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Abstract 

Human Action Recognition is very significant in the field of computer vision as it allows 

the machines (computers) to recognize what humans are doing and can take necessary 

actions in response. Although Human Action Recognition involves a lot of challenges, it 

has gained huge importance over the years and these algorithms are already employed 

in various fields such as Human Computer Interaction, Smart Homes, security, 

transportation, medication management and education. Because of its positive impact 

these techniques have been deployed for video processing for human action analysis in 

many more fields. However, the existing algorithms based on videos needs to improve 

for it to be employed reliably for applications such as assistive robotics and augmented 

reality gaming. Here, we are trying to achieve the same for a specific set of actions such 

as Jog on the spot; Jump forward; Jump high; Jump sideways. This work is focussed on 

researching various algorithmic approaches with machine learning models to not only 

recognise these actions but also calculate the results of these actions based on specific 

criteria. The criteria for Jump High and Jump Forward is the distance jumped; for Jump 

Sideways and Jog is the number of Jumps or Jogs respectively. This is addressed by two 

approaches. The first approach focusses on deriving joint based features of the human 

for each frame in the videos and training classification algorithms on all the frames and 

calculating the results as per criteria. The second approach focusses on directly running 

deep convolutional neural networks with and without transfer learning on all frames of 

the videos and classify them as per their labels and calculate the results based on the 

criteria. The video dataset used for this experiment is collected as part of a research 

conducted in [19]. The experimental results shows that the first approach is more 

accurate, more efficient and less complex.  
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1 Introduction 
In this era, when technology is advancing at a fast pace, there is a huge amount of video 

data being generated from various avenues such as CCTV, social media, smartphones, 

etc. It becomes necessary to analyse and extract useful information from these videos. 

The recognition of human actions would be one of the most important applications, 

which can be utilized in various fields such as autonomous vehicles, sports analysis, 

shopping behaviour analysis, surveillance systems, etc. Hence, the field of Human Action 

Recognition has gained lot of attention in the recent years. 

Human Action Recognition is the process of analysing and detecting actions performed 

by humans from video sequences. The core objective would be to analyse videos and 

label each section of the videos according to the behaviour of the human. This involves 

many sub tasks such as categorizing what action is performed and locating where the 

action is performed in the video. Complex activities need to be further broken down into 

simpler activities and recognised using a combination of machine learning and pattern 

recognition systems. There are challenges involved such as group activities, multi subject 

interactions and complex backgrounds. 

Human Action Recognition has been more effective in the recent years with the 

advancements in deep learning. The recent human action recognition methods [1] [2] 

[3] utilized deep Convolutional Neural Networks (CNNs), Graph Convolutional Neural 

Networks (GCNs) [4] [5] and Recurrent Neural Networks (RNNs) [6] [7]. All these 

methods can recognize different sets of human actions with a good accuracy once 

trained on enough videos.  

1.1 Motivation 

As deep learning and computer vision techniques are advancing at a fast pace, the 

applications of human action recognition have been extended to many new domains 

such as anti-terrorist and anti-crime systems, life logging and assistance services, etc. 

So, it has become necessary not only to recognise actions from these videos but also to 

calculate the result of these actions so that these systems can run autonomously with 

minimal human intervention. This becomes complex as different actions might have 

different results based on the scenarios in which the action is performed. In this paper 

we are focussed on four actions – Jump High, Jump Forward, Jump Sideways and Jog on 

the Spot. The criteria we have set for calculating results are distance jumped for Jump 



11 

 

High and Jump Forward, and number of repetitions for Jump Sideways and Jog on the 

Spot. 

This study can help in the advancement of automation of systems as machines become 

aware of what action is performed, what are the results of these actions and can take 

necessary responses based on situations.  

 

1.2 Research Question 

How can different machine learning models such as Random Forest, XGBoost, Deep 

Convolutional Neural Networks and Long Short Term Memory Networks be used in 

combination with pattern recognition algorithms to detect four specific human actions 

(Jump High, Jump Forward, Jog on the Spot and Jump Sideways) and calculate the results 

of these actions such as the distance jumped and the number of repetitions of the 

actions, from video data collected as part of the research conducted in [19]? 

 

1.3 Research Objective 

The objectives of this research to address the research question are the following: 

1.  Classify the videos into four actions using Convolutional Neural Networks and Long 

Short-Term Memory Networks. 

2. Label each frame of the videos to an intermediate stage of the action as defined by a 

heuristic. 

3.  Train four classification models based on different approaches using joint features 

and direct images on these labelled frames corresponding to each of the four actions. 

4.  Use the trained classification models to predict the intermediate stage of each of the 

videos. 

5. Calculate the necessary criteria such as distance jumped and the number of 

repetitions for each action using the defined functions. 

6. Evaluate the criteria calculated by the algorithm with the criteria values previously 

noted during the research. 
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1.4 Research Challenges 

1.  The identification of heuristics to label the intermediate stages is difficult. 

2. The dataset contains many bad videos (videos where children are not performing the 

actions mentioned properly). 

3. The hyperparameter tuning is challenging as it requires a balance between 

underfitting and overfitting. 

4.  Evaluation of the criteria for each action is difficult as it cannot be automated.  

 

1.5 Thesis Overview 

This research focusses on recognizing actions and calculating the results of these actions 

based on certain criteria. The video dataset used for this experiment is collected as part 

of a research conducted in [19].  The four actions which are evaluated in this work are 

Jump High, Jump Forward, Jog on the Spot/Run and Jump Sideways. The result measured 

for Jump High and Jump Forward is the distance jumped and for Jog and Jump Sideways 

is the number of jogs or jumps.  

The videos are classified into the four different actions using Convolutional Neural 

Networks and Long Short-Term Memory Networks. The four actions are further analysed 

separately for calculating the criteria values using two approaches. In the first approach, 

the joint features of the human are extracted and machine learning models such as 

Random Forests and XGBoost are used to train on the joint features of all the frames of 

all videos with their intermediate labels as outputs. The intermediate labels correspond 

to the position the human is assuming in the frame. The trained classifier is used to 

predict the labels of the frames of a new video and specifically designed algorithms are 

used to calculate the result based on criteria from these predicted labels. In the second 

approach, all the frames are directly passed through a deep convolutional neural 

network and are trained to classify the intermediate labels. A convolutional network 

designed from scratch and another network implementing transfer learning using 

EfficientNetB7 is both trained and evaluated. The designed algorithms are applied on 

the predicted labels of each video to calculate their results as per the criteria. The results 

of the two approaches are compared with the criteria values recorded for the research 

for all the four actions.  
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1.6 Thesis Structure 

The thesis is organized as follows. In Chapter 2, the background and related works of the 

thesis are discussed. Chapter 3 discusses in brief the working of the machine learning 

methods used in this project. Chapter 4 explains the implementation of the project 

including data pre-processing and the system architecture. Chapter 5 presents the 

security and privacy considerations involved in this project. The evaluation of the models 

and the project results are discussed in Chapter 6. The study concludes with Chapter 7 

which discusses conclusion and future works. 
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2 Background and Related Work 

A review of literature on the various techniques and technologies involved in Human 

Action Recognition is conducted in this chapter. Since the methods used in this paper 

employ joint detection (pose detection) and Neural Network architectures, some 

relevant researches in Human Joints (Pose) Detection and Human Action Recognition 

using deep learning architectures are discussed below. 

2.1 Human Pose Detection 

The most widely used and accurate libraries for joint (pose) detection are OpenPose and 

MediaPipe. The studies behind these libraries are discussed below.  

A real time approach for detecting poses of multiple people in an image which is 

implemented in OpenPose is discussed in [8].  OpenPose works by using Part Affinity 

Fields (PAFs) to detect human posture.  The pairwise relationship between different 

body parts is encoded as a set of flow fields and these are the PAFs.  The dataset used 

for this study is MPII human multi-person dataset, COCO key point challenge 

dataset and a custom foot dataset which is a subset of 15k images annotated from the 

COCO key point dataset. The image is first passed through the first 10 layers of a 

pretrained model called VGG-19 to extract its features. These features are then passed 

through a set of Part Confidence Maps. These are 2D confidence maps for body part 

locations and a map of each joint location is generated. The features are also passed on 

to a set of Part Affinity Fields. These are a set of 2D vector fields which will capture the 

association between the body parts. The output from Part Confidence Maps and Part 

Affinity Fields are processed by a greedy algorithm to get the joint locations connected 

which can be used to estimate the pose of the person. OpenPose can hence process and 

image and output the 2D coordinates and confidence of 18 body joints in this manner. 

The sample model of 18 body joints is shown in Figure 2.1. 

MediaPipe is a library developed by google research that offers customizable Machine 

Learning Solutions for live and streaming media. The functionality relevant to this 

research is the MediaPipe Pose, which is a solution for body pose tracking and inference 

of 33 3D body landmarks as shown in Figure 2.2. This is based on a new approach to 
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human body pose estimation called BlazePose1 which is utilized to create 3D human 

modelling pipelines in [9]. This approach has two stages, the first stage detects the 

region of interest (ROI) within the frame and the second stage extracts the 33 key point 

from this ROI by predictions. The detection stage is an extension of the face detection 

model called BlazeFace which is discussed in [10]. A regression model approach is used 

to predict these key points as shown in Figure2.3. A heatmap and offset loss is used to 

train the first two parts of the network and the heatmap output is removed while 

training the third part of the network to get the embeddings for the joint locations. The 

model was evaluated on geo-diverse datasets of various poses and the Percent of 

Correct Points with 20% tolerance (PCK@0.2) was 97.2.  The tolerance indicates the 

allowed 2D Euclidean error in distance from the predicted values as a percentage of the 

person’s torso size. 

 

Figure 2.1: Model of 18 joints given by OpenPose 

 

 
1 https://ai.googleblog.com/2020/08/on-device-real-time-body-pose-tracking.html 
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Figure 2.2: 33 Pose Landmarks given by MediaPipe 

 

 

Figure 2.3: Architecture of Tracking network in BlazePose 
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2.2 Human Action Recognition 

There are several researches conducted in the field of Human Action Recognition. This 

is because of the huge potential of its applications in various fields.  Few of the latest 

and relevant works in this regard are discussed below. 

A study of an action recognition system, which is skeletal based and uses computer 

vision feature and joint trajectory images to model human action, is carried out in [11]. 

The dataset used in this study is the UCF11 dataset. This dataset contains 11 action 

categories. Each video in the dataset was processed using OpenPose and the position 

information of skeletal joints in all frames were stored in a JSON file in the same order 

as in the video. This joint data is further normalised and filtered to rectify errors and 

deviations. The data is converted into a matrix which is used to form a character graph 

which traces the trajectory of the skeletal joints. The trajectory of skeletal joints is drawn 

by generating Histogram of Oriented Gradients feature vectors. These features are 

further passed as input for training to a linear Support Vector Machine Classifier which 

uses a radial basis function as the kernel. The trained SVM model can classify the video 

into 11 action categories with 60% accuracy. 

One of the biggest challenges of human action recognition is cluttered backgrounds. To 

recognise human actions after removing cluttered backgrounds a new method which 

estimates human poses by making the actions predictions aware of the context is 

discussed in [12]. The dataset used in this study is the NTU RGB+D [13] dataset. This 

dataset contains 58000 videos with 60 action categories. The four main components of 

the method described in this study are pose estimation module (P-module), skeletal 

based action recognition module (S-module), appearance-based action recognition 

module (A-module) and the aggregation module. The block diagram of this architecture 

is shown in Figure 2.4. The input RGB videos to the system are subsampled to get 32 

frames and these frames are fed to the Pose Estimation Network which will generate 

the 3D body join coordinates. This is fed to the skeletal based action recognition 

network. The convolutional features and the body joint heatmaps generated during the 

process of pose estimations are fed to the appearance-based action recognition 

network after applying the Kronecker product operation. The results from the 

appearance based and skeletal based action networks are fused by the aggregation 

module using element wise summation, element wise multiplication and feature map 

concatenation to generate the prediction. This method reached accuracy up to 95.41% 

and 91.76% on cross view and cross subject evaluation methods as described in [13]. 
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Figure 2.4: Network Architecture for Action Recognition 

A more recent study [14] approaches the human action recognition problem as a 

process of representing an action as a collection of representative frames called 

exemplars and actions are modelled by the distance to those representative frames. 

This study is conducted on the KTH dataset. This dataset consists of 600 videos with 6 

types of actions (boxing, handclapping, handwaving, jogging, running, and walking). The 

video input is divided into its frames and each of these frames is converted to grayscale 

images. These grayscale images are further converted to its binary form. The frame 

background value is subtracted from the whole image and a blob of the required human 

is cut out. An example of this is shown in Figure 2.5.  The distances of these frames with 

the exemplars of each action are calculated using silhouettes or edges and the 

exemplars closest to the frames in the videos on an average is the action category for 

that video. The neural network model is trained to minimise the distance between all 

frames in a video and the exemplars thereby finding the correct exemplar for 

categorising each video into different actions. This model was able to classify all actions 

efficiently where temporal information was not required. In actions where temporal 

information is required such as getting up and sitting down, where both actions would 

look the same without the order of frames, this method fails. 

One of the major issues in video surveillance systems is that action recognition in such 

harsh environments such as low light environments is challenging. This has been tackled 

in [15]. The dataset used for this study is KETI RGB+D. This dataset consists of 1000 

videos and 13 classes of actions which are based on video surveillance applications. The 

deep neural network architecture used for this study is shown in Figure 2.6. The Cov3D 

layers apply 3D convolutional filters on the inputs and extract different features as the 
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model trains on the data. The MaxPooling layers will average the values from the 

convolutional layers across different regions enabling the model to detect local features 

at different parts in each frame of the videos. These are performed in the 

spatiotemporal domain. There are multiple such blocks of Conv3D and MaxPooling 

layers which will extract all the localized features from the frames and finally feed it to 

dense layers which will convert the large number of features to the number of 

categories to which the actions are to be classified, the weights of which will be learned 

during the training process. The model was able to achieve an accuracy of about 61.5%. 

 

Figure 2.5: Background removal 

An image based human action recognition system using Convolutional Neural Network 

(CNN) architecture and transfer learning is discussed in [1]. This study has been 

conducted on the Stanford 40 and PPMI datasets. The Stanford 40 dataset contains 9532 

images with 40 different human action categories. The PPMI dataset contains images of 

humans using musical instruments of 12 different types. The process defined in this 

study is divided into two stages – 1) Data Augmentation and Image Pre-processing and 

2) Transfer learning. In the first stage the image is resized to a standard size based on 

the input size to the model in the transfer learning phase. The resized image is then 
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passed as input to a data augmentation pipeline. In the pipeline many transforms such 

as perspective skewing, rotation, vertical flipping, horizontal flipping and gaussian noise 

are applied to the image to generate multiple augmented images.  The augmented 

images are further normalised to keep the values close to 0. The next stage is the 

transfer learning stage where pretrained networks such as ImageNet, ResNet or VGG 

are used. The last layers of these pretrained models are removed and the augmented 

images are passed through these pretrained networks to generate features from the 

images. These features are further passed to two blocks of Convolutional and 

MaxPooling layers, followed by a Dense layer and Softmax layer. The Softmax layer will 

classify the images into different categories. The network using the ResNet model 

achieved the best results on both the datasets with an accuracy of about 84.615%, 

precision of 85.036% and recall of 84.4% on the PPMI dataset and an accuracy of about 

95.98%, precision of 96.19% and recall of 95.75% on the Stanford 40 dataset.  

 

Figure 2.6: Network Architecture for 3D Action Recognition 
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One of the challenges in deep convolutional networks is information loss occurring due 

to increased depth of the network. [16] handles this challenge by implementing a multi-

level feature fusion mechanism which utilizes the outputs of the middle CNN layers in 

the final output so that the information loss from those layers is minimal. The study is 

conducted on the KTH dataset. This dataset consists of 600 videos with 6 types of actions 

(boxing, handclapping, handwaving, jogging, running, and walking). The novel concept 

in this paper is the multi-level feature extraction and features at each level are extracted 

using a pretrained network called VGG16. The features from the middle layer VGG16 

blocks are passed through a Convolutional Autoencoder models (CAE). The CAE model 

encodes the middle layer features, maps it to another feature space and decode it while 

minimizing the error. This makes the process more efficient by allowing the model to 

cache only the CAE feature errors during training process and not the complete features 

from the middle layers. The reconstructed (decoded) outputs from the middle layers 

and the output from the final layer are fused and the results are minimized during 

training using a join optimization module. The joint optimization module trains the CAE 

model where the loss function is the error between the features from middle layers and 

the reconstructed features. This module also trains the final classification model based 

on the fused inputs and cross entropy function. The schematic diagram of the 

architecture is shown in Figure 2.7. This architecture attained an average accuracy of 

about 92.54% for all the actions.  

 

Figure 2.7: Schema of fusion based architecture 
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2.3 Summary 

A combination of LSTM and CNN layers in a neural network to capture the framewise 

features and temporal features is used to classify the videos into the four actions (Jump 

High, Jump Sideways, Jump Forward and Jog on the Spot). Each of the actions is further 

analysed separately to calculate the results of the actions. For this framewise image-

based recognition systems are utilized. Each frame is classified into a predetermined 

label class which shows the current intermediate stage of the action being performed. 

These classes are learned from the images using two approaches. In the first approach 

MediaPipe is used to generate the skeletal join features of the people in the frames and 

classification model such as RandomForest and XGBoost are trained on these joint 

features with the intermediate labels as outputs. In the second approach, the frames 

are directly trained either on a custom deep convolutional neural network or a 

combination of pretrained network such as EfficientNet and convolutional neural 

networks with the intermediate labels as outputs.  The labelled frames are further 

processed by algorithms to detect the start and end of actions and the distance covered 

by the action or the number of repetitions of the action based on the criteria of each 

action. 
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3 Methods 

3.1 Convolutional Neural Networks 

A convolutional neural network is a type of neural network that has significant 
advantages in processing data such as images. A sample architecture of a convolutional 
neural network is shown in Figure 3.1. A typical architecture consists of convolutional 
layers, pooling layers and fully connected layers. 

 
Figure 3.1: Sample Convolutional Neural Network Architecture 

A convolution layer performs the convolution operation which is the dot product of two 

matrices where one matrix is the convolutional filter (this is the kernel whose values will 

be trained during the model training process) and the other is the receptive field (the 

region of the image on which the convolution operation is performed at each step) of 

the image. The filter slides across the image during the training forward pass and 

converts the image pixel values to an activation map based on the dot product result. 

An example of the operation is shown in Figure 3.2. There are multiple such filters in a 

convolutional layer which will capture multiple features from the images. A pooling layer 

can reduce the computations required by reducing the size of the outputs. This is done 

by replacing the outputs at pixel locations by the summary statistics of the neighbouring 

pixels. This is also done using filters of smaller sizes (size depends on the region we need 

the pooling applied on). The summary statistics used for pooling can be functions such 

as average, weighted average, maximum, etc. A fully connected layer is a layer of 

neurons which has connection with all the neurons in the previous and next layers. The 

result of these layers is the product of matrix multiplication of the previous layer outputs 
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and the weights associated with the connections between the layers. These weights are 

learned during the training process.  

 
Figure 3.2: Convolution Operation Example 

 
 

3.2 Long Short-Term Memory Networks 

Long Short-Term Memory (LSTM) network is a type of Recurrent neural networks which 
uses LSTM layers as part of its hidden layers to capture sequence information from 
sequence data such as audio, video, etc. LSTM networks are one of the most powerful 
Recurrent Neural networks since LSTMs can capture long term dependencies between 
sequence information such as different frames of a video. An LSTM unit consists of three 
parts as shown in Figure 3.3. The Forget Gate is the part which will decide whether the 
information from the input is relevant or not and consequently retain it if it is relevant. 
A function ft is calculated using the formula ft = σ (xt * Uf + Ht-1 * Wf). Here, xt represents 
the input from current values in the sequence, Uf represents the weights of the inputs, 
Ht-1 represents the hidden state values of the previous input in the sequence, Wf is the 
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weights of the hidden state and σ represents the application of sigmoid function over 
the calculated result. The ft will have a value between 0 and 1. The product of this value 
and the cell state value of previous input in the sequence is calculated. If this value is 0, 
the information from current input in the sequence is forgotten and if it is 1, the value 
will be retained for use in the final outputs. The input gate extracts new information 
from the input to be used by the cell. The equation governing the input gate is it = σ (xt 
* Ui + Ht-1 * Wi). Here, xt represents the input from current values in the sequence, Ui 
represents the weights of the inputs, Ht-1 represents the hidden state values of the 
previous input in the sequence, Wi is the weights of the hidden state and σ represents 
the application of sigmoid function over the calculated result. Based on this new 
information is calculated as Nt = tanh (xt * Uc + Ht-1 * Wc). This new information used to 
update the cell state as Ct = ft * Ct-1 + it * Nt. Here, Ct and Ct-1 represents the cell state 
values from the current and previous inputs in the sequence respectively. The output 
gate will pass the updated information from current input in the sequence to the next 
input in the sequence. The output gate equation is ot = σ (xt * Uo + Ht-1 * Wo). The current 
hidden state value will be calculated using the formula Ht = ot * tan (Ct). hence this 
hidden state has managed to function as a feature for long term memory. The output of 
the current input in the sequence is calculated as Output = Softmax (Ht). 

 
Figure 3.3: LSTM Unit 

 
 

3.3 Transfer Learning 

Transfer Learning is the process of using pretrained neural networks trained for some 
classification tasks as part of the neural network for another classification task. In this 
approach, the final layers of the pretrained model will be removed as these will be 
specific to the classification task being performed and hence cannot be used for another 
classification task. The trained middle layers would have extracted useful features from 
the input (such as edges of images, objects, etc) which can be used as input to other 
convolutional or fully connected layers to classify for the new classification task. This will 
reduce the time and computational resources required for training deep neural 
networks as we have eliminated many middle layers in the neural network by using the 
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fixed weights and layers from the pretrained model. The pretrained model used in this 
study is EfficientNetB7. This is a pretrained model developed by Google AI. This model 
has higher accuracy (84.3% on ImageNet dataset), efficiency (the number of parameters 
is 8.4x lesser) and speed (6.1x faster) as compared to the other pretrained models. This 
network is a convolutional neural network and has a scaling factor which compounds 
uniformly with the size of the input image. 
 

3.4 Random Forest Classifier 

Random Forest classifier is an ensemble machine learning model. This means that it uses 
a group of models rather than a single model. Random Forest uses an ensemble of 
Decision Trees. A decision tree is a type of machine learning model that takes all the 
input data points and tries to split into branches based on the Gini Index. The decision 
tree makes new branches until most of the data points are classified into the required 
classes or the hyperparameters are satisfied. An example of a decision tree classification 
is shown in Figure 3.4.  

 
Figure 3.4: Decision Tree Example 

In Random Forest, a group of decision trees will be trained on the data with the bagging 
approach. Decision trees are prone to overfitting and tree structures are sensitive to the 
input data. This is resolved using the bagging approach. Bagging is the method of 
sampling a random subset of data from the whole data set with replacement. This 
means that each decision tree in the Random Forest will be trained on a subset of data 
fetched from the original dataset with replacement. This ensures that each of the 
decision tree in the random forests are uncorrelated to each other. Another approach 
called feature randomness is also used by random forests to further improve the 
variation among the decision trees. This means that each decision tree will select only a 
random set of features from feature space for training. These two approaches ensures 
that all the decision trees in the ensemble have variations among them. All the decision 
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trees will be trained in this way and each of the model will classify the input data. The 
final output class predicted from the random forest will be the class predicted by most 
of the decision trees. The training process will try to minimise the number of 
misclassifications by the ensemble rather than each decision tree. 
 
  

3.5 XGBoost Classifier 

XGBoost Classifier is also an ensemble of decision trees. This model uses gradient 
boosting technique. In boosting, a strong classifier is built using a large number of weak 
classifiers in a sequential manner. The first model is trained on the training data. It 
predicts the classes for all the training data. The second model then tries to minimise 
the errors of the first model. Then new models are built in the same way until all data 
points are predicted correctly by the ensemble or the hyperparameter for maximum 
models is satisfied. Gradient boosting uses the boosting technique where each model 
will try to minimize the residual errors from the predictions using the gradient descent 
algorithm. In the XGBoost algorithm, decision trees are built in a sequential manner with 
weights assigned to independent variables in the data. The first decision tree makes the 
predictions and weights for the predictions of the first model which are incorrect are 
increased for the second model. This process is repeated for all the models in the 
sequence until the hyperparameters are satisfied. The final prediction will be made by 
the considering the outputs of all the individual models with different models having 
different weights depending on the error of their predictions. The working of XGBoost 
algorithm is illustrated in Figure 3.5. 

 
 

Figure 3.5: XGBoost Workflow 
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4 Implementation 

The different stages of the project implementation are discussed in detail in the below 

sections. 

4.1 Data Collection 

There are four different actions that are being analysed in this project. The actions are 

Jump High, Jump Forward, Jump Sideways and Jog on the Spot. There are 500 videos for 

each of the four actions. These videos were recorded as part of a research ([19]) 

conducted for studying the learning capabilities of children at different ages. These 

videos are the dataset used for this project. Since the video were already collected as 

part of the mentioned study, there is no separate data collection processes 

implemented as part of this project.  

4.2 Data Pre-processing 

There are two stages in the pipeline of the project. The first is a Video Based Human 

Action Classifier which classifies all the video data into the four categories. The second 

is a set of four Image Based Video Frames Classifiers for each of the four actions. These 

classify all the frames of the videos into intermediate statuses for calculating the results 

of the criteria. The different processing steps are discussed in the below sections. 

4.2.1 Video Based Human Action Classifier 

The deep learning architecture used for classifying the video into four actions is a 

combination of Convolutional layers and LSTM layers. The LSTM layers capture the 

temporal information across the frames. The Time Distributed layer which passes 

information to the LSTM layers needs to have a shape parameter which captures the 

number of frames in the video, so that it can pass all the frames of the video to the LSTM 

layers. This means that all the video should be of the same number of frames. This is not 

the case as all video are of different durations. So, we fixed the number of frames we 

have to generate from the videos as 100 for this experiment. To achieve this, all the 

frames from each of the videos are fetched and depending on the total number of 

frames a skip factor is calculated as the total number of frames divided by the required 
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number of frames (100). The frames which have indices that are multiples of these skip 

factor are moved to a folder with the name of the video. After this processing, all the 

videos are converted to frames images in their corresponding folders with 100 uniformly 

spaced frames from the respective video. The videos with frames less than 100 are 

removed from this analysis. These folders are further split into a train and validation 

folders with 195 videos in the validation folder and 1745 videos in the train folder. A 

train.csv file is created with the names of the videos and their action tags in the train 

folder and a val.csv file is created with the names of the videos and their action tags in 

the validation folder. 

4.2.2 Image Based Video Frames Classifiers 

In this approach, each of the four actions are analysed separately. Each of the frames 

are trained with their intermediate labels. Since this labelling is not already available 

some processing steps based on defined heuristics are required to label the frames. 

These steps based on heuristics are discussed for each of the actions in detail. After 

labelling, other pre-processing steps are required before the frames can be used as 

inputs to the models. These are discussed separately in the Modelling section for both 

the Skeletal Joints Based Approach and Frame Images Based Approach. 

Each of the frames from the videos is extracted using the OpenCV library. These are 

passed through the MediaPipe Pose functionality and this will extract all the joint 

features. The output of the MediaPipe Pose will be a set of x-axis, y-axis and z-axis 

coordinates corresponding to each of the joints as marked in Figure 2.2. These features 

are further analysed separately for each of the four actions as follows. 

Jump High 

The focus of this action is to measure how high the person has jumped vertically. All the 

videos are of people jumping vertically. Since this action is measured based on the jump 

above the ground, the joint features of interest from the MediaPipe Pose are 27, 28, 29, 

30, 31 and 32 which refer to the points on the foot and ankle. Since the movement in 

vertical direction is the criteria for this action, the coordinates of these points along the 

y-axis for all frames in a video are plotted to analyse patterns emerging from the actions. 

The plots of y-axis values for left leg (27, 29, 31) and right leg (28, 30, 32) of one video 

are shown in Figures 4.1 and 4.2 respectively.   

The plots clearly show a drop in all the values (a valley) whenever a jump is performed 

(which is four times in this case). These valleys are our region of interest. We need to 

define thresholds based on these valleys so that we can label frames whenever a Jump 
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High is made. These features have different range of values in different videos 

depending on the initial position of the person in the frame. We need to find the frames 

the feet take off the ground. To account for these, the y-axis coordinates of the ground 

is calculated as a new feature. The ground value is calculated for each video as the 

average of the mean of y-axis values of left and right leg for the first 20 frames. This 

assumes that people are standing on the ground at the beginning of the videos. The 

features 29_y, 30_y, 31_y and 32_y show a great range of variation in and across videos 

and hence cannot be used accurately for setting the ground value. The features 27_y 

and 28_y are more smooth and show lesser variations across videos and hence are used 

to set the ground value. Hence, the average of the distance of 27_y and 28_y from the 

ground value is calculated for all the frames of the videos and added as a new feature. 

The plot of this feature is shown in Figures 4.3. 

 

Figure 4.1: Joint Features of Left Leg across Frames 

The distance from the ground feature is in the same range across videos and can be used 

for setting the thresholds. A threshold of 0.01 is set for this feature based on 

experimentation on videos randomly selected from the sample. When the value of this 

feature is equal to or greater than 0.01, the frames are labelled as “Jump High” and 

when the value is below 0.01, the frames are labelled as “Standing”. This is the defined 

heuristics for the action- Jump High. This labelled data has some frames which are 

incorrectly labelled “Standing” in the middle of the Jump. This is because of the 

fluctuations in the joint features from the MediaPipe library. To smoothen this, a rolling 
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window of 5 frames is taken across all the frames of a video and when there is a frame 

with label “Standing” in the middle of a window with most of other frames labelled as 

“Jump High”, this is changed to “Jump High”. 

 

Figure 4.2: Joint Features of Right Leg across Frames 

All the joint features generated from the MediaPipe and the status of the frame as 

labelled earlier are written into a csv file. This is the processed dataset for the skeletal 

joints-based machine learning approach for the action- Jump High.  The frames are 

saved into a different folder with a name (combination of name of video and frame 

number). The frame names and the status of the frame as labelled above are saved 

into a different csv file. This is the processed dataset for the frame images-based 

machine learning approach for the action- Jump High.   

 

Figure 4.3: Distance of Feet from Ground across Frames 
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Jump Forward 

The focus of this action is to measure how much distance the person has jumped 

forward. All the videos are of people jumping forward. Since this action is measured 

based on jumping forward and moving closer to the camera, the joint features of 

interest from the MediaPipe Pose are 11, 12, 23, 24, 25, 26, 27 and 28 which refer to 

the points on the torso and legs. Since the movement in vertical direction (with respect 

to the frame) is the criteria for this action, the coordinates of this points along the y-axis 

for all frames in a video are plotted to analyse patterns emerging from the actions. The 

plots of y-axis values for right leg (12, 24, 26, 28) and left leg (11, 23, 25, 27) of one video 

are shown in Figures 4.4 and 4.5 respectively.   

The plots clearly show a rise followed by a drop and again a rise in all the values (a peak, 

followed by valley, followed by a peak) whenever a jump is performed (which is once in 

this case). This is our region of interest. Thresholds need to be defined based on these 

regions so that we can label frames whenever a Jump Forward is made. These features 

have different values in different videos depending on the initial position of the person 

in the frame. Additionally, all these features show a great range of variation across 

videos of people of different heights. Hence, these features cannot be used directly for 

setting the threshold.  

Six new features are introduced to further analyse the videos and find a measure 

suitable for all videos. These are “Hip to Knee Distance”, “Ankle to Knee Distance” and 

“Shoulder to Hip Distance” for both right and left legs separately. The “Hip to Knee 

Distance” for right leg is calculated by taking the difference of 24_y from 26_y and the 

same for left leg is calculated by taking the difference of 23_y from 25_y. The “Ankle to 

Knee Distance” for right leg is calculated by taking the difference of 26_y from 28_y and 

the same for left leg is calculated by taking the difference of 25_y from 27_y. The 

“Shoulder to Hip Distance” for right leg is calculated by taking the difference of 12_y 

from 24_y and the same for left leg is calculated by taking the difference of 11_y from 

23_y.  A heuristic from each leg is calculated as 0.2 * (Hip to Knee Distance) + 0.4 *(Ankle 

to Knee Distance) + 0.4 * (Shoulder to Hip Distance). The average of this heuristic value 

from both the legs are taken as the final heuristic value. The plot of this final heuristic 

value is shown in Figure 4.6. This smoothened out a lot of fluctuations in the joint values 

from the MediaPipe library.  
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Figure 4.4: Joint Features of Right Leg across Frames 

 

Furthermore, a new feature which measures the change in this heuristic value is 

generated. This is calculated as the heuristic value of previous frame subtracted from 

the heuristic value of the current frame. This feature gives a clearer picture on the when 

the Jump starts. The plot of this feature is shown in Figure 4.7. This feature which 

measures change in heuristic value is in the same range across videos and for people of 

different heights. Hence, this can be used for setting the thresholds. A threshold range 

of [-0.005, 0.005] is set for this feature based on experimentation on videos randomly 

selected from the sample. When the value of this feature is in the range of [-0.005, 

0.005], the frames are labelled as “Standing” and when the value is outside this range, 

the frames are labelled as “Jump Progress”. This labelled data has some frames which 

are incorrectly labelled “Standing” in the middle of the Jump. This is because of the 

fluctuations in the joint features from the MediaPipe library. To smoothen this, a rolling 

window of 4 frames is taken across all the frames of a video and when there is a frame 

with label “Standing” in the middle of a window with most of other frames labelled as 

“Jump Progress”, this is changed to “Jump Progress”. This smoothening is repeated two 

more times to get the smoothened and correct labels for the frames. 
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Figure 4.5: Joint Features of Left Leg across Frames 

All the joint features generated from the MediaPipe and the status of the frame as 

labelled earlier are written into a csv file. This is the processed dataset for the skeletal 

joints-based machine learning approach for the action- Jump Forward.  The frames are 

saved into a different folder with a name (combination of name of video and frame 

number). The frame names and the status of the frame as labelled above are saved into 

a different csv file. This is the processed dataset for the frame images-based machine 

learning approach for the action- Jump Forward. 

 

Figure 4.6: Heuristic Value across frames 
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Figure 4.7: Heuristic Value Change across frames 

 

Jump Sideways 

The focus of this action is to measure how many jumps the person has made sideways 

where one full lateral jump is a combination of one jump left and one jump right. All the 

videos are of people jumping sideways. Since this action is measured based on the jump 

sideways, the joint features of interest from the MediaPipe Pose are 25, 26, 27 and 28 

which refer to the points on the knees and ankles. Since the movement in horizontal 

direction (with respect to the frame) is the criteria for this action, the coordinates of this 

points along the x-axis for all frames in a video are plotted to analyse patterns emerging 

from the actions. The plots of x-axis values for right leg (26, 28) and left leg (25, 27) of 

one video are shown in Figures 4.8 and 4.9 respectively.   

The plots clearly show a drop in all the values (a valley) whenever a jump is performed 

(which is eight times in this case). These valleys are our regions of interest. Thresholds 

need to be defined based on these regions so that we can label frames whenever a Jump 

left or jump right is made. These features have different values in different videos 

depending on the initial position of the person in the frame. Additionally, all these 

features show a large range of variation across videos of people of different heights. 

Hence, these features cannot be used directly for setting the threshold.  
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A new heuristic feature is generated. The heuristic value is calculated as 0.2 * (26_x) + 

0.2 *(25_x) + 0.3 * (28_x) + 0.3 * (27_x). The plot of this heuristic value is shown in Figure 

4.10. This smoothened out a lot of fluctuations in the joint values from the MediaPipe 

library.  

 

Figure 4.8: Joint Features of Right Leg across Frames 

 

Furthermore, a new feature which measures the change in this heuristic value is 

generated. This is calculated as the heuristic value of previous frame subtracted from 

the heuristic value of the current frame. This feature gives a clearer picture on the when 

the Jumps start. The plot of this feature is shown in Figure 4.11. This feature which 

measures change in heuristic value is in the same range across videos and for people of 

different heights. Hence, this can be used for setting the thresholds. A threshold range 

of [-0.008, 0.008] is set for this feature based on experimentation on videos randomly 

selected from the sample. When the value of this feature is in the range of [-0.008, 

0.008], the frames are labelled as “Standing”. When the value is greater than 0.008, the 

frames are labelled as “Jump Left” and when the value is lesser than -0.008, the frames 

are labelled as “Jump Right”. This labelled data has some frames which are incorrectly 

labelled “Standing” in the middle of the Jump. This is because of the fluctuations in the 

joint features from the MediaPipe library. To smoothen this, a rolling window of 4 
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frames is taken across all the frames of a video and when there is a frame with label 

“Standing” in the middle of a window with most of other frames labelled as “Jump Left” 

or “Jump Right”, this is changed to “Jump Left” or “Jump Right” respectively. This 

smoothening is repeated two more times to get the smoothened and correct labels for 

the frames. 

 

Figure 4.9: Joint Features of Left Leg across Frames 

 

 

Figure 4.10: Heuristic Value across frames 
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Now, all the joint features generated from the MediaPipe and the status of the frame as 

labelled earlier are written into a csv file. This is the processed dataset for the skeletal 

joints-based machine learning approach for the action- Jump Sideways.  The frames are 

saved into a different folder with a name (combination of name of video and frame 

number). The frame names and the status of the frame as labelled above are saved into 

a different csv file. This is the processed dataset for the frame images-based machine 

learning approach for the action- Jump Sideways. 

 

 

Figure 4.11: Heuristic Value Change across frames 

 

Jog on the Spot 

The focus of this action is to measure how many jogs the person has made with both the 

legs. All the videos are of people jogging. Since this action is measured based on the 

jogging action, the joint features of interest from the MediaPipe Pose are 23, 24, 27 and 

28 which refer to the points on the hips and ankles. Since the movement in vertical 

direction (with respect to the frame) is the criteria for this action, the coordinates of this 

points along the y-axis for all frames in a video are plotted to analyse patterns emerging 
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from the actions. The plots of y-axis values for right leg (24, 28) and left leg (23, 27) of 

one video are shown in Figures 4.12 and 4.13 respectively.   

The plots clearly show a drop in all the values (a valley) whenever a jog is performed. 

These valleys are our regions of interest. Thresholds need to be defined based on these 

regions so that we can label frames whenever a Jog is done. These features have 

different values in different videos depending on the initial position of the person in the 

frame. Additionally, all these features show a large range of variation across videos of 

people of different heights. Hence, these features cannot be used directly for setting 

the threshold.  

Two new features are introduced to further analyse the videos and find a measure 

suitable for all videos. This is the “Hip to Ankle Distance” for both right and left legs 

separately. The “Hip to Ankle Distance” for right leg is calculated by taking the absolute 

difference of 24_y from 28_y and the same for left leg is calculated by taking the 

absolute difference of 23_y from 27_y. This smoothened out a lot of fluctuations in the 

joint values from the MediaPipe library. These features still showed a large range of 

variation across videos where people are of different heights.  

 

Figure 4.12: Joint Features of Right Leg across Frames 
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To normalize the variations a new feature called “Height” is calculated as 0.5 * ((27_y  – 

11_y) + (28_y – 12_y)). The “Hip to Ankle Distance” values for both the legs are 

normalized by dividing by the ‘Height” feature. So, there are two heuristic values for this 

action. These heuristic features give a clearer picture on the when the Jogs start. The 

plots of these heuristic values are shown in Figures 4.14 and 4.15 respectively. These 

features are in the same range across videos and for people of different heights. Hence, 

these can be used for setting the thresholds. The thresholds are selected based on 

experimentation on videos randomly selected from the sample. When the value of right 

leg heuristic is less than 0.57 and the value of left leg heuristic is greater than or equal 

to 0.57, the frames are labelled as “Jog Right”. When the value of left leg heuristic is less 

than 0.57 and the value of right leg heuristic is greater than or equal to 0.57, the frames 

are labelled as “Jog Left”.  When the value of left leg heuristic is greater than or equal 

to 0.57 and the value of right leg heuristic is greater than or equal to 0.57, the frames 

are labelled as “Standing”. When the value of left leg heuristic is less than 0.57 and the 

value of right leg heuristic is less than 0.57, the frames are labelled as “Standing”.  

 

Figure 4.13: Joint Features of Left Leg across Frames 

Now, all the joint features generated from the MediaPipe and the status of the frame as 

labelled earlier are written into a csv file. This is the processed dataset for the skeletal 

joints-based machine learning approach for the action- Jog on the Spot.  The frames are 
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saved into a different folder with a name (combination of name of video and frame 

number). The frame names and the status of the frame as labelled above are saved into 

a different csv file. This is the processed dataset for the frame images-based machine 

learning approach for the action- Jog on the Spot. 

 

Figure 4.14: Heuristic Value across frames for Left Leg 

 

 

Figure 4.15: Heuristic Value across frames for Right Leg 
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4.3 System Architecture 

 

 

Figure 4.16: Workflow diagram of the project 



43 

 

The complete workflow of the Human Action Recognition System proposed in this 

dissertation is shown in Figure 4.16.  There are two main stages in this workflow. The 

first is a Video Classification stage. The input to the system will be videos of people 

performing any of the four actions among Jump High, Jump Forward, Jump Sideways or 

Jog on the Spot. These input videos will be pre-processed as discussed earlier in data 

processing section for Video Based Human Action Classifier. Each video input will be 

converted to a series of 100 frames after this pre-processing. The data are fetched from 

train and validation folders with train.csv and val.csv referencing the labels for each 

video.  These are fed to the Video Based Human Action Classifier, which is a deep neural 

network based on convolutional and LSTM layers.  

Since the number of frames to be loaded is too large per video, the machine memory 

cannot handle all the data together in one shot. A custom data generator is designed for 

this purpose. Inside the generator all the 100 frames corresponding to a video are 

loaded into an array. These are further reshaped to the size (120,120) to reduce the load 

on the model. Multiple such sets of 100 frames are loaded together depending on the 

batch size. The batch size used here was 2 and hence 2 sets of 100 frames from 2 videos 

were resized and loaded together into an array which will be fed as input to the model 

in one feedforward run. The labels corresponding to these two videos will also be fed to 

the model by the generator.  

The architecture of the deep neural network used by this classifier is shown in two parts. 

The first part is a feature extractor which extracts features from each frame. Each frame 

is passed through a pretrained neural network called “EfficientNetB7”. The output layers 

of this pretrained network is removed and we use the layers before the output layer to 

extract the features as identified by EfficientNetB7. The output from this pretrained 

network is passed through a flatten layer which changes the shape of the output to a 

single dimension. This is again passed through a dense layer with 64 neurons and a relu 

activation which will condense the output to 64 features or a vector of shape (64,1) 

corresponding to each frame of a video. The relu function outputs the same value 

whenever the neuron value is positive and 0 otherwise. The architecture of the same is 

shown in Figure 4.17.  

 

Figure 4.17: Architecture of the Frames Feature Extractor 
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The video classifier has 100 such feature extractor blocks to handle all the 100 frames 

from a video simultaneously. So, 64 features from all the 100 frames will be extracted 

using the feature extractor blocks and fed to an LSTM layer which has 32 units. This layer 

will capture the relationships between the features of the 100 frames to understand the 

temporal or sequential information embedded in the video. Since there 32 LSTM units 

in that layer, this layer will output a shape 100x32. This layer is followed by another 

LSTM layer with 16 units to further capture sequential information at a higher level. The 

output from this layer will be 16. This output is passed through a Dropout layer of 0.5 

which will dropout 50 % of the connections with the next layer randomly during training 

to avoid overfitting. This is followed by a Dense layer with 8 neurons with a relu 

activation. This will condense the 16 features from the LSTM layer to 8 features. Another 

Dense layer with 4 neurons and a softmax activation is the last layer in this neural 

network. This will convert the features to the 4 values showing the probability of the 

video being belonging to the 4 categories (Jump High, Jump Forward, Jump Sideways 

and Jog on the Spot). The architecture of the same is shown in Figure 4.18. This deep 

learning model will be trained on the processed video frames from the train folder and 

validated using the video frames from the validation folder with the frames of videos as 

inputs and the action label as the predicted output. 

 

Figure 4.18: Architecture of the Video Based Human Action Classifier 

The second stage of the Human Action Recognition System is different for the four 

categories of actions. After categorizing the video into one of the four categories, the 

workflow corresponding to the categorized video class is selected.   
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4.3.1 Jump High 

Skeletal Joints Based Model 

In this approach, the input videos will be broken down into individual frames and the 

frames are pre-processed by data pre-processing module as explained in the Data Pre-

processing section. So, frames will be converted to skeletal joint values by the 

MediaPipe library and written into a csv file after processing by the Data Pre-processing 

module. The Image Based Video Frames Classifier module uses this csv file as its input. 

It loads the csv file and splits the data into train and test sets where all the joint values 

act as the input (X) and the status (intermediate labels as labelled in data processing) of 

the frames as output. With these values two types of classification models (one bagging 

model and one boosting model) are trained to predict the labels of each of the frames 

as “Jump High” indicating the person is in the process of jumping vertically (off the 

ground) and “Standing” indicating the person is on the ground. The first model used to 

train on this data is a RandomForestClassifier. This model is trained on the train data set 

with n_estimators = 100 (100 decision trees are used in the ensemble) and class_weight 

= ”balanced” (compensates for the class imbalance as most of the labels are “Standing”) 

and max_depth = 20 (maximum depth the decision trees can grow). The class imbalance 

occurs because people are standing on the ground for a large amount of time on the 

videos.  The second model used to train on the data is an XGBoostClassifier. This model 

is trained on the train data set with eval_metric = 'mlogloss' (Metric used for training is 

the Multi class log loss evaluated for the predicted and true values), alpha = 0.05 (L2 

regularization term on weights) and reg_lambda = 0.99 (L1 regularization term on 

weights).  The regularization terms prevent the model from overfitting to the training 

data. Grid Search Cross Validation was performed on a set of hyperparameter values 

and the hyperparameters with the lowest cross validation errors were selected for the 

final models. These trained models will be used to predict the labels of all the frames of 

the video and these labelled frames will be passed on to the “Distance Calculation 

Algorithm”. 

Frame Images Based Model 

In this approach, the input videos will be broken down into individual frames and the 

frames are pre-processed by data pre-processing module as explained in the Data Pre-

processing section. Since this data is too large to be loaded into the memory in one shot 

ImageDataGenerator class of keras library is used to load the images into the memory 

in batches during training. For this purpose, the frames are divided into train, test and 
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validation folders with each folder having two folders – “Jump High” and “Standing” 

corresponding to the two status labels for the frames. These two folders will have only 

frames with the corresponding status labels. These ImageDataGenerator will load 

frames from these folders for train and validation sets during the model training.  Two 

types of deep neural networks are used to build the classification models. The first one 

is a Convolutional Neural Network. The detailed architecture with shapes of inputs and 

outputs of each layer is shown in Figure 4.19. The Conv2D layers perform convolution 

operation on the inputs based on the size of the filter to derive the features and create 

a feature map. The MaxPooling2D layers aggregates the values among a pool of 

neighbouring values to give the maximum value from that pool. This will highlight the 

most present feature in each patch of the image as defined by the pool size. The Dropout 

layers will disconnect certain connections between two layers randomly during training 

to avoid the model from overfitting to the training data. The Flatten layer will flatten all 

the input values to a single dimension. The Dense layer is a set of neurons all of which 

are connected to the output values from the previous layer. The second type of neural 

network is an application of Transfer learning. Here, a pretrained neural network called 

EfficientNetB7 is used without its final layers to derive features from the images. These 

features are further passed through a designed convolutional neural network. During 

the training, only the weights of the designed convolutional neural networks are allowed 

to change. The weights of the layers of pretrained network remain the same. The 

detailed architecture with shapes of inputs and outputs of each layer is shown in Figure 

4.20. The functional layer denoted in the architecture is the pretrained model 

(EfficientNetB7 with last layer removed) followed by a Dense layer which extracts 64 

features from the output of the pretrained model. The images will be fed to both these 

models from the ImageDataGenerator for training. The models are compiled with 

“categorical cross entropy” as the loss function and Adam as the optimizer. The 

categorical cross entropy metric calculates the difference between the predicted classes 

and true classes considering all class distributions and not just the overall accuracy. The 

Adam optimizer has learning_rate=0.001, beta_1=0.9 and beta_2=0.99. The training will 

be done for 50 epochs with a batch size of 20 using the train data set and will be 

validated using the validation data set. The class_weight parameter is set as {0: 0.85, 1: 

0.15} (0 is “Jump High” and 1 is “Standing”) during training to account for the class 

imbalance. These trained models will be used to predict the labels of all the frames of 

the video and these labelled frames will be passed on to the “Distance Calculation 

Algorithm”. 
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Figure 4.19: Architecture of the Convolutional Neural Network 
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Figure 4.20: Architecture of the Transfer Learning Network 
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Distance Calculation Algorithm 

The input to this algorithm will be all the frames of the video labelled as either 

“Standing” or “Jump High”. This algorithm finds out the frame in which the status 

changes from a standing position to a jumping position and marks that frame as the 

jump start frame. This is done by checking if one frame status is “Standing” and there 

are more than 4 “Jump High” statuses in the next 7 frames. Similarly, the algorithm finds 

out the frame in which the status changes from a jumping position to a standing position 

and marks that frame as the jump end frame. This is done by checking if one frame status 

is “Jump High” and there are more than 4 “Standing” statuses in the next 7 frames. The 

distance jumped is calculated as the average of the difference of maximum and 

minimum joint values of the ankle in the frames between jump start and jump end for 

the left (27_y) and right (28_y) legs. 

4.3.2 Jump Forward 

Skeletal Joints Based Model 

The approach is similar to the skeletal joints-based approach used for Jump High action 

with some changes in the model hyperparameters. The pre-processed data will be 

available as a csv file.  The Image Based Video Frames Classifier module uses this csv file 

as its input. It loads the csv file and splits the data into train and test sets where all the 

joint values act as the input (X) and the status (intermediate labels as labelled in data 

processing) of the frames as output. With these values two types of classification models 

(one bagging model and one boosting model) are trained to predict the labels of each 

of the frames as “Jump Progress” indicating the person has started the process of 

jumping forward (towards the camera) and “Standing” indicating the person is in the 

normal standing posture. The first model used to train on this data is a 

RandomForestClassifier. This model is trained on the train data set with n_estimators = 

110 (110 decision trees are used in the ensemble) and class_weight = ”balanced” 

(compensates for the class imbalance as most of the labels are “Standing”) and 

max_depth = 22 (maximum depth the decision trees can grow). The second model used 

to train on the data is an XGBoostClassifier. This model is trained on the train data set 

with eval_metric = 'mlogloss' (Metric used for training is the Multi class log loss 

evaluated for the predicted and true values), alpha = 0.01 (L2 regularization term on 

weights) and reg_lambda = 1 (L1 regularization term on weights).  Grid Search Cross 

Validation was performed on a set of hyperparameter values and the hyperparameters 

with the lowest cross validation errors were selected for the final models. These trained 
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models will be used to predict the labels of all the frames of the video and these labelled 

frames will be passed on to the “Distance Calculation Algorithm”. 

Frame Images Based Model 

This approach is similar to the Frame Images Based approach for Jump High action with 

differences in the hyperparameters of the models. These ImageDataGenerator will load 

frames from the folders for train and validation sets (having labels of “Jump Progress” 

or “Standing”) during the model training.  Two types of deep neural networks are used 

to build the classification models. The first one is a Convolutional Neural Network. The 

architecture is the same as the one used for Jump High action and is shown in Figure 

4.19. The second type of neural network is an application of Transfer learning. The 

architecture is the same as the one used for Jump High action and is shown in Figure 

4.20. The images will be fed to both these models from the ImageDataGenerator for 

training. The models are compiled with “categorical cross entropy” as the loss function 

and Adam as the optimizer. The Adam optimizer has learning_rate=0.002, beta_1=0.8 

and beta_2=0.9. The training will be done for 52 epochs with a batch size of 20 using the 

train data set and will be validated using the validation data set. The class_weight 

parameter is set as {0: 0.75, 1: 0.25} (0 is “Jump Progress” and 1 is “Standing”) during 

training to account for the class imbalance. These trained models will be used to predict 

the labels of all the frames of the video and these labelled frames will be passed on to 

the “Distance Calculation Algorithm”. 

Distance Calculation Algorithm 

The input to this algorithm will be all the frames of the video labelled as either 

“Standing” or “Jump Progress”. This algorithm finds out the frame in which the status 

changes from a standing position to a jumping position and marks that frame as the 

jump start frame. This is done by checking if one frame status is “Standing” and there 

are more than 4 “Jump Progress” statuses in the next 7 frames. Similarly, the algorithm 

finds out the frame in which the status changes from a jumping position to a standing 

position and marks that frame as the jump end frame. This is done by checking if one 

frame status is “Jump Progress” and there are more than 4 “Standing” statuses in the 

next 7 frames. The distance moved in pixel values is calculated as the average of the 

difference of the ankle joint value in the jump start frame and jump end frame for the 

left (27_y) and right (28_y) legs. The distance jumped is calculated by multiplying this 

value with a scaling factor. The scaling factor is calculated using a reference distance in 

the video divided by the same distance in frame pixel values. 



51 

 

4.3.3 Jump Sideways 

Skeletal Joints Based Model 

The approach is similar to the skeletal joints-based approach used for Jump Forward 

action with some changes in the model hyperparameters. The pre-processed data will 

be available as a csv file.  The Image Based Video Frames Classifier module uses this csv 

file as its input. It loads the csv file and splits the data into train and test sets where all 

the joint values act as the input (X) and the status (intermediate labels as labelled in data 

processing) of the frames as output. With these values two types of classification models 

(one bagging model and one boosting model) are trained to predict the labels of each 

of the frames as “Jump Left” indicating the person has started the process of jumping 

left, “Jump Right” indicating the person has started the process of jumping right and 

“Standing” indicating the person is in the normal standing posture. The first model used 

to train on this data is a RandomForestClassifier. This model is trained on the train data 

set with n_estimators = 120 (120 decision trees are used in the ensemble) and 

class_weight = ”balanced” (compensates for the class imbalance as most of the labels 

are “Standing”) and max_depth = 21 (maximum depth the decision trees can grow). The 

second model used to train on the data is an XGBoostClassifier. This model is trained on 

the train data set with eval_metric = 'mlogloss' (Metric used for training is the Multi class 

log loss evaluated for the predicted and true values), alpha = 0.02 (L2 regularization term 

on weights) and reg_lambda = 0.98 (L1 regularization term on weights). Grid Search 

Cross Validation was performed on a set of hyperparameter values and the 

hyperparameters with the lowest cross validation errors were selected for the final 

models.  These trained models will be used to predict the labels of all the frames of the 

video and these labelled frames will be passed on to the “Number of Jumps Calculation 

Algorithm”. 

 

Frame Images Based Model 

This approach is similar to the Frame Images Based approach for Jump Forward action 

with differences in the model architecture and hyperparameters of the models. These 

ImageDataGenerator will load frames from the folders for train and validation sets 

(having labels of “Jump Left”, “Jump Right” or “Standing”) during the model training.  

Two types of deep neural networks are used to build the classification models. The first 

one is a Convolutional Neural Network. The detailed architecture with shapes of inputs 

and outputs of each layer is shown in Figure 4.21. The second type of neural network is 
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an application of Transfer learning. The detailed architecture with shapes of inputs and 

outputs of each layer is shown in Figure 4.22. The images will be fed to both these 

models from the ImageDataGenerator for training. The models are compiled with 

“categorical cross entropy” as the loss function and Adam as the optimizer. The Adam 

optimizer has learning_rate=0.003, beta_1=0.7 and beta_2=0.99. The training will be 

done for 55 epochs with a batch size of 20 using the train data set and will be validated 

using the validation data set. The class_weight parameter is set as {0: 0.4, 1: 0.45, 2: 

0.15} (0 is “Jump Left”, 1 is “Jump Right” and 2 is “Standing”) during training to account 

for the class imbalance. These trained models will be used to predict the labels of all the 

frames of the video and these labelled frames will be passed on to the “Number of 

Jumps Calculation Algorithm”. 

 

Number of Jumps Calculation Algorithm  

The input to this algorithm will be all the frames of the video labelled as either 

“Standing”, “Jump Left” or “Jump Right”. This algorithm maintains a list called 

order_queue which is empty in the beginning. This algorithm checks if there are more 

than 4 “Jump Left” statuses in a sliding window of 7 frames, and if it finds such a window 

it appends “Jump Left” to the order_queue. Similarly, the algorithm checks if there are 

more than 4 “Jump Left” statuses in a sliding window of 7 frames, and if it finds such a 

window it appends “Jump Left” to the order_queue. But, once a “Jump Left” is appended 

to order_queue, only “Jump Right” will be appended next. Similarly, once a “Jump Right” 

is appended to order_queue, only “Jump Left” will be appended next. This is done by 

maintaining two switch flags for “Jump Left” and “Jump Right”, which gets switched off 

when the corresponding label is added to the queue and switched on when the other 

label is added to the queue. These switch flags are checked while appending values to 

the queue. This is done because the criteria for one complete jump is a combination of 

“Jump Left” and “Jump Right” in any order. So, once the algorithm goes through the all 

the frame statuses, it will have an order_queue with “Jump Left” and “Jump Right” tags 

occurring alternatively in any order. The total number of jumps is calculated as the 

length of the queue divided by two (as the criteria for one complete jump is a 

combination of “Jump Left” and “Jump Right” in any order). 
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Figure 4.21: Architecture of the Convolutional Neural Network 
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Figure 4.22: Architecture of the Transfer Learning Network 
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4.3.4 Jog on the Spot 

Skeletal Joints Based Model 

The approach is similar to the skeletal joints-based approach used for Jump Sideways 

action with some changes in the model hyperparameters. The pre-processed data will 

be available as a csv file.  The Image Based Video Frames Classifier module uses this csv 

file as its input. It loads the csv file and splits the data into train and test sets where all 

the joint values act as the input (X) and the status (intermediate labels as labelled in data 

processing) of the frames as output. With these values two types of classification models 

(one bagging model and one boosting model) are trained to predict the labels of each 

of the frames as “Jog Left” indicating the person has raised his/her left leg above the 

ground, “Jog Right” indicating the person has raised his/her right leg above the ground 

and “Standing” indicating the person is in the normal standing posture or has both legs 

on the ground. The first model used to train on this data is a RandomForestClassifier. 

This model is trained on the train data set with n_estimators = 122 (122 decision trees 

are used in the ensemble), class_weight = ”balanced” (compensates for the class 

imbalance as most of the labels are “Standing”) and max_depth = 22 (maximum depth 

the decision trees can grow). The second model used to train on the data is an 

XGBoostClassifier. This model is trained on the train data set with eval_metric = 

'mlogloss' (Metric used for training is the Multi class log loss evaluated for the predicted 

and true values), alpha = 0.05 (L2 regularization term on weights) and reg_lambda = 0.9 

(L1 regularization term on weights). Grid Search Cross Validation was performed on a 

set of hyperparameter values and the hyperparameters with the lowest cross validation 

errors were selected for the final models.  These trained models will be used to predict 

the labels of all the frames of the video and these labelled frames will be passed on to 

the “Number of Jogs Calculation Algorithm”. 

 

Frame Images Based Model 

This approach is similar to the Frame Images Based approach for Jump Sideways action 

with differences in the model hyperparameters. These ImageDataGenerator will load 

frames from the folders for train and validation sets (having labels of “Jog Left”, “Jog 

Right” or “Standing”) during the model training.  Two types of deep neural networks are 

used to build the classification models. The first one is a Convolutional Neural Network. 

The architecture is the same as the one for the action Jump Sideways and is shown in 

Figure 4.21. The second type of neural network is an application of Transfer learning. 
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The architecture is the same as the one for the action Jump Sideways and is shown in 

Figure 4.22. The images will be fed to both these models from the ImageDataGenerator 

for training. The models are compiled with “categorical cross entropy” as the loss 

function and Adam as the optimizer. The Adam optimizer has learning_rate=0.001, 

beta_1=0.85 and beta_2=0.95. The training will be done for 60 epochs with a batch size 

of 20 using the train data set and will be validated using the validation data set. The 

class_weight parameter is set as {0: 0.35, 1: 0.35, 2: 0.3} (0 is “Jog Left”, 1 is “Jog Right” 

and 2 is “Standing”) during training to account for the class imbalance. These trained 

models will be used to predict the labels of all the frames of the video and these labelled 

frames will be passed on to the “Number of Jogs Calculation Algorithm”. 

 

Number of Jogs Calculation Algorithm  

The input to this algorithm will be all the frames of the video labelled as either 

“Standing”, “Jog Left” or “Jog Right”. This algorithm maintains a list called order_queue 

which is empty in the beginning. This algorithm checks if there are more than 4 “Jog 

Left” statuses in a sliding window of 7 frames, and if it finds such a window it appends 

“Jog Left” to the order_queue. Similarly, the algorithm checks if there are more than 4 

“Jog Left” statuses in a sliding window of 7 frames, and if it finds such a window it 

appends “Jump Left” to the order_queue. But, once a “Jog Left” is appended to 

order_queue, only “Jog Right” will be appended next. Similarly, once a “Jog Right” is 

appended to order_queue, only “Jog Left” will be appended next. This is done by 

maintaining two switch flags for “Jog Left” and “Jog Right”, which gets switched off when 

the corresponding label is added to the queue and switched on when the other label is 

added to the queue. These switch flags are checked while appending values to the 

queue. This is done because the person must use left leg and right leg alternatively while 

jogging. So, once the algorithm goes through the all the frame statuses, it will have an 

order_queue with “Jog Left” and “Jog Right” tags occurring alternatively in any order. 

The total number of jumps is calculated as the length of the queue (as the criteria for a 

jog is a leg raising from the ground). 
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5 Security and Privacy Considerations 
5.1 Security Considerations 

The human action detection system proposed in this paper when deployed as 

applications could face security threats in two stages. The first stage is during model 

training process. The second stage is after the training process is completed. 

The first stage is where the hackers target training data as discussed in [16]. This is done 

in the following ways: 

Data Poisoning: This can occur when the training data used in a machine learning model 

is polluted by a hacker. They achieve this by tampering with the data. Data poisoning 

has two types of impacts on data which are impact on confidentiality and impact on 

trustworthiness. Most of the time, the training video data contains sensitive and 

confidential information. The data loses its confidentiality by these poisoning attacks. 

Since data is gathered from many sources such as cameras or online sources, the chance 

of data getting poisoned is high. This impacts the machine learning engineer’s 

confidence on the data and thus reduces its trustworthiness. Two attacks that come 

under the umbrella of data poisoning are label flipping and gradient descent attack. 

Label flipping occurs in cases where the output to be learned in the training data (labels) 

is changed or flipped so that the model learns wrong associations. Gradient descent 

attack is of two types. One type is where the actual output or label is continuously 

changed, and the model continues performing gradient descent as it thinks it has not 

reached the answer and ends up training for a very long time. The other one is where 

the model is inaccurately forced to complete gradient descent algorithm as it is in the 

belief that it reached the correct answer and thereby ending up with incompletely 

trained model. Data Poisoning can be prevented by using outlier detection techniques. 

Stealthy Channel Attack: Data quality plays an important part in developing pipelines 

for machine learning systems. For building models which are applicable in the real 

world, the video data is gathered from many sources and the data collected must be 

relevant. The hacker will be able to insert large amounts of inaccurate or fraudulent data 

into the machine learning system and compromise the whole pipeline even before 

model is created. This is called stealthy channel attack and can be prevented by 

following due diligence during the data collection process. 

The second stage attacks are done in the following ways: 
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Transfer Learning Attack: In human actions recognition, we might have to use pre-

trained models to reduce training time, which are further trained and included as part 

deep neural network architecture. This is exploited by a hacker by replacing the original 

model with another malicious one. This is hard to figure out as the pretrained model are 

used without much inspection. We need to be cautious in using the models by referring 

to reliable sources. 

Adversarial Example: These are also known as evasion attacks. In this, the data input to 

the models are tampered to force the machine learning models to make incorrect 

predictions. The integrity and confidence of the complete system is affected in such 

attacks. The systems which overfits to its training data are most susceptible to these 

attacks. A good preventive measure for these attacks is to evaluate the model against 

as many adversarial examples as we can before deployment and training of the models 

to avoid these examples (adversarial training). 

Output Integrity Attack: This can occur when the results are manipulated by a hacker 

between the interface which displays the results and the model. The integrity of output 

is compromised by this attack. A good preventive measure for these attacks is to use 

some strong cryptographic security algorithms between the interface and the model so 

that the hacker cannot easily access the results. 

System Manipulation: The machine learning systems will continue to learn even after 

being deployed by taking feedback based on the new predictions. A hacker can exploit 

this as in [17] and provide tampered data as the model inputs and cause the degradation 

of the model performance over time rather than gradual improvement. A good 

preventive measure for these attacks is to implement outlier detection techniques. 

5.2 Privacy Considerations 

5.2.1 Implicit considerations 

Privacy is an important factor to consider for the human action recognition system. Here 

video data of users performing actions is used for training and hence these are sensitive 

data containing identity information about the users. So, the identity of users in the 

video should be masked for privacy. We are building our machine learning system 

pipeline including a step that blurs the faces before the model learning the actions so 

that the person performing the action in the video cannot be identified at any stage. 

This protects the privacy and identity of users. This will be done after getting approval 

from the college ethics committee. 
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5.2.2 Explicit considerations 

In explicit considerations we are concerned about the privacy attacks similar to the ones 

discussed in [18] and their preventive measures. Privacy attacks are of two types -model 

extraction and retrieval of training data. 

Model Extraction: A hacker can send various inputs to the model and check the outputs 

and tries to figure out the equations governing the model and thereby decoding the 

model weights and biases. If the hacker succeeds in this, it means that the human action 

recognition model is extracted or stolen and can be utilized by the hacker. 

Retrieval of the Training Data: There are two ways in which retrieval of the training data 

is done. First being membership inference in which the hacker can figure out if a 

particular record was used in the training of the model. The second being model 

inversion in which a hacker can figure out information pertaining to the model with 

pieces of information about the data used for training and generated outputs from the 

model. 

Good preventive measures for these attacks include various methods such as adding 

noise intentionally to the data (differential privacy), computing weights of model after 

encrypting the data (homomorphic encryption) and multiple parties jointly performing 

actions with partial access to datasets (multi-party computation). 
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6 Evaluation 
To evaluate the performance of the models used in this study, the predicted outputs 

and the true outputs are compared using suitable metrics. F1 Score is used as a metric 

for evaluation of the models in the first and second stages of the workflow. F1 Score is 

the harmonic mean of precision and recall, where precision is the number of true 

positives/ (number of true positives + number of false positives) and recall is the number 

of true positives/ (number of true positives + number of false negatives). This a good 

metric for classification problems especially when class imbalances are present in the 

data. The F1 Score on train data and test data for the Video Based Human Action 

Classifier in workflow stage 1 is 0.64 and 0.62 respectively.  

The Image Based Video Frames Classifier in second stage of the workflow is 

implemented using Skeletal Joint Based models (Random Forest Classifier and XGBoost 

Classifier) and Frame Images Based models (CNN Model and Transfer Learning + CNN 

model). The F1 Scores of these models on the training data is shown in Table 6.1. The F1 

Scores of these models on the test data is shown in Table 6.2. The Skeletal Joint Based 

model outperformed the other approach on train and test data. To further assess the 

generalizing capabilities of these Skeletal Joint Based models cross-validation was 

performed on all these models. The cross-validation scores of the models are shown in 

Table 6.3. The Random Forest Classifier performs the best among all the models for all 

the actions with good generalizing capabilities. Hence, this model will be selected as the 

final model for the second stage of the workflow. 

Each action is further evaluated with the results calculated by algorithms corresponding 

to each action. The results of all actions (except Jump High) are available in a doc format, 

but it is too unstructured to be read by the program. Since true values for the action 

Jump High is not available, it is not possible to evaluate the results calculated by the 

distance calculation algorithm. For the action Jump Forward, the distance jumped was 

recorded manually during the recording of video. We compared this result to the results 

calculated by the distance calculation algorithm for 50 random video and the algorithm 

measured the distance with an average error of 10cm. For the action Jump Sideways, 

the number of complete lateral jumps was recorded manually during the recording of 

video. We compared this result to the results calculated by the number of jumps 

calculation algorithm for 50 random video and the algorithm measured the number with 

an average error of 1 jump. For the action Jog on the Spot, the number of jogs was 

recorded manually during the recording of video. We compared this result to the results 
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calculated by the number of jogs calculation algorithm for 50 random video and the 

algorithm measured the number with an average error of 2 jogs. 

 
Skeletal Joint Based Frame Images Based 

Random Forest 

Classifier 

XGBoost 

Classifier 

CNN Model Transfer 

Learning + CNN 

Jump High 0.99 0.98 0.79 0.73 

Jump Forward 0.99 0.94 0.54 0.61 

Jump Sideways 0.99 0.90 0.57 0.57 

Jog on the Spot 0.99 0.95 0.31 0.35 

Table 6.1: F1 Scores of Different Image Based Video Frames Classifier Models on Train 
Data 

 
Skeletal Joint Based Frame Images Based 

Random Forest 

Classifier 

XGBoost 

Classifier 

CNN Model Transfer 

Learning + CNN 

Jump High 0.95 0.95 0.79 0.72 

Jump Forward 0.94 0.91 0.54 0.61 

Jump Sideways 0.87 0.83 0.56 0.56 

Jog on the Spot 0.89 0.90 0.31 0.35 

Table 6.2: F1 Scores of Different Image Based Video Frames Classifier Models on Test 
Data 
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Skeletal Joint Based 

Random Forest 

Classifier 

XGBoost 

Classifier 

Jump High 0.95 0.95 

Jump Forward 0.94 0.92 

Jump Sideways 0.87 0.84 

Jog on the Spot 0.88 0.90 

Table 6.3: Cross Validation Scores of Different Image Based Video Frames Classifier 
Models  
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7 Conclusion and Future Work 
 

7.1 Conclusion 

In this study a system where videos are classified into the action being performed and 

then analysed frame by frame to track the action throughout the video and calculate 

the results of the actions based on the specified criteria is proposed. The Video 

classifiers will categorise the videos into one of the four actions (Jump High, Jump 

Forward, Jump Sideways and Jog on the Spot) and then track the actions across the 

frames throughout the video using the frame images classifiers to evaluate the results 

of the actions. The video classifiers are LSTM networks combined with pretrained neural 

network (EfficientNetB7). These are trained on the available dataset from the research 

conducted in [19] and was able to get an F1 score of 0.62 on the test data. This shows 

that the network has classification power but needs more training data for it capture all 

the information related to each action. Each frame was labelled with an intermediate 

status using a heuristic defined based on the skeletal joint values based on the 

MediaPipe Library. This was further used to train different types of classification models 

either with the skeletal joint values as the input or the frame images as the input. From 

the experiment results, the models based on Skeletal Joint Value Inputs (Random Forest 

Classifier and XGBoost Classifier) outperformed the models based on Frame Image 

Inputs. The Random Forest Classifier achieved the best results with average F1 scores of 

0.95, 0.94, 0.87 and 0.89 for the actions Jump High, Jump Forward, Jump Sideways and 

Jog on the Spot respectively.  The distance calculation algorithm for the action Jump 

High was able to find the height of the jump relative to the frame size but was unable to 

scale it to a real-world distance because of the lack on any reference distance in the 

videos. The distance calculation algorithm for the action Jump Forward was able to find 

the distance jumped as there was reference distance marking along the horizontal 

direction in the videos which is used to scale the frame distance to a real-world distance. 

This distance was measured with an average error of 10 cm. For the action Jump 

Sideways, the number of jumps were calculated with an average error of 1 jump. The 

number of jogs for the action Jog on the Spot was calculated with an average error of 2 

jogs. 
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7.2 Future Work 

This study has focussed only on four human actions and the dataset used was limited to 

the videos recorded as part of the research conducted in [19]. The same systems and 

methods can be extended to various actions and generic video datasets with changes in 

the heuristics and the criteria calculation algorithms. For future work, this study can be 

adapted to other actions involving repetition of the same movements by figuring out 

the intermediate stages of the actions to track based on heuristics. Similarly, for actions 

where distance needs to be calculated, additional steps to record a reference distance 

from the video environment need to be included to make the system more invariant to 

various video data sources. Furthermore, the systems proposed in this study can be 

made more autonomous by letting the machine learn the heuristics on its own rather 

than specifying the parameters by training machine learning model which can capture 

the patterns emerging from the tracking of skeletal joint values.  
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Appendix 

Abbreviations 

PAF                Part Affinity Field 

ROI                 Region of Interest 

PCK@0.2       Percent of Correct Points with 20% tolerance 

CNN                Convolutional Neural Network 

LSTM              Long Short-Term Memory Network 

CAE                 Convolutional Autoencoder models 


