

Introducing Education on Test Driven Development

into the Pytch Learning Environment

Matthew Lynch

Supervisor: Professor Glenn Strong

April, 2022

A dissertation submitted in partial fulfilment of the requirements for the
Final Year Project of Masters Year of Electronic & Computer Engineering

"I have read and I understand the plagiarism provisions in the General Regulations of the University
Calendar for the current year, found at http://www.tcd.ie/calendar.

I have also completed the Online Tutorial on avoiding plagiarism ‘Ready Steady Write’, located
at http://tcd-ie.libguides.com/plagiarism/ready-steady-write."

http://www.tcd.ie/calendar/
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

ii

ABSTRACT

The education of young and novice programmers is an ever-evolving field due to the prominence of

new programming languages in the information industry. Current introductory programming

environments are dominated by web-based tools such as MIT’s Scratch service (Scratch Foundation,

2021). The goal of the Scratch platform is to offer engaging learning content targeted at younger users

and children through block based programming in order to introduce the basics of programming logic

and hopefully encourage the next generation of programmers. However, there is a gap in this

educational field from the step from Scratch-like environments into the industry standard tools that

are taught and used in Computer Science courses at third level education today. These introductory

platforms are also only used to form a base knowledge of programming logic in the minds of new

programmers where there is potential for introducing other industry standard practices such as Test

Driven Development.

Pytch, which forms its name from a combination of ‘Python’ and ‘Scratch’, is a web-based

programming environment centred around the education of the Python language through editing and

compiling python code in browser, but also offers Scratch-like block component descriptions of its

functions. This allows the platform to be a steppingstone platform for novice programmers with

experience with Scratch to better adjust themselves to actual code editing in Python, rather than using

the Scratch block based framework. The currently under development Pytch platform already has a

series of pre-built projects that can be run as fully completed projects in the Pytch environment or

they can be experienced through Pytch’s tutorial environment which offers a step by step guide on

the chronological building of the project.

This project analysed the current tutorial structure of Pytch by studying its design from both a frontend

website and also backend application perspective through what documentation material was available

and also from investigating the file and system structure manually. The goal of this project is to provide

a feasible evolution of the Pytch tutorial system to include tutorial chapters that include practices of

Test Driven Development. This is achieved by gaining an understanding of Pytch’s tutorial design and

structure so that new chapters and new features could be integrated into an existing Pytch tutorial.

This project implemented and evaluated the use of Python assertion tests within the Pytch

environment to ensure that they communicate correctly with the Pytch web terminal. A visual proof

of concept was then created by modifying the html of a currently existing tutorial chapter to evaluate

the best practice for delivering the information on Test Driven Development. Finally, a functional proof

of concept was created that offered an existing Pytch tutorial with chapters on Test Driven

Development integrated at certain parts of the tutorial. The tests were successfully implemented

along with their corresponding tutorial chapters and an outline of what was learned about forming

the optimal tests for inclusion in educational work intended for novice programmers was also

included.

The results of this project show that the inclusion of Test Driven Development is possible within the

existing Pytch educational environment and also shows on a wider scope that it is feasible for

developers of educational projects to include an introduction to Test Driven Development in their

work by forming tests to aid in not only the education of the language they are working with, but also

allows them to design these tests to be used for checks on the student’s code that are closely related

to the individual project rather than simply using built in syntax error checking that would come with

a standard compiler.

iii

ACKNOWLEDGEMENTS

I would like to thank Professor Glenn Strong for his guidance over the course of this project. His

support, advice and expert knowledge of the Pytch environment played a vital part in the

achievements of this project especially in the aid of setting up a virtual environment that could run

Pytch from a Linux environment on my local machine which was an important factor in this project’s

development stages due to these strange times. The meetings throughout the year where you warmly

shared your wisdom helped keep the focus on the work at hand and made the process enjoyable so

thank you for that.

I would also like to thank Dr Ben North for allowing me access to Pytch as an environment to study it

and base my project work around it. The platform has a lot of potential and the work you have done

so far is not only useful but was also easy to understand when I went to look under the hood at how

Pytch operates.

Both Glenn and Ben were open to lending support and guidance to this work if needed and I am very

grateful for that.

I would like to say thanks to my friends that have supported me throughout this Masters year with

your words of encouragement throughout the process especially when I was at my busiest.

Finally, I would like to thank my family, especially my parents who have been extremely supportive of

my studies this year. While at times staying focused and optimistic was a struggle especially when

contracting Covid in the middle of the year, your belief in me and support is something I will always

treasure.

iv

CONTENTS

1 Introduction .. 1

1.1 What is Pytch? .. 1

1.2 Project Objectives ... 2

1.3 Ethics & Gender Dimension .. 3

1.4 Work Plan .. 4

1.5 Potential Beneficial Outcomes of this Project .. 4

1.6 Project Scope .. 5

1.7 Project Results .. 5

1.8 Dissertation Roadmap ... 6

2 Background ... 7

2.1 Literature Review .. 8

2.1.1 Web-based Python Programming Environments ... 8

2.1.2 Educational Environments with Test Driven Development .. 10

2.1.3 State of the Art of Existing Testing Suites ... 11

2.2 Pytch Frontend and Tutorial Layout ... 12

2.3 Current Architecture of Pytch Backend .. 16

2.3.1 Pytch-Build .. 16

2.3.2 Pytch-Tutorials .. 17

2.3.3 Pytch-VM ... 17

2.3.4 Pytch-Webapp ... 17

2.3.5 Pytch-Website ... 17

2.4 Pytch Tutorial Creation and Compiling ... 18

2.4.1 Tutorial File Structure ... 18

2.4.2 Github Tutorial Commits ... 19

2.5 Tests in Pytch .. 20

2.6 Chase Tutorial ... 21

3 Design & Implementation of TDD into Pytch Tutorials ... 22

3.1 Final Test Design ... 22

3.2 Running Pytch Locally ... 23

3.2.1 Window Subsystem for Linux .. 23

3.2.2 Oracle Virtual Machine ... 24

3.3 Testing of Python Tests in Pytch Environment ... 25

v

3.3.1 Python Assert Testing in Pytch .. 25

3.4 Visual Proof of Concept Through Tutorial HTML .. 26

3.5 Functional Proof of Concept Through altering Tutorial .. 27

3.5.1 Design Decisions ... 27

3.5.2 Implementation Process ... 28

3.6 Chase Tutorial’s new Integrated Tests .. 29

3.6.1 Background Image Validation ... 29

3.6.2 User Input Sanity Checks ... 30

3.6.3 Verifying the Operation of the Random Function .. 31

4 Evaluation ... 32

4.1 Evaluation of WSL versus Oracle VM .. 32

4.2 Implementation Evaluation .. 33

4.2.1 Validation of Assertion Tests .. 33

4.2.2 Visual Proof of Concept of Test Chapter ... 33

4.2.3 Functional Pytch TDD Chapters... 34

4.3 Test Driven Development in Environments for Novice Programmers 35

4.3.1 Simplicity First ... 35

4.3.2 Relevant and Engaging Test Content .. 35

4.3.3 Setting Up a Strong Foundation for Understanding ... 36

4.3.4 Comprehensive Error Messages ... 36

4.3.5 Ensure the Tests Improve the Project’s Validation ... 36

4.3.6 Summary ... 37

5 Conclusion ... 38

5.1 Future Work .. 39

Bibliography .. 40

vi

LIST OF FIGURES

Figure 2.1 Pytch Homepage .. 12

Figure 2.2 Pytch Programming Environment with each section segmented in red 13

Figure 2.3 Pytch Functions with Scratch Like Blocks representing their functionality 14

Figure 2.4 Pytch Tutorial Environment ... 15

Figure 2.5 tmux Window running Pytch-build scripts... 16

Figure 2.6 Example of Pytch Tutorial File Structure .. 18

Figure 2.7 Tutorial Chapter defined in a Pytch tutorial.md file .. 19

Figure 2.8 Screenshot of Chase tutorial output canvas .. 21

Figure 3.1 Image of Failing Pytch Compile on WSL ... 23

Figure 3.2 Oracle VM running Pytch App on Windows Machine.. 24

Figure 3.3 Example of the Inclusion of a Python assert test in Pytch ... 25

Figure 3.4 Screenshot of the Visual POC for TDD Tutorial Chapter in Pytch .. 26

Figure 3.5 Snippet of List of Tutorial Branches ... 28

Figure 3.6 Background Image Validation Test .. 29

Figure 3.7 User Input Movement Test .. 30

Figure 3.8 Verification of Random Functionality Test .. 31

vii

LIST OF TABLES

Table 1 - Brief Outline of Project Work Plan .. 4

viii

NOMENCLATURE

TDD Test Driven Development

POC Proof of Concept

CS Computer Science

VM Virtual Machine

OOP Object Oriented Programming

WSL Windows Subsystem for Linux

IDE Integrated Development Environment

GUI Graphical User Interface

HTML HyperText Markup Language

1

1 INTRODUCTION

Computer Science education is an ever-evolving area of study and one that is vital in today’s world as

there is such a high demand for experience with programming languages. Many courses outside of

Computer Science departments, especially business-related courses have come to include courses on

beginner programming in recent years. The label of a ‘novice programmer’ is one that is almost to be

considered a life skill in the modern world and the age at which Computer Science education is being

introduced has become younger in recent years due to more child friendly education environments

sprouting up across the globe.

With the increasing requirement for workers with experience in technology and computer science,

there comes an increasing demand for educational material as well. Test Driven Development is a

standard practice in the modern development architecture and the earlier a programmer is introduced

to the concept of diligently testing their code the more comfortable and successful they will be when

they go to work in the field of Computer Science.

The goal of this project was to evaluate the current position of a web-based programming

environment that is targeted at novice programmers and determine whether the integration of

education on Test Driven Development (TDD) is a plausible feat.

1.1 WHAT IS PYTCH?
Pytch is a web-based educational environment for teaching novice programmers the basics of the

Python language. Its name and its core aesthetic takes inspiration from Scratch, MIT’s child-friendly

block based educational platform for introducing novice programmers to code logic through engaging

projects. The name Pytch is a combination of both Python and Scratch, and likewise offers an engaging

environment that allows users to compile simple projects in order to learn some of the basics of the

Python language.

The compilation of Python code in the browser is made possible by the JavaScript package Skulpt

(Skulpt, 2019), this package can be used to create custom python functions and offers the functionality

to create a web environment for compiling Python code.

Each project available on Pytch offers two options, one simply allows the user to compile the fully

completed project and observe and engage with the output project. The other more interactive option

allows the user to follow a step-by-step tutorial of the same project where each component and class

used in the project is explained and can be copied straight into the coding environment.

The success of Scratch has shown the effectiveness of compiling coding projects in an online web-

based environments as it removes all potential package versioning or path related issues that a novice

programmer would have to deal with if working on the same projects through an IDE on their own

machine (Lappalainen, et al., 2010). Keeping the environment as user friendly as possible allows all

the focus of the student to go directly towards understanding the basics of the Python language which

is key to efficient teaching and learning especially for beginners.

Pytch is set up to allow teachers to either use currently available projects or even form their own

projects to be completed by their students. The design of the system for creating and compiling Pytch

tutorials will be explained further in Chapter 2.

2

1.2 PROJECT OBJECTIVES

The objective of this project was to determine useful interactive testing features that are not currently

available in the Pytch Tutorial system and to implement a working version of those new features. After

studying the state of the art and the current position of Pytch with its tutorial based education

structure, it was determined that the inclusion of Test Driven Development was the best path to take

for this project.

In order to complete this project, some of the following research objectives needed to be reached;

• Become familiar with the Pytch environment.

• Gain experience with using JavaScript.

• Learn about Scratch and Skulpt (Scratch is what inspired Pytch and Skulpt is an ‘in-browser

implementation of Python’ that was used to build Pytch).

• Study the state of the art for other Python web based programming environments and

educational environments for programming and TDD in education.

The development goals for this project are as follows.

• Determine the optimal way to include TDD into the Pytch Tutorials.

• Create a visual proof of concept for the inclusion of TDD chapters in an existing tutorial.

• Create tests for existing example tutorial to verify the possibility of TDD education in Pytch.

• Create a functional iteration of a current tutorial.

o Includes multiple chapters on test driven development.

o Ensure each contains tests on various parts of the respective tutorial.

Then there are the more general project goals of ensuring the project material will be ready to present

and submit by the given deadlines.

3

1.3 ETHICS & GENDER DIMENSION

The topic of Ethical and Gender related challenges is important as while they can be challenging to

pinpoint, they are always present in projects such as this, especially due to the educational nature of

Pytch. The gender concern is more conventional as there will always be a level of gender bias when a

project is created by a group where all members are of one gender. The example tutorials on Pytch

are sufficiently gender neutral with regards to gender stereotypes however due to the nature of Pytch

as a tool, it could be beneficial to have some sort of reminder to new teachers/professors who are

about to create their own tutorial to be mindful of the theme of their work. There has been countless

studies done over the years that exhibit the clear bias in projects across Computer Science (

International Society for Technology in Education, Eugene, 1990) and it is vital that a tool such as Pytch

that is targeted at novice and beginner programmers is not deterring anyone from engaging with the

learning because of the material. While this is not directly related to the work that will be done for

this project it is an important point of thought for any work in programming education so it’s necessary

to discuss.

There are a few ethical issues involved in this project that are worth noting, one issue that was a

repeating occurrence in the literature review was the consequence of the overuse of automatic

grading on student assignments. If a project is to be entirely assessed automatically it will heavily

constrict the creativity of the students and almost remove any potential for originality or individuality

from submissions from a body of students. While this would maximise the efficiency of the assignment

process, it also forces current and future work to fit into a box created by the testing that can’t be

expanded upon. The overuse of automatic grading may lead to the absence of any abstract or unique

ideas and approaches to coding projects which is an ethical issue. Unique solutions should be

encouraged from the very beginning of programming education and this is where Pytch sits as a tool

on the grander timeline of a programmers academic path. Pytch’s use of tutorials to communicate the

learning material also limits the user’s creativity however the coding environment does allow for code

to be modified so as long as the student’s Python syntax is correct the project won’t fail. Essentially

there is potential for more abstract and creative work to be done by the student in the Pytch

environment but there isn’t currently any encouragement to do so. Creating tests that encourage user

interactivity was an important takeaway from this analysis that was kept in mind during the test

design.

Another more general ethical concern is to ensure that the developed product is stable and easy to

use, especially since the target audience for this environment is novice programmers. It’s vital that the

tutorials and grading/feedback system are clear and are not confusing otherwise the environment

won’t prove useful in an education setting. It’s important for both parties (users and developers) that

Pytch serves its purpose in an efficient manner. The users will not want their time wasted by poorly

coded elements and the developers will want feedback to offer important changes that can benefit

the platform rather than the noise of bug reporting in the feedback of users.

4

1.4 WORK PLAN

A brief outline of the core actions taken during this project can be seen in Table 1 below. The project

was planned to have the majority of the research work done in semester one in parallel with the setup

work around running a local instance of Pytch on a personal Windows laptop. The general learning

objectives such as studying JavaScript and researching the state of the art were carried out throughout

the whole year. The main implementation work of the project was then carried out in semester two

after a sufficient amount of learning was done surrounding Pytch and its different components.

 Task Time

1 Learn Javascript Throughout Project

2 Research TDD and Python Testing Throughout Project

3 Get a local development version of Pytch to run First Semester

4 Study Pytch Documentation First Semester

5 Study Pytch Tutorial compiling setup First Semester

6 Practice Github project rebasing Second Semester

7 Create a Visual POC of Test Chapter in Pytch Second Semester

8

Create a Functional Integration of Test Chapters into Pytch

Tutorial Second Semester

Table 1 - Brief Outline of Project Work Plan

1.5 POTENTIAL BENEFICIAL OUTCOMES OF THIS PROJECT
The potential benefits of this project include the prospect for an evolved tutorial system on the Pytch

platform that leans into education on Test Driven Development and allows for a more engaging

experience for students as they make their way through the tutorials. The inclusion of Test Driven

Development at this early stage of novice programming will also benefit the students in the long run

when they go to work in the software development industry in the future. A successful

implementation of these tests could also open a new door for the education process on Pytch where

the projects could become more assignment-like rather than tutorial based as future developers could

potentially use this testing structure to evaluate a student’s performance. The experience of designing

optimal tests for an education environment outlined in the evaluation of the project work could also

be used to influence future work that may be completed in the same field.

5

1.6 PROJECT SCOPE
The development and implementation work of this project is focused solely on the development of

the tutorial system within Pytch specifically. The developments and evaluations made during this

project are tailored to the ongoing development of the Pytch environment. The issues and obstacles

encountered during this project are likely to be niche to Pytch’s design. A big focus of the work

completed was to determine what was currently available to be implemented within the Pytch

environment to create the Proof of Concept tutorial chapters. The idea would be that similar tests

could be built for all current and future Pytch tutorials. The Test Driven Development chapters built

were designed specifically for the chosen Tutorial and it is highly likely that the best tests to use in

other tutorials would differ from the ones created for this project.

However, there are greater concepts and ideas that are learned about the procedure of including Test

Driven Development that could be viewed from a wider angle than just Pytch as a platform and more

so as general learning as to what works when it comes to the designing and implementation of Test

Driven Development in educational material targeted towards younger students and novice

programmers.

1.7 PROJECT RESULTS
This project was successful in demonstrating the feasibility of using Python tests in the Pytch

environment. A functioning proof of concept of Test Driven Development integration into a Pytch

tutorial was created and also proven to work successfully. After designing the tests to be added to an

existing Pytch tutorial, the core characteristics of what makes a useful test for Test Driven

Development in a learning environment were evaluated and outlined to be used as a potential future

guideline for developers looking at integrating education on testing into their own work.

6

1.8 DISSERTATION ROADMAP
Chapter 2 of the dissertation describes the background work of the project. The background work

includes a literature review of the state of the art for both web-based python programming platforms

and the use of Test Driven Development in Computer Science education. The current design of Pytch

will be investigated with a particular focus on the Pytch Tutorial design both from a frontend and

backend perspective. Chapter 3 will then give an overview of the development stages for the inclusion

of Test Driven Development chapters inside an existing Pytch tutorial. Each step is discussed and any

obstacles that were identified and dealt with during the implementation process are addressed.

Chapter 4 is an evaluation of the projects work, primarily addressing the success of the integration of

Test Driven Development chapters within the chosen Pytch tutorial. An evaluation of what was

learned through the process of designing suitable tests is also laid out in this section. Chapter 5 is then

a summary of the work done during this project, what was achieved and concluding analysis. There is

also a future work section that highlights where this work could be taken.

7

2 BACKGROUND

Pytch is a web-based programming environment that promotes Python education for novice

programmers. In this section, a literature review will be done on the state of the art of web-based

python programming, plus a review of work that has been done to date on using Test Driven

Development and automatic testing in educational environments.

Following that state of the art the section, an insight into the current frontend layout for a Pytch user

will be given, then an overview of Pytch’s system architecture will be highlighted and finally the

backend structure of creating and compiling tutorials will be examined.

The background section will end with an investigation into tests currently being used in the Pytch

backend and then a brief summary of the content of the ‘Chase’ tutorial that is modified to contain

this project’s implementation of Test Driven Development tutorial content that is described in Section

3.

8

2.1 LITERATURE REVIEW

Due to the context of this project, the research spanned different areas of state of the art approaches

of CS Education. It was essential for this project to study the state of the art of other web-based Python

environments and compare them to the current state of Pytch. Research was also done into any

material that could be found on the use of Test Driven Development in CS education.

2.1.1 Web-based Python Programming Environments

The first area that was investigated as part of the literature review was the state of the art of currently

existing programming environments used for the education of programming languages. While the

primary point of interest in this state of the art was environments that included integrated testing or

automatic grading, it was an interesting field to study as it allowed for a comparison of Pytch to other

similar tools and even some competitors.

One such example called APOGEE offers an automatic project grading and instant feedback system

within an environment (Fu, et al., 2008) that was designed by the authors. This paper highlighted the

necessity and potential complications of creating a platform including the automatic grading of

student projects. The main issue that was highlighted in this particular paper is the potential difficulty

of creating a uniform grading system that will cater for all student submissions. The challenge that the

APOGEE platform faced was dealing with GUI tests. Creating tests for a project in which the students

would set their own names for certain HTML components proved impossible. The APOGEE system

used Ruby testing scripts with set names for HTML controls so any difference in these control names

would cause the testing script to fail. Their solution to this was to simply provide a ‘GUI project “shell”

(without detailed logic implementation)’.

GUI elements take up a significant part of the current Pytch tutorials and most educational tools as

they make the education process more engaging, this means that the issues highlighted here

surrounding GUI testing will bleed into Pytch also. One key motivator for the automatic grading of

computing projects highlighted in this paper was efficiency. The fast evaluation that automatic grading

and feedback offers allows for the education process to speed up, automatic grading and testing

removes the tedious process of an instructor or teacher being required to manually check all aspects

of a students work. The APOGEE platform is targeted at college courses which means that any time

that can be saved is of high value, especially for large college classes. Pytch is mainly targeted at

beginner Python programmers who are most likely to have experience with Scratch-like environments

(secondary school or early Computer Science courses) which is a large demographic, so this same

principle of time efficiency does apply for Pytch.

9

CodeSkulptor was another similar tool that offers a web-based environment for Python projects

through Skulpt (Skulpt, 2019). This tool is more so angled towards programmers with a higher

proficiency of Python programming as it is less of an educational tool and more of a web platform for

showcasing student projects. One paper that was aimed at creating and integrating an execution

visualizer for CodeSkulptor (Tang, 2015) offered a short description of how unit tests are carried out

through Skulpt and for the visualiser mode created as part for their project. This paper again

highlighted the challenges of testing GUI related code, it explains how GUI changes and manipulations

are difficult to quantify and record for comparison purposes. It also mentions how different browsers

can cause elements to behave differently, the conclusion was that manual testing is still a requirement

for any GUI related assessment.

Further research into the state of the art of educational coding environments uncovered other

projects and papers that offered a similar service as Pytch does. Pythy (Edwards, et al., 2014) is a

platform for web-based Python programming that is also targeted at novice programmers. Finding

this similar platform was a massive help in comparing Pytch to the state of the art. The most vital thing

this paper offered was that Pythy does include a grading tool and feedback. A small survey was also

completed at the end of this paper on two small classes of novice students, the most common

response for Pythy’s ‘most used feature’ and ‘saved the most time’ was auto project testing. This

highlights the positive effects of a working feedback system within the environment and was a huge

affirmation of the motivation behind this project. Another important outcome of the survey on Pythy

was that the ‘most frustrating’ component of the environment was unclear errors, unfortunately the

paper doesn’t give much more information about this feedback or context for this, but it is an

important point that error messages for these environments must be clear and well-articulated as the

targeted demographic is novice programmers who won’t deal well with advanced technical errors.

This is something that played a large factor in the design decisions made for the tests implemented in

this project.

10

2.1.2 Educational Environments with Test Driven Development

Another area that was investigated as part of the background of this project was literature that

involved comparing established teaching methods with test driven development for programming

education (Goodwin & Drange, 2016). This paper discussed an environment called ‘T-FLIP’ which was

used to educate novice programming students on the Java language. The paper discusses a study in

which two similar courses from nearby institutions in Norway where one class uses more test-driven

development while the other uses ‘a more standard approach’ to teaching programming that requires

manual evaluation from the teachers. The conclusion of the study suggested that there are both

benefits and disadvantages to using test driven development instead of current standard practices,

the biggest advantage being exposure to test driven development at an early stage in programming

education as it is an industry standard. The disadvantage to test driven development and automatic

testing is that the rigid nature of these tests does not allow for much creativity from the students. The

tests are strict and looking for definitive results from required project features, meaning any

passionate students who have a desire to go above and beyond with their project will actually find

their marks hurt by this system. This is an unfortunate unavoidable consequence for programming

projects that are solely assessed using automatic testing. The other big concern that was uncovered

from this study was the realisation that there is a high possibility for cheating and plagiarism with an

automatic testing system over an experienced programmer evaluating the projects. This is a concern

if the entire process is controlled automatically, however as mentioned in the paper, there are many

plagiarism detection tools available today that can run checks for similarities between student’s work.

The comparison between the two forms of education determined that the automatic testing and test

driven development system offered potential for students to work and receive useful feedback

immediately and also independently, they didn’t have to wait for their professors to evaluate the

work, while there is a loss in flexibility for the outcome of a student’s programme and also a risk of

unmonitored plagiarism, the general increase in efficiency and the opportunity for infinite re-

evaluation of student work left the authors with the conclusion that TDD and automatic testing is a

highly beneficial part of programming education.

Another paper based around the inclusion of Test Driven Development in an ‘adaptive learning

environment’ (Chien, et al., 2007) concluded similar findings surrounding the potential rigid and

‘inflexible’ nature of Test driven development when forming more complex tasks. The findings were

that the use of TDD in grading is that it encouraged students to initially look at output correctness

rather than good coding performance which is not desired when trying to teach the students the full

process of project development.

11

2.1.3 State of the Art of Existing Testing Suites

The state of art of currently used tools for automatic grading was also researched. There were many

papers comparing different testing tools and suites, some of which do a general comparison of many

different testing tools with regards to certain parameters (Caiza & Del Alamo, 2013) while others do a

more in depth analysis of one or two tools i.e. (Heckman & King, 2018).

One paper provided an overview of many of the most popular testing tools at the time for different

languages (Caiza & Del Alamo, 2013). The analysis is split into what are labelled as ‘mature’ tools and

‘recently developed’ tools, most of the recently developed tools examined in this 2013 paper were

Java centred testing tools which won’t be of much use to Pytch, however some of the mature tools

such as Web-CAT (Virginia Tech, 2021) which was made by the same group that made Pythy (Edwards,

et al., 2014). Web-CAT is referenced quite often among literature that centres around grading and

testing for web-based programming and is regularly highlighted as one of the most versatile tools due

to how customizable and extensible it is. It offers a ‘plug-in-style architecture’ to allow professors to

create their own tests and grading systems for their web-based assignments and exams.

2.1.4 Literature Review Conclusions

Overall, the takeaways from the analysis of current python web environments were that code testing

is a vital component of an efficient programming education system, however, caution must be taken

when dealing with GUI tests as they can be unreliable across browsers and are very sensitive to

variable name changes. The Pythy (Edwards, et al., 2014) survey also showed how appreciated the

automatic feedback is by student users however great care must be taken when forming feedback

messages so not to confuse any novice programmers.

The opinion of automatic grading and testing in programming education is positive but there are also

many warnings that are made apparent across the literature. This style of testing and grading does

greatly improve the efficiency of the learning process and also provides and early introduction to

industry standard processes. The issues that are met with using automatic tests are mainly centred

around the somewhat constrictive programming nature that automatic grading creates if used in

excess. The takeaway is that the motivation for this project is valid and Pytch would benefit from

testing and feedback features, but it will be important to create an environment that can allow for

engaging tests that fit well with the teachings of any given Pytch tutorial. These are conclusions that

had a significant impact on the designing of the tests for this project.

12

2.2 PYTCH FRONTEND AND TUTORIAL LAYOUT

This section is to exhibit the Pytch platform so that a better understanding of the current state of Pytch

and its tutorial structure can be reached. The Pytch platform offers many ready made python projects

that involve a high level of interaction for students who are new to Python programming to engage

with their learning process. These projects are offered through the Pytch website and are served in a

web-based environment. The front page of Pytch can be seen in Figure 2.1.

Figure 2.1 - Pytch Homepage

This dashboard allows user to freely navigate through a variety of different python tutorials and also

offers links to the Pytch documentation (North & Strong, 2022) and access to previously worked on

projects.

13

The environment shown in Figure 2.2 is the fully completed ‘Pong’ game project with each segment

of the Pytch project environment separated with a red border. The Pytch environment offers an

editable coding environment, a canvas for demonstrating the output of the current coding project and

a section at the bottom of the page to display the terminal messages plus any static material used in

the project.

Figure 2.2 Pytch Programming Environment with each section segmented in red

This design allows for users to make changes and see those edits exported in real time, the canvas will

show any working changes and if there is an error in their code the bottom panel will change to the

error terminal and the code error will be highlighted to the student.

The current range of Pytch projects and custom components that have been built are focused on event

based programming and the use of Sprites (North & Strong, 2022). This style of programming was a

point that had to be kept in mind when deciding what structure should be given to any new chapters

that are to be included in this environment.

14

There is also a tab that can be viewed that shows a Scratch-like block representation of different Pytch

functions. This offers users with a prior experience with Scratch the oppurtunity to understand the

step between reading Scratch blocks to reading Python decorators which can be seen in the ‘Events’

section of this Pytch sidebar tab in Figure 2.3.

Figure 2.3 Pytch Functions with Scratch Like Blocks representing their functionality

15

The tutorials are laid out the same way a normal fully finished project would be except the main tab

at the bottom contains traversable chapters that show the project completed chronologically with

each step comprehensively explained with the intention of allowing novice programmers to follow

along comfortably (Figure 2.4).

Figure 2.4 Pytch Tutorial Environment

This tutorial environment is where the implementation of this dissertation resides, however this is

only the frontend layer to what is an intricate system that needs to be understood in order to start

making any real change to the platform.

16

2.3 CURRENT ARCHITECTURE OF PYTCH BACKEND

Pytch is developed on Github and all modules and submodules of Pytch exist within the Pytch Github

repository (North & Strong, 2022). There are five core submodules that are all kept under the umbrella

of the pytch-releases ‘superproject’ that is used to run the whole Pytch app together. The five

submodules are as follows:

• Pytch-releases

o Pytch-build

o Pytch-tutorials

o Pytch-vm

o Pytch-webapp

o Pytch-website

These submodules all offer a different functionality in the composition of the Pytch environment and

each will be individually highlighted (North & Strong, 2022). It is to be noted that the following process

is related to running the developer version of Pytch on a local machine.

2.3.1 Pytch-Build

As the name suggests the pytch-build submodule is what initiates the building and running of the

developer version of Pytch on a local server. The scripts that are run within pytch-build will initiate a

terminal multiplexer session using tmux (Figure 2.5) which allows for multiple windows to show

information coming from the different corners of the project. All the current tutorials that are to be

shown in the environment will be called and hosted on a particular localhost port. The same is done

for the custom Skulpt modules that are part of the Pytch build. The web-app will also be initialised

from within these scripts and once all the different segments are up and running the Pytch website

will be available from the base URL.

Figure 2.5 tmux Window running Pytch-build scripts

17

2.3.2 Pytch-Tutorials

The pytch-tutorials submodule is where a lot of the most frequent developments are made and also

where this project’s development resides the most (North & Strong, 2022). This is the sub-repository

that holds all the iterations of the different tutorials that are to be made available. There is an

‘index.yaml’ file at the top of this directory that defines which iteration of each tutorial is to be called

and used. Each tutorial and each iteration are stored as a separate Github branch of the repository.

The process of how these tutorials are constructed and fetched is explained further in Section 2.4. The

pytch-build will call for a zipped file of the current tutorial versions to be used and will then unzip them

and serve them on a particular port as described in 2.3.1.

2.3.3 Pytch-VM

The pytch-vm submodule holds all the Pytch Python components that are built with Skulpt (Skulpt,

2019) as part of the Pytch library. All the different components created with Skulpt to create the

Scratch-like components for Pytch such as the Stage and Sprite actors are housed here alongside all

the unit tests that can be run (North & Strong, 2022). There are tests for the JavaScript side of Pytch

but also python tests that are used to test the functionality of the Pytch custom components. This

style of testing and its relevance to this project will be discussed further in the following Section 2.5.

2.3.4 Pytch-Webapp

The pytch-webapp submodule contains the React Application that defines the structure of the website

and declares the structure of the pages and how they are connected. It also contains the styling of the

different sections and components of the website. The react app served here also has a suite of Jest

tests (Meta - Facebook, 2022) that verify its proficiency.

2.3.5 Pytch-Website

This submodule simply contains all the static content for the website that is non-IDE related, primarily

centred around the Pytch documentation pages (North & Strong, 2022).

18

2.4 PYTCH TUTORIAL CREATION AND COMPILING

The core of the education process in Pytch is the tutorial chapter format in which it delivers the Python

projects to students. This section will show the tutorial structure and the different pieces of a Pytch

tutorial. How the tutorials are kept and served will also be highlighted.

2.4.1 Tutorial File Structure

Each tutorial follows an identical structure with the same file labelling system (Figure 2.6), there will

be a code.py, summary.md and tutorial.md file for every tutorial. There will also be asset folders, one

for any images or sounds files to be used in the project and another file for assets related to the

summary card for the tutorial, for example a screenshot of the project output to be displayed beside

the summary.

Figure 2.6 Example of Pytch Tutorial File Structure

The summary.md file is a small markdown file that will be used to fill in the content of the summary

card for a given tutorial when a user navigates to the ‘Tutorials’ page on the Pytch application that

lists all the available tutorials.

The tutorial.md file is what defines the different chapters of the tutorial and what content should be

displayed within them, i.e. The headers, text content and code snippets.

The code.py file stores the final python project with all its elements. What allows for this file to be

linked and segmented into different tutorial chapters is through Github commits.

Any change to the code.py file that is desired as a code snippet in a tutorial chapter will be given a

commit message with a specific layout that is looked for by the tutorial compiler. Each code snippet

for its respective tutorial chapter is defined in the tutorial.md file.

19

2.4.2 Github Tutorial Commits

A unique feature of a Pytch tutorial step is the ability for a student to observe the current code snippet

within the tutorial chapter description and also have the ability to copy the code just as it is formatted

into the Pytch code editor. This is all made possible by the use of Github and its code commit process.

All Pytch tutorials and all their iterations are held in inside the Pytch-tutorials Github repository as

separate branches. In order to build a tutorial in Pytch, the specific branch name must be given to the

tutorial compiler by declaring it in the aforementioned ‘index.yaml’ file (2.3.2). This branch will then

be found in the repository and each commit will be iterated over until the tutorial is fully built and

ready for rendering on the webpage.

However, there are many different changes that are made to these branches through development

so the compiler was built to identify different chapter steps by giving these chapters specifically laid

out commit messages that are structured as follows;

git add code.py
git commit -m "{#import-pytch}"

This structure of closed brackets with a hashtag symbol is how any step in the tutorial is identified by
the compiler. It is important for the tutorial.md file to lay out the chapters in the exact same order as
the order in which the commits appear in the repository.

Figure 2.7 Tutorial Chapter defined in a Pytch tutorial.md file

The code snippet image shown in Figure 2.7 is an example of a chapter defined in the tutorial.md file.

The design here exhibits the use of a title, then a brief description of what the code snippet will be

used to perform and then finally the code snippet itself which would be loaded in using the observed

format. The key takeaway from the study of this process is the possibility to insert new chapters into

a currently existing Pytch tutorial if enough care is taken while undertaking a git rebase.

20

2.5 TESTS IN PYTCH

While the Pytch documentation does offer useful information about the structure of Pytch and how

best to set it up locally, manual investigation was required to understand aspects of the environment

such as where and how Pytch uses tests to validate its service. Uncovering this was a high priority for

this project due to the objectives revolving around adding Test Driven Development to the tutorial

experience.

The aim here was to identify where testing and unit testing is used in the application and to evaluate

whether any inspiration could be taken from these tests for the development and implementation

process of this project.

What was found was a healthy amount of test suites containing unit tests that are written in both

JavaScript and Python. These tests are used to verify the functionality of Pytch components build with

Skulpt for the Pytch platform.

There are JavaScript tests that validate that the logic behind the components defined using the Skulpt

package work as they are expected to that are being validated using Jest (Meta - Facebook, 2022). For

instance, Pytch offers a Python function called ‘self.touching()’ that verifies whether a sprite of the

current class is currently colliding with another sprite that is defined as an input to this function. There

is a test file that creates two objects in an environment and then ensures that this function outputs

the correct Boolean value that is expected in different circumstances where the two observed objects

are colliding or not.

On top of this JavaScript test file there is also a suite of Python unit test files that create smaller

environments to test the same components but from the Pytch environment rather than in the

background.

While these tests were beneficial for inspiration purposes, the actual system behind their use doesn’t

match up well with the intent of using these tests in real time as part of a Pytch tutorial. They are not

part of the real time verification of user code in the Pytch environment but rather a validation of the

functionality of Pytch components that would be run after making core changes to Pytch components

outside of the production application. Therefore, they don’t offer the level of response or feedback

that this project’s objective of integrating tests into the real time testing of student code inside the

Pytch web environment.

21

2.6 CHASE TUTORIAL

The final section of the background is a brief overview of the ‘Chase’ or ‘Catch the Star’ tutorial that

was selected as the tutorial to be used for the development stage of this project. This tutorial is an

objected oriented programming (OOP) centred project that encourages the student to create a small

interactive game in which the user has control to move a bird sprite around a 2D environment.

Another star sprite is programmed to move randomly around the environment using python’s

‘random’ function. When a collision between the bird and star is detected at any point the bird will

output a ‘Squawk’ sound and the star will disappear and reappear somewhere else in the 2D

environment.

Figure 2.8 Screenshot of Chase tutorial output canvas

This tutorial is used to highlight the use of multiple Sprite classes in a 2D environment and to show

the logic of collision detection in Python. Other useful features taught in this tutorial are the navigation

and understanding of a 2D coordinate system in order to move objects around the screen using both

user input and automatic methods.

The identified components of this tutorial’s core teachings are the important foundation to build from

in the design of the tests to be integrated into the project. The tests created for the Test Driven

Development chapters are tailored for this tutorial specifically so that they fit in seamlessly with the

intended teaching outcomes while also educating the users on the practice of Test Driven

Development.

22

3 DESIGN & IMPLEMENTATION OF TDD INTO PYTCH TUTORIALS

The development work for this project consisted of some key milestones along the path to completing

a final functioning proof of concept of Test Driven Development tutorial chapters in a Pytch

environment. Each iteration of the implementation will be discussed in this section. The different

iterations are as follows:

• Successfully run Pytch on a local machine for development.

• Testing the possibility of Python testing methods in a Pytch environment.

• Create a visual proof of concept of a chapter containing Python tests and a description of the

step.

• Integrate Test Chapters into a Pytch Tutorial to create a functional proof of concept for TDD

in Pytch.

3.1 FINAL TEST DESIGN

Through careful examination of the Chase tutorial, and with regards to the final conclusions drawn

from the project’s literature review in Section 2.1.4, the design of a set of test chapters to be added

was decided upon. The general motive behind the design of these tests was to create engaging and

useful tests that could be easily explained and understood in the tutorial, but also to ensure that no

additional Pytch functions or components were introduced that were not already present in the

current tutorial. The idea behind this being that the tests should only aid in the users learning of

Python and Test Driven Development without adding any extra layers of confusion that already exist

with the learning of a programming language.

The first test was designed to give a very soft introduction into the area of assert testing by simply

testing that the background image for the project was the correct image file. While this test doesn’t

offer a huge amount of engagement for the user, it’s an important first encounter with the principle

of the inclusion of tests in the process of coding. The intention with this chapter is also to include an

interactive optional task through a suggestion at the end of the chapter to change the background

image in order to allow the student to witness the assert test failing and producing an error in the

Pytch terminal.

The second test design involves more interactivity with Pytch components being used in the project

and some 2D coordinate theory. This test involved verifying the position of the Bird sprite before and

after the press of one of the arrow keys, then asserting the new position is correct relative to which

key was pressed. This test felt very in line with the aspects of python being taught with this particular

tutorial and fit the flow of the tutorial chapters nicely.

The third and final test added to this tutorial was a test that would verify that the Star sprite does

move when it is supposed to. The Star sprite in this project is programmed to move randomly around

the 2D environment and this test uses Pytch components to verify the stars position, waits a few

seconds, then tests the Star’s position again. The test would assert the stars position has changed

since the previous check which therefore ensures that the star is successfully gliding around the

environment as it should be at this stage of the tutorial.

23

3.2 RUNNING PYTCH LOCALLY

Pytch is an application that is still in development. At this stage of its build, Pytch has only ever been

built to run on a Linux machine. This created an added challenge to the beginning of this project’s

cycle as there was some setup work that needed to be completed before the implementation work

could get fully underway.

Due to the majority of this work being completed remotely due to the pandemic, it was essential that

an editable version of Pytch could be accessed and modified to complete the objectives of this project.

Both WSL (Windows Subsystem for Linux) and a Virtual Machine using Oracle’s VM application (Oracle,

2022) were both investigated as solutions and will both be discussed in this section.

3.2.1 Window Subsystem for Linux

When initially looking at running Pytch on a local windows machine the WSL system was the first thing

that was looked to as it was readily available on the windows machine and didn’t require any extra

installations. While the Linux compatibility layer was successful at running, the Pytch application did

not run successfully with errors stemming from the python virtual environment. In the end after

several attempts and supervisor support the decision was made to redirect towards using a virtual

machine instead.

Figure 3.1 Image of Failing Pytch Compile on WSL

24

3.2.2 Oracle Virtual Machine

The Oracle Virtual Machine was the environment in which the development work for this project took

place. It offered an environment where the Pytch application could build cleanly and could offered

easy interaction with the web environment. Initially work was completed on the latest version of Pytch

that had been cloned directly from the main Pytch Github (North & Strong, 2022).

Figure 3.2 Oracle VM running Pytch App on Windows Machine

As the project progressed into the latter stages, the creation of functional changes prompted a need

for rebasing. This called for a new repository to be cloned but this time from a fork of the main Pytch

Github into a personal Github repository where the development work was free to experiment and

modify larger components of the Pytch application that couldn’t have been pushed to the main Github

at this stage.

A brief evaluation of these two environments and how the Virtual Machine performed will be covered

in Chapter 4.

25

3.3 TESTING OF PYTHON TESTS IN PYTCH ENVIRONMENT

The first step of development was to verify the possibility of using Python testing methods inside the

Pytch environment. This was done by opening a currently existing Pytch tutorial and compiling an early

tutorial step with an assert test as part of the class.

3.3.1 Python Assert Testing in Pytch

A Python assert test is a simple test that allows you to check for a specific part of the code to output

an expected result. If the test is successful, the code will continue to run. If the expected value is not

compatible with the actual value, a custom error message will be output to the terminal. This test of

feasibility was successful and showed that the Python assertion test worked in the Pytch environment

and interacted well with the Pytch terminal.

Figure 3.3 Example of the Inclusion of a Python assert test in Pytch

The verification of the assert test working with the Pytch environment indicated that this was the way

forward for showing novice programmers how to include simple unit tests into their work as a first

step in Test Driven Development.

26

3.4 VISUAL PROOF OF CONCEPT THROUGH TUTORIAL HTML

In the initial stages of studying Pytch and its tutorial compiling system, a visual proof of concept was

created by manipulating the HTML file that is built to serve an existing tutorial in order to gain an

understanding of how the chapters on Test Driven Development would look. When a tutorial is built,

a static html file is compiled using the design defined in the respective tutorial.md file. The webpage’s

HTML file is editable and due to Pytch being built with React, the file could be saved and when the

webpage was reloaded the changes were visible. This was done prior to the development into

manually editing the structure of a tutorial on the Github repository as a visual proof of concept to aid

in the later final design of these chapters.

Figure 3.4 Screenshot of the Visual POC for TDD Tutorial Chapter in Pytch

This proof of concept gave insight into how these extra chapters should be integrated into the already

active tutorial. The two options for inclusion of this new material were to either add in full new

chapters between current chapters that would follow on from the addition of a section with a chapter

on what tests to run on this section, or to integrate the new snippet of test code into the bottom of

an existing chapter. It was decided the creation of additional chapters that slotted into the current

tutorial structure was the way to implement them.

27

3.5 FUNCTIONAL PROOF OF CONCEPT THROUGH ALTERING TUTORIAL

3.5.1 Design Decisions

The final stage of development was to implement new test centred chapters into the already existing

‘Chase’ Tutorial described in Section 2.6. This was done by designing the tests for different sections of

the code.py file for this tutorial. It was decided for a few reasons that the tests to be included in this

proof of concept were to be unique from each other and also to cover the project components that

were specific to the current tutorial. The reason for the implementation of unique tests being that if

the testing process was too repetitive it would likely make the tutorial process mundane which is the

least desirable quality for educational material. It also forced more attention to be applied to the

second motivation behind the tests designed, the aim of unique tests meant that more of a span of

Pytch components are covered in these tests.

It was also decided that there shouldn’t be an oversaturation of tests in the tutorial chapters so not

to take too much attention away from the learning of the basics of Python. The step from a Scratch

environment into a more code heavy environment like Pytch is already a challenge that novice

programmers are dealing with, so the motivation hear is to keep things simple and not over teach in

order to make the material more engaging and memorable for the students. The original code for this

project is also less than 100 lines of code so adding too much extra testing does significantly take away

from the original material.

28

3.5.2 Implementation Process

Once the tests were designed and a new final version of the code.py for the chase project was created.

A new clone of the most updated Chase tutorial branch was created, the process of carefully rebasing

the tutorials commits then began. Completing an accurate rebase was imperative to this project’s

implementation as it was the process that allowed for the seamless integration of new chapters into

the middle of an existing project. As explained in Section 2.4, the Pytch tutorial authoring system

requires that the chapters be committed in chronological order from start to finish.

The important aspects of this rebase process that were learned were that in order to rebase the new

code into the tutorial properly, the individual steps that the test were added to would have to be

pulled down and added to rather than just having the tests available in the final code project.

Figure 3.5 Snippet of List of Tutorial Branches

This realisation lead to the thorough examination of the tutorial commits at the neighbouring steps to

these new test chapters. The new chapters would then be committed by copying the previous chapter

step into the code.py file, then adding the new code and creating the commit. These commits would

then be inserted into their intended slots using an interactive git rebase from the Oracle VirtualBox

terminal. Once this was complete, this new tutorial branch would replace the current ‘Chase’ branch

in the index.yaml file on the ‘release-recipes’ branch seen above in Figure 3.5 Snippet of List of Tutorial

Branches, and when Pytch is rebuilt the tutorial would be successfully updated with the intended

changes.

29

3.6 CHASE TUTORIAL’S NEW INTEGRATED TESTS

This section gives an outline of the of the tests that were created and included in the ‘Chase’ project

with an accompanying screenshot of each test displayed in the Pytch environment.

3.6.1 Background Image Validation

The first test integrated into the ‘Chase’ tutorial was the addition of an assertion test to verify that the

background image being rendered is the ‘clouds.jpg’. The test will print a message to the terminal if it

passes.

Figure 3.6 Background Image Validation Test

This test was intentionally kept very simple as it is the students first introduction to tests in the project

so it doesn’t include any of the more complex Pytch functions to avoid confusing the students. This

test offers a useful teasing introduction into the process of Test Driven Development and offers an

opportunity to see the assert test in action in a simple manner. A note is left at the end of this chapter

prompting the student to change the image being imported into the ‘Backdrops’ object in order to see

the error flag in the terminal.

This use of the project’s background image as an initial test also works well as it is very obvious to the

student when the background image is changed in the code and rendered in real time. This test offers

a comprehensive introduction that the rest of the tests build from.

30

3.6.2 User Input Sanity Checks

The second test included in the tutorial is an assertion test that is integrated into the ‘move’ functions

that are created as part of the tutorial in order to give the user control over the movement of the Bird

in the project scene. These tests verify that the bird moves the correct amount in the right direction

after every key press from the user. This test is useful as it fits in naturally with the already existing

project function while also increasing the level of understanding that the student can gain about the

use of 2D coordinate geometry and key press input listeners in Python.

Figure 3.7 User Input Movement Test

This test is centred around more complex Python and Pytch related content, so it was imperative that

the test was kept as simple and well aligned with the project code as possible. There is an identical

test inserted into each of the four move functions.

Initially there was a print called after every successful movement in their respective direction but after

testing the code a few times it was decided these prints cluttered the terminal too much so they were

removed, these tests then became silent tests unless they failed in which case the assertion test

message would be passed to the terminal as the error description.

31

3.6.3 Verifying the Operation of the Random Function

The final test that was integrated into the tutorial was an assertion test on the Star sprite that verifies

that the star is moving around the environment. The star class makes use of the python ‘random’ to

select the next coordinate in the environment for the Star to move to.

This assertion test makes use of the Pytch ‘when_green_flag_clicked’ and ‘wait_seconds’ functions

which are both previously used in this project. The ‘when_green_flag_clicked’ is a python decorator

that will call the following function as soon as the project is initiated. The ‘wait_seconds’ is a custom

function that simply waits the input amount of seconds before progressing through the current

function.

Figure 3.8 Verification of Random Functionality Test

If this test fails a message will display to the terminal as an error alerting the user that the star sprite

has not moved when it was supposed to. If it passes a short message will be printed to the terminal

indicating that the star has moved successfully.

This test reinforces the students understanding of these custom Pytch functions while also offering a

useful test on a new concept to the student which is the random function. The inclusion of the random

function was unique to this particular Pytch project so it was deemed important to form a test that

would include it in some way.

32

4 EVALUATION

This chapter examines the results of this projects implementation and also looks at what was learned

with regards to the implementation of Test Driven Development in educational material that is

targeted at younger audiences.

4.1 EVALUATION OF WSL VERSUS ORACLE VM

While I believe the Windows Subsystem for Linux is a useful tool that was the most accessible solution

for working in a Linux environment during this project, the niche nature of Pytch’s development and

the lack of history of its use with the tool meant that any unknown errors that were encountered took

a long time to address and troubleshoot. Without time constraints it would have been of benefit to

get the Pytch environment running successfully on WSL, but this wasn’t the case in this project’s

timeline so other solutions had to be looked at.

The Oracle VM offered an environment that had previously been used to run the Pytch environment

so there was confidence and experience from the Pytch developers that could help troubleshoot any

errors or blockers that were met. This tool was what was used for this projects development and

offered an adequate solution. The only downfall was the higher level of GPU required to run this

service on the laptop and it meant that running the virtual machine hindered the ability to run much

else on the machine at the same time. Sharing screens on Teams or Google Meets became an

impossible task while running the VM as the laptop would come to a grinding halt.

Overall, the Oracle VM was sufficient in enabling the development work for this project, but it could

be a useful future piece of work to get a successful running of Pytch on the WSL.

33

4.2 IMPLEMENTATION EVALUATION

The implementation procedure undertaken during this project mainly consisted of proof of concept

work to study the feasibility of integrating certain aspects of Test Driven Development into the Pytch

environment. The final result of this implementation was a working example of an existing Pytch

tutorial with new chapters that encourage the use of Python assert tests in order to promote the

thought process of Test Driven Development at an early stage of programming education.

4.2.1 Validation of Assertion Tests

The initial work of validating that Python assert tests functioned in the Pytch environment and work

with the output terminal was imperative to the rest of the implementation process and did prove to

be successful. The assertion tests were chosen as they can be added into the code very easily and are

easily readable. They are contained to one line of code and only involve a conditional input and a string

variable to be used as the error output. This test is perfect for use as an introduction into Test Driven

Development as they offer sufficient functionality with minimal chance for confusion.

4.2.2 Visual Proof of Concept of Test Chapter

The development of a visual proof of concept was invaluable to the design process that followed

surrounding the creation of the test driven tutorial chapters. The only issue with this work was that it

was completed by editing the static HTML file that was created by the tutorial compiler, meaning any

time the compiler was restarted this work would be lost. While this was not ideal and evidently

couldn’t be used in any final model, it did serve the purpose of offering an initial insight into what the

final project would look like.

The editing of the HTML file was also a tedious process and definitely not the way to make tutorial

changes efficiently. However, at the time of this development the work wasn’t being completed off a

forked Github repository of the Pytch project, so the steps required to create new functioning chapters

through making new tutorial branches and rebasing wasn’t an option at the time. The process of

digging through this HTML file offered insight into the structure of the Pytch tutorial design that were

not available in the documentation or even in the tutorial compiler file. Therefore, this

implementation became a helpful process for investigation into Pytch.

34

4.2.3 Functional Pytch TDD Chapters

The final implementation step was creating functional chapters based on the inclusion of Test Driven

Development into the Pytch tutorial. This was the biggest piece of development work of this project

as it showed that the inclusion of chapters on Test Driven Development were not only a possibility but

a valid option.

The key takeaway from the implementation process of the chapters was that a very in depth

understanding of this code was required before any rebasing of the Github repository could be done

successfully. Due to the fact that the design of these tutorials leans heavily on how each individual

commit is defined and ordered, it became apparent that great care would need to be taken when

inserting new chapters into the middle of the tutorial structure. This was touched on in Section (3.5.2)

and did give some trouble initially with small visual errors coming through on the webpage side due

to slight mismatching of code in the newly added chapters. This was fixed by completing a full new

rebase where the commit errors were corrected and was finished successfully offering the resulting

evolved Pytch tutorial.

The product of this implementation offers an evolved Pytch tutorial that contains chapters that are

used to encourage the use of tests in project code for young developers. The process that was

undertaken in order to achieve this was specifically for Pytch’s environment and tailored to how Pytch

is designed. The tests created for the ‘Chase’ tutorial could be used in some form in other Pytch

tutorials however they were tailored to flow with the chase tutorial specifically. All this considered,

the tests and the corresponding chapters created offered a compact and effective solution to the

addition of education on Test Driven Development into the Pytch environment.

35

4.3 TEST DRIVEN DEVELOPMENT IN ENVIRONMENTS FOR NOVICE PROGRAMMERS

Through the process of developing and implementing Test Driven Development chapters into a Pytch

tutorial, a few learnings were taken that are worth noting. These mainly involve what was discovered

through the studying of external material plus examining what worked best when designing the test

chapters.

4.3.1 Simplicity First

The one core principle that already exists within the Pytch education system and other environments

such as Scratch is that keeping the work as simple and easy to understand as possible should always

be the main priority. This idea had massive impacts on the design choices throughout this project as

the aim is to implement new tutorial chapters that flow naturally with the already existing tutorial

steps. This is why the use of the assertion test was decided upon as it offers a very straight forward

approach of completing expectation tests on any variable in the project. Assertion tests are very

straight forward to explain and understand and their inclusion offered a method of including

education on the basics of Test Driven Development without creating blockers for the core education

of Pytch which is teaching Python programming. The assertion tests are also very compact which again

leans into the idea of keeping the code and tutorial learning as simple but efficient as possible. Adding

tests that require a large quantity of lines would distract from the rest of the project which is not

desired.

4.3.2 Relevant and Engaging Test Content

Another core principle of the design process for the new tutorial chapters was the tests being created

must be both useful to aid the tutorial material but also unique from each other as not to become

repetitive. Sustaining attention and focus from younger demographics is a challenge so any potential

catalysts to losing focus such as the tests becoming mundane and repetitive is the antithesis of what

is trying to be accomplished in this project and with Pytch as a whole. The tests should be designed to

be interactive and should directly engage with the material of the tutorial project they are a part of.

The process taken in this project’s implementation was to identify what the core learning of the

tutorial was and what made it unique from the other tutorials and then focus on implementing most

of the tests around those concepts. The key teaching of the Chase tutorial is the remote movement of

Sprites in an environment and detecting the interaction between multiple Sprites in an environment.

It also introduces python math’s random function so testing on this was also looked at. From this

analysis of the Chase tutorial, the tests that were designed tested that the Bird sprite moved correctly

according to the key pressed by the user, and that the random function was working for the star’s

movement. Pytch’s custom functions for obtaining the 2D coordinates of Pytch sprites were used

along side these tutorials in order to obtain their current position for the tests.

36

4.3.3 Setting Up a Strong Foundation for Understanding

The only slight exception to the principle of having the test contain very tutorial relevant content was

the first test’s design. The test verifying the background image doesn’t offer much further education

on Pytch’s components or on Python programming but is used as a direct teaching on the use of an

assertion test in the environment and offers an understanding on how it works. This is purposefully

the first test chapter that the student will encounter as it offers a very open and obvious method of

teaching Test Driven Development with no possible distraction from potentially unfamiliar Pytch

functions or new Python concepts. This test is one that can be done at the start of any of the Pytch

tutorials as it is GUI testing the backdrop image of the canvas. Every current Pytch tutorial includes

visual outputs for the obvious reason that it creates a far more engaging learning experience hence

making this a universally applicable test.

4.3.4 Comprehensive Error Messages

Another point of design that was very important to the final deliverable of these test chapters was

that every test’s error message should be well articulated and very relevant to the test that is being

run. From the study completed by the creators of the Pythy platform (Edwards, et al., 2014) it was

made apparent that the biggest point of potential confusion for students was vague or overly

complex/technical error messages. Great care should be taken in the forming of these error messages

as it could be the difference between a student spending three minutes or three hours

troubleshooting.

4.3.5 Ensure the Tests Improve the Project’s Validation

There is an added security that is given to the project once these tests tutorial tailored tests are a part

of the code. This project’s work is beneficial for tutorial creators and educators as it offers more

specific error checking than purely syntax errors that the standard Python compiler would pick up on.

The inclusion of custom tests allows for the expected functionality of project components to be tested

instead of just the correctness of the student’s code. This is more so highlighting the benefits of

including Test Driven Development and code testing in general but is an important point to note,

especially when moving into future work and the potential for creating grading systems and

assignment environments.

While the points were made about the importance of simplicity in these tests, there should be a valid

purpose for each test included in aiding the testing of the code’s specific use. This is especially useful

for the custom Pytch functions that are used in the tutorials.

37

4.3.6 Summary

To summarise, the inclusion of test driven development in these tutorials allows for specific

verification of the projects functionality. It is important therefore that the tests created cover as many

aspects of the tutorial as possible while also being straight forward and in line with the teachings of

the tutorial. It is also imperative that the error messages created for these tests are comprehensive

and in line with the test being run. The tests should also be compact and somewhat discrete as to not

take away from the rest of the teachings of the project. Once these conditions are hit the tests should

be sufficiently simple but also effective at delivering the necessary lesson on Test Driven Development

that is intended. The tests don’t need to be ground breaking or overly complicated, the motivation

here is the easy introduction of novice students to the idea of Test Driven Development and try to

make them comfortable with the process so that they may start to use it in other work.

38

5 CONCLUSION

This chapter consists of a summary of the work done during the project and dissertation process. The

potential future work for this project is also highlighted.

This project designed and implemented new chapters for Pytch’s tutorial environment that include

education on Test Driven Development relative to the existing tutorial material. The Pytch

environment was studied from both perspectives of frontend GUI and backend architecture in order

to understand and develop a succinct design for the integration of the new tutorial chapters. An

existing Pytch tutorial was chosen and analysed in order to determine what tests would best fit its

design.

During the timeline of this project many new skills were also learned outside of the understanding of

the Pytch environment and the state of the art of Test Driven Development in CS education. JavaScript

and React were both studied throughout this project and the use of a Virtual Machine to access Pytch

on a Linux machine was uncharted territory before this project began. A better understanding of the

Linux OS was gained through the use of this Virtual Box. Working on a somewhat proprietary

developing project rather than widely used open source environments was something new that while

it posed a challenge, offered plentiful new experience that would never have been acquired otherwise.

The results from Chapter 3.6 highlight the successful development process that was completed during

this project with the integration of new Test Driven Development chapters that are tailored to the

intended learning outcomes of the ‘Chase’ tutorial. The product of this implementation can be looked

upon as a proof of concept of the feasibility of design and inclusion of engaging Test Driven

Development processes in the Pytch environment, and similar tests could be designed and

implemented into all other tutorial projects if desired in the future.

During the process of designing and implementing these new tutorials on testing it was also

demonstrated what discoveries were made relating to how to create the optimal tests for inclusion in

educational content for novice programmers on a wider scope than just the Pytch environment. The

different aspects highlighted in Section (4.3) show all the extra findings about designing these tests

that were learned. The conclusions on this work were that the tests created should fall in line with the

intended teachings of the current project without adding too many new features that could potentially

distract from the original intended teachings of the specific tutorial and also that they should span as

many of the prominent features of project as possible. The error messages should also be ensured to

be very comprehensive and easily understandable for novice programmers. The tests should also be

designed to be as discrete as possible to also not distract from the main body of tutorial code.

Overall, this project was successful in including Test Driven Development Education into the Pytch

learning environment and also additionally provided a view into what works and what doesn’t with

regards to Test Driven Development integration into learning environments and projects targeted at

novice and young programmers on a wider scope than just the Pytch environment.

39

5.1 FUTURE WORK

As part of the Future Work section a differentiation will be outlined between what sort of future work

would be completed based on what sort of time frame the project was extended to. Due to the nature

of this project and its results in demonstrating the feasibility of something that doesn’t currently exist

in the Pytch environment, there are many potential directions in which this work could expand.

The first idea in further development that is the most natural follow up to the work completed here

would be to include similar test driven development chapters across the rest of the Pytch tutorials.

This could be done by taking the evaluation work completed in this project to determine a useful set

of tests to add to each tutorial and then implement these new chapters using the git rebasing process

described in Section (3.5.2).

Aside from the integration of this project’s work across Pytch, there are other areas of Pytch and other

ways in which these tests could be utilised. The test chapters could be designed as an obstacle that

the student must overcome before they can continue along the rest of the tutorial as somewhat of a

sanity check. There is potential for redesigning the tutorial compiler so that the tutorial could not be

continued until the test has been passed successfully by the user. Every test a user passes could

potentially be stored as a representation of their learning progress.

Expanding further on the idea of using the outcome of the tests as a student progression record. The

development of a programming assignment environment in Pytch as well as a tutorial environment

could be something of great benefit for Pytch. Looking at the current state of the art of other web-

based Python environments like Pythy (Edwards, et al., 2014) there is an existence of automatic

grading systems in similar projects to Pytch. The addition of an automatic grading system would allow

Pytch to become more whole in its purpose as an educational platform. It would allow for teachers

and professors to use the platform to create assignment projects that could then be graded and

become part of the curriculum mark for the students, which would be a massive step for this

application.

40

BIBLIOGRAPHY

International Society for Technology in Education, Eugene, 1990. In Search of Gender Free Paradigms

for Computer Science Education. Nashville, s.n., pp. 10-15.

Caiza, J. & Del Alamo, J., 2013. Programming Assignments Automatic Grading: Review of Tools and

Implementations. Valencia, s.n., pp. 5691-5700.

Chien, L.-R., Beuhrer, D. J. & Yang, C.-Y., 2007. An adaptive environment in DICE system with TDD

model. Villach Austria, National Chung Cheng University.

Edwards, S., Tilden, D. & Allevato, A., 2014. Pythy: Improving the introductory Python programming

experience. Atlanta, s.n., pp. 641-646.

Fu, X. et al., 2008. APOGEE – Automated Project Grading and Instant Feedback System for Web

Based Computing. Portland: s.n.

Goodwin, M. & Drange, T., 2016. Teaching Programming to Large Student Groups through Test

Driven Development - Comparing Established Methods with Teaching based on Test Driven

Development. Rome, s.n., pp. 281-288.

Heckman, S. & King, J., 2018. Developing Software Engineering Skills using Real Tools for Automated

Grading. Baltimore, Association for Computing Machinery New York, pp. 794-799.

Lappalainen, V., Itkonen, J. I. V. & Kollanus, S., 2010. ComTest: A Tool to Impart TDD and Unit Testing

to Introductory Level Programming. Jyväskylä, University of Jyväskylä, Finland.

Meta - Facebook, 2022. JestJS.io. [Online]

Available at: https://jestjs.io/

[Accessed 01 04 2022].

North, B. & Strong, G., 2022. Pytch Developer Documentation. [Online]

Available at: https://www.pytch.org/doc/developer.html

[Accessed 01 04 2022].

North, B. & Strong, G., 2022. Pytch Documentation. [Online]

Available at: https://www.pytch.org/doc/index.html

[Accessed 01 04 2022].

North, B. & Strong, G., 2022. Pytch Github Repository. [Online]

Available at: https://github.com/pytchlang

[Accessed 01 01 2022].

North, B. & Strong, G., 2022. Pytch Tutorial Documentation. [Online]

Available at: https://www.pytch.org/doc/build-tools/tutorialcompiler/index.html

[Accessed 01 04 2022].

North, B. & Strong, G., 2022. Pytch VM Documentation. [Online]

Available at: https://www.pytch.org/doc/vm/developer/index.html

[Accessed 01 04 2022].

Oracle, 2022. Oracle VM - VirtualBox. [Online]

Available at: https://www.oracle.com/uk/virtualization/virtualbox/

[Accessed 01 04 2022].

41

Scratch Foundation, 2021. Scratch. [Online]

Available at: https://scratch.mit.edu/

Skulpt, 2019. Skulpt Documentation. [Online]

Available at: https://skulpt.org/docs/index.html

[Accessed 01 04 2022].

Tang, L., 2015. A Broswer-based Program Execution Visualizer for Learning Interactive Programming

in Python, Houston: Rice University.

Virginia Tech, 2021. Web-CAT Projects. [Online]

Available at: https://web-cat.github.io/projects/

