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Clouds are a beautiful phenomenon in nature. The real-time volumetric cloud rendering
technologies are already widely used in recent video games. To render photorealistic
clouds, we should research and reproduce the properties of the clouds. Among these
properties, cloud self-shadowing or self-occlusion is an important cue to the perception
of cloud shape. In this study, I investigate four main real-time approaches to render
the self-shadow of clouds: i) Secondary ray marching; ii) Exponential shadow map; iii)
Beer shadow map; iv) Fourier opacity map. Their memory footprint and render time are
tested under different settings and situations. According to the results, secondary ray
marching almost does not consume extra memory and is able to render fairly realistic
cloud self-shadow, while it needs a long time for rendering when taking many samples.
On the other hand, the other three methods store occlusion information in shadow maps.
Though shadow maps consume some memory, they can accelerate rendering when at high
screen resolution or when lots of cloud need to be rendered in a scene. However, their
visual results are not as accurate as secondary ray marching. Based on the evaluation on
the four approaches, the artists can choose a suitable one according to their purposes.
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Chapter 1

Introduction

Clouds are beautiful and usually affect people’s mood. Nowadays, lots of video games

and films are using clouds to make specific atmospheres for their scenarios. For exam-

ple, Life of Pi uses thick and dark clouds to express the character’s nervousness, while

Red Dead Redemption 2 foils the lonely and peaceful mood with sunset and yellowish

clouds. These years, with the rapid evolution of hardware, especially graphics processing

unit (GPU), the demand on the real-time cloudscape rendering technology is increasingly

getting higher.

Figure 1.1: Cloud scene in films and games.The left image is from Life of Pi Lee (2012),
the right image is from Red Dead Redemption 2 Rockstar (2018).

Regarding cloudscape real-time rendering in game industry, many explorations have

been done in the last several decades. The main representations of cloud are five:

Polygon: Cloud’s polygon can be made by fluid simulation and its lighting informa-

tion can be precomputed for rendering. Whereas, polygon cloud tends to have

monotonous shapes that wispy cloud is difficult to be made with fluid simulation.

In addition, cloud animation on polygon cloud is usually costly.

Billboard: Billboard cloud represents clouds with 2D images. This approach is less

costly but the artists need to prepare a large amount of different appearances of
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CHAPTER 1. INTRODUCTION

various orientations for the changing time and weather. Meanwhile, it is difficult to

reproduce self-occlusion of clouds with only 2D images.

Sky dome: Sky dome cloud precomputes several cloud sets to make sky dome. The sky

dome can be blended into the atmosphere while it is not suitable to represent the

cloud evolve over time.

Particle: This approach represents clouds as volumes of particles. The particle repre-

sentation can render clouds efficiently with precomputed dynamic lighting from the

sun and atmosphere. Whereas the particle cloud is mostly limited to cumulus-like

shapes.

Volumetric cloud: Volumetric cloud uses voxel to represent clouds. This approach is

promising in the evolution of cloud, self-shadowing etc. However, volumetric cloud

has many problems, for example, it usually needs lots of 3D textures which requires

large memory, while it renders clouds using ray marching which is costly technique

for real-time applications.

Among these approaches, even though volumetric cloud is severely expensive in render

time, the pleasing visual results and the flexibility of cloud animation is attracting more

and more people to optimise it and introduce it to real-time games. In 2015, Schneider

and Vos (2015) proposed a series of techniques to render volumetric cloud in about 2

milliseconds that made volumetric cloud affordable in real-time games. Following this

breakthrough, game engine engineers gradually introduced volumetric cloud to their sky

systems Hillaire (2016, 2020); Bauer (2019).

On the other hand, real-time volumetric cloud technology still has a few limitations.

For instance, clouds have high albedo (close to 1) which means most light enters the cloud

will be scattered. The scattered light enters another part of the cloud and the scattering

process happens again. Even though one scattering process is simple, when the scattering

happens hundreds of thousands of times inside a volume of cloud, tracing all the rays to

render realistic appearance is not affordable in real-time Hillaire (2020). Due to this, only

single scattering is computed in real-time games by far. On top of that, how to draw

a large scale of cloud, how to simulate the cloud motion etc. are also open questions

now. Hufnagel and Held (2012) and Schneider (2017) concludes some future works for

cloudscape real-time rendering:

1. Heterogeneous cloud scene rendering. The constituents of clouds changes over alti-

tude. Usually, the cloud at low altitude consists of large water droplets, while the

constituent changes to ice particles at high altitude. The phase functions of these

2



CHAPTER 1. INTRODUCTION

constituent are usually not homogeneous. This requires specific cloud representa-

tions and lighting models for different clouds.

2. Large-scale cloud scenes. Nowadays, we can repeat weather map, which is a 2D

texture describing the weather information, especially the distribution of cloud, to

render broad cloudscape. When it comes to a large scene, e.g., a cloud scene over

the whole Europe, the repeated pattern will break the immersiveness.

3. Cloud-to-cloud shadows and inter-reflection. Since cloud is transparent, light may

travel through clouds, this needs a different model to represent this property than

those of opaque objects. On top of this, the in-scattering effect is also difficult to

reproduce because the heavy computation.

4. The inclusion of atmospheric scattering models for lighting. The illumination from

the atmospheric also affects the appearance of clouds. For instance, the clouds under

sunny weather are usually brighter than rainy weather.

5. Cloud at different scales. When looking at the clouds from close and far, they should

show different levels of details (LOD). Especially, how to implement continuous LOD

should be considered in real-time applications.

6. Temporal cloud animations. Emulating the motion of clouds by translating a 2D

image of cloud distribution is relatively easy, while the more distortion behaviours,

such as the stormy cloud rotating like a tornado, can hardly be simulated by simple

manipulation on such a 2D image.

7. Interaction between clouds and other objects. When we are standing on the ground,

the clouds are distant, we do not interact with them. However, when we drive a

flight and dive into the clouds or we have a especially tall mountain in the scene,

the interaction between clouds and other objects should be considered.

Among these future works, this study mainly focus on the solutions for cloud occlusion.

The cloud occlusion has three main effects. First, cloud will produce self-shadowing.

When the cloud is thick, less light can penetrate through the clouds. As a result, the

bottom of the cloud is usually darker than the top. In addition, if we move above the

cloud layer and overlook the clouds, the taller clouds will cast shadows onto the lower

clouds. Second, cloud will cast shadow on the ground. The clouds in the sky occludes the

sunlight, so we can observe the cloud shadow on the ground. Third, cloud will produce

light shaft. Light shaft is also known as ”god ray”. Compared with the 2D shadow on

the surface of objects, the light shaft is 3D shadow. Under specific weather condition,

3



CHAPTER 1. INTRODUCTION

the shined air will get brighter due to Tyndall effect. This phenomenon often appears

after rain. Since the clouds occludes the sunlight, the occluded space beneath the clouds

receives less light and appears darker. The main interest of this study is rendering the

cloud itself, therefore, the technologies for cloud self-shadowing is investigated.

By far, there are mainly four methods are used for rendering clouds self-shadows.

Schneider and Vos (2015) used secondary ray marching which is a classic method. This

method can render fairly realistic appearance while it is expensive in render time as the

number of samples increases. Bauer (2019) used ESM (exponential shadow map Annen

et al. (2008)) to store the occlusion information and render cloud shadows. Hillaire (2020)

proposed BSM (Beer shadow map) to improve the visual results of Bauer (2019). Besides,

even not directly applied on clouds, Hillaire (2015) used FOM (Fourier opacity map Jansen

and Bavoil (2010)) for rendering shadows from fogs and many other participating medias.

The latter three methods are using the ideas of shadow mapping to record the occlusion

due to clouds. This idea tends to consume less time in rendering, while the visual results

are usually not as good as secondary ray marching. Moreover, the additional shadow

maps consume some memory. Even though people have proposed many methods for

cloud occlusion, there is almost no research has compared and evaluated the performance

of them. For example, even the secondary ray marching is slow, when the scene has

only a few clouds, it is might be preferable to use secondary ray marching than other

methods which are faster but less visually pleasing. On top of that, the needs of resources

to create shadow maps varies among these shadow mapping methods, e.g. the memory

consumption is different. Considering these facts, we need a guideline to tell people which

method is more suitable for their purposes. In this study, experiments are designed to test

the performance, including the memory footprint, rendering time etc, of cloud occlusion

methods. In a nutshell, the contribution of this study is I evaluated four main methods

for cloud self-occlusion, and gave a guidance of how to choose a proper methods according

to different demands.

In this paper, volumetric cloud rendering technology is investigated. In Chapter 2,

the history and recent technologies for cloudscape rendering is reviewed. In Chapter 3,

the design of experiments and the implementation is described. Later, the experiment

results are discussed in Chapter 4. Lastly, a conclusion and future works can be found in

the last Chapter 5.
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Chapter 2

State of the Art

In this chapter, the fundamental of cloud formation and volume rendering will be

introduced. Then the recent technologies used for describing occlusion from clouds are

reviewed.

2.1 Cloud in Nature

Clouds in nature can be divided into many species. According to their features, e.g.

shape and altitude, the most common clouds are 3 groups: strato clouds, alto clouds and

cirro clouds Schneider and Vos (2015). Figure 2.1 is an illustration of these clouds. Strato

clouds are low-level clouds. They exist between about 0 to 2 km above sea level. Stratus,

cumulus and stratocumulus belong to strato clouds. Alto clouds are medium-level clouds.

They exist between about 2 to 8 km above sea level. Altostratus and altocumulus belong

to alto clouds. Cirro clouds are high-level clouds. They exist between about 3 to 18 km

above sea level. Cirrostratus, cirrus and cirrocumulus belong to cirro clouds.

The formation of cloud is already well investigated. Clouds consist of vapours and

small ice particles. The higher altitude the clouds at, the less vapours they have. In

addition, the temperature at high altitude is low, hence the vapours will change to small

ice particles. Therefore, the high-level clouds are usually smaller and less thick. Clausse

and Facy (1961) indicates some useful empirical results for simulation cloud formation.

For example, vapours rise with the heat from earth and the wind direction varies over

altitude. These observations and derived rules are greatly helpful to build a cloud system

for real-time rendering.
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CHAPTER 2. STATE OF THE ART

Figure 2.1: Illustration of main cloud types Schneider and Vos (2015)

2.2 Volume Rendering

The theory of volume rendering is already widely used in rendering clouds. Cloud is a

type of participating media. To render participating media, four volume scattering pro-

cesses should be considered: absorption, emission, out-scattering and in-scattering Pharr

et al. (2016). An illustration of these processes is presented in Figure 2.2.

Figure 2.2: Illustration of four volume scattering processes.

Absorption denotes that light will be absorbed when travelling through participating

media. For example, when light passes fog and cloud, some radiance will be absorbed. The

effect of medium’s absorption can be described by the cross section and the absorption

coefficient σa as:

Lo(p, ω)− Li(p,−ω) = dLo(p, ω) = −σa(p, ω)Li(p,−ω) dt (2.1)

Here, Li and Lo are input light and output light, p is position, ω is the direction of light,

σa is absorption coefficient, t is step distance. Beer’s law Beer (1852) indicates the trans-
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mittance reduces exponentially with distance. Based on Beer’s law, the transmittance Tr

with the effect of absorption after travelling d distance is:

Tr(p
′ → p) = e−

∫ d
0 σa(p+tω,ω) dt (2.2)

Typically, Tr ranges from 0 to 1 denoting the proportion of light travelled through par-

ticipating media.

While absorption leads to reduction of radiance as the ray passes through the par-

ticipating medium, emission will increase the radiance. Some participating media, e.g.

fire, will emit radiance. The differential equation of the radiance due to emission can be

described as:

dLo(p, ω) = Le(p, ω) dt (2.3)

Here Le is the light emit per unit distance.

The last basic light interaction happens in participating media is scattering. Scattering

process has two main effects, out-scattering and in-scattering. Our-scattering deflects

light to different directions which reduces the radiance exiting along a direction. The

probability of out-scattering can be described by the scattering coefficient σs. Similar to

absorption, the reduction of radiance along direction ω due to out-scattering is given by:

Lo(p, ω)− Li(p,−ω) = dLo(p, ω) = −σs(p, ω)Li(p,−ω) dt (2.4)

Accounting both absorption and out-scattering together as attenuation, the attenuation

coefficient σt(p, ω) = σa(p, ω) + σs(p, ω). Therefore, the final transmittance can be ex-

pressed as:

Tr(p
′ → p) = e−

∫ d
0 σt(p+tω,ω) dt (2.5)

In-scattering is an effect of the light deflected by nearby media enters current media

unit and increases the amount of radiance. The total added radiance per unit distance

due to in-scattering is given by:

dLo(p, ω) = Ls(p, ω) dt (2.6)

Ls(p, ω) = σs(p, ω)

∫
S2

P (p, ωi, ω)Li(p, ωi) dωi (2.7)∫
S2

P (p, ωi, ω) dωi = 1 (2.8)
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CHAPTER 2. STATE OF THE ART

Here P is phase function describing how much light is scattered from ωi to ω. A tricky

thing in the equations is that scattering happens multiple times in a participating media.

To render it correct, we need to trace a tremendous amount of the scattering rays which is

not affordable in real-time rendering. As a result, by far only single scattering is computed

in most real-time applications, while the multiple can be approximated byWrenninge et al.

(2013).

Finally, based on the theory above, the final radiative transfer equation can be ex-

pressed as:

Li(p, ω) = Tr(p0 → p)Lo(p0,−ω) +

∫ t

0

Tr(p
′ → p)Ls(p

′,−ω) dt′ (2.9)

2.3 Offline Participating Media Rendering Technol-

ogy

This section reviews how people render participating media offline. So far, the offline

technologies for rendering participating media mainly have 5 types of methods Wu et al.

(2022): volumetric density estimation, virtual ray light, point, Monte Carlo and neural

networks.

Volumetric density estimation based technologies. Typically, this approach includes

two passes Jensen and Christensen (1998); Jarosz et al. (2011): i) lighting pass; ii) render-

ing pass. The basic idea of lighting pass is to distribute light photons or rays, beams from

the light source to the scene and store them into the medium element, and then estimate

their density in the medium. While the rendering pass is to compute the contribution of

to the camera rays based on the density and the property of the media to render the scene.

Křivánek et al. (2014) indicates the different representations are suitable for simulating

the light transport in different participating media. For example, light photon is suitable

for high-order scattering media, while beam is suitable for low-order scattering media.

According to this, since cloud is high-order scattering participating media, light photon

should be a good choice.

Virtual point/ray/beam light based technologies are similar to volumetric density

estimation based technologies. Similarly, this type of method distribute photons or rays or

beams into the scene, whereas the way they use the cached light distribution is different.

VPLs (virtual point lights) Keller (1997); Arbree et al. (2008) assumes every photon is

a point light and compute the illumination. Later, improved methods, VRLs (virtual

ray lights) Novák et al. (2012b) and VBLs (virtual beam lights) Novák et al. (2012a)

are proposed for faster rendering and the capability in wider materials. These methods

8



CHAPTER 2. STATE OF THE ART

are faster than those based on volumetric density estimation, while they have singularity

issues that the potential tiny distance between photons may yield artefacts.

Point based technologies also have lighting pass and rendering pass, whereas it makes

use of the geometry of the cached point cloud in its lighting pass. Wang et al. Wang

et al. (2016) introduces point-based global illuminaiton Christensen (2008) to participat-

ing media rendering. They organised the volume and surface in hierarchies and computed

single, double and multiple scattering separately. Later, Liang et al. Liang et al. (2019)

introduced frequency analysis theory for single scattering computation. This improve-

ment results higher quality while using fewer volume samples. After making use of the

geometry information, this group of algorithms is able to produce high-quality results in

a shorter time than volumetric density estimation based technologies. Meanwhile, com-

pared with virtual point/ray/beam light based technologies, one advantage of this type

of methods is the capability to compute single scattering. However, the limitation is that

the methods are assumed on homogeneous media such as uniform fog, while the extension

to heterogeneous media still requires further works.

Monte Carlo solutions are unbiased and simple, so they have been widely used in par-

ticipating media rendering. Monte Carlo based methods have distance sampling operation

and phase function sampling operation for path tracing integration Kajiya and Von Herzen

(1984). The distance sampling usually consider the attenuation over the distance the light

travels. However, high-order scattering media may cause millions of scattered lights in

the medium which needs a long time to render. As for the phase function, the highly

anisotropic media requires sampling of a high-frequency phase function. High-frequency

phase function sampling is difficult to converge, otherwise, the result tends to be noisy.

Lafortune and Willems Lafortune and Willems (1996) improved the convergence rate by

extending bidirectional path tracing. Further, new technologies were proposed or intro-

duced to improve the Monte Carlo based methods, e.g., next event estimation Jakob and

Marschner (2012); Weber et al. (2017), path guiding Herholz et al. (2019); Deng et al.

(2020) and zero-variance random walks Křivánek and d’Eon (2014).

Recently, neural networks are also introduced to participating media rendering. For

example, regarding cloudscape rendering, Kallweit et al.Kallweit et al. (2017) proposed

to use a radiance-predicting neural networks. They store the shading configuration in the

radiance-predicting neural networks which should include location, the light source the

density structure of the volumetric cloud and so on. During rendering, multiple scattering

is computed by the neural network, while Monte Carlo is used for single scattering.
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2.4 Real-time Participating Media Rendering Tech-

nology

This section reviews two main type of participating media in real-time video games:

cloud and fog.

For a long time, under the limitation of hardware, people tend to use billboard cloud

in real-time applications. To make the motion of billborad more realistic, Guerette et

al. Guerrette (2014) proposed a method to give a illusion of moving cloud with visual flow

technique. However, billboard cloud does not involve the evolution of cloud shape over

time, and it also does not interact with the weather.

Some works proposed to render clouds as volumes of particles. Harris and Lastra

(2002) renders a group of particles in the distance to approximate clouds. Since the

distant clouds have less details, we can represent the cloud with less particles and update

it in a low frame rate. Later, Yusov (2014) introduced pre-integrated lighting which takes

the dynamic lighting of the sun in to account. Meanwhile, Yusov made use of rasterizer

ordered views to avoid particle-like look. Even the particle representation can render

visual pleasing clouds, it is limited to cumulus, while struggles to represent status and

cumulonimbus.

These years, regarding the atmosphere in real time games, the participating media in

a distance, such as cloud in the sky, and the one close to the player, such fog, are rendered

in two different ways.

Schneider and Vos (2015) proposed a cloud system which renders volumetric cloud

in real-time games. Volumetric cloud uses voxel to represent the density of clouds. To

create cloud-like shapes, the artist can pre-generated 3D Perlin Noise and Worley Noise

at different frequencies and mix them together to control the cloud shapes. Ray marching

is used for rendering clouds. However, computing multiple scattering in real-time is not

feasible, so only single scattering is considered for every ray. With suitable noise and ray

marching, we can already form cloud-like shapes and produce cloud-like appearance, but

a frame may take over 20 millisecond to render, which is still not affordable for real-time

games. If we consider real-time as 60 frame per second, one frame should be processed

within 16.7 millisecond. Therefore, Schneider and Vos (2015) optimised the algorithm

by temporal integration. They only render 1 pixel in a square of 16 pixels in one frame,

and render the 16 pixels in order. With this optimisation and several other trade-off,

they squeeze the render time to approximately 2 millisecond. Thanks to this algorithm,

more and more games can build better sky systems with dynamic clouds Hillaire (2016);

Rockstar (2018).

Compared with cloud, fog is usually close to the players and player can walk into an
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foggy area. Due to this, rendering fog needs more details and it usually needs to take the

nearby light sources into account. Historically, the same approaches for clouds, such as

billboard and ray marching, are also used for fog. However, similarly, these methods are

either not dynamic enough or very slow, people want to find a better way to render fog.

Bartlomiej Wronski (2014) proposed a new method to render volumetric fog. Bartlomiej

introduces Light Propagation Volumes Kaplanyan (2009) to rendering participating media

rendering and proposed a new technology to render the volumetric fog in real-time. He

first created a 3D texture aligned with camera frustum, and then store the illumination

information into the froxels. Finally, he used ray-marching to render the result of the

atmospheric effects on screen. With some optimisation technologies, this technologies

could be run in real-time, while it can only be used for near area. As for clouds, which is

usually several thousands metre away from the viewer, it is to expensive to build a huge

3D texture to store the illumination of a broad space. On the other hand, it is possible to

combine this technology with volumetric cloud rendering. For instance, Rockstar (2018)

uses the volumetric fog technology in near area to render fog, while uses ray marching for

distant clouds.

2.5 Noise for Modeling Clouds

Noise is a good tool for procedural content generation. The shapes of fluid and terrains,

even animal communities distribution can be approximated by proper noises. When

modeling clouds, Perlin Noise Perlin (2002) and Worley Noise Worley (1996) are widely

used Schneider and Vos (2015).

Figure 2.3: Examples of Perlin Noise (left) and Worley Noise (right).

Perlin Noise can be used for any sort of wave-like, undulating material or texture. For

example, it could be used for procedural terrain, fire effects, water etc. Compared with

totally random noise, Perlin noise is continuous, so it can represent continuous change of

shapes. Typically, 3D Perlin Noise is used for giving a basic shape for volumetric clouds.
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An example of 2D Perlin Noise is shown in Figure 2.3. When generate Perlin Noise, for

every unit cube, we should assign a random vector to every vertex. Then, to compute

the values of the voxels, we first compute the vectors from the 8 vertices to the current

voxel, and then compute the dot product of this vector and the vector assigned to the

corresponding vertex. After getting the 8 dot product values, interpolate them using

cubic interpolation to get a value for the current voxel. Repeating this process for all the

voxels, we will get a 3D Perlin Noise. Generally, Perlin Noise with only one frequency is

not a sufficient approximation to the complex and subtle shapes of those nature objects,

e.g. mountain and clouds. Therefore, FBM (Fractal Brownian Motion) Decreusefond and

Üstünel (1998) is used for adding more details. FBM is to mix Perlin Noise of different

frequencies together, while higher frequency has lower amplitude. The Perlin Noise can

create the basic round shapes of clouds, while FBM approach makes some nice whispy

shapes.

However, many types of clouds also have cauliflower shapes, Perlin noise alone cannot

cover this feature. To solve this problem, Worley Noise is combined to Perlin Noise.

Worley noise, sometimes called cellular noise, is a distance value pattern. It is widely used

for simulating textures of water, stone and creature skin. An example of 2D Worley Noise

is shown in Figure 2.3. To generate a 3D Worley Noise, we first need to distribute several

points inside the space. For every voxel, we compute its shortest distance to the nearest

point and store this value. After computing this value for every voxel repeatedly, we get a

3D Worley Noise. On top of this, we can optimise this generation process by dividing the

space into small cells and only compute the distance with points in current or adjacent

cells. By using Worley Noise of different frequencies, we are able to generate billowy

shapes for clouds. A comparison of using Perlin Noise and Worley Noise is displayed in

Figure 2.4.

2.6 Ray Marching and Cloud Occlusion

Ray marching is a typical method for rendering volumetric in real-time applications.

This section reviews the techniques for computing cloud occlusion in ray marching.

Ray marching casts rays (view ray) from the camera through the pixel on the view

plane to the world and compute the pixel value according to the intersections with objects.

Regarding volumetric cloud, for every intersection with the cloud, we will first query the

density from 3D textures, and then compute the lighting with regard to the density

occlusion and many other information, lastly added the contribution of this intersection

to the pixel. The radiative transfer equation is described as Equation 2.9. In cloud

rendering, this equation can be divided into the background term LB and the cloud term

12
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Figure 2.4: Cloud modeling with Perlin and Worley Noise Schneider and Vos (2015). The
left image is using Perlin Noise with low frequency Worley Noise, while the right image
is after adding high frequency Worley Noise.

LC :

Li(p, ω) = Tr(p0 → p)Lo(p0,−ω) +

∫ t

0

Tr(p
′ → p)Ls(p

′,−ω) dt′

= LB + LC (2.10)

LB = Tr(p0 → p)Lo(p0,−ω) (2.11)

LC =

∫ t

0

Tr(p
′ → p)Ls(p

′,−ω) dt′ (2.12)

The main purpose of ray marching is to solve LC . Since the analytical answer of LC

almost cannot be computed, in ray marching, we use a discretised form instead:

LC =

∫ t

0

Tr(p
′ → p)Ls(p

′,−ω) dt′ (2.13)

=
n∑

i=0

Tr((p+ id) → p)Ls(p
′,−ω)len(d) (2.14)

Here d denotes the vector of the view ray. len(d) is the length of vector d. Meanwhile,

the transmittance can be approximated by Beer’s law:

Tr((p+ id) → p) =
i∏

j=0

exp(−Den(p+ jd)Cdenlen(d)) (2.15)
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In this equation, Den is the density of the cloud, Cden is the coefficient to describe the

absorption and scattering property of the media. Based on this theory, we can approach

LC , whereas how much radiance is scattered towards the camera at the sample point (LS)

in Equation 2.14 is another problem needs to be solved. Since multiple scattering is too

complex to be solved within several millisecond, usually only single scattering is computed

in real-time applications, while the multiple scattering effect can be approximated by If

we only take single scattering into account, LS is:

Ls(p,−ω) =

Nlight∑
i

P (p, ωi, ω)V (p, ωi)Li (2.16)

P is phase function, V is visibility term telling how much light is occluded, Li is the

radiance from the light source, Nlight is the number of light sources. The phase function P

is same for most clouds and can be approximated by Henyey-Greenstein function Henyey

and Greenstein (1941), the radiance cast by the light source Li is easy to know, hence, the

main task turns to computing the occlusion V . Typically, people are using four methods

to compute occlusion.

Secondary ray marching Schneider and Vos (2015) is a classic way for solving occlusion.

For every sample along the view ray (referred as view ray sample), this method casts

another ray (light ray) towards the light source. Along the light ray, it takes samples

(referred as light ray sample) to compute how much occlusion is between the view ray

sample point and the light source. If detected cloud along the light ray, then use Beer’s

Law (Equation 2.15) to compute attenuation to get how much radiance finally arrives the

view ray sample point.

The other three method are shadow mapping methods. Before casting view rays, they

first cast rays from the view of the light source along the light direction. Then, for every

ray, they compute and store the occlusion information in different ways in their shadow

maps. When to solve Equation 2.16, they directly query the generated shadow maps for

occlusion information. Exponential shadow map (ESM) Bauer (2019), Beer shadow map

(BSM) Hillaire (2020), Fourier opacity map (FOM)Hillaire (2016) are three typical ways

for this purpose.

ESM stores the depth until the first occlusion in its shadow map. After detecting

occlusion, it compute an exponential value f :

f = exp(cz) (2.17)

Here c is a parameter to control the speed of attenuation, z is the distance from light
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source to the first occlusion. During rendering, ESM computes occlusion as:

V = f ∗ exp(−cd) (2.18)

= exp(cz) ∗ exp(−cd) (2.19)

= exp(−c(d− z)) (2.20)

Here d is the distance from sample point to the light source. According to this function,

as d increases, V decreases to 0. When V is larger than 1, it will be clamped to 1. On

top of this, the shadow map can be pre-filtered to generate soft shadow.

BSM is an improved ESM designed for rendering clouds. BSM assumes only a volume

of clouds exists along a ray. To approximate the occlusion, BSM stores front depth, mean

density, max optical distance, 3 values in the shadow maps. Front depth is similar to ESM,

recording the distance between the first occlusion and the light source. Mean density, or

mean attenuation coefficient, is the average density of cloud along the ray. Max optical

distance records the maximum optical depth which is the maximum occlusion from a

volume of cloud. If we get a longer optical distance, it will be clamped to the maximum

optical depth because the assumption. When rendering, the occlusion is computed as:

D = min(Dmax, σmeanmax(0, (d− z))) (2.21)

V = exp(−D) (2.22)

D is optical depth, Dmax is max optical depth, σmean is mean density, d is the distance

from the sample point to the light source, z is front depth.

FOM approximates the distribution of occlusion with Fourier series, and store the

coefficients of Fourier series in the shadow maps. FOM express the transmittance d away

from the light source as:

Tr(d) = e−
∫ d
0 σ(t) dt (2.23)

σt ≈ a0
2

+
n∑

k=1

ak cos(2πkz) +
n∑

k=1

bk sin(2πkz) (2.24)

ak = −2
∑
i

ln(1− αi) cos(2πkdi) (2.25)

bk = −2
∑
i

ln(1− αi) sin(2πkdi) (2.26)

Here d is a normalised distance from the light source (ranges from 0 to 1), ak and bk

are Fourier series coefficients, αi is density. Generally, more coefficients can better ap-

proximate the occlusion distribution, while it consumes more memory. As a trade-off, 7
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coefficients, a0 to a3 and b1 to b3, are enough for most cases.
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Chapter 3

Design and Implementation

In this chapter, the purpose together with the details of the experiments will be de-

scribed in the beginning. Following the design of the experiments, the implementation is

described in the next Section 3.2.

3.1 Experiment Design

3.1.1 Purpose

So far, people have been using various techniques to render clouds self-shadowing.

However, only a few researches investigated the performance of these techniques and

most of them only slightly mention the difference of methods. For example, Hillaire

(2020) indicates BSM consumes less memory than FOM, whereas they did not explicitly

present how much memory BSM saves than FOM. We do not have a guide to tell us when

to use which method. Therefore, this study designs experiments to compare four popular

methods for clouds self-shadowing. As explained in previous chapter, the four methods

are:

1. Secondary Ray Marching

2. Exponential Shadow Map (BSM)

3. Beer Shadow Map (BSM)

4. Fourier Opacity Map (FOM)

The last three can be included as shadow mapping methods. In the experiments, we

investigate the memory consumption of different methods, the render time with different

settings and in different situations.
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3.1.2 Experiment1: memory footprint

Secondary ray marching does not require a shadow map and any other precomputed

resource, so it almost does not consume extra memory. Regarding the rest three methods,

they store the occlusion information with different forms and the memory footprints

are various. This experiment tests and compares the memory consumption of different

methods. Regarding the shadow mapping methods, the memory consumption of shadow

map at different resolutions (512× 512 and 1024× 1024) will be computed.

3.1.3 Experiment3: render time of shadow mapping methods at

different shadow map resolution

As for shadow mapping methods, when using high resolution shadow maps, they can

get more accurate occlusion information due to higher sampling rate. However, more

pixels means they should spend longer time to generate shadow maps. To investigate

the relationship between render time and shadow map resolution, this experiment will

measure the total render time and shadow map generation time of ESM, BSM and FOM

at 256× 256, 512× 512 and 1024× 1024.

3.1.4 Experiment3: render time with different number of sam-

ples

Generally, the more samples we have, the more correct results we get. On the other

hand, sampling too many times slows rendering. In real-time rendering, we need to find a

proper balance between visual result and render time. According to the resource we can

use, the proper number of samples will change. In this experiment, the total render time

and the shadow map generation time are to be compared. For secondary ray marching,

the render time is tested with different numbers of samples, from 1 sample to 50 samples,

along the light ray. For ESM, BSM and FOM, the render time is tested with different

numbers of samples, from 10 to 300, when generating shadow maps.

3.1.5 Experiment4: render time with different resolutions

As for ray marching, larger resolution means a need of casting more rays through

the pixels to render clouds. The total number of samples we take along the view rays is

described as Equation 3.1. Nview is the number of sample for all the view rays, W and H

are the width and height of the resolution, C̄ is the average ratio of clouds on the screen,

18



CHAPTER 3. DESIGN AND IMPLEMENTATION

S̄ is the average number of samples we take for every view ray.

Nview = W ∗H ∗ C̄ ∗ S̄ (3.1)

For every sample on the view rays, we also need to take more samples to compute the

occlusion. In secondary ray marching, we can set how many samples (SL) we take along

the light ray, while we only need to query once from the already computed shadow map

when using shadow map methods. The number of samples along the light ray is described

as Equation 3.2:

Nlight =

SL, if secondary ray marching.

1, if shadow mapping methods.
(3.2)

(3.3)

Regarding the number of samples when generating shadow maps, this can be described

as Equation 3.4. NSM is the number of samples for shadow maps, WSW and HSM are the

width and height of the resolution of shadow map, SS is the number of samples we take

along the light direction for computing the occlusion.

NSM = WSM ∗HSM ∗ SS (3.4)

Even though the process to get one sample is not identical when using different meth-

ods, the total number of samples could be an indication of the complexity. Based on this

theory, the total number of samples N can be described by:

N = Nview ∗Nlight +NSM (3.5)

Since cloud is transparent object, it does not require a very precise geometry infor-

mation. Therefore, W and H are usually larger than WSW and HSW . On top of this,

secondary ray marching has larger Nlight, so larger resolution should slow secondary ray

marching more than the shadow mapping methods. In experiment 3, the effect of reso-

lution on the rendering time will be investigated. The performance of these methods on

720p (1280 x 720), 1080p (1440 x 1080), 2k (2560 x 1440) will be tested.
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3.1.6 Experiment5: render time with different cloud coverage

rates

In different applications, the requirement for rendering cloudscape is different. Even in

the same application but different scene, the coverage of cloud also varies. Hence, the per-

formance of these methods with different cloud coverage rate is also worth investigating.

According to Equation 3.1 to 3.5, the cloud coverage C̄ also affects all the four methods.

Similar to the theory described in Section 3.1.5, larger C̄ should have move impact on

secondary ray marching than shadow mapping methods. Therefore, this experiment tests

the performance of these method with different cloud coverage rates, from 10 % to 100 %.

3.1.7 Common Settings

All the experiments are run in one computer. The CPU used is i7-11850H, the GPU

used is RTX-3080, the total available memory is 32 GB. All the programme is written in

OpenGL and C++. Meanwhile, to simulate the cases in real-time applications, temporal

integration of the scattered light solution is added to accelerate rendering Schneider and

Vos (2015). Specifically, only one fourth of the total pixels are rendered in one frame.

Every four pixels are rendered in order, therefore, every four frames is a completed full-size

frame.

3.2 Implementation

3.2.1 Prerequisite

The four cloud seld-occlusion methods have some common settings and requirements,

these common parts will be described in this section.

Perlin-Worley noise and Worley noise are used for modeling clouds. Two 3D textures

are used. The first 3D texture has four channels, the R channel stores Perlin-Worley

noise, while G, R, A channels store Worley noise of higher frequency. This 3D texture

is to form the basic cloud shapes. The second texture has three channels, these channel

store increasingly higher frequency Worley noise. This texture is to further erode the

cloud to make wispy shape.

One weather map is used to control the cloud. The weather map has three channels.

The R channel stores the coverage of clouds. Higher R value means more cloud exists in

the area. The G channel stores the precipitation rate of clouds. Higher G value means

the cloud includes more vapour, so the cloud absorb more light and the cloud looks
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darker. The B channel stores the height of the clouds. 0 denotes to stratus, 0.5 denotes

to stratocumulus, 1 denotes cumulus.

The scene is set to on a sphere, so the cloud will fall in the horizon. The height of the

ground is set to 200, 000 metre. The bottom of the cloud layer is at 201, 000 metre, while

the top of the cloud layer is at 204, 000 metre.

Ray marching is implemented for volumentric cloud rendering. The illuminance on the

cloud has two parts, single scattering and an ambient light to approximate multiple scat-

tering. The computation of the ambient light is refering to . Meanwhile, the background,

in other words, the sky excludes the clouds, is also rendered with the method proposed

by Preetham et al. (1999). As for the details of the ray marching and the four cloud

self-occlusion methods, their implementations are described in the following sections.

3.2.2 Ray Marching

The pseudocode for ray marching is shown in Algorithm 1. The get light() function

is the key term that investigated in this study. The four cloud self-occlusion methods are

using different ways to approach the correct result for this function.

Algorithm 1 Pseudocode for Ray Marching

1 Variables

2 p: current position

3 dir: normalised ray direction vector

4 σs: scattering rate

5 num step: number of maximum steps

6 step dist: distance of one step

7 L: the amount of light arrives at current point

8 final light: final light

9 light dir: normalised direction vector to light source

10 perlin worley: 3D texture of Perlin-worley noise

11 step: current step

12 density: density of cloud

13 T : total transmittance

14 phase: result of phase function

15

16 Functions

17 texture(): sample value from a texture

18 get light(): a function to compute how much light arrives

19 HG(): Henyey-Greenstein phase function
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20

21 Procedure

22 T = 1;

23 p = camera pos;

24 step = 0;

25 final light = 0;

26

27 while step < num step do

28 p = p + dir * step dist;

29 density = texture(perlin worley, p);

30 T *= exp(−density ∗ step dist);

31 L = get light(p);

32 phase = HG(dir, light dir);

33 final light += L ∗ density ∗ σs ∗ phase ∗ T ∗ step dist;

34 step++;

35 end while

36

37 return final light, T ;

3.2.3 Secondary Ray Marching

Algorithm 2 is how secondary ray marching is implemented for the experiments.

Algorithm 2 Pseudocode for Secondary Ray Marching

1 Variables

2 p: current position

3 num light step: number of maximum steps

4 step dist: distance of one step

5 L: the amount of radiance arrives current point

6 light dir: normalised direction vector to light source

7 perlin worley: 3D texture of Perlin-worley noise

8 step: current step

9 density: density of cloud

10 T : total transmittance

11 light source intensity: luminance of light source

12

13 Functions

14 texture(): sample value from a texture
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15

16 Procedure

17 T = 1;

18 p = start pos;

19 step = 0;

20

21 while step < num light step do

22 p = p + light dir * step dist;

23 density = texture(perlin worley, p);

24 T *= exp(−density ∗ step dist);

25 step++;

26 end while

27

28 return T * light source intensity;

3.2.4 Exponential Shadow Map

Algorithm 3 is how ESM is generated for the experiments.

Algorithm 3 Pseudocode for ESM Generation

1 Variables

2 p: current position

3 num light step: number of maximum steps

4 step dist: distance of one step

5 L: the amount of radiance arrives current point

6 light dir: normalised direction vector to light source

7 perlin worley: 3D texture of Perlin-worley noise

8 step: current step

9 density: density of cloud

10 T : total transmittance

11 bound texture: shadow map texture

12 pixel: the pixel to process

13 c: a parameter to control the attenuation speed

14 MAX DEPTH: maximum depth

15 THRESHOLD: threshold to decide the depth from the light source

16

17 Functions

18 texture(): sample value from a texture
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19 get world pos(): compute world space position from normalised device coordinates

position

20

21 Procedure

22 for pixel in bound texture do

23 world pos = get world pos(pixel);

24 p = world pos;

25 T = 1;

26 step = 0;

27 while step < num light step do

28 p = p + light dir * step dist;

29 density = texture(perlin worley, p);

30 T *= exp(−density ∗ step distance);

31 depth += step dist;

32 step++;

33 if T < THRESHOLD then break;

34 end if

35 end while

36 bound texture[pixel] = exp(c ∗ depth/MAX DEPTH);

37 end for

38

39 return bound texture;

After computing ESM, ESM is used to compute how much radiance arrives the sample

point. Algorithm 4 shows how ESM is used.

Algorithm 4 Pseudocode for Computing Illuminance with ESM

1 Variables

2 p: current position

3 texcoords: texture coordinates

4 occlusion depth: depth of first occlusion

5 normalised depth: normalised depth

6 T : total transmittance

7 light source intensity: luminance of light source

8

9 Functions

10 texture(): sample value from a texture

11 get texcoords(): get the corresponding coordinate on the shadow map texture
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12 get depth(): get the depth from light source perspective

13

14 Procedure

15 texcoords = get texcoords(p);

16 occlusion depth = texture(ESM , texcoords);

17 normalised depth = get depth(p) / MAX DEPTH;

18 T = clamp(exp(−c ∗ normalised depth) ∗ occlusion depth);

19

20 return T * light source intensity;

3.2.5 Beer Shadow Map

Algorithm 5 is how BSM is generated for the experiments.

Algorithm 5 Pseudocode for BSM Generation

1 Variables

2 p: current position

3 num light step: number of maximum steps

4 step dist: distance of one step

5 light dir: normalised direction vector to light source

6 perlin worley: 3D texture of Perlin-worley noise

7 step: current step

8 density: density of cloud

9 front depth: the start depth of occlusion

10 num sample: the number of total samples

11 sum density: accumulated density

12 mean density: average density

13 max optical depth: maximum optical depth

14 T : total transmittance

15 bound texture: shadow map texture

16 MAX DEPTH: maximum depth

17 THRESHOLD: threshold to decide the depth from the light source

18

19 Functions

20 texture(): sample value from a texture

21 get world pos(): compute world space position from normalised device coordinates

position

22
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23 Procedure

24 for pixel in bound texture do

25 T = 1;

26 step = 0;

27 front depth = -1;

28 num sample = 0;

29 sum density = 0;

30 max optical depth = 0;

31 world pos = get world pos(pixel);

32 p = world pos;

33 while step < num light step do

34 p = p + light dir * step dist;

35 density = texture(perlin worley, p);

36 T *= exp(−density ∗ step distance)

37 depth += step distance

38 max optical depth += density * step distance;

39 sum density += density;

40 num sample += 1;

41 if T < THRESHOLD and front depth < 0 then

42 front depth = depth;

43 end if

44 step++;

45 end while

46 if num sample > 0 then

47 mean density = sum density / num sample;

48 bound texture[pixel].r = front depth;

49 bound texture[pixel].g = mean density;

50 bound texture[pixel].b = max optical depth;

51 else

52 bound texture[pixel].r = MAX DEPTH;

53 bound texture[pixel].g = 0;

54 bound texture[pixel].b = 0;

55 end if

56 end for

57 return bound texture;

After computing BSM, BSM is used to compute how much radiance arrives the sample

point. Algorithm 6 shows how BSM is used.
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Algorithm 6 Pseudocode for Computing Illuminance with BSM

1 Variables

2 p: current position

3 T : total transmittance

4 front depth: the start depth of occlusion

5 mean density: average density

6 max optical depth: maximum optical depth

7 light source intensity: luminance of light source

8

9 Functions

10 texture(): sample value from a texture

11 get texcoords(): get the corresponding coordinate on the shadow map texture

12 get depth(): get the depth from light source perspective

13

14 Procedure

15 texcoords = get texcoords(p);

16 BSM info = texture(BSM , texcoords);

17 front depth = BSM info.r;

18 mean density = BSM info.g;

19 max optical depth = BSM info.b;

20 depth = get depth(p);

21 optical depth = min(max optical depth, mean depth * max(0, depth - front depth));

22 T = clamp(exp(−optical depth) ∗ optical depth);
23

24 return T * light source intensity;

3.2.6 Fourier Opacity Map

Algorithm 7 is how FOM is generated for the experiments.

Algorithm 7 Pseudocode for FOM Generation

1 Variables

2 p: current position

3 num light step: number of maximum steps

4 step dist: distance of one step

5 light dir: normalised direction vector to light source

6 perlin worley: 3D texture of Perlin-worley noise

7 step: current step
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8 density: density of cloud

9 ai, bi: Fourier series coefficients

10

11 Functions

12 texture(): sample value from a texture

13 get world pos(): compute world space position from normalised device coordinates

position

14

15 Procedure

16

17 for pixel in bound texture do

18 T = 1;

19 step = 0;

20 final luminance = 0;

21 front depth = -1;

22 a0 = 0;

23 a1 = 0;

24 a2 = 0;

25 a3 = 0;

26 b1 = 0;

27 b2 = 0;

28 b3 = 0;

29 world pos = get world pos(pixel);

30 p = world pos

31 while step < num light step do

32 p = p + step * light dir;

33 density = texture(perlin worley, p);

34 normalised depth = step * light dir / MAX DEPTH;

35 a0 += -2 * log(1 - density) * cos(2π ∗ 0 ∗ normalised depth);

36 a1 += -2 * log(1 - density) * cos(2π ∗ 1 ∗ normalised depth);

37 a2 += -2 * log(1 - density) * cos(2π ∗ 2 ∗ normalised depth);

38 a3 += -2 * log(1 - density) * cos(2π ∗ 3 ∗ normalised depth);

39 b1 += -2 * log(1 - density) * sin(2π ∗ 1 ∗ normalised depth);

40 b2 += -2 * log(1 - density) * sin(2π ∗ 2 ∗ normalised depth);

41 b3 += -2 * log(1 - density) * sin(2π ∗ 3 ∗ normalised depth);

42 step++;

43 end while
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44 bound texture1[pixel].r = a0;

45 bound texture1[pixel].g = a1;

46 bound texture1[pixel].b = a2;

47 bound texture1[pixel].a = a3;

48 bound texture2[pixel].r = b1;

49 bound texture2[pixel].g = b2;

50 bound texture2[pixel].b = b3;

51 end for

52 return bound texture;

After computing FOM, FOM is used to compute how much radiance arrives the sample

point. Algorithm 8 shows how FOM is used.

Algorithm 8 Pseudocode for Computing Illuminance with FOM

1 Variables

2 p: current position

3 T : total transmittance

4 ai, bi: Fourier series coefficients

5 optical depth: optical depth

6 bound texture: shadow map texture

7 light source intensity: luminance of light source

8

9 Functions

10 texture(): sample value from a texture

11 get texcoords(): get the corresponding coordinate on the shadow map texture

12 get depth(): get the depth from light source perspective

13

14 Procedure

15 texcoords = get texcoords(p);

16 FOM info1 = texture(bound texture1, texcoords);

17 FOM info2 = texture(bound texture2, texcoords);

18 a0 = FOM info1.r;

19 a1 = FOM info1.g;

20 a2 = FOM info1.b;

21 a3 = FOM info1.a;

22 b1 = FOM info2.r;

23 b2 = FOM info2.g;

24 b3 = FOM info2.b;
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25 depth = get depth(p);

26 optical depth = a0/2∗depth + a1/(2∗π∗1)∗sin(2∗π∗1∗depth) + a2/(2∗π∗2)∗sin(2∗
π∗2∗depth) + a3/(2∗π∗3)∗sin(2∗π∗3∗depth) + b1/(2∗π∗1)∗(1−cos(2∗π∗1∗depth))
+ b1/(2 ∗π ∗ 2) ∗ (1− cos(2 ∗π ∗ 2 ∗depth)) + b1/(2 ∗π ∗ 3) ∗ (1− cos(2 ∗π ∗ 3 ∗depth));

27 T = clamp(exp(−optical depth));

28

29 return T * light source intensity;
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Evaluation

4.1 Results

In this section, the results of the experiments will be presented with graphs and tables

and these information will be explained later.

4.1.1 Memory footprint

The memory footprints of different occlusion methods are shown in Table 4.1. Sec-

ondary ray marching does not require additional texture, so it does not consume extra

memory. On the other hand, the shadow mapping methods first render shadow maps

before ray marching, so the additional shadow maps takes some memory. ESM stores

one value per pixel with 16 bit float, so when it generates 512 × 512 shadow map, the

extra texture takes approximately 4 MB. When using a higher resolution shadow map, it

uses a lot more memory, 12 MB at 1024 × 1024. Regarding BSM and FOM, they store

more values in their shadow maps, hence, their memory footprints are higher. Especially,

when FOM generate 1024 × 1024 shadow maps, it needs about 112 MB to store the

information, which is a large memory consumption.

4.1.2 Render time with different shadow map resolutions

The render time of shadow mapping methods with different shadow map resolutions

are shown in Figure 4.1. When the resolution is low, the difference of the render time

among the three methods are smaller than using higher resolution. When at 256 × 256

resolution, ESM and BSM uses almost similar time to render (about 4.2 milliseconds),

FOM takes approximately 0.3 more milliseconds. While in 1024× 1024 resolution, ESM

consumes about 5.9 milliseconds which is shortest, BSM and FOM use about 0.7 and 2.2
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Table 4.1: Methods’ memory footprint.

Methods Memory Footprint (MB)
Secondary Ray Marching 0
ESM (512 × 512) 4
ESM (1024 × 1024) 16
BSM (512 × 512) 12
BSM (1024 × 1024) 48
FOM (512 × 512) 28
FOM (1024 × 1024) 112

more milliseconds than ESM respectively.

Figure 4.1 describes the render time of shadow map generation with different shadow

map resolutions. The shadow map generation time shows similar behaviours to the total

render time. With the increment of shadow map resolution, the generation time of FOM

increases fastest among the three methods. ESM consumes about 0.4 milliseconds, BSM

consumes about 0.55 milliseconds, FOM consumes about 0.75 milliseconds, to generate

256 × 256 shadow map. When generating 1024 × 1024 shadow map, ESM consumes

about 1.6 milliseconds, BSM consumes about 2.5 milliseconds, FOM consumes about 3.7

milliseconds. From 256 × 256 resolution to 1024 × 1024 resolution, ESM uses approx-

imately extra 1.2 milliseconds, BSM uses approximately extra 1.95 milliseconds, FOM

uses approximately extra 2.95 milliseconds.

Figure 4.1: Render time of shadow mapping methods with different shadow map resolu-
tions.
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Figure 4.2: Render time of shadow map generation with different shadow map resolutions.

4.1.3 Render time with different number of samples

Since the ways to sample are different in secondary ray marching and the other three

shadow mapping methods, the results are divided into two parts.

Secondary ray marching method

The render time of secondary ray marching with different number of samples is shown

in Figure 4.3. With the number of samples increasing, the render time increases linearly

from about 4 milliseconds when only take one sample to about 9.4 milliseconds after

taking 50 samples.

Shadow mapping methods

The render time of three shadow mapping methods and their time for generating

shadow maps with different number of samples is shown in Figure 4.4. Among the three

methods, FOM takes longest time to generate shadow maps and render clouds, while BSM

consumes longer time than ESM on both shadow map generation and rendering in most

cases, except when only take a few samples (less than 50), BSM renders clouds faster than

ESM.

Summary of methods with typical number of samples

A summary of the render time of methods with some typical parameters are concluded

in Table 4.2. Even taking only 10 steps, secondary ray marching is slower than ESM and
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Figure 4.3: Render time of secondary ray marching method with different number of
samples.

Figure 4.4: Render time of shadow mapping methods with different number of samples.

BSM. If it uses 20 samples, the render time is longest among these methods with some

typical settings. Regarding shadow mapping methods, the total render time of ESM is

similar to BSM while BSM takes a bit longer time to generate shadow maps. Besides,
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FOM is slowest one among the three methods.

Table 4.2: Render time of methods with different number of samples.

Methods Total Render Time (ms) Shadow Map
Generation Time (ms)

Secondary Ray Marching 4.9464 -
(10 steps)
Secondary Ray Marching 6.0864 -
(20 steps)
ESM (50 steps) 4.4330 0.4122
ESM (100 steps) 4.6588 0.7492
BSM (50 steps) 4.3736 0.5836
BSM (100 steps) 4.8072 0.9598
FOM (50 steps) 4.9296 0.9182
FOM (100 steps) 5.5228 1.4678

Some visual results of these methods are displayed in Figure 4.5. In the five images,

(a) secondary ray marching is the result of taking 10 steps, (b) ESM and (c) BSM and (d)

FOM are using 512×512 shadow maps and takes 100 steps, (e) ground truth is generated

by secondary ray marching but takes 1000 steps with a constant step distance (10 metres).

The ground truth consumes about 140 milliseconds per frame. When the cloud is distant

to another cloud, secondary ray marching cannot cast correct shadow due the the few

samples. All the four methods have their features, for example, the shadow area in BSM

is closer to the ground truth, but the shadow looks a bit darker. Both ESM and BSM

lead to brighter edges of clouds than the ground truth.

4.1.4 Render time with different resolutions

Figure 4.6 displays the results of render time when using different screen resolutions.

In all the resolutions, ESM and BSM almost consume the same time, from about 4.5

milliseconds at 720p to about 13.0 milliseconds at 2k. Among the four methods, secondary

ray marching takes longest time to render, except at 720p. It takes over 15 milliseconds

when render at 2k resolution, which is the longest render time. Regarding FOM, it

consumes more time than secondary ray marching at 720p, while it is surpassed by second

ray marching at 1080p and 2k.
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Figure 4.5: Visual results of tested methods with typical settings.

4.1.5 Render time with different cloud coverage rates

Figure 4.7 presents the render time of the four methods with different cloud coverage

rates. The results indicate the render times for all the four methods are in proportion to

the cloud coverage rate. While ESM, BSM and FOM shows similar growth rate, secondary

ray marching grows faster than shadow mapping methods. When at a low cloud coverage

rate, e.g., 10%, secondary ray marching takes shortest time among the four methods,

whereas, at a high cloud coverage rate, e.g., 90%, it exceeds all the shadow mapping

methods. Secondary ray marching surpasses ESM, BSM and FOM at about 35%, 45%

and 78% cloud coverage rates respectively.
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Figure 4.6: Render time with different screen resolutions.

Figure 4.7: Render time with different cloud coverage rates.

4.2 Discussion

Discussions on the performances of the tested methods are described in this section

based on the experiment results from the previous section.

Regarding memory consumption, secondary ray marching does not require additional

memory, whereas shadow mapping methods do. In every pixel on their shadow maps,
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ESM, BSM and FOM store one, three and seven 16 bit float values respectively. The

memory footprint among the three methods is FOM consumes more memory than BSM,

and both requires more memory than ESM. Hence, when the memory of devices is a

bottleneck, we should avoid using those methods consuming lots of memory, such as BSM

and FOM. The shadow map resolution also affects memory usage. A 1024× 1024 shadow

map has four times amount of pixels than a 512 × 512 shadow map. As a result, higher

resolution requires much more larger memory. For instance, 512 × 512 BSM shadow

map takes 12 MB, whereas 1024%1024 BSM shadow map takes 48 MB. Even though

higher resolution usually leads to more correct results and less artefacts, the memory

consumption may limit using a very large shadow map.

High shadow map resolution also slows rendering. When change shadow map resolu-

tion, the difference of the total render time is almost from the shadow map generation

time. For example, when using a 512 × 512 BSM shadow map, its total render time is

about 0.5 milliseconds longer than using 256× 256 BSM shadow map, while the shadow

map generation time is about 0.4 milliseconds longer which is close to 0.5 milliseconds.

As for the time to generate shadow maps, there are also some overhead, so when we

four times the amount of pixels, the shadow maps generation time is not perfectly four

times. For instance, generate FOM shadow map at 512 × 512 needs approximately 1.4

milliseconds, while the value is approximately 0.7 milliseconds at 256 × 256. However,

with the increment of resolution, the proportion of overhead is getting lower. For all the

three shadow mapping methods, the generation time at 512 × 512 is double to the ones

at 256× 256, whereas the generation time at 1024× 1024 is almost 2.5 times to the ones

at 512 × 512. The effects from computing values stored in the shadow maps are getting

obvious. Therefore, to shorten the render time, we should avoid using too high resolutions

when generating shadow maps.

Regarding the render time of the methods when using different numbers of steps, more

steps usually leads to better visual results, whereas the price may not worth paying. With

the increment of steps, the render time increases linearly for all the four methods. Even

though the way of sampling is different in secondary ray marching and shadow mapping

methods, the render time of secondary ray marching grows fastest. If we use 50 steps,

secondary ray marching already consumes about 9.5 milliseconds, which is prohibitive for

real-time games. However, if we takes only a few steps, the occlusion of the distant clouds

may not be accounted (see Figure 4.5 (a) and (d)). Therefore, takes how many samples

when using secondary ray marching is a trade-off between render time and visual results.

On the other hand, for the three shadow mapping methods, using over 100 samples may

not give us a much better visual results, hence, we can compress the render time by

using less steps. However, two less steps (too long step distance) may overlook some
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cloud which leads to wrong occlusion, so how to choose the number of steps when using

shadow mapping methods should considered when designing game scenes. As for the

comparison of the four methods, a summary is presented in Table4.2. When using small

amount of steps, secondary ray marching is not very slower than the shadow mapping

methods. Therefore, when we do not consider the occlusion of distant clouds, secondary

ray marching should be a good choice. Among the shadow mapping methods, ESM

and BSM consume similar time while FOM consumes a bit longer time when rendering.

According to Figure 4.5, FOM shows more smooth changes on the edge of the clouds than

BSM and ESM, while BSM produces closer occlusion results (dark clouds) to the ground

truth. Hence, we can choose a method according to our demands on the visual results

and styles. For example, when we want to emphasise the shadow cast by clouds, we had

better use BSM.

The higher screen resolutions give more burden to secondary ray marching than shadow

mapping methods. According to Equation 3.1 3.5, higher screen resolution requires casting

more rays. The difference is secondary ray marching has larger Nlight and the number of

pixels will be multiplied by a larger value, while shadow mapping methods have a constant

burden NSM . When at 720p, the four methods require similar render time, whereas the

secondary ray marching consumes about 2.5 more milliseconds than ESM and BSM at 2K.

Since the render time of secondary ray marching will largely surpass the shadow mapping

methods at high screen resolutions, we should avoid using secondary ray marching at high

screen resolutions. On the other hand, when render at a high screen resolution, e.g. 2k,

even the fastest method ESM needs over 12 milliseconds to render a frame. This already

not affordable for real-time rendering, so the best way might be render clouds at a low

resolution and upsample them to finally display on the higher resolution screen.

Similar to screen resolutions, the coverage of clouds also affects the render time. Sec-

ondary ray marching has a larger Nlight which makes it easier to be affected by C̄. In

Figure 4.7, the render time of secondary ray marching grows fastest over the cloud cov-

erage rate. Hence, when can decide which methods to use according to the results. For

example, secondary ray marching surpasses BSM at about 45% cloud coverage, so when

more than 45% of the total pixels are clouds, we should choose BSM than secondary ray

marching. However, we also should consider the which visual results we want. Generally,

secondary ray marching produces most nature visual results, and when cloud are sparse

in the sky, the occlusion of distant clouds could be ignored, so secondary ray marching is

usually a good choice when the distribution of cloud is sparse.
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The techniques for cloud self-occlusion is investigated in this study. Nowadays, volu-

metric cloud is already widely used in real-time games, while the evaluation on different

techniques for rendering it is less looked into. Cloud self-occlusion is an important part

for a realistic appearance of clouds. With correct occlusion, people can better perceive

the shape and volume of the clouds. Currently, four methods are usually used for solve

the occlusion of cloud: i) secondary ray marching; ii) ESM; iii) BSM; iv) FOM. Even

people have proposed the methods, whereas only a few investigated their performance,

advantages and disadvantages. Therefore, experiments are designed to estimate the four

methods in this study. Secondary ray marching produces more nature appearance and the

render time is not very high when only takes a few samples or at a low screen resolution.

However, it is not a proper methods to capture the distant occlusion because the limited

number of samples. Regarding the rest three shadow mapping methods, they are good

at rendering shadow cast by distant cloud, while the attenuation of light travelling in

clouds does not look very correct in some cases. The shadow mapping methods have a bit

heavier overhead than secondary ray marching because shadow map generation, so they

are slower than secondary ray marching in which only a few cloud exists. Whereas, when

we need to render to a large screen or render a scene with lots of cloud, shadow mapping

methods are faster. In addition, among the three shadow mapping methods, BSM does

not consume too much more resource than ESM and usually renders a better result, while

FOM takes longest time to render and uses most memory. According to the experiment

results, all the methods for cloud occlusion have their own advantages and disadvantages.

Hence, engineers can refer this when they are going to implement a sky system in their

games.

Even four main cloud self-occlusion techniques have been estimated in this study,

there are still a lot more works need to be done for volumetric cloud rendering. The
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combinations of different optimisation techniques are not well investigated in this study.

To simulate the situations in real-time applications, temporal integration of the scattered

light solution are implemented for the experiments. However, the render time under dif-

ferent scales of this optimisation method is not estimated. On top of this, there are other

methods to accelerate shadow map generation, such as storing shadow information in look

up tables. To better compare the cloud self-occlusion methods, we should measure their

performance with different optimisation methods in the future. In addition to occlusion,

volumetric cloud has lots of challenges as listed in Chapter 1. For example, when ren-

dering heterogeneous cloud, how different models lead to different appearance is worth

estimating. The evaluations on current solutions for these problems are also need to be

done in the future.
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