messaging [60], or the Application Interoperability Primer [61]

which describes some requirements and recommendations for developers of Solid

applications. These primers were very useful in defining the terminology referenced in other

publications and did allowed for a granular understanding of the background processes that

occur while using Solid.

However, almost all of the examples of the specifications in use are written in RDF [62],

Turtle [63] or JSON-LD [64], meaning that a prior knowledge of these concepts is required to

be able to read and understand the Solid flow. Furthermore, all of the specifications are still

in some editable status, meaning that they are works in progress of a W3C working group

and are subject to updates by the working group at any stage. Nevertheless, these working

groups are quite active, with feedback channels and mostly open meetings for anyone with

interest to attend.

Making Personal Data Solid Literature Review 17

All Solid applications adhere to these specifications, regardless of technologies or

frameworks used by the application. Therefore, there are a number of available Solid client

libraries that can be used by developers to work with Solid, listed in the solidproject.org

website [39]. The benefit of these libraries is that they bind application logic to the Solid

specifications, so that Solid developers need only ensure that their developed code works for

the desired library. At the time of writing, the programming languages with libraries endorsed

by solidproject.org are: JavaScript, Perl, Python, Rust, Kotlin and Swift; each with varying

amounts of documentation. JavaScript is supported the most, with substantially more

available libraries and supporting documentation.

7.2.2 Literature

As mentioned by Lamba, finding literature on Solid is especially difficult due to several

implementations of the word ‘solid’ within scientific literature – it is used as an acronym for

object-oriented design principles [17], as a programming language for the Ethereum

blockchain [18], and features in the titles of many works across all branches science and

engineering. Furthermore, frequently updates to the Solid Protocol likely acts as a deterrent

for some researchers who do not want to design a full proof-of-concept application in Solid in

its current state, in fear that it may become obsolete in a future version of the specification.

However, the aims of this project are very similar to those of Lamba’s work in 2019. His

primary goal was to evaluate “the extent to which Solid can be used to build practical

applications from the perspective of an application developer”, which is almost identical to

the overall aim of this project. To reach his goal, Lamba was attempting to develop an online

social network, where the primary design considerations were ‘feed aggregation’ from

followed users and ‘user discovery’ of other users of the application. This project will focus

more so on implementing procedures used in professional medical settings in a Solid

application to serve both patients and healthcare workers. Furthermore, there were no

separate user roles with corresponding use cases in his application, where this is a crucial

aspect of this application.

Some of the aspects of Solid that Lamba considered were;

1. The developer experience using Solid.

2. The feasibility of a decentralised social network developed with Solid technologies.

3. Improvements that could be made to documentation and developer resources.

These same aspects will be covered from a different practical application approach, but the

key difference is that 3 years have passed between the undertaking of these two projects.

This means that comparing the results at the end of this project with Lamba’s from 2019 will

give an estimation of the extent that Solid has changed in this time.

Making Personal Data Solid Literature Review 18

Lamba took a sound approach to both researching related areas and investigating the

feasibility of development in Solid, in that his research was placed in the appropriate

domains. However, a difference between the two research domains appears in that Lamba

was developing a social network application; so an aspect of his research was placed in

“Privacy in Online Social Networks”, whereas this project will be considering the security of

applications used in the healthcare domain.

Another dissertation written in 2020 by a student at MIT [77] was found that investigated

Solid’s capabilities for a mobile application that uploads biometrics from smart wearables to

Solid Pods, where the biometrics are modelled using the FHIR RDF framework [109]. This

publication was a useful resource for the list of references and some other descriptions of

concepts related to Solid. However, very little evaluation was given into the state of Solid at

the time and the technical contributions at the end of the project were not beneficial in this

project due to different technologies in use, meaning that Lamba’s project from the previous

year is a much more valuable resource.

No other technical literature was found on the state of Solid alone, as most of the blog posts

and articles featured and discussed among the community were focused more on

decentralisation and Solid’s role in a decentralised web. As will be discussed in the next

section, some researchers were found during the project that are working on technical

papers at the current time of writing, which were unavailable for this project’s research.

7.2.3 Community

The most valuable resource for literature related to Solid was through the various community

channels. Although this mostly consisted of informal discussions, blog posts or recorded

meetings, it was material straight from those most active in Solid and with the most

knowledge.

Most of the active developer community involved in Solid seem to be working to make Solid

more widely used by businesses at Inrupt [19]. This company was co-founded by Berners-

Lee in 2017 and is undoubtedly the largest collection of professionals working to make Solid

widely accessible. Other members of the community are testing the capabilities of the

technology by developing Solid applications using data stored in Solid Pods [20], or trying to

expand the list of technologies and frameworks currently supported by Solid [56, 57].

Developers can engage on Solid topics at the following recommended media:

• Solid Community Forum [15] – This is the home for most blog posts, application

concepts, discussions, job opportunities, event listings etc. The forum operates with a

‘trust level’ system, where users earn their way up to higher trust levels by 1)

Making Personal Data Solid Literature Review 19

engaging with posts on the forum and earning likes on their own posts, which grants

them additional privileges to maintain the forum and 2) earning badges, which are

small achievements earned for various activities on the forum.

• Gitter channels [32] – This is a more informal platform for engaging with the Solid

community, across 30 channels related to Solid. This medium has thousands of

users across the various channels and allows for short-form conversation with some

of the developers at Inrupt or editors of the Solid specification, including Berners-Lee

himself.

• Solid World Events [65] – These are monthly events held by Inrupt since 2020 which

highlight some of the key news from the past month, including some Solid developers

as guest speakers and a Q&A session. Minutes and recordings are taken for each

meeting which allow the community to work through past meetings and view the

progress of some work items related to Solid.

It was through engagement on the Community Forum that connections were made with

other Solid developers. One of which was a final year student attempting to integrate

Community Solid Server (CSS) [66] into CERN infrastructure, including slight modifications

to the CSS code and integration to work with CERN’s single sign-on. This individual is still

working on their thesis at the time of writing, so exact details on the implementation could

not be acquired.

Another developer had just released a Solid Pod browser called PodPro [67], using their

separately developed Solid client which interacts with Solid Pods using RDF data models

written in the Elixir programming language [68], using the RDF.ex library [69].

Documentation of the project is currently underway and will be released in the second half of

2022. Their Solid client is currently private so it could not be used in this project, but PodPro

remained a valuable resource throughout. An example of the tool in use is shown below in

Figure 7. It has the advantage over the standard solidcommunity.net Pod browser [38] in that

it shows a clearer overall structure of Pod data with the access that individuals have, shows

the full HTTP response of calls to retrieve or insert data and allows for much faster swapping

between Pods, but comes with a requirement of a reasonable understanding of Turtle

syntax.

Making Personal Data Solid Literature Review 20

Figure 7 - PodPro tool in use

Through discourse with this developer, another project was discovered which is related to

this project. Janeiro Digital [70] is a company founded in 2009 with similar aims to the Solid

Project itself, returning control and security of data to the individuals and organisations which

own it. They released a software platform in 2017 known as XForm [71] which acts as a

service for companies to store centralised data in Solid Pods, which performs all the

necessary data collection, integration and transformation.

An interesting application of XForm arose in 2021 when Janeiro Digital worked with the NHS

[72] to restore ownership of patient data to the patient themselves, by retrieving the data

from the many healthcare systems in which it already existed and storing it in individual Solid

Pods. They faced two main challenges;

1. Integrate the data from a wide spectrum of existing systems.

2. Ensure the managing and sharing of patient data is intuitive to the average user.

While the first challenge is not as important for this project, which is to develop a proof-of-

concept application using empty Pods, the second challenge that Janeiro faced in their

project is one that was surely at the forefront of this project. As discussed in a presentation

of the project [73] made by the CTO of Janeiro, Justin Bingham, it was important not to

complicate users with too much information about the physical structure of their data or the

permissions related to a piece or section of data.

Where Janeiro’s implementation excelled far beyond this project was in their approach to a

hierarchical ontology of healthcare concepts, known as Shape Trees, which helped with

intuitive data authorisation to other individuals or applications. They also enabled integration

with wearable fitness trackers to store activity data in the patient’s Solid Pod, which was

outside of the scope of this project. However, their application did not attempt to enable the

Making Personal Data Solid Literature Review 21

creation of new healthcare records to be stored in Solid Pods, which is something that the

application for this project will attempt to achieve.

Another application named “Solid Health” was discovered during the research into this area,

featuring a mobile application for storing and accessing health data in Solid Pods [74]. The

application was built using React Native [75] and only supports Android devices, with data

collected from fitness trackers using Google Fit APIs [76]. There was some initial concern

that the overlap between the two applications would be large but fortunately the similarities

ended at the name of the applications, as it became clear that the technologies and

application scopes were quite different.

7.3 Security in Healthcare IT Systems
Lastly, some research has been placed in the area that the proposed application will be

designed for, the healthcare sector. This included an examination of the security threats that

the sector faces, to determine if decentralising the sector could be beneficial.

Logically, no resources were found describing the exact system architecture or application

stack used by healthcare in Ireland, as it would give unnecessary information to attackers,

which meant that generalised use cases of IT systems in hospitals were examined instead.

Some examples of decentralised healthcare applications are then evaluated to determine if

they present some shortcomings that this project could address.

7.3.1 Current Landscape

Resources have been found describing the landscape of cyber security in Europe [33] which

reveal that the healthcare sector has been particularly targeted recently due to the collection

of scientific information related to the COVID-19 vaccine. This report also states that

attackers have taken advantage of the pandemic to impersonate medical bodies and carry

out an increased number of phishing [80] attacks by creating new lures tailored for

individuals working from home or related to vaccinations. Phishing was listed as the method

for gaining access to the HSE’s system in [4], with attackers using the Conti ransomware

[81] to disrupt efforts of recovery made by the HSE during the attack. This lines up with the

landscape of attacks across Europe, as ransomware incidents using Conti were most

popular as of 2021, as shown below in Figure 8.

Making Personal Data Solid Literature Review 22

Figure 8 - Number & value of ransomware attacks observed by ENISA (April 2020 - July 2021) [33]

Some case studies of security breaches in healthcare systems were examined to determine

the extent to which hospitals and other institutions must allocate resources for security and

compliance around ownership of patient health data. These papers concluded that huge

efforts needs to be placed in providing adequate training and awareness [82, 84] across the

organisation and an ever-expanding array of technologies make it difficult for management

to ensure that the countermeasures that they have in place are adequate [83]. A common

theme across these case studies is that adequate data security is a huge IT overhead for

hospitals which is sometimes overlooked in favour of allocating resources towards

healthcare assets or personnel.

Although it would take a great deal of effort to address data protection regulation following

the proposed move of patient health data to decentralised data storage, it would mean that

healthcare institutions may not remain as highly valued for ransomware attacks and could be

better equipped to effectively respond to attacks as they occur.

7.3.2 Security of Decentralised Healthcare Applications

It was difficult to find any evidence of applications using Solid pods in use in the healthcare

sector but two examples were examined of decentralised healthcare applications using

blockchain technologies. A comprehensive list of similar applications was found in a paper

that discusses the advantages of integrating blockchain into modern healthcare [113],

proving there is no shortage of projects in the area. These projects express the same need

for moving to decentralised systems: increased threats to centralised health records

databases and the desire for increased portability of patient data. However, their

implementation differs from this project in that they have employed blockchain technologies

to create a decentralised system while this project intends to use a network of

interconnected Solid Pods in the Semantic Web.

Medicalchain [111] is a blockchain based application that has gained a lot of interest since

its creation in 2016. As specified in the product’s white paper document [112], access to

health records in Medicalchain is controlled using a Hyperledger Fabric and records are

Making Personal Data Solid Literature Review 23

encrypted using symmetric key cryptography. However, in the instance where the access of

an individual is to be revoked, the record must be re-encrypted with a new key. In his thesis,

Paulos [77] states that this means the record might always be available to the individual with

revoked access, which is a huge security risk. This is not a concern for an application which

uses Solid as opposed to a blockchain network, as access is tightly controlled in real-time

with the Solid protocol.

MedRec [110] is another blockchain application built on Ethereum, where a network is

established comprised of patients and medical providers, elected by the network of patients.

This creates a system where patients can request access to their medical records, which are

still ultimately stored in individual medical institutions but are accessible from anywhere in

the network. The problem with using the Ethereum approach is that the metadata of

transactions between patients and institutions are public by nature, meaning anyone who

could link a patient’s Ethereum address to their real-world identity could determine the

healthcare providers that a patient has.

They took steps to address this problem by anonymising the metadata of transactions, via

creating intermediate accounts between patients and institutions; however, they

acknowledged that the correlation between associated accounts in the network could be

tracked over time and thus the system is not entirely secure. Being able to associate users

to the institutions from which they receive care would make the application unusable in the

eyes of both patients and healthcare workers.

Making Personal Data Solid Design 24

Chapter Three

8. Design

Section Overview
This chapter describes how the application was designed. This design fell into two phases,

described in section 8.1 and 8.2, respectively:

8.1. Exploration

8.1.1) Design purpose of application based on research of what Solid could

offer to the healthcare sector.

8.1.2) A more thorough inspection of technologies supported by Solid.

8.1.3) Development of basic read/write operations and data access

management.

8.2. Application Planning

8.2.1) Design of use cases for application, including definition of user types

and their roles within the application. User and Functional Requirement

specification. Project Gantt chart/schedule.

8.2.2) Application data specification, including structure and location.

8.2.3) Interface design and approach to implementation.

The first phase was started in October of 2021 and helped with generating reasoning for

design decisions, along with insights gained through research in related areas. This phase

was necessary for deciding on the application framework and predicting what is possible to

be developed within the timeframe. The second phase was started in January of 2022 and

lasted for a week or so; to gather conclusions from the first phase and use them to develop a

full application specification that the application will be validated against.

8.1 Phase 1 – Exploration
8.1.1 Application Purpose

The first design decision to make was the purpose that a Solid application could serve the

healthcare sector. The original concept that was appealing was an application to use in the

event of a medical emergency; where information about particular medications needs to be

made available to paramedic, such as blood thinners. Traditionally this has been in the form

of an information card that the patient needs to carry at all times, but this is susceptible to

misplacement.

Making Personal Data Solid Design 25

Therefore, a concept application was designed where patients could grant paramedics

access to view a list of current medications or contact the caregiver facility of patients to

request information about the patient, while concurrent research was placed into context-

aware computing and user modelling. Research revealed the context of an entity (individual

or application) is defined as the combination of location, identity, activity and time [92], and

developing an application to collect and process this data from the user was deemed outside

of the scope of investigating Solid’s maturity. Furthermore, the nature of Solid requires

access to be explicitly granted before users can view data in another Pod. Where the patient

may be unresponsive or the delay between communications to caregiver facilities may be

too large, this concept was deemed unsuitable for Solid in its current state.

Therefore, an application to view and modify healthcare records was considered instead,

where data could be stored in Solid pods. This would ideally help with the growing problem

mentioned in section 7.3 above, where the healthcare sector has been an attractive target

for ransomware attacks due to large volumes of valuable data stored across fragmented and

sometimes outdated systems. A lot of factors had to be taken into account for an application

of this type, such as the location and shape of the data, the processes to create and manage

data, the types of users that would be interacting with data and the interface of the

application.

8.1.2 Application Framework

The second design decision to make was the framework to use for the application. To help

with making this decision, applications listed on the Solid Project website [40] and on the

community forum [85] were examined first. While a lot of these did not have available source

code or documentation, it was helpful to see the technologies that developers had already

used in developing a working Solid application. Next, the list of libraries readily available for

use in Solid development was considered [39] along with some application concepts from

the community [20], which revealed that JavaScript libraries were dominant in the space for

development, but a lot of application concepts remained with little or no engagement from

the community over a number of years.

Then the developer tutorial listed on the Solid Project website [43] was followed, which uses

the Inrupt solid-client JavaScript package [44]. This required a Solid Pod and corresponding

WebID, which is a unique URI identifier for each individual with a Pod, so these were

acquired from solidcommunity.net [38], as the Pods are listed as being hosted in the closest

location to the application developer. While this developer tutorial was basic, it did provide

some code for authentication that could be used later. At the GitHub repository for the

package, a link was available to a more in-depth tutorial at the Inrupt website [86], which has

Making Personal Data Solid Design 26

some additional functionality and uses webpack [87] to run the application as opposed

Parcel [88], which is used in the Solid Project tutorial.

Therefore, due to the amount of documentation available with the Inrupt JavaScript library,

and concerns about being unable to find any support when reaching a development issue

using a less-used technology; it was decided to develop a JavaScript web application, using

some third-party npm packages available in the Node.js environment.

8.1.3 Development of Basic Operations

An important aspect of this initial exploration with the chosen technology was to learn how it

could be used for granting and revoking access to Resources in Solid. The Inrupt Solid

library does this with an ‘access’ object where the individual levels of access are specified

with a Boolean flag. The access modes are described below as per the documentation [97]:

• read: The ability to view the contents of a Resource.

• append: The ability to add new data to a Resource.

• write: The ability to add new data to a Resource, and to change or remove existing

data.

• controlRead: The ability to view the access to a Resource.

• controlWrite: The ability to change the access to a Resource.

There are two access control mechanisms for authorising individuals to Resources in Solid,

Web Access Control [98] (WAC) and Access Control Policy [99] (ACP), where the main

difference is that WAC uses clauses within the Access Control List (ACL), which is an

Auxiliary Resource to a Resource which requires an authorisation control system. ACP uses

a different type of Auxiliary Resource, the Access Control Resource (ACR), to enforce ACP

Access Rules and ACP Access Modes.

Solidcommunity.net only supports WAC at the time of writing, which means that WAC using

ACLs was the only way to specify the access that individuals may have to a particular

Resource. Furthermore, for WAC ‘controlRead’ and ‘controlWrite’ must be in sync, meaning

that a user cannot have the ability to view who has access to a Resource without being able

to change the access to that Resource.

Solidcommunity.net provides a few definitions for combinations of access modes, that will be

referred to throughout the rest of the paper. These are listed below in Table 1.

Making Personal Data Solid Design 27

 read append write control

Viewers ✓

Submitters ✓

Posters ✓ ✓

Editors ✓ ✓ ✓

Owners ✓ ✓ ✓ ✓

Table 1 - Solidcommunity.net authorisation levels

Expanding on the code for the tutorial applications using further documentation available

from Inrupt [89, 90], a number of basic operations were developed that were deemed crucial

in order to build an application specification that could be fulfilled with the library. These

operations are listed in Table 2 below. Definitions of these terms can be found at [91].

Operation ID Operation Title

O1 Authentication with Pod provider.

O2 Create a new SolidDataset in a Solid pod at a specified URI.

O3 Create an ACL Resource for a SolidDataset with configurable access

levels.

O4 Read the access that a user has to a SolidDataset.

O5 Read the contents of a SolidDataset at a specified URI.

O6 Grant configurable access to a specified user for a SolidDataset.

O7 Read back a Thing within a SolidDataset using its URI.

O8 Create and upload a new Thing to a SolidDataset.

O9 Delete a Thing from a SolidDataset using its URI.

O10 Delete a SolidDataset at a specified URI and all contents.

Table 2 - Developed basic operations

With these operations capable using the selected Solid library and the Node.js development

framework, it was certainly feasible to develop an application to read and write files to an

individual’s Pod. Some consideration had to then be placed in ensuring that the application

an enterprise-level application concept could be developed that would help the healthcare

sector and maximising the usability for both patients and medical professionals.

8.2 Phase 2 – Application Planning
8.2.1 Functionality

To begin the design process for the use cases that the developed application should be able

to offer to users, a number of roles had to be created for the application. These are the user

types that would be using the application and therefore the use cases were designed around

Making Personal Data Solid Design 28

offering maximum usability to this group. These user types are shown below in Table 3,

alongside a description of the intended functionality for each user type.

Use Type Description

Patient Receives medical care from a Doctor.

Institution

Administrator

Uploads appointment details of upcoming appointments between

Patients and Doctors.

Doctor Conducts a medical appointment with a Patient.

Pharmacist Works at a pharmacy to dispense medication to a Patient.

Emergency

Worker

Ambulance worker, Paramedic or other who needs knowledge of any

current medication that a Patient may be taking.

Health Worker Either a Hospital Administrator, Doctor, Pharmacist, or Emergency

Worker.

Insurer Sells life insurance to a Patient and therefore needs knowledge of

ongoing health issues.

Table 3 - List of user types for application

With these user types in consideration, a list of use cases involving each was drafted. One of

the most important aspects to developing these use cases was finding a balance between

usability for each user type and practicality to match with what happens in professional

healthcare. Therefore it was important to not have a notably larger workload on a particular

user to complete a given process, as the application would become unappealing for users in

that role. At the same time, it was important to consider the procedures used in professional

practice and minimise the disruptions that moving to this system would incur. Finding the

balance between these two design considerations proved to be a difficult task throughout the

design and implementation of the application. The list of initial use cases is shown below in

Table 4.

Making Personal Data Solid Design 29

Use Case ID Description

UC1 Patient can register care under a new medical institution, allowing the

Institution Administrator of the institution to operate on their behalf to

log new appointments.

UC2 Patient or authorised Health Worker can access a Patient’s medical

records.

UC3 Pharmacist can view a list of prescriptions belonging to a Patient if

they have been granted explicit access.

UC4 Emergency Worker can view the current medication that a Patient is

taking by default.

UC5 Insurer can view a list of diagnoses for pertinent healthcare

departments, dated from the past 5 years, if they have been granted

explicit access.

UC6 Doctor can upload a new healthcare record to a Patient’s pod, if they

have been granted access to interact with the Patient’s health data

for a given healthcare department.

UC7 Patient can view who has permission to any piece of their health data

and add or revoke permission from any user.

Table 4 - Draft of application use cases

Following the development of these use cases, a set of initial User Requirements and

downstream Functional Requirements were drafted to break up development tasks and try to

identify important tasks. The aim was that if each Functional Requirement was met then

each of the use cases would be possible, with some additional functionality. These

requirements are listed in Appendix 1. There was also a Gantt chart created to identify task

dependencies and provide a rough schedule of the development work, which is provided in

Appendix 2.

Note that in Table 4 above, there are three terms which have broad definitions in the scope

of this application. The first is ‘medical institution’, which is any location where an individual

may receive medical care, for example a hospital. The second is ‘healthcare record’, which

includes four possible types:

1. Appointment – Details an appointment that a Patient has in a specified healthcare

department (e.g. Cardiology, Ophthalmology), with a specified Doctor in a given

medical institution.

Making Personal Data Solid Design 30

2. Diagnosis – Information about a diagnosis that may have resulted from an

appointment between a Patient and a Doctor.

3. Prescription – Details about a prescription for a Patient with an option to be shared

with a specified Pharmacist.

4. General Record – Any type of record that falls outside of the three listed above, for

example a blood test result or a record of drug administration.

The third is ‘Doctor’, which in this application is any individual that would be creating medical

records on behalf of a patient. In reality, this could be a nurse, physiotherapist, radiologist or

any other medical professional that would create healthcare records for a patient.

A UML Use Case Diagram [125] is shown below in Figure 9, to show the various user types

and the actions they can perform within the application.

Figure 9 - Use case diagram

These use cases were sent to a group of individuals working professionally in healthcare

informatics, who were able to provide some useful feedback that went towards refining the

approach to the application design. Although this feedback didn’t change any of the use

cases listed above, it did influence the implementation in many ways. Some of the

comments that went back towards design refinements were:

• There needed to be greater transparency of the role of different user types within

different use cases while the application is being used.

• There should be an option for registering different types of medical institutions.

Making Personal Data Solid Design 31

• The access that all individuals have to any piece of health data should be transparent

while using the application.

From this feedback, an idea was conceived to allow users to have multiple different types of

health data in operation at one time. This is to reflect the fact that Patients may receive care

from a public hospital and a general practitioner simultaneously, and while records may be

shared across these two medical institutions, they are still independent sets of data for use

in their own domain. This decision was also based on the fact that there are different data

sharing policies or integrated care duration within institutions of different types. Although

patients could receive care across a large range of healthcare facilities, the possible options

in the application were limited to public, private or general practitioner.

8.2.2 Application Data Structure

An important distinction to make is the difference between the WebID of Solid Pod users and

the web address of their Pod. For example, if a particular user signed up for a Pod with

solidcommunity.net under the username ‘UserName1’, then the two important addresses for

use with Solid development would be:

1. Pod ‘base’ URI – “https://username1.solidcommunity.net/”: This is the address

of the root directory of the Pod.

2. Pod owner WebID - “https://username1.solidcommunity.net/profile/card#me”:

This is the unique identifier for the Pod owner, used for authentication and

authorisation.

The next design decision to make before development of application features could begin

was the location and structure of application data. This was an important aspect of the

application’s development, as one of the most common roadblocks for developers in Solid is

‘where to store data’ and ‘how to access it’, since the specification relies so heavily on the

exact URI’s of Resources. Three key design considerations impacted this process:

1. Adherence to the Solid ethos with regard to personal data ownership and control.

2. Isolation from all other data stored in Pods.

3. Usability for both patient and health worker by modelling existing file systems in

healthcare.

The first design consideration was the reason for storing patient health data in their

respective Pods, as opposed to the Pods of healthcare workers or of some medical

institution. This would make patients become the owner of their own data and allow them to

control the access to it as they desired. This decision was also impacted by a desired

purpose that the application could serve to the healthcare sector; a reduction of health data

Making Personal Data Solid Design 32

stored in one centralised location, that could make the sector less of an appealing target to

attackers. Therefore, patients can be considered synonymous with Pod owners in the

context of this application.

The second design consideration was the reason for storing application data within a Solid

Container at the root of the patient’s Pod, separate from all other data that they may have in

their Pod. This is the most suitable type of Resource for this application’s data, as

Containers are the only Resource that can contain further Containers or other Resources.

Following from the decision to allow multiple types of health data to exist concurrently; each

respective health data type would have its own Container stored at the root and be

independent from each other.

The third design consideration was the reason for creating a structure to the data where

records from one healthcare department could exist without interfering records in another

department, each with their own access policies. Records could then be shared across

departments as required. Within each department that a patient may receive within a given

type of health data, there needs to be space for each of the permitted healthcare record

types that the application enables the creation of; Appointments, Diagnoses, Prescriptions

and General Records.

With these decisions regarding application data in place, a diagram of the shape of

application data with regard to other Pod data is shown below in Figure 10.

Making Personal Data Solid Design 33

Figure 10 - Application data inside Pod

Here the Resources that are created by default along with a Pod are shown in blue. They

include the Profile and Public Containers, for information that the user would like to be

publicly available to the web, along with the Favicon.ico and Robots.txt files. The Private

Container is where the user can store sensitive data, but storing application data here might

put other files at risk. In this instance for illustration, the user has uploaded some personal

pictures to a separate ‘Pictures’ Container and has some data from some other application

stored in ‘Application X data’.

All of the data created by this application is shown in green, and is entirely separate from

other data in the pod. The access to all of this data is private by default but the

implementation of features and execution of use cases will cause access to be granted

appropriately to other users.

It can be seen in this instance that the patient receives some care from a public institution in

the Cardiology and Haematology departments, they have some records with their GP

possibly for blood tests, and they receive some physiotherapy from a private institution. Note

that the structure for all departments across all health data types is identical with the same 4

contained record types as with Cardiology in the public container.

Making Personal Data Solid Design 34

8.2.3 Interface Design

With the desired functionality in the form of use cases and requirements, an idea of the

application data shape and different user types with tasks for a given application process;

the next big design decision was the appearance of the application and the steps required to

complete application processes.

The initial design featured a separate interface for each user type, with each interface being

a single-page application [93] where possible operations within the app were clear and

matched with the use cases for the user that was signed in. However, it became clear early

in development that there is currently no way to verify the role that a user has within a given

institution.

Users all have a WebID provided by solidcommunity.net when their Pod is created which

only includes their username, and Pod contents by default are identical. After authentication

with the Pod provider, the application is sent a JSON Web Token [94] (JWT) enriched with a

claim for their WebID which matches with the user account that was created with the Pod

provider. The flow of the authentication process is shown below in Figure 11.

Figure 11 – Application authentication flow

There was no readily available way to add additional claims to the JWT to describe the role

that a given user has within an organisation and while it could have been possible to store a

value at some location within each user’s Pod which contained their role, this value could

have been changed by the Pod owner at any stage. This means that any user could

potentially have any role within the application. Therefore, it was decided to keep the

Making Personal Data Solid Design 35

interface identical, regardless of the user that was signed in. Certain operations would be

visibly unavailable if the current user is neither the Pod owner nor the Institution

Administrator.

The only way to distinguish the role that a user has for a given Patient scenario is the access

that has been granted to them by the Patient via previously completed use cases. This

brings additional functionality to the application in that any user could be viewed as both a

Healthcare Worker for a Patient, while being a Patient themselves to some other user.

With this uniform display approach, it was necessary to enable an option for both:

• Patients to access the data in their Pod.

• Healthcare workers to access a Patient’s Pod and make changes to data.

This was for the application to know the location of where to look for data, either in the Pod

of the authenticated user or in the Pod of a specified user. Therefore, before any application

actions could be performed, it was necessary to obtain this intention from the user. Once this

decision has been made within the application session and the user has selected the type of

health data to access, the user will be brought to some ‘home page’ where they can begin to

perform operations within the app.

Regarding the design of other application screens, it was decided that they should be easily

found using buttons on the home page. This will update the HTML DOM accordingly, using

HTML element manipulation techniques gathered from an online course by Ray Villalobos

[116]. A pleasant user experience with the app would be desired but pushing the limits of the

technical capabilities of Solid development is the goal, so priority will be placed in this area

instead.

Making Personal Data Solid Implementation 36

9. Implementation

Section Overview
This chapter describes how the features of the application were implemented. The chapter is

broken up into six sections:

9.1. Setup – Describes the process of setting up the full development environment that

was used throughout.

9.2. Login and Health Data Configuration – Describes the implementation of features

for registering with the application and configuring the data used to register.

9.3. Uploading Records – Describes the implementation of features that upload

healthcare records to a Patient’s pod.

9.4. Accessing Records – Describes the implementation of features that access

healthcare records stored in a Patient’s pod.

9.5. Managing Record Access – Describes the implementation of features that change

the access to healthcare records stored in a Patient’s pod.

9.6. Deployment – Describes the process for deploying the application on a live

environment.

Sections 9.2 – 9.5 describe the performance of the application to complete each action

possible within the application, including breakdown of application processes and

justifications for decisions, where appropriate. UML Activity Diagrams [117] are provided for

explanatory purposes of each core piece of functionality.

9.1 Setup
The first step to set up the development environment was creating a Git repository for the

application [124]. Next, a diary of notes during development was created, to share some

insights on Solid development with future developers. This is provided in Appendix 3.

Frequent updates to the Git repository and development diary were essential to share

insights into the entire development process and not just the final point reached in the

implementation.

The Windows 10 operating system was used, with code developed in Visual Studio Code

and run on a Chrome browser.

During development, the project Gantt chart was consulted to determine the pace of work

that had to be completed along with gauging an estimation of the time that can be allocated

for each development task.

Making Personal Data Solid Implementation 37

9.2 Login and Health Data Configuration
The first feature to implement as part of the login process was to gather whether the user

would like to access their own Pod or the Pod of some other user. Following this decision, a

check has to be made to verify if the Pod to be accessed has already created some form of

health data. It was important that only the Pod owner be able to initialise health data in their

Pod, as the access for Resources should be set on creation. Therefore, if the Pod owner

chooses to access their own Pod and no data exists, they will be shown a form to register

health data with a medical institution. The flow of the login process is shown below in Figure

12.

Figure 12 - Login process flow

Logging out of the application is currently unsupported by the Inrupt package, and is a

known problem that the development team is aware of [118].

The next feature to implement after login and selecting the Pod / type of health data they

would like to access, was to allow users to register care under a medical institution. Basic

metadata about the institution is gathered from the user via a standard form HTML element,

including:

• Type of institution – public, private or general practitioner

• Name

• Address

• WebID of the Institution Administrator

Making Personal Data Solid Implementation 38

This information about the institution is stored as a Thing within a SolidDataset called ‘Info’,

created inside the accessed health data container.

After these values are inputted by the user, appropriate properties had to be added before

this data could be stored as a Thing in the Info SolidDataset, because data is ultimately

stored in RDF format. The main vocabulary for finding properties and classes was from

Schema.org [95] due to the large amount of terms across an array of concepts, which would

be needed for data used in this application.

A healthcare specific vocabulary would be ideal to give more accurate properties that are

consistent with the terminology used in practice. While it was clear that a lot of work had

been put towards these ontologies, a suitable one with a comprehensive list of medical

terms [96] was not found until late in the project’s development. Quality RDF representation

of data is outside of the scope of this project, so the decision was made to focus instead on

developing application features that would test the capabilities of Solid.

The Turtle representation of the Thing to represent the institution metadata is shown below

in Figure 13, where the name has been set as ‘medicalInstitutionDetails’.

Figure 13 - Institution metadata example in Turtle

An important aspect of the register process is the specification of the Institution

Administrator, found at the ‘member’ property in the diagram above. This is the person that

is able to upload new appointments on behalf of the patient, which reduces the workload that

the patient would have using the application and mirrors real-world practice. If the

appointment is in a department where the patient has no existing records, this will create a

new Container within the health data Container; meaning that the administrator needs to

have access to both view and create new records in the health data Container. They also

need the ability to grant access to others in the created department Container, meaning that

they need owner access in the health data container. Furthermore, they need the ability to

check if an individual has access to the ‘Info’ SolidDataset; so that they could view the home

page of the Patient’s Pod, meaning that they also need owner access to this dataset.

Making Personal Data Solid Implementation 39

The flow of the register process is shown below in Figure 14. This diagram continues from

the login process after it is discovered that the user has no existing health data in their Pod.

Figure 14 - Register process flow

After the register process has been completed, the user is brought to the home page of the

newly created health data, where they can begin to complete other use cases. The

information entered in the registration process is shown alongside buttons to initiate other

processes.

To test the ability to update individual values within a Thing, edit buttons were added to the

medical institution details fields, which update the fields when the user finishes editing and

presses the enter key. The name and address of the institution can be edited by the Pod

owner or the Institution Administrator, while the administrator field can only be edited by the

Pod owner as this will remove all owner access from the existing administrator and grant it to

the newly appointed one. The interface for this home page is shown below in Figure 15.

Making Personal Data Solid Implementation 40

Figure 15 - Application home page

The final configuration feature to be implemented from this screen is one which initialises a

new health data Container; started by clicking ‘Register new medical institution’. This

essentially repeats the register activity shown in Figure 14, except that it deletes all health

data of the selected type if one already exists, i.e., if a Pod owner already has records with a

public medical institution and wants to create records with a different public institution, it will

delete all records with the existing institution and create a new Container. As this feature

could potentially delete a large amount of data, it is restricted to only the Pod owner and a

warning message is shown to the user to explain the significance of the action.

9.3 Uploading Records
From the home page, users can upload healthcare records in two separate ways:

1. Uploading a new appointment by clicking ‘Register new appointment’.

2. Uploading a diagnosis, prescription, or general record by clicking ‘Upload medical

records’.

The first upload feature to be implemented is to register new appointments. This feature

could potentially require access to be granted to a number of users and the creation of

several Resources within the accessed health data Container, so it is restricted to the

Patient or Institution Administrator alone. As part of this process, the individual uploading the

appointment must specify the WebID of the healthcare worker that will conduct the

appointment with the Patient, which will grant that person editor access for that department

in the Patient’s pod.

The flow of the process is shown below in Figure 16.

Making Personal Data Solid Implementation 41

Figure 16 - Upload appointment process flow

As can be seen, this feature performs a lot of access checks and creates a lot of new

Resources if the appointment is the first in the selected department:

• A new Container for the department must be created within the current health data

Container, and 4 SolidDatasets must be created within this Container for each of the

possible record types.

• Owner access to the department Container is granted to both the Patient and the

Institution Administrator.

• Viewer access for the Emergency Worker user is also granted, meaning that they will

always have the access to view prescriptions for a Patient across all departments,

unless the Patient explicitly revokes their access.

Checks are also made on the access of the Doctor conducting the appointment, to ensure

that they have the correct access to upload records to the Patient’s pod following the

appointment. It was important to only grant access that was necessary, which is why they

are only given viewer access to the department appointments. They are granted editor

access to the Records and Diagnoses SolidDatasets because they should only be able to

read and upload/update files. When uploading to the Prescriptions SolidDataset there is an

Making Personal Data Solid Implementation 42

option for provisioning access to a specified Pharmacist to view the prescription, which

means that they must previously have been granted owner level access to this SolidDataset.

As this feature could create a new Container with its own URI that must be found by the

application later; it was important to let users choose with a dropdown as opposed to an

open text box, to avoid similar Containers created with small typos. A modified dropdown

component from W3Schools [100] was used for this and loaded with a list of healthcare

departments from Beaumont Hospital [101].

The second upload feature to be implemented is to upload other record types to one of the

SolidDatasets in a department Container. The user selects the type of record type to upload,

and a form with the relevant properties for that record type is shown. One of the fields

common across all record types is a dropdown that retrieves the list of departments

Containers in the Patient’s pod that the user has some type of access to. The flow of the

process for uploading Diagnoses, Prescriptions or General Records to a department

Container is shown below in Figure 17.

Figure 17 - Upload diagnosis, prescription or general record process flow

Although this process could be performed by the Patient or the Institution Administrator, it is

intended to be performed by the Doctor or other Health Worker that conducted the

appointment with the Patient. However, it was necessary for the Patient or Institution

Making Personal Data Solid Implementation 43

Administrator to have the required access for this process so that they may upload

Appointments at a later stage.

9.4 Accessing Records
From the home page, users can access healthcare records in two separate ways:

1. Accessing the individual records within any dataset by clicking ‘Access medical

records’ and then ‘View records in selected dataset’.

2. Viewing an overview of the entire record landscape by clicking ‘View pod diagram’,

For accessing records within a Patient’s pod, it was important to develop a system that could

process any number of Things within a SolidDataset, each with their own different number of

properties of varying data types. As Things are returned to the application as JavaScript

objects, this was done by a key-value approach where both Things and properties are

iterated through, processed and transformed for UI, then added to the DOM.

The function used above to retrieve the list of departments was also required here, so it was

modified slightly to work for both features. The URI of each individual file is also displayed to

the user if they wish to reference it later or view it in another Pod browser. The process flow

for displaying all record types is shown below in Figure 18.

Figure 18 - Access medical records process flow

Midway through development of the application, it became clear that a lot of the concepts

and actions done by the user in the application could be very confusing to the average

Making Personal Data Solid Implementation 44

person, especially one with no technical knowledge or knowledge about Solid. This was a

shared concern of Janeiro Digital as mentioned in their NHS project presentation [73];

transparency of data structure or location should be important for users of Solid applications.

Therefore, an additional feature was added to the project that could act as a help page for

such users. This was called ‘Pod diagram’ and it was intended for 3 purposes:

1. Help users with their understanding of the landscape of their healthcare records, i.e.,

the total number of files, departments with high/low number of records.

2. Give users some background information on Solid and Solid Resources.

3. Explain to users exactly what data the application stores in their Pods.

Fortunately, this feature could use a lot of code that had previously been written, for example

retrieving the number of departments and the Things within a SolidDataset. Therefore, it only

took a small amount of application logic to systematically iterate through URIs and retrieve

the count of objects. It was also at this time that a tooltip was added to the application, found

at Tutorialzine [102] that could display a help message when the cursor is hovering over it.

An example of the Pod diagram is shown below in Figure 19, where the cursor is hovering

over the explanation for a Solid Container.

Figure 19 - Pod diagram

9.5 Managing Record Access
From the home page, users can change the access to records in two separate ways:

1. Manually by clicking ‘Access medical records’ and then ‘Manage access to selected

dataset’.

Making Personal Data Solid Implementation 45

2. Sharing information with an insurer by clicking ‘Make insurance request’.

The logic for managing record access was similar to how records are retrieved and

displayed, so a lot of application code could be reused. Checkboxes are displayed beside

each individual with access to a particular dataset, and the individual is removed from the list

if an update is made that removes all of their access. A button is displayed at the bottom of

the list to grant access to a new individual. Lastly, it was important to ensure that no

individual is able to change the owner access that the Pod owner has on their own records,

so the button to change access is disabled in the case of the Pod owner. The flow of this

process is shown below in Figure 20.

Figure 20 - Manage record access flow

The next feature that shares access to records could also be considered as uploading

records but since no new records are being created, it is best described in this section. The

‘insurance request’ feature was added to the application to see how Solid could handle

conditional sharing of individual Things based on the values of certain attributes. The

practical application of this was that if a Patient is going to get insurance from an Insurer, the

Insurer must be aware of some health conditions in order to give an estimation on how much

of a risk the Patient will be to cover with insurance. The conditions that were set for this

sharing of records was set as:

Making Personal Data Solid Implementation 46

• Diagnoses that are less than 5 years old, from the following departments: Cardiology,

Haematology, Oncology, Psychiatry, Rheumatology,

The aim was that access could be shared to the WebID of a specified Insurer, and they

would be able to only view the individual Things held within the Diagnoses SolidDatasets

across all department Containers that matched the criteria. However, it was discovered that

granting access to any Thing within a SolidDataset grants the same access to all other

Things held within the SolidDataset.

Therefore, a workaround was developed where the individual Things that matched the

criteria were added to a new, separate SolidDataset and the Insurer was granted viewer

access to this dataset. This meant that the records to be shared still existed at their original

URIs but could be viewed by accessing the new insurance dataset, while the Insurer was still

unable to view the other records within SolidDatasets that did not fit the criteria.

This feature also checks to see if the insurance SolidDataset had been previously created,

and grants viewer access to the newly specified Insurer if this is the case, rather than

creating a duplicate dataset. The flow of this process is shown below in Figure 21.

Figure 21 - Insurance request flow

Viewing the diagnoses that were shared with the Insurer is restricted to the Patient and

Insurer only and is available by clicking ‘Access medical records’ from the home page and

then the ‘View diagnoses for insurance’ button which is enabled after the process is

complete.

9.6 Deployment
Several approaches to deployment were attempted before the final working implementation

was found. The first attempt was to host the application on GitHub Pages [119] but errors

Making Personal Data Solid Implementation 47

were thrown stating that the Inrupt node module could not be found on the server, due to a

misconfiguration of the application that would not work with the Jekyll runtime agent used by

GitHub pages [126].

Next, an Amazon Web Services (AWS) EC2 instance was created and configured for public

access. The application repository was cloned onto the remote machine and ran following a

tutorial on Medium [120], but a similar error appeared due a missing dependency for the

Inrupt package.

After posing a question to the developer Gitter channel [121], discourse began with an

individual working on the Inrupt Solid Library development team. A call was scheduled where

this developer shared information about hosting the application using Vercel [122]. After

confirming that hosting using AWS was not mandatory, a new approach was attempted

using Vercel.

This service was very straightforward and allowed for easy integration with the project

repository on GitLab. Vercel was confirmed to be the method for hosting the Solid server

used by Inrupt [123]. This did require changing the application code bundler from parcel [88]

to webpack [87] and small updates to the webpack configuration file including commands to

run the application on the Vercel server.

With the help of this developer, the application is now hosted using Vercel at https://solid-

health-app.vercel.app/. A list of credentials and corresponding WebIDs for each application

user type can be found below in Table 5 below:

https://solid-health-app.vercel.app/
https://solid-health-app.vercel.app/

Making Personal Data Solid Implementation 48

User Type WebID User Name Password

Patient https://patientone.solidcommunity.net/profile/

card#me

PatientOne tLADUu!86wy

!LSy

Institution

Administr

ator

https://administratorone.solidcommunity.net/

profile/card#me

Administrator

One

!EtWBHP55JV

q8XA

Doctor https://doctorone.solidcommunity.net/profile/

card#me

DoctorOne hApECN6QW!

jfTi6

Emergenc

y Worker

https://patientone.solidcommunity.net/profile/

card#me

EmergencyW

orker

jHV3C6mUVy

8ZYC!

Pharmaci

st

https://pharmacistone.solidcommunity.net/pr

ofile/card#me

PharmacistO

ne

hTwc3q65LLd

Zf8!

Insurer https://insurerone.solidcommunity.net/profile/

card#me

InsurerOne g!NJtiH6nLMT

Yp9

Table 5 - Application test user credentials & WebIDs

Implementation Summary
With the implementation complete, all of the use cases specified in Table 4 are possible

within the application, along with some additional functionality. A summary of the code

distribution is shown below in Table 6.

Programming Language Lines of code % of total lines of code

JavaScript 1789 60.9

HTML 657 22.4

CSS 490 16.7

Table 6 - Distribution of code in application implementation

Although the code could have been optimised further to reduce some lines of code, this

gives an estimation of the output required to build a simple, enterprise-level application using

the Inrupt Solid client package.

Making Personal Data Solid Evaluation 49

Chapter Four

10. Evaluation

Section Overview
Regarding the overall goal of this project set out in section 6, “to evaluate the maturity of the

Solid specification as it stands today, from the perspective of a software developer”, a

number of objectives were set forward which will reach this goal. This chapter describes the

method under which each objective and associated targets were evaluated and the results of

this evaluation. These targets spanned across different areas; therefore, they were

evaluated using different methods. Each target will be mentioned in this chapter under the

relevant method of evaluation.

Section 10.1 describes how the developed application as part of this project was evaluated,

both from technical and conceptual perspectives. Section 10.2 describes the contributions

that were made to advance Solid’s growth and assist the community. Section 10.3 describes

the evaluation of Solid that has been generated over the course of undertaking this project.

10.1 Application Evaluation
There are two aspects of the application under which it can be evaluated:

10.1.1. Technically – The extent to which the application satisfies the specification

that was set forward in the design phase of development, and the quality of the

developed software.

10.1.2. Conceptually – The level of use that the application would serve to its

intended domain, i.e., the usability that professional health workers have when using

the application to complete real-world tasks.

10.1.1 Technical Evaluation of Application

To verify that each of the use cases are possible within the application, a set of Use Case

Tests was designed with instructions on how to complete a particular feature within the

application. These tests do not correspond to the ID of individual Use Cases as specified in

Table 4 but the set of all Use Case Tests satisfies the set of Use Cases.

Additionally, Functional Tests were developed to test background processes or additional

functionality that the application performs as part of completing a main feature, e.g. data type

validation on user input, updates to access of Patient pod when the Institution Administrator

is updated.

Making Personal Data Solid Evaluation 50

These tests can be performed by a number of users depending on the required access of

the application feature in question. Some of these tests have a dependency of the

successful completion of a prior test, so a test run specification suite was designed to

identify the necessary order of test runs and record the result of each test result. This is

shown below in Figure 22.

Figure 22 – Test run specification

The initial plan for these test runs was to gather a group of test users and provide a Use

Case test with corresponding login credentials to each user, ensuring that both test

documents and login credentials are distributed anonymously when a user begins the testing

process, so that no sensitive data is collected from participants. They would then fill out a

feedback form, specifying the ID of the test that they had completed, which would give an

idea on perceived quality of the application from the perspective of the different user types

with their corresponding intended use cases.

However, due to initial difficulties deploying the application on a live environment, the style of

user evaluation plan had to be changed towards an active demonstration/feedback approach

with professionals in the industry, as discussed in section 10.1.2 below. This meant that the

researcher conducting this project undertook the test process individually and took video

recordings of test executions to verify results. This required changing the evaluation

participant information sheet and consent form appropriately to reflect the changes to data

collection, found at participant consent.

https://drive.google.com/drive/folders/1iV6Vu4_j3lMsD0WiTtmAj4LLN2fVc23r?usp=sharing

Making Personal Data Solid Evaluation 51

The test result videos, test run specification and individual test scripts can be found in the

following repository: Testing Repository. This repository also includes an instruction

document on running tests and their purpose.

As can be seen from Figure 22 above, the first test run failed on F-01 due to an error

updating Institution Administrator access. After implementing the fix and attempting a second

run, the tests passed. With this result, Objective O1 has been met. Target T1.1 is satisfied

by Use Case Tests [UC-04, UC-06], T1.2 is satisfied by Use Case Test UC-07, and T1.3 is

satisfied by Functional Test F-03.

In terms of a critical evaluation of the developed code, a few critiques are listed below in

Table 7.

Application Technical Critiques

All of the application UI components use native HTML and CSS, but a more appealing

interface could have been achieved using React [75], or some other component library.

Application often updates HTML elements in the DOM to be ‘hidden’, which is not an issue

when the application is the size that it is currently, but this would be an issue for scaling up

the application to include more interfaces. Proper routing between HTML components

would be desired instead.

Form input field validation is performed using HTML RegEx pattern matching [132], but

validation could be made stricter to reduce downstream errors. e.g., by validating that

URIs entered are the WebID of a Solid profile, as opposed to just using the HTTPS

scheme as is done currently.

Asynchronous code execution was important in the creation of new resources and

subsequent access provision, but it means that the required time to complete some

operations can be between 5 to 10 seconds.

Application styling was tailored for a laptop-sized screen, meaning that some components

look misplaced when the application is opened on a large monitor.

A lot of code updates the DOM with elements based on Resources where the size of the

Resource is not known until a GET request is complete. This means that the Resources

are processed and converted to HTML elements in the JavaScript logic file, where it takes

many more lines of code as it would in a HTML file. This could be made better with more

placeholder HTML elements that describe styling and other attributes, while the JavaScript

file strictly updates element content.

Table 7 - Application technical critiques

https://drive.google.com/drive/folders/1oxx9kQcvnX7AV5_6L1vGEGHd_iPo05FM?usp=sharing

Making Personal Data Solid Evaluation 52

10.1.2 Conceptual Evaluation of Application

As mentioned in the section above, the main external evaluation of the application took place

in the form of demonstration sessions with individuals working in two separate areas:

1. Healthcare / Healthcare informatics

2. Solid / Data engineering

It was important to get the perspective of people from these two cohorts, as the application

touches on both areas. Only a handful of individuals working in these areas were available

but their feedback is more valuable to this project than a larger number of individuals with

limited knowledge of either topic.

The goal of these demonstration sessions was to get some context on how the processes

that have been created for the application compare with what is done in practice. The

sessions lasted between 30 minutes to an hour, depending on the length of the discourse

about the project. An initial presentation of the project and the purpose of the application was

given, which is supplied in Appendix 4, followed by a walkthrough of some use cases using

the application. Participants were then asked to fill out an anonymised feedback form,

modelled from a standard PSSUQ form and altered slightly to include questions aimed at

evaluating the sentiment towards a Solid application in the healthcare domain. The

questions are rated from a scale of 1 – 10, and are listed below in Table 8.

Question ID Question Description

Q1 The system was easy to use.

Q2 The steps taken to achieve a task using the system were similar to

what I would have done intuitively.

Q3 At all times using the system, it was clear what was being performed

and why.

Q4 At any point where I felt unsure about the purpose of what was being

performed, the use of explanatory tooltips and other on-screen

information helped in my understanding.

Q5 The user interface of the application was appealing.

Q6 I think this application would be useful in the healthcare sector.

Q7 I think the transition from current practice in healthcare to use this

application would be easy.

Q8 I would feel confident storing my medical records in a Solid pod.

Q9 If my records were stored in a Solid pod, I think this application would

offer no greater of a risk to their security.

Table 8 - Demonstration feedback form questions

Making Personal Data Solid Evaluation 53

Due to the length of time required to conduct these sessions, a total of 12 sessions were

held; 9 of which generated responses on the feedback form. A plot of the mean result of

each of the above questions is shown with blue markers below in Figure 23, along with the

corresponding standard deviation of responses above and below the mean, shown with a

red line.

Figure 23 - Mean & standard deviation of feedback form results

From these results, a few conclusions could be drawn:

• The application is relatively straightforward to use. This is due to high scoring

results on Q1 – Q4, with a slight drop in scores and bigger spread of results in Q4.

This is possibly due to the rushed nature of the demonstrations, where participants

may have had more time to properly interact with tooltips if they were using the

application by themselves.

• The application would be helpful to the healthcare sector, but the transition to

Solid would not be easy. This is due to a high average score in Q6 and a low

average score in Q7. This was an expected result, as the widespread use of this

application proposes substantial changes, both architecturally and procedurally, to

how healthcare would be delivered. However, high variance in results for both

questions means that a more accurate mean score could be acquired with a larger

sample size.

• Individuals introduced to Solid are cautious. This is due to mediocre scores on

Q8 and Q9, which signals that the general population would be hesitant to fully trust

Solid technology to protect their personal data.

Making Personal Data Solid Evaluation 54

Tailoring the feedback form to include more personalised questions relating to the project

enabled these conclusions to be drawn, but it meant that the standard PSSUQ metrics

(SYSUSE, INFOQUAL, INTERQUAL) could not be gathered accurately. Therefore, T2.3 was

disregarded in an attempt to gather more project-specific feedback, meaning T2.4 became

unachievable in any meaningful way.

However, the most valuable feedback from these sessions came from outside of the

feedback form, in the form of conversations about professional practice. As there was no

proper model of the healthcare domain before designing the application use cases, this was

the area with the most valuable insights from professionals. A list of notable comments about

application processes with regard to professional healthcare practice is shown below in

Table 9.

Application Procedural Critiques

In practice, data shared with insurance companies is the required minimum. This would

usually come in the form of a questionnaire that healthcare workers would fill out on behalf

of the patient and would not include a list of diagnoses, as is in the application.

Some health data is sensitive to the patient. In most cases, they certainly should not be

able to change records and in some cases, they should not be able to even view specific

records. Records that a health worker, e.g., doctors, nurses, could view are different to

what a patient could view.

Pharmacists would need to see more than a single prescription in order to be sure that the

patient is not taking any other medication that might interfere with the prescription that

they have to fill. Emergency workers would be in a similar position, they would need to be

aware of other diagnoses, allergies, etc.

It is common for applications which work with electronic health records to have some sort

of ‘break the glass’ functionality, where an individual without access to a record can gain

access when necessary. This would need to be possible within the application before a

medical institution would think about using the application.

Emergency Workers may not know the WebID of a patient that they have just come in

contact with. Without a uniform WebID structure based on an individual’s known identifier,

this feature would have to resort to an identification card containing a patient’s WebID,

which is subject to displacement, the initial motivation for developing this feature.

Table 9 - Application procedural critiques

Many other concerns about data security, sharing policies and bio-ethics were discussed in

these demonstration sessions, which confirmed the complexity of operating with extremely

Making Personal Data Solid Evaluation 55

sensitive patient data. This was suspected to be the case, as the aim of the project was to

test the capabilities of Solid in building a serious application.

However, with these feedback sessions completed, objective O2 has been met. Target T2.1

and T2.2 have been explicitly met as part of this, while T2.3 and T2.4 were discarded to get

more specific feedback on sentiments towards Solid usage in the area. Furthermore, the

demonstration sessions did not require collecting any participant data, so a full ethical

application form was not required, but the appropriate consent form is found at the

participant consent directory. This means that objective O3, including T3.1 and T3.2 have

also been met.

10.2 Evaluation of Contribution to Solid
An important aspect of completing this project was not only to investigate the maturity of

Solid; but to do all that is possible to assist those that are already involved in Solid and help

introduce Solid to others. Therefore, efforts were made to engage with the Solid ecosystem

to share insights and feedback. This was done by:

10.2.1. Committing to maintain reusable application code, a diary of notes and

lessons learned during development that could help other developers.

10.2.2. Contribution to Solid specifications, events, software libraries and

documentation that can help maintainers.

10.2.1 Contributions for Solid Developers

From as early as the exploration phase of the design process, a development diary was kept

to record daily progress and experiences using Solid, shown in Appendix 3. A lot of these

entries were made irrelevant by discoveries or decisions later in development, but it shows

the process and adaptive approach required that was required for development with Solid

This also means that objective O4, with corresponding targets T4.1 and T4.2 have been met.

Another important aspect of the implementation of the application design was to create code

related to Solid which could be reused in another practical application. This was important

because it was noticed that only a very small amount of code could be found online that

could be adapted for use in this application, so an effort was made to reduce this problem for

others. In the application repository [124], most application-specific code was kept to one

main source file; while code to read and write to Solid Pods was kept in two fully-commented

files. These two files purely interacted with Solid Pods generically and will be a valuable

resource for the future Solid developers.

A post was made to the community forum at the end of development [133], sharing the

achievements of the application. These were pieces of functionality that the application could

https://drive.google.com/drive/folders/1iV6Vu4_j3lMsD0WiTtmAj4LLN2fVc23r?usp=sharing

Making Personal Data Solid Evaluation 56

perform which could be used in a Solid application for any industry or practical setting, and

were not found anywhere in the documentation or resources for use in this project. These

achievements included:

• Dynamic building of a Thing based on the presence or absence of data provided by

user input.

• Generic way of reading and displaying properties and values of Things stored in a

Dataset, regardless of property names of the Thing.

• Generic function to insert new Things into a Dataset, given an object containing

property-value pairs and the Dataset URI.

• Deleting a solid Container by cycling through contained Containers and Datasets and

deleting each before deleting the overall Container.

• Retrieve all Things within a Dataset and provide access for an individual to a subset

of the Things based on search condition, by inserting the subset to a new Dataset.

• A diagram to show the application data stored in the user’s pod, including the overall

number of Containers, Datasets and Things related to the application.

This post will hopefully be available for Solid developers in the future to reuse and save time,

meaning that target T5.3 of objective O5 has been met. Through active engagement with

individuals on the forum throughout the project, a number of valuable discussions were had,

including sharing solutions to a common problem [134]. Two trust member levels were

gained through this engagement, meaning that both T5.1 and T5.2 have been met too, and

therefore, O5 has been met also.

10.2.2 Contributions for Solid Maintainers

Through communication on the Solid community forum, several meetings were set up with

people professionally involved in Solid. The first of these was with a developer of the Inrupt

Solid library, where they helped with deploying the application. Following the assistance they

gave, a long form conversation was had about experiences using Solid. This included

feedback on inconsistencies using the Inrupt library, which was relayed to the rest of the

development team and will be discussed more in section 10.3 below. Feedback was also

shared about the solidcommunity.net Pod browser, which was found to be buggy and

temperamental throughout development. Furthermore, attempts were made to create a Pod

with Enterprise Solid Server [123], but a 405 HTTP error prevented login, which was also

shared with the rest of the development team.

Another meeting was held with Justin Bingham of Janeiro Digital where a discussion was

had about the NHS project [73] and its similarities with this project. This started with sharing

experiences of developing a full application specification in Solid, including concerns about

Making Personal Data Solid Evaluation 57

the usability of Solid applications for the average user, the amount of work required to

overcome basic roadblocks with Solid that seem to affect most development projects, and

the extent to which Solid developers need to be able to adapt the specification to what is

supported by the technology.

Next, a long conversation was had about the Solid Application Interoperability specification

[61], of which Justin is an editor. Justin’s company are currently working on a number of

libraries in the Java, JavaScript and TypeScript programming languages which implement

this specification and will ultimately facilitate better experiences developing in Solid. This is

the most appealing Solid specification, as it encourages good development practices and a

well-needed structure to the process of development across a range of frameworks.

Therefore, commitments have been made to get involved with the interoperability panel

[135], which meet weekly and contribute towards writing the specification.

Separate arrangements have been made to speak at a Solid World event [65], which are

held every month. This was suggested by the developer of the PodPro application [67] in a

separate meeting, who spoke at the March 2022 event. This will hopefully help share

insights and lessons learned to a wider audience and help to foster more engagement in the

Solid community.

10.3 Solid Evaluation
Lastly, an evaluation of Solid at the current time of writing is given. This evaluation includes

the aspects of Solid that were engaged with during the development of this project:

10.3.1. Documentation

10.3.2. Technology

10.3.3. Community

10.3.1 Solid Documentation Evaluation

The official technical specifications [98] are thorough and cover all aspects of Solid usage.

However, as mentioned in section 7.2.1, understanding some of these specifications

requires a reasonable understanding of related concepts (RDF, Turtle, JSON-LD), which

makes them slightly intimidating to newcomers. This is to be expected with technical

documents, but there is nowhere else that describes Solid at a slightly higher abstraction

level, meaning that these documents are almost the single point of reference for developing

in the space, across all frameworks.

Looking at the documentation of libraries endorsed by the Solid Project website, it’s clear

that the Inrupt JavaScript package is the most supported. This can be said because it is the

package used in the official developer guide [43] and is the most documented library out of

Making Personal Data Solid Evaluation 58

the collection. Packages in other languages either do not have a corresponding document

reference at all, or are not adequately documented.

Then looking at the documentation for this library, it does provide a list of terms used in Solid

[91] and a full API reference [90], which were extremely valuable throughout development.

However, the API references lists some key functions as ‘subject to change, even in a non-

major release’, which is not reliable for professional development. Furthermore, on one

occasion during development, a major section of the API reference disappeared for a

number of hours.

The documentation for this package is missing a key aspect of data access management in

Solid, creating groups. There is a function for setting/getting the access that a group has, but

nowhere in the API reference or Inrupt tutorial [89] mentions how to create a group or

manage group members. This would have been valuable in this application, instead of

assigning access to individuals. This request has been shared with the Inrupt team and will

be included in a future release of the documentation.

Another aspect of the documentation that is missing, this time in the Inrupt developer tutorial

[97], is for creating an Auxiliary Resource for access permissions to a primary Solid

Resource. This is deceiving because the tutorial skips ahead to getting the access or

updating it, but never mentions instantiating the access Resource to begin with. Therefore,

following the Inrupt tutorial for ‘Manage Access to Data’ as it stands currently, will only cause

errors. It was difficult in situations like this, when it is unknown whether the implementation,

technology or instructions are to blame and can consume a lot of time when very few

resources exist on the web.

10.3.2 Solid Technology Evaluation

Technically, Solid can support any type of application technology. Solid servers must support

standard HTTP requests for accessing and updating Resources, although the request body

needs to be in Turtle or SPARQL format, which requires an amount of data transformation.

Although this can be helped by packages that help with the conversion from one

programming language to another [69], it still requires a considerable amount of work that

should be taken into account in any application design. Therefore, an increased number of

Solid libraries in various languages would be helpful and could attract developers specialised

in those languages to get involved with Solid development.

One of the largest drawbacks to developing with Solid was that there was a huge amount of

time spent on developing the basic interactions with Solid Pods that made appending

additional application logic difficult. This was either down to functions not behaving as they

should, inconsistencies in the documentation, or functionality which is simply not supported

Making Personal Data Solid Evaluation 59

at the current time of writing. In communication with other Solid developers, this was a

recurring roadblock for development that seems to affect most projects. A useful feature that

could be implemented, as mentioned by an individual during a demonstration session, would

be an API interface between a client application and Solid Pods, that could handle all of the

data interactions and identity & access management that is required for an enterprise

application, and free developers to focus on the practicality of their application logic.

In terms of the Inrupt technology used in this project to implement the Solid specification, a

number of critiques are listed below in Table 10 which were noticed throughout

development.

Inrupt Solid Library Critiques

No way to provide access to individual Things within a SolidDataset without providing

access to the entire SolidDataset.

No data validation on updates to an ACL Resource. This can cause a lock out of the

Resource, where it becomes impossible to view or delete the Resource. Furthermore,

provisioning access to arbitrary URL’s is allowed, e.g., www.google.com

Inconsistent ways to grant access to a Resource. When granting access using WAC for a

newly created Resource, only ‘control’ needs to be specified (which sets both

‘controlRead’ and ‘controlWrite’ to true). However, when updating a Resource’s ACL later,

both ‘controlRead’ and ‘controlWrite’ need to be specified.

Proper log out is not supported. An authentication cookie remains in the browser storage,

meaning that the previous session is continued when the user attempts to log in again.

Table 10 - Inrupt Solid library critiques

Furthermore, a number of limitations of the Solid specifications are listed below in Table 11

which restricted the ideal functionality of the application.

http://www.google.com/

Making Personal Data Solid Evaluation 60

Solid Specification Critiques

No way to limit the maximum amount of access that a user can grant to other users. This

would be ideal for granting Doctors ‘control’ access to a Prescriptions SolidDataset, where

they would only need to grant viewer access to downstream Pharmacists.

Cannot grant editor or viewer access to a Resource without possessing that access. This

led to a lot of conceptual weaknesses, with Patients required to be able to change their

own records to grant this permission to Health Workers.

If requesting a Resource that does not exist in another individual’s Pod, given a 403

Unauthorized response instead of a 404 Not Found. This made it impossible to know if

records exist or not, unless the Pod owner is signed in.

Unable to view the list of individuals with access to a Resource without being able to

change the access to the Resource. This means that certain individuals had to have

access above what is required from them from a procedural perspective.

Table 11 - Solid specification critiques

10.3.3 Solid Community Evaluation

From the experience during this project, the community’s eagerness to help has been the

greatest asset for Solid development. Of the channels mentioned in section 7.2.3, the

community forum was the most valuable. With over 17,000 posts across 1,500 topics, the

community forum has seen plenty of activity since its conception in October of 2018. There

are over 1,500 users on this platform, but only 92 have been active in the last 90 days at the

time of writing, and only 773 have earned the most basic trust level which is earned after any

sort of interaction. This suggests that the forum has a high turnover rate.

Responses on the platform were mostly timely and informative. The majority of these are

from community employees at Inrupt or maintainers of the community forum (of which there

is a large overlap), but some come from independent developers who have experienced a

similar issue with development in Solid. However, it appears as though there is not enough

of a workforce to address all topics, as a lot of posts remain unanswered.

A lot of posts from the community are focused on implementing the Solid specification in

other technologies and frameworks such as ASP.NET [137], which has been a work-in-

progress for over 3 years. As discovered through meetings with the developer of PodPro, a

dedicated library has been developed for the Elixir programming language; with plans to be

released to the public in the future. Based on this, it appears that the community are the

greatest advancers of implementing Solid on new technologies, while Inrupt continue to

focus on their JavaScript libraries.

Making Personal Data Solid Evaluation 61

Gitter channels were also a useful resource for getting quick answers but are more

unstructured and difficult to search through. A comparison of the activity on some of the

main Gitter channels is shown below in Table 12, compared with the status in 2019 as

reported by Lamba [16]. This shows us that the general chat has received a 149% increase

in users, while the development chat received a 208% increase.

Year Room User Count

2019 solid/chat 795

2019 solid/app-development 130

2019 solid/solid-spec 310

2022 solid/chat 1982

2022 solid/app-development 401

2022 solid/solid-spec 243

Table 12 - Gitter chat activity

Outside of these dedicated channels for Solid communication, activity remains low. For

example, Table 13 below shows the state of Solid engagement on Stack Overflow in

comparison with its state in 2019. While it can be seen that there is more engagement on

average Solid topics than in 2019, the overall number of questions being asked remains low.

 2019 2022

Questions: 10 41

Questions: No answer 5 12

Questions: 1 answer 3 21

Questions: >1 answer 2 8

Table 13 - Stack Overflow Solid interactions

Evaluation Summary
To summarise the evaluation of the work that has been completed, all of the objectives and

related targets have been achieved except for T2.3 and T2.4 of objective O2, as they were

discarded in favour of gathering the consensus on questions more closely related to Solid

and its potential adoption in the healthcare sector.

In terms of the requirements specifications as listed in Appendix 1, all of the User

Requirements were also met apart from UR014 – ‘Allow Doctors to edit and delete existing

medical records stored in a Patient’s pod’. However, this functionality has been shown in

other parts of the application; for example, editing fields within a Thing is possible when

updating the medical institution details, and deleting individual Things is possible when

instantiating a new type of health data. This requirement was omitted from the

implementation in favour of the pod diagram feature.

Making Personal Data Solid Conclusion 62

Chapter Five

11. Conclusion
Solid as a concept is extremely appealing. Widespread adoption of the specifications paint a

utopian depiction of data control that is desperately needed in today’s society. This belief is

shared by mostly everyone who becomes aware of the specification, which is echoed in the

community’s eagerness to advance the growth of Solid. It has already been shown that Solid

is fully capable of building simple applications to support basic read/write operations, as can

be seen from the list of applications available at the Solid Project website [40]. Therefore,

this project attempted to push the capabilities of the recommended Solid technology to build

a fully functional enterprise application that deals with the most sensitive type of data,

medical records.

It is clear that there was an improper model of the healthcare domain while designing the

application, particularly regarding the tightly controlled data protection regulations

surrounding medical data. There was also a very broad scope of the application that

attempted to encompass many aspects of handling medical records and has been shown to

be too great of a transition for health workers.

Furthermore, the attempt to embody the Solid ideals with regard to complete data ownership

was not implemented in a procedurally appropriate way for medical records stored in the

Pod of the patient, due to limitations of the Solid specification that requires pod owners to be

able to perform any type of action on the data stored in their Pod. However, avoiding this

problem would require storing records in a central location, leading back to the concerns of

ransomware attacks that motivated the application area.

While the bugs reported with the Inrupt package could have been avoided by building a

separate Solid client package, it would take a huge amount of additional effort and require

an in-depth knowledge of the protocol. Furthermore, applications would still be constrained

by limitations in the underlying specification that the client must adhere to. For example, the

lack of a proper identity & access management system is something that would seriously

deter organisations from attempting to build an application in Solid. Of course this could be

avoided by building a dedicated IAM system upon the WebID returned by Solid servers, but

again this would take a huge amount of additional effort and would require additional user

data to be stored outside of user’s pods.

Making Personal Data Solid Conclusion 63

Other limitations with the Solid protocol from an application design perspective may be

avoidable by a regulated system of data stored across multiple Pods and accessed by

corresponding proxy user accounts authenticated in parallel application sessions, but this

would require a lot of additional resources along with a monitored register of proxy user data

and data locations, since Solid heavily relies on the exact URI of Resources.

Therefore, in relation to the research question in section 5 that this paper has attempted to

answer; unless an organisation desperately requires using Solid in their design, it’s not

entirely feasible in its current state. If an organisation wanted to avoid the issues mentioned

with the currently available technologies that adhere the Solid specification, it is possible that

an enterprise-level application could be built from first principles if they possessed a

thorough knowledge of RDF and the Solid specification. This would require tailored libraries

and servers to interact with Solid Pods, which many companies would simply view as having

too much overhead in the form of development resources and related research.

Solid will ultimately become more widespread with the release of many interesting libraries

and technologies to be released in the coming years, which will attract a wave of developers

and investors to the space, generating products for the general public. However, until such a

time is truly realised, Solid will remain as a passion project at the brink of breaking into the

mainstream.

Making Personal Data Solid Future Work 64

12. Future Work
The remaining work to be done as part of this project is divided between furthering the

advance of Solid for developers and continuing to improve the application that has been

developed for the healthcare sector.

12.1 Future Work in Solid
In terms of working with Solid, efforts have begun to become associated with the

Interoperability Panel. This has been seen to be the most important workforce for Solid

developers and they are thought of as the regulators for proper data handling across

applications using separate frameworks, which will certainly be necessary when Solid

becomes widespread across these frameworks.

Outside of this, further reports of the experience using the Inrupt JavaScript library will be

sent to Inrupt. Inrupt are working hard to make Solid appealing to all types of individuals with

their products and documentation and they could benefit from the feedback that has been

generated through this development. One such product in development is a top-level library

to simplify the specification down to very primitive operations, effectively allowing developers

to enjoy the benefits of Solid without the burden of developing around the specification. Beta

access to this package will be acquired when possible.

Finally, communications between the community will be monitored for the foreseeable, to

give aid to anyone who is experiencing similar problems or would like to gain some insights

on the experience of the project.

12.2 Future Development Work
Although a proposal has been received to collaborate in development for a Solid healthcare

application, efforts are better spent in developing additional features for the prototype

application that would make it usable in the healthcare sector. This is not in an attempt to

commercialise the product, but to complete a commemorable application that could be

featured on the official Solid Project website list of applications.

The first feature to implement from a data control perspective would be to build a log of

changes to data or data access within a Pod. This would not be difficult to implement from

an application logic perspective and does seem required in the healthcare sector, as per the

feedback received from professionals. However, due consideration will have to be placed in

the location and access rules to these logs, as it could easily lead back to the initial problem

of collections of sensitive data.

Making Personal Data Solid Future Work 65

With a deeper dive into the Solid Notifications Protocol, a full messaging system could be

implemented in the application. This would be ideal for requesting access to a Resource, or

for notifying data owners when access to their data has changed.

Another feature to implement would be to retrieve the current list of medications or the next

appointment that a Patient may have. This could have been implemented in this project, but

will only require additional application logic that is not related to testing Solid. Now that the

capabilities of Solid are known, this feature would certainly make the interface more

appealing and usable for Patients.

Making Personal Data Solid Final Remark 66

13. Final Remark
Although this project was frustrating at times, I have genuinely enjoyed it. There was a time

about mid-way through the project when implementing features with Solid seemed seamless

and I actually enjoyed the process of thinking dynamically to devise workarounds when

certain functionality didn’t work as intended. The project has also drastically improved my

skills in JavaScript development, of which I started with very little. I’ve also become much

more conscious of online security and data privacy by way of developing the application and

researching related fields, which I plan on continuing throughout my future career.

It was an ambitious application specification and after conversations with professionals in

healthcare, I see that there could have been a feasible application of Solid in a more

narrowed field, e.g., simply sharing record access between healthcare professionals.

However, as mentioned above, I came into this project with no knowledge of healthcare

procedures other than what I had personally experienced; so I don’t have too many regrets

about the conceptual shortcomings of the application. I’m also quite proud of the project’s

accomplishments, with a fully validated application, and much more engagement with both

the Solid community and healthcare professionals than I could have expected.

I have no doubt in my mind that Solid, and what it stands for, is a good thing. We’re at a time

where personal data has been monopolised and commercialised by a small group of

corporations, and I think a lot of people just don’t see that this is a problem, or more

importantly that there is a solution in sight. I believe Solid is this solution, but it will only

become a part of daily life when there is a product that draws in the masses. For society’s

sake, I hope that this product will be created and we can regain control of our online identity.

Until then, I’ll remain as one of the many developers who have been introduced to Solid and

have been interested by the concept of it.

Making Personal Data Solid Final Remark 67

References
[1] Hovhannisyan, K., Bogacki, P., Colabuono, C., Lofu, D., Marabello, M. and Eugene

Maxwell, B., 2021. Towards a Healthcare Cybersecurity Certification Scheme. 2021

International Conference on Cyber Situational Awareness, Data Analytics and Assessment

(CyberSA),.

[2] Zalozhnev, A., Andros, D., Ginz, V. and Loktionov, A., 2019. Information Systems and

Network Technologies for Personal Data Cyber Security in Public Health. 2019 International

Multidisciplinary Information Technology and Engineering Conference (IMITEC),.

[3] The Irish Times. 2022. HSE confirms data of 520 patients published online. [online]

Available at: <https://www.irishtimes.com/news/crime-and-law/hse-confirms-data-of-520-

patients-published-online-1.4578136> [Accessed 8 January 2022].

[4] McNally, S., 2022. HSE hackers were in health service's computer system for eight

weeks before cyber attack. [online] TheJournal.ie. Available at:

<https://www.thejournal.ie/hse-hack-report-5626054-Dec2021/> [Accessed 8 January 2022].

[5] BBC News. 2022. Cyber attack 'most significant on Irish state'. [online] Available at:

<https://www.bbc.com/news/world-europe-57111615> [Accessed 8 January 2022].

[6] Solidproject.org. 2022. Solid Protocol. [online] Available at:

<https://solidproject.org/TR/protocol> [Accessed 8 January 2022].

[7] Solidproject.org. 2022. About Solid · Solid. [online] Available at:

<https://solidproject.org/about> [Accessed 8 January 2022].

[8] Solid.mit.edu. 2022. Solid. [online] Available at: <https://solid.mit.edu/#about> [Accessed

8 January 2022].

[9] Solidproject.org. 2022. Origin · Solid. [online] Available at: <https://solidproject.org/origin>

[Accessed 8 January 2022].

[10] Lassila.org. 2022. [online] Available at:

<https://www.lassila.org/publications/2001/SciAm.pdf> [Accessed 8 January 2022].

[11] W3.org. 2022. Linked Data - Design Issues. [online] Available at:

<https://www.w3.org/DesignIssues/LinkedData> [Accessed 8 January 2022].

[12] W3.org. 2022. World Wide Web Consortium (W3C). [online] Available at:

<https://www.w3.org/> [Accessed 8 January 2022].

Making Personal Data Solid Final Remark 68

[13] Knowledge@Wharton. 2022. Your Data Is Shared and Sold...What’s Being Done About

It? - Knowledge@Wharton. [online] Available at:

<https://knowledge.wharton.upenn.edu/article/data-shared-sold-whats-done/> [Accessed 8

January 2022].

[14] Dragan, I. and Zota, R., 2017. Collecting Facebook data for big data research. 2017

16th RoEduNet Conference: Networking in Education and Research (RoEduNet), pp. 1-3,

doi: 10.1109/ROEDUNET.2017.8123757.

[15] Solid Community Forum. [online] Available at: <https://forum.solidproject.org/>

[Accessed 10 January 2022].

[16] 2018. A Solid-powered decentralised social network for academics: An evaluation of key

considerations for developing practical Solid-powered applications. Akashdeep Lamba MSc,

Postgraduate. Trinity College Dublin. [online] Available at: <

https://www.scss.tcd.ie/publications/theses/diss/2019/TCD-SCSS-DISSERTATION-2019-

046.pdf>

[17] Sites.google.com. 2022. Getting a SOLID start. - Clean Coder. [online] Available at:

<https://sites.google.com/site/unclebobconsultingllc/getting-a-solid-start> [Accessed 10

January 2022].

[18] Team, S., 2022. Solidity Programming Language. [online] Solidity Programming

Language. Available at: <https://soliditylang.org/> [Accessed 11 January 2022].

[19] Inrupt.com. 2022. [online] Available at: <https://inrupt.com/> [Accessed 11 January

2022].

[20] Ideas for Solid Apps. [online] Solid Community Forum. Available at:

<https://forum.solidproject.org/c/build-a-solid-app/app-communities/10> [Accessed 11

January 2022].

[21] Verborgh, R., 2022. List of Publications. [online] Ruben.verborgh.org. Available at:

<https://ruben.verborgh.org/publications/> [Accessed 12 January 2022].

[22] Verborgh, R., 2022. Re-decentralizing the Web, for good this time. [online]

Ruben.verborgh.org. Available at: <https://ruben.verborgh.org/articles/redecentralizing-the-

web/> [Accessed 12 January 2022].

[23] The Economist. 2022. Break down these walls. [online] Available at:

<https://www.economist.com/leaders/2008/03/19/break-down-these-walls> [Accessed 13

January 2022].

Making Personal Data Solid Final Remark 69

[24] Pariser, E., 2014. The filter bubble. New York: Penguin Books.

[25] World Wide Web Foundation. 2022. Three challenges for the web, according to its

inventor. [online] Available at: <https://webfoundation.org/2017/03/web-turns-28-letter/>

[Accessed 14 January 2022].

[26] World Wide Web Foundation. 2022. The web is under threat. Join us and fight for it..

[online] Available at: <https://webfoundation.org/2018/03/web-birthday-29/> [Accessed 14

January 2022].

[27] Blog.dshr.org. 2022. It Isn't About The Technology. [online] Available at:

<https://blog.dshr.org/2018/01/it-isnt-about-technology.html> [Accessed 14 January 2022].

[28] Verbrugge, S., Vannieuwenborg, F., Van der Wee, M., Colle, D., Taelman, R. and

Verborgh, R., 2021. Towards a personal data vault society: an interplay between

technological and business perspectives. 2021 60th FITCE Communication Days Congress

for ICT Professionals: Industrial Data – Cloud, Low Latency and Privacy (FITCE),.

[29] Verborgh, R. and Taelman, R., 2022. LDflex: a Read/Write Linked Data Abstraction for

Front-End Web Developers. [online] Drive.verborgh.org. Available at:

<https://drive.verborgh.org/publications/iswc2020-ldflex.pdf> [Accessed 14 January 2022]

[30] Haesendonck, G., Dimou, A., De Meester, B. and Verborgh, R., 2022. Linked Data in

the Web of Things. [online] W3.org. Available at: <https://www.w3.org/WoT/ws-

2019/Papers/31%20-%20Haesendonck%20et%20al,%20Ghent%20University%20-

%20Linked%20Data%20in%20the%20Web%20of%20Things.pdf> [Accessed 14 January

2022].

[31] App, B. and →, n., 2022. Build a Solid App. [online] Solid Community Forum. Available

at: <https://forum.solidproject.org/c/build-a-solid-app/24> [Accessed 15 January 2022].

[32] Gitter.im. 2022. solid/chat. [online] Available at: <https://gitter.im/solid/chat> [Accessed

15 January 2022].

[33] Enisa.europa.eu. 2022. ENISA Threat Landscape 2021. [online] Available at:

<https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021> [Accessed 16

January 2022].

[34] Ncsc.gov.ie. 2022. National Cyber Security Strategy. [online] Available at:

<https://www.ncsc.gov.ie/pdfs/National_Cyber_Security_Strategy.pdf> [Accessed 16

January 2022].

Making Personal Data Solid Final Remark 70

[35] W3.org. 2022. Linked Data. [online] Available at:

<https://www.w3.org/standards/semanticweb/data> [Accessed 17 January 2022].

[37] W3.org. 2022. RDF 1.1 Concepts and Abstract Syntax. [online] Available at:

<https://www.w3.org/TR/rdf11-concepts/> [Accessed 17 January 2022].

[38] Solidcommunity.net. 2022. [online] Available at: <https://solidcommunity.net/>

[Accessed 17 January 2022].

[39] Solidproject.org. 2022. Tools and libraries overview · Solid. [online] Available at:

<https://solidproject.org/developers/tools/> [Accessed 17 January 2022].

[40] Solidproject.org. 2022. Solid Applications · Solid. [online] Available at:

<https://solidproject.org/apps> [Accessed 17 January 2022].

[41] GitHub. 2022. GitHub - NoelDeMartin/solid-focus: Solid Task Manager. [online]

Available at: <https://github.com/NoelDeMartin/solid-focus> [Accessed 17 January 2022].

[42] GitHub. 2022. GitHub - NoelDeMartin/media-kraken: Track your movies with Media

Kraken.. [online] Available at: <https://github.com/NoelDeMartin/media-kraken> [Accessed

17 January 2022].

[43] Solidproject.org. 2022. Getting Started · Solid. [online] Available at:

<https://solidproject.org/developers/tutorials/first-app> [Accessed 17 January 2022].

[44] GitHub. 2022. GitHub - inrupt/solid-client-js: Library for accessing data and managing

permissions on data stored in a Solid Pod. [online] Available at:

<https://github.com/inrupt/solid-client-js> [Accessed 17 January 2022].

[45] Docs.inrupt.com. 2022. Inrupt JavaScript Client Libraries — Inrupt JavaScript Client

Libraries. [online] Available at: <https://docs.inrupt.com/developer-tools/javascript/client-

libraries/> [Accessed 17 January 2022].

[46] Docs.inrupt.com. 2022. Module: access/universal — Inrupt solid-client API

Documentation. [online] Available at: <https://docs.inrupt.com/developer-

tools/api/javascript/solid-client/modules/access_universal.html#getagentaccessall>

[Accessed 17 January 2022].

[47] Stack Overflow. 2022. Stack Overflow - Where Developers Learn, Share, & Build

Careers. [online] Available at: <https://stackoverflow.com/> [Accessed 18 January 2022].

[48] Codeproject.com. 2022. CodeProject - For those who code. [online] Available at:

<https://www.codeproject.com/> [Accessed 18 January 2022].

Making Personal Data Solid Final Remark 71

[49] Teamgantt.com. 2022. Online Gantt Chart Maker - Try for Free! | TeamGantt. [online]

Available at: <https://www.teamgantt.com/> [Accessed 19 January 2022].

[50] Ippon | IT Consulting from Discovery to Delivery | Advanced AWS Partner.

2022. Beginning Decentralized Identity Applications with Solid. [online] Available at:

<https://blog.ippon.tech/beginning-decentralized-identity-applications-with-solid/> [Accessed

19 January 2022].

[51] Enisa.europa.eu. 2022. [online] Available at: <https://www.enisa.europa.eu/> [Accessed

7 March 2022].

[52] Solidproject.org. 2022. Get a Pod · Solid. [online] Available at:

<https://solidproject.org/users/get-a-pod> [Accessed 6 March 2022].

[53] DiNucci, D., 1999. Fragmented Future. [online] Darcyd.com. Available at:

<http://darcyd.com/fragmented_future.pdf> [Accessed 6 March 2022].

[54] W3.org. n.d. Tim Berners-Lee. [online] Available at:

<https://www.w3.org/People/Berners-Lee/> [Accessed 6 March 2022].

[55] Berners-Lee, T., 2007. Hearing on the "Digital Future of the United States: Part I -- The

Future of the World Wide Web". [online] Dig.csail.mit.edu. Available at:

<http://dig.csail.mit.edu/2007/03/01-ushouse-future-of-the-web.html> [Accessed 7 March

2022].

[56] Dynamo, R., 2022. Reproducing the Solid Project First App demo. [online]

Dynamorando.com. Available at: <https://dynamorando.com/blog/solidprojectfirstapp/>

[Accessed 8 March 2022].

[57] GitHub. 2022. GitHub - phochste/Web-Solid-Auth: A Perl Solid authentication tool

(OIDC). [online] Available at: <https://github.com/phochste/Web-Solid-Auth> [Accessed 8

March 2022].

[58] Solid.github.io. 2022. Solid Technical Reports. [online] Available at:

<https://solid.github.io/specification/> [Accessed 8 March 2022].

[59] Openid.net. 2022. OpenID Connect Core 1.0. [online] Available at:

<https://openid.net/specs/openid-connect-core-1_0.html> [Accessed 8 March 2022].

[60] Solid.github.io. 2022. Solid Notifications Protocol. [online] Available at:

<https://solid.github.io/notifications/protocol#sotd> [Accessed 10 March 2022].

[61] Solid.github.io. 2022. Solid Application Interoperability. [online] Available at:

<https://solid.github.io/data-interoperability-panel/specification/> [Accessed 10 March 2022].

Making Personal Data Solid Final Remark 72

[62] W3.org. 2014. RDF 1.1 Primer. [online] Available at:

<https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/> [Accessed 10 March 2022].

[63] W3.org. 2011. Turtle - Terse RDF Triple Language. [online] Available at:

<https://www.w3.org/TeamSubmission/turtle/> [Accessed 10 March 2022].

[64] W3.org. 2020. JSON-LD 1.1. [online] Available at: <https://www.w3.org/TR/json-ld11/>

[Accessed 12 March 2022].

[65] Eventbrite. 2021. Solid Project. [online] Available at:

<https://www.eventbrite.co.uk/o/solid-project-30026804546> [Accessed 12 March 2022].

[66] GitHub. 2020. Community Solid Server: an open and modular implementation of the

Solid specifications. [online] Available at:

<https://github.com/CommunitySolidServer/CommunitySolidServer> [Accessed 12 March

2022].

[67] Podpro.dev. 2022. PodPro. [online] Available at: <https://podpro.dev/> [Accessed 12

March 2022].

[68] Elixir. 2012. elixir-lang.github.com. [online] Available at: <https://elixir-lang.org/>

[Accessed 14 March 2022].

[69] Rdf-elixir.dev. 2021. RDF on Elixir. [online] Available at: <https://rdf-elixir.dev/>

[Accessed 14 March 2022].

[70] Janeirodigital.com. 2009. Software to Connect The Decentralized Web | Janeiro Digital.

[online] Available at: <https://www.janeirodigital.com/> [Accessed 14 March 2022].

[71] Janeirodigital.com. 2017. XFORM | Janeiro Digital. [online] Available at:

<https://www.janeirodigital.com/xform/> [Accessed 14 March 2022].

[72] The NHS. [online] Available at: <https://www.nhs.uk/> [Accessed 14 March 2022].

[73] Vimeo. 2020. NHS Personal Health Stores by Janeiro Digital. [online] Available at:

<https://vimeo.com/471703581> [Accessed 14 March 2022].

[74] GitHub. 2020. Solid-Health: A proof-of-concept mobile app for decentralized health

record management. [online] Available at: <https://github.com/jasonpaulos/solid-health>

[Accessed 15 March 2022].

[75] React Native · Learn once, write anywhere. [online] Available at:

<https://reactnative.dev/> [Accessed 15 March 2022].

Making Personal Data Solid Final Remark 73

[76] Google Developers. 2021. Google Developers. [online] Available at:

<https://developers.google.com/fit/android> [Accessed 15 March 2022].

[77] Paulos, J., 2020. Investigating Decentralized Management of Health and Fitness Data.

MSc. MASSACHUSETTS INSTITUTE OF TECHNOLOGY. [online] Available at: <

https://dspace.mit.edu/bitstream/handle/1721.1/127459/1192966772-

MIT.pdf?sequence=1&isAllowed=y>

[78] Verborgh, R., 2017. Paradigm shifts for the decentralized Web. [online]

Ruben.verborgh.org. Available at: <https://ruben.verborgh.org/blog/2017/12/20/paradigm-

shifts-for-the-decentralized-web/> [Accessed 18 March 2022].

[79] Bingham, J., 2019. How The Decentralized Web Will Drive Innovation In The Healthcare

Industry | Janeiro Digital. [online] Janeirodigital.com. Available at:

<https://www.janeirodigital.com/blog/decentralized-web-drives-innovation-in-healthcare/>

[Accessed 18 March 2022].

[80] CCPC Consumers. 2019. Phishing - CCPC Consumers. [online] Available at:

<https://www.ccpc.ie/consumers/money/scams/phishing/?gclid=1ea0ebcaa9151e81967e89f

984dfc61b&gclsrc=3p.ds&&utm_source=bing&utm_medium=cpc&utm_campaign=Money%2

0%7C%20Scams%7C%20Levy&utm_term=%2Bphishing&utm_content=Phishing>

[Accessed 18 March 2022].

[81] Cisa.gov. 2021. Conti Ransomware | CISA. [online] Available at:

<https://www.cisa.gov/uscert/ncas/alerts/aa21-265a> [Accessed 18 March 2022].

[82] Bava, M., Cacciari, D., Sossa, E., Zotti, D. and Zangrando, R., 2009. Information

Security Risk Assessment in Healthcare: The Experience of an Italian Paediatric Hospital.

2009 First International Conference on Computational Intelligence, Communication Systems

and Networks,.

[83] Y. He and C. W. Johnson, "Generic security cases for information system security in

healthcare systems," 7th IET International Conference on System Safety, incorporating the

Cyber Security Conference 2012, 2012, pp. 1-6.

[84] J. Kwon and M. E. Johnson, "Healthcare Security Strategies for Regulatory Compliance

and Data Security," 2013 46th Hawaii International Conference on System Sciences, 2013,

pp. 3972-3981.

[85] Solid Community Forum. n.d. Applications. [online] Available at:

<https://forum.solidproject.org/c/applications/41> [Accessed 22 March 2022].

Making Personal Data Solid Final Remark 74

[86] Docs.inrupt.com. n.d. Inrupt JavaScript Client Libraries — Inrupt JavaScript Client

Libraries. [online] Available at: <https://docs.inrupt.com/developer-tools/javascript/client-

libraries/#getting-started> [Accessed 22 March 2022].

[87] webpack. n.d. webpack. [online] Available at: <https://webpack.js.org/> [Accessed 22

March 2022].

[88] Parceljs.org. n.d. Parcel – The zero configuration build tool for the web.. [online]

Available at: <https://parceljs.org/> [Accessed 22 March 2022].

[89] Docs.inrupt.com. n.d. Using the Libraries — Inrupt JavaScript Client Libraries. [online]

Available at: <https://docs.inrupt.com/developer-tools/javascript/client-libraries/using-

libraries/> [Accessed 22 March 2022].

[90] Docs.inrupt.com. n.d. solid-client API — Inrupt solid-client API Documentation. [online]

Available at: <https://docs.inrupt.com/developer-tools/api/javascript/solid-client/> [Accessed

22 March 2022].

[91] Docs.inrupt.com. n.d. Glossary — Inrupt JavaScript Client Libraries. [online] Available

at: <https://docs.inrupt.com/developer-tools/javascript/client-libraries/reference/glossary/>

[Accessed 23 March 2022].

[92] Abowd, G. Towards a Better Understanding of Context and Context-Awareness. In

Internation Symposium on Handheld and Ubiquitous Computing, Proceedings of the First

International Symposium, HUC’99 Karlsruhe, Germany, 27–29 September 1999; Gellersen,

H.-W., Ed.; Springer: Berlin/Heidelberg, Germany, 1999; ISBN 978-3-540-48157-7

[93] Developer.mozilla.org. n.d. SPA (Single-page application) - MDN Web Docs Glossary:

Definitions of Web-related terms | MDN. [online] Available at:

<https://developer.mozilla.org/en-US/docs/Glossary/SPA> [Accessed 24 March 2022].

[94] M. Jones; J. Bradley; N. Sakimura. JSON Web Token (JWT). May 2015. Proposed

Standard. URL: https://www.rfc-editor.org/rfc/rfc7519

[95] Schema.org. n.d. Schema.org - Schema.org. [online] Available at: <https://schema.org/>

[Accessed 24 March 2022].

[96] Bioportal.bioontology.org. n.d. NCBO BioPortal. [online] Available at:

<https://bioportal.bioontology.org/> [Accessed 23 March 2022].

[97] Docs.inrupt.com. n.d. Manage Access to Data — Inrupt JavaScript Client Libraries.

[online] Available at: <https://docs.inrupt.com/developer-tools/javascript/client-

libraries/tutorial/manage-access/> [Accessed 25 March 2022].

Making Personal Data Solid Final Remark 75

[98] Solidproject.org. n.d. Web Access Control. [online] Available at:

<https://solidproject.org/TR/wac> [Accessed 26 March 2022].

[99] Solid.github.io. n.d. Access Control Policy (ACP). [online] Available at:

<https://solid.github.io/authorization-panel/acp-specification/> [Accessed 28 March 2022].

[100] W3schools.com. n.d. How To Create a Dropdown Menu With CSS and JavaScript.

[online] Available at: <https://www.w3schools.com/howto/howto_js_dropdown.asp>

[Accessed 28 March 2022].

[101] Beaumont.ie. n.d. Beaumont Hospital - Department Listing. [online] Available at:

<http://www.beaumont.ie/departments> [Accessed 29 March 2022].

[102] Tutorialzine. n.d. Create inline help tips for your site with a bit of CSS. [online]

Available at: <https://tutorialzine.com/2014/07/css-inline-help-tips> [Accessed 29 March

2022].

[103] W3.org. n.d. Semantic Web Standards. [online] Available at:

<https://www.w3.org/2001/sw/wiki/Main_Page> [Accessed 29 March 2022].

[104] W3.org. n.d. Ontologies - W3C. [online] Available at:

<https://www.w3.org/standards/semanticweb/ontology> [Accessed 29 March 2022].

[105] McCrae, J., n.d. The Linked Open Data Cloud. [online] Lod-cloud.net. Available at:

<https://lod-cloud.net/> [Accessed 29 March 2022].

[106] W3.org. n.d. SPARQL Query Language for RDF. [online] Available at:

<https://www.w3.org/TR/rdf-sparql-query/> [Accessed 29 March 2022].

[107] Datatracker.ietf.org. n.d. RFC 7230 - Hypertext Transfer Protocol (HTTP/1.1): Message

Syntax and Routing. [online] Available at:

<https://datatracker.ietf.org/doc/html/rfc7230#section-2.7.1> [Accessed 29 March 2022].

[108] Verborgh, R., 2019. How we will regain control of our personal data. [online] Medium.

Available at: <https://towardsdatascience.com/ruben-verborgh-on-data-privacy-

accf91d280c9> [Accessed 29 March 2022].

[109] Hl7.org. n.d. Rdf - FHIR v4.0.1. [online] Available at: <https://www.hl7.org/fhir/rdf.html>

[Accessed 29 March 2022].

[110] N. Nchinda, A. Cameron, K. Retzepi and A. Lippman, "MedRec: A Network for

Personal Information Distribution," 2019 International Conference on Computing, Networking

and Communications (ICNC), 2019, pp. 637-641, doi: 10.1109/ICCNC.2019.8685631.

Making Personal Data Solid Final Remark 76

[111] Medicalchain. n.d. Home. [online] Available at: <https://medicalchain.com/en/>

[Accessed 29 March 2022].

[112] Medicalchain.com. n.d. Whitepaper 2.1 [online] Available at:

<https://medicalchain.com/Medicalchain-Whitepaper-EN.pdf> [Accessed 30 March 2022].

[113] A. Kumar, R. Krishnamurthi, A. Nayyar, K. Sharma, V. Grover and E. Hossain, "A

Novel Smart Healthcare Design, Simulation, and Implementation Using Healthcare 4.0

Processes," in IEEE Access, vol. 8, pp. 118433-118471, 2020, DOI:

10.1109/ACCESS.2020.3004790.

[114] Starburst. 2022. The 2022 State of Data & What's Next | Starburst. [online] Available

at: <https://www.starburst.io/info/the-2022-state-of-data-whats-next/> [Accessed 30 March

2022].

[115] Education, IBM., n.d. object-storage. [online] Ibm.com. Available at:

<https://www.ibm.com/cloud/learn/object-storage> [Accessed 30 March 2022].

[116] LinkedIn Learning. n.d. JavaScript: Enhancing the DOM Online Class | LinkedIn

Learning, formerly Lynda.com. [online] Available at:

<https://www.linkedin.com/learning/javascript-enhancing-the-dom> [Accessed 31 March

2022].

[117] Tutorialspoint.com. n.d. UML - Activity Diagrams. [online] Available at:

<https://www.tutorialspoint.com/uml/uml_activity_diagram.htm> [Accessed 31 March 2022].

[118] Solid Community Forum. n.d. Local First / Offline and Solid Login. [online] Available at:

<https://forum.solidproject.org/t/local-first-offline-and-solid-login/4896/19> [Accessed 31

March 2022].

[119] GitHub Pages. n.d. GitHub Pages. [online] Available at: <https://pages.github.com/>

[Accessed 31 March 2022].

[120] Medium. n.d. How to deploy Node.js app on AWS with Github. [online] Available at:

<https://sumantmishra.medium.com/how-to-deploy-node-js-app-on-aws-with-github-

db99758294f1> [Accessed 31 March 2022].

[121] Gitter.im. n.d. solid/app-development. [online] Available at: <https://gitter.im/solid/app-

development> [Accessed 31 March 2022].

[122] Vercel n.d. Vercel. [online] Available at: <https://vercel.com/> [Accessed 02 April

2022].

Making Personal Data Solid Final Remark 77

[123] Enterprise Solid Server, Inrupt.com. n.d. [online] Available at:

<https://inrupt.com/products/enterprise-solid-server/> [Accessed 02 April 2022].

[124] App, S., n.d. Dylan Storey / Solid Health App. [online] GitLab. Available at:

<https://gitlab.com/storeydy/solid-health-app> [Accessed 02 April 2022].

[125] Tutorialspoint.com. n.d. UML - Use Case Diagrams. [online] Available at:

<https://www.tutorialspoint.com/uml/uml_use_case_diagram.htm> [Accessed 02 April 2022].

[126] Jekyll • Simple, blog-aware, static sites. n.d. GitHub Pages. [online] Available at:

<https://jekyllrb.com/docs/github-pages/> [Accessed 02 April 2022].

[127] W3.org. n.d. The W3C Linked Data Platform (LDP) Vocabulary. [online] Available at:

<https://www.w3.org/ns/ldp#> [Accessed 02 April 2022].

[128] Oecd.org. 2019. Making Decentralisation Work: A Handbook For Policy-Makers.

[online] Available at: <https://www.oecd.org/cfe/Policy%20highlights_decentralisation-

Final.pdf> [Accessed 02 April 2022].

[129] Buterin, V., 2017. The Meaning of Decentralization. [online] Medium. Available at:

<https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274>

[Accessed 02 April 2022].

[130] O'Flaherty, K., 2018. Google+ Security Bug -- What Happened, Who Was Impacted

And How To Delete Your Account. [online] Forbes. Available at:

<https://www.forbes.com/sites/kateoflahertyuk/2018/10/09/google-plus-breach-what-

happened-who-was-impacted-and-how-to-delete-your-account/> [Accessed 02 April 2022].

[131] Cadwalladr, C. and Graham-Harrison, E., 2018. Revealed: 50 million Facebook profiles

harvested for Cambridge Analytica in major data breach. The guardian, 17, p.22

[132] Developer.mozilla.org. n.d. Regular expressions - JavaScript | MDN. [online] Available

at: <https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions>

[Accessed 02 April 2022].

[133] Construction, U., 2022. Solid Health Application. [online] Solid Community Forum.

Available at: <https://forum.solidproject.org/t/solid-health-application/5145> [Accessed 02

April 2022].

[134] Solid Community Forum. 2022. Acl file is not there when creating new resource.

[online] Available at: <https://forum.solidproject.org/t/acl-file-is-not-there-when-creating-new-

resource/5031/3> [Accessed 02 April 2022].

Making Personal Data Solid Final Remark 78

[135] GitHub. n.d. GitHub - solid/data-interoperability-panel: Repository for the Solid Data

Interoperability Panel. [online] Available at: <https://github.com/solid/data-interoperability-

panel/#solid-application-interoperability> [Accessed 03 April 2022].

[136] Forum.solidproject.org. n.d. Solid Community Forum. [online] Available at:

<https://forum.solidproject.org/badges> [Accessed 03 April 2022].

[137] Solid Community Forum. 2019. .NET, C#, DOTNETRDF for Solid?. [online] Available

at: <https://forum.solidproject.org/t/net-c-dotnetrdf-for-solid/1687/7> [Accessed 03 April

2022].

Making Personal Data Solid A1 – Original Application Requirements 79

Appendices

A1 – Original Application Requirements
User Requirements

User
Requirement ID

Description

UR001 Allow users to log in with their pod provider credentials
UR002 Allow Patients to register care with a new medical institution
UR003 Allow Patients to view the details of the medical institution under which

they receive care
UR004 Allow Patients to see a list of all the healthcare departments under

which they have an upcoming/past appointment
UR005 Allow Patients and Doctors to see a list of all personal medical records

stored in their pod
UR006 Allow Patients and Doctors to view the list of users that have access to

any part of their medical records, and the authorization level that these
users possess

UR007 Allow Patients to add/revoke access from a user to their medical
records

UR008 Allow Hospital Administrators to record details of an upcoming
appointment between a Doctor and a Patient

UR009 Allow Pharmacists to see a list of prescriptions relevant for a particular
Patient

UR010 Allow Emergency Workers to see the current medication that a
particular Patient is taking.

UR011 Allow Patients to grant access to an Insurer to view pertinent medical
diagnoses dated within the past 5 years

UR012 Allow Insurers to view pertinent medical diagnoses involving a Patient
dated within the past 5 years

UR013 Allow Doctors to add medical records to a Patient’s pod
UR014 Allow Doctors to edit and delete existing medical records stored in a

Patient’s pod

Functional Requirements

Functional
Requirement
ID

User
Requirement
ID

Description

FR001 UR001 Redirect user to pod provider after initiating log in
process

FR002 UR001 Return to application with authenticated session after
user logs in with pod provider

FR003 UR002 If the user is a Patient, display an option to register a
new medical institution, entering the following
information:

• Name
• Address
• WebID of Hospital Administrator

FR004 UR002 If the user is Patient and saves details of a new medical
institution, create a dataset in the Patient’s pod if it does

Making Personal Data Solid A1 – Original Application Requirements 80

not already exist. Grant ‘write’ and ‘append’ access to
this dataset to the WebID of the Hospital Administrator.

FR005 UR003 If the user is a Patient, display the details of the medical
institution under which they currently receive care

FR006 UR004 Display an option to view the contents of the user’s pod
or an input box for a WebID to view the contents of a
Patient’s pod

FR007 UR004 While viewing an individual’s pod, display a list of the
departments that are held within the ‘Health Data’
dataset

FR008 UR005 After selecting a specific department from the list of
departments in a Patient’s pod, display the four medical
record types held within that department:

• Records
• Prescriptions
• Diagnoses
• Appointments

FR009 UR005 After selecting a record type within the selected
department in a Patient’s pod, display the list of files in
that container

FR010 UR006 Display the list of users that have access to the specific
record type dataset within the selected department in a
Patient’s pod

FR011 UR006 Display the access that each user has to a specific
record type dataset within the selected department in a
Patient’s pod

FR012 UR007 If the user is the owner of a particular dataset, allow
them to revoke access from any user in the list of
authorized users

FR013 UR007 If the user is the owner of a particular dataset, allow
them to grant access to a new user by entering the
WebID of the new user and having configurable
checkboxes for the following access levels:

• Read
• Append
• Write
• Control

FR014 UR007 If the user is the owner of a particular dataset, allow
them to change the access level that an authorized user
has by using the configurable checkboxes

FR015 UR008 If the user is a Hospital Administrator viewing a Patient’s
pod, allow them to add details of an upcoming
appointment including the details:

• Department
• Time
• WebID of Doctor conducting appointment

FR016 UR008 If a Hospital Administrator has recorded details of an
upcoming appointment in a department that the Patient
has not had before, create a new dataset in the ‘Health
Data’ dataset of the Patient’s pod containing four sub-
datasets:

• Records

Making Personal Data Solid A1 – Original Application Requirements 81

• Prescriptions
• Diagnoses
• Appointments

Grant ‘read’ access to the Patient’s Pharmacist Web ID
to the ‘Prescriptions’ sub-dataset

FR017 UR008 If a Hospital Administrator has recorded details of an
upcoming appointment with a Doctor that the Patient
has not had before, grant the doctor ‘write’ access to the
department dataset

FR018 UR008 If a Hospital Administrator has recorded details of an
upcoming appointment, store the details in a new file in
the ‘Appointments’ dataset within the department
dataset

FR019 UR008 If a Hospital Administrator has recorded details of an
upcoming appointment, send a message to the Patient’s
pod to inform them of the upcoming appointment

FR020 UR009 If a Pharmacist is viewing the contents of a Patient’s
pod, display all files in the ‘Prescriptions’ sub-dataset
from all departments, ordered by date

FR021 UR010 If an Emergency Worker is viewing the contents of a
Patient’s pod, display the most recent file in the
‘Prescriptions’ sub-dataset from all departments,
ordered by date

FR022 UR011 If a Patient is viewing their pod, allow them to grant
‘read’ access to an entered Insurer’s WebID to all files in
the ‘Diagnoses’ dataset within all department datasets
that are pertinent to acquiring Life Insurance and dated
within the past 5 years

FR023 UR012 If an Insurer is viewing a Patient’s pod, display the list of
relevant diagnoses that they have been granted access
to

FR024 UR013 If a Doctor is viewing a Patient’s pod, allow them to
upload a new file to a department dataset including the
following details:

• Title
• Description of appointment
• Subsequent prescriptions from appointment,

including WebID of Pharmacist to fill prescription
• Subsequent diagnoses from appointment

FR025 UR013 If a Doctor has recorded details of an appointment,
upload the Title and Description as a new file to the
‘Records’ dataset within the selected department

FR026 UR013 If a Doctor has recorded details of an appointment
including a prescription, upload the prescription as a
new file to the ‘Prescriptions’ dataset within the selected
department

FR027 UR013 If a Doctor has recorded details of an appointment
including diagnoses, upload the diagnoses as a new
file(s) to the ‘Diagnoses’ dataset within the selected
department

FR028 UR014 If a Doctor is viewing the medical records in a patient’s
pod, allow them to make edits to a medical record

Making Personal Data Solid A2 – Application Gantt Chart 82

FR029 UR014 If a Doctor is viewing the medical records in a patient’s
pod, allow them to delete a medical record

FR030 UR014 If a Doctor has saved changes made to a particular
dataset in a Patient’s pod, send a message to the
Patient’s pod to inform them of details of the change

A2 – Application Gantt Chart

Making Personal Data Solid A3 – Development Diary 83

A3 – Development Diary

Development Diary – Solid Health App
26th October

• Set up GitLab repository

• Generated SSH key pair and stored public key on GitLab account

• Created Inrupt account and a new data pod, browsing contents with podbrowser

application

o Seems as though ‘Contacts’ can be added to a user account in podbrowser,

where they can share files.

o Can also have multiple pods under the same user

2nd November

• Installing node.js, Angular js -> Node.js downloaded from web, Angular JS installed

from command line using ‘npm install -g @angular/cli@8.3.4’

• Styling done with SCSS over CSS as it seems to only have advantages

• Tried to go from the solid project tutorial of creating a first application with solid, was

able to log in to pod provider, read and write data from the name of the pod owner,

but the solidcomminity.net website seems to be very slow and timed out later in the

day.

3rd November

• Tried to adapt the Inrupt JavaScript client library guide into an Angular application,

but was only given a directory listing of raw JavaScript files when it ran

• Moved forward with the ‘first app’ tutorial on the solidproject.org website, successfully

read a file stored in my data pod and printed the turtle triples to the console using a

FileReader

14th December

• Able to create a new dataset in the Solid pod, which we would need to store private

files, however the Inrupt guide for creating a dataset does not include anything to do

with creating an ACL for a new dataset

o Inrupt documents mention that in order to modify access to a resource in a

solid pod, you must call ‘getSolidDatasetWithAcl’, which requires the dataset

to have an existing ACL.

o Tried to use the ‘createAcl’ function but it fails when trying to read the ACL url.

Will try another approach

4th January

Making Personal Data Solid A3 – Development Diary 84

• Tried to update code for creating and reading an ACL for a dataset but still getting

bugs – it says that the resource has no ACL. Also when viewing the dataset after

having created an ACL for it, I cannot expand the object to view it on the

solidcommunity.net portal.

o Tried a few different approaches including functions found in the ‘solid-

client/access/universal’ package, which is only available in version 1.5 of the

solid-client package. Not sure how to get to this package number as it is not

on node.

• Posed a question to the solid community forum for creating an ACL for a resource

using the package, will give some time for replies and come back to it tomorrow.

5th January

• Able to set the access for a resource using the ‘setAgentResourceAccess’ and the

‘setAgentDefaultAccess’ functions. This proves the general premise of the application

is achievable. Going to try to grant access to specific users through the application

and check that only authorized users can view the resource.

6th January

• Able to grant access to a resource to an external user

• External user not able to get the resource with its ACL, but checking with the

‘getAgentAccess’ and the specific web ID of the user that has been granted

permission shows that the user is authorized to perform the actions specified earlier

• Need to tidy the code up a bit and keep only what will be required to design the

application around – most of the core functionality is possible, so the rest will likely

just be designing around it.

7th January

• Able to upload a new text file to the dataset, of ‘TextDigitalDocument’ type from the

Schema.org vocabulary. Would be ideal to allow a pdf upload here, but not exactly

sure how that will work with adding “Things” to Solid Pod.

• Trying to allow users to delete file in a dataset but for some reason when specifying

the URI for a file it deletes the file and the container that the file is saved in. Followed

the guide exactly so unsure why this is happening.

8th January

• Got around the bug for deleting a file by retrieving the contents of the dataset first

and then using the ‘removeThing’ function to take out the specified file URI from the

dataset.

• Set up checkboxes for specifying the specific access permissions that should be

granted to a designated user. Need to think carefully about the implications of

granting permissions to a user in the event of a security breach.

9th January

• Verified that it’s possible to write data to another users pod after they have been

given explicit access

• Can read the contents of each file in a dataset

• Added the author to each file that is uploaded to a dataset. This is done by setting

the full name of each user in the solidcommunity.net pod browser and reading this

string in the application.

Making Personal Data Solid A3 – Development Diary 85

• Having an issue with adding the date of creation to an uploaded file.

10th January

• Got around the issue of adding dates to new files by saving the date as a string as

opposed to a date.

• Now that I know most of the desired functionality is possible with the technology, I

developed a detailed set of user & functional requirements, alongside some flow

diagrams for the tasks that a finished application in this area could offer.

17th January

• No notable development updates this past week, I’ve been working on a set of use

cases and requirements for the application as well as the progress interim report

which is due on the 19th of January. I have also developed a Gantt chart for the

remaining development tasks as I see them, to act as an indication of the work left to

complete and the order in which tasks will be completed.

24th January

• Trying to enable multiple pages and routing between them using

window.location.replace(<pageName>) but having some trouble after redirecting as

the html is not updating – tried a few different approaches but couldn’t get the content

on screen to change. I decided to just keep it as a SPA and update the html content

of each page accordingly.

• Got code working for multiple steps of registering a new medical institution:

o Checking to see if the health data dataset exists in the individuals pod.

Displays an option for adding details of a new one if it doesn’t exist

o When clicking button to add a new one, 3 input boxes are displayed for the

name, address and WebID of the medical institution administrator

o Creates a new dataset and a file in the health data dataset to store these

details, and granting access to the institution administrator

o Got some error logging and different paths covered, but there’s still a lot more

to do:

▪ Cancel changes button

▪ Edit details of the currently registered medical institution

▪ More messages to the error to inform them of status of save/update

operations

• Need to be really careful when updating the access for the dataset, as I’ve locked

myself out from some datasets while developing -> in that I get a 403 unauthorized

error when trying to either view the dataset in the solidcommunity.net portal, or delete

it from the application side.

o This might cause a large problem when using ‘production’ type user accounts,

and I will need to make sure there’s minimal chance of this happening from

any combinations of user inputs.

Making Personal Data Solid A3 – Development Diary 86

This is the view from the solidcommunity.net portal of the dataset that I locked myself out of.

Clicking ‘Log in’ or ‘Sign Up for Solid’ brings back to the same page.

• Tomorrow going to try develop from the perspective of the institution administrator by

allowing the access of an individual’s health data records, and uploading the details

of a new appointment to their pod.

25th January

• Some minor styling changes

• Set up the option to either view the currently signed in user’s pod or a specified user

o Need to finish this with full user alerts of status – who has health records, who

has access etc.

o Need to display the currently accessed pod somewhere in the header, and

allow an option for ‘resetting’, i.e., changing the currently accessed pod to

another without having to restart the application

25th January (later)

• More changes to display – now no actions involving an individual’s pod are visible

until the user verifies that they have access to the pod.

• Added the option for resetting the pod session, to return to the point just after logging

in

o Will need to add in some global logout functionality too

• Currently changing screen content by setting the ‘display’ property of various divs to

‘block’ or ‘none’, as I suspect that there will only be a handful of divs in the finished

application – although this may still be bad practice it’s a temporary workaround until

I can get proper routing working in JavaScript.

• Added alert messages to the user when either: they are unauthenticated to view a

pod, there is no pod created, or they have not entered a valid URI/WebID.

• One thing I have noticed so far is that the naming convention of all files and datasets

must be uniform in order to pass it as a URI for ‘GET’ requests. Currently setting it so

that the health record dataset is called ‘<WebID>/healthData1’ (had been called just

‘healthData’ but as mentioned yesterday the permissions got set incorrectly and I

cannot either retrieve or delete the dataset at that URI.

Making Personal Data Solid A3 – Development Diary 87

o As long as the application code determines all the URIs and retrieves them

using the same system it shouldn’t be a problem, but need to be careful that

any URIs generated from user input are formatted uniformly.

26th January

• The ‘getAgentAccess’ function in the ‘access’ module is not working as it should.

When calling the function to determine the access that the signed in user has, it gives

the following error:

This doesn’t exactly make sense because I set that user (Test User 2) to be an owner of the

dataset (same access level as the pod owner, Test User 1)

Even when logging in as Test User 1 and making the same function call, it retrieves the

access that Test User 2 has:

However, after changing the access that Test User 2 has from an ‘Owner’ to a ‘Viewer’

through the solidcommunity.net portal (leaving them only with ‘read’ access to the dataset),

we can read the access that the user has, by calling the ‘getSolidDatasetWithAcl’. Logging

the result of the result shows us the access that the current user has:

Making Personal Data Solid A3 – Development Diary 88

This means that we can view the access that the current user has by checking the value of

<datasetObject>.internal_resourceInfo.permissions.user

• Noticed another problem with granting access to individuals via the

solidcommunity.net portal – When you add a user as an ‘owner’ of a resource,

meaning they should have ‘read’, ’write’, ’append’ and ‘control’ access, they are

actually missing out on ‘control’ as I have noticed from reading permissions using the

above method.

o That means that the only way to grant ‘control’ permission someone is

explicitly in code via the ‘setAgentAccess’ and including that user in the

function arguments.

o This is currently done on creation of the health data dataset, but it is

inconvenient to go through that whole process again when someone needs to

be added as an owner to the dataset, i.e. a hospital administrator.

• Tried to get a dropdown select working for adding a new appointment and selecting

the department of the appointment using react, but had some trouble finding a

component that works.

o Tried this guide: https://blog.campvanilla.com/reactjs-dropdown-menus-

b6e06ae3a8fe, while adding React to the project using the official

documentation: https://reactjs.org/docs/add-react-to-a-website.html#add-

react-in-one-minute . Also tried another guide

https://mui.com/components/autocomplete/ but this didn’t work either – might

just try a very basic dropdown using pure JS/HTML.

28th January

• Got dropdown working with basic JavaScript and CSS, using modified code from the

example: https://www.w3schools.com/howto/howto_js_dropdown.asp

• Started gathering SVGs that the application will use from: https://www.flaticon.com

• Got basic row/column classes working using the tutorial at:

https://www.w3schools.com/howto/howto_css_three_columns.asp

30th January

• Working on saving new appointment details in a solid dataset, but have to change

the way health data has been saved up until now. I thought that the

‘saveSolidDatasetInContainer’ (https://docs.inrupt.com/developer-

tools/api/javascript/solid-

client/modules/resource_solidDataset.html#savesoliddatasetincontainer) would allow

the application to store datasets within other datasets, similar to a folder structure of

a common file explorer, although when trying to use it I see that the dataset must be

stored in an actual ‘Container’ as opposed to a ‘Dataset’ – although in the

https://blog.campvanilla.com/reactjs-dropdown-menus-b6e06ae3a8fe
https://blog.campvanilla.com/reactjs-dropdown-menus-b6e06ae3a8fe
https://reactjs.org/docs/add-react-to-a-website.html#add-react-in-one-minute
https://reactjs.org/docs/add-react-to-a-website.html#add-react-in-one-minute
https://mui.com/components/autocomplete/
https://www.w3schools.com/howto/howto_js_dropdown.asp
https://www.flaticon.com/
https://www.w3schools.com/howto/howto_css_three_columns.asp
https://docs.inrupt.com/developer-tools/api/javascript/solid-client/modules/resource_solidDataset.html#savesoliddatasetincontainer
https://docs.inrupt.com/developer-tools/api/javascript/solid-client/modules/resource_solidDataset.html#savesoliddatasetincontainer
https://docs.inrupt.com/developer-tools/api/javascript/solid-client/modules/resource_solidDataset.html#savesoliddatasetincontainer

Making Personal Data Solid A3 – Development Diary 89

documentation it describes the two almost as identical types. There’s also no aspect

of the tutorial that covers the basic set up of a container.

• Up until now I was planning on storing all medical records in a dataset called ‘Health

Data’ stored in a user’s pod (to keep access to medical records separate from any

other data in the user’s pod), but this will now have to change from a Dataset to a

Container. Will need to re-factor registering a new medical institution accordingly.

• Noticed another small bug with the solidcommunity.net pod browser; you have to

delete a container twice, even after refreshing the page.

o Found another pod browser application on a post in the developer community

(https://podpro.fly.dev/) that may be better for interacting with the pod,

although everything is displayed in turtle syntax which makes it a bit more

difficult to interpret

• Seems to also be another bug with setting the access for a Container as opposed to

a Dataset. Setting the same permissions to a resource as I was doing for the dataset,

the only difference is that the ‘getResourceInfoWithAcl’ has to be called instead of

‘getSolidDatasetWithAcl’, as the resource has changed from a dataset to a container.

Setting the same access (all levels) to the pod owner.

And looking at the container in the solidcommunity.net portal, it seems that both users have

all access levels:

https://podpro.fly.dev/

Making Personal Data Solid A3 – Development Diary 90

However, when calling the ‘getResourceInfoWithAcl’ function to read the access that the

owner has, we can see that the owner doesn’t have the control permission for some reason:

31st January

• Noticed a limitation to provisioning access to an individual; If an individual is granted

‘control’ access (meaning they can view who can access the resource and grant

access to other users), there’s no way to limit the maximum access that they can

grant to other users.

o For example in this use case, a Doctor will have to be given ‘control’ access

to a dataset held within a Patient’s pod, because they will have to be able to

grant ‘view’ access to a designated Pharmacist who will need to be able to

see any prescriptions that resulted from the appointment with the Doctor and

the Patient. However, if the Doctor is given ‘control’ access they could

theoretically give the Pharmacist any set of access permissions, not only

‘view’. This can be prevented from the application layer, but it remains a slight

flaw in provisioning access to a resource. It would be better if the pod owner

could specify the maximum permission level that a user with ‘control’ access

can grant to other users.

1st February:

• Not much development work done today, working on an ethics application form for

the project, including participant consent forms and information sheets.

• Spent some time trying to refine the RDF class for an appointment file. Looked

around for a health record ontology and found some research papers for concepts

but none actually published on the web. Decided to use the schema.org ‘Event’ class

as its type, with sub properties. It’s not a perfect fit for a real world appointment but I

can come back later to refine it.

2nd February:

• Got the appointment details now saved to the ‘Appointments’ sub-Dataset within the

overall department dataset.

Making Personal Data Solid A3 – Development Diary 91

• Now returning the list of departments under which a patient receives care – next step

is to select a sub-dataset of each department (Appointments, Diagnoses,

Prescriptions or Records) and display a list of files within.

• Retrieving the list of files within a given dataset, e.g. <Department>/Appointments

and extracting the key-value of properties from them.

• Need to just iterate through the list tomorrow and display the properties on screen.

3rd February:

• Generically displaying medical records based on key value pairs.

• Added a few ‘return’ buttons to return to previous state

• Added a user prompt to display when no records found of the chosen type in the

chosen department.

6th February:

• Added a few more classes for reusable buttons and other small styling improvements

• Will need to pull the users departments in another place now, so made the function

which assembles it generic for the 2 use cases. The only main difference is the

HTML element to insert the department dropdown in, so it should be ok to reuse it

multiple times with only small changes to the function

7th February

• Set up inserting a new medical record to a patient’s pod, working with a general

record first (as in notes from an appointment with a doctor, blood test result etc.)

• Trying to pick what fields will be important here but just went with the basic ones

which I suspect will be included regardless (title, description, date etc.), other auto-

generated fields will be included too such as author, creation date etc.

• Looking through the ontologies at schema.org, I found a new type which might be

useful for all of these medical records (https://schema.org/MedicalWebPage). It’s

more aimed towards informative medical websites but so far it is the closest match to

a medical record as it is used in the application.

• Spent some time refining other class definitions based on the different types and

properties on schema.org

8th February

• Got some really good feedback from professionals in the health informatics space

about the application proposal, mostly some additional use cases for the application

and some related to the actual operation of the app including pod structure changes:

o Apparently appointment data is usually kept isolated from other medical

records, such as the ones that will be created in the application. I had planned

on storing appointments as one of the 4 ‘datasets’ within a healthcare

department ‘container’, but this might have to be changed to having

appointments stored in another location entirely. At the very least, I think I will

have to not grant access for the other medical record types to the hospital

administrator as I have been doing, and instead keep it only to those who will

be writing or reading other medical record types. This will require a

reasonable refactor to the code, but going to finish uploading medical records

first.

o Also someone mentioned it would be good to allow for more than one medical

institution at a time (perhaps a private hospital and/or a GP practice). This

https://schema.org/MedicalWebPage

Making Personal Data Solid A3 – Development Diary 92

shouldn’t be too hard and will just require an additional select to be made

after accessing an individual’s pod.

• Got general records, diagnoses and prescriptions saving to the pod, and able to view

them within the ‘access medical records’ pane.

o Including the option for specifying a pharmacist’s WebID to be able to view a

new prescription record.

• Developed a generic function to iterate through the key-value pairs of whatever it

passed to it as an argument and insert it into the designated dataset. This means that

one function can be used to write a new file dynamically to any dataset, and only

smaller functions had to be made to construct the object to send to this function, and

update the DOM based on the selected medical record type.

• Got logout functionality working from an application perspective

9th February

• Realised that logout isn’t actually working as I thought it was. The authentication

cookie is still stored in the browser memory, so even though the user is logged out

and cannot perform any actions that require authentication, as soon as they press

the login button the same user is signed in as before without having to enter

credentials.

o I tried to both forcibly clear the application memory and wipe the cookies, but

am unable to do so without actually going into the chrome developer console

and remove it that way, which is not really feasible from an application

development perspective.

o I found a topic on the solid community forum discussing this issue

https://forum.solidproject.org/t/local-first-offline-and-solid-login/4896/24 and it

seems that no solution has been reached, but I reached out to see if any

progress has been made.

• Displaying the access that any user has for a particular dataset in checkboxes. Need

to find a way to update the access based on user click events.

• Worked on the DOM of the displayed access to a particular dataset, such that

changing the value of the checkboxes displays a button beside the relevant user with

access, and passes the index of that element to a function.

o Need to just extract the current access that the user at that index has and

make updates to the users access based on the current value of the

checkboxes at the time the button is clicked.

10th February

o Working on function to update access that a user has to a dataset based on current

value of checkboxes, imported lodash for object comparison to display a message to

the user if no change from previous access is detected

o Having trouble actually updating an agent’s access, it doesn’t seem to update an

existing agent’s access but instead it inserts a new agent below with that access

level.

https://forum.solidproject.org/t/local-first-offline-and-solid-login/4896/24

Making Personal Data Solid A3 – Development Diary 93

I posed a question to the community forum so hopefully somebody might know what’s

going on.

11th February:

o Set up the form to add access to a new user

o Various formatting and general bug fixes

o Got a response from the community on the issue with updating access, will try to

implement a fix tomorrow

12th February

o Got both adding and updating access working, with help of the fix provided by the

community.

o Some styling changes and new CSS classes that can be used throughout the app.

13th February

o Working on the initiate insurance request feature, got the display part working just

need to filter relevant files and grant the insurer access to them

o Added some more departments to the dropdown, based on the list of departments in

Beaumont Hospital

14th February

o Able to grant access based on criteria (dated within 5 years), although you cannot

grant access to a particular ‘Thing’ (analogous to a file) inside a dataset, but instead

you can only grant access to the dataset as a whole.

o This means that if I continue with the current structure, whenever there is a

diagnosis within a pertinent department that’s less than 5 years old, the

insurer would be able to see all diagnoses in that department, instead of just

the ones that match the search criteria

o Workaround for this is to add relevant diagnoses to a separate dataset and

then grant the insurer access to this whole dataset.

o The ‘access/universal’ section of the solid-client package disappeared off the

documentation webpage today for several hours, presumably to make updates to it.

Quite frustrating as a lot of function usage is now hidden.

o Got the functionality working for initiating an insurance process and provisioning

access to the insurer, by creating a separate dataset and inserting the files into it that

match the search criteria.

Making Personal Data Solid A3 – Development Diary 94

o Need to just display the relevant files in the ‘access medical records’ section.

15th February

o Got insurance diagnoses displaying now, had a bit of trouble having two buttons in

the one form but fixed it by changing one button to an input with button type.

o Some further formatting of buttons and error handling

o Had a good meeting with developer of the podpro application (https://podpro.fly.dev/),

giving feedback on the tool and talking about what it’s like working with Solid.

o Set up provisioning of multiple types of medical institutions; Public, Private or GP.

Saving these at separate containers in the user’s pod. Will require a bit of code

refactoring to search for different URIs based on the type of medical institution they

are currently accessing.

o Changed the WebID of the institution administrator to be optional. Access is not

provisioned to anyone else if the field is left blank.

16th February

• Allowed the selection for accessing a different type of health data within a patient’s

pod. Doing a slight code factor of expected URIs based on the selection that was

made.

• Changing a lot of event handlers from ‘submit’ of a form containing a singular button

to a click event handler on the button itself.

• Found another bug when granting access to a dataset. If you try to grant access to a

dataset URL that has an extra ‘/’, that dataset becomes locked out and you cannot

read from it or delete it.

o For example when adding a new appointment, you need to make sure that

the appointment doctor has permission to view the ‘Info’ dataset of the

selected health data container. Although the dataset was already existing and

the pod owner was able to view/update it, I tried to grant ‘view’ access to the

doctor to this dataset but accidently specified the url as

‘<healthDataContainer> // Info’ with two ‘/’s instead of just one. Instead of

throwing an error it locked the entire dataset and subsequently rendered the

whole health data container to be useless, as I cannot delete the container or

read from one of the crucial datasets.

• Got the registering appointments / creating new departments / viewing records /

managing access working again after refactor. Need to do the upload records piece

tomorrow but that shouldn’t take long.

17th February

• Got the code refactor done for uploading all new record types, code is now back fully

working after allowing the selection of multiple types of different health data

• Got a good tooltip from a tutorial at (https://tutorialzine.com/2014/07/css-inline-help-

tips), will display information to the user at several stages of each use case process

• Going to set up the form for registering a new medical institution when one already

exists. Need to make sure the user is aware of what ones they currently have, as it

will completely wipe existing data if they have one of that type

• Found another slight bug when trying to delete the health data container to replace it

with another; it does not delete all contained resources. This might be because the

URI of the container hasn’t changed, but I would have expected that deleting a

container should delete all of the contained resources within it.

https://podpro.fly.dev/
https://tutorialzine.com/2014/07/css-inline-help-tips
https://tutorialzine.com/2014/07/css-inline-help-tips

Making Personal Data Solid A3 – Development Diary 95

o Not too much of a problem as I had already built the functionality to retrieve

the list of departments within a container so just have to iterate through this

list and delete each one explicitly.

17th February (later):

• Swapping between different health data types now working, as well as creating a

new medical institution, which deletes all data currently held in the pod for that type.

• Displaying the hospital administrator on the home page now, need to be able to

update this as they are the only individual (other than the owner) that is able to

register details of new appointments and therefore create new containers for

departments.

18th February:

• Allowing the edit of existing institution information without creating a new container

(i.e. updating the name, address of administrator of the institution). This means

revoking access from the existing administrator and granting it to the new one

• Found another slight bug with the ‘setAgentResourceAccess’ function when doing so;

o When revoking access it works by specifying the ‘controlRead’ and

‘controlWrite’ properties, but when granting access and specifying these it

doesn’t work – need to just specify a value for ‘control’.

21st February:

• Earlier bug with retrieving the agent access for a resource is starting to cause issues.

When the app is loaded and the user specifies the pod that they wish to access, I

need to disable certain actions from being completed based on the user’s

permissions.

o For example, creating an appointment in a new department should be

reserved for the pod owner or institution administrator, as this will create a

new container in the currently accessed health data container along with 4

sub-datasets.

o Initiating an insurance request and registering details of a new medical

institution is reserved for only the pod owner

o Editing details of the currently accessed health data institution is reserved for

the pod owner or institution administrator

• Got this functionality working but since getAgentAccess isn’t working as it should I’m

checking the value of the hospital administrator that is stored in the ‘Info’ dataset

within each health data container as opposed to reading from the acl. This is not

ideal as this value could hypothetically be changed and cause someone to gain

admin access

• Got functionality for a pod diagram working, including a list of all departments and

datasets within them, along with the number of files saved in each dataset, if this is

available to the signed in user.

22nd February:

• Found another issue with trying to create an appointment in a new department as the

institution administrator (which creates a new container for the department and 4

datasets within for ‘Appointments’, ‘Diagnoses’, ‘Prescriptions’, ‘Records’). Even

when the administrator and the pod owner have the same access level on the overall

health data container (owner status), the administrator cannot create an ACL for the

resource, and this is reserved for only the pod owner.

Making Personal Data Solid A3 – Development Diary 96

o Means that only the pod owner can create an appointment in a new

department

• Error log:

o This message is shown when trying to initialise the new department:

o Even though the user that tried to complete the operation (Test User 2) had

all of the possible access on the parent container.

• Decided to remove some of the access from the specified doctor of an appointment:

o Instead of having all of the access to the 4 inner datasets, they will only have

the ‘control’ access for the Prescriptions dataset – as this is the only type of

data that they will upload to the Patient’s pod where they have the option of

granting ‘read’ access to a Pharmacist. They will have ‘read’ and ‘write’

access only for the Records and Diagnoses datasets, as these are the

datasets that they will upload files to after their appointment with the Patient.

They will only have ‘read’ access to the Appointments dataset, as they will not

be recording details of a new appointment and this is down to the

administrator or the patient themselves.

o I thought of granting them the ‘control’ access to all datasets, in the event that

they wanted to share a Patient’s health records with another doctor, but

decided it would be better from a security perspective if the Patient themself

is the only person that can grant access to records to other individuals.

• Worked on some changes to the process, trying to find a balance between ensuring

the security of the data (i.e. not granting unnecessary access to people who don’t

need it) and optimising the usefulness of the application (i.e. creating application

processes that are similar to real-life and would serve use to all users – while trying

to minimise the amount of work required by the patient themselves). Worked out a

Making Personal Data Solid A3 – Development Diary 97

flow of each application operation and the required permissions for each user type.

Will implement it in code tomorrow.

23rd February:

• Made these changes to the process flow of creating a new appointment and

examining the permissions in the solidcommunity.net portal, it seemed that everyone

had the correct access rights;

o Pod owner remained the owner of all created datasets

o Institution Administrator is granted read, write access to the Appointments

dataset so they can read and upload files of upcoming appointments to that

department container.

They are also granted control access to the Diagnoses, Prescriptions and

Records datasets so that they can grant read, write access to the specified

doctor when uploading an appointment later

They had previously also been granted the exact same permissions as the

pod owner when creating both the initial health data container and the first

appointment within a department.

o The specified doctor when entering the appointment details is granted read

access to the Appointments dataset, read/write access to the Diagnoses and

Records datasets, and read/write/control access to the Prescriptions dataset

so they can upload a new prescription and specify the WebID to grant them

read access to the prescription.

This worked fine when uploading the initial appointment from the pod owner’s

account, however when logging in as the Institution Administrator and trying to

upload a new appointment, the process fails when checking if the specified doctor

has previously been granted access to the overall health data container, as it seems

this check can only be made by the pod owner – despite both users being granted

the exact same access.

This essentially means that only the pod owner (Patient) can upload details of a new

appointment and the institution administrator role is somewhat redundant in the

application.

Can modify the upload function to add a ‘prescription’ option, to upload the raw file

without granting child permissions to other users.

• Having the same error in the ‘Manage access to selected dataset’ functionality, it only

works for the pod owner

• And in the upload prescription functionality, cannot grant permission to the

pharmacist unless they are the pod owner

24th February:

• Found the fix for not being able to grant access. It was the initial dialog that is

displayed when a user signs in to the application, which is by default set to not allow

access to be changed to resources within the user’s pod.

Making Personal Data Solid A3 – Development Diary 98

I had forgotten about this dialog as I had been working with a small number of

debugging user pods, but it was only when I tried to restart the process with one of

the new user pods created yesterday that I realised that must be the source of the

unauthorized errors I was getting.

o With this now working, I unmade the changes that I had done yesterday. This

explains the comments made about ‘getAgentAccess’ and setting agent

access when not signed in as the pod owner. The application should now

work for all functionality as planned.

• Went through the main application code and removed log messages and added

explanatory comments where deemed necessary.

25th February:

• Tried to host the application on Github Pages but was getting errors with node

modules. Looked at a few possible solutions online relating to the Jekyll generator

that GitHub Pages uses, but could not a working one. Also tried the ‘gh-pages’ npm

package as an alternative solution but did not work either. Deciding to try finish

implementation fully tomorrow and retry after the application is finished.

26th February:

• Some more bug fixes and UI improvements

• Have full process working now and successfully tested except for the requesting

insurance feature – will tidy this up tomorrow and make final updates to pod diagram

feature also.

28th February:

• Further test of all application features – everything seems to be working fully now as

intended

• Cleaned up all comments and old unused code

• Added some definitions of application terms found at

(https://docs.inrupt.com/developer-tools/javascript/client-libraries/reference/glossary/)

• Set up an ec2 instance on aws and running the application online but having trouble

with the inrupt packages, using two tutorials

(https://sumantmishra.medium.com/securely-ssh-into-aws-ec2-linux-instance-

42ad8a322ac5, https://sumantmishra.medium.com/how-to-deploy-node-js-app-on-

aws-with-github-db99758294f1). Already had to make some changes to get parcel

running on the ec2 instance and importing the packages, but may have to make

further changes to get the package to work.

https://docs.inrupt.com/developer-tools/javascript/client-libraries/reference/glossary/
https://sumantmishra.medium.com/securely-ssh-into-aws-ec2-linux-instance-42ad8a322ac5
https://sumantmishra.medium.com/securely-ssh-into-aws-ec2-linux-instance-42ad8a322ac5
https://sumantmishra.medium.com/how-to-deploy-node-js-app-on-aws-with-github-db99758294f1
https://sumantmishra.medium.com/how-to-deploy-node-js-app-on-aws-with-github-db99758294f1

Making Personal Data Solid A4 – Application Demonstration Presentation 99

1st March

• Tried with a new ec2 instance and running the application using webpack (as

specified on the inrupt tutorial) as opposed to parcel (as specified on the solid project

tutorial), but seemed to make no difference. I was able to get the application

displayed and initiate the login process, but after the user authenticates the browser

does not strip the authentication code from the URL, and the code fails at the

callback section.

• Looked at some possible solutions involving the ec2 instance configuration but I’m

not sure whether the fault is at the solid inrupt package or with the ec2 instance

settings.

• Posed a question to the Solid developer chat early in the day but haven’t got any

responses.

• Saw a link to another method of authentication that uses a popup

(https://solid.github.io/solid-auth-client/) , will try this tomorrow and see if it makes a

difference.

A4 – Application Demonstration Presentation

Making Personal Data Solid A4 – Application Demonstration Presentation 100

Making Personal Data Solid A4 – Application Demonstration Presentation 101

Making Personal Data Solid A4 – Application Demonstration Presentation 102

Making Personal Data Solid A4 – Application Demonstration Presentation 103

