
School of Computer Science and Statistics

Lane Changing in Autonomous
Vehicles based on Data Sharing

Vyshnavi Goli

August 19, 2022

A dissertation submitted in partial fulfilment
of the requirements for the degree of

Master of Science in Computer Science - Data
Science

http://www.scss.tcd.ie

1

Declaration

I hereby declare that this dissertation is entirely my own work and that it has

not been submitted as an exercise for a degree at this or any other univer-

sity.

I have read and I understand the plagiarism provisions in the General Regu-

lations of the University Calendar for the current year, found at http://www.

tcd.ie/calendar.

I have also completed the Online Tutorial on avoiding plagiarism ‘Ready

Steady Write’, located at

http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

Signed: Date:

http://www.tcd.ie/calendar
http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

2

Acknowledgements

To my sister Tejaswi, for supporting me emotionally and unconditionally through-

out my master’s, my mum for always motivating me and pushing me to my

limits and beyond all the time. To my supervisor, Prof. Ivana Dusparic and

Jernej Hribar, without whose guidance this process of research would not be

successfully completed. Finally, to my family for always being there and sup-

porting me.

Thank you so much !!!

Vyshnavi Goli

Trinity College Dublin

August 2022

Abstract

Autonomous vehicles also called ‘driver-less’ vehicles or self-driving vehicles

are increasing constantly and the world, with the introduction of the Tesla

auto-pilot system, entered into Level 2 automation of cars. According to it, the

vehicle is able to take full control of the system, and handle acceleration, brak-

ing, and steering at the same time. This needs some communication to be nec-

essary between the vehicles for the purpose of decision-making. The disser-

tation uses Reinforcement learning (RL), a branch of machine learning deal-

ing with the creation of smart agents, to specifically address the issue of lane

changing in connected autonomous vehicles (CAV). Connected autonomous

vehicles (CAV) combine connectivity and automation to aid or replace peo-

ple in the task of driving. This is achieved using sensor technology, Global

Positioning System (GPS), remote processing capabilities, and telecommuni-

cation systems. Performing safe and efficient lane changing is a crucial part

of automating these vehicles and the RL intelligent agent selects and executes

the action by perceiving its surroundings using the data from the sensors,

GPS, and other components of the vehicle. It can also be trained using several

behavior patterns of drivers thus eliminating driver errors, congestion, traf-

fic accidents, etc.,This thesis mainly focuses on developing a Lane changing

strategy using a Deep Q learning Agent.

3

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Lane Change in CAV . 2

1.3 Co-operative Lane Change . 3

1.4 Thesis Assumptions . 3

1.5 Thesis aims and objectives . 3

1.6 Thesis Contribution . 4

1.7 Document Structure . 4

2 Background and Related Work 6

2.1 Reinforcement Learning . 6

2.1.1 Q-Learning . 9

2.1.2 Deep Reinforcement Learning (DRL) 10

2.1.3 Deep Q Network (DQN) 11

2.1.4 Double Deep Q Network (DDQN) 13

2.1.5 Multi-Agent Reinforcement Learning 14

2.2 Related work w/o RL . 15

2.2.1 MOBIL . 15

2.2.2 Extended Intelligent Driver Model 16

4

CONTENTS 5

2.2.3 XGBoost model for Lane change 18

2.3 With RL . 19

2.4 Summary . 30

3 Experimental Design 31

3.1 Lane Change Problem . 31

3.2 Grid observation space . 32

3.3 State space representation . 33

3.4 Action space . 34

3.5 Reward function . 34

3.6 Design of the model . 36

3.6.1 DQN network . 36

3.7 Summary . 40

4 Implementation 41

4.1 Simulator and Design of Road Network 41

4.2 DQN Agent . 43

4.2.1 Sumo Environment . 43

4.2.2 Replay Memory . 45

4.2.3 DQN Agent . 47

4.2.4 Huber Loss . 49

4.2.5 Optimizer . 49

4.3 Summary . 51

5 Evaluation 52

5.1 Objectives . 52

5.2 Metrics . 53

5.3 Evaluation Scenarios . 54

CONTENTS 6

5.3.1 Techniques and Scenarios 54

5.4 Setup . 55

5.4.1 Network Layout . 55

5.4.2 Demand data . 56

5.5 Results and Analysis . 57

5.6 Summary . 67

6 Conclusion 68

6.1 Thesis Contributions . 68

6.2 Future Work . 70

List of Figures

2.1 Interaction of Agent and Environment in RL 7

2.2 Deep Q Network Algorithm . 12

2.3 Comparison between DQN and Double DQN [1] 13

2.4 Lane Changing scenario in [2] . 15

2.5 Intelligent Driver Model [3] . 16

2.6 Vehicle lane change in Q learning strategy[2] 19

2.7 Proposed architecture in [4] . 22

2.8 Three lane road simulator in [5] 28

3.1 Grid Observation space of the ego vehicle 33

3.2 Formation of state matrix from figure 3.1 34

3.3 Architecture of DQN Network and its interaction with simula-

tion environment . 38

4.1 Class Diagram of the DQN based Lane Change Problem 43

4.2 Working of Experience replay . 46

4.3 Huber Loss function . 50

4.4 Loss rate of Adam Optimizer . 51

5.1 Designed Road Network . 56

5.2 Designed Road Network . 57

7

LIST OF FIGURES 8

5.3 Loss rate of model with α = 0.00001 59

5.4 Loss rate of model with α = 0.0001 59

5.5 Avg vs maximum speed when speed is increased in model . . . 60

5.6 Collision rate when speed is increased in model 61

5.7 Avg speed vs maximum speed of base model 61

5.8 Avg speed vs maximum speed of model 62

5.9 Collision rate of base model . 62

5.10 Collision rate of model . 62

5.11 Loss of base model . 63

5.12 Loss of model . 63

5.13 Total rewards of base model . 63

5.14 Total rewards of model . 64

5.15 Efficiency rewards of base model 64

5.16 Efficiency rewards of model . 64

5.17 safety rewards of base model . 65

5.18 safety rewards of model . 65

5.19 Comfort rewards of base model 65

5.20 Comfort rewards of model . 66

List of Tables

2.1 Existing Research in Lane changing strategy of CAV and the

necessary details . 25

4.1 Parameters used for choosing between the optimizers 50

5.1 Parameters used for Vehicles in simulation 57

5.2 Parameters used for choosing between the optimizers 58

9

Chapter 1

Introduction

This thesis addresses the Vehicle to Vehicle communication in Connected Au-

tonomous Vehicles (CAV) and uses it for developing a Lane changing strategy

in CAVs using Deep Reinforcement Learning (DRL). It suggests using DRL

to combat the dimensionality curse that Reinforcement Learning experiences

[6] and uses neural network techniques which are more effective at solving

complex, huge issues. This is suitable for the present dynamic environment

where there are multiple entities to interact with. The code is available at

https://github.com/GoliVyshnavi/Lane_Change_Thesis

1.1 Motivation

There are many applications that can be developed by using the data that is

shared between two vehicles. A lane change application, intersection man-

agement, adaptive cruise control etc., The motivation behind choosing devel-

opment of lane change strategy is , according to statistics, out of all the crashes

that occur due to lane changing, ramp area is where most of the collisions oc-

cur. Among them, there are two types of collisions, rear-end and side swipe

1

https://github.com/GoliVyshnavi/Lane_Change_Thesis

CHAPTER 1. INTRODUCTION 2

collisions, which constitute 12.5 and 85.5 per cent respectively [7]. The former

occur due to the target vehicle not being to pick up speeds on par with its

surroundings and latter occurs when because of the vehicle that made a lane

change is not in a desired position on the lane. Inspired to eliminate these, the

main goal of this thesis is to remove both of these collision and create a more

efficient strategy that focuses on the safety as well as the efficiency.

1.2 Lane Change in CAV

Vehicle to Vehicle (V2V) is Inter-Vehicle communication and happens when

both the vehicles that wants to communicate are present in a specified range

from each other. Especially in CAVs, obtaining and processing the informa-

tion from surrounding vehicles and sensors acts as an advantage for the ego

vehicle as it can use it in variety of ways.

Various scenarios needs to be automated as part of CAV development, and

some of them are Lane changing, intersection management, issuing warnings,

navigating and remote driving [8].

Safety, Comfort, Efficiency, Mobility, and Environmental applications are some

of the areas which can be improvised using the data acquired from other ve-

hicles surrounding the ego vehicle and the ego vehicle itself. For enhancing

safety and comfort, automated vehicles should be prevented from colliding

with each other and monitoring of sudden changes in acceleration using dif-

ferent mechanisms must be done.

This evokes a need for information such as acceleration, position of the vehi-

cles, speed of the vehicles and others as they are needed for taking important

decisions while automating a connected autonomous vehicle (CAV).

CHAPTER 1. INTRODUCTION 3

1.3 Co-operative Lane Change

Co-operative Lane changing is where vehicles collaborate to perform a lane

change of one or a group of cooperative vehicles in a safe and efficient manner

[9]. It is comparatively new and involves complicated scenarios to be tested

but it is necessary for preventing collisions and also for improving overall lane

change efficiency. Again, data from other vehicles is of extreme importance

for developing it.

Especially while designing a lane change strategy, it must be decided before-

hand what kind of co-operative lane change must be performed. During

multi-lane-change, other vehicles may need to change lane due to reasons like

as part of the ego vehicle’s cooperative lane change or speed gain etc.,

1.4 Thesis Assumptions

Although various background works were examined in Chapter 2 that tar-

gets CAVs, mix of CAVs and Human driven vehicles (HDV) etc., This thesis

implements interaction with only Connected Autonomous Vehicles, and no

pedestrian paths. The speeds of the vehicles are assumed to be same for all

and constant through out the journey. The target vehicle i.e., the agent is sur-

rounded a specified number of vehicles as in chapter 5.4.2.

1.5 Thesis aims and objectives

The thesis’ overall purpose is to address the lane changing in connected au-

tonomous vehicles using data that is shared between them leveraging the use

of Vehicle to Vehicle communication in CAVs. An application of it is the Lane

changing strategy which is developed aiming to not only improve the safety,

comfort of the passengers but also enhance the efficiency of the lane change

CHAPTER 1. INTRODUCTION 4

using Reinforcement Learning. Deep Q Network based system with opti-

mised state space and reward function is used for this purpose as a DRL agent

can make intelligent decisions when configured and learns based on the sce-

narios it experiences continously. The CAV agent involved has a foresight that

makes the decisions efficient even in unforeseen scenarios as this strategy not

only uses the data from the ego vehicle itself but also considers information

from the surrounding vehicles.

1.6 Thesis Contribution

With safety, efficiency, and comfort as the primary considerations, this thesis

identifies and justifies the necessity for an improved DQN-based Lane change

approach. It seeks to address the impact of providing a DQN network with

more information as well as enhance the reward functions already in place.

It outlines the difficulties in implementing lane changes and then suggests

solutions based on those difficulties. The design, implementation, and eval-

uation of a DQN method are the key contributions of the thesis, and unlike

other DRL-based techniques, the simulation takes into account various driv-

ing styles of other nearby vehicles. The agent learns from its experiences using

Experience replay memory, which helps it avoid the instability brought on by

the environment’s non-stationarity. The agent is taught on its own DRL-based

policy. The technique is evaluated in a simulation of traffic and lane change in

this thesis’s last section. Evaluation results demonstrate superior performance

of the modified DQN agent over the agent with less local knowledge.

1.7 Document Structure

The thesis is organized as follows. The cutting-edge research on non-reinforcement

learning approaches, advanced reinforcement learning techniques, and deep

CHAPTER 1. INTRODUCTION 5

learning techniques utilized for the suggested work are explained in Chap-

ter 2. The backdrop for them is mostly focused on RL algorithms and other

approaches. It provides lane change techniques for CAVs using single agents

as well as multi-agent systems. The planned research’s design is described in

Chapter 3. The execution of the architecture described in Chapter 3 is covered

in Chapter 4. Chapter 5 discusses the evaluation of the proposed study using

a single-agent DQN-based methodology. In Chapter 6, this theory is outlined

along with the problems that require more research.

Chapter 2

Background and Related Work

This chapter explains the concepts used in developing the lane change model

for connected autonomous vehicles(CAVs). The first section (2.1) explains the

main concepts needed to work with ’Reinforcement Learning’ which is the

main agent that acts as the vehicle and the following sections describes the

state of the art methodologies used for lane changing aspect of the CAV. At

the end, a summary presented explains the research question and also the in-

spired state-of-the-art methods that is being implemented in the thesis.

2.1 Reinforcement Learning

The branch of machine learning that deals with sequential decision-making

is called reinforcement learning (RL) [10]. It involves an agent learning an

optimal way to solve a set of problems by mapping situations present in its

dynamic environment to actions which are then used to maximize a reward

signal. This reward signal is given to the agent for taking a favourable action

and encourage the desired behaviour. To reach a certain goal, the agent selects

an action from the set of available actions using a trial and error search.

6

CHAPTER 2. BACKGROUND AND RELATED WORK 7

A reinforcement learning system has four parts in addition to the agent and

the environment: a policy (π), a reward signal, a value function, and model of

the environment. The main component of psychology-inspired reinforcement

learning that controls the agent’s behavior is policy. It maps the states in

which the agent is present to the actions that can be taken when the agent

is in that state. A reward signal acts as a primary objective of the reinforce-

ment problem. It helps in distinguishing the actions that benefit solving the

problem by using high and low rewards for positive and negative actions im-

mediately.

With reward comes value function, which determines how much total reward

an agent can expect to get in the long run if it took a particular action. Un-

like reward, value function gives the total rewards in the long run which is

very crucial in making evaluation decisions. We choose a particular action,

by looking at its value function but not the amount of reward.

A model is used for planning which actions to choose from when given a

state and action by also considering the possible future situations. There are

model-based and model free reinforcement learning methods.

Figure 2.1: Interaction of Agent and Environment in RL

An example of an RL system with an agent interacting with the surroundings

is shown in Fig. 2.1. The agent existing in a state st selects an action at by

CHAPTER 2. BACKGROUND AND RELATED WORK 8

adhering to policy from state-space S and action space A. As per the dynamics

of the environment, the agent collects its rt reward upon moving to the state

st+1.

According to Markov Decision Process (MDP), at a time step t, the agent is

presented with a state of the environment St, and based on it, an action At

[11] is chosen which is the best one to select. Then, as an outcome of that

action, a reward Rt is given to the agent and it is moved to a new state St + 1

using a state transition probability P, where P is given by [12],

P[St+1|St] = P[St+1|S1....., St] (1)

The above equation states that the current state of the agent depends only

on the immediate previous state. For helping the agent to play the game in a

optimal way, it is made to try new random actions once in a while and not only

play in the know ways. But if the agent is made to always explore new actions

and does not use its wisdom, it may cause the agent to lose. The parameter ϵ

is used to balance exploration and exploitation of knowledge.

Discounting(γ) is a value which is in the range [0,1], and tells us how much

importance the agent is giving for the future rewards as compared to the im-

mediate rewards when taking an action. If the discount rate γ is 0, then the

agents does not take into account the future rewards and only cares about

immediate rewards and vice versa for 1.

Then the sum of rewards Gt at a time step t, is modified to include the dis-

counting factor as below

Gt = Rt+1 +t+2 +γ2Rt+3 + =
∞

∑
k=0

γkRt+k+1 (2)

CHAPTER 2. BACKGROUND AND RELATED WORK 9

The equation of Bellman is given by [12],

V∗(s) = max
aϵA

R(s,a) + γ ∑
s′ϵS(3)

The above equation tells that the long term rewards of an action a is equal to

the current reward obtained by executing that action and the expected long

term reward of the action.

In the next section, a concept called Q-Learning is explained which tells how

the agent uses the knowledge gained in order to maximise its rewards and

play in a desired way.

2.1.1 Q-Learning

As we have established that our agent should be interested in long term re-

wards, compared to short term ones, Q learning is an model-free reinforce-

ment learning algorithm [12] that tells our agent which is the optimal action

to take given a particular state by calculating its future rewards if that action

is taken. As the objective is to find the optimal action given its current state,

in order to achieve this, this method may use its own rules or it may not use

the policy that it should be following.As there is no necessity for a policy here,

this is also an off-policy learning algorithm .

It uses a q-table or matrix of size (state size * action size) and each element is

called q-value and is initially set to zero. It is mathematically given by,

q∗(s, a) = max
∗

Qπ(s, a) (4)

After we run a episode, i.e., after the agent experiences the task, these ele-

CHAPTER 2. BACKGROUND AND RELATED WORK 10

ments (Q [state,action]) change and when this same process is repeated for

many episodes, each element in the q-table changes many times and after a

while becomes approximately constant and optimal.

Even though there is a barter involving exploration and exploitation, prac-

tically all of the table’s components converge to optimal values as the agent

completes its training by watching more episodes. Then the agent behaves in

a greedy way i.e., selects the action having the highest probability value.

The agent can then use it as a guide to decide on the optimal course of action

depending on the q value. As a result, the agent uses this q-table as a look-up

table to choose an action in a certain condition. Bellman Equation (3) is used

for computing the reward and the expected future state at each state.

Discounted Markov Decision Processes with an unlimited horizon can be

used with Q-learning. It may also be used for issues that have not been dis-

counted as long as the best course of action is ensured to attain a reward-

free absorbing condition and the state is re-established on a regular basis

[13].

2.1.2 Deep Reinforcement Learning (DRL)

It is a combination of both Reinforcement learning (RL) and Deep learning

and has so many applications in playing games such as Atari, Backgammon,

Alpha Go, Alpha zero, chess and shogi. This comes into play due to curse of

dimensionality because of big action and state spaces making the q-table huge

and unable to traverse quickly as well as hard to compute the q-value esti-

mates for each individual state action pair.In this, neural networks are used

instead of components of RL and often the input to these is unstructured like

a screenshot of the game environment etc.,

CHAPTER 2. BACKGROUND AND RELATED WORK 11

The parameters used by these networks are optimised by algorithms and suit-

able loss function is minimized. The next sections showcase various other

methods used to implement the propose lane changing strategy in a con-

nected automated vehicle (CAV).

Model-based and model-free deep reinforcement learning techniques are also

available. In the former, a forward model of the changing environment is esti-

mated via supervised learning on neural networks. Model predictive control

is then used to forecast actions for this environment. Actions for this envi-

ronment are then predicted using model predictive control. Even with these

states and actions, the model will often do trail and errors because the true en-

vironment changes will be different from the learned environment changes.

Optimisation needs to be done to improve the performance of the model and

methods such as cross-entropy method, model-free methods are used.

In the latter, the policy is learned without modelling the environment dynam-

ics but depends on temporal difference learning and Q-learning. When in a

continuous action space, these algorithms frequently learn both a value esti-

mate and a policy; however, in discrete action spaces, these algorithms typi-

cally train a neural network Q-function that forecasts the future returns from

executing an action [14].

2.1.3 Deep Q Network (DQN)

The major issue using vanilla Q learning is the use of q- table, for small set

of states and actions this is considered a viable strategy. When it comes to

using this for problems such as lane changing for autonomous vehicles which

involve enormous amount of data the state space becomes huge and compu-

tationally infeasible to process the data, to overcome this issue DQN has been

introduced.

CHAPTER 2. BACKGROUND AND RELATED WORK 12

In DQN, a neural network completely replaces the Q-table and updates the q

values of each input state, rather than selecting an optimal q value from the

table neural network is used to estimate this value. In Q learning we try to

map a q value to a (state, action) pair, while in DQN we map (action, q value)

pairs to each input state.

The main network and the frozen target network, which receives updates less

often than the main network’s weights, are the two networks that are utilized

to provide stability [15]. Here DQN uses a concept called experience replay

which is a part of reinforcement learning where we capture agents experiences

at different times to learn about the environment. These samples are used to

train the DQN and are used to update the main and target networks. The

main network trains on the batches of samples and updates its weights after

k steps, after this the updated weights are passed to target network after N

steps. The target network is responsible for performing both the selection and

evaluation of the actions. Here the selection of k is crucial as selecting small

k values increases the time taken to train the DQN. The final output layer has

actions as labels or classes and the related q value as the probability of that

action.

Figure 2.2: Deep Q Network Algorithm

Upon the selecting an action from the output layer, it is performed by the

agent and using bellman equation, the weights are again updated in the main

and target networks.

CHAPTER 2. BACKGROUND AND RELATED WORK 13

2.1.4 Double Deep Q Network (DDQN)

The q values computed are approximates of the transition probability and in

DQN, this estimate is used to update the network again. While updating in

Q learning, the agent tries to pick the max q values which also include certain

amount of approximation error. Taking the maximum estimated value every

time as we learn leads to overestimation of the q values leading to maximisa-

tion bias. This tricks the agent to pick the action which lead to lower reward

at the end.

To overcome this, double Deep Q Network is used which has two indepen-

dent estimators or models which update each other or modify a target model(Q
′
)

based on another model (Q). Here to avoid the use of max value this operation

is split to use two different networks, online network for selection of action

where as target network for evaluation of actions. The weights of the target

network are then copied to the online network to evaluate the next greedy

action to be considered.

Q∗(st, at) ≈ rt + γQ(st+1, argmaxa′Q
′
(st, at))(5)

Hasselt et al. (2015) [1] illustrates this overestimation bias in experiments

across different Atari game environments:

Figure 2.3: Comparison between DQN and Double DQN [1]

CHAPTER 2. BACKGROUND AND RELATED WORK 14

2.1.5 Multi-Agent Reinforcement Learning

MARL has become a popular algorithm in strategy games, as well as in the

area of robotics and autonomous vehicles where multiple sensors are involved.

This algorithm involves multiple agents present in a same environment that

are made to interact with each other to achieve a goal. All of these agents

tries to learn from others and make the performance of the system better.

Experience sharing is one of the important characteristic in MARL where

skilled agents serve as teachers where as unskilled agents try to imitate skilled

ones.[16]

MARL helps in observing the behaviour of agents and how they effect each

other by collaborating, coordinating and competing against each other etc.,

when assigned a specific goal. Cooperative is where the agents work together

towards a common goal; Competitive, where the agents compete against each

other; and some mix of them which lead to social dilemmas are the different

possible interactions in an environment.

There are two major concepts involved in MARL, one is autocurriculum and

cooperative AI. When agents become competitive new tasks are created as

each agent tries to hinder the other due which the environment changes lead-

ing to multiple phases of learning , this is called autocurriculum framework.

Cooperative AI is the class of problems which involve AI that seek to solve

problems of cooperation. For example, MARL can be used in cases where

two vehicles need to overtake an other one without collision and at a safe

distance.

CHAPTER 2. BACKGROUND AND RELATED WORK 15

2.2 Related work w/o RL

2.2.1 MOBIL

A generic lane change model called Minimise Overall Braking Induced by

Lane Changes (MOBIL) determines the circumstances under which both nec-

essary and optional lane changes occur in an automobile [17]. This considers

the risks and utility of the lanes presents and comes up with incentive crite-

rion and safety criterion for making efficient lane changing strategies based

on longitudinal acceleration differences.

The criteria just specified prevents collisions, critical lane changes and other

even the behaviour of other drivers using a ’politeness factor’. This parameter

helps the drivers to make a lane change by co-operating with other vehicles

around it and not be completely egoistic. This model considers both the sym-

metric and asymmetric passing rules present on roads.

One of the two lane changing strategies proposed in [2] is based on MO-

BIL and is the baseline lane changing strategy developed. Ego-efficient lane

changes are done using MOBIL based approach which uses the longitudinal

accelerations of the vehicles in the current and target lane.

Figure 2.4: Lane Changing scenario in [2]

Figure 2.3 depicts a lane changing scenario in which a vehicle c wants to per-

CHAPTER 2. BACKGROUND AND RELATED WORK 16

form a lane change which involves the following vehicle o and the vehicle n

in the target lane. Safety and Incentive criteria are calculated and upon sat-

isfying those, a lane change is executed. There are other parameters present

in the MOBIL model apart from the two criteria mentioned that can control

the behaviour of the lane changing model. Optimisation of those parameters

are done using Adaptive fine tuning and Grid search, which are parameter

optimisation algorithms.

2.2.2 Extended Intelligent Driver Model

The Intelligent Driver Model(IDM) is a model which is time continuous and

that computes the acceleration and desired gap of the vehicle in the next time

step using parameters as present in the picture below. The acceleration calcu-

Figure 2.5: Intelligent Driver Model [3]

lated is given by,

a(t) = amax

[
1−

(speed(Vn−1)

desiredspeed(V0)

)δ
−
(desiredgap(Sn+1)

gap(S0)

)2
]

(6)

which uses the ratios of desired and current velocities, gaps of and between

the vehicles.

S∗n−1(t) = s0 + max

(
0, vn−1(t) ∗ T −

(vn−1(t) ∗ (vn(t)− vn−1(t))
2 ∗
√

amax ∗ b

)δ
)

(7)

CHAPTER 2. BACKGROUND AND RELATED WORK 17

aIDM(t + ∆t) = amax

[
1−

(Vn−1(t)
(V0)

)δ
−
(S∗n−1(t)

S(t)

)2
]

(8)

The above equations are for calculating the desired gap needed between the

vehicles and acceleration of the vehicle. T is the desired time, b is the desired

acceleration, amax is the maximum acceleration, a0 being the minimum gap

and δ, the acceleration exponent.

But due to the usage of gap between the vehicles in the second term while

calculating the speed, if any vehicle is far away then it will not go to its de-

sired speed and will never meet the destination. This version of IDM is im-

provised by changing the characteristics of the model and as for making the

acceleration of the desired vehicle much more realistic, two different cases are

considered. One is when the vehicle is travelling below the desired gap and

otherwise.

a(t + ∆t) =


amax

[
1−

(
S∗n−1(t)

S(t)

)2
]

for S∗n−1(t) ≥ S(t)

a f ree

[
1−

(
S∗n−1(t)

S(t)

) 2∗amax
|a f ree(t)|

}

]
Otherwise

(9)

This Enchanced IDM is present in SUMO and other modifications of the IDM

exist. For any CAV on the road in real-life scenarios, it has to communicate

with the surrounding vehicles for making a lane change else it has to follow

typical rules that are needed by any vehicle on the road. The former part

is the crucial model for lane changing and the latter is the behaviour of car

following models.

To cover both these aspects in the presence of Human driven vehicles (HDV),

one needs to know the uncertainty associated with the HDVs. [18] models

this behaviour using driver behaviour patterns and uses a longitudinal con-

CHAPTER 2. BACKGROUND AND RELATED WORK 18

troller framework for changing between an Reinforcement Learning based

lane-change model if any lane change occurs involving a HDV, and an ex-

tended intelligent driver model (EIDM), an enhancement of the just intro-

duced IDM based on car-following control model if it does not.

2.2.3 XGBoost model for Lane change

The authors of [19] proposes a deep auto encoder network with XGBoost al-

gorithm to address the problem of lane changing. The issue is divided into

identification and decision making. For the identification of the scenarios for

the lane change, they have used multiple sensors onboard the vehicles to cap-

ture non linear correlations between them. Autoencoder is used to build a

model for the time series vehicle data to reconstruct the signals and analyzing

the trends in their errors which enable in identifying the behavior of vehicles.

To improve the reliability of the results and get a robust model, an adaptive

threshold is placed on the errors.

Since there are multiple parameters as well as non linear problems involved

in the lane changing decision scenarios, XGBoost with Bayesian optimiza-

tion is applied to find the optimal parameters. The also propose an online

training method to update the parameters with the data batches that are col-

lected by their lane change identification algorithm. Based on the data col-

lected from DAE based lane change identification algorithm, XGBoost based

algorithm takes the lane changing decisions. The drawbacks of the proposed

model is that it is only applicable in straight lanes or curved lanes in express

ways.

CHAPTER 2. BACKGROUND AND RELATED WORK 19

2.3 With RL

During the evaluation, reinforcement learning strategies often outperforms

the non-reinforcement learning methods discussed in the above section. There-

fore, the below content discusses the usage of Reinforcement learning strate-

gies and other methods used in the development of lane changing strategies

in autonomous vehicles.

[2] used MOBIL as the baseline and compared it against the performance of

Q-Learning algorithm based lane changing strategy. For simulation purposes,

Figure 2.6: Vehicle lane change in Q learning strategy[2]

a three lane highway is used with 2 off-ramps and the reinforcement learning

strategy is used to select the state variables which are both mean and standard

deviation of the acceleration of the vehicle (Vehicle 1 in fig 2.6) and as well as

adjacent vehicles (Vehicles 2-7 in fig 2.6) and remaining downstream ones. No

other vehicles other than CAV are considered during the evaluation and the

acceleration benefit of the vehicle 1 is considered as the part of the state space

when it takes the left (equation 10) or right (equation 11) or no lane change.

The reward function is the acceleration gain of CAV itself.

ã1L = a1L − a1 (10)

CHAPTER 2. BACKGROUND AND RELATED WORK 20

ã1R = a1R − a1 (11)

The results demonstrated via simulation that the lane-changing strategy de-

veloped using MOBIL optimization was unable to achieve the goal for CAVs

to go faster than human-driven vehicles, while the goal was reached via Q

learning.

For making the lane change smoother and much more realistic, [20] created

a continuous action space but Q Learning cannot handle it. Another reason

behind using this Q Learning based method is to utilise higher number of

features present in the environment of the CAV.

Hence, new Quadratic Q function is invented which uses neural networks for

working with continuous action space and it as follows,

Q(s, a) = A(s) ∗ (B(s)− a)2 + C(s) (12)

where A, B and C are three neural networks made up of different number of

layers taking the information about states as input. Optimal action to take is

obtained using B which is the complex neural network of all three and upon

combining the outputs of these, Q values of the state are obtained.

For evaluating this, a 1000m three lane highway with width of each lane as

3.75m is used for simulation driving environment.In order to teach a smooth

and effective lane change behavior, the reward function is defined using yaw

rate, yaw acceleration, and lane changing time.

[21] article proposes a Digital Twin (DT) empowered mobile edge computing

(MEC) architecture. It states that by using MEC, the sensing and comput-

ing capabilities of the CAVs can be strengthened to guarantee realtime safety.

The virtualization and offline learning capabilities of the DT can be leveraged

CHAPTER 2. BACKGROUND AND RELATED WORK 21

to enable the CAVs to learn from the experience of the physical MEC network

and make lane-changing decisions via a ‘foresight intelligent’ approach. Deep

reinforcement learning is adopted to train the lane-changing strategy and re-

sults validate the effectiveness of our proposed architecture.

AI is combined with Digital twin and intelligent simulations were carried out

for predicting unexpected traffic scenarios and enabling long term decisions

by simulating the mobile edge computing network. The aggregated Line of

Sight and Non Line of Sight lane environment data is constructed as the train-

ing dataset. The NLOS data is only used for estimating the impact on the

traffic flow for a lane change decision taken. Deep Q learning is used for ob-

taining the optimal policy.

The authors of [4] proposed a DRL strategy for making lane changing deci-

sions for the CAV. It also uses Deep Set and Q-learning for handling variable

input size for the model and uses information from the vehicles surrounding

the CAV and all the vehicles in the connectivity range. This is more advan-

tageous in the sense that taking only a limited number of features for mod-

elling purposes may cause the CAV to use the information from only a certain

number of vehicles around it where as with variable input, it can sense the

situation of more vehicles thus making decisions of the CAV more efficient.

Also, the local information as well as the downstream vehicle’s information

is fused together for the very same purpose and it also aids the CAV for long

term planning.

DRL method is used for calculating an approximation of the Q function which

helps to choose an optimal policy by having fully connected neural network

(Figure 2.7) for encoding input from each downstream vehicle in the con-

nectivity range, vehicles in the lanes, and the CAV’s information itself into

CHAPTER 2. BACKGROUND AND RELATED WORK 22

Figure 2.7: Proposed architecture in [4]

a higher dimension space [4].

This is of variable length depending on the number of vehicles present and

all this information is fused together to obtain a fixed size input. Different

weights are used as per the importance given to each piece of information.

This research lets the CAV experience both success and loss and used a expe-

rience replay buffer along with Deep set Q learning for storing these experi-

ences.

Experience Replay is a method which uses a separate large table containing

a tuple of the data discovered for each state and action like the state, action,

reward, next state instead of Q learning. This is because, for SGD optimi-

sation, the training should be independent and when Q learning is used the

successive information of the state, etc., is highly correlative and therefore is

not suitable for converging the Q function. Instead a large table is used where

the information obtained from each experience is stored in a buffer or a ta-

ble and the training data is sampled from it by selecting random data for the

prior two steps or in any such similar way. As there is low variance in be-

tween two successive rows, this has little effect on the credibility of the data.

CHAPTER 2. BACKGROUND AND RELATED WORK 23

Then a subset of these experiences are selected for learning and used to build

a q-network.

The work proposed in [22] does fusion of information using a novel DRL

based approach namely Graphic Convolution Q Network which combines

Graphic Convolution Neural Network (GCN) and DQN. It considers the CAV

network where each node represents a vehicle in a graph and the edges de-

note the connection i.e.,information dissemination path. CAV is developed in

such a way that it enables decision making in short term as well as long term

by gaining information from its sensors as well as the vehicles present in long

range.

Each Q network is created for the information of a single agent and to train

all the vehicles present in the graph, so many networks needs to be trained

and the number of parameters for each networks increases and hence, it is not

scalable.Hence, a shared centralised Q network that accommodates parameter

sharing is used. Through that, multiple agents are trained and each one makes

a decision at each time step and the target is to make all the agents achieve the

same goal. Decision processor is Deep Q learning agent and the information

dissemination, communication are modelled with GNN.

The state space involves 3 blocks of information - nodes features i.e., for any

vehicles/node in the graph, speed, location, lane position, intention (Leaving

the first and second ramps, continue straight ahead on the highway) are used.

Next is adjacency matrix describing the relationship between vehicles and a

mask which is used for keeping in check the index of Connected Autonomous

Vehicles.

Two types of rewards like Speed reward and Intention reward is given for

making sure the chosen actions increases system efficiency and all the CAVs

CHAPTER 2. BACKGROUND AND RELATED WORK 24

merge out from the prescribed ramp. Penalties for collision and incorrect

lane changing are also provided. Rule based and LSTM models are used as

baseline models.Simulation parameters are 500m long, 3-lane freeway with 2

ramps at 200m and 400m locations. The speed limit for the road segment is set

as 50km/h for all the CAVs and 36 km/h for HDVs. The model was trained

using experience replay and first 150 epochs are ’warm-up’ phase and also the

model is tested under mixed traffic densities.

[18] treats vehicles in the lane as a platoon and a deep reinforcement learning-

based proactive longitudinal control strategy for the CAV to assist the HDV

lane change is proposed to reduce the impact of the lane change decisions on

the smooth operation of the mixed platoon.

CAV longitudinal control strategy consists of two components: a behavior

predictor and a longitudinal controller. A Long Short Term Memory (LSTM)

network is utilized to construct behavior predictor. A model is used to predict

the future longitudinal state (e.g., longitudinal spacing, speed difference, and

acceleration) of the target vehicle, as well as its intention to change lanes. Us-

ing another proposed method for predicting lane-change trajectory, it predicts

the lane-change trajectory of the target vehicle if the lane-change intention is

indicated.

Two switching models make up the longitudinal controller: a car-following

control model and a lane-change assistance model. A longitudinal controller

will apply the car-following control model based on the extended intelligent

driver model (EIDM), if no lane change is indicated by the behavior predic-

tor, to achieve a smooth car-following behavior in a mixed platoon. As soon

as the behavior predictor determines a potential lane change, the longitudi-

nal controller switches to the lane-change assistance model, which uses the

CHAPTER 2. BACKGROUND AND RELATED WORK 25

Table 2.1: Existing Research in Lane changing strategy of CAV and the neces-
sary details

Application areas for listed references
Paper Application area and

Objective
Approach
used

Evaluation
Scenario

Simula-
tor
used

State Space

[4] Lane
Change,Information
fusion,collision free

DRL and
DeepSets

500m,4-lane
loop,mixed
traf-
fic(CAV,HDV)

SUMO Relative dis-
tance, Relative
speed, Relative
lane

[23] Lane Change,Safety,
Efficiency, Passenger
comfort

Multi-
agent
RL

520m gym-
based high-
way,mixed
traf-
fic(CAV,HDV)

TORCS Relative
distance(longitu-
dinal, lat-
eral), Relative
speed(longitu-
dinal, lat-
eral),Number
of detected
vehicles

[2] Lane Change MOBIL,RL,
Q learning

9.3km
stretch,lane
drops,off-
way ramps

AIMSUN mean,std dev
of acceleration
in the all the
lanes,current
accelera-
tion,benefit
due to
left/right
lane change

[21] Lane Change,safety,
efficiency

DT based
MEC
network,
DQN

3 lane, 5km
length

MEC
net-
work
simu-
lator
cou-
pled
with
road
traffic
simula-
tor

CAV speed,
avg lane
speed,current
lane

CHAPTER 2. BACKGROUND AND RELATED WORK 26

[18] HDV Lane Change,
car following, mental
safety,behaviour pre-
dictor for HDV

DDQN,
LSTM

2 lane free-
way, mixed
traffic

NA position and
speed of the
surrounding
vehicles

[22] safe and co-operative
lane change

GCN
combined
with DQN
to GCQ
network

3 lane free-
way, 2 off-
ramps,mixed
traffic

SUMO relative speed,
longitudi-
nal loca-
tion,lane posi-
tion,intention,
adjacency
matrix

[20] Lane change,safety,
smoothness and
efficiency

DQL,Q
function
approxi-
mator

1000m, 3 lane NA CAV speed,
longitudi-
nal accelera-
tion,position,yaw
angle,target
lane,lane
width and
road curvature

[5] Lane change DDQN 3 lane circu-
lar loop

NA Lateral posi-
tion,longitudinal
veloc-
ity,relative
and longitudi-
nal position of
surrounding
vehicles and
also its relative
longitudinal
velocity.

[24] Lane change,safety,
efficiency,comfort

DQN 3 lane high-
way

SUMO longitudinal
speed, lat-
eral posi-
tion,acceleration,
relative dis-
tance with the
agent

[19] Lane change XGBoost - - -

CHAPTER 2. BACKGROUND AND RELATED WORK 27

Markov Decision Process to model CAV-HDV interaction, and a double deep

Q-network model to generate longitudinal control commands for the CAV to

assist HDV lane changes. A car-following control model will be used again

after the HDV lane change is performed, as the behavior predictor indicates

"no lane change" once again. A behavior predictor is also incorporated into

the double deep Q-network model training process to enhance convergence

efficiency.

It takes into account the case of mixed traffic. A k-nearest neighbors (KNN)

model creates the target vehicle’s lane-change trajectory. Using the MOBIL

paradigm, lane-change decision-making is carried out. The drawback is that

the KNN utilized might not accurately reflect how legible and predictable

CAV motions affect HDV lane-change behaviors in actual driving situations.

[5] offers a model-based exploration technique for lane changes that are at

the driver’s option and based on unexpected intrinsic reward. The emphasis

was on creating a model of the environment for the nearby vehicles and de-

termining how to relate the intrinsic reward based on surprise to the behavior

predicted by the model.

According to figure 2.8, the host car is traveling with knowledge of its six

closest neighbors—three vehicles in front and three vehicles behind. The host

car is represented by a blue box, and the six nearby vehicles are represented

by red boxes with their statuses being observed. Environment vehicles in the

remaining boxes are not monitored in terms of their states.

Utilizing proximal policy optimization(PPO)-based DRL, [24] suggest an lane

change technique that exhibits significant benefits in retaining performance

stability while increasing learning effectiveness.The main concerns of them is

to develop safety, efficiency and comfort of the CAV. The PPO network con-

CHAPTER 2. BACKGROUND AND RELATED WORK 28

sists of Input layer whose output is fed to hidden layer and then an output

layer. The state space is calculated using surrounding 5 vehicles, the target

vehicle, the leading and surrounding vehicles in the current and target lane.

4 from all the vehicles except ego vehicle are taken for state vector formation

and for the ego vehicle 5 data features are taken.

The four data characteristics are acceleration, longitudinal speed, lateral po-

sition, and relative distance to the target vehicle. The longitudinal position,

speed, acceleration, lateral position, and speed of the ego vehicle are all taken

into account. Penalty is given for collisions and also for not providing com-

fort to the passenger. As for the incentives, it is given for avoiding collisions,

increasing comfort of the passenger and for maintaining efficiency.

[24] proposes a complex reward function for maintaining efficiency which is

made of 3 factors. These make sure the vehicle is always trying to meet its

maximum allowable speed while being in the accurate position and does the

required lane change in minimum time.

This proposed method is compared with baseline models such as rule based

agent and PPO based method was able to outperform it.

Figure 2.8: Three lane road simulator in [5]

The environment model is built by accounting for both driver behavior and

vehicle kinematics, and it is simultaneously taught through reinforcement

learning. Lane change, accelerating, strong braking, maintaining speed, and

heavy braking are only a few of the 12 distinct acts that make up state space.

The longitudinal velocities of nearby autos as well as their relative locations

CHAPTER 2. BACKGROUND AND RELATED WORK 29

and velocities are all included in the action space.

The host vehicle’s state space includes the host vehicle’s lateral position, its

longitudinal velocity, its relative longitudinal position with respect to the ith

surrounding vehicle, and its relative lateral position with respect to the ith

surrounding vehicle. As a result, our continuous state space has a total of

2+3 6(cars) = 20 dimensions. Reward function is expressed as a function of

the separation between the host vehicle and its lead vehicle, the host vehicle’s

lateral position, and the host vehicle’s longitudinal velocity.

DDQN, which is used to learn and utilise the environment model, directs the

agent’s investigation of "unfamiliar" states. The agent would form a perspec-

tive on the environment, and using surprise-based intrinsic reward, it would

be intrinsically motivated to seek out outcomes that contradict or deviate from

that perspective.

[23] suggests the use of the MA2C, a multi-agent advantage actor-critic net-

work, to take into account both CAV and HDV behavior when making multi-

AV lane-changing decisions. By utilizing single agent reinforcement learning

in the presence of numerous automated vehicles in a mixed traffic scenario, it

solves the issues that can arise. As part of the HDV modeling process, it takes

the driver’s comfort into account when changing lanes.

In order to improve the comfort, effectiveness, and safety of autonomous driv-

ing, it also suggests a multi-objective reward function. However, it does not

design long-term route and only incorporates information for short-range ve-

hicles. The evaluation in the presence of various traffic scenarios is not put

to the test, and it provides no information on how the traffic scenarios are

improved.

CHAPTER 2. BACKGROUND AND RELATED WORK 30

2.4 Summary

The primary methods employed for the current research were covered in this

chapter. The ideas of RL, DRL, and Multi-DRL were introduced.Then, it ex-

plained the different state-of-the-art methods for Deep Q-Learning by using

DQN and its aggregated techniques which enhance the stability and perfor-

mance of the training. Then, utilizing DQN and its aggregated procedures,

which improve the stability and performance of the training, it described

the many cutting-edge methods for Deep Q-Learning. Some of the RL ap-

proaches utilized in state-of-the-art methodologies were discussed in the first

subsection. The evolution of our strategy for using RL approaches to com-

bat the curse of dimensionality was then discussed. Before delving deeply

into the numerous reinforcement learning techniques and other features that

increase the model’s effectiveness, we first presented a few works for non-

reinforcement learning. Upon observing these works, it is observed that most

of the papers used DQN to address the lane change problem along with other

techniques. This thesis relates to [24] in some of its implementation decisions

and modifies it in a way that the state vector is much more advanced as it

incorporates data from more number of vehicles. With the agent having more

information than the inspired work, it is expected that these changes will in

turn reflect in the increased efficiency of the model. The focus of our research

is to look at these changes for comparing with the DQN model from [24]. The

design and execution of these crucial components are respectively explained

in further depth in chapters 3 and 4.

Chapter 3

Experimental Design

The methodology used to create the various parts of the Lane Changing issue

is described in this chapter. The design and presumptions used to construct

the selected algorithms to address the issue of lane change in CAVs are ex-

plained in this section. It explains how the reward function and state space

are formed and how they contribute to the accomplishment of many objec-

tives, including safety, efficiency, etc. It also explains how the suggested DQN

algorithm relates to the creation of a lane-changing strategy in a CAV and

discusses and defends the design choices made when deciding which DQN

methods and RL components to use.

3.1 Lane Change Problem

An agent interacts with the environment, which is the road network compris-

ing the ramp region where the traffic splits, in the lane change problem, which

is characterized as an RL problem in which a lane change happens at discrete

time steps t. The agent particularly notices a state st called epsilon S at the

start of a time step t. It then chooses, executes A, a selected action that corre-

31

CHAPTER 3. EXPERIMENTAL DESIGN 32

sponds to one of the actions, i.e., the direction of the lane change the agent can

make. The agent moves to the next state st+1 epsilon S after performing the

action at and is rewarded with rt. These elements are defined in the following

subsections.

3.2 Grid observation space

For making a informed decision about lane change, the ego vehicle should

have data about the surrounding vehicles such as their speed of approach-

ing, distance from the ego vehicle itself etc., for safety and efficiency pur-

poses.

Upon inspiration from [24] using surrounding 5 vehicle’s data, this thesis in-

corporates information from surrounding 8 vehicles which is almost double.

This is designed as explained in the following lines.

In any scenario, observation of the ego vehicle which is the DQN agent is in

the format of a 3*3 grid in order to calculate its spate space. A observation

matrix with dimensions 3*3 consisting of the vehicle id’s around the ego vehi-

cle within a threshold distance limit of 10m is designed with the help of lane

indexes present in the observation grid on the highway as reference. This

information is obtained using TraCi.

The DQN or RL agent is colored as ’red’ and all the surrounding autonomous

vehicles which will be communicating with agent is yellow in color. The in-

dexes of columns of the matrix aligns with the indexing of the lanes of the

road network. It is visually shown in the figure 3.1

The id of RL agent is updated as -1 which lets us know of its presence. Using

the vehicle Id’s in newly computed observation matrix, information about the

vehicles is gathered into a state matrix with the help of TraCi.

CHAPTER 3. EXPERIMENTAL DESIGN 33

Figure 3.1: Grid Observation space of the ego vehicle

3.3 State space representation

The current state of the target vehicle is depicted as a vector in the state. The

state space is borrowed from [24] and in that the surrounding vehicle’s lon-

gitudinal speed, lateral position,acceleration, relative distance with the agent

are obtained as part of the state space. For the DQN agent, 5 data features

such as lateral and longitudinal position, speed and longitudinal speed, ac-

celeration.

The state consists of features from the ego vehicle as well as features from ve-

hicles surrounding the CAV within a predefined radius. Each of these arrays

containing 4 or 5 elements from the vehicles will be squeezed into a main state

vector array.

As the total no.of features for the state space per vehicle is 4, as per the count

of vehicles surrounding the agent, state space of it will be the embedding of

the features from those vehicles as well. So, at anytime the state is represented

using 5 + 4 * (no.of vehicles surrounding the ego vehicle). The figure below

shows the formation of the state vector.

CHAPTER 3. EXPERIMENTAL DESIGN 34

Figure 3.2: Formation of state matrix from figure 3.1

If there are no vehicles around the agent, then those places in the state vector

will be zeros.

3.4 Action space

The target vehicle, or agent, chooses an action at epsilon A after being in a state

St at the beginning of a time step t. Here is the A is the action space. At any

time step t in the environment, the agent has only three actions to make and

that is choosing which lane to go in i.e., whether it should be in the current

lane, go to left lane or go to right lane. Each of these is represented using 0,1,2

respectively. Thus, action space will be represented as A={0, 1, 2}.

3.5 Reward function

Deep reinforcement learning techniques may maximize the intended reward,

but they do not always ensure safety throughout the training or implemen-

tation stages [25].The design of the reward function targets three features of

vehicle driving i.e., comfort, safety and efficiency. This is inspired from [24]

and the con of drastic braking is addressed and lead to creation of change

CHAPTER 3. EXPERIMENTAL DESIGN 35

rewards Rcom f ort.

Changes in acceleration is monitored and for any high levels of discomfort

caused to the passenger, a high penalty is given and otherwise, micro re-

ward is given. This improves comfort of the passengers because the penalty

is directly proportional to the impact of the jerk caused to the person trav-

elling in that vehicle. The comfort reward is mathematically represented as

follows.

Rcom f ort(t) = −α.ax(t)2 − β.ay(t)2 (1)

Collisions should be as much minimised as possible and therefore, a high

penalty is given for the agent to make it avoid colliding with other vehicles

ensuring the safety of the surrounding vehicles and a small reward is given to

the agent when it travels without collisions. The bigger penalty discourages

the agent to collide at all costs.

Rcollision(t) =

 +1 for collision = False

−100 Otherwise
(2)

The efficiency is formulated in the sense that the vehicle can go as fast as

possible without causing discomfort to the passenger and avoiding collisions.

This takes into consideration the 3 factors. It validates the desired position

of the vehicle in the lane so as to avoid any sideswipe collisions and it also

checks if the speed of the ego vehicle is in par with its max allowable speed,

thus encouraging it to go faster as possible. In order to reap more rewards, the

vehicle should not change lanes too many times. The third factor takes care

CHAPTER 3. EXPERIMENTAL DESIGN 36

of that. Overall, the formula for calculating this reward is as follows.

Rspeed(t) = −|vy − vmax| (3)

Rlane(t) = −|Px − P∗x| (4)

Rchange(t) =

 +1 for staying in lane

−1 Otherwise
(5)

All the above calculated rewards are added together with weights of impor-

tance associated for each individual factor. The final incentive for efficiency is

given by the following equation.

Re f f = wl.Rlane(t) + ws.Rspeed(t) + wc.Rchange(t) (6)

The reward function consists of both rewards as well as penalties. To know

the final and combined rewards earned by the agent, total rewards is again

computed is used while training the model.

Rtotal = Rcom f + Re f f + Rcollision (7)

3.6 Design of the model

3.6.1 DQN network

All of the tests carried out throughout this research utilized the neural net-

work, with the exception of the application of the methods described in the

earlier sections.

The DQN network uses this architecture and 3.3 describes the Deep Neural

CHAPTER 3. EXPERIMENTAL DESIGN 37

Network. There is an Input layer followed by 4 hidden layers. Artificial input

neurons make up the input layer of a neural network, which enters data into

the system for processing by artificial neurons in later layers. The procedure

for an artificial neural network starts with the input layer.

The first dense layer has input size as 64 and relu activation function. The

output of the Input layer is passed to this. Any layer that is closely coupled to

the one above it in a neural network indicates that each neuron in that layer is

linked to all neuron in the layer above it. In artificial neural network networks,

this layer is the one that is most frequently utilized. This dense layer is in turn

connected to another series 3 of dense layers with relu activation functions.

So, overall, there are 4 dense layers till now and the third dense layer takes an

input of size 128. The input to all these layers is obtained from their preceding

dense layers. The output of fourth dense layer is given to a lambda which also

takes as input the number of actions in the action space. Now, a fifth dense

layer is present which takes input from the third dense layer and the output

of this is fed to a lambda layer again.

When building Sequential and Functional API models, the Lambda layer al-

lows for the usage of any expression as a Layer. Lambda layers work best for

straightforward tasks or brief experiments.

The following diagram 3.3 explains the functioning of the network more vi-

sually. These layers form a learner car model.

A learner model and a simulation environment are the system’s two main

parts. To be more precise, the learner model instructs the target vehicle (agent)

to pick up knowledge as it engages with the surrounding traffic. The high-

fidelity microscopic traffic simulation package SUMO is used to create the

simulation environment, which comprises the road network, traffic, and var-

CHAPTER 3. EXPERIMENTAL DESIGN 38

Figure 3.3: Architecture of DQN Network and its interaction with simulation
environment

ious task scenarios.

TraCI is used to get the target car’s current condition as well as the states

of the neighboring vehicles from the SUMO environment. These states are

then transferred through the policy to enable safe, slick, and efficient driving

techniques on highways. The target vehicle then decides on the course of

action in accordance with the specified policy, which is then communicated

back to SUMO and hence it can model the movement of the vehicle in the

next time step and determine the appropriate reward.

As explained in chapter 2, experience replay is used to store the experiences

of the agent while interacting with the environment. These experiences can be

best actions and their related choices that made it best. Here, the replay buffer

stores the experiences using a tuple consisting of rewards, action, frame of the

environment in gray scale and whether the state was terminal or not. These

CHAPTER 3. EXPERIMENTAL DESIGN 39

experiences are used in the learn phase of the network after the buffer is full

after making the agent interact with the environment for a while, usually till

the buffer is full as per our thesis.

The algorithm combining the concepts of DQN network as well as the just

described replay memory is as follows.

Algorithm 1 DQN algorithm with replay memory

Initiate Main Network
Initiate Target Network
Initiate Replay Memory
Initiate the DQN Agent to communicate with the environment

while convergence did not happen do
/*Sampling Phase
ϵ← setting new epsilon with ϵ-decay
Select action a from state space s using policy ϵ-greedy(Q)
Agent performs action a, takes reward r and goes to upcoming state s

′

Send move (s, a, r, s
′
) to replay memory

if Replay memory having experiences to sample from then
/* Knowledge generation Phase
Generate a mini batch of some transitions from replay memory

for All transitions (st,at,rt,s
′
t,terminalt) in minibatch do

if terminalt then
yt = rt

else
yt = rt +γ.maxa′ϵA

end
end
Compute loss function L = 1/N (Q(si,ai) - yi)2

Modify Q utilising Stochaistic gradient descent algorithm by minimis-
ing the loss L

For all C steps, copy weights from Q to Q
′

end
end

CHAPTER 3. EXPERIMENTAL DESIGN 40

3.7 Summary

The choices made for the key elements of the Lane Change problem were

described in this section. It discussed the environment’s primary elements,

including status and action spaces and the reward function. Additionally, it

gave details on how the utilization of rewards functioned. It also demon-

strates the neural network architecture and training algorithm design. How

we used these components will be discussed in the following chapter.

Chapter 4

Implementation

The DQN system’s implementation as well as the simulation environment for

lane changes are both covered in this chapter. We present the fundamental

structure that was used to put the DQN agents into practice. We go over how

DQN agents are put into practice and how they interact with the simulated

environment as well as how all these combined achieve the goal of solving

the lane change problem.

4.1 Simulator and Design of Road Network

To model the traffic flow very close to real life scenarios simulation tools are

used. These help build a simulation environment consisting of the road net-

work, traffic and modelling of different scenarios. CARLA and SUMO are the

popular simulators available in the market.

CARLA [26] is an open source simulator with a high level of realism for re-

search on autonomous vehicles. It gives the creator access to a variety of sen-

sor measurements that an automobile might obtain, including LiDar, cameras,

sensors, and more. Open digital assets (urban layouts, structures, and vehi-

41

CHAPTER 4. IMPLEMENTATION 42

cles) were produced by CARLA for this reason and are available for usage

at no cost. Without a doubt, CARLA is among the top products on the mar-

ket, and major corporations like Toyota use it. It offers more widely utilized

market sensors, and its authenticity would make a taught algorithm’s output

more obvious. Additionally, there is a sizable community of CARLA users

as well as additional training. The primary problem with CARLA is that you

can’t build a custom road, thus you can’t test out different settings. This is due

to the necessity of owning a costly commercial edition of a program named

RoadRunner.This diverted us to SUMO.

An open source traffic modelling and simulation tool called "Simulation of

Urban Mobility" (SUMO) [27] is made to manage massive networks. With

its extensive toolkit for scenario building, it enables intermodal simulation

that takes into account pedestrians. In contrast to CARLA, SUMO contains

simple graphics that ensure quick algorithm execution for the user. Sumo

was created primarily to simulate traffic situations. As a result, the user has

access to a variety of urban components to alter the scene. SUMO collaborates

with another program called NetEdit. With the use of a highway, crosswalks,

stops, sidewalks, buildings, and other features, the user is able to customize

the road as they see fit. It creates an XML file that describes the scenario,

which is required by SUMO in order to execute the simulation, together with

a configuration file that specifies the basic settings for the vehicles.

In addition, SUMO functions as a TCP-based server that accepts connections

from numerous clients, and its data may be accessed using the TraCi API.

As NetEdit is a drag and drop interface, a three lane highway is constructed

using junctions and edges to form roadways. The point where two or more

edges meet would be ramp areas or round-abouts.

CHAPTER 4. IMPLEMENTATION 43

4.2 DQN Agent

The development of a lane change strategy needed several components to put

together. The figure 4.1 refers to all the classes that helped solve the problem

of lane change. TraCi and Gym is an already existing libraries that help build

the needed environment that contains road network. These libraries make

it easy to fetch data from the simulation as well as to help the training of the

DQN agent model. Deque is a part of python collections and represents a type

of queue structure in which data is sto10d. The environment, DQN agent and

replay memory are created and they have helper functions that implement

different parts of the problem.

Figure 4.1: Class Diagram of the DQN based Lane Change Problem

4.2.1 Sumo Environment

The environment is of major importance and starting point of the implemen-

tation as it is the python program which helps the DQN agent to interact with

the simulation in SUMO. Also, it has functions that calculate the rewards and

implements the state, action spaces without which the agent cannot function

properly.

CHAPTER 4. IMPLEMENTATION 44

This environment is created using gym and it acts as a wrapper for the class.

In Gym, an environment consists of 4 functions, i.e., initialisation, render,

close and step. The gym also comes with other class called ’env’, which makes

the creation of the environment and the simulation easy. These along with

other functions that are provided in this class are as follows.

• start(self, gui = True, no_Vehicle, veh_type): connects the python program

with SUMO road configuration files and TraCi. The simulation and the

vehicles are initialised and put into the highway using TraCi commands

present in this. It also changes the settings of these vehicles such as lane

change mode, speed mode etc.,

• update_params(self): Another crucial method where the parameters of

the DRL based agent is set. Some of these parameters are speed, posi-

tion, acceleration, lane number etc., Using this, the current state of the

agent is updated at any time step t.

• compute_observation_matrix(self, threshold_distance): In the state-of-the-

art methods, there is a concept called Information Fusion, which com-

bines information from surrounding vehicles within the connectivity

range and not only limit this possibility to the vehicles in contact with

the ego vehicle. This method implements the Grid Observation space as

specified in the Design chapter and gets the Id’s of the vehicles in the

given distance.

• get_comfort(self): deals with the comfort provision to the passenger.

There is an acceleration history deque where the acceleration at time

steps t and t-1 are stored and this method calculates the difference be-

tween these two and return the same. The impact of the jerk caused is

directly proportional to the result of this method.

CHAPTER 4. IMPLEMENTATION 45

• get_collision _value(self): Using TraCi’s function to get the colliding

vehicles list, this method checks if the agent is involved in a collision or

not.

• get_info(self,vehicle name): gets the data features as explained in the De-

sign chapter necessary for the computing the state vector based on their

Vehicle Id.

• get_compute _state(self): creates a state vector as in Design chapter by

getting the vehicle information and the observation matrix from get_info

(self,vehicle name) and get_grid_state(self, threshold_distance)

• compute_reward(self, collision,action): The reward function explained in

Design chapter is implemented. these incentives along with the total re-

ward which is the sum of all the individual rewards as well as penalties

are returned.

• step(self, action): specifies the next actions to be taken by the agent after

an action is selected to be executed by the DQN network.

• reset(self, gui = False, no_vehicle, veh_type): loads the network configura-

tion again or used to restart the vehicles in the road network from their

initial states depending on the presence of the GUI.

• close(self): to close the sumo connection that exists between the python

program and sumo simulator and shut down both.

4.2.2 Replay Memory

Experienced replay or reply memory maintains a buffer of experiences for

making the training process efficient and lets the agent learn from the best

experiences it had so far. The agent interacts with its environment till the

CHAPTER 4. IMPLEMENTATION 46

replay memory buffer gets full and after that learning phase starts. In this

phase, a sample mini batch of the stored experiences is taken and fed to the

agent again for learning purposes. It is visually expressed as in following

figure 4.2.

Figure 4.2: Working of Experience replay

The replay memory class implements this functionality and has various sup-

porting methods. The buffer can hold a vector of length 37 which is the same

as of the state vector and a maximum of 10,000 experiences can be stored. The

user-defined functions are as follows.

• add_experience(self, action, frame, reward, terminal): The input parame-

ters action, frame, reward, terminal are added to the allocated arrays.

Terminal states whether the state is the last episode or not.

• _get_state(self, index): retrieves a particular experience based on the in-

dex from the stored buffer of experiences.

• _get_valid_indices(self): returns the starting indices of each experience

in the all the experiences stored i.e., it gives the valid start indices needed

to be used in order to retrieve them.

CHAPTER 4. IMPLEMENTATION 47

• get_minibatch(self): returns 32 transitions of state vector of the agent,

new state after executing action, the action itself, rewards obtained and

a boolean variable saying the episode is terminal or not individually.

4.2.3 DQN Agent

The design of DQN agent, mainly the neural network model is explained in

the design chapter. It is a car model and supporting functions written in the

DQN Agent class helps train the network and carry out the evaluation. This

class connects with the replay memory class and uses the buffer created in it

to store the experiences of the agent interaction while in the epoch at any time

step t.

When the class is created, the parameters such as

• Discount factor γ

• Learning rate α

• Replay buffer size

• Learning frequency λ

• Target network

• ϵ and ϵ-decay

• Main network

• Update frequency

Along with these, paths for the model file and training logs to be saved,the

loss function, optimiser and the neural network model are created. The meth-

ods are as follows:

• create_logs_directory(self): takes the path of the directory from the class

CHAPTER 4. IMPLEMENTATION 48

global variables and creates a log directory where the event files are

kept.

• action(self, state, primary_nw): balances exploration and exploitation and

provides the necessary actions to take place in both cases using a predict

of the DQN network and random action respectively.

• training_steps_(self, replay_memory): takes the replay memory for every

4 actions executed and updates the Q-values for them. Then, it calculates

and returns the loss in accordance with the rewards received vs q-values

of actions executed.

• modify_network(self): the network parameters from the main network

are updated to the target network.

• train(self, env, steps_epoch, epochs): The crucial part of the class where the

training happens and the epochs are run. Training corresponds to run-

ning the overall flow of the reinforcement learning as explained in the

background work chapter, much more specifically the deep reinforce-

ment learning methodology. During this, interaction with both sumo

environment and replay memory classes is seen. The evaluation metrics

are updated at the end of each epoch and the parameters of the main

network are updated within loops in the epoch.

There are two Deep Q-Networks used for Deep Q-Learning in TensorFlow im-

plemented in this thesis. Both of these have the same network architecture as

explained in chapter 3. A target network and a main network and the former

is updated with weights of the latter for every 4 actions that are executed. The

main network is updated with the weights obtained after performing all ac-

tions that the agent takes in the environment. At the given update frequency

CHAPTER 4. IMPLEMENTATION 49

rate, they are retrieved as experiences from the replay memory and Q-values

are calculated for each of them. Using the best experiences decided based

on the computed Q-values, the target network weights are updated and thus

efficiency of the network is increased.

4.2.4 Huber Loss

The Huber loss, a loss function used in statistics and in robust regression, is

less susceptible to outliers in the data than the squared error loss [28].This

function explains the cost a method of estimating incurs. It is given by the

formula below[29].

Lδ(y, f (x)) =

 1/2(y− f (x))2 for |y− f (x)| <= δ,

δ.(|y− f (x)| − 1/2δ), Otherwise
(1)

This combines mean square value and absolute value functions mathemati-

cally. Graphically represented as in 4.3, according to the value of δ, the graph

shifts between mean square loss and huber loss.

Outliers occur when the Q-value approximation is wrong during the learning

phase. As, huber loss is less sensitive to them, it helps converge the model to

valid mean solution.

It is also particularly useful when the rewards obtained are corrupted occa-

sionally due to its robustness towards outliers.

4.2.5 Optimizer

This subsection’s goal is to analyze the tests conducted in order to choose the

most effective optimizer among the two most often utilized optimizers—Stochaistic

Gradient Descent and ADAM—used in the earlier studies. The assessment

CHAPTER 4. IMPLEMENTATION 50

Figure 4.3: Huber Loss function

Table 4.1: Parameters used for choosing between the optimizers
Parameters Values
Episodes 2000
Training epochs 1000
learning rate α 0.0001
Exploration 0.9 → 0.5
Replay memory start size 33
Discount factor 0.99
Update frequency 4
Replay Memory size 10000
Size of Minibatch 32

was carried out using the hyper-parameters presented in Table 4.1. Both the

optimizers are run using their default parameters.

In order to choose which optimizer to use, we only compare the loss of the

model so that it is easy to know which one converges the model fast and

helps the reach the goal. Upon running the model with its default parameters

as explained in table 4.1, Adam reduces the overall loss of the model within

the given 1000 runs and adapted to the learning rate, but SGD demands the

inputs to be normalised and use regularization in order to reduce the explod-

ing gradient and did not give any valid results. The loss chart when Adam

optimiser used is as 4.4

CHAPTER 4. IMPLEMENTATION 51

Figure 4.4: Loss rate of Adam Optimizer

As adam performs better than SGD, hence, we choose adam optimizer to carry

out the further experimentation.

4.3 Summary

In this chapter a justification is presented for the simulator choice and ex-

plains the road network that is designed for the simulation evaluation. Also

presented the classes created in python to implement the design of the prob-

lem at hand. It includes methods to compute the rewards, states and actions

as well as the whole interaction between different parts of the lane change

problem. It is created as per the algorithm specified in Chapter 3. Finally, the

implementation decisions of loss function and optimiser are illustrated.

Chapter 5

Evaluation

This section presents an assessment of DQN as a solution for the lane-changing

issue. The evaluation’s goals and the system’s hyper parameters that are used

to conduct the experiments are described. It also discusses the measures used

to gauge the system’s efficacy. Experiments used for evaluation, as well as

their presentation and analysis of results, are also detailed.

5.1 Objectives

In this chapter, DQN is evaluated to see how well it addresses the problem of

lane change in autonomous cars in context of the local environment. The pri-

mary goal of DQN’s design was to create an agent that could manage the wide

dimensional space of real-world driving situations.Chapters 3 and 4 provide

descriptions of the development and implementation of DQN, which fulfills

the requirements for such a system. However, how well DQN performs in

various evaluation settings will determine whether it is effective as a lane-

changing approach in CAVs. If DQN complies with the criteria listed below, it

can be claimed that it has successfully performed lane change in autonomous

52

CHAPTER 5. EVALUATION 53

vehicles.They are as follows:

• DQN agent makes use of the available state information and can take

the passenger through out the road network with minimum scope for a

collision.

• DQN agent can manage meeting the maximum speed allowable for it

while also following other necessary criterion.

• DQN agent’s driving behaviour actually provides comfort to the passen-

gers without causing any huge jerks to them i.e., with no sudden high

changes in acceleration. In other words, the smoothness of the driving

is almost or better than the real-life driving.

5.2 Metrics

Metrics are values that are attained during the learning and training phases

and are used to track past development. This tracking also helps to tune the

performance of the DQN agent by enabling us to train the agent effectively

and check for any overfitting or underfitting. We must employ metrics dur-

ing this tuning process in order to choose the hyper parameters necessary to

enhance the model’s functionality.

The main metrics that needs to be monitored and that helps to achieve the

objectives of the thesis as well as the evaluation are as follows:

• Average speed vs Maximum:This encourages the agent to go as fast as

possible but within the maximum allowable speed. It is needed because

it helps avoid rear-end collisions occurring due to over-cautious slow

speeds.

• Collision rate: The crucial metric that helps to see the number of colli-

CHAPTER 5. EVALUATION 54

sions occurred overall. This promotes efficiency of the model.

• Efficiency rewards: This helps us see the way on which agent leaning on

i.e., if it learning then the agent’s rewards will be increasing with respect

to time. This metric is for monitoring efficiency rewards alone.

• Comfort rewards: This metric monitors comfort factor of the reward

function and helps us notice increasing or constant comfort provided to

the passenger.

• Safety rewards: Monitoring of safety i.e., avoidance of collision is checked

within this chart. This must have increasing trend overall ideally.

• Total loss of the model: This tells us how well the model is trained and

is able to converge.

• Total rewards: This metric tells the behaviour of the agent during the

training and while learning, increasing rewards informs the agent is

learning something instead of heavy fluctuations.

5.3 Evaluation Scenarios

In this section, we’ll go over the situations that we utilized to gauge DQN’s

suitability as a lane-changing system. We begin by outlining the methods and

scenarios that will be tested and used against DQN.

5.3.1 Techniques and Scenarios

• DQN with different learning rate: Varying learning rate tells how fast

the agent is able to get trained and perform accurately.

• DQN with higher speeds for target vehicle than others: The same cri-

teria for safety is validated here as the maximum allowable speed for

CHAPTER 5. EVALUATION 55

the DQN agent is increased. It should also keep the comfort criteria in

check with not much compromise on efficiency.

• DQN with modified weights for the reward function: This is to make

the reward function incline towards one of the three factors that are part

of it.

All these discussed above are tested on the network layout and parameters

shown in section 5.4.

5.4 Setup

This section describes the environment in which the tests were carried out as

well as the different setups and settings used. The traffic demand creation, the

variables for the simulator, and the DQN agent are provided after the network

design produced in SUMO.

5.4.1 Network Layout

A elevated nano-scale traffic simulation package called SUMO is utilized to

create the simulation environment, which comprises the road layout, conges-

tion, and various task contexts, and has been used to communicate with the

training agent [30].The road network used for training and evaluation is 5.1.

Vehicles in the network traverse from left to right and the leftmost ramp area

is where vehicles from two different road networks join and two way lane acts

as an exit road for vehicles in the rightmost ramp area.

off-ramps are an important part of the network where lane changes as well

as collisions occur more. Hence, the road network is designed to have 2 off-

ramps so that the agent can get trained more efficiently.

The highway is of length 1400m and each lane width is 3.2m. The main route

CHAPTER 5. EVALUATION 56

has 3 lanes where as the ramps have only 2.

Figure 5.1: Designed Road Network

5.4.2 Demand data

During the start of the simulation, the target vehicle which is a DQN agent

needs to be placed in the traffic using simulation steps. So, for this purpose,

35 vehicles are added to the road network along with the DQN agent. It is

assumed that they all travel at constant speed of 70. These vehicles follows

IDM car following model and the lane change model is SL2015. The accelera-

tion is the same for both i.e., 0.8. However, the maximum speeds vary. These

along with other parameters are set and the figure 5.2 illustrates the various

points including the entry as well as end points of the network during the

experiments.

Each path is described by an origin point, a target point, one or more junc-

tions to go through, and so on (blue, red points). A shorter, more complicated

route might be designated as 0-2-3-5, whereas a longer, easier route might be

designated as 1-2-3-4. As a result, itineraries of various durations are possible.

Two routes that are created as are follows:

• 1-2-3-4

CHAPTER 5. EVALUATION 57

Figure 5.2: Designed Road Network

Table 5.1: Parameters used for Vehicles in simulation
Parameters Values - ’Vehicle’ Values - ’rl-agent’
Acceleration 0.8 0.8
Maximum Speed 70 50
Lane change model SL2015 SL2015
Minimum Gap 0.0 2.0

• 0-2-3-5

Two vehicle types are created using the parameters explained in the table 5.1

namely ’vehicle’ and ’rl-agent’. These two specify the behaviour of the sur-

rounding vehicles and the DQN agent itself respectively. These attributes help

relate the vehicles created to real-life ones.

5.5 Results and Analysis

This section analyzes DQN’s efficiency in relation to the evaluation goals

listed in section 5.1. DQN’s effectiveness is assessed by contrasting it with

inspired work produced in various situations. The outcomes are described,

examined, and debated in relation to the assessment goals.

The parameters used for evaluation are as per Table 5.1. The weights used

for the reward functions and the default values for accelerations etc., and the

CHAPTER 5. EVALUATION 58

Table 5.2: Parameters used for choosing between the optimizers
Parameters Values
Episodes 2000
Training epochs 1000
learning rate α 0.0001
Exploration 0.9 → 0.5
Replay memory start size 33
Discount factor 0.99
Update frequency 4
Replay Memory size 10000
Size of Mini batch 32

values in the table are decided based on [24].

Along with the parameters of the DQN network, there are others which the

vehicles uses like acceleration, maximum allowable speeds

The lane change strategy is tested within various scenarios as listed in section

5.3.1. The analysis and results is as follows.

• Learning rates are varied between α = 0.00001 and 0.0001 for evaluation

purposes and it is run for 1000 epochs. The graphs below show that

the loss of the model varies alot when different learning rate is used. It

means the model is not being able to learn properly in an optimal way

within a global scope.

Usually, under these circumstances, the learning rate should be reduced

in order to allow the model to learn a more globally optimal way. Al-

though this makes the training times slower, this massively increases the

performance of the model.

Figures below show the loss of the model with learning rate 0.00001 and

0.0001.

The above results show not many differences between the modified learn-

CHAPTER 5. EVALUATION 59

Figure 5.3: Loss rate of model with α = 0.00001

Figure 5.4: Loss rate of model with α = 0.0001

CHAPTER 5. EVALUATION 60

ing rates. But in fig 5.4 has more fluctuations starting from 200 epochs to

580. Although the loss value dipped to less than 612, it increased again.

So, at the end, the loss value is not decreasing and is fluctuating a little.

But fig 5.3 shows no fluctuations and is decreasing overall. Although

its not a significant difference, learning rate α = 0.00001 is chosen to be

used.

• The maximum allowable speed for the agent is 50 and within this exper-

iment the target speeds of both the vehicle and rl-agent are increased to

120 and 100 respectively.

Agent reaching this speed is tested and all the other parameters are as

in Table 5.2. The results of metrics are as below.

Figure 5.5: Avg vs maximum speed when speed is increased in model

When fig 5.5, 5.6 are compared to collision rate and avg speed vs max speed

of the model, it can be seen that several fluctuations are occurring in the first

600 epoch area. Thus this model needs to be trained with different parameters

which is out of the scope of this thesis as this deals with a specific aspect of

lane changing in motorways and hence, usage of the speeds of 70 and 50 for

both rl agent and other vehicles will be continued.

CHAPTER 5. EVALUATION 61

Figure 5.6: Collision rate when speed is increased in model

After careful experimentation and choices taken with the parameters, the fig-

ures from both results are as below.

Figure 5.7: Avg speed vs maximum speed of base model

The blue line in the figures of the base model is the required scenario using

which the parameters of the model are set and run.

After careful observation, the most crucial metrics which are collision rates

and avg speed vs maximum allowable speed are extremely different in both

the models. For the model, the collision rate (fig 5.10,5.9) is decreasing overall

and this trend is not seen in the base model. But, the value of collision rate in

base model=0.007 which is less than the least value of collision rate (0.02) in

CHAPTER 5. EVALUATION 62

Figure 5.8: Avg speed vs maximum speed of model

Figure 5.9: Collision rate of base model

Figure 5.10: Collision rate of model

CHAPTER 5. EVALUATION 63

Figure 5.11: Loss of base model

Figure 5.12: Loss of model

Figure 5.13: Total rewards of base model

CHAPTER 5. EVALUATION 64

Figure 5.14: Total rewards of model

Figure 5.15: Efficiency rewards of base model

Figure 5.16: Efficiency rewards of model

CHAPTER 5. EVALUATION 65

Figure 5.17: safety rewards of base model

Figure 5.18: safety rewards of model

Figure 5.19: Comfort rewards of base model

CHAPTER 5. EVALUATION 66

Figure 5.20: Comfort rewards of model

the newly created model.

Though it is not much of a difference, When seen together with the avg speed

vs max speed graphs 5.7 and 5.8, the new model is able to meet the goals

by trying to reach the objectives of the thesis as is seen in its graph 5.6. It is

because there is an increase in speed of new model but in 5.5, the agent is

travelling at a constant speed and shows no change in speed overall.

Next, we compare the metric total loss of the model, which tells how much

accurately the model is trained. These can be seen in the graphs,5.11 and 5.12.

The new model is trained better as the loss of the base model is increasing

which is not a good sign.

Now, as it is seen that overall new model is performing better than the base

model, this can be confirmed by looking at the various parts of the reward

function. Ideally, these should be increasing because, if it learns to do things

right, rewards will be added in each epoch and hence an increasing trend

should be seen in each of its graphs.

Graphs of new model regarding rewards are in figures 5.14, 5.20,5.18,5.16. All

these have an increasing trend which supports the idea that agent is good at

CHAPTER 5. EVALUATION 67

learning the objectives stated by the thesis.

When these are compared with base model, and graphs 5.19,5.17,5.13,5.15,

they do not satisfy them. The total rewards, safety rewards are decreasing and

efficiency, comfort rewards are constant. This means the newly created model

outperforms the base model and satisfies all the specified objectives.

5.6 Summary

The evaluation of DQN as a DRL-based lane change problem was described in

length in this chapter. The evaluation goals,scenarios, and environment setup

have all been reported, along with an analysis of the findings. The study of

the data leads us to the conclusion that the altered DQN outperforms the orig-

inal and may represent a feasible solution to the lane change issues. Although

the strategies produce strong learning and performance, extra adjustments,

such as utilizing a different neural network for information fusion, may en-

hance performance further because it can incorporate a significant amount of

information about the nearby vehicles. The created DQN agent satisfies each

of the goals specified in section 5.1 at the beginning of this chapter. However,

modifications to the hyper parameters can still be made in order to obtain the

even more best outcomes.

Chapter 6

Conclusion

The thesis is summarized and its most noteworthy accomplishments are dis-

cussed in this chapter. The remaining unresolved research questions associ-

ated with this work are then discussed.

6.1 Thesis Contributions

Chapter 1 introduced the problem of lane changing and the concepts involved

in it. It then talks about the assumptions made during this thesis regarding the

vehicles, creation of a suitable environment for simulation purposes, aims and

objectives of it. Thesis contribution explains how the aims and objectives are

addressed using a much more technical language i.e., the goals are translated

to reward function, usage of vehicles information and penalties. In reinforce-

ment learning, these contribute so much towards the work that is being put

in to achieve the goals.

The state-of-the-art techniques that were considered to conduct research on

the issue at hand were described in Chapter 2 of the book. It explains dif-

ferent RL and non-RL methodologies that were applied throughout the back-

68

CHAPTER 6. CONCLUSION 69

ground investigation. More precisely, the emphasis is on thoroughly describ-

ing the RL approaches since they are essential to the development of a DQN

agent model. These studies are all concerned with creating a lane switching

method for connected autonomous vehicles. Additionally, it explored the as-

sociated state spaces and reward functions used in more recent experiments

with DQN. However, they are also described along with other ideas that were

utilized with the DQN network model.In conclusion, the nearest competitor is

analyzed, and the modified components of this thesis lane change technique

are described.

The design choices made in order to construct the DQN approaches are dis-

cussed in Chapter 3. It specifically covered the RL elements i.e., creration of

each of state, actions, and reward function, neural network architecture, ap-

propriate DRL approach choice, and DQN agent algorithms.

The implementation of DQN for lane change scenarios was described in Chap-

ter 4 in detail. This is a quick overview of the TensorFlow code used to

construct the neural network, as well as additional classes created for envi-

ronment generation and libraries for DRL algorithm and simulator, respec-

tively.

Using SUMO, Chapter 5 assessed DQN as a potential solution for the lane

change issue. With various setups, such as variable speeds, learning rates,

and accelerations, we assessed DQN’s performance. We contrasted the mod-

ified DQN agent baseline with the inspired DQN agent [24], from which the

basic framework was taken. The results of the studies indicate that the DQN

is the optimum strategy for lane-changing tactics. We established the DQN

performs better than the baseline through the successful studies.

CHAPTER 6. CONCLUSION 70

6.2 Future Work

Various areas were found where DQN’s efficiency and usability may be im-

proved during the design and evaluation process, as well as a number of pos-

sible research topics. A list of these areas is given below and it also goes over

the still-unresolved research problems.

• CNN based network for incorporating Information fusion: A neural

network can often work with more information as compared to matrix

and this gives a possibility of using even more information for comput-

ing state vector. This gives the agent more farsightedness in terms of

making decisions and increasing efficiency.

• Using Prioritized replay memoryInstead of just using replay memory,

and giving the best experiences for the agent to learn, the same if given

priorities can make the agent in the learning phase learn the best of best

experiences and helps increase the performance.

• Introducing behaviour patterns for surrounding vehicles This thesis

uses interaction with connected autonomous vehicles but using human

driven vehicles with behaviour close to real-life is also a possibility. This

makes the scenarios more closer to real-life ones.

• Varying demand generation At present, the number of vehicles around

the agent is around 35 and this can be increased or made complex with

different routes.

• More Complex intersection experiments The road network can be changed

to a more complex and one that depicts real-life roads. Training and

gauging the performance on this or even evaluating using this could be

done.

CHAPTER 6. CONCLUSION 71

• Longer training times Due to time constraints of the thesis, the model

could not be trained for more time and with modifications in model’s

parameters like ϵ-decay, update frequency etc., This could be done and

it might have resulted in a much more efficient strategy.

Bibliography

[1] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement

learning with double q-learning. CoRR, abs/1509.06461, 2015. URL

http://arxiv.org/abs/1509.06461.

[2] Yiyue Ma, Long Wang, Yibing Wang, Jingqiu Guo, Lihui Zhang, Si-

mon Hu, Ioannis Papamichail, and Markos Papageorgiou. Develop-

ing smart lane-changing strategies for cavs on freeways based on mo-

bil and reinforcement learning. In 2021 IEEE International Intelligent

Transportation Systems Conference (ITSC), pages 2027–2033, 2021. doi:

10.1109/ITSC48978.2021.9564678.

[3] Stefan Kaufmann Dominik Salles and Hans-Christian Reuss. Extending

the intelligent driver model in sumo and verifying the drive off trajecto-

ries with aerial measurements. SUMO User Conference.

[4] Jiqian Dong, Sikai Chen, Yujie Li, Runjia Du, Aaron Steinfeld, and

Samuel Labi. Space-weighted information fusion using deep reinforce-

ment learning: The context of tactical control of lane-changing au-

tonomous vehicles and connectivity range assessment. Transportation

Research Part C: Emerging Technologies, 128:103192, 2021. ISSN 0968-

090X. doi: https://doi.org/10.1016/j.trc.2021.103192. URL https://

www.sciencedirect.com/science/article/pii/S0968090X21002084.

72

http://arxiv.org/abs/1509.06461
https://www.sciencedirect.com/science/article/pii/S0968090X21002084
https://www.sciencedirect.com/science/article/pii/S0968090X21002084

BIBLIOGRAPHY 73

[5] Songan Zhang, Huei Peng, Subramanya Nageshrao, and Eric Tseng. Dis-

cretionary lane change decision making using reinforcement learning

with model-based exploration. In 2019 18th IEEE International Confer-

ence On Machine Learning And Applications (ICMLA), pages 844–850, 2019.

doi: 10.1109/ICMLA.2019.00147.

[6] Geana A Gershman SJ Leong YC Radulescu A Wilson RC. Niv Y,

Daniel R. Reinforcement learning in multidimensional environments re-

lies on attention mechanisms. 2015 May 27. doi: 10.1523/JNEUROSCI.

2978-14.2015.

[7] Lane change/merge crashes: Problem size assessment and sta-

tistical description. National Highway Traffic Safety Administra-

tion. URL https://ntlrepository.blob.core.windows.net/lib/

16000/16700/16737/PB2000104631.pdf.

[8] Guchan Ozbilgin, Umit Ozguner, Onur Altintas, Haris Kremo, and John

Maroli. Evaluating the requirements of communicating vehicles in col-

laborative automated driving. In 2016 IEEE Intelligent Vehicles Symposium

(IV), pages 1066–1071, 2016. doi: 10.1109/IVS.2016.7535521.

[9] Jerome Tiphene (PSA Group) Mikael Fallgren Wanlu Sun (Ericsson)

Nadia Brahmi (Bosch) Erik Ström Tommy Svensson (Chalmers) Diego

Bernardez (CTAG) Jesus Alonso-Zarate (CTTC) Apostolos Kousaridas

Mate Boban Markus Dillinger (Huawei) Massimo Condoluci Toktam

Mahmoodi (KCL) Zexian Li Juergen Otterbach (Nokia) Mathieu Lefeb-

vre (Orange) Guillaume Vivier (Sequans) Taimoor Abbas Peter Wingård

(Volvo Cars) Antonio Eduardo Fernandez, Alain Servel. 5gcar scenar-

ios, use cases, requirements and kpis. 2017. URL https://5gcar.eu/

wp-content/uploads/2017/05/5GCAR_D2.1_v1.0.pdf.

https://ntlrepository.blob.core.windows.net/lib/16000/16700/16737/PB2000104631.pdf
https://ntlrepository.blob.core.windows.net/lib/16000/16700/16737/PB2000104631.pdf
https://5gcar.eu/wp-content/uploads/2017/05/5GCAR_D2.1_v1.0.pdf
https://5gcar.eu/wp-content/uploads/2017/05/5GCAR_D2.1_v1.0.pdf

BIBLIOGRAPHY 74

[10] Vincent Franç ois-Lavet, Peter Henderson, Riashat Islam, Marc G. Belle-

mare, and Joelle Pineau. An introduction to deep reinforcement learning.

Foundations and Trends® in Machine Learning, 11(3-4):219–354, 2018. doi:

10.1561/2200000071. URL https://doi.org/10.1561%2F2200000071.

[11] Philippe Preux Olivier Pietquin. Mathieu Seurin, Florian Strub. A ma-

chine of few words interactive speaker recognition with reinforcement

learning. Conference of the International Speech Communication Associ-

ation (INTERSPEECH), Oct 2020, Shanghai, China. doi: ff10.21437/

Interspeech.2020-2892ff.ffhal-03123999f.

[12] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-

duction. MIT press, 2018.

[13] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Re-

inforcement learning: A survey. Journal of artificial intelligence research, 4:

237–285, 1996.

[14] Volodymyr; et al Mnih. Playing atari with deep reinforcement learning.

Deep Learning Workshop 2013.

[15] Marc Velay. Target networks: Slow and steady wins

the race. URL https://towardsdatascience.com/

target-networks-slow-and-steady-wins-the-race-214ed14e97e7.

[16] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehen-

sive survey of multiagent reinforcement learning. IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(2):156–

172, 2008. doi: 10.1109/TSMCC.2007.913919.

[17] Dr Dirk Helbing Prof. Dr. Arne Kesting, Martin Treiber. Mobil: General

lane-changing model for car-following models. 2006.

https://doi.org/10.1561%2F2200000071
https://towardsdatascience.com/target-networks-slow-and-steady-wins-the-race-214ed14e97e7
https://towardsdatascience.com/target-networks-slow-and-steady-wins-the-race-214ed14e97e7

BIBLIOGRAPHY 75

[18] Yongyang Liu, Anye Zhou, Yu Wang, and Srinivas Peeta. Proactive longi-

tudinal control of connected and autonomous vehicles with lane-change

assistance for human-driven vehicles. In 2021 IEEE International Intelli-

gent Transportation Systems Conference (ITSC), pages 776–781, 2021. doi:

10.1109/ITSC48978.2021.9564458.

[19] Xinping Gu, Yunpeng Han, and Junfu Yu. A novel lane-changing deci-

sion model for autonomous vehicles based on deep autoencoder network

and xgboost. IEEE Access, 8:9846–9863, 2020. doi: 10.1109/ACCESS.2020.

2964294.

[20] Pin Wang, Ching-Yao Chan, and Arnaud de La Fortelle. A reinforcement

learning based approach for automated lane change maneuvers, 2018.

[21] Bo Fan, Yuan Wu, Zhengbing He, Yanyan Chen, Tony Q.S. Quek, and

Cheng-Zhong Xu. Digital twin empowered mobile edge computing for

intelligent vehicular lane-changing. IEEE Network, 35(6):194–201, 2021.

doi: 10.1109/MNET.201.2000768.

[22] Jiqian Dong, Sikai Chen, Paul Young Joun Ha, Yujie Li, and Samuel Labi.

A drl-based multiagent cooperative control framework for cav networks:

a graphic convolution q network, 2020.

[23] Wei Zhou, Dong Chen, Jun Yan, Zhaojian Li, Huilin Yin, and Wanchen

Ge. Multi-agent reinforcement learning for cooperative lane changing of

connected and autonomous vehicles in mixed traffic, 2021.

[24] Diab Bilal Aissaoui Ilhem. Reinforcement learning for lane change on

a highway stretch. GitHub, 2021/2022. URL https://github.com/

Ilhem23/change_lane_DQN/tree/master/report.

https://github.com/Ilhem23/change_lane_DQN/tree/master/report
https://github.com/Ilhem23/change_lane_DQN/tree/master/report

BIBLIOGRAPHY 76

[25] R. Ehlers B. Knighofer S. Niekum M. Alshiekh, R. Bloem and U. Topcu.

Safe reinforcement learning via shielding. 2017.

[26] Felipe Codevilla Antonio Lopez Alexey Dosovitskiy, German Ros and

Vladlen Koltun. “carla: An open urban driving simulator”. In: Proceed-

ings of the 1st Annual Conference on Robot Learning., page 1–16., 2017.

[27] Laura Bieker-Walz Jakob Erdmann Yun-Pang Flötteröd Robert Hilbrich

Leonhard Lücken Johannes Rummel Peter Wagner Pablo Alvarez Lopez,

Michael Behrisch and Evamarie Wießner. “microscopic traffic simulation

using sumo”. The 21st IEEE International Conference on Intelligent Trans-

portation Systems., IEEE, 2018. URL https://elib.dlr.de/124092/.

[28] Peter J. Huber. Robust Estimation of a Location Parameter. The An-

nals of Mathematical Statistics, 35(1):73 – 101, 1964. doi: 10.1214/aoms/

1177703732. URL https://doi.org/10.1214/aoms/1177703732.

[29] Friedman J. Model inference averaging. In: Hastie T Tibshirani R Fried-

man J editors. Hastie T, Tibshirani R. The elements of statistical learning:

Data mining, inference, prediction springer series in statistics. page p.

261–94., Springer (2009). doi: 10.1007/978-0-387-84858-7_8.

[30] L. Bieker J. E. M. Behrisch and D. Krajzewicz. “sumo–simulation of urban

mobility: An overview". page pp. 63–68, 2011.

https://elib.dlr.de/124092/.
https://doi.org/10.1214/aoms/1177703732

	Introduction
	Motivation
	Lane Change in CAV
	Co-operative Lane Change
	Thesis Assumptions
	Thesis aims and objectives
	Thesis Contribution
	Document Structure

	Background and Related Work
	Reinforcement Learning
	Q-Learning
	Deep Reinforcement Learning (DRL)
	Deep Q Network (DQN)
	Double Deep Q Network (DDQN)
	Multi-Agent Reinforcement Learning

	Related work w/o RL
	MOBIL
	Extended Intelligent Driver Model
	XGBoost model for Lane change

	With RL
	Summary

	Experimental Design
	Lane Change Problem
	Grid observation space
	State space representation
	Action space
	Reward function
	Design of the model
	DQN network

	Summary

	Implementation
	Simulator and Design of Road Network
	DQN Agent
	Sumo Environment
	Replay Memory
	DQN Agent
	Huber Loss
	Optimizer

	Summary

	Evaluation
	Objectives
	Metrics
	Evaluation Scenarios
	Techniques and Scenarios

	Setup
	Network Layout
	Demand data

	Results and Analysis
	Summary

	Conclusion
	Thesis Contributions
	Future Work

