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This project consists of the investigation of data needs for efficient Q-Learning for
distributed Autonomous Intersection Management (AIM). Specifically, this entails the
design and implementation of a lightweight Q-Learning framework that uses Connected
Autonomous Vehicles (CAVs) as agents to decrease the delay in an unsignalised intersection.
The literature review concludes that while Q-Learning is and has been an efficient tool
in the design of scheduling policies for traffic light control, its potential for distributed
and unsignaled AIM remains globally unresolved, specifically due to the neglect of current
implementations to consider the materialistic need for Q-functions to be unencumbered by
excessive data if they are to be stored locally inside CAVs. By minimising both agents
and observations in our Q-Learning model, this project seeks to validate the hypothesis
that minimal-data Q-functions are viable solutions to AIM scheduling policies considering
the complexity of modern AIM modelling.

The results show that while the framework is capable of performing Q-learning, the fine
line between an excessive number of states and sufficient agent information was not met.
Various choices of observations and actions are nevertheless explored and the consequences
they have on performance are analysed.
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Chapter 1

Introduction

1.1 Background

With the increasing traffic congestion that has come with contemporary urbanisation,

alternative systems of traffic control have been widely sought and explored, namely

through the development of Connected Autonomous Vehicles (CAVs). Considering the

potential safety and time benefits of fully cooperative CAVs as opposed to Human driven

Vehicles (HVs), Autonomous Intersection Management (AIM) has been at the forefront of

traffic research since the pivotal work of Dresden and Stone in 2008 [4]. The continuous

technological innovation in this time-frame has lead to significant scaling of AIM modelling

complexity with every passing year. The advancements of simulation frameworks have

enabled new considerations such as pedestrianisation[19], vehicle acceleration [15] and

vehicle prioritisation [5]. The development of communication protocols and superior

telecommunication hardware have also favoured the use of distributed systems over

centralised intersections, thus adding to the the complexity of decision making policies.

Scheduling policies in particularly have been crucial to the development of AIM as

academic standards evolved from fairness policies such as First Come First Serve (FCFS) to

optimisation methods such as linear programming and finally to more heuristic approaches,

specifically through the implementation of Artificially intelligent (AI) techniques.

As AI revolutionises algorithmic algebra, rule-based scheduling policies become increas-

ingly difficult to apply to such complex models while heuristic or self-learning methods

take the forefront. Reinforcement-learning (RL), and specifically Q-Learning has shown

much success in the programming of traffic lights. It offers the advantage of not needing

any labelled data while respecting adjustable reward systems. As we shall outline below,

this difference is pivotal to the adaptability of Reinforcement Learning models for different

intersections and use cases.
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1.2 Motivation

A unique characteristic of Q-Learning is the significant data storage cost of the Q-function

(post-training). In a centralised system (i.e. traffic light agents), heavy data storage is

not a concern given the unique locality and space of storage. On the other hand, an

unsignalised intersection requires CAVs to store scheduling functions locally. Despite the

proven success of RL in the realm of AIM, its application to distributed and unsignalised

AIM models demands the consideration of the trade-off between the minimisation of data

costs and the efficiency of a Q-function for AIM. While very few attempts to apply RL

to such a system have been made (possibly for this very reason), those that have do not

consider the impact of this trade-off on real world applications.

1.3 Aims

My hypothesis is that the minimisation of data storage in Q-functions could be implemented

for distributed AIM without significant concessions in the overall reward (i.e. Average

Waiting Time of vehicles).

To investigate this, a simulation framework applying distributed Q-Learning to an

unsignalised intersection using CAVs as agents will be be created. The SUMO traffic

simulation package lends itself to this purpose. Such a framework will allow for the

implementation of distributed Q-Learning with an emphasis on minimising the number of

states inside the Q-table. In order to assist with the learning process, Imitation Learning

(IL) will be used as a starting point for learning with the Longest Queue First (LQF) as

expert and RL for fine tuning. I will analyse the performance of the learning and the

resulting Q-function with: (i) an application of Q-learning that makes no attempt to

minimise data costs and (ii) standard intersection baselines including First Come First

Served (FCFS) and centralised RL applied to traffic signals.

1.4 Contribution

The real-world implications of this investigation would be the material viability of Q-

Learning as an option for distributed AIM. Data storage costs of resulting Q-functions

would be sufficient to envisage local storage in CAVs. With the standardisation of traffic

infrastructures, a CAV would store Q-functions for every type of intersection. With the

standardisation of traffic infrastructures, it is therefore reasonable to assume that trained

Q-functions would suffice to implement near optimal scheduling policies for specific rewards

in any AIM context.
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1.5 Report Plan

The report will be divided into the following sections:

The Literature Review is designed to complete two objectives. The first is to establish

the state of the art for the AIM domain as a whole, noting its evolution and evaluating

the impact of both developments and gaps in research. The second is to review and

analyse current literature on RL applications to AIM from a critical standpoint in

order to assess the benefit of my own contribution with an appropriate contextual

framing.

The Design Section outlines the overarching design decisions made to verify my hy-

pothesis. Concretely, this will include the RL algorithms, action/reward design and

network choices (intersection parameters and vehicle generation).

The Implementation Section describes the structure of framework code, the limita-

tions of its functionality and the temporal structure of every simulation time step

and learning process.

The Evaluation Section considers the learning outcomes of the implementation. This

includes proof of concept (demonstrating when learning occurs without analysing its

performance), the final performance of my implementation in terms of chosen metrics

(training time, learning curve, Q-function size and final average vehicle waiting time)

and the evaluation of this performance with chosen baselines (FCFS, traffic light RL

and full data distributed RL).

The conclusion consists of a self-review of the extent of veracity of my hypothesis shown

through the implementation and the potential measures that could be taken to

further develop or exploit this hypothesis.
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Chapter 2

Literature Review

2.1 Background

2.2 Aims of AIM systems

In their ”seminal” [20] contribution to AIM, Dresner and Stone describe the properties

desired in any traffic framework[4]:

• Autonomy The autonomy of individual CAVs is crucial to the robustness to failure

and the minimisation of computational power.

• Deadlock/Starvation Avoidance The eventual crossing of every vehicle in an

intersection must be assured, even at the cost of optimal efficiency of other vehicles.

• Incremental Deployability The system should allow for human driven vehicles to

exist independently.

• Safety The system should be designed to ensure that vehicles never collide, even in

the case of system, CAV or communication failure.

• Efficiency Delay caused by the intersections on all CAVs should be minimised.

Although partly outdated, this list of desiderata has been a significant consideration in

the selection of Spatial frameworks, scheduling policies, adaptation methods to human

drivers and methods of AI implementation. The criteria listed are critical in the evaluation

of AIM systems.
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2.3 Spatial Frameworks

Although most reservation systems are built from the original tile/grid-based spatial

framework, developed by Dresner and Stone [5], it is important to take into consideration

that other approaches may be better for specific circumstances. Namely, Zhong redefines

four frameworks: intersection-based, tile-base, conflict-point-based and vehicle-based

reservation systems [21].

• The Intersection-based reservation system imitates a structure similar to that of

stop sign intersections: one car is allowed in the intersection at a time[21]. Despite a

lack of efficiency, this model fulfills the deployability desiderata as it can be easily

implemented with mixed traffic. It is also useful for a heuristic evaluation of other

dimensions of AIM such as scheduling policies.

• The tile-based reservation system discretizes space into a grid, allowing for the

computational needs to be adjusted by granularity. It also inherently sets out

a geometric mapping for vehicles, simplifying communication protocols and the

identification of conflict detection points [5].

• The Conflict Point based reservation system consists of a continuous representation of

lanes within the intersection space. Routes are predefined and offer little robustness

to route adaptation. On the other hand,

• The Vehicle Based (VB) reservation system seeks to allow CAVs to be guided

throughout an intersection regardless of lane boundaries. Although this system is

described as ”near-optimal” [11], it is inherently computationally expensive given its

non-linearity and its research is relatively undeveloped.

2.4 Distributed and Centralised Intersection Manage-

ment

CAVs have the ability to communicate with each other (Vehicle-to-Vehicle, V2V), road in-

frastructures (Vehicle-to-Infrastructure, V2I), and even non-motorized road users including

pedestrians(Vehicle-to-X,V2X) (Wu et al 2019).

In the context of AIM, this technology allows for the specification of either a distributed

or centralized approach to information sharing and decision making.

The former consists of information sharing directly between CAVs so that CAVs can

cooperatively establish a scheduling policy while the latter consists of the intervention of

5



a third party with full information of the intersection to externally coordinate the traffic

control. These two approaches are illustrated below:

Figure 2.1: Centralized approach to AIM (V2I) and distributed approach (V2V). [8]

2.4.1 Distributed

Distributed AIM approaches are the most commonplace in contemporary approaches to

AIN due to the following advantages:

• Scalability

Distributed systems are able to function regardless of any external infrastructure.

This means that CAVs may function efficiently in the countryside as efficiently as in

urban areas.

• Cost efficiency

CAVs are more autonomous in distributed systems and no long need the support of

an external station. This saves the construction and maintenance of control stations.

• Robustness

A dangerous risk for centralized systems is the failure of the controlling station.

With the added autonomy of distributed systems, CAVs are able to detect danger

and function correctly even if one CAV malfunctions.

2.4.2 Centralized

Although centralized AIM was the norm in initial approaches, it has become outmoded due

to the scalability issues that came with V2X technology. When the potential for thousands

of agents became possible, the concern of managing increasing numbers of agents became

dubious. Nevertheless, the ideas related to this approach have potential to influence the

future of the technologies.

Centralized AIM is based on two strategies:

6



• Query based centralized AIM consists of the querying of CAVs to the intersection

manager (IM) with a trajectory and and velocity. After calculating the positioning

of the car and verifying that there are no given collision points. If the course is

rejected then the CAV will decelerate and query again after a timeout has elapsed.

This system thus works in a quasi-random selection of prioritisation as CAVs must

depend on the fortune of their time of querying. In addition to the poor fairness of

the system, the time delay cannot be optimised due to the random parameter and

there is a high risk of cars coming to a complete stop during busy intersections.

• Assignment based centralized AIM concerns the request and assignment of

CAV courses directly from the IM to CAVs when approaching an intersection. This

approach therefore gives more control to the IM to optimize its scheduling policy.

On the other other hand, the processing time of the IM is long with assignment

based approaches.

2.5 Scheduling Policies

Scheduling policies are defined by the fundamental prioritisation belief that drives them:

fairness, optimisation and heuristic beliefs[8].

Dresner and Stone set the standard of fairness-based scheduling policies with the

First Come First Serve (FCFS) policy [4]. As the name suggests, this policy consists of a

queuing format where the first vehicle to arrive at an intersection has priority over any

other.

Fairness based policies have a tendency to imitate human behaviour in a way that does

not fully exploit the potential efficiency developed through AI.

Optimisation policies are rule based policies that aim to reduce the overall delay of

all vehicles arriving at the intersection. They generally consist of the modelling of vehicle

arrival times and the algebraic resolution of delay minimisation from these models [21].

The issue of modelling traffic on the other hand is difficult to resolve as traffic varies at

an hourly, daily, monthly and yearly cycle. The adaptation of the model to given traffic

circumstances is essential to best verify the efficiency criteria of a traffic system.

Heuristic based policies compromise between fairness and optimisation by seeking

a satisfactory result given external information. This can be the congestion of specific

lanes, vehicle prioritisation or game-theory based individual intentions [2]. The Longest

Queue First (LQF) policy considers the former. Despite being less common than FCFS,

this policy has shown to be significantly more efficient [20].
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2.6 Vehicle prioritisation

Vehicle Prioritisation is closely linked to the adopted scheduling policy but takes on another

dimension: the differentiation of vehicles. Dresden et al. first considers prioritization of

emergency vehicles through the The FCFS-Emerg Policy [4]. This policy is an adaptation

of the FCFS policy whereby all the vehicles in the lane of the emergency vehicle are

granted priority access.

Lam et al. tackle the concept of Emergency vehicles through an auction based scheduling

policy [10]. This heuristic policy consists of every CAV calculating an individually optimized

crossing plan for themselves. CAVs would then contest for the most efficient overall crossing

plan. In the context of emergency vehicles, the crossing plan of the emergency vehicle

would have priority over all others regardless of overall optimization.

Makarem and Gillet [15] consider prioritization beyond of emergency vehicles by taking

into account the inertia of vehicles. This is a more realistic application of optimization

policies that, for example, would give priority to a heavy lorry, given the increased

deceleration/acceleration cost of time and fuel. The results of Gillet and Makarem show

that their model is slightly less time efficient than most optimization scheduling policies

but show a significant increase in energy consumption and traffic smoothness.

2.7 Mixed Traffic implementations

The Incremental Deployability consideration requires the accessibility of Autonomous

Intersections to Human Driven Vehicles (HDVs) in a Mixed traffic Scenario. Several

solutions are considered that seek the implementation of optimisation techniques through

HDV and CAV cooperation.

Lane following, similar to platooning, consists of the batching of HDVs behind a CAV.

The idea is often related to motor way driving and cruise control given its suitability to open

roads however it has been shown to also be effective in AIM under certain circumstances.

Peng et al. [16] apply this model a figure of 8 style traffic network demonstrating a clear

increase of efficiency over time through learning. Platooning, however, requires a minimum

number of CAVs to function efficiently and a complex system to coordinate CAVs and

HDVs. Moreover, the variability of HDV behaviour renders the risk much more significant.

A more realistic approach to mixed traffic AIM to the Shared-Phase-Dedicated-Lane

(SPDL) based intersection control [14] . Ma et al. designed a traffic light based system in

which CAVs use dedicated lanes giving them the ability to go through red lights given the

information of possible safe passage. Although the experiments were applied to classic

4 lane intersections (including 1 CAV dedicated), the authors claim that there is much
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potential for adaptability to different numbers of lanes and traffic scenarios.

2.8 Pedestrians in AIM

The problem of pedestrians crossing at an autonomous intersection without traffic lights

has been scarely considered until Wu et al.’s proposed solution in January 2022[19]. This

paper invents the automated pedestrian shuttle (APS) to transport pedestrians through

designated shuttles. The solution is implemented in a two lane intersection where four

pedestrian nodes are described at each corner of the intersected, as represented in Figure

1 below.

Figure 2.2: Screenshot of sumo Simulation Cross Network [19]

The solution proposes a conflict detection scheme founded on the grid based reservation

system that involves shuttles and pedestrians simultaneously. It seeks to optimise the

delay for both pedestrians and CAVs however does not consider the quantity of passengers

within a shuttle. Although this is problematic for efficiency, it is a convenient solution to

the deadlock/ starvation goal of the desiderata as the shuttle will always be considered as

long as there is a single passenger. This trade-off is also beneficial to the deployability

goal as it conserves the current policy of giving priority to pedestrians.
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2.9 Reinforcement Learning

As seen in the above sections, the modelling of intersections is becoming increasingly

complex as they include modern considerations such as pedestrianisation, vehicle cate-

gorisation (in terms of acceleration abilities and socially defined priorities) and mixed

traffic implementations. A contemporary solution to this question of over-complexity is

the definition of scheduling policies through Reinforcement Learning (RL).

2.9.1 Markov Decision Processes

RL can be applied to Markov Decision Processes (MDPs) to define near-optimal algorithms

for specific reward functions [RL theory]. A MDP is a model consisting of:

Agents are actors who’s behaviour modifies the environment they’re in. Specifically,

these actors attempt to use their behaviour to change the environment in a specified

way.

States refer to the observed state of the environment from the point of view of an agent.

The information contained in a state is all the information an agent has on its

environment before implementing an action.

Actions consist of the possible actions that an agent can take in order to change its

environment purposefully.

Rewards refer to the feedback that an agent receives on the change that its actions have

had on the environment. Essentially, this is informing the agent whether its action

in the given state was positive or negative and the extent to either.

The classic example used to describe MDPs is its application to human behaviour: When

a human (Agent) is hungry (state), it will therefore eat (action) and receive gratification

(reward).

2.9.2 RL algorithms

RL is an intermediate between supervised and unsupervised learning. As the knowledge

it receives is limited to the reward (a number), it must itself explore the environment

to seek out action paths that return the greatest return. On the other hand, an agent

must weary of the volatility of rewards as the environment changes. Indeed, the reward

for the same state/action pair may vary from outside factors. It is therefore important

to strive toward maximal reward, exploiting its knowledge of the system, thus checking

10



that the state/action pair is still the best possible solution. This compromise is managed

in different ways for different algorithms:

Brute force is the algorithm consisting of testing every action from a state and finally

selecting that with the highest reward. This algorithm can be very computationally

demanding and can lead to local minima if the reward function is volatile.

ϵ-Greedy consists of the direct application of the exploration/exploitation trade-off: with

probability ϵ, the algorithm will choose a random action and with probability 1− ϵ,

the algorithm will choose the best action. Thereby, it will keep exploring while

maintaining the optimisation of reward at an extent set by ϵ.

While the above algorithms describe the ways to select an action path, Q-learning describes

how to process and store rewards for state/action pairs in a way that is most likely to

reflect both the history and the potential of state/action rewards in order to accurately

demonstrate its overall value, or more specifically, its Q-value.

Q-Learning

In Q-learning, Q-values are stored and updated in a Q-table. This table consists of the

states on one side and the Q-values for every item in the action-space on the other. This,

as well as the training process is shown in the Figure 2.3 below:

11



Figure 2.3: Q table [20]

As shown in 2.3, the final table or Q-function is particularly heavy in data storage

given the large number of states in many common use cases.

The updating of Q-values is achieved by the equation below:

Qnew(st, at) = Qold(st−1, at−1) + α ∗ (rt + γ ∗maxQ(st+1)−Q(st, at))

Here, the variables are defined as:

Qnew(st, at) refers to the new update of the current Q-value being processed.

Qold(st−1, at−1) refers to the last version of the current Q-value being processed.

maxQ(st+1) refers to the maximum Q-value out of all the actions possible from the current

state. This shows that the Q-value includes not only rewards but the expected

potential rewards as well.

α learning rate This parameter is a multiplier that defines the extent to which a new

action/reward input can change the Q-value of a specific state. If the learning state

is high then the Q-value may reach it’s final value more quickly however it would be

more volatile and susceptible to local maxima.
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Γ discount rate Also a multiplier, gamma defines the impact of estimated future potential

achieved through the action and the state that resulted from this action. In terms of

Q-learning, this future potential refers to the maximum reward stored for the new

state.

2.10 Implementations of DRL in AIM

The significant advancements of Deep Learning since 2012 have revolutionised modelling

in almost all domains of engineering. Artificial Intelligent techniques such as Deep-RL also

show much potential to solve complex modelling issues such as those discussed in traffic

modelling.

Although few applications of DRL have been implemented in unsignalised AIM, Deep-

RL has shown to be very effective with signalized intersections [6]. Huo et al. apply

imitiation learning (IL) for pre-training and DRL for fine tuning their model. The

framework is applied to networks between 1 to 9 intersections and varying traffic flow rates

(including unbalanced flows). The quantitative analysis is thorough, including measures

for queue length, average vehicle waiting time and average vehicle fuel consumption for

the experimental model, a predefined optimization scheduling policy and two fixed-time

policies.

2.11 Overview

Throughout this section, we have subtly examined the factors showing the significant gap

in research regarding the implementation of Q-Learning for distributed AIM. Indeed, the

domain preference for distributed systems over centralised systems suggests a progressive

rejection of classic traffic light control and its replacement with modern AI based scheduling

policies as CAV technology becomes increasingly commonplace in society. Reinforcement

learning, a new and promising branch of AIM that has scarcely been implemented for

unsignalised traffic intersections is a powerful tool for creating models too complex for

algebraic resolution. With the added complexity of a distributed system added to the

modern considerations of pedestrianisation, spatial frameworks, vehicle prioritisation and

mixed traffic implementations, the viability of distributed RL applications to unsignalised

traffic intersection must be resolved.
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2.12 Closely-Related Projects

2.12.1 Success of RL in Traffic light control

In the work achieved by Liu et al. [12], the intersection model is reduced to a Markov

Decision Process in order to implement reinforcement learning. Here, the agents are

traffic lights, the reward is the average waiting time and the actions are the setting of

the next light configuration, as shown in Figure 2.4 below:

Figure 2.4: Action Space for traffic light control: light configurations [12]

Indeed, the training of the model was shown to be very effective with the final

performance shown in the Figure 2.5 below:

Figure 2.5: Training performance of different RL applications with fixed time traffic lights
as a baseline[12]

Through this figure we can observe the success of RL implemetations in traffic signal

control specifically for centralised learning. Specifically we see three types of RL used:

Local learning refers to sets of traffic lights that only have access to the traffic observa-

tions of their junctions
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Distributed Learning refers to the sharing of information between independent agents

each learning from this information

Centralised Learning refers to all sets of traffic lights being slaves to a master agent

intersection manager

Note: In this paper, the term Distributed Learning is used to refer to shared learning

between different sets of traffic lights. In the context of this report, we will use the term

Distributed to refer to models where CAVs are learning.

2.12.2 RL applications unsignalised intersections

Wu et al [20] describe the Decentralized Coordination Learning of Autonomous Intersection

Management (DCL-AIM). This approach consists of a reinforced learning application to

AIM in the same tile-based intersection type as described by Dresner and Stone.

They use the tiled framework to implement a tile reservation protocol. When the reservation

protocol returns a potential conflict, a flag is raised:

Figure 2.6: Intersection diagram in the framework created by Wu et al. [20]

When the flag is raised, the MDP model is considered where the components are:

agents are CAVs coming into conflict

observations are current position, speed, moving intention and the queue length of its

current lane.

actions are m acceleration rates
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reward is set as the negative of the vehicle delay for the given CAV

The paper as a whole included a thorough critical analysis of its results including

learning effectiveness and final performance however fails to consider real world obstacles

such as data storage costs.

Moreover, while the results were successful in terms of learning performance, the final

performance still remains close to the Longest-Queue-First baseline, as we can see in

Figure 2.7 below:

Figure 2.7: Final performance of Wu et al.’s Distributed RL application to AIM [20]

We can observe that in this application, the authors use a reward function benefiting a

specific CAV. However, the final performance metrics consider the intersection as a whole.

Here, the authors show how individualistic actions can benefit the environment as a whole.

However it does not consider whether communal actions can benefit better.

2.13 Summary

While Reinforcement Learning has been scarcely applied to unsignalised intersections using

individual CAVs as agents, such applications have consisted of specific conflict resolution

frameworks between two CAVs at a time. The case of an agent inside a MPD environment

similar to that of traffic light control applications, with a communal reward benefiting

the junction as a whole rather than specific CAVs has not been considered. On the other

hand, the storage of Q-functions inside CAVs is a significant real world consideration for

distributed AIM unlike that of traffic light control. The minimisation of data storage in a

Q-function would therefore be instrumental to the real world viability of such a design.
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Chapter 3

Design

Over the course of this chapter, we will explore the design choices that went into the

implementation of my distributed Q-learning application to AIM. The objectives of these

choices are to:

1. Reflect real life traffic scenarios

2. Efficiently apply Q-Learning with minimal data in the resulting Q-function (thereby

validating my hypothesis)

3. Put my implementation in context with existing AIM Q-Learning applications.

The design choices that will be covered concern the creation of an appropriate inter-

section model, the RL algorithms used (including rule based boot-strapping) and the

Q-Learning model that minimises the resulting Q-function.

3.1 Traffic intersection model

Assessing which date is collected and processed in traffic simulations is pivotal to the

efficacy of the learning process. To this end, the configuration specifications of a network

have a significant part to play. They will define not only the foundation from which a RL

model can be built but also the data that stems from it. Case in point: the length of the

lanes leading to a junction changes the degree of relevance of any average taken of the

simulation as a whole when interested only in the junction itself. In this section, we will

cover the design choices of the intersection model and discuss the consequences these may

have.
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3.1.1 Intersection type

In order to consider the baseline application of Q-Learning with full data usage ([20]),

we must adhere to its network parameters. Specifically, this application uses a 3 lane

intersection as shown in the figure below:

Figure 3.1: Diagram of a 3 lane intersection

This intersection is indeed an archetype of traffic infrastructure and therefore lends itself

well to the imitation of real life where traffic intersections are increasingly standardised. It

also offers three types of routes: straight, right turn and left turn. The characteristics of

these routes are unique between each other as their traffic flows are impacted by different

factors.

The particular factor that comes into play most significantly in the design of the

Q-Learning model is that of the foes. The foes of a particular route are defined as all other

routes that could potentially come into conflict with it. Namely:

The foes of the straight route are both straight routes emanating from the lanes

perpendicular to it and left-turn routes emanating from the opposite side of the

junction and from the right of the concerned CAV. It has a total of four foes.

The foes of the left-turn route are straight and left-turn routes emanating from all

other directions. With a total of six foes, this route is the most likely to cause

congestion.
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Right hand turns are for all intents and purposes independent of outside traffic. Al-

though the right hand turn can be considered superfluous to RL given its indepen-

dence, it can serve as a valuable baseline to show learning by reciprocity: if left-turn

and straight routes become more efficient while right-turns remain the same the

learning has been successful.

3.1.2 Vehicle Generation

The way that vehicles are generated throughout simulations has a significant impact on

the learning outcomes of RL:

• Vehicle generation with a larger standard deviation will inevitably benefit the

learning process as the RL model will be exposed to more variability in traffic

circumstances. On the other hand, this might reduce the speed of learning for

specific flow rates as vehicles observe the same observed states more infrequently.

Moreover, higher variability hinders the observability of learning over time as observed

metrics are less dependant on performance and more dependant on circumstance.

Case in point: the average waiting time of vehicles will be higher with a bigger influx

of vehicles regardless of whether the scheduling policy better knows how to deal with

it.

• Conversely, learning stemming from vehicle generation with a low standard deviation

will be limited to a certain type of traffic flow (that of the predefined flow rate).

While this is less beneficial to traffic management as a whole, it demonstrates more

acutely the process of learning for specific traffic scenarios.

The choice of standard deviation in our vehicle distribution therefore relates funda-

mentally to the objectives set out for this project: proving the viability of Q-Learning

with our given model. In this context, a lower variability factor is more appropriate and

can be appropriately adjusted after proof of concept.

In order to verify goal 1, we will now consider distributions that traditionally represent

traffic flow.

Poisson Distribution The most commonly used probability distribution to emulate

traffic flows is the Poisson distribution. This distribution assumes the following are true

[9]:

• The arrival of a vehicle does not affect the probability that a second arrival might

occur (ie: vehicle generations are independent of each other).
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• The arrival rate of vehicles is theoretically independent of outside factors however

practically may change over time.

• Only one vehicle can arrive in the same lane at the same time.

These assumptions are verified for most traffic scenarios, thus validating the appropri-

ateness of the model.

Binomial Distribution Given that the Poisson distribution is the limit of a binomial

distribution where trials are considered continuous, the binomial distribution of inserted

vehicles approximates a Poisson Distribution for low probabilities [17]. This is particularly

valid when considering the discretization of simulation steps as a Bernoulli process.

3.2 Choice of RL algorithms

Beyond the analysis of successes and failures of AI algorithms in AIM considered in the

literature review (specifically, section 2.10), the choice of Q-learning was made among

various other RL variations. In this section, we will see why Q-learning is particularly

suitable to the application and consider the specifications of its implementation.

3.2.1 Overview of system requirements and RL algorithms

As established in the literature review, RL lends itself well to AIM where the environment

and action space can be stated as a Markov Decision Process (MDP) but the complexity

of the environment renders its concrete algebraic modelling near impossible to define.

The use of a simulator such as SUMO refines the criteria of the RL solution to imple-

ment. Simulators with discrete time steps offer speed and variability with regards to

the circumstances of the MDP. Moreover, we are able to define a realistic environment

with a large number of states and changeability in the environment. This signifies that

the standard deviation of rewards for a same state will be relatively large. Algorithms

such as brute force or Monte Carlo algorithms which have high computational costs are

therefore likely to waste resources on local minima. Q-learning and the application of

the temporal difference algorithm to define Q-values, however, takes the unreliability of

data into account. By choosing to perform analysis of a single action at a time, it enables

longer training and the encounter of more simulated scenarios.

3.2.2 Q-learning variables

The Q-learning variables defined in section 2.9.2 play a significant role in the refining of

the Q-learning model. In order to refine this model to optimise learning by trial-and-error,
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these variables are arguments in the calling of our system.

Recalling the variable definitions from the Q-value equation:

Qnew(st, at) = Qold(st−1, at−1) + α ∗ (rt + γ ∗maxQ(st+1)−Q(st, at))

α learning rate This parameter is a multiplier that defines the extent to which a new

action/reward input can change the Q-value of a specific state. If the learning state

is high then the Q-value may reach it’s final value more quickly however it would be

more volatile and susceptible to local maxima.

Γ discount rate Also a multiplier, gamma defines the impact of estimated future potential

achieved through the action and the state that resulted from this action. In terms of

Q-learning, this future potential refers to the maximum reward stored for the new

state.

Recalling the variable definitions from the ϵ− greedy algorithm:

Epsilon ϵ This variable defines the likelihood of choosing a random action of the action

space (exploration) or of choosing the action with the biggest chance of success.

Decay rate While larger values of epsilon are favourable at the start of a simulation to

explore all options, it is also advantageous to set a low epsilon after all actions have

been considered to verify the accurateness of the maximum Q-value action. For this

we define a decay rate as a multiplier to ϵ : with every learning cycle, the value of ϵ

gets smaller. From a macroscopic point of view, this represents a transition from a

state of exploration to a state of exploitation of the system.

ϵ Minimum While exploitation is favourable in the later stages of Q-learning, total

exploitation goes against the principle of Q-learning: actions other than that of the

maximal Q-value will no longer get the opportunity to update their Q-values and

compete with the maximal reward action. To ensure that learning is still happening,

we set a minimal ϵ so that some exploration is still possible.

By calling the arguments every time we train the model, the variables can be comfortably

tuned depending on learning performance.

3.2.3 Rule based imitation learning

Imitation Learning, as defined by Huo et al. [6] is the learning and updating of Q-values

through the imitation of an expert. While this definition strays subtly from the usual

definition of learning as the imitation of human behaviour [7], it puts forward an interesting
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idea: the implementation of a rule based scheduling policy to start the learning process

from an advanced position. Indeed, Huo’s implementation consists of this: imitation

learning followed by fine tuning through Deep RL. Algorithmically, this implementation

is relatively uncomplicated, with the replacement of the ϵ−Greedy algorithm by a rule

based algorithm until a certain time (or simulation step) T . At this point, the Q-function

will have learnt the benefits of the rule and be able to refine the model where the rule is

sub-optimal.

The decision of which rule to is therefore crucial to the final performance of the Q-function.

As it is a starting point for learning, the rule need not be particularly computationally

costly. In the works of Wu et al. [20], both FCFS and Longest queue first are used as

baselines, shown in Figure 3.2 below.

Figure 3.2: Graph of the Q-function results of Hu et al. with LQF,
FCFS and traffic light scheduling policies as baselines

As shown in Wu’s results, FCFS performs very well, almost matching their own

implementation of RL. This rule is therefore chosen as the basis learning of our model.

3.3 Q-Learning Model

3.3.1 Definition

As defined in section 2.9.2, Q-Learning models are defined by agents, action spaces,

observation spaces, the reward function and action/reward time intervals. In the context

of distributed AIM, each of these actors have their own subtleties as described below:
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The Agents : In the context of unsignalised AIM, agents are CAVs themselves. In the

learning process, they both receive actions and learn from these actions. In real life

applications, CAVs use the q-function to establish the best course of action.

The Action Space : Whereas a centralised model might be able to explicitly decide

which CAVs have priority over which and grant them access, a distributed model

must define the priority of the intersection in a more implicit manner where specific

agents take action rather than every CAV as a collective.

The Observation Space : This factor defines the contextual information that is relevant

to the decision making process. It is highly dependant on (i) what the agents actions

are applied to and (ii) the type of actions themselves.

The Reward Function : This function defines the extent of success of the applied

actions and applies it to the generated Q-values. For efficient learning, a clear and

significant correlation must exist between the action space and the reward.

Action/Reward Interval: The time interval between applying an action and assessing

the impact that this action has had on its environment is crucial to the learning

process. While the effect of an action may achieve its maximum at different moments

in time depending on the environment state and the action in question, a rule must

be made to seek out this maximum for all cases.
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3.3.2 Definition of factors and model minimisation

While the closest rival to this project (DCL-AIM [20]) takes every CAV as agent and

applies controlled simulations to learn how to deal with conflict, a top down approach is

taken in this system, similar to those implemented to traffic light control in section 2.12.1.

In this case, the general state of the intersection is considered rather than any specific

conflict resolutions.

Agents When considering the state of a junction, the behaviours of every CAV in

incoming lanes do not carry the same significance. Rather, the CAVs at the front of a lane

have the largest impact on both the next state of the junction and of the CAVs behind

them in the lane. As seen in section 2.7, the RL lane-following solution put forward by

Peng et al. [16] offers an elegant method to minimise model complexity while retaining

significant control over all actors of the intersection. Reducing the number of agents to one

per lane also has the advantage of simplifying the observation space as the environment

is more specific. Case in point, the positioning of the CAVs with regards others in the

lane is no longer a factor to be considered: it is always at the front. We will therefore

define agents as the leaders of every lane incoming to the junction.

Actions The definition of actions is likely the most controversial and changeable factor

in such a system. Unlike in RL application to traffic lights, actions in a distributed system

have the challenge of having to rival other environment factors in terms of impact on

the junction. In other terms, the consequences of the actions applied to one or several

leading CAVs must be sufficiently noticeable so as not to be drowned out by changes in

environment stemming from traffic flow not affected by the actions. Moreover, the size

of the action space has a proportional relation to the speed of learning: the large the

number of possible actions implies a longer learning rate. The action space must therefore

be minimised as is required for an appropriate learning rate. The chosen action space

has evolved over various trial-and-error implementations. Initially the action space was

the setting of acceleration of a given agent to different rates (i.e., 3 acceleration rates

are ”decelerate - remain the same - accelerate”). Thereby, with relevant information on

the state of the junction and incoming traffic, a CAV would learn to adjust its speed

accordingly. However, and even with varying numbers of acceleration rates (3, 5 and 7),

this action space proved ineffective to learning. While this solution had theoretical promise,

its failure to learn is attributed to an insufficient impact on the junction. The final chosen

action space is more similar to that of the conflict resolution system implemented by Wu et

al.[20]. It consists of the election of an agent among its foes. The elected agent accelerates
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or has some form of priority advantage against its foes depending on the implementation

restraints. CAVs on a straight route and those on a left turn route each have four foes so

the action space will therefore be an integer between 0 and 4, thus selecting the CAV to

accelerate.

Action/Reward Time interval The time interval between action and reward has a

significant impact on agent learning. It must seek maximisation of effect on the junction.

While former attempts to apply distributed Q-Learning set this interval to a constant

parameter ∆ seconds or simulation steps, a more effective attribution of the interval is

acquired by a rule based trigger. Namely, the maximum effect of the action can often

be found as the acted-upon agent vacates the junction. The computation of reward is

therefore best triggered upon this event. The application of this trigger in context of a

Q-Learning cycle is shown in figure 3.3 below:

Figure 3.3: Timing Diagram of a Q-Learning step

Observations The observations that influence the decisions of an agent must be those

most relevant to the desired reward. Namely, if the goal is to resolve conflict with minimal

overall congestion within the junction then the relevant information of incoming traffic is:

• The vicinity of incoming lane leaders to the junction

• The speed of incoming lane leaders

• The vehicle density of incoming lanes

Note that the same leader following approach is taken for observations: the speed and

position of every CAV is not always significant. The capture of observations at specific

instances define the model states. This signifies that fewer observations would lead to

fewer states. This contributes on one hand to the minimisation of data storage, and on the

other can have a positive effect on the learning process: data gathered on incoming traffic
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that does not significantly effect the trajectory of a vehicle is redundant and strains the

learning process. Indeed, x states that are differentiated only by superfluous information

retain only 1
x
of the information gathered. The learning process will therefore be x times

slower. A further step toward this goal is the consideration of only the information from

conflicting lanes (or foes). Any other information can be deemed superfluous.

Reward Although the primary goal of the reward function is to define the metric that

is to be optimised through the system, its definition must also take into account the

effectiveness of the learning that stems from it. Indeed, the optimisation of one metric

in the short term might have greater repercussions for another metric in the long term.

For example, the minimisation of fuel consumption involves penalising vehicle breaking.

A system that aspires to reduce the congestion of a junction would also seek to conserve

vehicle momentum by penalising vehicle breaking. Thereby, the desired outcome may be

very similar while learning characteristics may differ. For this reason, and with the overall

objective of minimising the average waiting time of vehicles, the following reward systems

can be implemented and contrasted:

Accumulated Waiting Time This refers to the total delay (sum of the waiting times

of all approaching vehicles) changed in relation to the previous time-step. With

the waiting time defined as ”the time in which the vehicle speed was below or equal

0.1m/s” [18], this reward function does not learn efficiently unless there is sufficient

congestion in the junction. More significantly, however, it is not proportional to the

number of vehicle in the simulation. Its implementation is therefore limited to cases

where the flow rate of vehicles is constant. As seen in section 3.1.2, this might be

sufficient for the proof of concept of my hypothesis, where the standard deviation of

vehicle generation can be low.

Number of vehicles under a specified speed threshold This reward offers a solu-

tion to the latter problem where the user can define an appropriate cutoff depending

on the congestion of the junction. Again, this solution is only appropriate for constant

vehicle flow.

Average speed within the intersection Although this reward is normalised with re-

gards to the number of vehicles (and therefore applicable to varying flow rates and

congestion), it strays further from the desired goal due to the lack of consideration

of elements such as momentum. For example, it would not be ideal for the same

Q-value to be rewarded to an environment where one vehicle is at a standstill and

one is at maximum speed and an environment where both vehicles are at medium

speed.
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Average fuel consumption As described in the example above, this solution penalises

breaking, which in turn favours the minimisation of waiting time. On the other

hand, fuel consumption occurs most during acceleration which often continues after

vehicles leave the junction and may continue after this reward has been computed.

The tailoring of the action/reward interval therefore risks significant complexity.

3.3.3 Agent taxonomy and learning implications

Shared learning is the sharing of Q-tables between different agents of the same type. This

process involves exploiting and updating Q-tables. The fundamental requirement for this

process to be appropriate is that the states and actions be considered in the same way.

In other words, the observations of two different agents are for all intents and purposes

considered to have the same significance.

As establish in section 3.1.1, every CAV will have its own set of foes depending on its

route and starting point. The observations established in 3.3.2 are specific to the lane of

an agent and its foes. While left-turn routes are well suited to shared learning between

them (given that they all consider the same set of foes), the structure of the states must

present the observations in a coherent manner to be interpretable in the same way for all

agents. Namely, the ordering of the observations must consider the context of the CAV as

shown in the example below:

( a )

State = [ Obs ’ l ane x ’ , Obs ’ l ane y ’ , Obs lane z ’ ]

(b )

State=[” Obs f rom lane to my r ight ” , . . .

. . . , ” Obs f rom lane ac ro s s ” ,” Obs f r om lane to my l e f t ” ]

Listing 3.1: Examples of (a) false and (b) correct structuring of states

for successful shared learning

Similarly, straight routes have specific foes that contribute to the retrieval of observa-

tions. By the same contextual structuring of observations, all straight routes can apply

shared learning between each other.

Q-Learning can therefore be applied to each route as a collective of agents. The CAVs

(agents) receive observations on their particular foes, structure these observations as a state

that is structurally uniform for all agents on a particular route and update the Q-table

accordingly.
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3.4 Summary

3.4.1 Overview of the design

To summarise all aspects of the distributed Q-Learning AIM framework design:

The network design consists of a three-lane four-way intersections. Three possible route

types are therefore possible: right-turn, straight and left turn. Vehicle generation

will be constant as long as the goal is to verify viability of the system. In any other

context, vehicle flow should be set to a Poisson Distribution.

Q learning is to be implemented firstly with LQF learning followed by ϵ-Greedy learning.

Input arguments for the trainig stage should be: Q-value variables (α and γ), ϵ-greedy

variables (initial ϵ, decay rate and final ϵ) as well as the transition time T from

imitation learning to Q Learning.

The learning model has leading CAVs as agents, a foe election as action, the vacating

of the junction of the acted upon CAV as the trigger for learning, position of and

speed of leading vehicles and density of incoming foe lanes as states, a selection of

choice rewards and shared-learning for all agents on the same route type.

3.4.2 Pseudo code

I n i t i a l i s e environment

I n i t i a l i s e Q−agent types

Dec lare Q−tab l e s , a c t i on space , obse rvat i on space

While Veh i c l e s generated :

Update the cur rent agents

Choose agent at random

s t a t e = Get obs e rva t i on s ( agent )

i f time<T:

Apply ac t i on : LQF

else :

Apply ac t i on : ep s i l on−greedy

Wait t i l agent l e av e s the i n t e r s e c t i o n

new state = Get obs e rva t i on s ( agent )

Compute reward

Compute Q−value ( s ta te , act ion , new state , reward )

Update Q−t ab l e
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Listing 3.2: Pseudo code describing the RL algorithm applied to dis-

tributed AIM

Note: Given that an action changes the state of the environment, the choice of CAV

to act upon should be taken at random. This avoids the bias that comes with cyclical

CAV selection.

Foes = [ Acting agent , l ane 1 , . . . , l ane n ]

Dense [ ] = Get dens i ty ( f o e s )

LQ = max(Dense ) . index

Acce l e ra t e (LQ)

Listing 3.3: Pseudo code describing the LQF action selection

Foes = [ Acting agent , l ane 1 , . . . , l ane n ]

Get eps i l on , eps i l on min

i f np . rand ( ) < s e l f . e p s i l o n :

e l e c t e d = Foes . random

else :

e l e c t e d = max( q t ab l e [ s t a t e ] )

Acce l e ra t e ( e l e c t e d )

i f ep s i l o n > eps i l on min :

e p s i l o n = ep s i l o n ∗decay

Listing 3.4: Pseudo code describing the ϵ-greedy action selection

For veh in s imu l a t e d v eh i c l e s :

i f on junc t i on ( veh ) :

accumulated speed = getSpeed ( veh )

junc t i on count ++

speed reward = accumulated speed / junc t i on count

Listing 3.5: Pseudo code describing the computation of reward = ”aver-

age speed within the junction”
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Chapter 4

Implementation

4.1 Tools for implementation: Sumo environment and

network configuration

4.1.1 Overview of Sumo

Sumo, an acronym for Simulation of Urban MObility, is a traffic simulation package

provided by Eclipse and designed for the implementation of complex traffic modelling

and simulation. The package takes into account the many considerations of modern AIM

modelling established in the Literature review, allowing users to emulate traffic scenarios

with different vehicles classes such as cars, buses, lorries, cyclists, pedestrians and many

more. SUMO also supplies many tools for the automation of modelling. A more elaborate

example of this is the network importation tool that can be used to automatically generate

networks from road-maps. The Graphical User Interface (GUI) is also well designed and

snapshots from the GUI will be used for illustrations in this section.

4.1.2 Traffic Control Interface and Sumolib

The Traffic Control Interface (TraCI) uses a TCP based client/server architecture to

provide access to sumo [13]. This tool thus allows its users to run simulations and retrieve

or set variables mid-simulation from a Ubuntu terminal. It is through this tool that the

design can be implemented, specifically to:

1. Run the simulation for training

2. Retrieve the desired observations

3. Apply the desired actions
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4. Retrieve information pertinent to the reward

Note: The above design tasks are therefore constrained by the commands available in

TraCI and the addition python package Sumolib. This may impact the specifications of

these design tasks.

4.1.3 Network specification

Sumo provides an elaborate framework for designing networks, supplying tools for its

automation. The configuration of the network generations consists of the following XML

file:

• mynodes.nod.xml describes the nodes and its characteristics (the junction and

the extremities of each of the four roads leading to it)

• myedges.edg.xml describes the road connections between nodes specifying the

number of lanes.

• mycross.net.xml is automatically generated using Sumo’s netconvert file. It

includes specifications of the entire network design either from the node and edge

files or from assumed norms.

• myvehs.rou.xml specifies and configurates the traffic generation throughout the

simulation

• mycross.sumocfg points to the xml files and specifies simulation length and

automated output files.

• gui-setting.cfg configurates the gui (ie zoom, placement, etc...) This file is optional,

as is gui use.

Nodes and edges

As discussed in the design (section 3.1), the length of the edges have an impact on data

retrieved from the system as a whole. After a process of trial and error, it was found

that a road length of 60m is sufficient to allow for queuing but not so much that it

disproportionately skews any measured averages: the junction remains a fundamental

consideration at any point in the road.

The node and edge XML files can be seen in appendix .1.1.
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Vehicle generation

The mycross.rou.xml file, shown in appendix .1.2 contains the definition of routes and

the populating of these routes with traffic flows. The definition of these traffic flows is

achieved using either arguments:

vehsPerHour which defines a constant traffic flow. In this case it is important to set

every route to a slightly different flow rate in order to avoid identical traffic cycles

probability which sets the vehicle generation to a binomial distribution with x probability

of generating a vehicle every second. As discussed in the Design section 3.1.2, the

binomial model approximates a Poisson distribution for low probabilities. In this

case, this is set around 0.07. Note: the Poisson distribution is available in the next

release of SUMO.

As can be seen in the rou.xml file (appendix .1.2), the binomial distribution has been

commented out but is still available for after proof of concept.

4.1.4 Resulting network

The design of the network can be seen in the GUI capture of Figure 4.1 below:

Figure 4.1: Capture of the mycross network in the SUMO GUI
mid-simulation with zoom = 300
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4.2 Solution overview

This section presents a brief overview of the solution implemented through python classes

and a python script.

4.2.1 Classes and coordination

The framework is comprised of 3 classes, coordinated by a ”Main.py” script that computes

the overall algorithm. These classes are:

SumoEnvironment Modelled from classic multi agent Gym control environment [3],

SumoEnvironment’s main functionalities are to run the simulation, retrieve and save

simulation information for performance analysis and to communicate commands

between Main.py and Lane instances.

Lane The Lane class represents instances of every incoming lane affected by our Q-

Learning environment. For the sake of agent continuity, these are essentially the

delegates to our model’s agents. The main functionalities are therefore to retrieve

observations from the point of view of the agents and apply actions to relevant CAVs.

QL agent This class contains the functions and static variables required for Q-learning.

It feeds actions and retrieves states and rewards to and from the main algorithm

(Main.py).

The coordination, communication channels and main functionalities of each of these

classes are summarised in the UML diagram of Figure 4.2 below:
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Figure 4.2: UML diagram of overarching class structures

4.2.2 High level implementation of Pseudo code in Main.py

The user inputs to Main.py are those described in the design summary (section 3.4.1) with

the addition of –gui and –s arguments. The former, as its name would suggest, allows

users to observe the simulation through training while the former defines the time length

of the simulation.

The pseudo-code describing the high level model algorithm concluding the Design Section

(section 3.4.2) is manifested almost identically in the Main.py script, as shown in appendix

.2. The most significant differences are the use of lanes as proxies to agents and the

updating of epsilon at the highest level of code. The reason for this is the variability of

QL agents: epsilon cannot be updated locally for every QL Agent instance or it will decay

on average at a rate of 1/Nagents times slower than intended, where Nagents refers to the

number of agents.

4.3 Reinforcement Learning framework

The Reinforcement Learning framework used for this project is inspired by the SUMO-rl

framework developed by Alegre, Terry and Kwiatkowski for RL application to traffic light

control[1]. Specifically, this work inspired the configuration of class coordination, the

sumo-environment class and the agent class.
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4.3.1 Overview of SUMO-RL

SUMO-RL provides a framework to apply RL techniques for traffic light control on any

signalised network. The RL algorithms applied in experiments include Q-Learning, SARSA

and Deep Q-Networks. It itself uses and is based off other known RL packages such as

Gym, PettingZoo, stable-Baselines3 and RLib.

This framework implements RL for the following MDP model:

• Traffic lights as agents

• Green phase configurations as action

• Current traffic light phase, current length of the phase, lane density and lane queue

as observations

• And Total Waiting Time as reward

4.3.2 Agent class and shared learning

The QLAgent class is designed to host the algorithms and the variables related to the

Q-Learning process. Unlike in SUMO-rl, this class is not designed to be completely self

contained. To implement shared learning between agents of the same route-type (refer

to Design section 3.3.3), the Q table is passed as an argument to and from its functions.

Concretely, the class contains two functions:

act() This function applies the epsilon-greedy algorithm to choose an action from the

action space. The action is then returned.

learn This function consists of the updating of the route Q table with the computed

Q-value.

To see the precise implementation of these fundamental components of Q-learning, refer

to Append .3.

Given the sharing of Q tables between agents, coordination between each is performed

through nested Q-tables. As shown in the Figure 4.3 below, the ”Q table” is the key

pointing to the value route. The route itself is a key pointing to the states which they

themselves point to their associated Q-values.
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Figure 4.3: Diagram of nested dicts representing shared Q tables

Through this use of nested dictionaries, the framework becomes scalable to any number

of agent types as it becomes possible to iterate through them at any level.

4.4 Implementation of MDP

In this section, the different elements of the Markov Decision Process are specified. Namely:

observations, actions and rewards.

4.4.1 Observations: simplification, shared-learning and Lane

class Properties

Every lane is instantiated with the list of its inherent foes. This being the lanes from

which incoming CAVs risk causing conflict. The ordering of this list also has tremendous

significance: it is in the order of foe positioning relative to that lane. Ie: starting lanes

starting from the right and ending on the left of the lane in question. This will enable

the contextual structuring of observations necessary for shared learning, as described in

section 3.3.3.

The application of this is seen in the function to get the leading vehicle speed and position

(Appendix 11). Indeed, the foes list is iterated in contextual order, thus defining leader

speed and position in that same order. Hence, the observations and states will maintain

this structure defined by contextual position rather than arbitrary name.

The simplification of data is also achieved in this function: Rather than storing the position

of vehicles inside the lane, leaders are ordered as a ranking based from their vicinity to

the junction. The result is therefore a list of integers between 0 Nfoes rather than floats.

Similarly, we can see in the compute observation() (appendix 11) function that vehicle

speeds are reduced to 4 speed brackets, thus reducing the variability of observation. A

further difference from the design specifications is the dropping of the Densities observation.
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This is due to the excessive state variability that came with its representation, even as an

integer.

4.4.2 Actions: Applied to LQF and epsilon-greedy

The final action chosen in the design of the framework is that of foe election and acceleration.

As described in the Design section (section 3.3.2), this action consists of the selection of one

CAV amid its foes to give an advantage to in the potential conflict. The implementation

of this action can be seen in appendix .4.2. Here, we see the specific advantages granted:

The raising of its maximum allow speed from 14 to 25 and the setting of it’s ”speed mode”.

Speed mode refers to a register of checks as defined by Sumo in Figure 4.4 below:

Figure 4.4: Capture of the Sumo description of the setSpeedMode
function [13]

In this capture, we can observe the checks that are usually considered by SUMO

vehicles. The advantage given is the waiving of all of these checks by setting the register

to [1 0 0 0 0 0] = 32.

4.4.3 Rewards

Various reward functions have been implemented and tested in throughout this project.

As discussed in the Design section, the concern with respect to rewards is that of volatility.

For accurate learning, reward should be specific and stable. As described in the Design

section, several reward functions should be experimented with. These rewards, shown in

appendix .4.3 are:

get ave speed in junction() This function has been applied using the sumo getDistance

function to establish the vehicles in and around the junction. getDistance() returns
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the distance vehicles have travelled since entering the simulation. The correct bracket

(here [100-150]m) is therefore a good indication of its proximity to the junction. It

there are no vehicles in or around the junction then the reward is set to -999 which

is later filtered off.

waiting time reward() As specified in the system designs, this reward focuses on the

minimisation of vehicles at standstill. Although this reward neglects the consideration

of optimising the delay of moving vehicles, it has been observed through simulation

that the breaking of left-turn vehicles to standstill when awaiting their foes is the

greatest obstacle to junction efficiency. Theoretically, this reward would therefore

address this obstacle.

get num slow vehs() This function acts as intended in the design where the cut off limit

for vehicles considered slow is under 11m/s. This reward therefore aims to optimise

the passing of vehicles at a high speed. The corollary of this is that standstill vehicles

are less emphasized than the previous reward function.

4.5 Summary

The framework was successfully implemented in 3 python classes and a command script

through the use of tools and libraries such as sumo, netedit and traci. This implementation

followed the intended design with detail. The most significant differences are:

• The use of lanes as proxy agents to the CAVs themselves

• The use of SpeedMode and an elevated acceleration maximum as the action to an

elected CAV. This was defined in the design as any advantage in the claiming of

junction priority.

• The dropping of the densities observation and the categorisation of vicinity and

speed into a ranking and bracket categories respectively.

• The implementation of three reward functions: Average junction speed, Total waiting

time and Number of vehicles under a specific thresh-hold.
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Chapter 5

Evaluation

The overall goals of the evaluation chapter is to define if and to what extent, the imple-

mented framework has solved the aims set out in the introduction 1.3. As a reminder, the

primary goal of this project is to validate or disprove the hypothesis that the minimisa-

tion of data storage in Q-functions could be implemented for distributed AIM without

significant concessions in the overall performance. To assess the success of this ambition,

the chapter will consist of 4 sections:

• How to evaluate: Metrics and baselines

• What to evaluate: Experiments performed

• Results

• Analysis

5.1 How to evaluate: Metrics and baselines

The primary goal of this project, as described above, has two implications:

• The framework must successfully demonstrate learning

• The resulting Q-function must have perform rates comparable to the rival distributed

RL application [20] and standard baselines in the AIM field.

5.1.1 Metrics

In order to assess the performance of either learning or Q-functions, we must decide

what metrics these performance rates are based on. Fortunately, a set of metrics have
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already been described as functions in our framework: the reward functions. These reward

functions are:

• Average speed in and around the junction

• Total waiting time of vehicles

• Number of vehicles slower than x in the junction

5.1.2 Demonstrating Learning

The effects of learning are seen through the improvement of performance metrics over the

training period. The overall slopes of performance curves are a good indicator of learning

rate. For this indicator, the decay of ϵ is a significant consideration in the interpretation

of the slope: it must also be apparent.

Another indicator of learning is the time taken to achieve a specific performance. While

this indicator is more specific and does less to show the learning performance as a whole, it

offers a quantitative result comparable to other implementations. It is also more adaptable

to real life applications where we might train until reaching a specific performance level.

The baselines that will be used to compare the learning performance of our design will

be: the rival distributed RL application [20] and the Q-Learning framework for Traffic

Light Control. Although the latter cannot be compared in terms of final performance due

to the physical constraints of traffic lights, the learning process can be examined.

5.1.3 Evaluating Q-functions

The performance of Q-functions essentially uses the same performance metrics as those

of learning performance but considers only the final instances of training. These can be

compared to any other scheduling policies for unsignalised AIM. For this application we

will use as baselines: the rival distributed RL AIM application, FCFS and LQF. The two

latter scheduling policies are standard scheduling policies used as baselines throughout the

AIM field [21].

5.2 What to evaluate: Experiments performed

A significant characteristic of Reinforcement Learning is the notorious design challenge of

selecting actions and rewards that learn well together. It is for this reason that our design

comprises several possible actions and several rewards.
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Experiment Action Reward -s -t -ϵ -d α

1 Election Junc. Speed 100,000 30,000 0.8 0.999 0.1

2 Election Nslowvehs 100,000 30,000 0.8 0.999 0.1

3 Acceleration: 3 rates Junc. Speed 100,000 30,000 0.8 0.999 0.1

4 Acceleration: 3 rates Nslowvehs 100,000 30,000 0.8 0.999 0.1

5 Acceleration: 5 rates Junc. Speed 100,000 30,000 0.8 0.999 0.1

6 Acceleration: 5 rates Nslowvehs 100,000 30,000 0.8 0.999 0.1

Table 5.1: Table summarising the simulations performed

5.3 Results

5.3.1 Baselines

Learning performance

Although the performance metrics themselves are not comparable to those of our experiment

given that the Traffic Control RL framework is designed for a 2-lane intersection rather

than a 3-lane intersection, as discusses in section 5.1.2, the evolution of these metrics can

be used to evaluate our own. This is shown in figure 5.1 below:

Figure 5.1: Plot of total waiting time of simulated vehicles over a
training period of 100,000s

We can indeed see that the total waiting time has a clear decrease throughout the

training time. As discussed in the Literature Review (section 2.10), this evolution can be

expected to be exponential.
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The convergence the rival paper can be seen in appendix .5. In this, we can observe a

much more immediate convergence and stabilisation. The convergence rate of the model

is indeed specific to the use case.

5.3.2 Experiment performances

Learning

The plotting of performance metrics over the training period of every experiment can be

found in the appendix .7. An example of these results is shown in Figure 5.2 below:

Figure 5.2: Plot of performance metrics over a training period of
100,000s for Experiment 1

The results of experiment 1 are representative of the results for every experiment. We

can observe that neither the average speed of vehicles in the junction nor the number of

vehicles show any particular evolution over the training period. This is symptomatic of

unsuccessful learning.

Q-function performance

Given that learning did not occur through the designed framework, the final Q-function

essentially implements Longest-Queue-First with random variations. The final Q-table is in

fact not a product product of Q-learning and therefore not a Q-function. Its performance

is therefore superfluous to the already established performance rates of LQF.
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Nevertheless, the final size of the Q-table is indicative of the potential size of a

Q-function. For each experiment, these are shown in the table below:

Experiment Left-turn Straight -s

1 5005 4498 100,000

1 7252 6521 200,000

1 10108 9133 400,000

2 4349 4926 100,000

3 5287 4464 100,000

4 5591 5352 100,000

5 5392 4221 100,000

Table 5.2: Table summarising the length of generated Q-tables for every
experiment

In the table above we can observe that no significant relationship can be deduced

between the Q-function model described and the exploration of the environment. On the

other hand, the increasing size of the Q-table for increased training periods is an indication

of vast unexplored territory in the MDP environment, as will be discussed below.

5.4 Analysis

5.4.1 Investigation

In order to understand the reasons that learning did not occur, we must look at samples

of the generated Q tables themselves. A sample of the Left-turn Q-table of experiment 1

for a 40,000s training period is shown in Figure 5.3 below:

Figure 5.3: Sample of the Straight Q-table of experiment 1: States are
shown on the left and action Q-values on the right
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From Figure 5.3 we can observe the states in the form [leader position rank, leader

speed group] and Q-values in the form [QCAV 0, QCAV 1, QCAV 2, QCAV 3, QCAV 4].

This figure reveals two particular characteristics of the Q-table:

• For many states, specific actions have not been tested. This is manifested

• The distribution of actions is biased toward specific action values: the same action

is taken a disproportionate amount.

The former of these characteristics is symptomatic of an excessive number of both

states and actions. This is further shown in table 5.2 of section 5.3.2. Here, we see that the

number of states within the Q-table has not stabilised by the end of the training period.

Although the solution of extending the training period to 400,000s has been considered

and implemented (Results shown in appendix ), this solution still fails to yield clear signs

of learning, as shown in appendix .7.2.

Indeed, the total number of possible states are :

Npos−permutations = n!/(n− r)! = Nfoes!/(Nfoes −Npositions)

Nspeed−permutations = N
Nspeeds

foes

Where Nfoes = 5, NpositionsandNspeeds = 4, we have:

Nstates = Npos−permutations ∗Nspeed−permutations

Nstates = 120 ∗ 625 Nstates = 75000

The maximum number of states are therefore 75000. In any of the specified training

times, it is therefore inconceivable to train a Q-table with so many states: adjustments

must be made.

5.4.2 Adjustment to framework states: One hot encoding

Given the excessive number of states in the current generation of Q-tables, another strategy

was adopted: that of one-hot encoding of the observations. This consists of the identifying

of the closest and the fastest leading vehicles by assigning them to ”1” and assigning all

other vehicles to ”0”. It’s implementation is seen in Figure 5.4 below:
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Figure 5.4: Code snippet of 1-hot-encoding variation
getobservationsfunction

The reduction of states in this way is therefore very significant, going from 75000 states

to a mere 160, as shown in table 5.3 below:

Experiment Left-turn Straight -s

7 160 160 100,000

7 160 160 200,000

Table 5.3: Table summarising the length of generated Q-tables for
experiment 7

Although the number of states are restricted, this is achieved at a significant cost in

the agent knowledge of the environment.

The results stemming from this adjustment and applied to the same conditions as

Experiment 1 are shown in appendix .7.3. We can observe in this plotting that learning is

still unsuccessful.

5.4.3 Proof of concept

Despite the unsuccessful learning process stemming from the thin line between an excessive

number of states in the Q-table and an insufficient amount of data for agents to make

an informed decision, we can still demonstrate the functionality of the framework in the

generation of accurate Q-tables. To this end, data must be extracted from the table

demonstrating positive reward for the correct action given a state. This is achieved by

retrieving the maximum rewards in Q-tables and verifying that they correspond to the

appropriate action for the given state. The execution of this task for Experiment 7 is

shown in Figure 5.5 below:
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Figure 5.5: Capture of maximum rewards and associated states for
experiment 7

We can see in Figure 5.5 that an extremely high reward is attributed to the appropriate

action. In this case, the one-hot encoding indicates that lane 1 is both closest to the

intersection and at a high speed for Q-table left turn. It therefore follows that a very high

Q-value is allocated to the election of lane 1. The same case is considered in the straight

Q-table for the same lane.
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Chapter 6

Conclusions & Future Work

6.1 Conclusions

Although this project yielded results that were unable to concretely validate or disprove

the hypothesis I set out to investigate, a deep analysis into the needs and characteristics

of the application of distributed Q-learning to unsignalised AIM was achieved. Specifically,

I saw the extent to which the minimisation of possible permutations of observations is

fundamental to the learning process: a small increase in the observation space can lead to

a significant increase in the number of states of a Q-table, thus slowing the learning process

to an exponential degree. Moreover, over the course of this project I was able to design

and implement a functional framework for the implementation of distributed Q-Learning

to unsignalised AIM. This framework includes easily modifiable observation, state and

reward functions in order to further explore the fine line between the minimisation of

Q-table entries and insufficient agent knowledge over its environment.

6.2 Next steps

The most immediate step in the development of this project is the further exploration of

observation/action combinations to yield well performing learning results. Concretely, this

could be achieved by the variations of the one-hot encoding technique such as indicating

the x CAVs closest to the junction.

Long term, this framework could lend itself well to other implementations of reinforce-

ment learning such as Deep-Q networks.
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Appendix

.1 Network configuration

.1.1 Network configuration

Figure 1: Snippet of the definition of nodes in mynodes.edg.xml

Figure 2: Snippet of the definition of edges in myedges.edg.xml
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.1.2 Vehicle generation

Figure 3: Snippet of the definition of routes in mycross.rou.xml

Figure 4: Snippet of binomial distribution vehicle generation in
mycross.rou.xml (commented out)

Figure 5: Snippet of constant vehicle generation in mycross.rou.xml
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.2 Main.py

Figure 6: Snippet of the designed algorithm coded in main.py

.3 QLAgent class

Figure 7: Snippet of Act() function performing epsilon-greedy in the
QLAgent class

53



Figure 8: Snippet of learn() function updating the Q-table in the
QLAgent class

.4 MDP

.4.1 getObservations()

Figure 9: Snippet of compute observations() function in the Lanes class
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Figure 10: Snippet of the function for fetching leading vehicle position
and speed in the Lanes class

1 hot encoding of observations

Figure 11: Snippet of the function for fetching leading vehicle position
and speed in the Lanes class
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.4.2 Actions

Figure 12: Snippet of the foe election and accelerate action function in
the Lanes class

Figure 13: Snippet of the acceleration action function in the Lanes class
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.4.3 Rewards

Figure 14: Snippet of the Speed within junction reward function in the
Lanes class

Figure 15: Snippet of the two functions defining the Waiting time
reward in the Lanes class

57



Figure 16: Snippet of the get num slow vehs reward function in the
Lanes class
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.5 Baseline

.6 Results

.6.1 Training period: 100,000s

Figure 17: Convergence of individual rewards (left), coordination
learning (right) for the DCL-AIM rival algorithm [20]
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.7 Results

.7.1 Training period: 100,000s

Figure 18: Plot of performance metrics over a training period of
100,000s for Experiment 1

60



.7.2 Training period: 400,000s

Figure 19: Plot of performance metrics over a training period of
400,000s for Experiment 1

.7.3 1-hot-encoding for observations

Figure 20: Plot of performance metrics over a training period of
100,000s for Experiment 7
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