*/? VA Trinity College Dublin
'; Colaiste na Trionéide, Baile Atha Cliath
The University of Dublin

School of Computer Science and Statistics

Evaluation of Soft Actor Critic in
Diverse Parking Environments

Pratush Pandita

A dissertation submitted in partial fulfilment
of the requirements for the degree of
Master of Science in Computer Science (Data Science)

Supervisor : Prof Vinny Cahill

August 19, 2022

http://www.scss.tcd.ie

Declaration

| hereby declare that this dissertation is entirely my own work and that it has not been
submitted as an exercise for a degree at this or any other university.

| have read and | understand the plagiarism provisions in the General Regulations of the
University Calendar for the current year, found at http://www.tcd.ie/calendar.

| have also completed the Online Tutorial on avoiding plagiarism ‘Ready Steady Write', located
at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

Signed: Date:

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

Permission to Lend and/or Copy

|, the undersigned, agree that Trinity College Library may lend or copy this thesis upon request.

Signed:

Abstract

Parking vehicles inside a parking lot is an intricately complex process. Firstly the vehicle needs
to find empty slots and choose the most appropriate one from them. Next, after detecting the
spot, the vehicle needs to plan a trajectory from its current position to the empty slot. After
finalizing the path, it should maneuver safely without colliding with other parked(or moving)
vehicles and pedestrians. On the other hand, the layout of the parking layout can vary a lot.
For instance, a parking lot inside a building has constrained space as compared to an open
parking lot. Additionally, the parking slot can be at different angles, for example, vertical,
diagonal, or parallel. A vertical slot is the most common form of slot that we come across
because of its efficiency to pack more cars in an area. While on the other hand diagonal slots
promote one-way traffic and reduce the time it takes to park. Parallel parking is used places
to save space width-wise.

In this paper, we evaluate the performance of SAC algorithm in a continual learning envi-
ronment to park a vehicle in parking lots with different lane orientations. The evaluation
shows that the agent is not able to incrementally learn to park over multiple phases ranging
from simple to more complex layouts as the agent is susceptible to catastrophic forgetting.
HER has no effect in mitigating the catastrophic forgetting when the learning is done in a
phased manner. The agent can be seen to perform the best if it learns in a mix of environ-
ments with different variations. Additionally, if the variation in the lane orientation is large, it
takes more episodes to train as compared to small variations. We simulate the car parking in
an OpenGym-based environment with multiple scenarios and assess the performance for the
same.

Keywords: Autonomous Cars Parking, Lifelong Reinforcement Learning, Deep Reinforcement
Learning, OpenGym Al

Acknowledgements

First of all, | would like to thank my mentor, Prof. Vinny Cahill for his invaluable
suggestions and patience during my thesis. | am extremely grateful for his constant support
throughout the dissertation period. His immense knowledge and expertise in the field of
Reinforcement Learning motivated me to stay focused on the problem at hand . | am also
thankful to Computer Science and statistics department of Trinity College Dublin to provide
me with all the necessary IT tools and infrastructure without which it would have been

difficult to work on my thesis.

| am also grateful to my classmates for their editing help, feedback and moral support.
Lastly, | would like to express my gratitude to my parents, my sister , and my partner.
Without their emotional and mental support, it would be impossible for me to complete my

study.

Contents

1 Introduction 1
1.1 Context. 1
1.2 Motivation 2
1.3 Problem Definition 2
1.4 Objectives & Approach 3

1.4.1 Objectives 3
1.42 Methodology 3
1.5 Document Structure 4

2 Background 5
2.1 Reinforcement Learning 5
2.2 Lifelong Reinforcement Learning 7
2.3 Deep Reinforcement Learning 8

2.3.1 Soft Actor Critic Model 8
2.3.2 Hindsight Experience Replay 9
2.4 Autonomous Cars 9
241 Overview 9
242 Parking 12

3 Problem Approach 13
3.1 Vehicle Attributes 13
3.2 StateSpace 13
3.3 Action Space 14
3.4 Reward Function 14
3.5 Algorithm 15

4 Simulation 16
4.1 Simulation Tools 16
42 TestSetup 17

421 Environment 17

422 Algorithm and Architecture

4.2.3 Data Gathering Strategy
4.2.4 Evaluation Metrics
4.3 Implementation Classes
4.3.1 AbstractEnv and GoalEnv Class
432 ParkingEnvclass
4.3.3 Parking Driver Class
4.4 Training Strategy
441 Scenariol
442 Scenario 2
443 Scenario 3
444 Scenariodandb

Evaluation
5.0.1 Experiments
5.02 SACwithnobuffer
5.0.3 SAC with default buffer
504 SACwithHER

Conclusion
6.0.1 Future Work
6.0.2 Reflection

A1l Appendices

vi

25
25
25
26
29

39
40
41

45

List of Figures

1.1 Laneorientation 3
2.1 Different Model-Based and Model-Free Algorithms (1)

2.2 Abstract representation of CL taken from (2)

2.3 Pseudocode taken from (3) 10
2.4 Abstract representation of HER from (4) 11
3.1 Car coordinate with heading angle (left) and steering angle(right) 14
3.2 P-norm 15
4.1 Original and customized Parking Env 17
4.2 Architecture 18
4.3 Abstract Environment Lo 19
4.4 Kaggle notebook for learning 4.8 21
45 Scenariol 22
4.6 Scenario 2 23
47 Scenario 3 . . . L L 23
4.8 Scenario 4 24
4.9 Scenario b 24
5.1 Learning with zero buffer 26
5.2 lIsolated Environment Vertical Slot 27
5.3 lIsolated Environment Diagonal Slot 27
5.4 Unseen Environments 28
5.5 Unseen Environments Simulationcrash 28
5.6 Phased Environment 29
5.7 Rewards vs Steps(Up) and Velocity vs Steps(Down) 30
5.8 Interleaved Environment with 2 variations 30
5.9 lIsolated Environment Vertical Slot 32
5.10 Vertical slot successful park 32
5.11 Isolated Environment Diagonal Slot 33

vii

5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

Diagonal slot successful park L. 33

Unseen Environment 34
Agent crashing in diagonalslot 34
Phased Environment 35
Phased Environment Simulation 36
Interleaved Environment with 2 variations 37
Interleaved Environment Simulation L. 37
Interleaved Environment with 3 variations 37
Agent parallel parking successfully 38

viii

List of Tables

3.1 SAC Hyperparams

Al.1 RL Environment specific parameters

Al.2 Commandline Arguments

Nomenclature

CL Continual Learning
MDP Markov Decision Process
MRP Markov Reward Processs

PPO Proximal Policy Optimization

POMDP Partially Observable Markov Decision Process
RL Reinforcement Learning

SAC Soft Actor-Critic

HER Hindsight Experience Replay

DDPG Deep Deterministic Policy Gradient

RRT Random-exploring Random Tree

DDQN Double Deep Q-Network
SUMO Simulation of Urban Mobility
SARSA State Action Reward State Action

1 Introduction

1.1 Context

Parking these days have become one of the biggest concerns for privately owned vehicles
because of the increasing number of vehicles that are coming on road every year.In urban
areas, it is now become increasingly difficult to get a parking slot because of the high density
of vehicles. The energy costs associated from finding a suitable parking space to actually
park the car is very high. These high energy costs do not only create a huge carbon
footprint in the environment but also impacts the individual's productivity. If a person going
to the office spends time looking for a parking, that is a waste of valuable time which can be
directed to other priorities. Furthermore,majority of state governments in the United states
as well in the EU have started adopting policies which discourage vehicle ownership and
promote public transport. For example,in New York the public parking costs are very high to
curb the traffic congestion problems in the city. Another example is in Ireland, buying a car

has additional taxes introduced to promote public transport services.

With the advancement in the areas of Artificial Intelligence, Image Processing and 5G
networks, we are looking at a fast paced development in vehicles automation. The
automated vehicles are now even more connected as they can exchange information with
other vehicles and receive important Over The Air(OTA) updates in a seamless manner.
This means that the vehicles are now not only enabled to receive new information, but "how
to act’ when it receives it. Many companies are heavily investing in car automation for
example, Tesla, Waymo and Uber to name a few. Even though most of these automated
vehicles have lane assistance, lane changing and adaptive cruise control,self parking is

somewhat less explored.

When it comes to parking, it is a cumbersome process. The vehicle first needs to figure out
the most convenient slot. Choosing the most appropriate slot can subjective and depends on
the situation. For example,the slot nearest to the entrance will reduce time to park but it
may increase time to exit if it is a big parking lot while on the other hand if we park closer
to the exit it will have an inverse effect. Once a slot is detected it becomes essential to

figure out a path to the slot and then maneuvering the vehicle safely to the slot without

colliding with any other cars or pedestrians. Also, the parking layouts vary a lot from place
to place. For instance, it can range from a closed parking layout inside the building with
restricted space for the vehicle to move to large open layouts outside the buildings which has
more room for the car. Additionally, the parking slots can have different orientations . The
most common ones are vertical slots which are efficient to accommodate more cars in a
given area. Then there are diagonal slots which promote one way traffic for fast park and
exit from the parking space. Then there are parallel parking slots which save the space width
wise and are mostly used for a curb side parking. In this thesis we want to explore if learning
in one particular orientation can significantly help in parking in the other by using
RL.Furthermore, we want to analyze if learning continually between different lane
orientations is impacting the overall performance of the model to execute each of the task
independently. This can mean the model is susceptible to catastrophic forgetting.So we
want to analyze if using the replay buffer can help us mitigate that problem.This can form a

basis for developing efficient models to self park the car in different parking lots.

1.2 Motivation

The methodology for comparison between the independent learning strategy vs incremental
learning strategy of the RL agent in multiple lane orientations can form a solid foundation to
choose the right approach for both learning and deployment of the model in variable parking
environments. Through the exploration of the agent in this environment can be a first step

in building a baseline for more complex scenarios of multiple moving agents.

Solving the problem of parking in autonomous vehicles can help in creating a smaller carbon
footprint on the environment and save the drivers and passengers from exhaustion.Since the
manual parking suffers from human error, the parking space can be efficiently utilized as the
agent parks the vehicle in the most optimal way possible. Although the analysis is restricted
to parking environments, however the results of this analysis can give some insights which

can be beneficial in somewhat similar settings as well. For instance, a robot transporting the
objects from source to destination inside a packaging centre. Another similar example can

be a robot moving raw materials on a construction site.

1.3 Problem Definition

We have a parking environment with a vehicle which is at a fixed position on the east side
facing in the west direction. We have a parking slot which is our goal and we want to
manoeuvre the ego vehicle in such a way so that it is correctly parked in the right slot with
the right orientation without colliding with any other parked vehicle or obstacle on it's path.

The environment will be challenging as we will be exposing our agent to parking slots of

variable orientation , i.e. vertical, diagonal or parallel as shown in 1.1.

Vertical Diagonal Parallel Lane
Lane Lane

Figure 1.1: Lane orientation

1.4 Objectives & Approach

1.4.1 Objectives

The main objective of this thesis is to evaluate the learning of the RL agent to park the car
in multiple lane orientations, i.e vertical, diagonal and parallel parking. These multiple
orientations can be considered as different goals because of the variation in the angle. We
want to analyze how effectively the agent is able to do the task of parking in simple and
complicated environments. We want to do a performance comparison between SAC model
with HER, default buffer and no buffer to park the car in the slot within the simulation. We
also want to analyze if using HER can potentially mitigate the catastrophic forgetting to

some extent.

1.4.2 Methodology

We will achieve the above objectives by first developing and customizing a simple testing
environment where we can run our experiments as our testing bed. As a next step we will
simulate the continual learning process in the form of a phased training strategy by exposing
our agent from simple to complex layouts with different lane orientations.We will then
compare the performance of the phased setup with different combinations of the

environment having different variations.

The RL agent is able to learn through a suitable reward model where it understands which
manoeuvres lead to crashes and which one leads to successful parking. In order to see the
impact of HER in mitigating catastrophic forgetting, we will run the model once with HER

and then without HER to compare the results.

1.5 Document Structure

The structure of this thesis has been organized into 6 chapters. Chapter 1 has 5 subsections
out of which the first three sets the context, motivation and problem definition of the
problem we are addressing. Additionally, the last 2 subsections talk about the objectives and
methodologies and the document structure of the thesis. Chapter 2 gives a deep dive
analysis of the latest state-of-the-art in parking with Autonomous Cars. The first two
subsections in this chapter give the overview of RL and Lifelong RL, and in 3rd sections we
give the overview of the Autonomous vehicles and techniques used for parking. Chapter 3
outlines the approach we have proposed to the problem of parking. In Chapter 4, firstly we
test several tools by assessing the pros and cons and decide our choice of the
framework.Chapter 5 explains the evaluation process and an analysis of the results. Lastly,

Chapter 6 concludes the dissertation and lays down the scope for future works.

2 Background

2.1 Reinforcement Learning

RL algorithms are based on the concept of having a reward system where the agent (or
model) is rewarded if the expected action was correct and penalized for incorrect actions.lt is
different from supervised learning as the data is not labeled for training. It is also different

from unsupervised learning as we are not trying to find any patterns by clustering.

In a RL paradigm, we have an agent which learns by continuously interacting with its
environment by performing a certain set of actions to transition to an end/terminal state
from an initial state. The feedback/reward for each action is not instantaneous and can be
delayed. The agent's action taken at a particular step will be closely correlated to the
actions in the next and it's current action will determine the type of subsequent data it
receives. Even though the environment can be fully or partially observable, we only care
about the subsequent observations and rewards that come from the environment from the

agent's perspective.

An Agent's state in simple terms represents the internal representation of the model which
can be used to determine what to do next. History of an agent represents a sequence of all
observations, actions and rewards up to a point in time.The information state of an agent
has Markov property which says that once the current state is known, the history is not
needed to determine the next action. In a fully observable environment, the environment'’s
state is the same as the agent’s state and we use the MDP which represents the state. On
the other hand, when we have a partially observable environment, we use POMDP which is

used to construct the state from history and a set of beliefs (probabilities of what the state
is).

(5) There are 3 Components of an RL agent namely policy, value function and model. The
policy of an agent is the behaviour which means the mapping of action from a state. It can
be deterministic or stochastic. Value function tells about the goodness/badness of the

current state and in turn gives a prediction of future rewards. Model is the representation of

the environment from the perspective of an agent.

A Markov Process is just a state transition matrix which contains the probabilities of going
from the current state to the next state .The MRP is a Markov Process which now has
reward value associated with each state. This reward value is based on the expected value
(mean) of G; (return) along all the paths. G; in simple terms is the discounted reward from
time step t towards the terminal state. Formally, with the Bellman Equation, we can
calculate the value function of a state s by adding the reward we got to reach state s plus
discount factor times sum of value functions of all states we can reach from s. MDP is a
MRP with Actions states where a policy defines the current behaviour of the agent. A
simple MDP structure is defined by <S, A, r, p, v > where S is a set of states, A is a set of
Actions, r is a set of rewards which is defined for each state action pair, p is the transition
matrix and v € [0,1].

There are 2 broad categories of RL algorithms namely Model-Based and Model-Free. As the
name suggests, in Model-Based algorithms the agent constructs or has the complete
knowledge of the environment. It means it has the complete model with state transitions
which can then be used for searching for the next appropriate action to be taken. A well
known model-based algorithm is the AlphaZero (6). On the other hand, Model-free
algorithms are those which do not need a model, rather they directly optimize the policy
based upon a value assigned to each state which keeps on improving over multiple episodes.
Some of the Model-Free examples are DDPG, SAC, PPO etc as shown in 2.1

RL Algorithms

T

i %

L])

Model-Free RL Model-Based RL
T T
.'—J IH_'\
. ! . ¥
{ } { 3
Policy Optimization Q-Learning Learn the Model Given the Madel
Policy Gradient +— — DON — World Models L- AlphaZero
—» DOPG ha—
A2C f A3C — C51 > 124
> TD3 -
PPO i * QR-DON > MBMF
> SAC +
TRPO -— — HER — MBVE

Figure 2.1: Different Model-Based and Model-Free Algorithms (1)

RL algorithms can also be divided on the basis of whether they are off-policy or on-policy.
As the names suggest, on-policy means that the algorithm utilizes the same policy learned
for their actions in order to optimize the policy. Popular examples of on-policy algorithms
are PPO, TRPO, SARSA to name a few. On the other hand, Off-policy means that instead

of using the same policy for convergence, we use 2 different policies for learning namely, the
target policy and the behaviour policy. The target policy focuses on the task at hand and
tries to maximize the rewards to achieve that task while the behaviour policy can try new
unexplored paths. Some examples of Off-policy are DDPG, SAC, Q-Learning etc.

2.2 Lifelong Reinforcement Learning

Lifelong RL comes under the broad category of CL. CL is the process where we take the
previous experiences as our foundations to build complex behaviours and apply them to
unseen environments. As the name Continual suggests, we have an agent which takes
continuous streams of inputs and should have the following characteristics as defined in
(7).Firstly, the agent should have an incremental learning without being dependent on a
fixed training set. Secondly, it should be able to quickly adapt to variations in the
environment over a duration and recover quickly.Most importantly,it should not forget past
behaviours when it learns new tasks which is known as catastrophic forgetting and inference.
This is part of a broader issue of stability-plasticity dilemma where we need to strive a fine
balance between the past and present experience to determine the future. According to (8),
a set of tasks means a set of problems which we want to our model to solve in an
incremental fashion. While continually learning new tasks, we don't want to forget the
experiences we have gathered while solving older tasks . An abstract representation of a CL

mode is shown in 2.2.

Continual Learning

Old Task MNew Task

Shared Layer

Figure 2.2: Abstract representation of CL taken from (2)

Catastrophic forgetting can occur due to various reasons for example agent's memory

limitation due to hardware, the new environment having completely different states from the
previous environment, environment state explosion etc. When we use the traditional RL
approach on a episodic setting in a continual episodic environment, it is shown to produce
biases. What it means is that the agent will give more significance to the more recent

episodes and will completely disregard the previous episodes.

For a CL model, there are some features of the system according to (9) that we need to
understand. We want the system to not forget previous tasks when learning new ones. We
want the system to be scalable because of limited memory and compute resources. The
architecture should support forward and backward transfer, i.e experience gained during
previous tasks should help learning new tasks and vice versa. All of the above characteristics
are in contrast to each other as remembering everything is not possible with having fixed
capacity or enable forward/backward transfer. Hence, we need to be able to assess the right

trade-offs between various properties of the system first.

In a RL setting, we also need to identify the areas where Non-stationarity is present. The
components which can have a time based distribution can be the transition function p,
reward set r, observation function x or actions space A. This is called the degrees of
non-stationarity. Next, we then look for the drivers of Non-stationarity. It can either be
stationary, passive, active or hybrid. In passive, the agent's behaviour does not affect the
non-stationarity of the environment, while in the active setting it does influence the
behaviour of the environment. On the other hand, in hybrid case, it is mixture of active and

passive setting.

2.3 Deep Reinforcement Learning

(10) Deep Learning is the technique of combining RL with Deep Learning. Since some
MDPs have very large state spaces, it is not feasible to use conventional RL techiniques.
Therefore by using deep learning we can makes use of neural networks to mitigate the issue.
For example, using by using the neural network as an approximator instead of maintaining
large state-action value tables. Another example would be to have a actor critic model such

as SAC which uses 2 neural networks as explained below.

2.3.1 Soft Actor Critic Model

This is an off-policy and model-free RL algorithm which has 2 components, namely the actor
and the critic. The critic estimates the value function which can be a state value or an
action value. The actor updates the policy in the direction of the critic's value estimation.
The SAC not only maximizes the future rewards, but also the maximizes the future entropy

of the policy which encourages exploration as opposed to only exploitation. This additional

entropy in calculations prevent the agents to mitigate the problems of being trapped in local
minima and not converging to an optimum policy. SAC is a hybrid of learning by g-value as

well as the policy optimization. SAC algorithm is shown in 2.3.

2.3.2 Hindsight Experience Replay

Often times we are in specific environments where the rewards are either very delayed or
sparse. It becomes extremely important for an RL agent to fetch these rewards in a more
uniform manner to converge on a good policy. Consider a situation where the agent is
learning to play football. The agent shoots the ball which hits the edge of the goal post and
gets diverted away from the goal. What a standard RL would see is that the sequence of
actions, which is hitting the ball, did not produce a desired outcome. Therefore the reward
structure is not only about giving positive reward to the agent for the desired task, but it is
also about shaping the reward function in such a way which promotes policy optimization.
Wherever we have a binary signals of successful task completion, it becomes very difficult to
engineer the right reward model. On the other hand, consider where there are multiple tasks
in sequence which need to be completed in a random or a predefined order. We now not
only want an agent to do learn a single task efficiently, but we also want it to remember old
tasks, as it starts to learn the new ones. Hence we need an efficient sampling strategy from
a storage which can replay episodes from the past experiences. Hindsight Experience
Replay(HER) (11) is able to address the challenges faced in these types of environments.

2.4 shows an abstract representation of HER.

The essence of HER is that after the agent completes an episode from S;, S,..S,, the
transition is stored in the replay buffer not only with the original goal used for the current
episode but with a subset of other arbitrary goals. We generally use HER in addition to
Off-policy algorithms like DQN(Deep Q-Network), DDPG, SAC etc.

2.4 Autonomous Cars

2.4.1 Overview

There are about 6 levels of Autonomy defined for a vehicle as per (12).Level 0, as the level
suggests has no level of automation and is completely dependent on the driver's inputs.
Level 1 and Level 2 provides partial assistance to the driver for example Adaptive Cruise
control to regulate the speed on a highway or Lane Keeping Assistance which keeps the car
inside a lane. They require attention of the driver which should be able to override controls
if the Automation system goes haywire. Level 3 systems require minimal assistance from the
driver and it can take critical decisions such as lane changing, speed regulation etc. For

example, Tesla Cars are equipped with level 3 automation system. Level 4 and 5 require

Algorithm 1 Soft Actor-Critic

1: Input: mitial policy parameters #, Q-function parameters ¢y, ¢y, empty replay buffer D
2: Set target parameters equal to main parameters uyy | 01, Qg2 — 02
3: repeat

4;

o

= oo

=

11;

16
17

Observe state s and select action a ~ my(-|s)
Execute a in the environment
Observe next state &', reward r, and done signal d to indicate whether s is terminal
Store (s,a,7, 5, d) in replay buffer D
If ' is terminal, reset environment state.
if it’s time to update then
for j in range(however many updates) do

Randomly sample a batch of transitions, B = {(s,a,r,§,d}} from D
Compute targets for the () functions:

yir o, d) = +4(1 - d) (@1‘; Qo (5) - mog««rata'm) L@ ~mlls)

Update Q-functions by one step of gradient descent using
1 5 & 2 A
o Y (Quls,a)-y(r 8. d) fori=1,2

(s st dle B
Update policy by one step of gradient ascent using
|

Vo ; (gl_‘llig Qo (5, 84(s)) = alog mg (ag(s)] s))

where ag(s) is a sample from m(-|s) which is differentiable wrt f via the
reparametrization trick.
Update target networks with

Orargi € POrargi T (1= p)dy fori=1.2

end for

end if

18: until convergence

Figure 2.3: Pseudocode taken from (3)

10

. .‘—
<Current State Action, Reward= .

Replay
— Bufer]
Table
51 Al R3
52 A3 R1
an An Rn
\""'\-_.__‘_‘_‘_‘—._'_'_'_,_,_:-""'J

Figure 2.4: Abstract representation of HER from (4)

little to no assistance from outside and no monitoring of the vehicle is required.

Autonomous cars broadly have 3 systems, namely the perception system, the decision &
planning system and the execution system. The perception system is mainly concerned with
inputs like mapping location, obstacle detection etc. On the other hand, the execution
system consists of subsystems which control the motions of actuators and other motor
devices of the vehicle. The Decision and planning system is where the core processing of the
input from the perception system happens. It includes things like route planning, next best
action, trajectory planning etc. (13) is review which provides an exhaustive taxonomy of self
driving tasks and explores DRL methods to address challenges faced in real world

deployment of autonomous driving agents.

A lot of work (14) has already been done to solve the problem of decision making using the
conventional supervised learning model where the ego vehicle takes in input (stream of
images) from the cameras and labelling the actions such as steering angle, acceleration etc
for the purpose of training data. Although, the agent seems to perform decently as it is able
to associate the pixel data with action, however, the results have shown that generalising a
model for a scenario which the agent has not seen previously can easily become challenging.
(15) uses a combination of supervised learning and reinforcement learning to follow a path.
(16) uses Reinforcement Learning and Imitation Learning to navigate in complex urban

scenarios.

11

2.4.2 Parking

With increasing number of vehicles coming on road each year, the demand for parking has
also increased exponentially.Parking is a time and energy consuming task especially in densely
populated urban areas. The cars can take the sensory input, for instance using a camera
feed, LIDAR sensors etc, to decide the best course of action to park in an available parking
slot. Since it is very hard to take into account every use case which a car can encounter

during parking, it becomes an obvious choice for using Reinforcement Learning.

When parking lot gets more complex in (17) as compared to the one in (18) because of
multiple lanes, PPO performance degrades when the parking slot is farther away from the
entry point. Both use Unity as their choice of frameworks to simulate multiple scenarios.
(19) uses RL to train a model to follow a pre-generated path from the initial position to the
parking slot inside a parking lot. It compares the performance of DDPG,TD3 and SAC
algorithms to follow a complex path that includes cusps and overlaps towards the parking
space. The path is pre-generated before the learning stage using RRT and Reeds-Shepp
path creation algorithm.The simulation framework is based on (20) used in this dissertation
as well. (21) use the DDQN to train the ego vehicle to successfully and safely drive in a
multi-lane highway environment which is based on SUMO simulation framework. (22) uses
multi agent environment RL to park upto 7 cars in a parking environment with 98.1%

success rate.

12

3 Problem Approach

3.1 Vehicle Attributes

Our Environment is a simple parking lot with 1 ego vehicle and several parked vehicles. The
vehicle is about 5 meters in length and about 2 meters in width. It is represented by the
(x,y) in the coordinate system along with an heading angle h (angle between car head and x
axis). The front wheel's steering angle of the vehicle can turn 45 degrees in either direction
and the acceleration is capped at 5 meters / s2 in both forward and backward directions.
The vehicle needs these two inputs from the agents to move, namely the steering angle 0

and acceleration a.

Duration of each episode is 150 seconds which gives the vehicle enough time to park in a
complex environments. A fine balance needs to be achieved when it comes to choosing the
duration or steps in each episode. For instance if we set the duration to very low, the agent
might increase the speed or end up crashing the vehicle into the nearby parked vehicles. On
the other hand, if we set the duration to very high, the training time overall will increase. To
keep the experiments simple, parking nose-out in the goal slot has been scoped out and only

parking head-in is considered.

3.2 State Space

As explained briefly in the previous section, the state of an agent is characterized by the
equation [1] . x, y 3.1a and ¢ 3.1b will be the x coordinate, y coordinate and angle of
steering respectively. vy, v, are the speeds in the x and y directions and cos(h), sin(h) are
the cosine and sin of angle of heading respectively. Each observation that we get back from
the environment Obsgep is shown in [2]. Siepicie current is the state of the vehicle before
taking any action, Siepicie achieved 1S the state of the vehicle after taking the action and

Svehicle _desired 1S the desired state where the vehicle is parked inside the slot.

5vehicle =<X,y, Vx, Vy, COS(h), Sin(h)' (5) (1)

13

(a) Car coordinates with heading angle [x,y,h] (b) Car with steering angle §

Figure 3.1: Car coordinate with heading angle (left) and steering angle(right)

Obsstep =<5 vehicle _current S vehicle _achieved S vehicle desired > (2)

3.3 Action Space

The agent can send inputs in the form of steering angle § within the range of [-7/4,7/4]
radians and acceleration o within the range of [-5, 5] meters/s?. The Speed of the vehicle
that should be allowed depends on the scenario for example the requirements inside a
parking lot will be different from the ones required on a highway. We will look at how we

can control speed by using an appropriate reward discussed in the next section.

3.4 Reward Function

The agent is rewarded on the basis of it's proximity to the goal, i.e the parking space. At
each step a weighted p-norm is used to get the distance from the current location to the
goal and computed as shown in 3.2. The default value of p is chosen as 2, which makes it
an euclidean distance (Euclidean Norm). The term inside the square root is calculated as
shown in equation 3 which is the dot product of the difference between state of the vehicle

achieved and desired with a weighted rewards.

The vehicle is penalized for speeds above 5 meters/s. The agent is also penalized if during
maneuvering, there is a collision expected with an obstacle or a parked vehicle. A summary

of the reward model is shown in 4

n
Z ‘Xi‘p = (Svehicle_achieved - Svehicle_desired) * (rewardweights) (3)
i=1

14

n 1/p
%], := (Z |z lp) :
i=1

Figure 3.2: P-norm

—4 if collision with car/obstacle
Rewardsep, = (4)

—||x||2 euclidean distance to goal

3.5 Algorithm

The choice of algorithm for comparing the performance of the agent in various different
scenarios will be SAC. In addition to the off policy algorithm, we will be running experiments

for all the scenarios with and without HER.

We will be using a neural network of 3 hidden layers which consists of 512 neurons each with
a default learning rate of 0.001. The complete hyperparameters used are shown in 3.1. The
maximum duration of an episode has been set to 150 steps which gives the agent enough
time to figure out complicated maneuvers. If increase the time too much, it might lead
unexpected results where agents tends to explore a longer path or get away from the slot.On
the other hand, if we give the agent less time it might not able to completely figure out the
path and just try to park as near as possible to the parking spot. The replay buffer size is
being set to 10° to give it enough memory to store the past episodes. All the other

hyperparameters are being run in default setting.

Parameter Value
Environment Highway-Env
Batch size 1024
Polyak Update 0.05
Learning Rate 0.001
Discount factor 0.95
Hidden Layers 3
Neurons count per layer 512
Episode Duration 150 steps
Replay Buffer Size 10°

Table 3.1: SAC Hyperparams

15

4 Simulation

In this Simulation Tools section, we will first discuss Unity and Open Al's gym, the two most
widely used tools these days for performing RL experiments. Then, in the Test Setup section
we will describe the environment and overall architecture that has been built to train the RL

agent.

4.1 Simulation Tools

Unity is a game engine primarily designed for developing interactive 2D/3D games. Unity
ML agents is a plugin which is a popular choice among RL enthusiasts to run experiments
because it provides a rich high level visualization and in built support for parallel training of
agents in an environment. To perform our experiments this (23) project was explored to see
the ease of use for modifying and training. After considerable amount of time, these are

some of the observations that were made:

The unity platform has a high learning curve in itself which takes time to understand.

Opening the project had lot of compatibility issues with current versions.

ML Agent Plugin has a limited list of algorithms that can be used inside the

environment which makes it more like a black box.

Even though 3D car environment makes the visualizations great, however it needs

heavy GPU machines to run simulations and perform training on neural network.

Since a lot of time was being spent on the environment itself rather than the actual problem,

it was decided to explore a simpler tool which has these standard set of features:
e Ease of installation.
e APIs for interaction between RL Agents and it's environment.
e Pluggable Agent Algorithms and environments.

e A simple 2D environment which can be tweaked with ease.

16

. We came across Open Gym Al ,an open source python library, which checked on all of the
points above. It was decided to move forward with this tool to use as our training and
testing framework.

4.2 Test Setup

To build our environment the following framework was used for this dissertation:

42.1 Environment

The gym library Highway-Env (20) is used as our base project for developing the
simulations. This is built on top of Open Gym Al and therefore it extends the same API
functionalities for communications between the agent and it's environment. This library has
a lot of different environments ranging from high speed highway, intersections and racetrack
environments to small confined parking environments. We select the parking environment
which is a simple 2D environment having straight parking lanes as the one shown in 4.1a.
We have 1 ego vehicle which gets initialized in a global coordinate system (x,y) at particular
angle of heading h (angle between the car head and the x axis. The vehicle inputs that can
be provided are the steering angle d and acceleration « as an action in each step will result
in an environment observation which is the movement of the car according to the Kinematics
Model (24). Certain tweaks to this environment has been made to fit our use case as shown
in 4.1b starting with making the car position, car heading, lane slots length/width, lane
angle, goal lanes configurable. In addition to these, we have added added dummy cars in

other lane slots to make the environment more restrictive in movement.

(a) Parking Environment Original (b) Parking Environment Customized

Figure 4.1: Original and customized Parking Env

The table A1.1 shows RL environment specific configurations for adding variations

17

4.2.2 Algorithm and Architecture

We will be using Stable Baselines (25) as the the Algorithm Library which consists of an
up-to-date collection of most widely used algorithms to perform training and analysis. Since
it is based on Open Al Baselines (26), this makes it an obvious choice for our training

model.

An overall architecture of our simulation environment is shown in 4.2. The parking
environment code has been modified to accomodate csv writer module which will record
metrics during each step/episode and write it to a csv file. After the experiment has been

conducted, the graphs will be generated using this csv file for generating insights.

Act

Y

Stable Baselines (SAC) Environment (Parking-Env)
Observation & reward

&

Lags (CSV Writer)

s
) Generate Graphs
G5V Metrics File

F

Matplotlib

Figure 4.2: Architecture

4.2.3 Data Gathering Strategy

To collect the data during training and testing we will be using the Tensor-board as our tool
to track metrics such as average rewards, policy loss etc. To gather additional metrics, we
will be using an in-built CSV module to write to the files.

4.2.4 Evaluation Metrics

After the completion of training and testing, the following 2 metrics are chosen to assess the
performance of the algorithms:

e Total Reward : This is an obvious choice of metric because we want the agent to
maximize the rewards it has collected over the training and testing phase. If we see an

increase in the total reward collection it means that the policy is overall improving.

18

e Success Rate : This metric gives us an average of the number of times the agent
was able to complete the task, i.e park the itself in the lane correctly without colliding

with other vehicles.

e Vehicle Velocity : This will be an important metric which will help us understand if
the velocity is going outside the desired range of the ego vehicle's behaviour. This will

also help us further fine tune our parameters.

4.3 Implementation Classes

The project (20) has a collection of different environment which a autonomous vehicles face
in various situations. We will not be going over the entire codebase, but just over some

important classes to understand how were the changes added and why.

4.3.1 AbstractEnv and GoalEnv Class

AbstractEnv To begin with we have an AbstractEnv class which is a generic environment
for various tasks involving a vehicle driving on a road. It contains a road populated with
vehicles, and a controlled ego-vehicle. The action space is fixed, but the observation space

and reward function must be defined in the environment implementations as shown in 4.3.

< <Abstract>>
Abstract Env

Roads
Vehicles
Lanes
Obstacles

Parking Env Intersection Env Highway Env
parkedVehicles movingVehicles movingVehicles
spawnParkedVehicles() spawnMovingVehicles() spawnMovingVehicles()

Figure 4.3: Abstract Environment

GoalEnv is the interface that enforces the structure of the observation shown in equation

2.1t functions just as any regular OpenAl Gym environment but it imposes a required

19

structure on the observation space. More concretely, the observation space is required to
contain at least three elements, namely observation, desired goal, and achieved goal.
Here, desired goal specifies the goal that the agent should attempt to
achieve.achieved goal is the goal that it currently achieved instead. ‘observation’ contains

the actual observations of the environment.

4.3.2 ParkingEnv class

This is the concrete implementation of the AbstractEnv class which contains the
implementation of the code for the default parking environment. This class is instantiated
whenever we call 1 in our code which according to the OpenGym APIs, configures an
environment and returns an environment object.We will be specifically building on top of
this environment. Since this class has the concrete implementations of various environment

related configurations, we have added the customizations such as -

e making angle of lane as a configuration of the environment.

Adding other parked vehicles inside the empty lanes.

Adding obstacles to either end of the parking rows.

e making empty corridor width between two lanes configurable

Integrating csv module to write logs in a file for analysis.

env = gym.make("parking-v0") (1)

StraightLane class We have customized the Straight Lane class to accommodate the
diagonal slots with configurable angles. Additionally, some extra changes have been added
to make the parallel slots.

Vehicle and Obstacle classes We have added stationary vehicles to make the parking
environment complex. We have also added obstacles to the either side of the parking

slots.

4.3.3 Parking Driver Class

The file park _model.py is a single python script which was added for simulating different
learning and deployment modes for our experiments. The reason behind making a single

driver script is :
e changing environment modes by using commandline arguments.

e running in a headless mode on local desktop machine or on cloud for instance Kaggle
or Colab

20

http://www.kaggle.com
https://colab.research.google.com/

e Integrating matplotlib module for generating graphs.

4.4 shows a snapshot of the notebook run on kaggle which was used to train a model. With

less than 6 lines of code, we are able to run our training process anywhere. The complete

list of script arguments are given in A1.2.

O

Dissertation oraftsaved

File Edit View Run Add-ons Help

+ 0 X ID D b Pb mnAl Code -

! rm -rf Parking-AL
! git clone https://qgithub.con/pratush@7/Parking-AL.git
! ¢d Parking-AI/ & pip install .

@ Draft Session off (run a cellto start)

1\

Env setup and Installation

| pip install git+https://github.com/DLR-RM/stable-baselines3

| b ! cd Parking-AT/ && python park_model.py --mode learn --episodes 160 --filename sac_stralgm‘ =-goalSpotNunber 2

+ Code

+ Markdown

\ Learning/Simulation Script

Figure 4.4: Kaggle notebook for learning 4.8

4.4 Training Strategy

v

o D

Data + Adddata

Input

Output

v 0 [kaggle/working

Settings

Language Python ~
Environment Preferences
Accelerator GPU ~
GPUQuota 0216/ 30 hrs
Internet /]
Schedule a notebook run

A

]

A

Schedule this notebook to run and save a

new version on a future date. View all
your scheduled notebooks.

TRIGGER

Select

Code Help

We will perform training using a series of multiple approaches as described below. Firstly we

will train and test our agents in multiple independent scenarios.For instance if we train an

the same will be done for other scenarios as well.

agent in scenario 1, then we will test the agent by deploying them in the scenario 1.Similarly

Next we will see the performance of the agent when it is deployed in an environment which

it has not seen before. For example, if the agent is trained in scenario 1, it will be deployed

in other scenarios not previously seen during learning.

Now we will test the phased approach where the agent will be exposed to various

environments in a phased manner. For instance, if there are a total of 500 episodes, the

21

agent will learn scenario 1 for the 1st 250 episodes and then it will see a variation of the
environment for the remaining 250 episodes. This creates an environment similar to CL
where the tasks differ in the terms of parking the car in different slots.

Lastly, we will expose our agent to all variations in the environment during the learning and
deployment stage. This means that the agent can see any type of scenario uniformly

randomly both during training and deployment in a single simulation.

All of the above experiments create a suitable environment for testing the Catastrophic
Forgetting that happens during the Continual Learning and will help us analyze which

approach has the least forgetting. A list of variations in the environment are described below

in detail.

4.4.1 Scenariol

In this scenario, the agent is initialized at a fixed position heading in the west direction. We
have a parking lot with just 2 straight slots (lane angle is 90) and we have our goal lane
randomly placed between two during the training as shown in 4.5. Here the agent has no
prior experience in manoeuvring the vehicle in a parking lot so it is building it's experience

right from the start.

Figure 4.5: Scenario 1

4.4.2 Scenario 2

In this scenario, the agent and the environment setting would be identical to Scenario 1, but
now we will increase the complexity slightly by adding angles to the lanes as shown in 4.6.
Here the agent has prior experience in manoeuvring the vehicle in a parking lot from the

previous scenario, so it will build it's experience on top of what it has already learned.

22

Figure 4.6: Scenario 2

4.4.3 Scenario 3

In this scenario, the agent and the environment setting would be identical to Scenario 2, but

now we will be adding angles to the lanes to make it a parallel parking as shown in 4.7 .

Figure 4.7: Scenario 3

4.4.4 Scenario 4 and 5

In this scenario, we would be adding further complexity to our environment as shown in 4.8
and 4.9 by adding more lanes at varied angles with parked vehicles and also fixing the goal
lanes in the middle slots so as to make it more challenging to park. These scenarios will be

somewhat close to actual parking lots close to real life parking lots.

23

Figure 4.8: Scenario 4

TR

Juuie/

Figure 4.9: Scenario 5

24

5 Evaluation

We performed a series of experiments as described below. In each of the experiments, we
run the agent in the learning mode first and collect the metrics in a csv file as explained in
the 4.2. At the end of training, we run the agent in a deployment mode where the agent
only performs action in the environment. We know if a particular episode is successful if the
total reward accumulated in an episode is greater then or equal to success goal reward

(-0.10) defined in Al.1. We will finally do an overall comparison using the results.

5.0.1 Experiments

We will be running different experiments which have been described below on a very high

level.

Isolated Environments :In this experiment we will be running the training and testing
within the same lane orientation to assess how is agent able to perform on already seen lane
orientations. This means that the agent will not be deployed in unseen lane orientations.

This is the simplest form of testing.

Unseen Environments :In this experiment we will be running the training on vertical slots
and testing/deployment on diagonal slots to assess how is agent able to perform on unseen

lane orientations.

Phased Environments :In this experiment we will be exposing our agent to vertical and
diagonal slots in sequence. This means that if we start the training for 300 episodes, it will

see 150 episodes of vertical slots and then 150 episodes of diagonal slots.

Interleaved Environments :In this experiment we will be exposing our agent to vertical
and diagonal slots randomly. This means that if we start the training for 300 episodes, it will

see any of the 2 scenarios uniformly randomly.

5.0.2 SAC with no buffer

Firstly in the experiment, the agent will be trained to park the car in a vertical slot 4.8. We

begin learning with the model without using any buffer by making it's size 0. We run the

25

training for over a 1000 episodes. To train, the script is called in the following way:

python park_model.py --mode learn --episodes 1000 --filename
sac_straight --goalSpotNumber 2 --buffer O

5.1 shows that initially the model brings the car quite close to the parking slot and the
episode ends(Elapsed). It then crashes even after successfully parking once early in the
episode. This means that having a 0 buffer size makes SAC perform poorly. We will now go
to the next section where we will use a default replay buffer to store the previous

experiences.

Total Rewards vs Episodes

O,

™ [} Elapsed
@
& L] Crashed
® L] Success
-1 €
w)
°
o —2
=
(D]
o
©
S
= —3
—_ 4 4 _
® oo " ® o e
B G G AR R R e R R RIS e < R e e e IR
L (Y
®
(0] 200 400 600 800 1000

Episodes

Figure 5.1: Learning with zero buffer

5.0.3 SAC with default buffer

Isolated Environments In this experiment, the agent is trained in environment with
vertical parking slots and positioned at the east side facing in the west direction as shown

4.8 using a default replay buffer. It is then deployed in the same environment.

During Learning, the agent is able to learn to park successfully after 100™" episode. To train,

the script is called in the following way:

python park_model.py --mode learn --episodes 100 --filename sac_straight

--goalSpotNumber 2 --buffer 1

26

Total Rewards vs Episodes

Total Rewards vs Episodes
Y LR U CE @@ @ @ @ @@ @ @@ el St © Elapsed
?g@ © ~0.100 ® Crashed
' ® Success
-1 8 °©
—0.102
<]
B 3
S 2 o
3 g -0.104
= o
o o
T -3 " _0.106
—a © E'apie‘i -0.108
e @ o @ e . rashe
'&.W@b’ ® Success
0] 100 200 300 400 500 0 5 10 15 20 25 30
Episodes Episodes
(a) Vertical Slots Learn using default buffer (b) Scenario 4 Deploy using default buffer
Figure 5.2: Isolated Environment Vertical Slot
When the model is deployed in the same scenario, 5.2b we see a success rate of 1 as the
agent is able to park in all the 30 episodes. Similarly for Diagonal slots 5.3a,the success rate
starts to increase around 100" episode onward and 5.3b shows successful parking in all
episodes.
From the above experiments, we can conclude that the agent is able to learn for both
vertical and diagonal slots in isolated setting very quickly.
Total Rewards vs Episodes Total Rewards vs Episodes
0 @ ST og o RS20 SO EELRITEIIEEC S o Elapsed
%?GO oo —-0.082 * Crashed
of %o e e Success
1] 8
(<]
—-0.084
B 3
£ s Ced | 3
< ® Success] —0.086
L _3 ©
—0.088
-4 o
.“.9 .sﬁﬂ% - @%&m@ “: W:Mﬁ”s LLIC et o
° -0.090
(0] 50 100 150 200 250 300 350 0 5 10 15 20 25 30
Episodes Episodes
(a) Diagonal Slot using default buffer Learn (b) Scenario 5 using default buffer Deploy

Figure 5.3: Isolated Environment Diagonal Slot

Unseen Environment The agent trained on vertical slot from the previous experiment is

now deployed in the diagonal slots 4.9 environment.Deploying the agent in an environment

with a small variation in the slot angle will help in assessing the performance of the model in

unseen environment. In 5.4, as expected we see a success rate of 0 as the agent makes the

vehicle crash in all the 30 episodes. 5.5 shows the snapshot of the simulation environment

27

during the end of an episode.

Total Rewards vs Episodes

—4.01

e Elapsed
e Crashed
° Success
—4.1 1
(%]
=
g —4.2
[J] 90999 9 9 9 90 9 9 9 9 9 9 9 9 99999 °
o
s
o
F 43
—4.4
(0] 5 10 15 20 25 30
Episodes

Figure 5.4: Unseen Environments

AN

5

Figure 5.5: Unseen Environments Simulation crash

Phased Environments In this experiment, we want the agent to learn in a phased manner
for a total of 300 episodes where the ego vehicle will be exposed to the vertical slots 4.8 for
the 1st half of the simulations and the other half will have diagonal slots 4.9 (150 episodes
for each). During learning 5.6a we observe that all of the episodes are either elapsing or
getting crashed. One of the reasons behind getting elapsed episodes can be that agent gets
quite close to the goal slot and is stuck. To confirm this, we will look at the velocity vs step
graph in 5.7 during the training. The graph shows that towards the end of episode, the

vehicle is stuck in a loop by moving back and forth near the goal lane. This means that the

28

policy is not able to converge in 300 episodes in either of the environments. 5.6b shows that
during the deployment phase in both the environments, the agent comes very close to the
parking but gets stuck in all the 30 episodes. The results are in contrast to training in the

isolated environments experiment because we do not see any success in this case.

Total Rewards vs Episodes Total Rewards vs Episodes
0
_ -0.19

ORI IGERTE, RRUACAECLLL) Elapsed
HCBE W pRP B° - P
e o © ° °° i e Crashed
° -0.20 ® Success

-1 <]

°

e
-0.21

-2 © Elapsed
® Crashed
® Success

Total Rewards
I
N
N

-0.23

Total Rewards

—0.24
. « . cm@e o
L] L] L LT *e
. :.MPW -e .‘“ﬂbgs. @ « [-0.25
0 50 100 150 200 250 300 0 5 10 15 20 25 30
Episodes Episodes
(a) Phased Learn (b) Phased Deploy

Figure 5.6: Phased Environment

Interleaved Environments with 2 variations In this experiment the agent is trained in
an interleaved environment of vertical 4.8 and diagonal slots 4.9. This means that during

the learning, the agent can be in any of the 2 environments with a probability of 0.5.

In 5.8a we observe that we start to see success rate a little closer to 150" Episode along
with elapsed and crashed episodes. After 1000%" Episode, we only see successful episodes
which means the policy has converged for both vertical and diagonal slots. 5.8b shows that
deployment in a random environment of vertical and diagonal slots, we are getting a success
rate of 1. This confirms that the agent is know able to park in both the environments

successfully.

We will now rerun the experiments described above and use HER as our choice of replay
buffer and analyze if we can get any improvement in our performance in the next

section.

5.0.4 SAC with HER

Isolated Environments The agent is trained on the vertical slots 4.8 and then deployed in
the same environment to see the performance. To train, the script is called in the following

way:

python park_model.py --mode learn --episodes 100 --filename sac_straight

--goalSpotNumber 2

29

Rewards vs Steps

_ Rewards — r—y— r—T—y—
0.20 ® New Episode] r‘
—0.25
—0.30
wv
=
€ -0.35
&
—0.40
—0.45
—0.50 J L] L > L] > L > L] > J L L L J | L J L)) J
o] 1000 2000 3000 4000
Steps
Velocity vs Steps
8
6
>
-‘g‘ a Velocity
2 ® New Episode
>
2
L s s | A R = 1 R “ L L
o ALH_LA_HJLHFH
o] 1000 2000 3000 4000
Steps
Figure 5.7: Rewards vs Steps(Up) and Velocity vs Steps(Down)
Total Rewards vs Episodes Total Rewards vs Episodes
01 RO OO IR R R LTIl Lo O iE® —0.0868
SEERE° 08° , ©e09 © & o
o 8 o
2 e
-1 o —-0.0870
(<] (<]
w w
° T -0.0872
g —2 © Elapsed f;ﬂ o Elapsed
2 ® Crashed 2 ® Crashed
© ® Success © -0.0874 ® Success
e _5l e
—-0.0876
—4
. . we % © 9% o
s ’ -0.0878
e e
0 200 400 600 800 1000 1200 0 5 10 15 20 25 30
Episodes Episodes

(a) Random Learn

(b) Random Deploy

Figure 5.8: Interleaved Environment with 2 variations

30

During Learning, 5.9a we can see that the car is either unable to reach the the parking slot
or it is crashing in the first 50 episodes. At approximately, 70" episode, we can start to see
some success in parking rate and it keeps on getting better there after. Even though, the
policy is able to converge fairly quickly after 70" episode, we do observe a lot of crashes as
well. This means that our algorithm is not over-estimating the rewards and is exploring
other paths. This is expected because SAC maximizes entropy in addition to rewards which
leads to more exploration as compared to exploitation. It is observed that as compared to
the 5.3a where we use the default buffer, learning with HER is slightly more efficient. Please
note that even towards the end of the episode when the success rate is very high, we see
occasional crashes which means model is still trying to explore but however the frequency is
less. When the model is deployed in the same scenario, 5.9b we see a success rate of 1 as
the agent is able to park in all the 30 episodes.5.10 shows the path followed by the trained
agent.To deploy, the script is called in the following way:

python park_model.py --mode run --episodes 100 --filename sac_straight

--goalSpotNumber 2

We perform this experiment on 4.9 with diagonal slots.To train, the script is called in the

following way:

python park_model.py --mode learn --episodes 100 --filename sac_diagonal

--goalSpotNumber 2 --diagonalShift 6

We see that the observations for diagonal slots, 5.11a and 5.11b, are similar to the vertical
slots. 5.12 shows the path followed by the trained agent. To deploy, the script is called in

the following way:

python park_model.py --mode run --episodes 100 --filename sac_diagonal

--goalSpotNumber 2 --diagonalShift 6

Unseen Environments The trained agent on vertical slots 4.8 environment from the
previous experiment is deployed in the 4.9 diagonal slots environment to see the impact of
the performance with a small variation in the slot angle. To deploy, the script is called in the

following way:

python park_model.py --mode run --episodes 30 --filename sac_straight

--goalSpotNumber 2 --diagonalShift 6

31

Total Rewards

Total Rewards vs Episodes

© Elapsed
Crashed
® Success

0

50 100 150 200 250 300
Episodes

(a) Vertical Slot Learn

Total Rewards

Total Rewards vs Episodes

_0.114 o Elapsed
® Crashed
® Success

—-0.116

-0.118

0000000000000 0000000000000

-0.120

-0.122

-0.124

-0.126

0 5 10 15 20 25 30
Episodes

(b) Scenario 4 Deploy

Figure 5.9: Isolated Environment Vertical Slot

Figure 5.10: Vertical slot successful park

32

Total Rewards

Total Rewards vs Episodes

0 0%

R TR I

© Elapsed

® Crashed
® Success

0

200 300 400 500 600
Episodes

(a) Scenario 5 Learn

Total Rewards

—0.088

—0.090

|
o
o
©
N

—0.094

—0.096

Total Rewards vs Episodes

Elapsed
Crashed
Success

5 10 15 20 25
Episodes

(b) Scenario 5 Deploy

Figure 5.11: Isolated Environment Diagonal Slot

W lbhlau/

Figure 5.12: Diagonal slot successful park

33

30

In 5.13 as expected, we see a success rate of 0 as the agent makes the vehicle crash in all
the 30 episodes. This means that even after using the HER, we do not get any change in

generalizing performance in unseen environments.

5.14 shows the snapshot of the simulation during the end of the episode.

Total Rewards vs Episodes

© Elapsed
L] Crashed
—4.01 ® Success
g-—4l
O
=
[0} 9999999999959 >
o
©
S _a.2]
R}
—4.31
0 5 10 15 20 25 30

Episodes

Figure 5.13: Unseen Environment

AN

5

Figure 5.14: Agent crashing in diagonal slot

Phased Environments : The agent is now trained in a phased manner starting from
vertical slots 4.8 and then diagonal slots 4.9. One thing to note here is that during the
phased learning, if the number of episode is 200, the slots will be vertical for the 1st 100
episodes and then it will switch to diagonal slots for the remaining 100 episodes. Up to 100

34

episodes in 5.15a the agent learns how to park in vertical slots, but as soon as it detects
diagonal slot after 100" episode, we see the agent performance deteriorates and it takes
time to relearn in the new environment. After we switch to the diagonal slot, we observe
that there are still a some elapsed episodes with a lot of crashes which means that agent
learns the new environment from scratch and does not reuse any of it's learned experience.

To learn, we call the script is called in the following way:

python park_model.py --mode phasedLearn --episodes 250 --filename
sac_phased --goalSpotNumber 2 --diagonalShift 6

To deploy, the script is called in the following way:

python park_model.py --mode phasedRun --episodes 30 --filename
sac_phased --goalSpotNumber 2 --diagonalShift 6

When the trained model is now deployed 5.15b for both the scenarios, we see that the model
perform perfectly in 4.9 (Episode 16-30) but crashes the vehicle in 4.8 Episode(1-15).The
simulation can be seen for a crash in 5.16a and a successful parking in 5.16b. This means as
the agent is forgetting what it learned once it has been exposed to a variation in the

environment.

Total Rewards vs Episodes Total Rewards vs Episodes
Y %o o o® ° @O%Q .O@ @00-.0 @ AL ® 0.0 © Elapsed
® * Crashed
<) @© -0.5
@Q ® Success
-1 -1.0
%) n —-1.5
2 B
c _> © Elapsed o
= 2 _
2 ® Crashed 2 2.0
g ® Success g 5
= =
-3
-3.0
-3.5
-4
PRI RGOy o0 TIREIS | g
0 50 100 150 200 250 300 350 0 5 10 15 20 25 30
Episodes Episodes
(a) Phased Learn (b) Phased Deploy

Figure 5.15: Phased Environment

Interleaved Environments with 2 variations The agent is now trained in an interleaved
environment of 4.8 and 4.9. This means that agent can be in any of the 2 environments

with a probability of 0.5. To learn, the script is called is called in the following way:
python park_model.py --mode randomLearn --episodes 250 --filename

35

1n)ajujn 999

(a) Vertical slot crashed (b) Diagonal slot successful park

Figure 5.16: Phased Environment Simulation
sac_random --goalSpotNumber 2 --diagonalShift 6

5.17a shows the training of the agent in this random environment. We notice a lot of
crashes in the 1st 100 episodes along with episode elapse without parking. We start to see
successful parking from 70 episode onwards. We notice a small number of episodes where

time is elapsed without parking around 200th episodes.

The agent is now deployed in the environment where it will again see 4.8 and 4.9 scenarios

with a probability of 0.5. To deploy, the script is called in the following way:

python park_model.py --mode randomRun --episodes 30 --filename

sac_random --goalSpotNumber 2 --diagonalShift 6

The 5.17b shows that the agent is able to successfully park the car in both the environments
with a success rate of 1 in all the 30 episodes.5.18a and 5.18b show the successful parking in

these 2 environments.

Interleaved Environments with 3 variations The agent is now trained in an interleaved
environment of vertical slot 4.7 , diagonal slot 4.8 and parallel slot 4.9. This means that the
agent can see any of the scenarios uniformly randomly during training and deployment both.
To learn, the script is called in the following way:

python park_model.py --mode randomLearn --episodes 1200 --filename
sac_random_3env --goalSpotNumber 2 --diagonalShift 6 --parallelParking

1

5.19a shows the training of the agent in this random environment. Here we can observe that

our agent starts to learning the scenarios in 1st 500 episodes

36

Total Rewards vs Episodes

Total Rewards vs Episodes
[0] o -0.108
@ e B G e e
)
8 oo
® o
-1 .:‘ ° -0.110
B 3
§ —2 © Elapsed §_0'112 o Elapsed
2 ® Crashed 2 ® Crashed
© ® Success T ® Success
= 2
e _3 e —0.114
4 -0.116
B soGme o o L e © o oo
. o oe . .
L]
0 100 200 300 400 500 600 0 5 10 15 20 25 30
Episodes Episodes

(a) Random Learn

(b) Random Deploy

Figure 5.17: Interleaved Environment with 2 variations

(a) Vertical slot successful park

Y

Figure 5.18: Interleaved Environment Simulation

Total Rewards vs Episodes

Total Rewards vs Episodes

(b) Diagonal slot successful park

0 LN L] L] . L] LN . L] LN
M —0.040
® o —0.045
-1
o) @
) —-0.050
g-2 ® © Elapsed §-0-055 o Elapsed
2 e Crashed 2 ® Crashed
= — —0.060
ol ° ® Success o ® Success
3 S
o (=]
F-3 F ~0.065
—-0.070
-4
mt:‘m GO0 o0 (8% S50 ‘cw ~0.075 oo . . e . .
oo o0 o0 ° e o] °
—-0.080
0 500 1000 1500 2000 2500 3000 3500 4000 0 5 10 15 20 25 30
Episodes Episodes

(a) Random Learn

(b) Random Deploy

Figure 5.19: Interleaved Environment with 3 variations

37

To deploy, the script is called in the following way:

python park_model.py --mode randomRun --episodes 30 --filename
sac_random_3env --goalSpotNumber 2 --diagonalShift 6 --parallelParking
1

The 5.19b shows that the agent is able to successfully park the car in all three environments
with a success rate of 1 in all the 30 episodes.5.20 show the successful parking in for parallel
parking.

Figure 5.20: Agent parallel parking successfully

38

6 Conclusion

After running the above experiments, the following subsection presents the final

conclusions

No Buffer Using no buffer at all makes training performance very poor. Over a period of
1000 episodes, we just see a single successful parking with few elapsed episodes in the

beginning and then all the episodes end up in a crash.

Default Buffer We perform similar experiments with a default buffer. The agent learns to
park in isolated environments for both vertical and diagonal slots quickly. There is no
change in performance in Unseen environments where it crashes in all 30 episodes.
However,for phased environment for vertical and diagonal slots we observe that the agent
comes quite close to the parking slot but gets stuck in a loop moving back and forth
between the same position. This means that with default buffer does not have a good
sampling efficiency and makes training hard. The agent is performs well in an interleaved
environment of vertical and diagonal slots where at the end of the training it is able to park

the vehicle efficiently in both the lane orientations.

Using HER During the isolated environment of both vertical and diagonal, the policy
converges fairly quickly when the learning and deployment environment is the same, however
the agents performance quickly deteriorates when it is deployed in an environment with a
slight variation to the one it is trained on as shown in experiment 2. On the other hand,
when a phased approach for 2 environments is used as shown in phased environment, we
observe that the learning places a higher bias on environment seen more recently and tends
to 'forget’ the past environment which is known as catastrophic forgetting. The agent is not
able to generalize well using the phased approach even when the 2 scenarios only differ by a
few degrees of lane angle. We get the best results when the agent is exposed to both the
environment in a random fashion as described in the interleaved environment with 2
variations. The deployment in this interleaved environment shows that the agent is able to
generalize well and perform successful parking in both vertical and angled slots with a high
accuracy. The interleaved environment with 3 variations is an extension of the previous
experiment where now we have parallel slot added on top of vertical and diagonal slots.

From the learning we can however observe that it takes much more time for the agent to

39

generalize over all 3 variations as compared to experiment 4. For instance, the agent takes
more time to generalize over all three orientations as shown in 5.19a because we see

episodes being elapsed or crashed even at 2500, episode.

From the above observations, we can conclude that HER makes the sampling efficient
during training. The use of phased approach leads to catastrophic forgetting even when we
use HER. The best way for an agent to learn is to expose it to all the variations in a
uniformly random fashion during the training. The more degree of variation is present
between the environments, the agent will take more time to converge to the optimal policy

which works for all variations in the environment.

6.0.1 Future Work

This dissertation sets a basic framework for evaluating the agent's training and deployment
performance as we introduce variations such as changing parking lane orientation in the
environment. With respect to the future work, there are some additional experiments that

can be performed which are described below.

Non-stationary vehicles We can introduce non-stationary vehicles in our environment
which is quite close to real world scenario. Since the only non-stationary part of the current
environment is through the changing parking lane orientation, adding moving vehicles into

the mix will add more complexity to the learning and deployment process.

Multi lane and Multi level layout Another experiment would be how the agent will work
in a parking layout much different to what it has seen before. Since our current experiments
are limited to 2 rows of lanes, we can extend the experiment to multiple rows of slots
stacked together. To add further complexity to this environment, another interesting
experiment would be to see the agent’s performance when the parking slot extends to

multiple levels or floors in a building.

Varying Position and Speed Since our current experiments have an ego vehicle
positioned in the east having a head angle pointing towards west, further experiments can be
conducted where we can vary the initial position, the velocity and angle of heading in various

combinations and see the effect on the learning and deployment performance.

Varying Position and Speed Since our current experiments have an ego vehicle
positioned in the east having a head angle pointing towards west, further experiments can be
conducted where we can vary the initial position, the velocity and angle of heading in various

combinations and see the effect on the learning and deployment performance.

Using On-Policy Since our current experiments are done on SAC,an Off policy algorithm,

we can experiment with using on policy algorithms like SARSA, TRPO etc

40

Other CL techniques In our experiments since the environment is customized to change

the lane orientation, it is suitable for applying other CL learning techniques for example
Gradient Episodic Memory (GEM).

6.0.2 Reflection

All of the experiments run in our thesis are a simulation of the parking lots and any analysis
done are based on various assumptions described in Chapter 3. .As can be observed from
the chapter 5, for learning in isolated environments, the agent is able to learn quickly in less
than 100 episodes, but when agent is placed in small variation of environment they have
seen before, they perform poorly. When agent is exposed to the variations in a phase wise
manner, our agent is susceptible to catastrophic forgetting. When the agent is exposed to

all the variations in a environment uniformly randomly, the agent tends to learn faster.

Since the learning process is very resource intensive and will takes a lot of time to train the
model, deployment of the model on vehicles can be a challenge in the real world. On top of
that, RL algorithms are susceptible to taking actions which might be incorrect which can be
overcome by having emergency systems in place. For example a vehicle equipped with
sensors can automatically enable brakes when there is a high chance of collision. The impact
of a wrong action will be relatively less as compared to a fast moving highway environments

because the speed can always be capped in parking environment.

41

Bibliography

[1] Open Al. Rl taxonomy. URL
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html.

[2] Davide Abati. Introduction to continual learning. URL https:
//drive.google.com/file/d/11A3zxBAOYAG18yELEOYcbaIlEt_wUYgX/view.

[3] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor, 2018.
URL https://arxiv.org/abs/1801.01290.

[4] Ketan Doshi. Policy gradient, 2021. URL https://towardsdatascience.com/

reinforcement-learning-explained-visually-part-6-policy-gradients-step-by-step-£

[5] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A
Bradford Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

[6] David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. URL
https://arxiv.org/abs/1712.01815.

[7] Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual
reinforcement learning: A review and perspectives, 2020. URL
https://arxiv.org/abs/2012.13490.

[8] Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone Calderara, Rita Cucchiara,
and Babak Ehteshami Bejnordi. Conditional channel gated networks for task-aware
continual learning, 2020. URL https://arxiv.org/abs/2004.00070.

[9] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress amp; compress: A scalable
framework for continual learning. In Jennifer Dy and Andreas Krause, editors,

Proceedings of the 35th International Conference on Machine Learning, volume 80 of

42

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://drive.google.com/file/d/11A3zxBAOYAGl8yELE0YcbaIlEt_wUYgX/view
https://drive.google.com/file/d/11A3zxBAOYAGl8yELE0YcbaIlEt_wUYgX/view
https://arxiv.org/abs/1801.01290
https://towardsdatascience.com/reinforcement-learning-explained-visually-part-6-policy-gradients-step-by-step-f9f448e73754
https://towardsdatascience.com/reinforcement-learning-explained-visually-part-6-policy-gradients-step-by-step-f9f448e73754
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/2012.13490
https://arxiv.org/abs/2004.00070

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Proceedings of Machine Learning Research, pages 4528-4537. PMLR, 10-15 Jul 2018.
URL https://proceedings.mlr.press/v80/schwarz18a.html.

Wikipedia contributors. Deep reinforcement learning — Wikipedia, the free
encyclopedia, 2022. URL https://en.wikipedia.org/w/index.php?title=Deep_
reinforcement_learning&oldid=1100606157. [Online; accessed 11-August-2022].

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight
experience replay, 2017. URL https://arxiv.org/abs/1707.01495.

Gokhan Egilmez and Omer Tatari. A dynamic modeling approach to highway
sustainability: Strategies to reduce overall impact. Transportation Research Part A:
Policy and Practice, 46:1086-1096, 08 2012. doi: 10.1016/j.tra.2012.04.011.

Bangalore Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad Sallab,
Senthil Yogamani, and Patrick Perez. Deep reinforcement learning for autonomous
driving: A survey. IEEE Transactions on Intelligent Transportation Systems, PP:1-18,
02 2021. doi: 10.1109/TITS.2021.3054625.

Myoung-jae Lee and Young-guk Ha. Autonomous driving control using end-to-end deep
learning. In 2020 IEEE International Conference on Big Data and Smart Computing
(BigComp), pages 470-473, 2020. doi: 10.1109/BigComp48618.2020.00-23.

Wen-Yi Gu, Xin Xu, and Jian Yang. Path following with supervised deep reinforcement
learning. In 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), pages
448-452, 2017. doi: 10.1109/ACPR.2017.30.

Zeyu Li. A hierarchical autonomous driving framework combining reinforcement learning
and imitation learning. In 2021 International Conference on Computer Engineering and
Application (ICCEA), pages 395-400, 2021. doi: 10.1109/ICCEA53728.2021.00084.

Baramee Thunyapoo, Chatree Ratchadakorntham, Punnarai Siricharoen, and Wittawin
Susutti. Self-parking car simulation using reinforcement learning approach for moderate
complexity parking scenario. In 2020 17th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information Technology
(ECTI-CON), pages 576-579, 2020. doi: 10.1109/ECTI-CON49241.2020.9158298.

Rikuya Takehara and Tad Gonsalves. Autonomous car parking system using deep
reinforcement learning. In 2021 2nd International Conference on Innovative and
Creative Information Technology (IClTech), pages 85-89, 2021. doi:
10.1109/ICITech50181.2021.9590169.

43

https://proceedings.mlr.press/v80/schwarz18a.html
https://en.wikipedia.org/w/index.php?title=Deep_reinforcement_learning&oldid=1100606157
https://en.wikipedia.org/w/index.php?title=Deep_reinforcement_learning&oldid=1100606157
https://arxiv.org/abs/1707.01495

[19] Dinis Moreira. Deep reinforcement learning for automated parking, 2021. URL
https://repositorio-aberto.up.pt/bitstream/10216/136074/2/494682.pdf.

[20] Edouard Leurent. An environment for autonomous driving decision-making.
https://github.com/eleurent/highway-env, 2018.

[21] Junwu Zhao, Ting Qu, and Xu Fang. A deep reinforcement learning approach for
autonomous highway driving. IFAC-PapersOnLine, 53:542-546, 01 2020. doi:
10.1016/j.ifacol.2021.04.142.

[22] Omar Tanner. Multi-agent car parking using reinforcement learning, 2022. URL
https://arxiv.org/abs/2206.13338.

[23] Thomas Van Iseghem. A rl project focussed on autonomous parking. URL
https://github.com/VanIseghemThomas/AI-Parking-Unity.

[24] Jason Kong, Mark Pfeiffer, Georg Schildbach, and Francesco Borrelli. Kinematic and
dynamic vehicle models for autonomous driving control design. In 2015 IEEE Intelligent
Vehicles Symposium (1V), pages 1094-1099, 2015. doi: 10.1109/1VS.2015.7225830.

[25] Maximilian Ernestus Adam Gleave Anssi Kanervisto Rene Traore Prafulla Dhariwal
Christopher Hesse Oleg Klimov Alex Nichol Matthias Plappert Alec Radford John
Schulman Szymon Sidor Ashley Hill, Antonin Raffin and Yuhuai Wu. Stable baselines,
2018. URL https://github.com/hill-a/stable-baselines.

[26] Oleg Klimov Alex Nichol Matthias Plappert Alec Radford John Schulman Szymon Sidor
Yuhuai Wu Prafulla Dhariwal, Christopher Hesse and Peter Zhokhov. Openai baselines,
2017. URL https://github.com/openai/baselines.

44

https://repositorio-aberto.up.pt/bitstream/10216/136074/2/494682.pdf
https://github.com/eleurent/highway-env
https://arxiv.org/abs/2206.13338
https://github.com/VanIseghemThomas/AI-Parking-Unity
https://github.com/hill-a/stable-baselines
https://github.com/openai/baselines

Al Appendices

Parameter Value Definition

Success Goal Reward -0.09 The total reward threshold
which makes the episode suc-
cessful

Grid Size 6 Number of slots on both sides
of the parking lot

Collision Reward -4 how much reward to give
when vehicle collides

Goal Slot Number 2 Fixing Goal slot. If None, it
will be picked at random.

Diagonal Shift 0 Diagonal displacement to
change the angle of the slot.0
is vertical

Corridor Width 10 maneuvering empty area in
between 2 parking rows

Slot Width 4 slot width

Slot Length 8 length of slot

Obstacle box 1 if 1, adds obstacles to either
ends of the parking lot.

Other vehicles 1 if 1, adds parked to all the
slots except the goal slot.

Steering Range [—7/4, 7/4] maximum steering in either
direction

Initial Position [10,0] Initial Position of the ego ve-
hicle in [x,y] coordinates

Initial Heading 0.5 Initial direction of the ego ve-

hicle. 0.5 means heading to-
wards west.

Table A1.1: RL Environment specific parameters

45

Argument Value Definition

mode learn will run the script in a learning mode for a single
environment

mode phasedLearn will run the script in a learning mode for 2 envi-
ronments. 1st enivronment will run for half of the
episodes and then 2nd environment will run for the
other half.

mode randomLearn will run the script in a learning mode for 2 environ-
ments. 1st enivronment and 2nd environment will be
picked up uniformly randomly.

mode run will run the script in simulation/deployment mode for
a single environment.

mode phasedRun will run the script in a simulation/deployment mode
for 2 environments. 1st enivronment will run for half
of the episodes and then 2nd environment will run for
the other half

mode randomRun will run the script in a simulation/deployment mode
for 2 environments. 1st enivronment and 2nd envi-
ronment will be picked up uniformly randomly.

episode 100 will run the script for 100 episodes

filename sac_straight after the learning/training is complete, it will save
the model as sac_ straight timestamp.zip

her 0 if 0, will not use the HER during training otherwise
will use HER.

saveGraphs 0 if 0, will not save the graphs to the disk otherwise
will save.

timeDelay 1 will introduce a time delay of 1 second during deploy-
ment/simulation between each environment render-
ing step.

gridSizeX 6 there will be 6 slots on either side of the parking lot.
Total 12 slots will be present.

disagonalShift 6 will displace the bottom part of the parking slot by a
magnitude of 6 for giving an angle. 0 means vertical
slot and any value above 0 will be in the order of
increasing angle.

goalSpotNumber | 2 will make the parking slot 2 as the goal slot. the
bottom left slot will indexed at 0 and top right slot
will be indexed at gridSizeX - 1.

duration 150 150 steps will mark the end of an episode

Table A1.2: Commandline Arguments

46

	Introduction
	Context
	Motivation
	Problem Definition
	Objectives & Approach
	Objectives
	Methodology

	Document Structure

	Background
	Reinforcement Learning
	Lifelong Reinforcement Learning
	Deep Reinforcement Learning
	Soft Actor Critic Model
	Hindsight Experience Replay

	Autonomous Cars
	Overview
	Parking

	Problem Approach
	Vehicle Attributes
	State Space
	Action Space
	Reward Function
	Algorithm

	Simulation
	Simulation Tools
	Test Setup
	Environment
	Algorithm and Architecture
	Data Gathering Strategy
	Evaluation Metrics

	Implementation Classes
	AbstractEnv and GoalEnv Class
	ParkingEnv class
	Parking Driver Class

	Training Strategy
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4 and 5

	Evaluation
	Experiments
	SAC with no buffer
	SAC with default buffer
	SAC with HER

	Conclusion
	Future Work
	Reflection

	Appendices

