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Implementation of Monte Carlo path

tracing algorithm based on OpenGL

, Master of Science in Computer Science

University of Dublin, Trinity College, 2022

Supervisor: Michael Manzke

As the performance of graphics cards continues to improve, Ray tracing
algorithms are getting faster to compute. It has been widely used in
movies and games for its more realistic experience than rasterization.
Using publicly available tools, this paper implements rendering of virtual
scenes based on Monte Carlo path-tracing algorithm. Make it close to
the lighting effect of the real scene. This paper also studies ray-tracing
acceleration algorithm and OpenGL data transmission between CPU and
GPU.



Summary

The paper is laid out as follows: Firstly, The research background is

discussed. Topics will include applications of ray tracing, technical ad-

vantages and disadvantages of ray tracing, existing algorithmic research

on ray tracing, and a literature review of algorithms involved in ray trac-

ing. This is followed by a design and introduction of the flow of the

algorithm used in this paper, followed by a detailed explanation of the

actual implementation. The actual operation results are then evaluated

and discussed. Finally, the conclusion is given, and the limitations of

this method and the need for further work are pointed out.
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Chapter 1

Introduction

Ray tracing was used in the early days of computer graphics for movies

and television shows. But ray tracing requires a lot of graphical com-

puting power, so it requires the power of an entire server farm (or cloud

computing). Since NVIDIA released the RTX20 series graphics card, it

is also the first time that ray tracing technology appears on the graphics

card, so that ordinary users, especially game users, can feel the changes

brought by ray tracing technology for the image.

Ray tracing technology, using algorithms to simulate the physical

characteristics of light in the real world. It can achieve physical accurate

shadow, reflection, refraction and global illumination.[1] In other words,

in a virtual scene, it can make the objects in the scene more realistic. It

gives games movie-quality graphics, such as the fire, smoke and explo-

sions of war movies, and makes them feel like they’re there. General ray

tracing algorithms have two major shortcomings. One is that the surface

attributes are relatively single, so it is difficult to enrich the various op-

tical effects that occur after light touches the surface of the object. The

other is that diffuse reflection is ignored.Monte Carlo path tracing is an

improvement of the traditional ray tracing algorithm.

The goal of this project is to use OpenGL and GLSL to build a basic

Monte Carlo path tracing model from the bottom layer, so that it can

correctly simulate the optical effect in the closed scene, and make the

rendering result close to the real scene. The project also studied the

OpenGL data transfer method directly between CPU and GPU, BVH
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acceleration algorithm and the de-noising of monte Carlo path tracking

algorithm results. The results of this project will build a model for pre-

processing data in the CPU and performing ray-tracing calculations in

the GPU. There are many supported ray tracing rendering tools that can

achieve realistic rendering effects such as V-Ray, OctaneRender etc. but

using them directly cannot understand the whole process and essence of

ray tracing. This project is helpful for the in-depth understanding of

Monte Carlo path tracing algorithm and the subsequent improvement of

this type of path tracing model.In the future We can take this offline ray

tracing rendering model as the basis, combine rasterization technology

and simplify the ray tracing algorithm, and further implement real-time

ray tracing technology, which is a very popular technology in the game

industry.
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Chapter 2

Background

2.1 Global Illumination

The real world light is in a linear space, and the lighting effects can be

superimposed. The final lighting result equal to direct illumination plus

indirect illumination, and the result is also known as global illumina-

tion. This is contrasted with local illumination (only direct illumination

is considered). Reflection, refraction, and shadow belong to the cate-

gory of global illumination because they must be simulated not only by

considering the direct effect of the light source on the object but also by

considering the interaction between objects. However, specular reflection

and refraction generally do not need to solve the complex illumination

equation, and do not need to carry out iterative calculation. As a result,

these parts of the algorithm are already very efficient, even real-time[2].

Different from the specular reflection, the direction of the diffuse reflec-

tion surface is approximately ”random”, so the reflection result cannot

be obtained by simple ray tracing, and often needs to be iterated by

multiple methods until the distribution of light energy reaches a basic

equilibrium state.
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(a) soft shadows (b) reflection and specular

(c) global illumination

Figure 2.1: Some advanced ray traced effects(From LingQi
Yan, UC Santa Barbara)

Depending on the hardware features, there are two ways to achieve

global illumination:Ray tracing and rasterization. After decades of de-

velopment, global illumination(GI) has been implemented in many direc-

tions, the book “Advanced Global Illumination” by Dutre et al.[3] Offers

analysis for most of the offline global illumination techniques such as

Ray tracing, Path tracing, Photon mapping, point based Global illumi-

nation, Ambient occlusion, Metropolis light transport, light Propagation

Volumes Global illumination etc. Each of these techniques can be di-

vided into different kinds of improved and derived algorithms. The path

tracing algorithm used in this project is a faction based on ray tracing

combined with Monte Carlo algorithm. Unlike biased calculation meth-

ods such as ambient light masking and photon mapping, Monticaro path

tracing can converge to the correct result by averaging over infinitely

many renderings of the same scene.
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2.2 Development of GI(Based on ray trac-

ing and path tracing)

The origin of ray-tracing algorithm can be traced back to the concept

of ray casting proposed by Arthur Appel in 1968. In his paper[4], ray

casting means from our eyes or camera to each pixel of the projection

imaging screen out a light (here we only consider our eyes or cameras is a

point), this light will be hit at a certain position in the scene. If the light

hits an object in the scene, then draw a line between the intersection

point and the light source to determine whether the point is visible to

the light source.We can construct an efficient light path in this way, and

then calculate the energy of that light path to figure out the final color

of the pixel.

Figure 2.2: ray cast

Appel’s algorithm uses View Ray and Shadow Ray, which is actually

the direct lighting part of the lighting equation[5]. A significant advan-

tage of ray casting over traditional scan line rendering algorithms is that

it can deal with uneven surfaces and solids. Most of the animations for

the Tron Series (1982) were rendered using ray casting[6].
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In 1979, Turner Whitted added the interaction between light and sur-

faces to ray casting, extending the process by introducing reflection, re-

fraction and shadow. This algorithm is called Recursive Ray Tracing (or

Whitted-style Ray Tracing)[7], so that there is no longer a single Ray,

but a path of light transmission.Whitted-Style Ray Tracing said when

light hits an object, both reflection and refraction occur at the intersec-

tion point (assuming Specular reflection occurs on a smooth surface), and

both refracted and reflected light continue to travel. Due to the many

times of light bouncing, the algorithm calculates the color of the light

source at each intersection of refraction or reflection, and finally obtains

the final color recursively.Whitted ray tracing mainly solves the problem

that there is no indirect light in the scene, but in Whitted’s model, all

indirect light only comes from perfect specular reflection or refraction.

It assumes that the surface of the object is absolutely smooth, which is

obviously inconsistent with the surface properties of most substances in

nature.

Figure 2.3: Spheres and checkboard, T.Whitted, 1979

Robert L. Cook proposed Distributed Ray Tracing[8] in 1984, which

turned a single beam of reflected light into an integral calculation around

the range of diffuse or highlight reflection in a space. Cook’s method is

also known as stochastic ray tracing because the Monte Carlo method

was introduced to compute integral equations. Cook’s model is compu-

tationally expensive. Each ray from the camera is reflected in several
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different directions at the surface point, dispersing into multiple rays,

and recursively, each ray eventually forms a tree of rays, especially for

indirect diffuse light, which reflects almost the entire visible space.

James T. Kajiya unified rendering equation in 1986[9], and deduced

the formula of light path expression form, makes the rendering equation

by a recursive structure, becomes a path function integral, each of the

Monte Carlo random number just produce a path. The path does not

need to be recursive, each path can be randomly generated as a result.

The value of each Path is then used as a random number to calculate the

final rendering result, in a new form called Path tracing.

Bi-directional path tracing was proposed by Eric P. Lafortune and

Yves D. Willems in 1993[10]. It starts from the two directions of light

source and camera respectively, and after passing a certain path respec-

tively, connects the ends of the two paths to form a complete path. This

greatly increases the effective contribution of the light source. Veach

describes bidirectional path tracing in detail[11].

Although ray-tracing has been explored as a research topic since the

1980s, its progress has been slow due to the lack of hardware comput-

ing power at the time(Rendering figure2.4 cost 74 minutes at that time).

Until 2018, it was considered the first year of an era of ray-tracing. Ray-

tracing was introduced to the public in GDC 2018. NVIDIA, ILMxLAB,

and UE4 have released a Star Wars short film based on real-time ray-

tracing with movie-quality visual effects. NVIDIA released the RTX

Tehnology Demo and Project Sol Cinematic Demo Part 1. EA SEED

team brought PICA real-time ray tracing Demo; Remedy’s Northlight

engine brings the Ray Tracing in North Light Demo; The Futuremark

team released the DirectX Ray tracing Tech Demo.
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Figure 2.4: NVIDIA RTX Ray-tracing technology, Star
Wars Demo
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2.3 Ray Tracing VS Rasterization

As the most traditional rendering method, rasterization has always been

the most important and also the most original rendering method. Now

it is still the main rendering method for 3D games due to its fast render-

ing speed.[12] Although many algorithms optimize the overall effect of

rendering on the basis of rasterization such as using geometry shader ren-

der shadow[13], using CUDA Rasterizer to do Multi-resolution shadow

mapping[14]. However, the principle of rasterization rendering is to

project vector graphics onto the screen through various transformations

and then pixelate (sample), which can not reflect the physical proper-

ties of the rendered objects. Therefore, rasterization rendering method

can not accurately describe the shadow of objects, light reflection, re-

fraction and other phenomena, and the realism of the rendered image is

still unsatisfactory in some aspects. In particular, some global effects,

such as soft Shadows, Glossy Reflection, and Indirect illumination, are

not well handled, especially when the light is bounced more than once in

the scene.

(a) Ray tracing on (b) Ray tracing off

Figure 2.5: ”Shadow of the Tomb Raider”. Shadow con-
trast after ray tracing mode is turned on
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As a special rendering algorithm in 3D computer graphics, Ray-

tracing is used to simulate the way of light in the real world in physics-

based rendering. At present, it has been widely used in animation, games

and other fields, e.g. early offline game graphic rendering Myst and

Riven[15], ray traced version of animated Quake 4[16]. As a physically-

based rendering method, The result of raytracing is very close to the real

world. It handles global effects perfectly, not just the global shading part,

but also all possible shadows. Because it is a good simulation of light

in the process of reflection, refraction, scattering and other phenomena,

so that the material properties of the object get a good performance.

However, due to the recursive algorithm required to simulate the light

propagation process, the rendering speed is far less than rasterization.In

recent years, with the joint efforts of industry and academia, real-time

ray tracing has been realized through the continuous approximation and

simplification of ray algorithm, as well as the improvement of computer

hardware level, and has been well applied in 3D games. Jacco Bikker

said[17] “Ray tracing promises an elegant and fascinating alternative to

z-buffer approaches, as well as more intuitive graphics and games devel-

opment.”
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2.4 Uses of Global Illumination

More and more commercial game engines offer specialized global illu-

mination technology implementations to support different levels of real-

time photorealism at different performance costs. With scene precom-

putation, Unity 3D game engine provide offline implementations for dif-

ferent use cases.[18] Unreal Engine 4 implements a monolithic illumi-

nation system based on its own surface caching technology “Lightmass

Global Illumination”.[19] CryEngine provide precomputing system based

on user requirements, what is more, it has full support for real time global

illumination.[20]

Since Nvidia released its RTX2000 series graphic card in 2018, the use

of ray-tracing in games has grown. Many 3A games supported ray-tracing

now, such as Cyberpunk 2077, Dead Stranded, Red Dead Redemption 2,

etc[21]. Even more impressive than the growing number of games joining

the ray-tracing camp is the adoption of ray-tracing hardware. According

to Steam data, 30 percents of graphics cards supported ray-tracing as of

July 2022. That’s more than double from 14 percent in January 2021.

Figure 2.6: So far in 2018, according to Steam data and
NVIDIA Game News Stats
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Figure 2.7: Until July 2022, the stock of graphics cards
that support ray tracing, according to Steam data.

Global illumination has also been used in a number of films. The

first movie to use global lighting was “Shrek 2”. It uses two-dimensional

texture mapping to store the direct illumination on the surface of the

object or person, and then calculates the global illumination after a single

bounce by distributed ray tracing[22]. Pixar’s famous film “Cars” is

another example.They use multiresolution geometry and texture caches,

and use ray differentials to determine the appropriate resolution in order

to use ray tracing in highly complex scenes[23].

It is also used for medical purposes, where the use of global illu-

mination technology can provide a more realistic view of the human

anatomy, help to understand the internal structure and interaction of

the human body, and provide better illustrations for medical training

and teaching.[24]

12



(a) interior design (b) Porsche rendered by ray tracing tech-

nology

Figure 2.8: Ray tracing in art design products

On the other hand, ray tracing is also widely used in industrial design

and interior design. It is relatively straightforward and simple to simulate

optical effects, and it is possible to programmatically calculate the visual

impact of changing the light source or object on the scene[25]. This

means that it can not only save the designer a lot of time, but also make

the customer feel the potential of the model more intuitively, saving the

customer’s time.
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2.5 Main Algorithm

We define ray in graphics like this[26]: Light travels in straight lines(Although

light is actually a wave). Light rays do not collide with each other if they

cross. Rays have color and intensity.

The ray is emitted from the light source and then reflected and re-

fracted throughout the scene until it enters our eyes. The physics is

invariant under path reversal, if the light source can somehow see the

camera, then the ray from the camera must somehow reach the light

source (reciprocity).

2.5.1 Ray-Surface Intersection Algorithm

In mathematics, ray is defined by its origin and a direction vector[27].

In the process of path tracing, we need to detect the intersection

of ray and triangle mesh, By calculating the intersection point, we can

determine whether the intersection point is visible to the light source.

And also can determine whether the light source is inside the closed

object[27] (an odd number of intersection points means the light source

is inside the object, and an even number means the light source is outside

the object).

Figure 2.9: Define a plane

In order to determine whether the ray intersects the triangle, we can

first determine whether the ray intersects the plane of the triangle, and

then determine whether the intersecting point is inside the edges[28].

With a normal vector and a point we can define a plane. So as long as a

14



point p and a point p′ in a given plane satisfy (p− p′) •N = 0, then we

know that point is in the plane.

On this basis, a simpler algorithm is used in this paper, Moller Trum-

bore Algorithm[28].

A ray with origin O and normalized direction D can be defined as

R(t) = O + tD (2.1)

We can writing the points on the triangle in terms of barycentric coor-

dinates

T (b1, b2) = (1− b1 − b2)P0 + b1P1 + b2P2 (2.2)

Where (b1, b2) are the barycentric coordinates, which fufill b1 ≥ 0,b2 ≥ 0

and 1− b1 − b2 ≥ 0. This (b1, b2) can also be used for texture mapping,

normal interpolation etc. Computing the intersection between the ray

R(t) and the triangleT (b1, b2) we can get

O + tD = (1− b1 − b2)P0 + b1P1 + b2P2 (2.3)

The barycentric coordinates (b1, b2) and the distance from the ray origin

to the intersection point can be found by solving the linear system of

equations  t

b1

b2

 =
1

S1 • E1

S2 • E2

S1 • S
S2 •D

 (2.4)

Where E1 = P1−P0,E2 = P2−P0,S = O−P0,S1 = D×E2,S2 = S1×E1.

2.5.2 Accelerate Algorithm

Since there are usually a large number of triangles in a scene, it would

take an unacceptable amount of time to traverse them from every pixel

of the screen to check for collisions. We need to use some acceleration

algorithms to speed up the detection process.

Bounding Volumes In this paper, the method is to surround a com-

plex object with a simple bounding volume. The object is completely

15



surrounded by the bounding volume. If the ray does not intersect the

volume, it will not intersect the object inside the volume. Therefore,

collision detection can be performed on the volume before collision de-

tection. We often use an Axis-Aligned Bounding Box(AABB)[29]. We

use axis-aligned boxes because it’s easier for the rays to intersect with

these horizontal planes, which reduces the amount of computation.

Figure 2.10: Intersection judgment of ray and bounding
box in 2D case.

In the two-dimensional case, we find the time T when the ray inter-

sects the two groups of parallel lines that form the cuboid respectively,

and take the intersection of these two groups of times to get the time

when the ray actually enters and moves out of the cuboid. Generalize to

the three dimensional case, the ray enters the box only when it enters all

pairs of slabsand the ray exits the box as long as it exits any pair of slabs.

So for each pair, we calculate the tmin and tmax, for the 3D box[30].

tenter = max{tmin}, texit = min{tmax} (2.5)

Ray is not a line, it has direction. When texit < 0 it means the box

must behind the ray, they have no intersection. When texit ≥ 0 and

tenter < 0 , it means the light source is inside the box, and they must

have intersection. In summary, If tenter < texittexit ≥ 0 , we know the ray

stays a while in the box, in other word, they have intersection.

16



BVH(Bounding Volume Hierarchy)[31] After the scene model was

determined, we first completed the pre-processing of the scene, the accel-

eration structure, and then considered how to find the intersection point

with the ray. Establishing kd-tree[32] is one of the methods. In order to

ensure that the size of the enclosing box is balanced, we divide it along

the three axes of X, Y and Z successively. We don’t store the actual

triangle data on the intermediate node, we only store it on the leaf node.

The problem of using kd-tree is that the same object may belong to mul-

tiple bounding volume. Different leaf nodes may store the same triangle

data, and the establishment of kd-tree needs to consider the intersection

of triangle and bounding volume, which is quite complex. In this exper-

iment, we choose BVH method to divide the bounding volume based on

object rather than space.

Figure 2.11: BVH method.

We find bounding volume first. Then recursively split set of objects

in two subsets, and then recompute the bounding box if the subsets.

Stop when only one triangle in the box. We store objects in each leaf

node. All the other parts are used to determine the accelerated structure.

The method of kd-tree can be learned in the actual partitioning process.

One dimension is selected for each division to ensure that the size of

the enclosing box is uniform. When dividing objects, we always take

the object in the middle for division, so as to ensure that the number

of objects in the enclosing box on both sides is more balanced (Ensure

the balance of the tree, the smaller the depth of the tree can reduce the

number of searches[33]). Use the quick selection algorithm[34] to select

17



the triangle in the middle of the enclosing box. Finally, the triangle data

is stored in the leaf node.

2.5.3 Monte Carlo Integration

PDF(Probability Distribution Function) A random variable X

that can take any of a continuous set of values, where the relative prob-

ability of a particular value is given by a continuous probability density

function p(x)

Conditionsonp(x) : p(x) ≥ 0and(x)dx = 1

ExpectedvalueofX : E[X] =

∫
xp(x)dx

(2.6)

Monte Carlo integration is a technique that uses random numbers for

numerical integration. It is a special Monte Carlo method that can nu-

merically compute definite integrals. For any function f(x) , we sample

a probability density function in the integral domain to obtain the cor-

responding function f(Xi) and probability density p(Xi) of the sampled

samples, and divide them to average. The more samples we have, the less

error we’re going to get. (Sampling on a sample means integrating on

the current sample). We estimate the integral of a function by averaging

random samples of the function’s value.

∫
f(x)dx =

1

N

N∑
i=1

f(Xi)

p(Xi)
(Xi ∼ p(x)) (2.7)
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2.6 Radiometry

Light transmission is the theoretical foundation of computer graphics,

formalizing mathematical models and driving modern rendering and im-

age synthesis, as well as other related research, such as inverse rendering

and computer vision[35]. For many years, optical transport has been

formulated in the context of classical radiometry. It perform lighting cal-

culations in a physically correct manner.The core quantity of radiometry

are values of intensity and radiance.

In Radiometry, radiant energy is the energy of electromagnetic ra-

diation. It is measured in units of joules, and denoted by the symbol

Q = [J = Joule]. Radiant flux (ϕ) is the energy emitted, reflected,

transmitted or received, per unit time. This value indicates how bright

a light source is, denoted by the symbol ϕ =
dQ

dt
= [W = Watt]. The

Radiant Intensity is power per unit solid angle, denoted by the symbol

I(ω) =
dϕ

dω
. Solid Angle is ratio of subtended area on sphere to radius

squared, denoted by the symbol Ω =
A

r2
.

Figure 2.12

From the spherical coordinate system in the figure above, φ and θ

can uniquely determine one direction in space. The unit solid Angle can

be calculated as
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dA = (rdθ)(rsinθdφ)

= r2sinθdθdφ

dφ =
dA

r2
= sinθdθdφ

(2.8)

The Irradiance(E(x) =
dφ(x)

dA
[
W

m2
]) is the power per unit area inci-

dent on a surface point, according to Lambert’s Cosine Law[36], irradi-

ance at surface is proportional to cosine of angle between light direction

and surface normal. The Radiance(L(p, ω)) =
d2φ(p, ω)

dωdAcosθ
,cosθ account

for projected surface area)is the power emitted, reflected, transmitted or

received by a surface, per unit solid angle, per projected unit area, it is

the fundamental field quantity that describes the distribution of light in

an environment, it is the quantity associated with a ray, our rendering

is all about computing radiance. Incident Radiance is the irradiance per

unit solid angle arriving at the surface. Exiting surface radiance is the in-

tensity per unit projected are leaving the surface. (Unit Hemisphere:H2)

dE(p, ω) = Li(p, ω)cosθdω

E(p) =

∫
H2

Li(p, ω)cosθdω
(2.9)
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2.7 BRDF(Bidirectional Reflectance Distri-

bution Function)

The BRDF [37]describes how the irradiance received by one unit area

from one unit solid angle is distributed to other different angle. In other

word, how much light is reflected into each outgoing direction from each

incoming direction. In the case of specular reflection, all the incident

radiance is distributed in the direction of outgoing reflection, while there

is no energy in the non-specular direction. In the case of diffuse reflection,

the incident radiance is evenly distributed in different reflected directions.

Figure 2.13

Given the energy and the angle of the incident ray, when ray reach

an object’s surface, it will absorb the incoming energy and radiates in

different directions. We can use the BRDF to find the amount of energy

radiated in a particular direction.

fr(ωi → ωr) =
dLr(ωr)

dEi(ωi)

=
dLr(ωr)

Li(ωicosθidωi)

(2.10)
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2.8 The Rendering Equation

Reflected radiance depends on incoming radiance, and incoming radiance

also depends on reflected radiance(at another point in the scene). So

we can think of rendering equation as a recursive process.According to

Kajiya’s theory[9], light can be described as an electromagnetic radiation

using the following equation(rendering equation)

L(p, ωr) = Le(p, ωr) +

∫
Ω+

fr(p, ωi → ωr)Li(p, ωi)cosθidωi (2.11)

Figure 2.14

Where L(p, ωr) is the radiance from point p in the direction of ωr.

Le(p, ωr) is the emittance term, which represents the radiance directly

emitted from point p in direction ωr .fr(p, ωi → ωr) is the BRDF of

the surface at point x, and this is the radiance from the direction of

ωi reflected to the direction of ωr , it represents what percentage of

the radiance is going to be radiated. Li(p, ωi) represents the radiance

which comes from direction ωi to p. Ω+ is the upper hemisphere oriented

around the normal vector N , and θi is the angle made by the direction

with normal vector N .[38]

The only thing we don’t know about the above equation is how much

radiance each object reflects. We can think of this equation as saying

that the energy radiated from a location is equal to the light emitted from

that location plus the energy reflected to that location through BRDF
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from other objects or surfaces of light sources.This can be discretized

to a simple matrix equation (L,E are vectors,K is the light transport

matrix).:

L = E +KL

IL−KL = E

(I −K)L = E

L = (I −K)−1E

(2.12)

According to Binomial theorem, we can get approximate set of all paths

of light in scene:

L = (I +K +K2 +K3 + ...)E

L = E +KE +K2E +K3E + ...
(2.13)

Now we can define the entire rendering equation. The final result is equal

to what we see without reflection(light source), plus what we see with

one reflection(direct illumination), plus two, three, or more results after

reflection(indirect illumination).
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Chapter 3

Design

The hardware information used in this experiment is GPU 12th Gen

Intel(R) Core(TM) I7-12700KF, 3.61ghz, 32GB running memory size,

and NVIDIA GeForce RTX 3060 12GB graphics card. The resolution of

out put image is 800x600.

3.1 CPU and GPU

Compared with GPU,CPU has more RAM, and is more suitable for deal-

ing with complex geometry computation, physical simulation and particle

system. Examples include subdividing millions of polygons into surfaces,

expanding geometry to generate hair, reading larger texture assets, or

generating clouds and explosion effects. These tasks can easily crash on

GPU, because it doesn’t have enough RAM. At the same time, for some

complex operations, it is difficult for GPU to keep all the contents run-

ning synchronously, while CPU has better stability in this aspect. The

advantage of GPU over CPU is mainly its processing speed. GPU have

thousands of small but efficient cores in a single graphics card, which can

process a large number of tasks in parallel, focusing all computing power

on a specific task, while CPU have only a few or a dozen cores. GPU is

optimized for processing huge tons of data by performing the same op-

eration quickly and repeatedly, and the transformation of object vertex

coordinates and the coloring of screen pixels during rendering are a lot

of repetitive operations. In the rendering of some complex scenes, the
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CPU may take hours to process, while the GPU can output the correct

result in just a few minutes.

The whole process of the rendering model is mainly divided into two

parts. The first part of the process is the preprocessing of the data,

the packaging of the scene data and the construction of the acceleration

structure of the scene data, which is carried out in CUP. The second part

of the flow is the main algorithm of Monte Carlo path tracing, which is

carried out in GPU. Such a design ensures the maximum utilization of

the processing data characteristics of the CPU and GPU. Rational use

of their characteristics to improve the running efficiency and enhance the

stability of the program. similar to the mainstream ray tracing methods.

3.2 CPU Part

In the CPU processing stage, we first read the 3D model using the Assimp

library, and then construct the BVH acceleration structure based on the

triangle data of the model. Store the triangles in the leaf nodes of the oc-

tree. Then we store the information of the Bounding Volume(Boundary

location) and the triangle information (position, normal, color, texture

coordinates, light source) in separate arrays. In general, the number of

triangles in our scene is quite large, and it is easy to exceed the maxi-

mum length of the general data format, so we use TBO (Texture Buffer

Objects) for data transfer. TBO is a special form of texture that allows

direct access to the contents of a cached object from a shader, which

can be thought of as a giant 1D texture. After packing this data as a

TextureBuffer, we pass the resulting TextureBuffer into GLSL, where we

read it using the texelFetch () function.
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Figure 3.1: Processes in the CPU.

Since we always use a lot of random numbers in the path tracing

algorithm, and GLSL cannot generate random numbers, we also use TBO

to store and pass our random numbers to GLSL. Finally we use the

OpencV library, when we get the result of a single rendering we store the

color value of each pixel, and finally after multiple rendering, we calculate

the average value of each pixel to achieve the purpose of reducing the

noise, and obtain the final pixel color for saving.

3.3 GPU Part

The main part of the Monte Carlo path tracing is implemented using

GLSL. With the rendering equation we have mentioned before and the

Monte Carlo integration method, we can now try to solve our rendering

equation using Monte Carlo integration method. The direct illumination

for a point in the scene is equal to the integral of the light from the

source in the scene reflected to the hemisphere surface in our viewing

direction after passing through the BRDF. After applying the Monte

Carlo integral we can sample in a random direction over the hemisphere,
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pdf(w) =
1

2π
because we sample uniformly across hemispheres.

Lo(p, ω0) ≈
1

N

N∑
i=1

Li(p, ωi)fr(p, ωi, ωo)(n • ωi)

pdf(ωi)
(3.1)

If the light hits an object, since we know how to calculate the direct

illumination, as shown in the figure, if the light generated at point P

hits point Q, then the radiance reflected from point Q to point P can

be regarded as the calculated direct illumination at point Q. We only

shoot one ray in one direction at any given point, because if we generate

multiple rays, each ray will continue to generate multiple rays after it hits

the object, and the number of rays will increase exponentially, causing

the program to crash.

Figure 3.2

The pseudocode of the above procedure is given here:

Algorithm 1 Calculate color for Single light bounce

Randomly choose One direction ωi ∼ PDF (ω)

L0 = 0

for each ωi do

Trace a ray r(p, ω1)

if ray r hit the light then

L0+ = Li ∗ fr
cosθ

pdf(ωi)
▷ This is a comment

else if ray r hit an object at q then

L0+ = Shade(q,−ωi) ∗ fr
cosθ

pdf(ωi)
return L0

But the result in this case will be a lot of noise (because we only
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generate one ray, and Monte Carlo integration requires a lot of sampling

to reduce the noise). We can solve this problem by using a large number

of paths. We can emit a ray from each pixel multiple times in a random

direction, and finally average their radianceThen we need to determine

when the light stops bouncing, we can’t let the whole process go on

indefinitely. Previously, we always shoot a ray at a shading point and

get the shading result Lo, we want to stop the ray propagation at some

probability, but also we do not want to change the final expectation Lo.

Here we can use Russian Roulette(RR) to solve this problem. Suppose

we manually set a probability P (0 < P < 1). With probability P , shoot

a ray and return the shading result divided by P . With probability 1−P ,

we stop shoot ray and return 0.

There is no recursive structure in GLSL, so although the above steps

appear to be a recursive pattern, we can take advantage of the stack

structure to expand the recursion into an iterative form. We define an

array as long as possible.Each time we put the color data on the stack,

we exit the stack one by one to calculate the final color.

How to calculate the random direction on the hemisphere is also a

problem. This project is based on Marsaglia’s method [39] sampling in

the special case of z-axis as normal, and uses Ortho-normal Bases to

generalize it to the case of the general normal. This way we can generate

reflected rays of random direction by random numbers obtained from the

CPU.

Another problem that needs to be solved is that if the light source is

small and we sample around the collision point, there may be a problem

that a lot of rays will not hit the light source, which makes the sampling

process not really efficient. If we can find a suitable PDF, it can make our

algorithm more efficient, and the method used in this paper is to sample

directly on the light source. In this way, according to the properties of

Monte Carlo integration, we need to redefine the rendering equation on
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the light source. Then we can rewrite the rendering equation as:

Lo(x, ω0) =

∫
Ω+

Li(x, ωi)fr(x, ωi, ωo)cosθdωi∫
A

Li(x, ωi)fr(x, ωi, ωo)
cosθcosθ′

∥ x′ = x ∥2
dA

(3.2)

Figure 3.3

Now we can consider the radiance coming from two parts, from light

source is direct illumination, no need to do RR, from other reflectors

is indirect, need RR. When we sample the light source, we also need to

shoot a ray at the light source first. If it hits another object before hitting

the light source, we can determine that the point is occluded from the

light source.
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Algorithm 2 Recursively get the final color

shade(p, ω0)

Uniformly sample the light at x′ (pdf(light)=
1

A
)

Ldir = Li ∗ fr ∗ cosθ ∗ cosθ′ ∗
∥ x′ = x ∥2

pdf(light)

Test Russian Roulette

Uniformly sample the hemisphere toward ωi(pdf(hemisphere) =
1

2π
)

Trace this ray r(p, ωi)

if ray hit a non-emitting object at q then

Lindir = shade(q,−ωi) ∗ fr ∗ cosθ ∗
RR

pdf(hemisphere)
return Ldir + Lindir

(fr is BRDF fuction, RR is Russian Roulette probability.)
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3.4 External Liberaries and Tools

OpenGL OpenGL(Open Graphics Library )[37] It is a cross-language

and cross-platform application programming interface (API) for render-

ing 2D and 3D vector graphics. This interface consists of nearly 350

different function calls for drawing anything from simple graphic bits to

complex three-dimensional views. OpenGL is commonly used in CAD,

virtual reality, scientific visualization programs, video game development

and interact with graphics processing units(GPU) for hardware acceler-

ated rendering. Today, OpenGL is the most widely accepted API for

processing 2D/3D graphics in the video industry. Based on this, applica-

tion functions on various computer platforms and many applications on

devices have been spawned for the study of computer vision technology.

It is independent of the Windows operating system and operating system

platform, can undertake a variety of different neighborhood development

and content creation, in short, it helps developers to achieve PC, work-

stations, super computers and all kinds of hardware, such as industrial

control, high performance, high for visual demands high visual graphics

processing software development.

GLSL OpenGL Shading Language (OpenGL Shading Language) is a

short custom program written by developers, which is used for Shading

programming in OpenGL. It is executed on the Graphic Processor Unit

and replaces part of the fixed rendering pipeline to make the different lev-

els in the rendering pipeline programmable. GLSL Shader code is divided

into two parts: Vertex Shader and Fragment, and sometimes Geometry

Shader. GLSL uses C language as the basic high order coloring language

to avoid the complexity of using assembly language or hardware speci-

fication language. There are many benefits to using GLSL, such as its

cross-platform compatibility with multiple operating systems, including

Linux, macOS, and Windows. It has the ability to write shaders that

can be used on the graphics cards of any hardware vendor that supports

OpenGL coloring language. Each hardware vendor includes a GLSL com-

piler in its drivers, allowing each vendor to create code optimized for its

specific graphics card architecture.
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GLFW GLFW(Graphics Library Framework) is an Open Source, lightweight,

multi-platform library for OpenGL, OpenGL ES and Vulkan development

on the desktop. It provides a simple API for creating windows, contexts

and surfaces, it also provides the functions of processing gamepad, key-

board and mouse input. GLFW is written in C and supports Windows,

macOS, X11 and Wayland.

GLEW The OpenGL Extension Wrangler Library (GLEW) is a cross-

platform open-source C/C++ extension loading library. GLEW provides

efficient run-time mechanisms for determining which OpenGL extensions

are supported on the target platform. Different graphics card companies

release extension functions that only their own graphics card supports,

and if you want to use them, you have to find the latest header file.

With the GLEW extension library, GLEW automatically identifies all

OpenGL advanced extension functions supported by your platform. You

don’t have to manually find the interface to the function.

GLM OpenGL Mathematics (GLM) is a C++ mathematics library for

graphics software based on the OpenGL Shading Language (GLSL) spec-

ification. To make it easier for programmers to learn and use, it provides

classes and functions with the same names and functions as GLSL. GLM

is not limited by GLSL features. It is a GLSL-based extension that pro-

vides functions such as matrix transformations, quaternions, semi-base

types, random numbers, and so on. In ray tracing, rasterization, image

processing, and physical simulation, we often need simple and convenient

mathematical libraries, and GLM can provide most of the mathematical

functions we need.

Assimp Open Asset Import Library (Assimp) is a cross-platform 3D

model import library. It written in C++, and offers interfaces for both C and

C++. When rendering in OpenGL, sometimes need to use model ma-

terials download from the internet. However, due to the large number

of model formats in the network, we need to parse models in different

formats. As an open source project, ASSIMP has designed a set of ex-

tensible architecture, which provide a common application programming
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interface (API) for different 3D asset file formats. Assimp currently sup-

ports 57 different file formats for reading, including COLLADA(.dae),

3DS, DirectX X, Wavefront OBJ(.obj) and Blender 3D(.blend).
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Chapter 4

Evaluation

The acceleration effect of the BVH acceleration structure mentioned in

Section 2.4 is tested, and evaluated the final rendering effect of the al-

gorithm, including comparison with real photos and comparison with

images generated by raster transformation. For the results of ray-tracing

algorithms, the image should ideally be close to the real result, with obvi-

ous optical effects such as soft shadows and color bleeding, and an ideal

stable program should be able to continue rendering computations for

long periods of time without crashing.

For these tests, I used 3Dmax to process the model, select the ap-

propriate size and position for placement, and adjust the camera to the

appropriate position to observe the overall rendering effect. The models

used in the program are from Stanford University’s 3D models rabbit

and Dragon, and the Utah teapot, and other 3D objects are from the

website free3D.com.

To calculate the rendering speed, I timed the program using the

c++11 library function clock() and timed the CPU processing time sep-

arately from the gpu processing time in order to compare the actual

performance of the speedup algorithm. First, the program with accelera-

tion structure is tested for the difference of running speed corresponding

to the different number of triangles in the scene. (The number of itera-

tions sampled during testing is 8, and the number of sample is 100) The

test results are shown in the following figure:
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Figure 4.1: Rendering time variation for different number
of triangles(With accelerate structure)

Clearly as you can see from the graph, the triangle number less than

100, rendering time as triangle populations increased very fast. This is

due to the small number of triangles in the scene, and the construction

of BVH structure leads to the need to detect the bounding volume first

when detecting the collision. For the scene with only a few triangles, the

acceleration effect is not obvious. And when the number of triangles is

small, the curve has a certain fluctuation, which is caused by the location

concentration or scattered emission of the model in the scene. A scene

with the same number of triangles takes longer to render when the model

is scattered across the scene(figure). As the number of triangles increases,

the increase in rendering time flattens out and increases logarithmically,

which is a nice advantage when dealing with complex scenes with a large

number of triangles.
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Figure 4.2: Rendering time variation for different number
of triangles(Without accelerate structure)

Figure 4.3: Compare the two methods

Secondly, the same number of iterations and rendering times are used

in the same scene to compare the rendering time between using the ac-

celerated results and not using the accelerated structure. According to

the test results, it is obvious that although the algorithm without accel-

erating structure has a slight advantage in speed when the number of

triangles is small, the algorithm without accelerating structure has an

almost exponential increase in operation time when the number of tri-
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angles gradually increases. In fact, during testing, when the number of

triangles exceeds 3000, renderers without acceleration structures often

crash.The stability of the algorithm with acceleration structure is much

more than that of the algorithm without acceleration structure.

Using path-tracing algorithms inevitably consumes a lot of time for

rendering, and the calculation time is affected not only by the number of

triangles in the scene but also by the number of times each light bounced

in the scene, that is, the number of times each pixel is iterated to calculate

the result of the rendering equation.

(a) bounce1 (b) bounce3

(c) bounce5 (d) bounce8

Figure 4.4: Rendering results after light bounces different
times

In order to obtain better image quality in a relatively short time,

under the premise of the same scene and the same sampling times, us-

ing different maximum ejection times under the premise of using BVH

structure acceleration, counting the rendering time, and comparing the

quality of the final rendering result. Here are the final results rendered

for different number of ejections. As the number of ejections continues to
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increase, the scene gradually brightens. When the number of light ejec-

tion is less than three times, the image information on the back of the

light source is almost invisible, and when the number of light ejection is

five times, the orange picture frame in the left shadow can be clearly seen.

When the time of light bounce increase, the whole process of rendering

time increase gradually, but the final brightness convergence gradually.

You can see that the difference in brightness between 8 and 15 ejections

is no longer significant, but the difference in render time is 1000 seconds.

In practice, we can use the appropriate number of ejections as needed.

(Appendix2 figure 6 gives a comparison at detail.)

(a) bounce8

(b) bounce15

Figure 4.5: Compare the rendering results with light
bounces 8 and 15 times
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Figure 4.6: Rendering time variation for different number
of bouncing

In this project, random light is emitted to each pixel for many times,

and finally the average method is used to denoise the image. The number

of Spp is the key to the effect of image denoising. The images generated

by different Spp times are compared, and the final denoising effect of this

method is also evaluated. It can be seen that the number of noise points

in the image has been significantly reduced when SPP =200, but the

existence of noise points can still be felt on the whole, and the picture

quality is not good. When SPP =1000, the noise of the image is almost

invisible, and a few black noise points can be seen when zooming in.
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(a) SPP=1 (b) SPP=10

(c) SPP=50 (d) SPP=200

Figure 4.7: Different output image based on different SPP

When Spp=1500, the number of black noise points continues to de-

crease or fade, and the image quality is close to the photo quality. The

sampling method based on Monte Carlo integration can approximate the

real results on the basis of a large number of samples. However, we can

see that there are aliases at the edge of the object, which affects the qual-

ity of the image to a certain extent. Perhaps multi-sampling the pixels

on the edge of the object based on the Monte Carlo method can achieve

anti-aliasing effect and further improve the image quality.

40



(a) SPP=1000

(b) SPP=1500

Figure 4.8: Compare the output image quality from
SPP=1000 and SPP=1500

To evaluate the image quality of the rendered results, I used Cornell

Box, a model from Cornell University, and compared the rendered results

with real photos given by Cornell University. You can see that except

for the jagged edges of the objects, the overall effect is very similar to

the picture, which is a good imitation of the real lighting conditions. At

the same time, we can clearly see the effect of color bleeding and soft

shadow, which is difficult to be achieved by rasterization.
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(a) Real Photo

(b) Rendering result

Figure 4.9: The first image is real cornell box photo pro-
vided by Cornell University, the second one is rendering
image using renderer build by this project.
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Chapter 5

Conclusions

This paper has shown that it is possible to use OpenGL to create a stable

ray-tracing renderer from the underlying layer that can render complex

scenes. And it is stable and feasible to use TextureBufferObject(TBO)

to transfer a large amount of data from CPU to GPU in OpenGL. In this

paper, some important technical difficulties that need to be implemented

in the idea of path tracing algorithms are investigated, including ray

collision detection, bounding volume generation, random ray generation,

Monte Carlo integral method, and Russian Roulette algorithm.They need

to be used in combination to implement a full path tracing algorithm.The

final rendering results prove that the path tracing algorithm based on

Monte Carlo method can simulate the physical properties of light well,

and the final image has a quality comparable to that of real photos.

On this basis, this paper proves that the acceleration algorithm is very

efficient in ray tracing, which can greatly improve the rendering speed

and enhance the stability of the rendering program. At the same time,

the image brightness tends to converge with the increase of light ejection

times.
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Chapter 6

Further Research

Visual operation interface At present, this project is to set up the

scene in 3Dmax in advance, and then export the model for OpengL to

use. If we need to adjust the size, position, angle of the model, then we

should first adjust in 3Dmax, and then export it to use. The operation is

tedious, which greatly reduces the efficiency of program debugging.At the

same time, due to the slow running speed of the ray tracing algorithm, the

problem caused by the camera position or the line of sight Angle needs

to be manually adjusted, which will consume a lot of time. The following

plan is run in rasterized form first, with ImGUI library directly visualized

in OpengL to adjust the position of the model and other attributes,

and control the camera to the appropriate position. After the scene is

determined, we can package the data to glsl and run the ray tracing

algorithm for rendering.

Textures and other material At present, only a single color and

brightness light source is used in this experiment, no texture of the object

is added, and only a single color is used for rendering. The model is also

seen as having only diffuse, specular, or refracted reflections. In reality,

objects often have diffuse reflection, refraction and specular reflection

at the same time. At present, the objects with mixed materials are

not processed. Adding these items later will make the scene look more

realistic and beautiful.
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Image anti-aliasing Although the final image effect after a large num-

ber of samples is close to the level of real photos, there are still clearly

visible jagged edges at the edges of the model, which has a certain im-

pact on the performance of the overall image. In particular, this effect

is more pronounced for objects with edge details. It can be solved by

supersampling the image edge pixels.

Hardware The project has only been tested on a single computer, and

ray tracing has relatively high hardware requirements. Different CPUs,

GPUs, and RAMS may exhibit large rendering time gaps, as well as other

hardware-specific bugs. Testing on different devices can help improve

program stability and find more appropriate data processing methods.

Real-time ray tracing In this project, the time required to render a

single image at an acceptable level of quality was in the order of 15 min-

utes or more, which is far from the speed required for real-time ray tracing

(If the ray tracing can achieve 30 frames per second, it can be called real-

time ray tracing)The introduction of a hybrid rendering pipeline, which

combines the advantages of rasterization and ray tracing, may improve

rendering speed.
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Appendix1 - Project Link

GitHub Link: https://github.com/LingLINKfeng/Monte-Carlo-path-tracing-

algorithm-based-on-OpenGL
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Appendix2 - Some Other

Rendering Result

Figure 1: Mirror material model, SPP=1500,bounce 8
times, cost 100minutes
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Figure 2: SPP=1000, bounce 8 times, cost 50minutes

Figure 3: SPP=1000, bounce 20 times, cost 120minutes
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Figure 4: glass material model, SPP=500,bounce 8 times,
cost 31minutes

Figure 5: SPP=200, bounce 8 times, cost 12minutes
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(a) bounce1 (b) bounce3

(c) bounce5 (d) bounce8

(e) bounce15

Figure 6: Comparison of details under different light
bouncing times
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