
School of Computer Science and Statistics

Analysing the Percentage-Closer
Soft Shadows rendering technique.

Pradnya Ashok Shinde

Supervisor Professor: Dr. Michael Manzke

August 19, 2022

A dissertation submitted in partial fulfilment

of the requirements for the degree of

M.Sc (Computer Engineering)

http://www.scss.tcd.ie

Declaration

I hereby declare that this project is entirely my own work and that it has not been submitted

as an exercise for a degree at this or any other university.

Signed: Date:

i

Abstract

To make a computer scene realistic and visually engaging efficient shadows are needed. The

process of generating shadows is preferably complex. When a object completely or partly

obstructs the light, a dark area will be created inside the bright area which is often called a

shadow. With the help of shadow the correlation between light source and object can be

determined. In 1977 Frank Crow came up with the idea of shadows and in 1978 with the

help of depth buffer Lance Williams proposed the idea of of implementing shadows which

became popular in 2005 after the techniques were used in Doom 3. Shadows are an outcome

of three different areas umbra,penumbra, antumbra. For a naturalistic shadow all these

parts should be considered.Shadows can be categorised in two sections, hard shadows which

have sharp edges and those edges are very well defined. One of the challenges which is

faced while rendering the shadow is aliasing . When jagged edges can be noticed in resultant

shadow it is because of aliasing. A new technique known as Percentage-Closer Soft Shadows

was invented to render shadows. This technique is capable of creating significantly precise

soft shadows with the use of single shadow map. The computation cost will be less as there

is no necessity of pre-computation and post-computation or any extra calculations. It can

also replace the traditional shadow map and reduces its complexity. The use of single sample

and no extra processing makes this technique worth of trying. In PCSS shadow rendering

technique, instead of using classic pixel shader for shadow mapping, PCSS shader is used.

This research focuses on analysing the PCSS technique and summarising the advantages and

disadvantages of PCSS.

ii

Acknowledgements

My sincere thanks to Dr. Michael Manzke for supervising the entire process of dissertation
and guiding me on the minute details of the research work and for the constant
encouragement. I would also like to thank Dr. John Dingliana for his valuable guidance.
With this special thanks to my friends and family for motivating me throughout the process.

iii

Contents
1 Introduction 1

1.1 Overview . 1
1.2 Motivation . 2
1.3 Research Objectives . 2
1.4 Existing Research . 3
1.5 Thesis Structure . 4

2 Literature review 5
2.1 Background . 5

2.1.1 Shadow algorithm for computer graphics 5
2.1.2 Casting Curved shadows on curved surface 5
2.1.3 Shadow Maps . 6
2.1.4 Accurate Shadows . 7
2.1.5 Percentage-Closer Soft Shadows 7
2.1.6 Parallel-split Shadow Maps . 8
2.1.7 Parallel-split Percentage-closer Soft Shadows 8

3 Methodology 10
3.1 History . 10
3.2 Casting Curved Shadows . 10
3.3 Composition of Shadow . 11
3.4 Hard vs Soft shadows . 12
3.5 Soft Shadows with a Single Shadow Map 14

3.5.1 Blurring Hard-Edged Shadows . 14
3.6 Techniques . 15

3.6.1 Shadow Mapping . 15
3.6.2 Shadow Volume . 16
3.6.3 Percentage-Closer Filtering . 18

4 Implementation 19
4.1 Percentage-Closer Soft Shadows . 19
4.2 Algorithm implementation . 20

4.2.1 First step : Creation of depth maps 20
4.2.2 Second step : Scene Rendering 23

4.3 A Brute-Force Implementation . 26

iv

4.4 Using Fewer Samples . 27
4.5 Reason behind its working . 28
4.6 Challenges with Percentage-Closer Filtering 30

5 Evaluation 31
5.1 Experiments . 31
5.2 Results . 32

5.2.1 First Object : Lamp . 32
5.2.2 Second Object : Cow . 33

5.3 Performance . 34

6 Conclusion 36

v

List of Figures
1 Split PCSS . 9
2 A scene from Doom 3 . 10
3 Composition of shadow . 11
4 Hard shadows . 12
5 Soft shadows . 13
6 Architecture of soft and hard shadow . 14
7 Banding effect on shadow . 15
8 Shadow mapping with blocked object . 16
9 Depth Fail method architecture . 17
10 Soft shadow effect with PCF . 18
11 Simple scene point of view . 19
12 Implementation of Percentage-Closer Filtering 21
13 Representation of depth search. 22
14 PCSS sampling process for 4x4 region. 26
15 Using hardware for processing shadow map 26
16 Sampling Pattern . 27
17 Using hardware for processing shadow map 28
18 One sample per pixel Ninja Shadow . 28
19 Four dithered samples per pixel ninja shadow 29
20 Sixteen samples samples per pixel ninja shadow 29
21 PCSS Lamp shadow result 1 . 32
22 PCSS Lamp shadow result 2 . 32
23 PCSS Lamp shadow result 3 . 33
24 PCSS Lamp shadow result 4 . 33
25 PCSS Lamp shadow result 1 . 34
26 PCSS Lamp shadow result 2 . 34
27 PCSS Lamp shadow result 3 . 34
28 PCSS Lamp shadow result 4 . 34

vi

Nomenclature

PCSS Percentage-Closer Soft Shadows
PCF Percentage-Closer Filter
FPS Frames Per Second

vii

1 Introduction

1.1 Overview

Collaborative computer graphics has evolved magnificently in last couple of years. In earlier
days only two-dimensional depiction can be achieved through computer graphics but creating
accurate shadows is one of the primary concerns faced in computer graphics. Shadows are
advantageous in numerous ways among them two important uses are: they significantly en-
hance the quality which can lead to great realism and by providing visual cues, they assist in
understanding relative position of object in 3D scene (1). Shadows can be described as a way
of light getting blocked because of the object resulting in a darkness which called as shadow
(2). Shadow rendering plays a vital role in graphics if one has to make a scene and image
realistic. Shadow rendering is an area which deals with applying the shadows to 3D computer
graphics objects. In 1978 Lance Williams came up with the idea of attaching shadows to the
objects in his “Casting curved shadows on curved surfaces” (3). If shadows are rendered in
the proper manner, it can enhance the quality of scene in the best possible way. In about
game development, it plays a vital role as it showcases practicality of the characters in the
scene. By generating shadows, we can get to know that whether the object is blocked by any
light source. Rendering shadows were challenging after 3-dimension objects where introduced.
Shadows are also responsible for imparting enormous information about second object view. If
soft shadows are considered, its really hard to replicate them. The following image shows an
approach named as Percentage Closer Soft Shadows which can precisely create soft shadows.
This technique is developed with the reference from shadow mapping and percentage-closer
filtering (4) ,which has the following features:

• Creates soft shadows which are precise.

• No extra processing is needed.

• Shadow map can be effectively replaced .

Since there is no need for any extra steps for execution and it is simple to achieve, this
method is a good choice for replacing shadow mapping method.

1

1.2 Motivation

Even though computer graphics technologies are developing immensely these days, rendering
the shadows for scenes is still a challenge. Shadows can be constructed in many ways, for
example shadow mapping, shadow ray or PCSS. Hard-edged shadows can be developed by ray
casting method but on the other hand for developing soften edge shadow, shadow mapping
method is more efficient. Though shadows play a vital role in enhancing the scene, it is a
complicated task to achieve the desired effect. Earlier because of the hardware limitations,
hard shadows were widely used. To achieve more realism soft shadows were instigated. As
there are various methods to generate shadows, every method has its own cons and pros.
The raytracing method and radiosity render the most realistic images with shadows but they
require very complex computations and the result cannot be generated in real time. As the
execution is complex it can lead to damaging the scene, unnecessary delays to generate the
output. So this paper (4) which developed an interesting method for soft shadow rendering
with percentage-closer soft shadows to reduce less complexity and faster execution. With
the addition of a lightweight buffer for tracking dynamic scene objects, we can robustly and
efficiently detect all screen space fragment that need to be updated, including not only moving
object, but also their soft shadows. With implementation this research aspires to summarise
the uses of this technique and compare the end result and computation time. Though there
are multiple shadow rendering techniques which exist, rendering a shadow is a difficult task as
it requires high computational resources. One technique to minimize aliasing in shadow map
is to update shadow map projection areas to minimize utmost minification and magnification.
In the area of shadow map there is humongous research is going on. Shadow mapping , ray
tracing are few of the widely used rendering techniques in computer graphics. PCSS was
invented by Nvidia Corporation which can be a solution on aliasing but it is still not widely
used. The main idea behind this research is to analyse the reasons why percentage closer
filtering did not become a widely used technique as compared to others.

1.3 Research Objectives

After analysing the shadow rendering methods and the challenges which can be faced while
achieving the realistic shadow for images, the PCSS features could be capable of rendering
the shadows which are closer to real world. Adding shadows to the scene can offer a great
realism if shadows are rendered accurately. To offer certain influence on clients lighting on the
scene and the way shadows are rendered plays a significant role. The aim of this research is to
categorise the various type of shadows and its features. As per the characteristics and scene
requirement the shadow algorithm will be chosen. If the shadow algorithm is categorised there
will be two main sections, first one is shadow volume and other one is shadow mapping. Depth

2

map plays an important role in achieving accurate shadows. The light source and its distance
from the the shadow map is the quickest method to store the information of closet object from
the light if certain direction is considered. Further this data is used to estimate the objects
which are obstructed. Due to inconsistency between depth maps data and sampling data,
image based shadow rendering algorithms suffer from aliasing problem (5). This research is
an attempt to list the challenges and possible solutions for accurate shadows which are closer
to real world. Shadows can be rendered using: shadow mapping, shadow volume, and PCSS.
This research will focus on PCSS which is constructed on the way it filters the sample and
with this it can handle the aliasing problem and can generate soft shadow boundaries. In
the following chapters, a clear summary of PCSS, its use, advantages, and disadvantages are
mentioned. This entire research is focusing on following points:

• Basic working principles of PCSS.

• The importance of z-buffer in PCSS while storing the information which will be used to
render the shadows for objects.

• Understanding the problems with PCSS specially the aliasing issue.

• Listing the possible solutions for the issues faced by PCSS.

1.4 Existing Research

As shadows play a vital role in enhancing the quality of the scene there are various ways to gen-
erate shadows. Computer graphics has immensely grown in these years, but still generating
realistic shadows are challenging. Shadows can be hard or soft, depending on the circum-
stances, leading to its own challenges. In past years, various methods have been developed
to render shadows including shadow mapping,shadow volume , ray tracing, planar shadows,
PCSS, to name a few. A shadow consists of three parts namely, umbra,penumbra and antum-
bra. To generate realistic shadows of images all these three parts should be rendered. Most
frequently used technique is shadow mapping as it is considered to be one of the most efficient
methods to render shadows. Algorithms which are used to render shadows are categorised
into two major sections - shadow mapping (3) and shadow volume (6). In shadow mapping,
to calculate shadow maps per light just a single rendering pass is needed and this method is
image based. However, this method has aliasing issues due to inconsistency between projected
sampling of pixels in images to the shadow map and between sampling operation in shadow
map. The aliasing issues can be handled by z-partition method and developing soft shadows by
adaptive filtering. Using single shadow map is not feasible when we have virtual environments

3

which are huge. The reason behind this is restriction on graphics hardware when high texture
resolution and not enough parameters can be generated for global re-parameterizations of a
single shadow map.(7) The solution to this is dividing the view frustum to various depth layers
after which for every split section it will develop an independent shadow map. To filter the
result of shadow and get realistic shadows, PCSS will get applied for filtration purpose. There
is huge research available on casting shadows hence this section will focus on techniques which
are more relevant.

1.5 Thesis Structure

This section explains how the thesis is structured.The detailed background is given in Section
one which is introduction. This section includes background research about the percentage-
closer soft shadows which is followed by motivation for doing research on this topic and the
overall overview of the topic, this will also put a light on the inspiration behind the research.
The next part in introduction section is the study which is done till date for shadow rendering,
its techniques, the challenges included in rendering shadows. The section two is about detail
literature survey on shadow rendering. This includes various discussions by various authors
on the impact of shadows in the scenes, How to improve quality of shadow in the scene,
how to cast the shadows if the surface is curved, With this also the importance of shadow
map, the process of rendering accurate shadows. The literature review section includes the
research which is going on and already present about the topic. The methodology section
includes the methods which are there to generate the shadows. This section also includes the
advantages and disadvantages of those methods and their process of generating shadows.The
next section covers the implementation part and what all steps were taken to achieve the
desired outcomes. The last section will summarize the the information about PCSS and its
efficiency will be discussed.

4

2 Literature review

2.1 Background

The chapter analyses the background required for this thesis. It starts from the introduction of
shadow rendering and then the various methods for shadow rendering. After that it continues
to describe the better approach for shadow rendering. It also includes the theory on comparison
between PCSS and few other techniques.

2.1.1 Shadow algorithm for computer graphics

Shadows are a great promoter of conception and improving realism in computer images.
Shadow calculation, categorising objects to shadowed or unshadowed regions and incorporation
of shadow volumes are the three approaches for categorising shadow algorithms (3). The
research by Lance Williams discusses the three approaches which were present in that year for
casting shadows. This provides a significant idea about the characteristics a shadow rendering
algorithm should have which is relevant in today’s time also. In that time there were not so
many algorithms which can generate shadows so majority of computer shaded images were
generated without shadows which was considered as one of the major limitations. Casting
a shadow will make a huge difference in the scene since it can make the image look more
realistic. The first category of algorithm which is invented by Apple is capable of perceiving
boundaries as raster scan is used to develop the image.

2.1.2 Casting Curved shadows on curved surface

To enhance the accessibility of a scene, electron microscopy shadowing is being used (3).
To determine shadows in computer scenes, multiple methods are available. Relative position
and shape of the object can be more intelligible with rendering shadows. According to Lance
Williams, (3) algorithms which were there in that time to render shadows have the limitation of
constructing planar polygons. This paper proposed an algorithm which uses z-buffer. Visible
surface for z-buffer will be used to calculate shadow by smooth surface patches which modelled
the object. To render a scene without shadows is much easier than with shadows, because

5

rendering the scene with shadow will double the computation and hence cost will be high
(8). The algorithm which is proposed in this paper can generate shadows even if the surface
is curved, and this will cost less as no extra utilities are added to the scene. For excellent
outcomes all the operations should be handled carefully. With this at different stages the
result of dither, geometric quantization and interpolation should be assessed properly. The
algorithm discussed in this paper is as follows:

• As per light point of view the scene will be designed. Instead of shading values just z
values will be calculated and stored.

• As per observers point of view the scene will be built. To map X,Y,Z to observers X,Y,Z
view perform linear transformation. For each point calculated the visibility to light will
be checked as it has to be transformed as per observers view. It is considered in shadow
if the calculated point is not in vicinity of observers view.

The proposed algorithm can face quantization issues as quantization of visible points to
the resolution of the z buffer will be performed. The complexity of the scene will not decide
the cost of alteration as it will be decided only after all points are calculated. Only the points
which can be seen in the final scene will be transformed as a part of post process operations.
So, the resolution of the image will decide the expense.

The user must ensure that all the objects which might emit shadow must be inside light
source of the image. Shadows can be rendered only for the points which are in vicinity of the
light source. Sphere illumination has to be sorted to various views if the casting of shadows
in every direction is inside observers light source. This computations will be a bit costly as
compared to calculating single view which will have all objects from the scene. When a point
gets shifted to a light source surface from the observers space preferably it should settle on
surface of which it is a part of. It will either be below or above the surface the reason behind
this is z buffer quantization and inaccuracy of arithmetic capabilities of the machine. A bias
gets subtracted from the z value of the point which is an outcome of light source space to
get targeted point which will emerge as illuminated.

2.1.3 Shadow Maps

Shadow maps are an extensively used implementing technique for capturing graphics in a real-
time scenario (9). However, one limitation of these maps is that they need differential filtering
from colour textures, which may cause serious aliasing problems. In order to overcome these
limitations, conceptualized variance shadow maps are used. These maps store the mean and
mean square values of depth in a statistical distribution which makes it easy to efficiently

6

compute the variance and in turn, derive the upper bound of the occluded portion of shaded
fragment. This value is found to be consistent for the purpose of rendering. Thus, the aliasing
problems are eliminated and is efficient to implement (10).

2.1.4 Accurate Shadows

PCSS is a shadowing technique used for generating sharper and accurate soft shadows from
light sources (11). The main advantage of these shadows is that there is no requirement for
pre-processing, post-processing and it does not need to factor in additional geometry (12).
This technique is a stable alternative to traditional shadow map query by not considering
the degree of complexity and can incorporate displacement mapping. This technique can be
deployed on current consumer graphics. The three-step algorithm (Blocker search, Penumbra
estimation and filtering) is found to perform effectively for more genuine scenes with a high
level of interaction.

Shadows are recommended due to their ability to increase the understandability of images
and add a new layer of realism to computer graphics. Shadow algorithms can be of three
types: scan out; demarcating objects into portions with and without shadow and incorporation
of shadow volumes in the object. The third approach is found to dominate the other two
approaches in shadow rendering capability (6).

Exploiting the temporal coherence which is inherently present in scene movement allows
for estimation of a new shadow value only when regions are reopened following camera ad-
justment or when the shadow situation changes due to object movement (13). This novel
method efficiently calculates soft shadows in real-time applications by overcoming the high
computational effort required for visibility estimation of each frame. All moving objects can
be detected along with the soft shadows they cast by extending the typical shadow mapping
algorithm with an additional light-weight buffer for tracking dynamic scene objects (14). By
employing this strategy to the popular PCSS, the rendering performance can be doubled while
preserving the visual quality in scenes with both static and dynamic objects, which is com-
monly seen in various 3D game levels.

2.1.5 Percentage-Closer Soft Shadows

As a solution for aliasing issues percentage closer filtering can be used (15).For an accurate
shadow mapping algorithm filtering the depth maps comparison rather than filtering depths
is require. As object contacts each other and as they move apart they get more blurry and
the shadow becomes sharper. To get the softer shadows PCF kernel size has to be increase.

7

The crucial stage in this algorithm is approximating penumbra.PCSS uses parallel estimation
and similar triangle theorem. As per light size and blocker/receiver distance from light the
penumbra width is calculated. The formula to calculate this is (7) ,

wPenumbra = (dReceiver − dBlocker) · wLight/dBlocker (2)

2.1.6 Parallel-split Shadow Maps

This technique is based on z-partitioning method which focuses on estimating perfect distri-
bution with the help of shadow maps. The structure can be seen in Figure 1. In this method
view frustum gets divided into many sections with respect to z-axis and then individual fixed
sized shadow map will be computed for every sub-frustum. By following this technique the
density of sampling gets minimize for every consecutive sub frustum as larger and larger region
get covered by shadow map with same resolution. The important part in this method is how
to divide split planes. It can be done by inferring resampling error of the shadow map. With
the reference of big texel from global shadow map which will lead to z-partitioning let arbitrary
function of democratization. To calculate the split position, the following equation (16) will
be used,

C log
i = zn(

Zf

Zn
)

i
m (1)

In equation 1 number of partitions are denoted by m. Because this assigns resolutions
closer to plane which will increase the times occupancy with the scene. A better approach for
dividing scheme logarithmic and simple equipartition scheme has proposed in (17).

2.1.7 Parallel-split Percentage-closer Soft Shadows

For large scale virtual environments if soft shadow has to be rendered parallel-split PCSS can
be used (7) . In this method entire view depth is considered as multiple range of layers and
shadow map size will be decided based on varying filter kernel with multiple shadow maps.
With parallel split PCSS assessing resources and using resolution of shadow map is preferable.
This process will have five steps which are as follows:

8

• Step 1: Dividing view frustum which will result into multiple depth sections.

• Step 2: Distributing frustum of light into various minute parts where it will cover single
part and shadow will be cast for that particular part.

• Step 3: For every divided part shadow map will be cast. Then we have to loop through
shadow map and depth values which are near to light as compare to shaded point and
perform mean operation on them.

• Step 4: Calculating width of penumbra with help of parallel planes estimation.

• Step 5: With changing the kernel size execute PCF step on depth comparison which
is proportional to width of penumbra and the size of shadow map. After which shadow
for entire scene will be rendered.

For split schemes there are three views which can be seen in following image.

Figure 1: Split PCSS

9

3 Methodology

3.1 History

The history of shadow rendering began in 1977 by Frank Crow. Despite proposing the idea
of the technique it was not frequently used in images or scenes to create shadows and it
became popular after its use in Doom 3 which release in 2005. The method used in Doom 3
for rendering shadows is known as Carmack’s Reverse. The effect of shadows in Doom 3 can
be seen in Figure 2. Shadow mapping was invented in 1978, one year after shadow volume

Figure 2: A scene from Doom 3

technique was proposed. One of the older methods to render shadows is projection shadows.
In this method the shadow of object will directly be projected on floor. The only concern in
this method is that in order to render the shadow the floor has to be flat.

3.2 Casting Curved Shadows

In 1987, Williams L. talked about casting curved shadows on curved surfaces (3). This paper
is the foundation to the extensive research carried out in shadow rendering. This research

10

focuses on z-buffer visible surface algorithm which was proposed by Catmull (18),it was the first
method to develop computer-generated shaded images of bicubic surface patches. Though
the algorithm is exceedingly simple to implement but its not memory efficient. In computer
graphics the way to store digital pictures is "frame buffer". The z-buffer is an add on to
mass-memory method in computer graphics which is about visible surfaces. This technique
will store the depth data at every point in the picture.

3.3 Composition of Shadow

The shadow is combination of umbra,penumbra and antumbra (19). To render a shadow
which will be closer to real world these three parts should be rendered properly. The region

Figure 3: Composition of shadow

where a light is completely blocked by the object is known as umbra. Umbra is the darkest
shadow as the light cannot reach in this area. There is a lighter region next to umbra which
is called Penumbra where just a portion of light is blocked. Some regions get highlighted
as the light passes which is called partial eclipse. The last type of shadow is Antumbra. In
this type the object will appear as if it is completely covered by light. If it shifts directly to
umbra region from antumbra region then size of the blocked object will keep increasing until
it reaches umbra region. It is computationally expensive to calculate all the components of
shadow. This can be seen in Figure 3.

11

3.4 Hard vs Soft shadows

Considering a source which emits light by single point and there is a single ray hitting the
floor. In this case shadows can be generated of two types Hard or soft shadows. Usually
all the shadows which are developed will be hard by default. When hard shadows are the
shadows which are not suggested for use (20). Hard-edged shadows can be achieved by ray
casting method. These kind of shadows will not give a realistic effect on the scene.The effect
of hard shadow can be seen in Figure 4.

Figure 4: Hard shadows

In hard shadows the shift in shadows and light will be sharp and metallic.Here are some
scenarios where hard shadows can be used:

• To generate hard light and shadow on bright sunny day.

• When there is need for developing fixed shapes which will have defined sharp shadows.

• In space where light reaches to object without getting diffused.

• In movies or circus when a harsh focus is needed with the help of spotlight.

The drawback of hard shadows is that they are less realistic. To achieve realism in images

12

or in scenes soft shadows can be used as they have softer effect on the edges. These kind
of shadows tend to fade off which gives them a realistic look. In Figure 5 the effect of soft
shadow can be seen. Here the shadow is not as dark as hard shadow shown in Figure 4, it
is slightly faded which is giving realistic effect to the objects. Here are some scenarios where

soft shadows can be used:

• Showcasing the light which is transmitting by transparent materials.

• When there is need to generate natural light in cloudy weather.

• Lights which gets reflected from the surfaces which generally have soft effect.

• In movies to make characters more realistic and relatable.

Figure 5: Soft shadows

In soft shadows the source of light will be considered as an object so the rays of shadow
will not look as if they are straight, instead it will look like cones. In following image we can
observe that only umbra element is present in hard shadows contradictory to this soft shadows
are consists of umbra and penumbra, which is the reason for their realism. The structure of
hard and soft shadow can be seen in Figure 6.

13

Figure 6: Architecture of soft and hard shadow

3.5 Soft Shadows with a Single Shadow Map

Rather than examining source of light and rendering shadow maps at every sample as a
solution single shadow map can be used. In the region of projected point it can be sampled
multiple times after which all the outcome can be merged.

3.5.1 Blurring Hard-Edged Shadows

To achieve softer edge effect blur the edges of shadows which are hard. The best way to
achieve this is shadow map. Comparing shadow maps multiple times with offset coordinates
which will followed by merging all the outcomes. The offset here plays a very vital role as this
will act as a decision maker on blurriness of the final shadow. Because of the depth values
the original data of shadow map can not be blurred. Though by executing multiple lookup at
every iteration the results of shadow map can be blurred in a scene. This technique is very
similar to traditional soft shadow rendering technique in which the object will be rotated by
90 degrees and the high computational shadow map will become less expensive to compute.
Sadly, only when penumbra area is small enough this method is suitable or else it will have
banding artifacts which is shown in Figure 7.

14

Figure 7: Banding effect on shadow

3.6 Techniques
In this division lets look at the various techniques used for shadow rendering.

3.6.1 Shadow Mapping

In this technique lights’ perspective is used to render the shadows in scene. In simple way
things which are visible from lights viewpoint will be lit and things which are not visible from
lights perspective will render as shadow. Consider a surface which have box in between light
and the box on the surface. As there is a box in between as per the light direction there will
be floor section which will be in shadow. This can be seen in Figure 8.

In the figure all the regions which are visible by light are shown by blue color where as the
black color represent the blacked area which can’t be seen by light.Lets say if a line is drawn
from light source to the object which is on the floor the light will hit the middle object first
before reaching to floor object which leads to middle object having blue color and bottom
object having mix of both colors. We have to get the closer point of the ray where it will hit
the middle object and then use this point to compare with other point on ray.Then keeping
this closer point as a reference we can determine whether the point is in light or shadow.
The problem with this method is that looping through every point on light ray is not feasible
and it will be exceedingly difficult to compute this much data. But instead of computing
light rays depth buffer can be used. If we consider camera’s point of view and fragment
set to [0,1] from it that will be values depth buffer. Shadow map is the image where the z
values values are stored for every pixel of the scene. The transposed light coordinates will be
calculated and if it is less than one of the values in shadow map, it is in shadow or else it is
lit. Depending on the pixel present in shadow or not the color is decided. If the light source

15

Figure 8: Shadow mapping with blocked object

is definite in correspondence to the viewer it will lead to aliasing issues.This technique can be
purely developed with the graphics hardware.

3.6.2 Shadow Volume

This is a geometry based method to render shadows. In shadow mapping you need to calculate
shadow map direction vector and because the light will be distributed everywhere it is hard
to compute this vector. This problem can be solved by using shadow volume. This method is
invented by Michael Songy and William Bilodeau (21).For masking off the pixel this technique
uses stencil buffer which capable of rendering pixels even if there no light source (21). Shadow
rendering uses the approach to enhance the object silhouette. When light drops on the
silhouette of object, it will be enhanced after which using some simple stencil operations,
volume will be rendered using stencil buffer. This can be accomplished by iterating through
every adjoining edges. The front polygons wins the test if the object is in shadow on other
side back polygons will fail this test.This is done calculating dot products of normal’s of
triangles and opposite edges of triangles of light source. Then the common edge which is
silhouette edge will be inserted in a list. Depth Pass was previously discussed, but due to
its inefficiency, the other option which was used to develop stencil operations is Depth Fail.
The disadvantage with depth pass is that it is not efficient when the viewer is inside shadow
volume. This problem can be solved by depth fail.In Figure 9, at bottom left there is a bulb

16

and a object which is green in color. This object is responsible for rendering the shadows
because its blocking the light. In total three objects are there A, B and C. Object A and C
are responsible for shadowing B. To render the shadow by stencil buffer we have to cast
green color object with A, B and C. All this objects will get stored in depth buffer. As an
outcome of this process we will get all the nearer pixels. To generate a shadow we have to
iterate through all the objects. The following rules are used while rendering the shadows with
shadow volume technique:

• Value in stencil buffer get incremented if the test fails while casting back facing polygons.

• Value in stencil buffer get decremented if the test cases while casting front facing
polygons.

• If stencil test fails and depth test pass no operation will be done.

Consider object A, it fails the depth test as it is surrounded front and back facing triangles.
Values of pixel get incremented or decremented as it is surrounded by object A which will
eventually become zero. Front facing triangles of object B depth test will win the test and
back facing triangles will fail the test as a result stencil value get incremented. In case object
C depth test wins and therefore no change will be there in stencil value. Here we considered
only one blocking object but there can be n-number of blocking objects.

Figure 9: Depth Fail method architecture

17

3.6.3 Percentage-Closer Filtering

This technique uses projection of current screen pixel. This pixel enlarges into shadow map
then sampling is performed on resulting area using standard texture filtering. All the sample
which we get as an outcome gets compared with reference depth which will generate binary
result. The result of this comparison gets merged to calculate texels percentage in filter area
which is near to reference depth. To render the light this percentage is used. In 1987 Reeves
come up with the idea that is you have to achieve soften edges of the shadow by enlarging
the size of filter area (22). It can be seen in Figure 10.

Figure 10: Soft shadow effect with PCF

Soft shadows can be achieved by making size of filter minimum. If the filter size is large
it will need shadow map which have high resolution to get every detail preserved. Fix area of
adjacent shadowmap texels sample is a commonly used variant in algorithm. This technique
solves the problem of aliasing by using depth maps. This technique will be explained in
detail in coming sections.

18

4 Implementation

4.1 Percentage-Closer Soft Shadows

Shadows contribute to strengthen the realism in images created by computers. However,
shadow rendering algorithms which are available in the market have the limitation on modeling
the objects and they are extortionate to execute. PCSS is based on z buffer algorithm which
is proposed by Williams (3) and it works in two stages. Simple scene point of view can be
seen in Figure 11 (15). As per the point of view of light source a scene is casted, with this
z-buffer will store values of z for objects which are closer to light, this will be done in first
stage. As part of the second stage, the scene will be rendered as per camera position. Every
point is altered to light source space from surface. After which, the object point which is
nearer to light is determined. This will happen as per the point stored in depth maps. If the
altered point is not in front of z which is stored in depth map then the point is declared as
in shadow. For implementing the algorithm which is proposed in (3) two aliasing issues can
be faced, the first one is producing depth maps and the second one is sampling these depth
maps.

Figure 11: Simple scene point of view

19

To implement PCSS technique following stages are required:

• From the bounding box of the area randomly selecting samples.

• From the same box selecting the sample from one of the distribution, for
example Gaussian.

• Distributing the bounding box to subareas and performing sampling for every
partition.

• Making sure that geometry boundary of the area will have single sample
position.

In this technique average of various shadow map comparison are computed. The percent-
age of the surface nearer to light which means that it is not shadow will get calculated. This
method was originally invented by Reeves in 1987 (15) which is stated as sampling the area
by involving random variable and mapping the area which is shaded in the shadow map. The
aliasing issue can resolve by implementing stochastic sampling (23). For sampling, percentage
closer filtering will be used. For acquiring texture values texture maps can be accessed which
also filters this values. Though with depth maps this technique will not work, the reason be-
hind this is the values from depth map will be compared with surface values to check whether
the point is in shadow or not. With this generating soft deinterlacing edges are not possible
as the outcome of the above comparison will be in binary. In solution proposed in (15), the
order of comparison and filtering steps get reversed. All the z values present in depth map
for the area are get compared with surface depth which are going to rendered. We will have
binary image which is converted from depth map as part of sample transformation process.
To get a proportion of the area in a shadow, from this results values get filtered and as a
outcome soft antialiased shadows get rendered. The major distinction between normal texture
map and percentage closer filtering can be seen in figure 12.

4.2 Algorithm implementation

The Percentage closer filtering works as following:

4.2.1 First step : Creation of depth maps

By calculating depth values for every objects from the image for each light source the depth
map is created. X and Y coordinates signifies the location of pixel in the depth map as

20

Figure 12: Implementation of Percentage-Closer Filtering

per screen space of light. The distance from light in world space can be represent by z-
coordinate. To represent x,y,z values light space is used. While producing depth map
rather than using stochastic sampling regular sampling will be used. The reason behind
using stochastic sampling is getting relevant sampling. Sometimes the outcome with regular
sampling is less noise per pixel as compare to stochastic sampling. Its not hard to execute first
pass. To get better results rather than storing color values, nearest z value gets stored this can
be seen in Figure 13. Texture file will save this floating point value. As compare to shaded
image depth map takes less time for execution. With depth map there is no requirement of
texturing, lighting and shading computations and objects which are unable to cast shadows
are completely disregard. The best part of depth maps are it only requires single sample per
pixel.

This algorithm is implemented in openGL with Function_depthBlock. Which can be
seen in following code snippet.

21

Figure 13: Representation of depth search.

float Function_depthBlock(vec4 varLightSpace , float light_wValue)

{

int numberOfSample = 8;

float addingBlocker = 0;

int countForBlocker = 0;

vec2 texelVariable = 1.0 / textureVariable(shadow_map_variable

, 0);

vec3 coordinatesProjection = varLightSpace.xyz / varLightSpace

.w;

coordinatesProjection = coordinatesProjection * 0.5 + 0.5;

float depthValue_current = coordinatesProjection.z;

float rangeForSearch = light_wValue * (depthValue_current -

0.05) / depthValue_current;

if (rangeForSearch <= 0) {

return 0;

}

int rangeValue = int(rangeForSearch);

int windowCount = 3;

for (int i = -windowCount; i < windowCount; ++i) {

for (int j = -windowCount; j < windowCount; ++j) {

vec2 shiftValue = vec2(i * 1.0 * rangeValue /

22

windowCount , j * 1.0 * rangeValue / windowCount);

float sampleDepthValue = texture(shadow_map_variable ,

coordinatesProjection.xy + shiftValue *

texelVariable).r;

if (sampleDepthValue < depthValue_current) {

addingBlocker += sampleDepthValue;

countForBlocker ++;

}

}

}

4.2.2 Second step : Scene Rendering

As per the camera point of view a scene will be created in second step.Every computation done
for shading associated with some area on surface. What each area represents is dependent on
which rendering system is being used. It can represent correct pixel areas to small sub pixel
areas. Every region which is shaded will be depicted in light space and will have a area in
depth map too. The main idea behind using percentage filtering is deciding nearer values to
the light than surface from all the z values from depth map. As per the outcome the intensity
of light gets decided. This process gets repeated if shadows are casted by multiple lights in
the scene.

To implement this algorithm initially REYES rendering engine was used so the area which
is shaded can be represented by four-sided micropolygon (24) shown in the Figure 13.

4x4 texel sample area can be used everywhere rather than computing shaded area for the
shadow map (24). The resultant area will be notably sufficient enough to minimize aliasing
issues. However it cannot achieve good result as it is not that capable enough to store many
samples. As hardware shader’s do not work on micropolygons instead they consider pixels
while operating.As per the original implementation conversion the four sided polygon to the
pixels of shadow maps is necessary to calculate sample area. Instead in this implementation
fix size sample areas are considered. These samples can allow us to skip operations which are
complex in nature. By using this way accurate shadows percentage will be calculate rather
than roughly considering probabilistic sampling (24).Figure 14 is showcasing the sampling for
while going through the process (24).

23

To implement the PCSS this is referred (25). Function calculatingShadows is used in
openGL, the following snippet shows the implementation.

float calculatingShadows(vec4 varLightSpace)

{

// perspective_divide_calculations

vec3 coordinatesProjection = varLightSpace.xyz / varLightSpace

.w;

// transforming operations for rangevalue [0,1]

coordinatesProjection = coordinatesProjection * 0.5 + 0.5;

// getting nearest depth value

float nearest_depth = textureVariable(shadow_map_variable ,

coordinatesProjection.xy).r;

// calculating depth as per current light perspective

float depthValue_current = coordinatesProjection.z;

// biasValue computation

vec3 normalVariable = FunctionNormalize(NormalValue);

vec3 directionOfLight = FunctionNormalize(positionLight -

positionFragment);

float biasValue = max (0.05 * (1.0 - dot(normalVariable ,

directionOfLight)), 0.001);

float lightW_value = 7.0;

float depthAvgValue = avg_block_depth(varLightSpace ,

lightW_value);

if (depthAvgValue == 0) {

return 0.0f;

}

float penumbraWValue = penumbraWValue(depthValue_current ,

depthAvgValue , lightW_value);

// considered as shadowValue if value of penumbra is zero

if (penumbraWValue == 0) {

return 0;

24

}

// checking if position is in shadowValue or not

float shadowValue = 0.0;

vec2 texelSize = 1.0 / textureSize(shadow_map_variable , 0);

int counterValue = 0;

// deciding penumbra width.

int rangevalue = int(penumbraWValue / 0.09);

//set a rangeValue if its too big

rangevalue = rangevalue > 40 ? 40 : rangevalue;

rangevalue = rangevalue < 1 ? 2 : rangevalue;

// return penumbraWValue;

for (int counter = -rangevalue; counter <= rangevalue; ++

counter)

{

counterValue ++;

for (int iteration = -rangevalue; iteration <= rangevalue;

++ iteration)

{

float depthValue_pcf = textureVariable(

shadow_map_variable , coordinatesProjection.xy +

vec2(counter , iteration) * texelSize).r;

shadowValue += depthValue_current - biasValue >

depthValue_pcf ? 1.0 : 0.0;

}

}

counterValue = counterValue > 0 ? counterValue : 1;

shadowValue /= (counterValue * counterValue);

if (coordinatesProjection.z > 1.0)

shadowValue = 0.0;

return shadowValue;

}

25

Figure 14: PCSS sampling process for 4x4 region.

4.3 A Brute-Force Implementation

Percentage closer filtering for shadow map sampling is integral part in NVIDIA GPUs. To
bilinearly interpolate the shadow map fractional part of the texture coordinate is used with
this comparison of four depth will be considered by hardware. The outcome of shadow is
percentile of texel size region is shown in Figure 15.

To project texture map which can be analyse by offset present in texel unit. If we have
to calculate texmapscale it can be done by float2 value which is 1/width and 1/height of
shadow map.

Figure 15: Using hardware for processing shadow map

To estimated penumbra parallel planes are used (26). This calculation is useful for esti-
mation distance between size of light and receiver with respect to light. This is calculated by
following lines of code,

26

float penumbra_calculations(float receiverPos , float blockerPos ,

float lightPos) {

// calculating penumbra estimation and return the value

float estimated_penumbra;

estimated_penumbra = (receiverPos - blockerPos) * lightPos/

blockerPos;

return estimated_penumbra;

}

4.4 Using Fewer Samples

The brute-force method gives better results that one might think.Textures picked from texture
cache as there is assurance that it will be near each other. If the sampling pattern is updated
expected result can be achieved by four samples per pixel. The result which can be achieved
by dithering black and white data same result can be provided by four sample technique to
cast a grayscale image. Only four samples from 16 sample for each pixel will be used by
keeping sample area size unchanged. According to screen location the set of four samples will
keep changing.

Figure 16: Sampling Pattern

Figure 16 depicts the pattern for sampling which is four sample which is picked from 16
possible locations per pixel.

27

Figure 17: Using hardware for processing shadow map

4.5 Reason behind its working

Can texture projection magnifies the shadow map if antialias shadow with a fixed size sample
region? The solution is, there will be less difference between shadow values if the texture map
samples are near to each other and the region which are sampled are significantly huge. The
reason behind this is there will be overlapping in sample regions. The way overlapping occurs
in adjoining pixel after magnification of shadow map.This can be seen in Figure 17

Figure 18: One sample per pixel Ninja Shadow

The difference between adjoining pixels getting smaller and transformation between un-
shadowed and shadowed areas will be smooth if shadow map is magnified (27),There will be
always a smooth shadow with utmost magnification because the hardware computes percent-
age of shadow by eight bits of precision. For eight bits per component the least notable bit
will have some difference. This is shown in following images. The following image figure 18 ,
19 and 20 (24) shows the samples of ninja model.

On the other hand figure 19 is depicting thumb shadow of ninja. If observed clearly

28

Figure 19: Four dithered samples per pixel ninja shadow

the picture with 16 samples has better quality of shadow. For the desired shadows filter
size can vary with samples. Executing the application with more samples requires more
computational cost. As the sample count various the change in shadow is obvious. The
sample count can be change as per the requirement. This will lead to storage issue as for
every sample data gets stored.

Figure 20: Sixteen samples samples per pixel ninja shadow

29

4.6 Challenges with Percentage-Closer Fil-
tering

• Transforming Region
Alteration of the area which is out of depth map is challenging. To solve the issue if the
area is out of source of light it will not consider as shadow.Complex mapping scheme is
used to cast the shadow in all directions.

• Reduction of banding effects
When penumbra size is huge and insufficient for samples which were stored while PCF
process and as a outcome if there is added blur this will induce reduction of banding
artifacts.

• Shadows are costly to render
The major issue while casting the shadows is, it is super costly to generate shadow.Though
current graphics card are super efficient and highly capable of generating accurate shad-
ows. Still the issue of complexity exists while generating shadows.

• Estimating penumbra width
The area inhabited by shadow will be smaller, if the space between viewer and light is
enlarge. So according to the distance penumbra width has to get recalculated which
sometimes hard to manage.

• With multiple lights is hard to render shadow
If multiple light sources are present in the scene, it is highly complex to render shadows.
Virtual cube map which is supported by hardware is capable of developing shadows
which have great quality even if hundred light sources are in used.

• Aliasing
Aliasing is one of the issue which often gets with the silhouette of the shadow (28).
Whenever there will be mismatch of pixel. As a solution to this issue is sampling ,filtering
and portioning can be performed (29).

30

5 Evaluation

Following are the results for the implementation done for PCSS. This implementation is tested
on various object to analyse the resultant shadow. From various objects which are used as a
testing samples, shadows for two objects are discussed below.

5.1 Experiments

A floating value will be returned from PCSS implementation as a alternative to conventional
depth maps. With the use of various shadow maps which attempts to implement distribution
of samples which is similar to z-partitioning. In this method as examination, with respect
to z-axis view frustum is divided into multiple sections. After sectioning the frustum distinct
shadow maps will be computed for every sub frustum. For the accurate shadow results filtering
of the outcomes from the depth comparisons rather than just comparing depths plays a vital
role (30) and this what is considered while implementing this research. If the objects are
moving apart from each other shadow gets softer, on the other side if objects coming near
to each other the shadow gets sharp edges. As the value of PCF kernel getting expanded
the shadow will be rendered as softer. If all these findings are considered, though the PCSS
follows conventional shadow mapping methods, it allows for experimenting on filter size till
the precise level of softness is achieved.

To estimate the place of split planes following formula (30) is used:

Cj = λC uniform
j∑

k=1
lk

+ (1− λ)C log
j∑

k=1
lk

= λ[zn + (zf − zn)
∑j

k=1 lk/m] + (1− λ)zn(
Zf

Zn
)

j∑
k=1

lk

m ,∀0 ≤

j ≤ M()

31

5.2 Results

This implementation is done in openGL and follows shader based approach. Some of the
outcome of the PCSS implementation are discussed below. The light source will keep moving
and the changes can be seen in the shadow which is being casted. Though the shape of the
object is getting rendered properly but after careful examination the minute details of the
lamp specially near the pole its not rendered properly. To test exactness of the minute details
testing this implementation on multiple objects is necessary. Objects which have complex
geometry structure are difficult to render but with the result it is proved that PCSS managed
to generate decent enough soft shadows.

5.2.1 First Object : Lamp

The first object used for testing is lamp which includes detailing in its design. Usually if a
object having this kind of detailing its hard to render its shadow (31). With PCSS the results
are good enough but if closely observed there is noise involved and the shadow is slightly blur
at the edge specially at the pole of the lamp.

Figure 21: PCSS Lamp shadow result 1 Figure 22: PCSS Lamp shadow result 2

32

Figure 23: PCSS Lamp shadow result 3 Figure 24: PCSS Lamp shadow result 4

5.2.2 Second Object : Cow

The second object which used for trial on PCSS shadow rendering is cow, which have less
minute details as compare to lamp object. If this two results are compared, the shadow of
cow is more accurate. This can be determined on the following parameters: depth size, filter
count, light size. From the outcome, an estimation of how close the result is from real world
shadow is made. If results are properly observed for the shadow for object two its clearly
understandable that this shadow is more accurate as the outline of the object is not that
harsh. The resultant outcome soft edged shadow which is making it more close to real world
as its a soft shadow. In Figure 28 the light source is moved apart from the object as compared
with the other other images so a small shadow can be seen there. On the other side if Figure
29 is considered the light source is closer to the object so a bigger shadow can be seen in that
particular case. The object color, platform color can be changed using some of the variables.

33

Figure 25: PCSS Lamp shadow result 1 Figure 26: PCSS Lamp shadow result 2

Figure 27: PCSS Lamp shadow result 3 Figure 28: PCSS Lamp shadow result 4

5.3 Performance

One of the efficient way of analysing performance of any graphics project is FPS. FPS is
frames per second. The measurement of successive frames rendered on the screen can be
shown by frames per second. The excessive value of FPS leads to best graphics work. If the
FPS value is not that large it indicates bad graphics experience. Though shadow can make

34

a scene more realistic but with using shadows there are higher chances of FPS will decrease
which not a good sign. To execute this entire application NVIDIA GEFORCE GTX graphics
processor is used. The PCSS method roughly runs at 82 fps with the NVDIA GPU. The
sample count used for this implementation is 8 an 16. With 16 it gives precise shadows as
results but it will increase computational cost. Light size and the quality which desired plays
a important role on deciding the sample count.

35

6 Conclusion

With the results of the PCSS shadow rendering technique it can be concluded that soft
shadows which are closer to real world shadows can be generated. With the process of
filtrating texture map value, texture maps required less storage space. This values will be
filtered above some area from texture map. The depth of the surface which is rendered gets
compared to the texture value to estimate if that part is in shadow or not. The outcome of
this comparison process can return binary values because of which aliased edges in shadows
are possible. This issue can be handled by PCSS as the sequence of comparison is altered by
this method. First, for complete area a depth map is calculated and this will have z values.
This process will change the depth map to a binary image and this image will go through the
filtration process to estimate areas in shadow. This way there are high chances of getting
antialiased edges in shadows. Generally, if shadows are suppose to render it will cost 40% to
50% additional computational cost as compare to not having shadows. As the number of light
sources increases cost will be more but with the result of PCSS it is proved that soft shadows
can be rendered efficiently even if there is more than one light source in scene. Storing depth
maps significantly takes more space but the storage issue can be handled in a more efficient by
PCSS. This method is not capable of rendering the shadows for motion blur images. Overall,
if we neglect the high cost for computations required by PCSS it can offer realistic shadows
for the scene.

36

References
[1] Jean-Marc Hasenfratz, Marc Lapierre, Nicolas Holzschuch, and François X. Sillion. A

survey of Real-Time Soft Shadows Algorithms. Computer Graphics Forum, 22(4):753–
774, December 2003. URL https://hal.inria.fr/inria-00281388.

[2] Pradeep Sen, Mike Cammarano, and Pat Hanrahan. Shadow silhouette maps. 22(3):
521–526, jul 2003. ISSN 0730-0301.

[3] Lance Williams. Casting curved shadows on curved surfaces. SIGGRAPH Comput.
Graph., 12(3):270–274, aug 1978.

[4] Randima Fernando. Percentage-closer soft shadows. page 35–es, 2005. URL https:

//doi.org/10.1145/1187112.1187153.

[5] Nan Liu and Ming-Yong Pang. Shadow mapping algorithms: A complete survey. pages
1–5, 2009.

[6] Franklin C. Crow. Shadow algorithms for computer graphics. 11(2):242–248, jul 1977.
ISSN 0097-8930. URL https://doi.org/10.1145/965141.563901.

[7] Lu Liu and Shuangjiu Xiao. Real-time soft shadows for large-scale virtual environments.
pages 5464–5467, 2011. doi: 10.1109/ICMT.2011.6002281.

[8] Maneesh Agrawala, Ravi Ramamoorthi, Alan Heirich, and Laurent Moll. Efficient image-
based methods for rendering soft shadows. page 375–384, 2000.

[9] William Donnelly and Andrew Lauritzen. Variance shadow maps. pages 161–165, 2006.

[10] Ian Mallett, Larry Seiler, and Cem Yuksel. Patch textures: Hardware support for mesh
colors. IEEE Transactions on Visualization and Computer Graphics, 28(7):2710–2721,
2022.

[11] Eric Chan and Frédo Durand. Rendering fake soft shadows with smoothies. page 208–218,
2003.

[12] Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. Large steps in inverse rendering
of geometry. ACM Trans. Graph., 40(6), dec 2021. ISSN 0730-0301. URL https:

//doi.org/10.1145/3478513.3480501.

[13] T.A. Davis and E.W. Davis. Exploiting frame coherence with the temporal depth buffer
in a distributed computing environment. pages 29–116, 1999.

37

https://hal.inria.fr/inria-00281388
https://doi.org/10.1145/1187112.1187153
https://doi.org/10.1145/1187112.1187153
https://doi.org/10.1145/965141.563901
https://doi.org/10.1145/3478513.3480501
https://doi.org/10.1145/3478513.3480501

[14] Ana Mihut, Richard Davison, Gary Ushaw, and Graham Morgan. Lighting and shadow
techniques for realistic 3d synthetic object compositing in images. page 70–79, 2018.
URL https://doi.org/10.1145/3193025.3193060.

[15] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering antialiased shadows
with depth maps. In Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’87, page 283–291, New York, NY, USA, 1987.
Association for Computing Machinery. ISBN 0897912276.

[16] Fan Zhang, Hanqiu Sun, Leilei Xu, and Lee Kit Lun. Parallel-split shadow maps for
large-scale virtual environments. page 311–318, 2006. URL https://doi.org/10.

1145/1128923.1128975.

[17] Fan Zhang, Hanqiu Sun, and Oskari Nyman. Parallel-split shadow maps on programmable
gpus. GPU gems, 3:203–237, 2007.

[18] Edwin Earl Catmull. A subdivision algorithm for computer display of curved surfaces.
The University of Utah, 1974.

[19] Tran Anh Tuan, Min Gyu Song, and Jin Young Kim. A robust shadow and light region
detection using within-class variance in face images. pages 455–460, 2011. doi: 10.
1109/ISSPIT.2011.6151605.

[20] Bingshu Wang, C.L. Philip Chen, Yuyuan Li, and Yong Zhao. Hard shadows removal
using an approximate illumination invariant. pages 1628–1632, 2018. doi: 10.1109/
ICASSP.2018.8461695.

[21] Michael D. McCool. Shadow volume reconstruction from depth maps. 19(1):1–26, jan
2000. ISSN 0730-0301.

[22] Fabio Pellacini Michael Bunnell. Chapter 8. summed-area variance shadow maps. GPU
gems, 2007. URL https://hal.inria.fr/inria-00281388.

[23] Robert L. Cook. Stochastic sampling in computer graphics. ACM Trans. Graph., 5(1):
51–72, jan 1986. ISSN 0730-0301. URL https://doi.org/10.1145/7529.8927.

[24] Fabio Pellacini Michael Bunnell. Chapter 11. shadow map antialiasing.
GPU gems, 2007. URL https://developer.nvidia.com/gpugems/gpugems/

part-ii-lighting-and-shadows.

[25] About opengl - percentage closer soft shadow rendering. URL https://github.com/

RaphaelK12/PCSS-With-OpenGL.

38

https://doi.org/10.1145/3193025.3193060
https://doi.org/10.1145/1128923.1128975
https://doi.org/10.1145/1128923.1128975
https://hal.inria.fr/inria-00281388
https://doi.org/10.1145/7529.8927
https://developer.nvidia.com/gpugems/gpugems/part-ii-lighting-and-shadows
https://developer.nvidia.com/gpugems/gpugems/part-ii-lighting-and-shadows
https://github.com/RaphaelK12/PCSS-With-OpenGL
https://github.com/RaphaelK12/PCSS-With-OpenGL

[26] Gregory S. Johnson, Warren A. Hunt, Allen Hux, William R. Mark, Christopher A. Burns,
and Stephen Junkins. Soft irregular shadow mapping: Fast, high-quality, and robust soft
shadows. page 57–66, 2009. URL https://doi.org/10.1145/1507149.1507159.

[27] Ankit Mohan, Jack Tumblin, and Prasun Choudhury. Editing soft shadows in a digital
photograph. IEEE Computer Graphics and Applications, 27(2):23–31, 2007. doi: 10.
1109/MCG.2007.30.

[28] Marc Stamminger and George Drettakis. Perspective shadow maps. page 557–562, 2002.
doi: 10.1145/566570.566616. URL https://doi.org/10.1145/566570.566616.

[29] J. Konrad and P. Agniel. Subsampling models and anti-alias filters for 3-d automultiscopic
displays. IEEE Transactions on Image Processing, 15(1):128–140, 2006. doi: 10.1109/
TIP.2005.860339.

[30] Jaakko Lehtinen, Timo Aila, Jiawen Chen, Samuli Laine, and Frédo Durand. Temporal
light field reconstruction for rendering distribution effects. 2011. URL https://doi.

org/10.1145/1964921.1964950.

[31] Per H. Christensen, Julian Fong, David M. Laur, and Dana Batali. Ray tracing for the
movie ‘cars’. pages 1–6, 2006. doi: 10.1109/RT.2006.280208.

39

https://doi.org/10.1145/1507149.1507159
https://doi.org/10.1145/566570.566616
https://doi.org/10.1145/1964921.1964950
https://doi.org/10.1145/1964921.1964950

	Introduction
	Overview
	Motivation
	Research Objectives
	Existing Research
	Thesis Structure

	Literature review
	Background
	Shadow algorithm for computer graphics
	Casting Curved shadows on curved surface
	Shadow Maps
	Accurate Shadows
	 Percentage-Closer Soft Shadows
	 Parallel-split Shadow Maps
	Parallel-split Percentage-closer Soft Shadows

	Methodology
	History
	Casting Curved Shadows
	Composition of Shadow
	Hard vs Soft shadows
	Soft Shadows with a Single Shadow Map
	Blurring Hard-Edged Shadows

	Techniques
	Shadow Mapping
	Shadow Volume
	Percentage-Closer Filtering

	 Implementation
	Percentage-Closer Soft Shadows
	Algorithm implementation
	First step : Creation of depth maps
	Second step : Scene Rendering

	A Brute-Force Implementation
	Using Fewer Samples
	Reason behind its working
	Challenges with Percentage-Closer Filtering

	Evaluation
	Experiments
	Results
	First Object : Lamp
	Second Object : Cow

	Performance

	Conclusion

