*,% VA Trinity College Dublin
o Colaiste na Trionoide, Baile Atha Cliath
The University of Dublin

School of Computer Science and Statistics

A Communication Architecture for
Transportation Digital Twins using
Apache Kafka

Conor Fennell
Academic Supervisor: Prof. Vinny Cahill

April 19, 2022
A dissertation submitted in partial fulfilment

of the requirements for the degree of
MAI (Electronic & Computer Engineering)

http://www.scss.tcd.ie

Declaration

| hereby declare that this dissertation is entirely my own work and that it has not been
submitted as an exercise for a degree at this or any other university.

| have read and | understand the plagiarism provisions in the General Regulations of the
University Calendar for the current year, found at http://www.tcd.ie/calendar.

| have also completed the Online Tutorial on avoiding plagiarism ‘Ready Steady Write', located
at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

Signed: Date:

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

Abstract

A digital twin is a virtual representation of a system that is updated from real-time data. A
digital twin can provide accurate information about the current state of the system, and allow
for predictions of future states of the system.

Motorway traffic has been growing year on year with the ever increasing people and vehicle
population. With this growth comes the risk of increased congestion, traffic accidents, and
roadworks. These issues could be reduced with real-time traffic monitoring. A method of
real-time traffic monitoring could be possible with a digital twin of the motorway. In order to
create a digital twin, traffic data from the motorway is needed. This data must be real time
and readily available. Several sensors exist on modern motorways such as inductive loops, road
gantry cameras, and radar detectors. Others data sources can be found directly on vehicles
such as GPS devices. The data from these sensors can be used to feed the digital twin.

Apache Kafka is a distributed messaging service that is based on a publisher-subscriber archi-
tecture. In Apache Kafka, data can be partitioned into 'partitions’ that are within different
'topics’. This research explores the use of Apache Kafka as the communication service be-
tween the motorway sensors and the digital twin. The objective is to create a highly available,
high throughput, and low latency design. The proposed system implements topics per sensor
group and partitioning per sensor. The research also explores the properties of the motorway
sensors, focusing on their latency and the type of data they produce.

The proposed Apache Kafka data delivery architecture is evaluated using simulated data
streams. These simulated data streams are taken from virtual sensors which draw data from
a SUMO simulation of the M50 motorway in Dublin. Several simulations are conducted using
various Kafka configurations. The effects of compression, batching, and varying the broker
hardware are tested, as well as varying the number of brokers and consumers. The effects of
the relative distance between the clients and Kafka are also tested.

It was found that single broker designs offer the highest performance in terms of latency,
however these systems have a single point of failure. It was found that compression can
decrease the latency by approximately 7%. Compression also increases the throughput of the
system by 40%. The use of multiple consumers also improves the throughput of the system by
21%. Reducing the distance between Kafka and its clients reduced the latency of the system,
however throughput is unchanged.

The final solution is a 3 broker configuration. This system uses compression to decrease the
latency, and replication across the brokers to increase the availability of the service. The
final solution has a dedicated consumer per topic. This system experiences 145 ms of latency
in low traffic simulations, and 156 ms latency in high traffic simulations with ideal cluster
placement.

Acknowledgements

| would like to thank Prof. Vinny Cahill for his continued support and guidance throughout
the duration of the project. His bi-weekly meetings and advice helped lead me in the right
direction through all stages of the project.

| would like to thank my friends and family for their relentless support over the years.

Finally, | would like to thank my girlfriend Shauna for her unwavering positivity and patience

during not only this dissertation, but throughout my degree.

Contents

Abstract i
1 Introduction 1
1.1 Motivation L 1
1.2 Objectives 2
1.3 Approach 2
1.4 Challenges 3
1.5 Other Considerations 3
1.6 Report Outline 3

2 Background 4
2.1 What is a Digital Twin? 4
22 Middleware 4
2.2.1 An Overview of Publish-Subscriber systems 5

2.2.2 What is Apache Kafka? 5

2.2.3 Other middleware systems 8

2.2.4 Comparing middleware systems 9

2.2.5 Evaluating choice of middleware 13

2.3 Motorway Sensors 14
23.1 GPS/GNSS 14

232 Radar. 16

233 Cameras 18

2.34 Inductive loops 21

2.35 Summary of Sensor Research 23

2.4 Overview of SUMO 24
241 TraCl 24

2.5 Literature Review 24

3 Methodology & Implementation 27
3.1 Overview of implementation 27

3.1.1 Proposed Architecture

Evaluation

Summary

Conclusion

Motorway Simulation
Traffic data retrieval
Modelling the Sensors
34.1 Inductive Loops
3.42 Motorway Cameras
343 Toll Bridge
34.4 Probe Vehicles
Kafka implementation
35.1 Brokers.
35.2 Producers
3.5.3 Consumers
Deployment
3.6.1 Brokers.
3.6.2 Producersand Consumers
4.1 Testing metrics
4.1.1 Test parameters
4.1.2 Configurable parameters
4.1.3 Fixed parameters
Test hardware
Testing methodology
43.1 Simulation testing L
432 Benchmark testing
4.3.3 Latency measurements
4.3.4 Throughput measurements
435 Default Kafka configuration
Test configurations
Results
451 Simulation Results
452 Benchmark Results.
453 Summaryof Results
454 Final Solution
455 Performance of Final Solution
Future Work

42
42
43
43
44
45
45
45
46
46
47
47
48
49
49
59
61
62
63

70

71

A1l Appendix

vi

79

List of Figures

2.1
2.2
2.3
2.4
25
2.6
2.7
2.8

2.9

2.10
2.11
2.12

2.13
2.14
2.15
2.16
2.17

3.1
3.2
3.3
3.4
35
3.6
3.7
3.8
3.9
3.10

Sample producer code [Kreps et al., 2011]
Sample consumer code [Kreps et al., 2011]
Kafka architecture [Dobbelaere et al., 2017]

Comparing producer throughput performance [Kreps et al., 2011] 10
Comparing consumer throughput performance [Kreps et al., 2011] 11
Comparing throughput with varying configurations [Guo et al., 2021] 11
Comparing latency with varying configurations [Guo et al., 2021] 12
Throughput & latency comparisons between Kafka, RabbitMQ, & Pulsar [Alok Nikhil,
2020] L. 12
Latency estimation for GPS connected vehicle to digital twin Garmin [2008] . 15
On vehicle radar used to detect other vehicles 17
Roadside radar detector operations 17

Latency estimation vehicle to digital twin using SSS radar detector [Electro

Automation, 2021a] 18
Gantry cameras with vehicle detection [Medium, 2018] 19
Roadside camera on M50 at Ballymount exit [Dublin City Council, 2017] . . 20
Drone monitoring traffic flow on roundabout [Sowers, 2017] 20
Inductive loop locations on the M50 [TII, 2022] 22
Inductive loop traffic volume data [TII, 2022] 23
Proposed Implementation Architecture 28
Comparing the SUMO simulation (left) to the M50 motorway (right) 29
4 lane induction loop configuration 31
Inductive loop sensor output 32
FOV of virtualised camera with 3 vehicles in detection zone 33
Camera sensor output 33
Toll bridge sensor output 34
Probe vehicle location error calculation 36
Probe vehicle sensor output 36
Inside the Kafka broker 38

vii

3.11 Kafka Python producercode 38

3.12 Kafka Python consumercode 39
3.13 Docker compose Kafka container 40
3.14 Project file structure 41
4.1 Latency measurements overview 46
42 latency (low traffic) 50
4.3 Latency (high traffic) 51
4.4 Latency by topic (low traffic) 52
4.5 Latency by topic (high traffic) 53
4.6 Comparison of 1 consumer versus 3 consumers 55
4.7 Kafka broker hardware comparison L. 56
4.8 Number of Kafka brokers comparison 57
4.9 Kafka broker compression comparison 58
4.10 Benchmark throughput by configuration 59
4.11 Final Kafka broker configuration 62
4.12 Final solution latency comparison (low traffic) 64
4.13 Final solution latency comparison (high traffic) 65
4.14 Throughput of final solution 66
4.15 Effect of distance on latency (low traffic) 67
4.16 Effect of distance on latency (high traffic) 68
4.17 Effect of distance on throughput 69
Al.1 Typical inductive loop message, 79
Al.2 Typical toll bridge message 79
A1.3 Typical motorway camera message 79
Al.4 Typical probe vehicle message 80

viii

List of Tables

2.1 Middleware system comparisons 13
2.2 Summary of sensor data properties 23
4.1 Messages by topic 43
4.2 Test hardware comparison 45
4.3 Default number of partitions per topic 48
4.4 Simulation test configurations 48
4.5 messages/s by configuration 60
Al.1 Typical message size in bytes 80
Al.2 Latency (ms) by topic (low traffic) 80
A1.3 Latency (ms) by topic (high traffic) 80
Al.4 Latency by configuration (low traffic) 80
A1.5 Latency by configuration (high traffic) 80
A1.6 Latency (ms) by distance 81

Nomenclature

AMQP Advanced Message Queuing Protocol

API Application Programming Interface
ATCS Active Traffic control System
AWS Amazon Web Services

CAV Connected Autonomous Vehicles
CPU Central Processing Unit

CSsv Comma Separated Values

cv Connected Vehicles

EC2 Elastic Compute Cloud

FOV Field of View

GNSS Global Navigation Satellite System
GPS Global Positioning System

GTFS General Transit Feed Specification
GZIP GNU Zip
HDFS Hadoop Distributed File System

HGV Heavy Goods Vehicle
IQR Interquartile Range
ITS Intelligent Transport Systems

MITSIM Microscopic Traffic Simulator
MQTT MQ Telemetry Transport Protocol

(O Operating System

PDF Portable Document Format

PRF Pulse Repetition Frequency
Pub-Sub Publisher-Subscriber system

PVT Position, Velocity, Time

RAM Random Access Memory

RFID Radio Frequency Identification
RSU Roadside Unit

S3 Simple Storage Service

SNAP Type of Network Attached Storage
SSL Secure Sockets Layer

STOMP Simple Text Orientated Messaging Protocol
SSS Speed Safety System

SUMO Simulation of Urban Mobility

TCP Transmission Control Protocol

TII Transport Infrastructure Ireland

Tp Throughput

TraCl Traffic Control Interface

UTF-8 Unicode Transformation Format — 8-bit
XML Extensible Markup Language

Xi

1 Introduction

This dissertation presents a design for a communication architecture between motorway
traffic sensors and a digital twin. The requirements of this system is that the data is highly
available and is streamed with low latency and high throughput. The background research
conducted as part of this dissertation justify the technology choices made throughout the
design. These choices include that of the virtual sensor design and that of the choice of

middleware Apache Kafka.

1.1 Motivation

A digital twin is a virtual representation of a system that is updated from real-time data.
This can provide accurate information about the current state of the system and allows for
predictions of future states of the system. Digital twin's can then be used to feed machine

learning models, or aid in decision making [IBM Digital Twin Exchange, 2021].

Irish roads are getting busier and busier each year [Central Statistics Office, 2019]. This
leads to congestion. This is particularly evident on Dublin's M50 motorway, which has over

400,000 unique journeys everyday [Carswell, 2017].

A digital twin of a motorway could be used to predict the traffic volume ahead of time and
aid traffic management authorities in reducing congestion on the motorway. Other benefits
of a motorway digital twin include incident prediction and predicting the best times for

roadworks and lane closures.

In order to create a digital twin of a motorway there will need to be real-time data feeds of
traffic information that can be used in the digital twin. This data needs to be communicated
to the digital twin with low latency. This data may be gathered from various sensors that
cover the motorway. These sensors may include inductive loop traffic counters, roadside

cameras, GPS data, toll-bridge data, as well as other data sources.

1.2 Objectives

The goal of this project is to design a framework that can take real-time sensor data from a
motorway and use that data in order to feed a digital twin. This framework will essentially
be the middleware between the physical sensors on a given motorway, and the digital twin

model of that motorway.

1.3 Approach

The middleware system is implemented using a publisher-subscriber architecture (Pub-Sub).
This architecture is a 'style of messaging application in which the providers of information
(publishers) have no direct link to specific consumers of that information (subscribers), but
the interactions between publishers and subscribers are controlled by pub/sub brokers’ [IBM,

2021]. Apache Kafka is the chosen middleware technology for this project.

The communication architecture is tested using simulated data streams which are
representative of practical data sources available on the M50 motorway. A SUMO simulation
of the M50 is used as the common source of traffic data to evaluate the communication
framework. The simulation is a 4-lane 7km segment of the M50 which includes 2 major

junctions.

Possible sources of real time data relating to motorways are identified. These data sources
may include inductive loop traffic counters, toll-bridge data, GPS data, and traffic camera
feeds. Virtual sensors are created. These virtual sensors are designed to be representative of
sensors which may be found on a motorway. These sensors will produce simulated data
streams which are representative of these data sources. These sources should model the
quality and type of data from a specific source, as well as the expected latency that would

be observed from the real data stream.

This data will be transferred from the virtual sensors to the digital twin using the designed
framework. This digital twin will be representative of the M50 motorway, however the design

of the framework is applicable to any motorway scenario.

The communication framework is tested using several simulation scenarios with varying
Kafka configurations. The performance of the system is assessed in terms of its throughput,

latency, and availability.

1.4 Challenges

The challenges faced by researchers attempting to build a message delivery architecture for

transportation digital twins are:
e Selecting the appropriate message delivery service.

e Understanding the properties of various sensors which exist on the road network. The
data format and associated latency and processing time of the sensors is extremely

important for this project in order to create the virtual sensors.

e Evaluate the performance of the design using the SUMO M50 simulation and the

virtual sensors which create the data streams for the digital twin.

1.5 Other Considerations

There are a number of variables which are worth noting but are not considered in the design

of this project:

e Privacy concerns associated with third party data, mainly probe vehicle data which

may be provided by companies such as Google or TomTom.

e Concerns with security due to transferring a large number of messages over the
network. Apache Kafka is capable of utilising security protocols such as SSL, however

this is not explored in this project.

1.6 Report Outline

The remainder of this dissertation is structured as follows:

e Chapter 2 - Background: This section contains research on available technologies

relevant to the project and justification for the technologies adopted in the final design.

e Chapter 3 - Methodology & Implementation: Outlines the design of the

implementation.

e Chapter 4 - Evaluation: Evaluates the performance of the previously defined

implementation.
e Chapter 5 - Summary: Summarises the dissertation.

e Chapter 6 - Conclusion: Re-iterates the key findings and results, and discusses

future work in this area.

2 Background

This chapter presents background information that is relevant to the project. It contains a
brief overview of digital twins, and comparisons of current middleware technologies which
may be useful for this application. It also contains research on motorway sensors which can
be used to feed the digital twin, as well as an overview of SUMO. It also contains a

literature review of current work in the field of digital twins and intelligent transport systems

(ITS).

2.1 What is a Digital Twin?

A digital twin is a virtual real-time model that accurately represents a system. A digital twin
proves accurate information about the current state of the system. This may allow for
predictions of future states of the system. Digital twins can vary in their application and
design, however digital twins usually consist of 3 distinct parts. There is the physical system
in which the digital twin is trying to represent, the virtualised product of this system, and
the communication from the physical to the virtual system. This project focuses on the
communication from the physical to the virtual system. The following sections outlines

suitable middleware for this application.

2.2 Middleware

There are a number of middleware technologies that could potentially be used for this
project. Traditional distributed file systems such as such as HDFS [Hadoop, 2008] and cloud
storage systems such as Amazon AWS S3 [Amazon Web Services, 2022a] are not capable of
meeting the real-time processing requirements needed for this project [Guo et al., 2021]. For
this project, publish subscribe systems are of great interest as they can receive and send data
to and from various sources in parallel while maintaining low latency and high

throughput

2.2.1 An Overview of Publish-Subscriber systems
Publish subscribe (pub-sub) systems usually consist of 3 key components:

e Publishers (Producers): Producers publish messages to the broker. Messages are
published to specific groups called "topics’ that exist on the broker. In this application

the motorway sensors act as the producers.

e Subscribers (Consumers): Consumers subscribe to message streams from the
broker. The specific messages they receives are determined by the 'topics’ to which

they are subscribed. In this project the digital twin is the consumer.

e Broker: A broker is the server that facilitates the messaging service. Brokers manage
the data among the different topics. Brokers interact with the producers and
consumers in order to deliver the messages from producer to consumer. A group of

brokers is referred to as a cluster.

A key feature of pub-sub systems is that there is entity decoupling. This means that
producers and consumers are not aware of each other. There is also time decoupling
between producers and consumers. They do not need to be producing and consuming at the
same time. The interaction between either producer or consumer and the pub-sub
infrastructure does not synchronously block the producer or consumer execution threads,
allowing maximum usage of processor resources at producers and consumers alike. This is

known as synchronisation decoupling [Dobbelaere et al., 2017].

2.2.2 What is Apache Kafka?

Apache Kafka is a popular and highly scalable publisher-subscriber platform. Kafka's design
allows for high throughput and low latency which makes it an ideal candidate for this project.
In Kafka, topics can be divided into partitions, with the messages in a partition guaranteed
to be ordered. Messages from different partitions or topics are not guaranteed to be ordered.
Multiple consumers can simultaneously read messages from one or more partitions to
improve parallel processing capabilities [Dobbelaere et al., 2017]. Sample code taken from
[Kreps et al., 2011] of the producer is given below. A message is defined to contain just a
payload of bytes. Messages can be encoded using several serialization methods. Producers

can batch sets of messages in a single publish request for improved efficiency.

producer = new Producer(...);

message = new Message('test message str '.getBytes());
set = new MessageSet(message);

producer.send('topicl ', 6 set);

Figure 2.1: Sample producer code [Kreps et al., 2011]

Sample consumer code which is also taken from [Kreps et al., 2011] outlines how a
consumer would consume messages from the topic labelled 'topicl’ which was produced

using the sample producer code.

streams [|] = Consumer.createMessageStreams('topicl ', 1)
for (message : streams[0]) {

bytes = message.payload();

// do something with the bytes

}

Figure 2.2: Sample consumer code [Kreps et al., 2011]

Since Kafka is distributed by design, there is usually more than one broker. Groups of
multiple brokers are known as Kafka clusters. Using a cluster there is inherent load
balancing as a topic is divided into multiple partitions and each broker stores one or more of
those partitions. Multiple producers and consumers can publish and retrieve messages at the
same time [Kreps et al., 2011]. Figure 2.1 which is originally presented in [Dobbelaere et al.,
2017] displays the architecture of Apache Kafka.

Zookeeper
w—pp- Publish

pressa s R \
= Register : Broker cluster . :

Consumer groupl

s Replication

Brokerl

= Consume i | eader J
-——l Consumer
H . |t
Mess;age Topicl-Partl (@ Mt:.ssa;e
Producer Topic2-Partl \ [Consumer)

Consumer groupl

Producer roker2 Leader i
Ph\ Topicl-Partl [Consumer]

\ Follower
Topic2-Partl Pul% Consumer)

Figure 2.3: Kafka architecture [Dobbelaere et al., 2017]

The most important requirement’s of Kafka for this project are that it can deliver a large
number of messages from the sensors while maintaining low latency. There are a number of
other services that can deliver messages with low latency, however Kafka stands out as it

can continue to deliver messages with low latency while maintaining high throughput.
Kafka's high throughput can be attributed to three factors.

1. Kafka makes use of zero-copy operations [Kreps et al., 2011]. This means that Kafka
writes data directly from the read buffer to the socket buffer. Traditional systems
require data to be copied to and from the application before being written to the
socket buffer. This is outlined in more detail in [Garg, 2019].

2. Kafka has the ability to batch data in order to improve the throughput [Kreps et al.,
2011].

3. Kafka employs data compression techniques to improve the efficiency of data

transmission.

Another important aspect of this project is the availability of the service. It is desirable to
have a system which can still deliver messages despite a broker failure. Kafka makes use of

replication. This means messages are copied to multiple brokers. In the event of a broker

failure, data loss is minimised as the messages are replicated across brokers. The other
brokers in the cluster will continue to make these messages available to consumers. This

allows for a highly available service.

ZooKeeper

Besides the main producer, consumer and broker components mentioned previously, Kafka
also relies on ZooKeeper. ZooKeeper is used to track the status of Kafka and maintain a list
of Kafka topics and messages [Kreps et al., 2011]. Kafka's dependence on Zookeeper was
originally used to manage the locations of Kafka's brokers. As Kafka has evolved the
dependency on ZooKeeper has lessened. Developers at Kafka have made it clear that
ZooKeeper will eventually be deprecated. From v2.8.0 on, Kafka can be run without
ZooKeeper for basic use, however the transition is not yet complete and ZooKeeper is still

prevalent in most current Kafka implementations [McCabe, 2020].

2.2.3 Other middleware systems

There are several other middleware technologies that were considered for this project.

RabbitMQ

RabbitMQ is an open source implementation of the AMQP protocol, and unlike Kafka, does
not rely on a third-party cluster management system like ZooKeeper. RabbitMQ has poor
scalability due to the complete replication design [Guo et al., 2021].

ActiveMQ

ActiveMQ is a Java-based messaging broker with support for several communication
protocols, such as MQTT, AMQP, STOMP, and WebSocket. It manages and allocates
resources very efficiently and can achieve high throughput [Donta et al., 2021]. ActiveMQ
does not have a lot of community support, with maintenance records and user feedback in
decline [Guo et al., 2021].

Pulsar

Pulsar is an open-source distributed messaging system. It is developed in Java and based on
the TCP protocol [Guo et al., 2021]. In Pulsar, the messages are stored in Bookies, that are
managed by Bookkeeper [Junqueira et al., 2013]. Since Pulsar brokers do not store
messages locally, it needs to connect to a BookKeeper cluster in order to search messages.

This increases network overhead and has an impact on performance [Guo et al., 2021].

RocketMQ@Q

RocketMQ is a Java-based message delivery service [Yongguo et al., 2019]. RocketMQ has
the concept of a queue in each topic, which is similar to the partition concept in Kafka. The
messages in the queue are guaranteed to be ordered. RocketMQ is extremely low latency,
however it does not offer high throughput like Kafka. The RocketMQ community is also not
very active compared to Kafka and RabbitMQ [Guo et al., 2021].

2.2.4 Comparing middleware systems

The most important metrics to consider for this project are throughput and latency. The
throughput is important as there will be large quantities of data from the sensors, especially
during rush hour when the number of vehicles will increase significantly. The latency of the
system is also very important as the digital twin requires the data to be transferred in real
time. Any increase in latency directly affects the accuracy of the digital twin. It is crucial

that low latency can be delivered while maintaining high throughput.

Comparing the aforementioned services, it is clear that Kafka has the superior throughput
abilities. This is backed up by producer and consumer tests conducted in [Kreps et al., 2011]
that show the throughput performance of Kafka, RabbitMQ, and ActiveMQ.

They found that for for each system running a producer to publish a total of 10 million
messages, each of 200 bytes, Kafka outperformed other systems with a batch size of 1 and a
batch size of 50. ActiveMQ and RabbitMQ don’t seem to have an easy way to batch
messages and it is assumed that a batch size of 1 is used. Figure 2.2 which is originally
presented in [Kreps et al., 2011] shows the throughput performance of Kafka, RabbitMQ,
and ActiveMQ:

=—=activemq —Kafka (batch 50) Kafka (batch 1) = rabbitmq
500000

400000

300000

200000

messages/sec

100000

k. oy

10 500 990 1480 1970

accumulated produced messages in MB

Figure 2.4: Comparing producer throughput performance [Kreps et al., 2011]

It is clear that Kafka has the best throughput performance of these systems, with the batch
size of 50 the highest perform. Kafka with a batch size of 1 also significantly outperformed
RabbitMQ and ActiveMQ. Kafka published messages at a rate of 50,000 per second for

batch size of 1, and 400,000 messages per second for batch size of 50. This is significantly
higher than RabbitMQ which managed around 25,000 messages per second, and ActiveMQ

managing under 10,000 messages per second.

Consumer tests are also conducted. Similar to the producer test, all systems used a single
consumer to retrieve a total of 10 million messages. Figure 2.3 presents these results which

are originally found in [Kreps et al., 2011]:

10

—activemq —Kafka —rabbitmq

25000

20000
o
&

= 15000
o
=1}
B

@ 10000
E

5000

0

10 500 990 1480 1970

accumulated consumed messages in MB

Figure 2.5: Comparing consumer throughput performance [Kreps et al., 2011]

It can be seen that Kafka consumed around 22,000 messages per second on average. This is
more than 4 times that of ActiveMQ and RabbitMQ.

Similar tests are conducted in [Guo et al., 2021]. The throughput is recorded with varying
message size and fixing the the number of topics/producers/consumers/partitions. These
tests are conduced using Kafka, RabbitMQ, ActiveMQ, Pulsar, and RocketMQ. It is clear

from Figure 2.6 that Kafka displays the best throughput performance across all tests [Guo
et al., 2021].

topic=1,producer=1,consumer=1,partition=1 topic=1,message size=4kb,partition=1 topic=1,producer=1,consumer=1
- Kafka
400 . Kafka. 400 R:hbitMD mm Kafka
RabbitMQ m— RocketMQ s RocketMQ
__3501 mmm RocketMQ __ 350 == ActveMg 700 mm Pulsar
S 300 ™ ActiveMQ £ 300 = Pulsar 2
= W Pulsar = Z 300
= 250 = 250 pt
a 3 a
.5'200 £ 200 -5200
3 150 8 150 g
e £ =
100 100 100
50 50
0 o] 1]
100b 1Kb 4Kb 1 3 5 1 16 100
Message Size number of producers/consumers number of partitions
a) Varying message size b) Varying number of producers/consumers c) Varying number of partitions
arying g arying p arying p

Figure 2.6: Comparing throughput with varying configurations [Guo et al., 2021]

11

Latency tests are also conducted in [Guo et al., 2021]. These tests show the effect of the
number of producers/consumers on the latency result. The number of partitions and the
number of topics are fixed at 1, the message size is fixed as 4KB, and the number of
producers/consumers is varied from 1 to 5. It can be seen that Kafka, RabbitMQ, and
ActiveMQ show longer latency than the other systems. Figure 2.7 originally in [Guo et al.,
2021] can be seen below:

topic=1,producer=1,consumer=1,partition=1 topic=1,message size=4kb,partition=1 topic=1,preducer=1,consumer=1
go| W Kafka — :;';:m 80 . Kafka
RabbitMQ 80 - RocketMQ 70 = RocketMQ
70 EEE RocketMQ - ActiveMQ W Pulsar
. 60{ M ActiveMQ . - Pulsar _ 60
2 wm Pulsar < 60 =
Z50 z =50
> > >
£ 40 = 240
3 40]
530 q ®/30
20 20 20
10 10
0
100b 1Kb 4Kb 1 3 5 1 16 100
Message Size number of producers/consumers number of partitions
(a) Varying message size (b) Varying number of producers/consumers (c) Varying number of partitions

Figure 2.7: Comparing latency with varying configurations [Guo et al., 2021]

It may appear that Kafka does not fulfil the low latency requirement for this project, however
it is important to note that the tests conducted in Figure 2.7 do not take throughput into
account. Researchers [Alok Nikhil, 2020] found that Kafka has lower latency at higher
throughput than RabbitMQ), and that Kafka has lower latency than Pulsar in all cases. It
also found that RabbitMQ can achieve lower end-to-end latency than Kafka, but only at
significantly lower throughput. This can be seen in Figure 2.8 [Alok Nikhil, 2020]:

Throughput (MB/s) End-to-End Latency Quantiles

Latency (ms)

5000 % 90.00 % 9900% 9990 %

Percentile

Kafka - 200K W Pulsar - 200K
M RabbitMQ (Mirrored) - 30K

Figure 2.8: Throughput & latency comparisons between Kafka, RabbitMQ, & Pulsar
[Alok Nikhil, 2020]

12

There are a number of message delivery guarantees that need to be defined in order to

compare the middleware systems.

e At-most-once: Messages will be delivered at most once. There is no guarantee the

message will be delivered, and once it is delivered there is no chance of delivering the

message again.

e At-least-once: This guarantee's message delivery, however there may be duplicate

messages.

e Exactly-once: As the same suggests, this means a message will be delivered exactly

one time. This is difficult to achieve in practise.

The following table is compiled from information found in [Kreps et al., 2011] [Guo et al.,
2021] [Alok Nikhil, 2020]. The table outlines the properties of each of the middleware

systems.

Kafka RabbitMQ@Q | RocketMQ | ActiveMQ@ Pulsar

Develop Language | Scala & Java Erlang Java Java Java

Comm. Protocol TCP TCP Custom Multiple TCP

Delivery guarantee ALL* at-most-once | at-least-once | at-least-once ALL*

Order guarantee | Partition-order None Queue-order | Queue-order | Global-order

Throughput Excellent Good Poor Poor Poor
Latency (low tp) Good Good Excellent Good Excellent

Latency (high tp) Good Poor Good Poor Poor

Table 2.1: Middleware system comparisons

*at-most-once/at-least-once/exactly-once

2.2.5 Evaluating choice of middleware

Apache Kafka is selected as the technology of choice for this project. This is for several

reasons.

1. Kafka displays the best throughput of all the aforementioned middleware [Kreps et al.,
2011] [Guo et al., 2021] [Alok Nikhil, 2020].

2. Kafka is low latency. There are other systems that offer similar or better latency
performance such as RabbitMQ and RocketMQ), however it has been shown for high
throughput applications Kafka outperforms these systems [Kreps et al., 2011] [Guo
et al., 2021] [Alok Nikhil, 2020].

13

3. Kafka partitions are order guaranteed. Some systems such as RabbitMQ do not
guarantee order. This is important for the digital twin application as messages being
delivered in the wrong order increases the complexity of implementation [Guo et al.,
2021].

4. Partitions in Kafka are an excellent tool for sorting data as well as load-balancing
among brokers. The number of partitions in a topic in Kafka can be accurately set,
then randomly and evenly distributed on the cluster, and the number of replicas can
be freely defined. Many other systems have message queues such as RabbitMQ, but

they are not as configurable as Kafka.

5. Kafka has excellent community support and documentation. The same can not be
said for other systems such as RocketMQ and Pulsar. ActiveMQ has also seen decline
in its user community, as user feedback and maintenance records have declined over
the years [Guo et al., 2021].

2.3 Motorway Sensors

The aim of this section is to specify the types of available traffic sensors on today's roads
and identify the potential data streams these sensors produce which could be used to feed a
digital twin model. The design of each sensor is discussed as well as the quality of data and

type of data streams these devices produce.

2.3.1 GPS/GNSS

GPS satellites circle the earth two times a day in a particular orbit. Each satellite transmits
a unique signal and orbit parameters that allows a GPS device to decode and compute the
precise location of the satellite. GPS receivers use this information and trilateration to
calculate a user’s exact location. The GPS device measures the distance to each satellite by
measuring the time taken to receive a transmitted signal. With measurements from multiple

satellites, the device can determine the user’s location [Garmin, 2021a].

GPS enabled smartphones are typically accurate up to 4.9 metres [US Government, 2021].
The latency for a GPS measurement is typically in the range of milliseconds between for the
GPS device and the satellites. The PVT (position, velocity, time) output rate of a typical
GNSS receiver is in the range of 1HZ to 10HZ [NVS, 2021], that is a device can output a
unique data point between 1 and 10 times per second. GPS does not provide any data on

the type or class of vehicle.

14

There are a number of services that utilise GPS technology to provide users with location
data. The most common of these are Sat Nav systems made by companies such as Garmin

and TomTom, and mobile applications such as Google maps.

Sat Nav Systems

Sat Navs can provide the user with their current location, routes, journey time estimation
etc. TomTom claims their road data is collected every 1 second, and is made available to
their customers every 1 minute or less [TomTom, 2012]. This data that is made available
does not contain information about individual vehicles, but rather about the flow and
volume of traffic, however it may be possible to get this data from TomTom. Garmin also
provides similar traffic flow data that they collect from their devices and make available to
users every 60 seconds. Once again this data is processed and modelled in their data centres
before being supplied to the devices, however it also may be possible to obtain the
unprocessed data [Garmin, 2021b].

Assuming strong wireless connection, and the central server and digital twin host both being
in a 50km radius, an estimated 500ms latency time may be observed between the vehicle
and the digital twin with a sampling frequency of 1HZ using a Garmin 16x GPS sensor as a

baseline for our estimations [Garmin, 2008].

100ms

o o Central Server Digital Twwin

Figure 2.9: Latency estimation for GPS connected vehicle to digital twin Garmin [2008]

Google Maps

Google Maps allows for a full stream of the vehicle's journey in real time. Google maps uses
a dedicated GPS receiver built into most modern mobile phones, as well as Wi-Fi modems
and cellular towers to track the device's location [Google, 2021a]. Google Maps is accurate
to around 20 metres according to Google [Google, 2021b]. Google maps provides the user
with location data that is updated at 1HZ. This data is processed and sent to Google's
remote servers about once a minute, however it is possible to increase this frequency to 15

seconds in Google maps ‘Start driving mode’ setting [Google, 2021c].

15

Probe Vehicles

A probe vehicle is a vehicle that can be used as a moving traffic sensor [Linnartz, 2010].
Probe vehicles may be used in conjunction with other data streams to provide insight into
the flow of traffic. Any vehicles with live and available data feeds can be used as probe
vehicles. These may include public buses, taxis, delivery vans, and commercial vehicles with

tracking etc.

Public busses in Ireland are tracked by GPS using the GTFS (General transit feed
specification) protocol [Government of Ireland, 2020]. This provides real-time bus
information for passengers such as bus estimated arrival time, at which stop the bus is
currently etc. This real-time information is available on a number of different mobile

applications. However the API for accessing the data is available to developers.

The API can provide the location of a bus and it's route. While this technology only provides
information on the busses, this data can still be very powerful as the bus information can be
used to make estimations of the flow of traffic by treating the buses as probe vehicles. For
example if the bus is moving very slowly in a particular area where there is no bus stop, this
may indicate that there is heavy traffic in this area. This data would best be used as
supplementary data to be used in combination with other data feeds. The API collects data
from buses at a frequency of 1HZ. This is PVT data with the intended route and arrival
times of the bus also being included. The location is accurate to around 20 metres.

DHL also provides live tracking for customers. This allows customers to track their parcels
live in the DHL app [DHL Paket GmbH, 2012]. It is unclear what system is used to provide
this service, however it could be assumed that it provides similar performance to Google
maps services, with a 1HZ refresh time for customers and accuracy up to 20 metres. It may
be possible to obtain the PVT data from the live tracking from DHL to use their delivery

vehicles as probe vehicles.

2.3.2 Radar

Radio waves are emitted from the sensor. Waves can be deflected by target objects. Some
of these waves are reflected back to the sensor. Signal processing tools can be used to
determine if an object has been detected and it can reveal some characteristics about the

target object.

16

On Vehicle Radar

Radar can provide different data depending on where the sensor is located. Some vehicles
use radar as part of their self-driving systems. The sensors are used for object detection
around the vehicle. This allows the vehicle to sense other vehicles in the area. It can also get
the relative velocity of the other vehicles, however this alone does not provide the location of

the vehicle without another sensor (such as GPS).

Reflected signal

Figure 2.10: On vehicle radar used to detect other vehicles

Roadside Radar

Another method of using radar for this problem would be to mount radar sensors to the side
or overhead on the motorway. This would allow the sensors to detect vehicles speed, lanes,
and direction of travel, as well as providing their location since the sensors will be in known

fixed locations.

R,

Reflected signal
Incident’sigk

Figure 2.11: Roadside radar detector operations

Vehicle radar is accurate up to around 1 kilometer, however most devices have a much
smaller usable range than this. The output rate of radar detectors is called the pulse
repetition frequency (PRF) [Cambridge Pixel, 2019]. Taking a popular roadside radar device
as an example, the TSR10, that is used for single lane vehicle detection. It is accurate to 30
meters, and can measure the speed and distance of an oncoming vehicle. It has a refresh
rate of 20HZ. This means that the device can potentially make 20 measurements per second
[Nanoradar, 2020]. The location of the device would also be known since it is a fixed device.

This is the data that could be accessed if there was a direct feed from the radar device.

However in the case of there being middleware in between the feed and the device, the data
may differ. It would be more common to receive data from a central source where data from
multiple sources is gathered. This would add considerably more delay to the stream of

data.

17

Radar devices are non-intrusive to install. This means that lanes would not need to be
closed to install and perform maintenance of the devices. This is a significant advantage

compared to some other sensor types (such as inductive loops).

Electroautomation’s Traffic SSS (Speed Safety System) uses multi tracking radar technology
to monitor a road stretch of 150 metres over several lanes. It is capable of classifying
vehicles based on the frequency response and can return high resolution digital images
[Electro Automation, 2021a]. These devices are connected to SNAP software that is used
for data analytics for traffic management. This software can provide real-time traffic reports
from the sensors. The server software requires Gigabit Ethernet connection [Sensy Networks,
2021].

Assuming gigabit Ethernet connection between radar device and server, and strong wireless
connection from server to digital twin model, with both the server and digital twin host
being in a 50km radius, an estimated 210ms latency time may be observed between the

vehicle and the digital twin with a sampling frequency of 21HZ.

555 Radar

e 10ms
— 3| SMaP Server Digital Twin
lzmz

ro—

Figure 2.12: Latency estimation vehicle to digital twin using SSS radar detector [Electro
Automation, 2021a]

2.3.3 Cameras

Roadside Cameras

Roadside cameras could provide rich data about the traffic flow. With video processing it is
possible to extract metrics about the flow of traffic. Cameras can provide the direction a
vehicle is travelling, the vehicle's speed, the lane a vehicle is in, as well as the type of vehicle
and a timestamp of the data. Cameras can also read the registration of vehicles, which may
not necessarily be useful for our digital twin application. The location would also be known

as the camera would be mounted in a fixed location.

18

Figure 2.13: Gantry cameras with vehicle detection [Medium, 2018]

There are a number of factors that contribute to the latency of the camera data. These
factors include the camera stream latency and the processing time of the footage. If the
footage is processed on site then the latency of the processing and the stream of the metric
data would be factors contributing to the latency. Electroautomation roadside cameras have
options for full internet capabilities, and allow a real-time live feed of the camera footage to

be viewed on a standard web browser [Electro Automation, 2021b].

TII has traffic camera feeds available online. These provide a snapshot of the traffic in
specific locations. Generally these snapshots are around 10 minutes behind real time.
However it may be possible to obtain this data directly from TII, and also to gain the live
feed rather than just snapshots. This would allow us to extract information from the feed
such as what lane vehicles are in, the vehicles speed and direction of travel, and the class of
vehicle. Machine learning algorithms are used to extract this data by producing vehicle
counts of the moving objects [Gibbs, 2020]. The data stream that we may have available to
our digital twin model would likely be this processed data of the vehicle counts. According
to [Song, 2019], the vehicle detection accuracy from such systems is thought to be around
92%-93%. For a 30fps camera, speed error rate is around 2% for vehicles travelling in the
range of 70 km/h=100 km/h [Javadi et al., 2019].

19

Figure 2.14: Roadside camera on M50 at Ballymount exit [Dublin City Council, 2017]

Drone Cameras

There have been tests using drones to monitor traffic flow. Using a camera mounted to the
drone and computer vision techniques it is possible for drones to return the number of
vehicles, the vehicle type, their direction of travel, the location of a vehicle, and a
timestamp. However a major disadvantage to drones is the short battery life. Typically
drones can only fly for around 15 minutes on 1 charge. During a study conducted in Canada
[Sowers, 2017], 4 battery packs were used to fly drones for 1 hour at a time to monitor
traffic. This would not be a viable solution for continuous traffic monitoring to gather data

to build a digital twin.

Figure 2.15: Drone monitoring traffic flow on roundabout [Sowers, 2017]

20

An advantage of drones for traffic monitoring is that they are non intrusive. They cause no
disruption to traffic and drones are typically silent when they are in the air. The
maintenance of a drone can be carried out anywhere and everywhere, with no need to ever

go to the roadside.

The latency on drones will entirely depend on the video processing done. The typical latency
for a drone camera feed is in the milliseconds, however this could be considerably longer due

to processing and compiling the metrics from the footage.

The data stream for a drone camera could be similar to that of a roadside camera, with

processing on the video data producing traffic counts that would be fed to the model.

Toll Bridge Cameras

Toll bridge sensors can provide the location of a vehicle with a timestamp, the type of
vehicle, the direction of travel, as well as some other less relevant information such as
vehicle registration. There is a toll bridge on the M50. There are 2 types of sensors used to
detect vehicles. The toll bridge is capable of sensing RFID sensors located on select car's
windshields, however for the majority of cars cameras are used to read the registration of the
vehicle. An advantage of this system is that it is already in place and the data is already
available. The issue with this data is that it is back filled and is not published in real time. It
may be possible to obtain the camera feed data of the M50 toll. This is essentially the same

data stream as a regular roadside camera.

2.3.4 Inductive loops

Inductive loops work on a similar principle to that of a metal detector. They measure the
change in magnetic field as an object passes over them. This can be used to detect the
presence of vehicles, as well as estimate the type of vehicle due to the size of the passing
object. Inductive loops can give the vehicle location, type, and in some cases speed. If there
is an inductive loop on each lane of traffic we can then tell which lane or direction the
vehicle is moving in. If there are two inductive loops placed in close proximity, they can also
be used to estimate the speed of a vehicle by calculating the time taken to cross from one

loop to another [Sanderson Associates, 2021].

Inductive loops are usually placed inside the road surface, this means they are intrusive to
install and maintain as it requires cutting slots into the road surface, which means the work

requires lane closures and obstruction to traffic.

21

o
@)
@) B o
: iart O
D o o
Blanc&!dstowp ®
e
& o Dublin
[+]
@)
Cloncjgalkir1
: - 4
| Q@ @ Rethfarnhan =
Tallaght Dunlc_:?rum
o :
-
O Des

Figure 2.16: Inductive loop locations on the M50 [TII, 2022]

There is a large inductive loop data set for the road networks in Ireland. It provides data
with a latency of around 5-10 minutes. The data consists of vehicle location, direction of
travel, and vehicle type. This allows us to see the average traffic flow in an area over a 5
minute period, what percentage of vehicles were travelling in a northerly or southerly
direction, and what percentage of vehicles were HGVs etc. This data is streamed to the TII
website [T1l, 2022]. It may be possible to access this data more directly that could improve
the latency significantly. Inductive loops are estimated to have a vehicle detection accuracy
somewhere between 92% and 98% [Paul Briedis, 2010].

22

Monthly average daily total

g [J2019 [__]2020 2021 [2022

> 200000

o

E 150000) 0—0—-9—9.\0
& 100000 !

% 50000

ol

= 0

é Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 2.17: Inductive loop traffic volume data [TII, 2022]

2.3.5 Summary of Sensor Research

The sensors that are known to exist on the M50 motorway are inductive loops, the toll
bridge, motorway cameras, and vehicles with GPS/GNSS. Table 2.1 outlines a summary of
the estimated data properties of these available traffic sensors. The type of data is outlined,
this describes the information about an individual vehicle that this sensor can provide. The
latency outlines the time delta between an event and the sensor recording that event. The
accuracy is the associated accuracy of the sensors observations. The frequency is defined to

be the output rate of the sensor i.e. how many measurements the sensor processes per

second.
Type of data Latency | Accuracy Frequency
Inductive Pres.ence, Direction, Lane, <10ms Detection: 95% 1HZ
Vehicle class
Loops
. Velocity, Lane, Direction, Detection: 93%
Toll Bridge Vehicle class ~ls Velocity: 98% 30HZ
H . [
Motorway Velocity, Lane, Direction | ~1s Detec_tlon. 9034 30HZ
Velocity: 98%
Cameras
PVT data Position: 3-20 m,
GPS/GNSS (position, velocity, time) <100ms Velocity: 0.2kmh 1HZ

Table 2.2: Summary of sensor data properties

23

2.4 QOverview of SUMO

SUMO (Simulation of Urban Mobility) [German Aerospace Center, 2022a] is an open-source
traffic simulation software that is capable of simulating large road networks. SUMO is a
microscopic traffic simulator (MITSIM). It individually models each vehicle in the network,
as opposed to macroscopic traffic simulators that only model the general flow of traffic
rather than movements of individual vehicles. Microscopic traffic simulation is a more
suitable for our digital twin application as it provides information about individual vehicles
rather than the general traffic flow. A simulated version of the M50 is used to evaluate the

middleware design for the digital twin.

2.4.1 TraCl

TraCl (Traffic Control Interface) offers a Python control interface that allows for real-time
retrieval and modification of data within a SUMO simulation. It uses a TCP based
client/server architecture to allow access to SUMO and to control the running of the
simulation. TraCl can be used to retrieve live data from a simulation or modify aspects of
the simulation itself [German Aerospace Center, 2022b]. TraCl is used to retrieve data from
the M50 simulation in order to model virtual sensors that will be used to feed the proposed

digital twin.

2.5 Literature Review

It is apparent that digital twins and Intelligent Transport Systems (ITS) are an important
area of study in today's world. With regards to digital twins in motorway applications, these
can be divided into two main categories. These being digital twins modelling the road
surface and topography of the motorway, and digital twins modelling the traffic flow on the

motorway, with this review being primarily focused on the latter.

Researchers have agreed that the optimal data sources for the digital twin models for
transport systems will come from a variety of sources. These include connected vehicles
(CV) as well as roadside units (RSUs). A recent study on a digital twin approach for
adaptive traffic control systems (ATCS) found that relying solely on conventional sensor
systems such as inductive loop traffic counters a limiting factor in improving the
performance of their service, and that great performance improvements can be gained by
incorporating CV technology as well as conventional RSUs [Dasgupta et al., 2021]. The idea
of leveraging both RSUs as well as CV technology is prevalent in other literature, such as 'A
novel digital twin-centric approach for driver intention prediction and traffic congestion
avoidance’ by A. P. Kumar [Kumar et al., 2018], which states 'Vehicles talk to one another

as well as with the roadside IT and electronics equipment to recognize and relay the

24

real-time situation on the road. The roadside infrastructure also comprises a variety of
sensors to measure the distance and the speed of approaching vehicles from every direction’.
It is clear that a combination of different data sources will be optimal for feeding the digital
twin. These sources could include roadway sensors such as inductive loops, roadside traffic
cameras, and toll bridge data, as well as CV technology such as dash-cam data, data from
probe vehicles such as GPS enabled taxis and busses, and sat-nav data. Some studies have
suggested taking this further and including social media services such as Twitter, and news
and weather data services [Du and Chowdhury, 2017].

A common theme among papers is the lack of detail about the methods that may be used
to gather data for the digital twin model. In [Dasgupta et al., 2021] the author states that
they will use 'trajectory data from connected vehicle (CV) technologies’ in order to feed the
digital twin for the ATCS. However there are no additional details of how this will be
achieved and what kind of sensors will be used. No description of the data format or type of
data is provided. This is also apparent in [Kumar et al., 2018] where the author details the
types of potential sensors that exist on today's roads, stating 'There are high-fidelity video
cameras in plenty along the roads, expressways, tunnels’ and that 'wireless access points
such as Wi-Fi, 3G, 4G, roadside units, and smart traffic lights have been deployed along the
roads’. It is at no point in the paper made clear exactly how this data could be used and
processed in order to be able to feed a digital twin model. The process of obtaining data
from sensors in real time and transferring this data in order to feed the digital twin is crucial

to a real digital twin's success. This is an important gap in the literature this report plans to

fill.

There are papers that explore message delivery infrastructures that could be suitable for our
digital twin. One such paper is [Du and Chowdhury, 2017]. The paper outlines how Apache
Kafka supports the aggregation and processing of raw data from multiple sources. The
author in [Du and Chowdhury, 2017] describes the platform as a 'cluster of interconnected
computers that rapidly ingest streaming messages generated by data producers (e.g.,
sensors, roadside units). Different frameworks distribute the data to consumers (e.g., traffic
management centers, mobile applications) via publishing (i.e., the data are pushed to the
consumers) or consuming (i.e., the consumers pull data from the frameworks' storage space)
models.’. In our case the consumer will be the digital twin model, that will pull data from
Apache Kafka, which in turn ingests data from the various sensors and CV technology. The
author also outlines that the data may come from a 'number of sensors (e.g., sensors in
vehicles, cell phones, roadside units)’. The author then states that the 'data will come in
varied formats (e.g., PDF, CSV, and structured/unstructured XML)' [Du and Chowdhury,
2017]. This description of the data is missing some information such as the average size of
the ingested data, the output frequency of the data (i.e the refresh rate of a particular
sensor), and the type of data produced (i.e. position velocity time (PVT) data, relative

25

position, type of vehicle, presence of vehicle etc). This is information which this report plans
to estimate for a number of popular sensors and data sources that may be used to feed the
digital twin. It is crucial for the data to be low latency in order for the digital twin to be as
near real-time as possible. Tests are conducted in [Du and Chowdhury, 2017] that give
insight into how the number of producers and consumers affect the latency times associated
with Tp (to producer) and Tc (to consumer), as well as total latency times. This research

will be useful when designing the message delivery infrastructure for the digital twin.

Some studies outline the function of a digital twin and why it may be useful, but do not
actually create a digital twin. This is evident in [Kumar et al., 2018] where digital twinning
is discussed as a concept, outlining the benefits of a digital twin, and how it integrates into
their proposed solution. However there is no description of how such a digital twin would be
created or what modelling packages would be used to do so. One study that demonstrates
an actual digital twin is [Dasgupta et al., 2021]. The digital twin in this study is used to
improve the ATCS of an intersection. This digital twin is created in SUMO. It is important
to note that this is a simulation of a digital twin environment, rather than a real digital twin,
as there is no real time sensor data being used. A key difference between this study and our
digital twin is the application. This study is focused on improving the ATCS at an
intersection. Our digital twin will be used specifically to model the M50 motorway. While
researching the literature, no digital twin (or simulated digital twin) of a motorway or

highway was found.

To summarise, it is agreed in the literature that the data sources for digital twins of road
networks will come from a variety of sources [Dasgupta et al., 2021] [Kumar et al., 2018].
These sources may include inductive loops, roadside traffic cameras, and toll bridge data, as
well as sat-nav data, data from probe vehicles such as GPS enabled taxis and busses, and
dash-cam data. There is a lack of literature on how this data is gathered from the sensors,
and the data format. It may be possible to use a distributed messaging service for
transferring the data from the sensors to the digital twin. An architecture for achieving this
is outlined in [Du and Chowdhury, 2017]. This study also outlines performance tests of this
framework, which is crucial to the digital twin application as it needs to be low latency.
Studies such as [Kumar et al., 2018] describe the concept of a digital twin in traffic
situations, and outline why this may be helpful in a number of applications such as feeding a
machine learning model. There are also studies that implemented a simulated digital twin in
SUMO such as [Dasgupta et al., 2021]. None of these studies however implement a digital

twin in a motorway scenario.

26

3 Methodology & Implementation

3.1 Overview of implementation

The following is designed to be an accurate representation of a middleware architecture

which connects motorway sensors and a digital twin of the motorway.

3.1.1 Proposed Architecture

The proposed architecture consists of several key components. These components include
the motorway sensors, the digital twin, and the middleware connecting them. In this project,
the motorway sensors are simulated using Python. The common source in which the
simulated sensors draw their data is a SUMO simulation of the M50 motorway. TraCl is
used to interface with the simulation and retrieve traffic data to feed simulated sensors.
These simulated sensor-data streams are streamed to the Apache Kafka broker. This broker
acts as the main broker for the digital twin. This broker will be hosted on Amazon AWS
EC2, which is a scalable cloud computing platform [Amazon Web Services, 2022b]. It allows
the user to launch virtual servers known as 'instances’. These instances can be configured to
suit your desired CPU, memory, storage, and networking capacity. In order to accurately
represent the behaviour of real world traffic data streams, a second Apache Kafka broker is
implemented. This broker acts as a 3rd party enterprise server. This server consumes data
from several of the simulated data streams. This data is then streamed from the enterprise
server to the digital twin broker. This is to account for the fact that the digital twin broker
may not have direct access to several 3rd party data streams, such as Google maps [Google,
2021b] data or TomTom [TomTom, 2012] data. It is likely that these data streams will only
be accessible from Google or TomTom servers rather than accessing the data directly from
the devices. This server will also be hosted on Amazon AWS EC2. The final component of
the proposed architecture is the proxy for the digital twin, which is the sole consumer of the

digital twin broker.

27

W

SUMO

SUMO M50 Motorway Simulation

TraCi API
[]
T
A v ¥ ¥ {
Probe Vehicles Toll Bridge Motorway Inductive Loops
Cameras
Enterprise Enterprise Enterprise Digital
Producer Producer Producer Twin Producer
E (]
[]
|||' Enterprise Server (AWS EC2)
‘ §3 Enterprise Kafka Broker ‘
%
[]
‘ ﬁ Enterprise Consumer ‘
‘ A Digital Twin Producer ‘
QJ
i
|||' Digital Twin Middleware (AWS EC2)
‘ §€ Digital Twin Kafka Broker

L]

[1

Digital Twin Model Host

‘ = Kafka Consumer ‘

‘ Digital Twin Proxy ‘

Figure 3.1: Proposed Implementation Architecture

28

3.2 Motorway Simulation

The source of the data used to drive the virtual sensors is a SUMO simulation of the M50
motorway in Dublin. The simulation source is a paper by Maxime Gueriau and lvana
Dusparic titled 'Quantifying the impact of connected and autonomous vehicles on traffic
efficiency and safety in mixed traffic’ [Guériau and Dusparic, 2020]. This paper studies the
impact of varying levels of connected autonomous vehicles (CAV) on the flow of traffic. The
simulation consists of a 24 hour simulation of a 7km 4-lane stretch of the M50, including

two major interchanges with junctions to national roads (N7 and N9).

R147
Castleknock

R109
Palmerstown Phe
Ballyfermot
R112]
M50 &
[T
londalkin

Green|

Figure 3.2: Comparing the SUMO simulation (left) to the M50 motorway (right)

29

3.3 Traffic data retrieval

TraCl is an API which is used to retrieve live data from the SUMO simulation [German
Aerospace Center, 2022b]. TraCl implements a client/server architecture in order to access
SUMO, where the SUMO simulation acts as the server. The SUMO simulation listens for
commands from TraCl on a web port. The TraCl client uses a set of commands to retrieve
the desired information. It can retrieve data from individual vehicles in the simulation, as
well as data from the road network and traffic detectors in the network, such as inductive
loops. Once the required data has been retrieved, the TraCl client uses the 'simulationStep’
command to advance the simulation by 1 simulation step. This mean that the simulation
does not advance until TraCl receives its data and gives the 'simulationStep’ command. The
TraCl Python library is used to issue TraCl commands programmatically to the simulation.
This allows for automated value retrieval from the simulation using TraCl. The default

simulation step size for the M50 motorway simulation is 0.5 seconds.

3.4 Modelling the Sensors

A number of motorway traffic sensors are modelled in order to feed the proposed digital
twin. The design of these virtualised sensors is based on the research in section 2.3. TraCl is
used to retrieve data from the simulation about the road network and individual vehicles.
This data is then compiled and packaged in order to be representative of the data output of
the sensors on the road network. This includes modelling the type of data the sensor
outputs and the output frequency. Noise is also added to the data in accordance to the

estimated accuracy of the sensors.

3.4.1 Inductive Loops

Inductive loops can be implemented natively in SUMO. The M50 simulation has a set of
inductive loops already included in its configuration. Values for id, lane, pos, freq, and file
are defined depending on the desired design of the induction loop. The id is a unique
identifier for the induction loop, lane refers to the lane in which the inductive loop is
located, and pos is defined as the position in metres along the road that the inductive loop
is situated. Freq is the output frequency to the file output. It is still possible to obtain
inductive loop data at any time using TraCl regardless of the configured freq value. File is
the output file in which the inductive loop data is written. An example of a 4 lane induction

loop configuration is shown below:

30

<inductionLoop id="L1" lane="1" pos="10" freq="1" file="out.xml"/>
<inductionLoop id="L2" lane="2" pos="10" freq="1" file="out.xml"/>
<inductionLoop id="L3" lane="3" pos="10" freq="1" file="out.xml"/>
<inductionLoop id="L4" lane="4" pos="10" freq="1" file="out.xml"/>

Figure 3.3: 4 lane induction loop configuration

The data from the inductive loops can be dynamically read during each simulation step
using TraCl [German Aerospace Center, 2022c|. The native inductive loops have an output
frequency in accordance to the simulations step size. Modelling a different output frequency
can be achieved programmatically using Python. During each simulation step TraCl reads
the inductive loops vehicle counts. These counts are added to a tally which includes counts
from the previous N simulation steps, where N is the number of simulation steps since the
inductive loop has streamed data to Kafka. The inductive loop Kafka producers have an
output frequency of 1 second. For a simulation step size of 0.5, the sensors vehicle count
tally includes the vehicle counts from the previous N=2 simulation steps. It is possible for
the sensor to detect more than 1 unique vehicle per simulation step. It is also technically
possible to return a count of 2 for a single vehicle, however unlikely unless the vehicle is at
rest. This tally is then streamed to Kafka using the inductive loop producers and the tally is

reset.

In order to accurately represent real inductive loop data streams, noise is added to the data.
The estimated vehicle detection accuracy of inductive loops is between 92% and 98%

[Paul Briedis, 2010]. The mean estimated accuracy is therefore in the region of 95%. This

accuracy will be reflected in our simulated inductive loop data streams. This is achieved by

incorporating a spurious vehicle detection data point every 0.05 data points.

Each virtual inductive loop sensor contains a set of inductive loops. These sets of inductive
loops are loops which exist on the same road network but on separate lanes. Since the M50

has 4 lanes there is 4 inductive loops per set.

31

The sensor output format for the inductive loops can be seen below:

data = {
"loop id": string,
"lane_1": string,
"lane _2': string,
"lane _3': string,
"lane _4': string,
"timestamp ': string

Figure 3.4: Inductive loop sensor output

loop _id: Unique identifier for the set of inductive loops.

lane 1: Vehicle count for the inductive loop on lane 1.

lane 2: Vehicle count for the inductive loop on lane 2.

lane 3: Vehicle count for the inductive loop on lane 3.

lane 4: Vehicle count for the inductive loop on lane 4.

timestamp: The simulation timestamp the measurements were taken. This is

independent of the true time outside of the simulation.

3.4.2 Motorway Cameras

Motorway cameras are mounted on gantries in various locations on the M50 motorway. The
locations of these cameras can be found on the TII website [TIl, 2022]. In order to obtain
meaningful information from the camera streams, additional processing is necessary. It is
possible to extract information from the camera feeds using techniques described in [Yu,
2018]. This information may include the vehicle's distance to the camera, the vehicle's

speed, and which lane the vehicle is in, and the direction of travel.

Unlike inductive loops, there is no support for motorway cameras built into SUMO. The
camera feeds are modelled using TraCl and Python. The modelled cameras are situated in
the same locations the real cameras are situated. These locations are recorded as
coordinates. TraCl is used to retrieve data about all vehicles within a 200m radius of the
cameras coordinates. A radius of 200m is estimated based on the live feed of the cameras
available at [TIl, 2022]. Depending on the orientation of the camera, vehicles that are
'behind’ the camera are ignored. This orientation is based on the orientation of the real

cameras on the M50. The real cameras are orientated in arbitrary directions on the

32

motorway. The virtualised camera’s orientation is simplified to north or south facing. This

greatly simplifies the decision boundary of vehicles that are ignored by the camera.

decision
houndary

Figure 3.5: FOV of virtualised camera with 3 vehicles in detection zone

The vehicle id's of all vehicles which are hypothetically within the cameras field of view
(FOV) are returned. For each vehicle in the cameras FOV, the speed, distance to the virtual

camera, lane, lane index, and direction of travel are recorded.

To accurately represent the limitations of the sensor, noise is added to each data point. As
outlined in [Song, 2019], the detection accuracy is estimated between 92% and 98%. The
speed measurement is estimated to have an error rate of 2% using a 30 fps camera [Javadi
et al., 2019]. A distance error of 5% is also added to each data point.

The data format of the motorway camera data can be seen below in Figure 3.6.

data = {

"camera_id': string,
"lane id': string,
"lane index ': string ,
"direction ': string,
"distance’': string,
"speed ': string ,
"timestamp ': string

Figure 3.6: Camera sensor output

33

e camera_id: Unique identifier for the camera.

e lane id: Which road the vehicle is travelling on.

e lane index: Which lane on the road the vehicle is in.

e direction: The direction the vehicle is travelling.

e distance: The distance between the vehicle and the camera.

e speed: The speed in kilometres per hour the vehicle is travelling.

e timestamp: The simulation timestamp the measurements were taken. This is

independent of the true time outside of the simulation.

3.4.3 Toll Bridge

The toll bridge cameras are modelled akin to the regular motorway cameras. The toll bridge
cameras are located in the same location as the toll bridge cameras on the M50. A similar
method as outlined in Figure 3.5 is used to calculate the vehicles which are in view of the
cameras. Unlike the regular motorway cameras, the toll bridge sensors also return the vehicle
class of the vehicles in it's FOV. This is similar to how the real toll bridge cameras operate
on the M50. The speed, distance to the virtual camera, lane index, direction of travel, and
vehicle class is recorded for each vehicle in the sensor's FOV. The same error rates are added

to each data point as outlined in 3.4.2.

The data format of the toll-bridge data can be seen below in Figure 3.7.

data = {

"lane id"': string,
"lane index': string,
"direction': string,
"distance': string,
"speed ': string ,
"class ': string ,
"timestamp ': string

Figure 3.7: Toll bridge sensor output

lane _id: Which road the vehicle is travelling on.

Iane_index: Which lane on the road the vehicle is in.

direction: The direction the vehicle is travelling.

distance: The distance between the vehicle and the toll bridge.

34

e speed: The speed in kilometres per hour the vehicle is travelling.
e class: The class of the vehicle.

e timestamp: The simulation timestamp the measurements were taken. This is

independent of the true time outside of the simulation.

3.4.4 Probe Vehicles

Probe vehicle data can come from a number of sources. These may include real-time bus
tracking, Google maps data, sat-nav data, and other sources. These probe vehicles may all

produce slightly different types of data depending on the source, however it will be some
form of GPS data.

Some generalisations are made in order to practically implement the probe vehicle

Sensors:
e All probe vehicles produce the same GPS style data format.
e 20% of all vehicles in the simulation are treated as probe vehicles.

e Probe vehicles share a common producer. In reality each 3rd party data source would

be a producer.

The frequency output of the probe vehicle sensors is estimated be to be 1HZ. The location

of a single probe vehicle is calculated using the TraCl command:

x, y = TraCl.vehicle.getPosition(vehlD)

This returns the vehicles x,y location in Cartesian coordinates. In order to accurately reflect
real GPS data, the coordinates are converted into latitude and longitudinal coordinates using

the following TraCl command:

lat , lon = TraCl.simulation.convertGeo(x,y)

Where x and y are the previously obtained Cartesian coordinates.

Each GPS measurement from a probe vehicle will have inherent noise. GPS is accurate for 3
metres for devices such as the Garmin 16x GPS device[Garmin, 2008], and up to 20 metres
for services such as Google maps [Google, 2021b]. An error of up to 10 metres is estimated
for the probe vehicle sensors. This noise is implemented by superimposing a circle centered
on the coordinates of the probe vehicle, using a random variable within the circle to
represent the location measurement with added noise. The longitude error and latitude error

is calculated and the probe vehicle location is returned with this error:

35

r = 10/111300 #converts 10 metres into degrees
w = r % math.sqrt(random.uniform(0, 1))

t = 2 % math.pi * (random.uniform (0, 1))

x = w % math.cos(t)

lon error = x/math.cos(lat_ true)

lat _error = w % math.sin(t)

coordinates = (lon_true + lon_error, lat_true + lat_error)

Figure 3.8: Probe vehicle location error calculation

The speed measurement of GPS is estimated to be around 0.2 km/h [US Government,

2021]. This inaccuracy is also included to be reflected in the data streams.

The data format of the probe vehicle data can be seen in Figure 3.9.

data = {
"probe id': string,
"location': string ,

"speed ': string ,
"vehicle,type': string,
"timestamp ': string

}

Figure 3.9: Probe vehicle sensor output

e probe id: A unique identifier for the vehicle.

e location: The latitude and longitudinal location of the vehicle.

e speed: The speed in kilometres per hour the vehicle is travelling.
e vehicle type: The type of vehicle.

e timestamp: The simulation timestamp the measurements were taken. This is

independent of the true time outside of the simulation.

36

3.5 Kafka implementation

As explained in section 2.2.5, Apache Kafka is the technology chosen for the communication
architecture between the sensors and the digital twin. The Kafka implementation consists of

3 key components.

3.5.1 Brokers

Kafka is run as a cluster of one or more servers. These servers are known as brokers. The
brokers are the endpoints to which the producers write data and the consumers read data.
Brokers are responsible for handling incoming requests, managing the topics and partitions,

and handling the replication of messages.

Topics

A Kafka topic is created for each sensor group. Inside each topic there are several

partitions.

e Inductive loops: The inductive loop topic contains a partition for each group of

inductive loops.

e Toll bridge: The toll bridge topic has a partition for northbound traffic and a partition

for southbound traffic.

e Motorway cameras: The motorway cameras topic has a partition for each motorway

camera location.

e Probe vehicles: The probe vehicles topic has a partition for each 3rd party data source.

37

Figure 3.11 outlines the layout inside the Kafka broker detailing the potential partitions per

topic split:
|[|| AWS EC2
/§g *’ Kafka Broker \
docker Topics
/Tnductive Loops \\ // Tell Bridge \\ /Motorway Camera@ / Probe Vehicles\

Southbound L1 MNorthbound NT South TomTom
Southbound L2 Southbound MY Marth Bus Eireann
Northbound L1 J3 N2 South My Taxd
Morthbound L2 Ballymount J9 Morth Google Maps
Southbound L3 J& Sauth

\ - % . //

Figure 3.10: Inside the Kafka broker

3.5.2 Producers

The producers are publishers responsible for writing messages to Kafka topics. In this
system, the sensors act as producers. The producers take the sensor data outlined in section
3.4 and stream this data to the Kafka cluster.

The specified 'bootstrap servers' of a Kafka producer indicates the endpoint or list of
endpoint(s) of the Kafka broker(s). For a producer publishing messages to a single broker,
the 'broker endpoint’ is the broker’s endpoint. For a producer publishing messages to
multiple Kafka brokers, then the 'broker endpoint’ is a list of Kafka broker endpoints.

The send method of the KafkaProducer class is used to publish messages to the
'bootstrap servers’. The send method takes the message as an argument. It also takes the

topic and partition in which to publish the message as an argument.

from kafka import KafkaProducer
producer = KafkaProducer(bootstrap servers=${broker endpoint})
producer.send(topic=topic, value=message, partition=partition)

Figure 3.11: Kafka Python producer code

38

3.5.3 Consumers

The consumers are responsible for reading records from the Kafka brokers. Consumers can
subscribe to messages from specific topics. In this system, the sole Kafka consumer is the
digital twin proxy. The consumer specifies the topics to be consumed and the broker’s

endpoint.

Similar to the producers, the specified 'bootstrap servers' of a Kafka consumer indicates
the endpoint or list of endpoint(s) of the Kafka broker(s). Consumers publishing messages
to a single broker, the 'broker endpoint’ is the broker's endpoint. Consumers publishing
messages to multiple Kafka brokers, then the 'broker endpoint’ is a list of Kafka broker

endpoints.

The consumer subscribes to 'topics’. This can be a singular topic or a list of topics. The
consumer will consume messages from these topics on the specified 'bootstrap servers'.
These messages are consumed sequentially in a for loop. During each iteration, a single

message can be operated on. In this project, the messages are written to a text file

depending on which topic and partition the message originates from.

from kafka import KafkaConsumer
consumer = KafkaConsumer(bootstrap servers=${broker endpoint})
consumer.subscribe (topics=${topics})
for msg in consumer:
#calculate the latency of the msg

#write the message to text file depending on it's topic and partition

Figure 3.12: Kafka Python consumer code

3.6 Deployment

3.6.1 Brokers

The broker(s) are deployed in Docker containers [Docker, 2022a] on remote servers hosted
by AWS known as EC2 instances [Amazon Web Services, 2022b].

39

Docker

Docker is a framework for building and managing containers. The Kafka broker's
configuration is defined within the docker 'compose’ file. The docker compose file can then
be used to deploy that specific Kafka broker. This allows for brokers to be deployed to

docker containers in a repeatable manner [Docker, 2022b].

An example docker compose file for deploying a Kafka broker can be seen below. The host
server's local ipv4 address is defined as 'local ipv4’, and the Zookeeper host's ipv4 is
defined as 'zookeeper ipv4'. The 'local ipv4' is the endpoint used by the Kafka producers

and consumers to publish and subscribe to messages.

kafka:
image: ${kafka version}
container _name: 'kafka’
ports:

— '9094:9094"

environment:
KAFKA BROKER ID: 1
KAFKA ADVERTISED LISTENERS: PLAINTEXT://${public ipv4}:9094
KAFKA ZOOKEEPER CONNECT: ${zookeeper ipv4}:2181
ALLOW_PLAINTEXT LISTENER: 'yes'

Figure 3.13: Docker compose Kafka container

AWS EC2

AWS EC2 is an elastic cloud computing platform. It allows for the deployment of remote
servers with a choice of processor, storage, network, and operating system. The servers,
known as 'instances’, can be rented on a pay-as-you-go basis [Amazon Web Services,
2022b]. The Kafka brokers are hosted on EC2 instances.

40

3.6.2 Producers and Consumers

The producers and consumers are running on the local machine specified in 4.2. There are 3
files which contain producers and/or consumers. The file responsible for interfacing with the
simulation using TraCl is called simulation.py. This script contains the producers for the
virtual sensors. Depending on the particular sensor group, these producers may produce to
the digital twin Kafka cluster, or the enterprise Kafka cluster. The enterprise server.py
script contains the enterprise consumers as well as the digital twin producers for the data
which is sent to the enterprise server and not directly to the digital twin consumers. The

digital twin_proxy.py file contains the digital twin consumer(s).

The file structure for the producer and consumer scripts can be seen in Figure 3.14.

Local Machine

Project Directory

> simulation. py

P digital_twin inductive_loop produceris)
enterprise_toll_bridge producer(s)
enterprise_rmotorway_camera producer(s)

enterprise_probe_vehicle producer(s)

» enterprise_sererpy

P enterprise_serer consumer(s)
digital_twin_enterprise producer(s)
P > digital_twin_proxy py

digital_twin consurner{s)

Figure 3.14: Project file structure

41

4 Evaluation

In this section the performance of the communication architecture is examined. The
performance of the system is analysed under several simulation configurations. The SUMO
M50 simulation outlined in section 3.2 is used as a common source of traffic data. This
traffic data is used to drive the virtual sensors outlined in section 3.4. The virtual sensors
act as Kafka producers for the communication architecture. The digital twin acts as the

consumer.

4.1 Testing metrics

There are a number of key metrics which are used to evaluate the performance of the

communication architecture. They are as follows:

Throughput: Throughput is defined as the amount of information a system can produce
and deliver to the consumer in a given period of time. In the case of Kafka, the throughput
is the number of messages per second that passes through the Kafka cluster. The
throughput of the system is a critical component of the system as it determines how many
messages the system can process per second. If the throughput is too low, the system will
not be able to process messages fast enough, which will inevitably lead to a backlog and

increased latency.

Latency: Latency is defined as the time delay for data transfer between one point and

another. For this system, the latency is the time taken to send from producer to consumer.
Latency is an important metric as high latency will lead to an increased time delta between
the motorway sensors and the digital twin. It is therefore extremely important to minimise

latency in order to optimise the performance of the digital twin.

Availability: Availability is defined as the ability for a service to offer the same performance
in spite of a failure. For this architecture this means the ability for the service to guarantee

message delivery to the digital twin in spite of a broker failure.

42

4.1.1 Test parameters

4.1.2 Configurable parameters

There are several configurable parameters which can influence the performance of the

communication architecture. These may include:

e Number of messages: The number of messages produced is a function of the

volume of vehicles in the simulation. There will be a larger volume of messages during
busy periods in the simulation compared to quieter periods. The system will be tested
for both a large and small volume of messages. Simulations during 00:00-01:00 are

used to simulate quiet time periods with a small number of messages, and simulations
during 09:00-10:00 are used to simulate busy rush hour traffic with a large number of

messages being produced.

Table 4.1 shows the number of messages produced by each topic during high and low

traffic simulations.

loop messages

Cam_ messages

toll messages

probe messages

Low traffic

7200

48688

5691

135605

High traffic

7200

408459

64952

1087701

Table 4.1: Messages by topic

The inductive loop sensors produce the same number of messages regardless of traffic
volume. However the motorway cameras and toll bridge sensors produce data
proportional to the number of vehicles in their detection zones. The increase in traffic
also increases the number of probe vehicles on the road, which leads to an increased

volume of messages in the topic.

Broker hardware specifications: The hardware specifications of the servers in
which the Kafka broker(s) run will have an impact on the performance of the system.
The system is tested using various hardware with varying amounts of memory and

processing power.

Number of consumers: The number of consumers may affect the performance of
the system. The system is tested using a varying number of consumers in order to

assess the difference in performance between them.

Number of brokers: The system is tested using various configurations. Several tests

are conducted using differing numbers of brokers in the cluster.

43

e Compression algorithm: Compression will decrease the size of messages sent from
the producer, however additional processing time may be needed to compress and
decompress the data. The gzip compression algorithm is tested, as well as no

compression.

e Serialisation method: In order to transfer the data from the producer to Kafka, the

data needs to be serialised. The data is serialised using UTF-8 encoding.

e Replication factor: Replication in Kafka means that multiple copies of a message
are replicated in different brokers. Higher replication is desirable as it leads to
increased availability, however it may hinder throughput and latency. The effects of

replication on these metrics are tested.

e Message batching: Kafka has the ability to batch messages which are produced in a
short time window and send them in one request. Batching can significantly increase
the throughput of the system, however too much batching can lead to increased
latency between a measurement and the batch containing that measurement being

sent by the producer.

e Distance to brokers: The distance from producer to broker and consumer to broker
will effect the latency of the system. It is important to understand the effects of

relative broker placement on the performance of the system.

4.1.3 Fixed parameters

e Network speed: The network speed will have a significant affect on the performance
of the system. It is important to minimise the effects of the network speed across test
cases in order to obtain consistent results. All tests are performed on the same

network in the same location unless otherwise stated.

e Enterprise server latency: The end-to-end latency between the sensors and the
enterprise server influences the overall latency of the digital twin. It is assumed that
the performance of the 3rd party server is fixed. The 3rd party server also uses Apache
Kafka as its communication architecture, however the configuration of this server is

fixed during all tests.

e Simulation host machine: The hardware in which the simulation is running will
affect the speed of the simulation. The speed of the simulation will influence the
throughput of the sensors. A more powerful machine which is capable of running the
simulation more quickly will lead to more messages being produced per second. It is
important to note that the simulation time is not necessarily the same as the

simulated time.

44

e Limitations of the simulation: In ideal conditions, there is a Kafka producer for
each RSU. These producers would run independently of each other, allowing multiple
producers to produce messages to Kafka simultaneously. However it is impractical to
implement this behaviour with a single host machine running the SUMO simulation.

The simulation therefore must produce messages sequentially rather than in parallel.

4.2 Test hardware

There are a number of hardware choices which are used. With regards to the Kafka brokers,
there are two EC2 instances which are used. The specifications of these instances are

detailed below:

Linux/UNIX t2.large

Linux/UNIX t2.xlarge

vCPU 2 4
Memory 8GB 16GB
Network performance low-moderate moderate

Table 4.2: Test hardware comparison

The SUMO simulation, the Kafka producers, the enterprise server, and the Kafka consumers

run on a local machine. The specifications of this machine are outlined below:
e OS: WINDOWS 10
e Processor: i5-9600k @ 3.70GHZ

e Memory: 32GB RAM

4.3 Testing methodology

There are two types of tests which are conducted for each testing configuration. These tests

are outlined below:

4.3.1 Simulation testing

Testing using the SUMO simulation. Each configuration is conducted for simulation times
between 00:00-01:00 to simulate low volume situations, and 09:00-10:00 to simulate high

traffic situations.

45

4.3.2 Benchmark testing

Each configuration is benchmarked using a data set containing 1 million probe vehicle data

points. These data points are produced by the producer as quickly as possible, and

consumed by the consumer quickly as possible.

4.3.3 Latency measurements

For each message, the epoch time directly before the message is produced by the Kafka

producer is recorded. The epoch time directly after a message is consumed by the digital

twin consumer is also recorded. The end-to-end latency is calculated as the time difference

between the consumed time and the produced time of an individual message. This

measurement will vary between the sensor groups. The inductive loop sensors are directly

streamed from the RSUs to the digital twin Kafka cluster. This indicates 2 network hops are

required to reach the digital twin proxy. The toll bridge cameras, motorway cameras, and the

probe vehicle measurements are streamed to an enterprise broker from the sensors. These

measurements are then consumed by the enterprise server and streamed to the digital twin

Kafka cluster. They require 4 network hops in order to reach the digital twin proxy.

Local Machine

Producer

Enterprise Server

Producer

Consumer

L

Li2

EC2

[Enterprise Broker

Digital Twin

Consumer

L13

[Digital Twin Broker }

Figure 4.1: Latency measurements overview

46

The end to end latency of the inductive loop sensors is defined as:

At =11+ 12 (1)

The end to end latency of the toll bridge cameras, motorway cameras, and probe vehicles is

defined as:

At =L11+ 112+ [13 + L2 (2)

The median latency per sensor group is recorded for both low and high volume

simulations.

4.3.4 Throughput measurements

The throughput is measured to be the total number of messages produced and consumed by

the system divided by the total simulation run time.

4.3.5 Default Kafka configuration
e The Kafka version used during all tests is Kafka 2.5.0 [Apache Kafka, 2020].
e Zookeeper version 3.8.0 is used for all tests.

e During all tests each instance of Kafka and Zookeeper are running on their own
dedicated hardware. This means that if a configuration states 3 Kafka brokers running
on t2.large EC2 instances, this means that each Kafka broker has its own t2.large

instance.

e The serialisation encoding and decoding methods used for all configurations is the
Python json UTF-8 encoding module [Python.org, 2022].

e The default batch size defined in the Python Kafka module is 16384 bytes.

e The default number of partitions used for each topic is defined below unless otherwise
stated. There is a single partition for both north and south inductive loops. There is 8
motorway camera partitions, one for each individual camera. There are 2 toll bridge
partitions, one partition for northbound traffic and one for southbound traffic. There
are 10 partitions for the probe vehicles. A single probe vehicle partition is used to
represent a single probe vehicle data source, such as 1 partition for Google maps data,
1 partition for TomTom data, 1 partition for Garmin data, and so forth. The probe
vehicles have 10 partitions. This figure is selected as an estimated number of 3rd party

data sources which may be available. Each probe vehicle is assigned a random

47

partition to simplify the implementation, however in reality probe vehicles would be

assigned to specific partitions depending on the 3rd party data source.

Inductive loops

Motorway cameras

Toll bridge cameras

Probe vehicles

##Partitions 2

8

2

10

Table 4.3: Default number of partitions per topic

e The enterprise Kafka broker remains consistent throughout all configurations. It runs a

single broker on a t2.large EC2 instance. The producers which produce directly to the

enterprise broker run default batch sizing with no compression. Each topic on the

enterprise broker has a single partition.

4.4 Test configurations

The following section outlines the configurations under test.

Config | Hardware | #Brokers | #Consumers | Compression | Batching | Replication
A t2.large 1 1 None Default 1
B t2.large 1 1 gzip Default 1
C t2.large 1 1 None 2*Default 1
D t2.large 1 3 gzip Default 1
E t2.xlarge 1 1 gzip Default 1
F t2.large 3 1 gzip Default 3
G t2.large 3 3 gzip Default 3

Table 4.4: Simulation test configurations

e Hardware: The two hardware specifications under test are the AWS EC2 t2.large and

t2.xlarge.

e #Brokers: The performance of a single broker Kafka cluster is compared to that of a

3 broker Kafka cluster.

e #Consumers: The system is tested using both a single consumer and 3 consumers

running in parallel. Each message is only consumed by a single consumer, meaning a

. !
single message can't be consumed more than once.

e Compression: The effects of compression on the performance of the system are

tested using both uncompressed configurations and configurations using the gzip

compression algorithm.

48

e Batching: The default batch size of the producer is doubled in order to analyse the
effects of batching on the performance of the system. The default batch size is 16384
bytes.

e Replication: Single broker clusters have a replication factor of 1, meaning that the
messages are only stored on the single broker. The 3 broker cluster configurations

have a replication factor of 3, meaning each message is replicated on all 3 brokers.

4.5 Results

The following section describes the results of the tests conducted using configuration A
through G as described in table 4.4. All test configurations are simulated in both high and
low traffic situations as described in section 4.3.1, as well as benchmark testing as described

in section 4.3.2.

4.5.1 Simulation Results

All simulations are conducted using the architecture outlined in 3.1. The latency
measurements that appear in the following section is the median end-to-end latency. The
error-bars of all measurements represent the interquartile range (IQR) of each

measurment.

Latency by configuration

The following section displays the latency measurements of each configuration during high
and low traffic simulations conducted using the architecture outlined in 3.1. The median

latency of each configuration is calculated for all messages regardless of topic.

It is worth noting that topics which contain a larger volume of messages will influence the
overall latency of the system more so than topics with lower volumes of messages. Table 4.1
shows that during low traffic simulations, approximately 135,000 probe vehicle messages are
produced, while only 7200 inductive loop messages are produced. It is clear that the probe
vehicle topic will have a greater influence on the latency of the system than the inductive

loop topic.

49

Latency by Configuration (Low traffic)

300 A

250 -

200

Latency (ms)
=
[¥]
(=]
i

100

50 4

A B C D E F G
Configuration

Figure 4.2: latency (low traffic)

Figure 4.2 shows the latency for each configuration in low traffic situations. It can be seen
that configurations E and D had the highest performance, with latency of approximately 120
ms. Configuration G had the highest latency with a median measurement around 220 ms.
There is an 83% increase in latency between configurations D and E and configuration G.
Configurations D and E are single broker configurations, while configuration G is a 3 broker
configuration. The overhead of having 3 brokers with replication across the brokers has an
increased network overhead. This is likely the principal factor in the increased latency

observed in configuration G.

The error bars among all configurations appear to be loosely proportional to the latency of
the configuration. That meaning that configurations which experience higher latency have a
slightly larger interquartile range. However there does not appear to be a particular

configuration that experiences a significantly higher spread.

50

o Latency by Configuration (High traffic)

500 ~ N

450 —_

400

350 ~ T

300 -

250

Latency (ms)

200 -

150 +

100 +

50 4

A B C D E F G
Configuration

Figure 4.3: Latency (high traffic)

The latency for high traffic simulations can be seen in Figure 4.3. It can be seen that
configuration D had the lowest latency figure, with latency of approximately 210 ms.
Configuration F is the lowest performer with a latency figure of 370 ms. There is a 76%
increase in latency between configuration D and configuration F. Similar to figure 4.2, this is
likely due to the increased overhead of the 3 broker configuration with replication factor of 3
in configuration F.

It is worth noting that configuration G was the lowest performing configuration in terms of
latency in the low traffic simulations. In high traffic simulations, configuration F experiences
the highest latency. Comparing the low traffic simulations in Figure 4.2 and the high traffic
simulations in 4.3, it can be seen that configuration F experienced an increase in latency of
123%, while configuration G only experienced an increase of 37%. The only difference in
configuration between F and G is the number of consumers. Configuration F has a single
consumer, while configuration G has 3 consumers. This may indicate that an increased

number of consumers is better suited to higher traffic situations.

51

Latency by Topic

The following section shows the latency measurements of each configuration, with the
latency measurements displayed on a topic by topic basis. All simulations are conducted

using the architecture outlined in 3.1.

The latency measurements for low traffic simulations can be seen in Figure 4.4.

Latency by Topic (Low traffic)

250 A

200

Latency (ms)
=
[¥]
(=]
i

=

=]

]
1

50 +

Inductive loops Cameras Toll bridge Probe vehicles
Topic

Figure 4.4: Latency by topic (low traffic)

It can be seen the inductive loops topic has the lowest latency of all the topics, with
Configuration G having the lowest latency at around 35 ms. Configuration B has the highest
latency of the inductive loop topics, experiencing approximately 55 ms latency. This is a

57% increase in latency.

The reason the inductive loops experience the least amount of latency is likely due to the
fact that the inductive loop’s data requires half the number of network hops to reach the
digital twin consumer than the other topics. This is because the other topics also require the

use of the enterprise server. This is outlined in 3.1.

52

The performance between the cameras topic and the toll bridge topic is similar in low traffic
simulations. There is a 6% increase in latency with configuration E between the toll bridge

topic and the cameras topic.

It is worth noting that configuration F performed significantly worse in the cameras topic
than in the toll bridge topic, with the cameras topic seeing a 24% increase in latency over
the toll bridge topic with configuration F. The cameras has a larger volume of messages
compared to the toll bridge topic as outlined in 4.1. This could indicate that the
combination of a 3 broker and single consumer setup in configuration F can't deal with high

volumes of messages.

The probe vehicles topic has the highest latency measurements among the topics.
Configuration E is the highest performer in both the toll bridge topic and the probe vehicles
topic. Configuration E experiences a 71% increase in latency when comparing the toll bridge
topic to the probe vehicles topic. This is likely due to the increased number of messages in

the probe vehicles topic. The volume of messages produced per topic is outlined in table
4.1.

The latency measurements for high traffic simulations can be seen in Figure 4.5.

Latency by Topic (High traffic)

400

350 A

Latency (ms)

[Pd Pd)

un o un o

[=] (=] o
1 1 1 1

100 +

50 +

Inductive loops Cameras Toll bridge Probe vehicles
Topic

Figure 4.5: Latency by topic (high traffic)

53

As with low traffic simulations, inductive loops have the lowest latency in high traffic
configurations. It can be seen that configuration F performs relatively better in high traffic
simulations in the inductive loops topic. In the low traffic simulations, configuration F was
one of the lowest performing configurations, however in high traffic simulations it is the best
performing configuration for inductive loops. The error associated with configuration F is
also considerably smaller in higher traffic simulations. This can be seen by comparing Figure
4.5 with Figure 4.4.

It is interesting to note the cameras topic has noticeably less latency across all configurations
than the toll bridge topic. Comparing configuration D in both the cameras topic and the toll
bridge topic, it can be seen that the toll bridge topic experiences an approximate 45%
increase in latency compared to the cameras topic. This is unexpected behaviour as the
cameras topic contains significantly more data than the toll bridge topic. In low traffic
simulations 48,688 messages pass through the camera topic, while 5,691 messages pass
through the toll bridge topic. The camera topic contains more partition’s than the toll bridge
topic, with the camera topic having 8 partitions and the toll bridge topic having 2. This may
be a possible explanation for the increased latency observed in the toll bridge topic.

It can be seen that configuration F has approximately 14% increased latency compared to
configuration G with regards to the cameras topic. This is contrary to the other topics,

where configuration F has less latency than configuration G.

The latency of the probe vehicle topic is significantly higher than that of the other topics.
Using configuration D as a comparison, the probe vehicle topic experiences approximately
160% higher latency than the cameras topic. This is likely due to the high number of probe
vehicle messages being produced in comparison to the other topics. In low traffic simulations,

the probe vehicles topic contains 180% more messages than the cameras topic.

It can be seen that configuration B performed poorly in all topics, with configuration B
performing 9% worse than configuration A in the probe vehicle topic. Configuration B uses

gzip compression while configuration A does not use compression.

54

Number of Consumers Comparison

The effects of the number of consumers can be seen directly in Figure 4.6, which compares

the average latency of configuration B and configuration D.

1 Consumer vs. 3 Consumers
400

B 1 Broker (B)
350 | HEE 3 Brokers (D)

J

(%]

o
1

Latency (ms)
5 & 3
=) =) <)
i i i

LN
o
1

Low Traffic High Traffic

Figure 4.6: Comparison of 1 consumer versus 3 consumers

Configuration B and configuration D have identical configurations except the number of
consumers is increased from 1 in configuration B to 3 in configuration D. It can be seen that
for both low and high traffic simulations configuration D experienced lower latency than
configuration B. Configuration D experiences 11% less latency in low traffic simulations, and
23% less latency in high traffic simulations. This indicates that a multiple consumer setup is
favourable over a single consumer setup providing the total number of consumed messages

remains the same.

55

Broker Hardware Comparison

A similar comparison is conducted between the hardware in which the Kafka broker runs.
Configurations B and E are compared, with configuration B running on a LINUX/UNIX
t2.large, and configuration E running on a LINUX/UNIX t2.xlarge. The difference between
these instances are outlined in section 4.2.

t2.large vs. t2.xlarge

400 ——

B t2.large (B)
350 4 t2.xlarge (E) S
300 -

Latency (ms)
fsd fad
] Ln
(=] (=]
i i

=

Ln

[
1

=

=]

]
1

LN
o
1

Low Traffic High Traffic

Figure 4.7: Kafka broker hardware comparison

It can be seen in Figure 4.7 that configuration E has lower average latency than configuration
B for both high and low traffic situations. In low traffic simulations configuration E

experiences 12% less latency than configuration B. In high traffic simulations configuration E
experiences 11% less latency than configuration B. This implies that if all other variables are

fixed, a more powerful machine will provide lower latency measurements.

56

Number of Brokers Comparison

Figure 4.8 shows the effects of increasing the number of brokers from 1 to 3 brokers. All
other variables are fixed in this comparison. Configuration B has 1 Kafka broker and

configuration F has 3 Kafka brokers, with a replication factor of 3.

1 Broker vs. 3 Brokers (Replication: 3)

B 1 broker (B)
500 1 3 brokers (F) T

400

[¥¥]

o

o
1

Latency (ms)

200 -

100 +

Low Traffic High Traffic

Figure 4.8: Number of Kafka brokers comparison

It can be seen that in low traffic simulations, configuration B is approximately 21% faster
than configuration F. In high traffic situations configuration B is approximately 44% faster
than configuration F. Clearly a single broker provides lower latency than 3 brokers in
simulation scenarios. The trade off here is that a single broker has a single point of failure.
Multiple brokers improves the availability of the service. A replication factor of 3 ensures
that the messages are replicated across all 3 brokers. It would be desirable to maintain this

highly available service while lowering the latency.

57

Compression Comparison

Uncompressed vs. Compressed

450
E None (A)

400 | HEE gzip (B) e
350 -

300 -

250 -

200 -

Latency (ms)

150 +

100 +

50 +

Low Traffic High Traffic

Figure 4.9: Kafka broker compression comparison

The effects of compression on the system can be seen in Figure 4.9. It is clear that
configuration B which employs gzip compression, has lower latency than configuration A. In
low traffic simulations gzip compression experiences 7% less latency than no compression. In
high traffic simulations this figure rises to 8%. This is contrary to the results in Figure 4.5,
which saw configuration B perform slightly worse than configuration A in high traffic

scenarios.

58

4.5.2 Benchmark Results

Each configuration is benchmarked as outlined in section 4.3.2. The benchmark tests do not
incorporate the enterprise server. All data is streamed directly to the digital twin Kafka
cluster. There are 4 topics, each with 250,000 messages, that are streamed through each
Kafka configuration to measure the throughput. The throughput of each configuration can

be seen in Figure 4.10.

Total Throughput

10000

9000 -

8000 ~

7000 ~ ——

6000 ~ -

5000 ~

messages/s

4000

3000 ~

2000 ~

1000

A B C D E F G
Configuration

Figure 4.10: Benchmark throughput by configuration

Upon examining Figure 4.10, it is clear that configuration A has the lowest throughput
performance of all configurations, with 2500 messages per second passing through Kafka in
this configuration. The highest performing configurations are configuration D and G, with
both configurations getting around 8100 messages per second. These configurations have 3

consumers while all other configurations have a single consumer.

Configurations A and C have identical configurations bar the fact configuration C used gzip
compression while configuration A does not use compression. It can be seen by comparing
configuration A to C that compression increases the throughput of the system by

approximately 40%.

59

It can be seen that the broker hardware had no significant performance benefits in the
throughput benchmark tests. Configuration B and configuration E have identical
configurations, however configuration B is using a t2.large and configuration E is using a
t2.xlarge. It can be seen that configuration B actually experienced 6% higher throughput

than configuration E, despite running on less powerful hardware.

Configuration B has 160% higher throughput than configuration A. The only difference
between these configuration is that configuration B uses gzip compression while
configuration A has no compression. It is clear in this test setup that compression allows for

higher throughput than no compression.

Comparing configuration A and configuration C, it can be seen that a throughput increase of
43% is observed. It could therefore be said that increasing the batch size increases the
throughput of the system as this is the only notable difference between configurations A and
C. However it could be argued that increasing the batch size too much could increase the
latency of the system, as some messages will not be sent to the broker as soon as they are
made available by the producer. This may lead to increased latency for some of the earlier

messages in the batch.

The throughput figures for each configuration can be seen in table 4.5:

A B C D E F G
messages/s | 2538 | 6768 | 3637 | 8193 | 6347 | 5379 | 8294

Table 4.5: messages/s by configuration

60

4.5.3 Summary of Results

There are a number of key take-ways from the tests conducted. The knowledge gained from

these tests is used to design the final solution in section 4.11.

It is clear from Figure 4.8 that a single broker is capable of providing lower latency
measurements than a multiple broker setup, however single broker setups do not have
a replication factor above 1, so there is less overhead compared to a multi-broker

configuration.

The availability of the service is greatly improved with multiple brokers. A single
broker means that if that broker were to fail, the service stops. If the design has

multiple brokers then a single broker failure will not halt the message delivery service.

Assuming the number of total consumed messages is fixed, multiple consumers provide
a considerable performance benefit over a single consumer. This is evident in Figure
4.6.

It seems reasonable to assume that more powerful hardware will lead to a better
service. This is backed up by the results in 4.7. However no improvements in

performance can be seen in 4.5.

Compression offers considerable performance benefits. It can be seen in 4.9 that
utilising compression in the design leads to greater performance in terms of latency

and throughput.

Although batching can possibly increase the throughput of the system, Figure 4.2 and
Figure 4.3 show that increased batch size does not offer any significant performance
increase in terms of latency over the default batch size. It can also be seen in Figure

4.10 that compression yields far better throughput results than increased batching.

61

4.5.4 Final Solution

The final solution is designed based on the findings outlined in 4.5.3. The final design will
utilise a 3 broker configuration. This is due to the increased availability offered by multiple
brokers. These brokers will utilise t2.xlarge instances in order to provide the best
performance possible. It is clear that multiple consumers offers better performance. The
final design will incorporate 1 consumer per topic. The producers in the final design will use
gzip compression. The benefits of compression is clear in 4.9. The batching size is set to the

default value due to reasons outlined in 4.5.3.

Inductive Loop Motoreay Cameras Toll Bridge Frobe Vehicles
Producer Froducer Producer Producer
(compression: gzip, (compression: gzip, (compression: gzip, (compression: gzip,
batching: default) hatching: defauly batching: default) batching: default)

t2.xlarge t2.xlarge t2.xlarge

Digital Twin Broker 1 Digital Twin Braker 2 Digital Twin Broker 3

)
> +

Replication: 3 Rephcanun 3 Replication: 3

L%%@\\

Cansumer 1 Caonsumer 2 Consumer 3 Caonsumer 4

Digital Twin Proxy

Figure 4.11: Final Kafka broker configuration

62

4.5.5 Performance of Final Solution

The performance of the final solution is compared to that of the configurations outlined in
4.4. Both simulation tests and benchmark tests are performed on the final solution similar to
the tests outlined in 4.3.1 and 4.3.2.

Simulation Results

Comparing the final solution to the configurations under test outlined in 4.4, it can be seen
in Figure 4.12 that the final solution performs better than configuration G in low traffic
simulations, with configuration G having around 8% higher latency than the final solution. It

can also be seen that configuration F has 24% less latency than the final solution.

It is clear that the final solution experiences more latency than the single broker
configurations, with the final solution experiencing 70% more latency than configuration E.
However a single broker solution does not offer a highly available service as there is a single
point of failure. If the broker on configurations A through E were to fail, the service would
stop. This is not the case in the 3 broker configurations were the remaining 2 brokers can

continue the service.

Replication also minimises the chance of data loss, as the only situation in which a message
can be lost is if the broker which has received that message immediately fails after
acknowledging the message, but prior to replicating the message. For these reasons a 3
broker configuration is favourable over a single broker configuration despite the added

latency cost.

63

Latnecy by configuration (Low traffic)

300 A L
275
250 -
225 A
200

175 4 -

150 +

125 +

Latency (ms)

100

75 A
50 4

25

A B C D E F G Final
Configuration

Figure 4.12: Final solution latency comparison (low traffic)

In high traffic simulations, it is clear that the final configuration is the highest performing 3
broker configuration. It can be seen that configuration F has 35% higher latency than the
final solution. This is likely due to the increased number of consumers found in the final

solution compared to configuration F, which has a single consumer.

The final solution’s brokers run on more powerful machines than in configuration F. This

may also be a contributing factor to the increased performance in the final solution.

Comparing configuration G and the final configuration, it can be seen that configuration G
experiences 9% higher latency than the final design. This in likely due to the extra broker in
the final design, as well as the more powerful t2.xlarge brokers used in the final solution
compared to the t2.large machines used in configuration F. It can also been seen than the
final design has a lower interquartile range than configuration G. This suggests that the final
design’s latency measurements have less spread than that of configuration G. This is

preferable as it allows for higher consistency in latency predictions.

64

In high traffic simulations the final design offers similar performance to configuration A,
configuration B, and configuration C despite these configurations being single broker

systems which offer considerably less availability.

It is interesting to note that configuration D experienced 71% less latency than the final
solution in low traffic simulations, but only 31% less latency in higher traffic simulations.
This suggests that the final solution is less susceptible to performance decline with increased
traffic compared to a single broker configuration such as configuration D.

Latnecy by configuration (High traffic)

500 - 1
475 A
450 - -
425 A
400 -
375 A
350 ~ 1
325 A
300 -
275
250 -
225 A
200 -
175 4
150 +
125 4
100 +
75 4
50 +
25

Latency (ms)

A B C D E F G Final
Configuration

Figure 4.13: Final solution latency comparison (high traffic)

The final design outlined in 4.11 is benchmarked as outlined in section 4.3.2. The results

can be seen in Figure 4.14.

65

Total Throughput (final solution)
10000

9000 - T

8000 ~

7000 ~

6000 ~

5000 ~

messages/s

4000

3000 ~

2000 ~

1000

A B C D E F G Final
Configuration

Figure 4.14: Throughput of final solution

It can be seen that the final design actually performed marginally worse than configuration D
and configuration G, with the final solution providing 8% less throughput than configuration

D, and 9% less throughput than configuration G. The reasons for this are unclear.

Effects of Distance to Kafka Brokers

The following section compares the performance of the final solution outlined in Figure 4.12
in 2 locations. These locations are chosen due to their relative distance to the EC2 instances
in which Kafka is hosted. The objective is to measure the affects of the distance between

the producers/consumers and Kafka. This is important as it can aid in determining the best

broker placement for optimum performance.

The high and low traffic simulation tests which are outlined in 4.3.1 are conducted in each

of these locations.

Location 1 is 25 km from the EC2 instances in which Kafka is hosted (location 1 is were all
previous tests were conducted). Location 2 is 2.5 km from the EC2 instances in which Kafka
is hosted.

66

The latency measurements for low traffic simulations conducted using the final solution in

both location 1 and location 2 can be seen in Figure 4.15.

Effects of distance on latency (Low traffic)

300
275
250

225 A

(AN

- O

m S
i i

Latency (ms)
=
Ln
=
i

4 © N
(%] (=] Ln
1 1 1

(S

25

T
Location 1 (25 km) Location 2 (2.5 km)
Distance to Kafka

Figure 4.15: Effect of distance on latency (low traffic)

It can be seen in Figure 4.15 that location 1 experienced 46% higher latency than location
2. The IQR of location 2 is also significantly lower than location 1, indicating location 2 has

more consistent latency measurements.

The latency measurements for high traffic simulations conducted using the final solution in

both location 1 and location 2 can be seen in Figure 4.16.

o7

Effects of distance on latency (High traffic)

Latency (ms)
Pd
o
=
i

T
Location 1 (25 km) Location 2 (2.5 km)
Distance to Kafka

Figure 4.16: Effect of distance on latency (high traffic)

It can be seen in Figure 4.16 that location 1 experienced 72% higher latency than location
2. This is a 26% improvement on the latency difference between location 1 and location 2 in
Figure 4.15. This suggests that with increased traffic, the distance between the
producers/consumers has an increased effect on the latency observed by the system. Since
there are only 2 locations under test in this report, these results are far from conclusive.
Further testing in various locations would be required to draw a meaningful relationship
between the latency of the system and the distance to Kafka. Despite this, it stands to
reason that the closer the producers/consumers are to Kafka, the less latency the system

will experience.

68

Throughput tests similar to that of those in Figure 4.10 are conducted on the final solution

in location 1 and location 2. The results can be seen in Figure 4.17.

Effects of Distance on Throughput
10000

9000 -

8000 ~

7000 ~

6000 ~

5000 ~

messages/s

4000 ~

3000 ~

2000 ~

1000

T
Location 1 (25 km) Location 2 (2.5 km)
Configuration

Figure 4.17: Effect of distance on throughput

It can be seen in Figure 4.17 that the difference in throughput between location 1 and
location 2 is marginal. Location 2 allowed for 2.6% more throughput, however this difference
is small and is well within the margin of error for this experiment. It seems likely that the
distance between the producers/consumers has little to no effect on the total throughput the

system, however further experiments in varying locations are needed to confirm this.

69

5 Summary

This project focuses on developing a communication architecture that is suitable for
transportation digital twins. This requires a system that is highly available, has low latency,

and high throughput.

The goal of the project is to design a communication method between motorway sensors and
a digital twin. Several popular middleware technologies are considered in this research.
Apache Kafka is selected as the middleware technology used in the design due to its high
throughput capabilities, low latency, and its use of replication, which allows for a highly

available service.

The design has several components. Apache Kafka producers are used to stream data from
the traffic sensors to the digital twin Kafka cluster. It is assumed that certain sensor data
will not be directly available to the producers. This data will be obtained through 3rd party
enterprise servers which will produce data to the digital twin Kafka cluster. The data from
the digital twin Kafka cluster is consumed by the digital twin consumer(s). The data
ingested from these consumers is used to feed the digital twin.

The design is evaluated using simulated motorway sensors. The common source in which the
simulated sensors draw their data is a SUMO simulation of the M50 motorway. The
performance of several Kafka configurations are assessed using tests which evaluate the
latency and throughput of the system.

The final design is a 3 broker configuration with replication across all brokers. This allows
for a highly available service. The design uses gzip compression in order to reduce the
latency. The Kafka brokers are deployed on AWS EC2 t2.xlarge instances. A consumer per
topic system is employed in the design to improve the latency and throughput of the design

in high traffic situations.

The design is tested in various location in order to determine the ideal Kafka broker
placement for optimum performance. It was found that systems which are closer to the
producers/consumers have lower latency. The effects of broker placement on throughput are

minimal.

70

6 Conclusion

From the evaluation of the final design, it is clear that Apache Kafka is capable of providing

a service which fits the requirements of the system.

It was found that a single broker cluster experiences less latency than a multiple broker
cluster, however single broker clusters have a single point of failure and do not make for a
highly available service. It was found in figure 4.9 and 4.7 that a combination of
compression and increased broker computing power can decrease the latency by
approximately 17%. It is clear from the findings in 4.6 that multiple consumers offer

considerable performance benefits when compared to a single consumer.

The final design is 3 broker setup with replication across all brokers. This makes the design
highly available, providing minimal loss of service. The design used gzip compression and
powerful broker hardware, as well as a consumer per topic system, in which each topic has a
dedicated consumer. These design choices aid in reducing the latency of the design. This is
supported by findings in figure 4.12 and 4.13. The multiple consumer setup allows the
design to handle high throughput. This is supported by findings in figure 4.14.

It is clear that Kafka cluster placement is a critical design choice if latency is to be kept to a
minimum. In low traffic simulation scenarios, with the Kafka cluster situated 2.5 km from
the producers/consumers, the final design is capable of streaming data from producer to
consumer in approximately 145 ms. In high traffic scenarios, this figure rises 7% to 156 ms.
If the relative producer/consumer to cluster distance is raised to 25 km, these figures rise
46% to 205 ms, and 72% to 280 ms respectively. The total throughput of the system is

approximately 7600 messages per second regardless of cluster placement.

This research provides valuable insight into the use of Apache Kafka as the communication
method between motorway sensors and a digital twin. The project designed a
communication framework based on the results of experimental research conducted in the

form of motorway traffic simulations using virtualised traffic sensors.

71

The results of these experiments aided in designing a highly available system which is
capable of providing high throughput while maintaining low latency. The research also
provided insight into the ideal cluster location, suggesting that clusters located closer to the
producers and consumers will lower the latency of the system, however it will not necessarily

increase the maximum throughput of the system.

6.1 Future Work

There are several research topics which can be explored following this project. The
immediate future work concerning this project should be implementing a digital twin in which
the architecture outlined in this dissertation is the communication method between the
sensors and the digital twin. This would require unpacking the data at the consumer side of

the system and attempting to recreate the motorway simulation from the sensor data.

There are also several avenues to explore with regards to improving the evaluation and
design of the framework. There are several limitations to the simulation which are not
addressed in this research, mainly that the producer scripts run sequentially within the
simulation. Further research would run these producers in parallel to faithfully represent the
real-world sensors, which of course can produce data at the same time. This may be possible
by controlling the motorway simulation from multiple TraCl clients which are each running
producer scripts [German Aerospace Center, 2022d)].

In this research, all the producers are hosted on a single client. In reality, producers will be in
various locations, with each location likely being different distances from the Kafka cluster.
Further research could implement multiple clients in various locations to more accurately
represent the producers. Implementing multiple clients in different locations with producers

running in parallel would make for a much more faithful representation of real life.

It is clear from the research that multiple consumers performs better than a single consumer,
however it is unclear whether this is due to multiple consumers consuming in parallel,
allowing for messages to be consumed simultaneously, or if this is due to the polling
frequency of the consumer, with multiple consumers simply being able to poll faster as each
consumer in a multiple consumer setup is consuming less messages than the consumer in the
single consumer setup. Further research may provide answers as to what degree the polling
frequency of consumers limits the number of messages that can be consumed. Further
optimisations may be possible to allow consumers to poll at a higher frequency while still

making the data available to the digital twin.

72

Further experimentation with various Kafka cluster locations could provide further insight
into the relationship between the latency of the system and the distance to Kafka. Although
this project did experiment with different cluster locations, this research was limited and
there is room for further research. An interesting research topic would be to experiment with
various Kafka cluster locations and hypothesis an idealised location relative to the M50

motorway which would provide the lowest latency possible for the digital twin.

In this design, the data communicated between Kafka and the producers and consumers is
sent in plain text. Apache Kafka is capable of utilising security protocols such as SSL,
however this is not explored in this project. Further work may include on-boarding suitable

security measures in order to improve the security of the design.

73

Bibliography

J. Kreps, N. Narkhede, and J. Rao. Kafka: A distributed messaging system for log
processing. Proc. Int. Workshop Netw. Meets Databases, 2011.

Dobbelaere, Philippe, and Kyumars Sheykh Esmaili. Kafka versus rabbitmq: A comparative
study of two industry reference publish/subscribe implementations: Industry paper. pages
227-238, 06 2017. doi: 10.1145/3093742.3093908.

Fu. Guo, Zhang. Yanfeng, and Yu. Ge. A fair comparison of message queuing systems. /EEE
Access, 9:421-432, 2021. doi: 10.1109/ACCESS.2020.3046503.

Vinoth Chandar Alok Nikhil. Benchmarking apache kafka, apache pulsar, and rabbitmg:
Which is the fastest?, August 2020. URL
https://www.confluent.io/blog/kafka-fastest-messaging-system/.

Garmin. Gps 16x technical specifications, September 2008. URL
https://docs.rs-online.com/9837/0900766b80e05373 . pdf.

Electro Automation. Sensys traffics sss (speed safety system), 2021a. URL

https://www.electroautomation.com/page/downloads.

Medium. How computer vision can change the automotive industry, 2018. URL

https://miro.medium. com/max/720/1*qmnZgXVullx9rreF je00sg. jpeg.

Dublin City Council. Dublin city council traffic cameras, 2017. URL
https://www.dublincity.ie/dublintraffic/.

C. Sowers. The future of traffic monitoring — a new perspective using drones. Conférence
ACPSER, Toronto, June 2017. URL
https://www.unb.ca/research/transportation-group/_resources/pdf/

research-papers/traffic-monitoring-future.pdf.

TII. Traffic counts for transport infrastructure tii, 2022. URL
https://trafficdata.tii.ie/publicmultinodemap.asp.

IBM Digital Twin Exchange. What is a digital twin? 1BM, 2021.

74

https://www.confluent.io/blog/kafka-fastest-messaging-system/
https://docs.rs-online.com/9837/0900766b80e05373.pdf
https://www.electroautomation.com/page/downloads
https://miro.medium.com/max/720/1*qmnZgXVuIlx9rreFjeO0sg.jpeg
https://www.dublincity.ie/dublintraffic/
https://www.unb.ca/research/transportation-group/_resources/pdf/research-papers/traffic-monitoring-future.pdf
https://www.unb.ca/research/transportation-group/_resources/pdf/research-papers/traffic-monitoring-future.pdf
https://trafficdata.tii.ie/publicmultinodemap.asp

Central Statistics Office. Transport Omnibus 2019 - Road Traffic Volumes. Central
Statistics Office, 2019.

Simon Carswell. M50 blues: Ireland’s busiest road, Dublin’s biggest car park. The Irish
Times, 2017.

IBM. Publish/subscribe overview. 1BM, 2021.

Hadoop. Hdfs architecture guide, 2008. URL
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.

Amazon Web Services. What is amazon s37, 2022a. URL

https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html.

Sunny Garg. What makes apache kafka so fast?, 2019. URL https:
//medium. com/@sunny_81705/what-makes-apache-kafka-so-fast-71b477dcbfO0.

Colin McCabe. Apache kafka needs no keeper: Removing the apache zookeeper dependency,
May 2020. URL

https://www.confluent.io/blog/removing-zookeeper-dependency-in-kafka/.

Praveen Kumar Donta, Satish Narayana Srirama, Tarachand Amgoth, and Chandra
Sekhara Rao Annavarapu. Survey on recent advances in iot application layer protocols and
machine learning scope for research directions. Digital Communications and Networks,

2021. ISSN 2352-8648. doi: https://doi.org/10.1016/j.dcan.2021.10.004. URL
https://www.sciencedirect.com/science/article/pii/S2352864821000845.

Flavio P. Junqueira, Ivan Kelly, and Benjamin Reed. Durability with bookkeeper. SIGOPS
Oper. Syst. Rev., 47(1):9-15, jan 2013. ISSN 0163-5980. doi: 10.1145/2433140.2433144.
URL https://doi.org/10.1145/2433140.2433144.

Jiang Yongguo, Liu Qiang, Qin Changshuai, Su Jian, and Liu Qiangian. Message-oriented
middleware: A review. 2019 5th International Conference on Big Data Computing and
Communications (BIGCOM), pages 88-97, 2019.

Garmin. What is gps?, 2021a. URL https://www.garmin.com/en-US/aboutgps//.

US Government. Gps accuracy, 2021. URL
https://www.gps.gov/systems/gps/performance/accuracy/.

NVS. Nv08c rtk gnss device, 2021. URL

http://www.nvs-gnss.com/products/receivers/nv08c-rtk-m.html.

TomTom. Real time historical traffic, 2012. URL
https://download.tomtom.com/open/crm/lib/docs/licensing/RTTHT.EN. pdf.

75

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://medium.com/@sunny_81705/what-makes-apache-kafka-so-fast-71b477dcbf0
https://medium.com/@sunny_81705/what-makes-apache-kafka-so-fast-71b477dcbf0
https://www.confluent.io/blog/removing-zookeeper-dependency-in-kafka/
https://www.sciencedirect.com/science/article/pii/S2352864821000845
https://doi.org/10.1145/2433140.2433144
https://www.garmin.com/en-US/aboutgps//
https://www.gps.gov/systems/gps/performance/accuracy/
http://www.nvs-gnss.com/products/receivers/nv08c-rtk-m.html
https://download.tomtom.com/open/crm/lib/docs/licensing/RTTHT.EN.pdf

Garmin. Garmin traffic data, 2021b. URL
https://discover.garmin.com/en-IE/traffic/.

Google. Google location services, 2021a. URL
https://policies.google.com/technologies/location-data?hl=en-US.

Google. Find improve your location’s accuracy - android - google maps help, 2021b. URL
https://support.google.com/maps/answer/28399117hl=en&co=GENIE.Platformj,
3DAndroid.

Google. Get started with google assistant driving mode, 2021c. URL
https://support.google.com/assistant/answer/102175037hl=en.

P. Linnartz, J. Ivhs: Probe vehicles, 2010. URL http://www.wirelesscommunication.

nl/reference/chaptr0l/roadtrin/ivhsprob.html.

Government of Ireland. Gtfs real time for dublin bus, bus eireann, and go ahead services,
August 2020. URL https://data.gov.ie/blog/

gtfs-r-real-time-for-dublin-bus-bus-eireann-and-go-ahead-services.

DHL Paket GmbH. Live tracking, 2012. URL https://www.dhl.de/en/privatkunden/

pakete-empfangen/sendungen-verfolgen/live-tracking.html.

Cambridge Pixel. Radar terminology, 2019. URL
https://www.cambridgepixel.com/support/radar-terminology/.

Nanoradar. Single lane vehicle over speed detection radar, 2020. URL
https://www.nanoradar.com.cn/Traffic-radar/
single-lane-vehicle-over-speed-detection-radar-tsr107gclid=
CjwKCAjw2vOLBhBPEiwA jEeKOhRL_NQHBpHULO0_AeXLaKJ5HeOSHK_
8nkm94BuvRhME2BTqgYg58BoCOrOQAvD_BwE.

Sensy Networks. Sensy networks snaps profession 2.20, 2021. URL
https://snsys.my.salesforce.com/sfc/p/#700000008X1I/a/70000000PdPS/
JzHlegvJTohSao_ql9qVy0shOMshwDBrF8xD(ido65E.

Electro Automation. 3m anpr cameras, an integrated anpr camera, 2021b. URL

https://www.electroautomation.com/page/downloads.

C. Gibbs. Using traffic camera images to derive an indicator of busyness: experimental
research. September 2020. URL https://www.ons.gov.uk/economy/
economicoutputandproductivity/output/methodologies/

usingtrafficcameraimagestoderiveanindicatorofbusynessexperimentalresearch.

76

https://discover.garmin.com/en-IE/traffic/
https://policies.google.com/technologies/location-data?hl=en-US
https://support.google.com/maps/answer/2839911?hl=en&co=GENIE.Platform%3DAndroid
https://support.google.com/maps/answer/2839911?hl=en&co=GENIE.Platform%3DAndroid
https://support.google.com/assistant/answer/10217503?hl=en
http://www.wirelesscommunication.nl/reference/chaptr01/roadtrin/ivhsprob.html
http://www.wirelesscommunication.nl/reference/chaptr01/roadtrin/ivhsprob.html
https://data.gov.ie/blog/gtfs-r-real-time-for-dublin-bus-bus-eireann-and-go-ahead-services
https://data.gov.ie/blog/gtfs-r-real-time-for-dublin-bus-bus-eireann-and-go-ahead-services
https://www.dhl.de/en/privatkunden/pakete-empfangen/sendungen-verfolgen/live-tracking.html
https://www.dhl.de/en/privatkunden/pakete-empfangen/sendungen-verfolgen/live-tracking.html
https://www.cambridgepixel.com/support/radar-terminology/
https://www.nanoradar.com.cn/Traffic-radar/single-lane-vehicle-over-speed-detection-radar-tsr10?gclid=CjwKCAjw2vOLBhBPEiwAjEeK9hRL_NQHBpHUL9O_AeXLaKJ5He0SHK_8nkm94BuvRhME2BTqgYg58BoC0r0QAvD_BwE
https://www.nanoradar.com.cn/Traffic-radar/single-lane-vehicle-over-speed-detection-radar-tsr10?gclid=CjwKCAjw2vOLBhBPEiwAjEeK9hRL_NQHBpHUL9O_AeXLaKJ5He0SHK_8nkm94BuvRhME2BTqgYg58BoC0r0QAvD_BwE
https://www.nanoradar.com.cn/Traffic-radar/single-lane-vehicle-over-speed-detection-radar-tsr10?gclid=CjwKCAjw2vOLBhBPEiwAjEeK9hRL_NQHBpHUL9O_AeXLaKJ5He0SHK_8nkm94BuvRhME2BTqgYg58BoC0r0QAvD_BwE
https://www.nanoradar.com.cn/Traffic-radar/single-lane-vehicle-over-speed-detection-radar-tsr10?gclid=CjwKCAjw2vOLBhBPEiwAjEeK9hRL_NQHBpHUL9O_AeXLaKJ5He0SHK_8nkm94BuvRhME2BTqgYg58BoC0r0QAvD_BwE
https://snsys.my.salesforce.com/sfc/p/#700000008X1I/a/70000000PdPS/JzH1egvJTohSao_ql9qVy0sh0MshwDBrF8xDQido65E
https://snsys.my.salesforce.com/sfc/p/#700000008X1I/a/70000000PdPS/JzH1egvJTohSao_ql9qVy0sh0MshwDBrF8xDQido65E
https://www.electroautomation.com/page/downloads
https://www.ons.gov.uk/economy/economicoutputandproductivity/output/methodologies/usingtrafficcameraimagestoderiveanindicatorofbusynessexperimentalresearch
https://www.ons.gov.uk/economy/economicoutputandproductivity/output/methodologies/usingtrafficcameraimagestoderiveanindicatorofbusynessexperimentalresearch
https://www.ons.gov.uk/economy/economicoutputandproductivity/output/methodologies/usingtrafficcameraimagestoderiveanindicatorofbusynessexperimentalresearch

Liang H. Li H. Song, H. Vision-based vehicle detection and counting system using deep
learning in highway scenes. 2019. doi: https://doi.org/10.1186/s12544-019-0390-4.

Saleh Javadi, Mattias Dahl, and Mats |. Pettersson. Vehicle speed measurement model for
video-based systems. Computers Electrical Engineering, 76:238-248, 2019. ISSN
0045-7906. doi: https://doi.org/10.1016/j.compeleceng.2019.04.001. URL
https://www.sciencedirect.com/science/article/pii/S0045790618317774.

Sanderson Associates. How are vehicles detected at traffic signals?, 2021. URL

https://www.traffic-signal-design.com/vehicles-detected.htm.

Hughes Trueman Paul Briedis. The accuracy of inductive loop detectors. 24th ARRB
Conference — Building on 50 years of road and transport research, Melbourne, Australia
2010, 2010. URL https://kipdf.com/
the-accuracy-of-inductive-loop-detectors_5ae74e407£8b9a09528b467a.html.

German Aerospace Center. Sumo user documentation, 2022a. URL
https://sumo.dlr.de/docs/index.htmll.

German Aerospace Center. nterfacing traci from python, 2022b. URL
https://sumo.dlr.de/docs/TraCIl/Interfacing TraCI_from_Python.html.

Dasgupta, Rahman, Lidbe, Lu, and Jones. A Transportation Digital-Twin Approach for
Adaptive Traffic Control Systems. Transportation Research Record, 2021.

Sathish A. P. Kumar, R. Madhumathi, Pethuru Raj Chelliah, Lei Tao, and Shangguang
Wang. A novel digital twin-centric approach for driver intention prediction and traffic

congestion avoidance. Journal of Reliable Intelligent Environments, 2018.

Yuheng Du and Mashrur Chowdhury. A Distributed Message Delivery Infrastructure for
Connected Vehicle Technology Applications. |IEEE Transactions on Intelligent
Transportation Systems, 2017.

Amazon Web Services. What is amazon ec2?, 2022b. URL
https://docs.aws.amazon.com/AWSEC2/1latest/UserGuide/concepts.html.

Maxime Guériau and Ivana Dusparic. Quantifying the impact of connected and autonomous
vehicles on traffic efficiency and safety in mixed traffic. In 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC), pages 1-8, 2020. doi:
10.1109/1TSC45102.2020.9294174.

German Aerospace Center. Inductive loop value retrieval, 2022c. URL
https://sumo.dlr.de/docs/TraCI/Induction_Loop_Value_Retrieval.html.

7

https://www.sciencedirect.com/science/article/pii/S0045790618317774
https://www.traffic-signal-design.com/vehicles-detected.htm
https://kipdf.com/the-accuracy-of-inductive-loop-detectors_5ae74e407f8b9a09528b467a.html
https://kipdf.com/the-accuracy-of-inductive-loop-detectors_5ae74e407f8b9a09528b467a.html
https://sumo.dlr.de/docs/index.htmll
https://sumo.dlr.de/docs/TraCI/Interfacing_TraCI_from_Python.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://sumo.dlr.de/docs/TraCI/Induction_Loop_Value_Retrieval.html

Deng S Yu, S. Adaptive vehicle extraction in real-time traffic video monitoring based on the
fusion of multi-objective particle swarm optimization algorithm. 145, 2018. doi:
https://doi.org/10.1186/s13640-018-0381-8.

Docker. Docker overview, 2022a. URL
https://docs.docker.com/get-started/overview/.

Docker. Get started with docker compose, 2022b. URL
https://docs.docker.com/compose/gettingstarted/.

Apache Kafka. Release notes - kafka - version 2.5.0, 2020. URL
https://archive.apache.org/dist/kafka/2.5.0/RELEASE_NOTES.htmll.

Python.org. Python json documentation, 2022. URL
https://docs.python.org/3/library/json.html.

German Aerospace Center. Sumo user documentation - controlling the same simulation from
multiple clients, 2022d. URL
https://sumo.dlr.de/docs/TraCIl/Interfacing _TraCI_from_Python.html#

controlling the_same_simulation_from_multiple_clients.

78

https://docs.docker.com/get-started/overview/
https://docs.docker.com/compose/gettingstarted/
https://archive.apache.org/dist/kafka/2.5.0/RELEASE_NOTES.htmll
https://docs.python.org/3/library/json.html
https://sumo.dlr.de/docs/TraCI/Interfacing_TraCI_from_Python.html#controlling_the_same_simulation_from_multiple_clients
https://sumo.dlr.de/docs/TraCI/Interfacing_TraCI_from_Python.html#controlling_the_same_simulation_from_multiple_clients

Al

Appendix

’loop_id’: ’Mb0_Northbound’,
’>lane 1°: ’0°,

’lane 2’: ’0°,

>lane 3’: ’07,

>lane 4°: °17,

’timestamp’: ’2022-04-05 0:00:05°

Figure Al1.1: Typical inductive loop message

’lane_id’: ’4414080#1-AddedOnRampEdge.343°,
>lane_index’: ’0°’,

’direction’: °’N7,

’distance’: ’94.39°,

’speed’: ’91.677,

’class’: ’passenger’,

’timestamp’: ’2022-04-05 0:01:56°9

Figure A1.2: Typical toll bridge message

Ycamera_id’: ’M50(S) After J9 (N7)°,
’lane_id’: ’75259388-Added0ffRampEdge.76",
’lane_index’: ’1°7,

’direction’: ’S’,

’distance’: ’109.43°,

’speed’: ’107.027,

’timestamp’: ’2022-04-05 0:00:17°

Figure A1.3: Typical motorway camera message

79

’probe_id’:
’location’:
’speed’:

’timestamp’:

’NRA_000000001070_Eastbound-2.1",
> (53.31484349209639, -6.383704806116359) 7,

’78.37,
’vehicle type’:
72022-04-05 0:00:22°

’CAV4,

Figure Al.4: Typical probe vehicle message

Size (bytes)

Inductive Loops

124

Toll Bridge 190
Motorway Cameras | 205
Probe Vehicles 177

Table A1.1: Typical message size in bytes

A

B C

D

E

Inductive Loops

52.13

52.74

52.13

48.08

40.70

50.87

38.25

Toll Bridge

90.47

89.98

90.46

86.88

76.80

88.97

84.09

Motorway Cameras

91.51

95.86

96.51

89.99

80.00

110.00

80.00

Probe Vehicles

150.33

149.95

150.33

137.56

130.00

155.07

159.98

Table A1.2:

Latency (ms) by topic (low traffic)

A

B C

D

E

Inductive Loops

41.34

4408

41.36

41.96

39.30

32.72

40.62

Toll Bridge

149.39

155.03

149.34

145.43

141.12

140.85

159.07

Motorway Cameras

110.00

118.03

110.00

100.02

102.52

120.00

110.04

Probe Vehicles

282.22

299.96

282.22

249.89

262.89

281.83

290.03

Table A1.3:

Latency (ms) by topic (high traffic)

A

B C D

E

F

Final

Latency (ms)

150.38

136.15 | 150.38

122.53

121.96

166.60

220.04

205.19

Table Al.4: Latency by configuration (low traffic)

A

B C D

E

F

Final

Latency (ms)

272.67

255.77 | 272.67

208.75

234.03

371.21

302.63

279.41

Table A1.5: Latency by configuration (high traffic)

80

Location 1 | Location 2
Low Traffic | 205.19 144.86
High Traffic | 279.41 156.40

Table A1.6: Latency (ms) by distance

81

	Abstract
	Introduction
	Motivation
	Objectives
	Approach
	Challenges
	Other Considerations
	Report Outline

	Background
	What is a Digital Twin?
	Middleware
	An Overview of Publish-Subscriber systems
	What is Apache Kafka?
	Other middleware systems
	Comparing middleware systems
	Evaluating choice of middleware

	Motorway Sensors
	GPS/GNSS
	Radar
	Cameras
	Inductive loops
	Summary of Sensor Research

	Overview of SUMO
	TraCI

	Literature Review

	Methodology & Implementation
	Overview of implementation
	Proposed Architecture

	Motorway Simulation
	Traffic data retrieval
	Modelling the Sensors
	Inductive Loops
	Motorway Cameras
	Toll Bridge
	Probe Vehicles

	Kafka implementation
	Brokers
	Producers
	Consumers

	Deployment
	Brokers
	Producers and Consumers

	Evaluation
	Testing metrics
	Test parameters
	Configurable parameters
	Fixed parameters

	Test hardware
	Testing methodology
	Simulation testing
	Benchmark testing
	Latency measurements
	Throughput measurements
	Default Kafka configuration

	Test configurations
	Results
	Simulation Results
	Benchmark Results
	Summary of Results
	Final Solution
	Performance of Final Solution

	Summary
	Conclusion
	Future Work

	Appendix

