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Abstract

Machine learning and predictive analysis have become an integral part of society. It

has sped up the transformation of various fields, especially Medical Science. The

main objective of this report is to identify the relapse of antineutrophil cytoplasmic

antibody-associated vasculitis (AAV) based on different biomarkers. We are using

machine learning algorithms to determine the relapse early to create a personalized

treatment plan for the patient. Every case is unique, leading to a non-standard treat-

ment process resulting in some missing biomarkers. These missing biomarkers cause

the machine learning models to often fails due to it being a statistical formula. One

of the most common methods of resolving the missing values problem is the Multi-

variate Imputation by Chained Equations, more commonly referred to as the MICE

package in R programming language. Another hindrance to using Machine Learning

is that Rare diseases such as ANCA-Associated Vasculitis have a meagre data count.

Many restrictions are due to federal use rules like HIPAA and GDPR, adding multiple

more restrictions to the available data and making the process of the analysis com-

plex. To circumvent the issue of insufficient data, we are using statistical methods to

synthesize new data points with similar functionality as the original Data. A constant

evaluation using the pairwise correlation comparison and log cluster ensures the in-

tegrity of the new synthetic data. Sallow machine learning algorithms like Decision

Tree and Random Forest are trained on the newly synthesized data and then tested

on the original data along with the added imputed data points. Cross Validation and

Random Search help identify the parameters for creating an unbiased model with the

best performance.
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1 | Introduction

This report aims to create a comprehensive method to analyse rare disease data and

create predictive models to identify the complications from this autoimmune condi-

tion risk of infection. This report uses the ANCA data procured from the Rare kidney

Deseases (RKD) registry database. Since ANCA specific vasculitis is a rare occurrence,

the number of patients for which we have the record is limited, hence developing ma-

chine learning algorithms is challenging.

The report helps create an analytical method to overcome these issues by creating

synthetic data to increase the ability to train machine learning models for these rare

diseases and conditions to identify them early, identify their complications timely and

create a personalised treatment plan for the patients.

Various neighbour-based approaches like SMOTE, B-SMOTE and ANS create syn-

thetic data, which can help analyse patterns and perform detailed statistical analysis.

The synthetic data generated aims to resemble the original data patterns for artificially

providing the data that is unavailable. Another advantage of using synthetic data is

maintaining the patient’s anonymity and securing their rights under the federal reg-

ulations while studying and analysing the patterns of the data. Synthetic data eval-

uations help to ensure that the data has the same principal properties as the original

dataset to ensure the integrity of the data.
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1.1 Vasculitis in adults

The vasculitis are distinctly described as inflammation causing blood cells within

blood vessels with reactive damage to the mural structures. Blood vessels (including

arteries and veins) carry oxygenated and deoxygenated blood to various body parts

to drive aerobic cellular respiration. This autoimmune disease process of attacking

body’s own healthy cells can affect one or multiple body systems including nervous

system, gastrointestinal system, genitourinary, eyes, skin [26]. In vasculits, the in-

tegrity of vessel wall leads to abnormal bleeding and compromises the inner lumen

of the vessel. This process leads to tissue dysfunction and eventually tissue death. In

general, the affected vessels may differ in size, types and location which may mani-

fest in different symptomology the condition presents with. The mechanism of why

vasculitis manifest in certain individuals is unknown [10].

Vasculitis is a serious disease that requires acute recognition and therapy [21]. The

symptomology involves around the affected organs. Hence this can lead to focal or

multi-system symptoms and signs. Diagnosing vasculitis is challenging due to a wide

variety of focal or multi-system symptoms that it can present with. Medical prac-

titioners make a diagnosis with careful integration of patient’s history, examination

and investigations. Various biomarkers and clinical presentation must be considered

to identify the relapse of vasculitis timely. The suppression of Vasculitic symptoms

and achieving remission is essential to avoid organ dysfunction. The treatment of

Vasculitis involves suppression of inflammation and/or suppression of autoimmu-

nity. Using ML models would help in the early identification to start timely treatment

of the patients with active Vasculitis.
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1.2 Report Structure

The thesis project report is structured to have the literature review next, followed by

the Methodology and result and a Conclusion and future works to wrap up. The

methodology encompasses how the data is standardised and preprocessed post which

we use Synthetic data generation algorithms like SMOTE, B-SMOTE and ANS. We use

the synthetic data to train multiple machine learning algorithms. The most important

thing here is to create a simple, unbiased and high-precision machine learning algo-

rithm trained on the synthetic data.
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2 | Literature Review

2.1 Technology in Medical Science

There has been a significant surge in technological advancement in the healthcare sec-

tor to detect and identify infections or irregularities in the Human body. These ad-

vancements are both in hardware and software devices working in tandem to identify

the medical risk in a patient. That may not be possible for a human doctor due to the

complex relations between various biomarkers, behavioural patterns and other fea-

tures are taken into account by a machine learning algorithm [15]. Sometimes it is just

the speed of detecting an infection that helps save a person’s life. An example would

be a sensor that helps detect any bacterial infection in a wound, leading to severe im-

plications like loss of limb or death if not treated early to contain the spread 7591093.

But by far, the most significant advancement in medical science has been brought by

using Artificial Intelligence to predict or identify irregularities in the human body [22]

[3].

2.2 Machine Learning for Medical Science Dataset

A major problem in detecting diseases is identifying the issue and its root cause; given

the symptoms and biomarkers, the same symptoms could be due to many health con-

ditions. Ensemble models seem to be an excellent fit for such needs as they are ex-

cellent at filtering out the noise from the data improving the precision by leaps and

bounds [28]. The current method of detecting ANCA vasculitis involves long medi-
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cal tests involving a wait time and resources incurring a cost on the patient [5]. Even

for Covid 19, the ML models helped identify patients infected with the Virus sav-

ing a lot of money and resources spent on acquiring testing kits, which were hard

to come across given that Covid 19 was declared a Global pandemic [25]. Simple

Ensemble based models are a standard method of prediction of ANCA-associated

glomerulonephritis [2]. One major issue with ensemble models or any other machine

learning algorithm is that they heavily depend on data for complete unbiased training

[20].

2.3 Data Synthesis for Medical Science Dataset

When dealing with rare conditions such as ANCA Vasculitis or other rare diseases,

there often is the issue of insufficient data, which could cause problems while training

machine learning models. This issue also arises when the test is more expensive or

confidential, like an X-Ray, Ultrasound or other medical tests. Generative Adversarial

Networks (GAN) are a common technique used to create synthetic data to train a

model more efficiently [1], [23], [11]. Another commonly applied method is SMOTE

algorithm [24] primarily used to settle the imbalance in the data by creating new data

points. Synthetic data is instrumental in the scenario where personal data is involved.

Since the information is generated using computer algorithms, it does not belong to

any specific patient, allowing more accessible access to perform a more comprehensive

analysis with greater freedom [6].
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3 | Dataset Description

Since the thesis work is an extension of a previous report, the dataset used was the

cleaned dataset which was already engineered and processed. The dataset has the

following properties in it:

1. The data contains data from 69 patients.; The data records data for 39 features

2. Of the 39 columns, we use 12 features (including the target feature)

3. The target column is converted into a binary column with Long-Term Remission

Off-Therapy (LTROT) as 0 (-ve class) and Relapse as 1 (+ve class)

4. 9 columns of the 11 feature columns are numeric, and the remaining 2 are binary

columns.

5. 47 records of the original 69 have one or more missing values in them.

Figure 3.1: Data Summary

The Figure 3.1 gives an overall summary of the complete data imported into the R

programming environment. It provides an overview of the entire dataset with min,

max, the mean and standard deviation for the column and the number of missing

values in each column (all features have missing values in them).
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4 | Methodology

The report aimed to create an unbiased machine learning algorithm which could iden-

tify high-risk patients basis the different biomarkers. Two programming languages, R

and Python, are used to code methodology. R programming language was used to

perform data filtration, cleaning and preprocessing, while python was used for ML

model creation, selection and testing.

Figure 4.1: Data Pipeline for predicting ANCA Data Prediction

The Figure 4.1 gives a broad overview of the data pipeline and the various actions

taken to process or pre-process the data to get an unbiased model with a high precision

rate.

4.1 Data Filteration and Preprocessing

Before applying any ML operation, we need to process the features to create an unbi-

ased model with reliable predictions:

1. Data Normalization or/and Standardisation: It is the process of scaling data.

7



While normalisation is the process of scaling using minimum and maximum

values, standardisation is the process of scaling using mean, and standard devi-

ation.

2. Imputation of missing values: Sometimes, the data for patients is not complete.

In such cases, imputations are performed packages like Multivariate Imputation

by Chained Equation (MICE) can help overcome the issue.

3. Transformation of records: Once we have all the data, we may need to trans-

form the columns by expanding or reducing the feature set. Principal Compo-

nent Analysis (PCA) is a widespread method to reduce the number of numeric

columns in the dataset.

The original dataset consists of 69 patients (rows) and 39 biomarkers (columns). Of

these, we move forward with the analysis with only 12 biomarkers which are the

feature columns for the study. The columns consist of numeric values, all with varying

units making some column values much more significant than others. Large data

values with unbiased scales could lead to biased ML learning models. The standard

scaling method ensures that all the values in the dataset columns are between 1 and 0,

bringing the data to an equitable scale.

4.2 Missing Value Imputation

The Figure 4.2 shows that all 11 feature columns (9 numeric columns and 2 binary

columns) have missing values. The missing values can be caused due to various fac-

tors like unrecorded data or an error in recorded data. Most machine learning models

fail to encounter missing values in the dataset since these models are based on math-

ematical formulas. Some of the algorithms like KNN and Naive Bayes do work with

missing values leading to creating a model with incorrect results, which could be bi-

ased hence getting a model with low precision.

Missing data could essentially classify data into 4 categories:

8



Figure 4.2: Missing Value Summary

• Missingness Completely At Random (MCAR): here, the probability of missing-

ness is the same for all units. Thus, it implies no relationship between the data

present and the missing data, making it extremely hard to implement.

• Missingness at Random (MAR): the probability of missingness in these cases is

the same within groups of the observed data.

• Missingness that depends on unobserved Predictors: Here, the data not miss-

ingness is not random but is dependent on variables that are not available in the

dataset.
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• Missingness that depends on the missing value: Here, the probability of the

missing data depends on the variable.

The missing values are imputed using the Multivariate Imputation by Chained Equa-

tions, commonly referred to as the MICE package in the R programming language.

The function takes four significant parametric inputs:

1. Data: The input data with the missing values columns in it.

2. Method: The method used to identify the value for the actual value imputed in

the missing places.

3. m: Iteration count for multiple imputations.

4. maxit: the number of internal imputations for each iteration.

For the ANCA data, which has missing values for both the numeric and non-numeric

column (binary column), the Predictive Mean Matching (PMM) method is used to

create 10 imputation datasets with 50 iterations in each imputation.

4.3 Synthetic Data Generation

We often encounter a shortage of data, leading to an under-fitted machine learning

model with low precision. Machine learning models rely on a training mechanism

which learns and creates a mathematical formula based on observed patterns in the

data. To overcome this issue, we need to generate new synthetic data points. The

smotefamily package of R programming is one of the most commonly used package

to create new data points. The package heavily depends on the Neighbour based

approach like K-Nearest Neighbour (KNN).

3 commonly used algorithms for generating synthetic data:

1. Synthetic Minority Oversampling Technique (SMOTE): This is one of the most

common approaches to creating synthetic data. The algorithm makes new data

points between a randomly selected minority class and its neighbours. The prin-

10



cipal parametric input to the algorithm is the value of K specifying the number of

neighbours to be chosen and the duplicate size determining the duplication fac-

tor by which the minority class needs to be increased. The Figure 4.3 illustrates

how SMOTE algorithm works whic his explained in Algorithm 1

Algorithm 1 Synthetic Minority Oversampling Technique (SMOTE) Algorithm

Require: k > 1
Require: duplicationSize > 1

number of new points =size of minority class
counter = 0
while counter ≤ number of new points do

counter = counter + 1
Select a point p at random
Select a neighbour point np from one of the k nearest neighbour points
create new random point between n&np

end while

Figure 4.3: Synthetic Minority Oversampling Technique (SMOTE) [4]

2. Borderline SMOTE (B-SMOTE): This algorithm is an extension of the previously

discussed SMOTE algorithm. The data points selection, unlike SMOTE, is se-

lected only on the border region of the minority class, unlike the stochastic method

of choice performed in SMOTE. The input parameters for the B-SMOTE algo-

rithm are same as that in SMOTE. Figure 4.4 illustrates how the B-SMOTE al-

gorithm works the same way as the SMOTE algorithms, only adding the new

11



points on the edge of the minority class. The data density using the B-SMOTE

algorithm generally increases around the edge of the minority class.

Figure 4.4: Borderline SMOTE (B-SMOTE) [13]

3. Adaptive Neighbor Synthetic (ANS): This algorithm is a density-based approach.

The algorithm self-adjusts the k neighbour parameters. The new data points

are placed where the data density is low, making the data selection process less

stochastic than the SMOTE algorithm, which puts the points at a position be-

tween two randomly selected data points. Since the ANS algorithm self adjust

the K value in the algorithm the only input parameter is the duplication size.

Figure 4.5 shows that the density of the minority class is a criterion for decid-

ing where to position the newly created synthetic data. The position of the new

point e in the Figure is such that it can fill the void of missing minority data be-

tween the x1 and x2 points. The algorithms hence ensure that the density of the

data is more uniform with no gaps between the data.

4.4 Synthetic Data Evaluation

Following are the evaluation metrics used to evaluate the data integrity:

• Pairwise Correlation Difference (PCD) [7]: it compares the correlation matrix

12



Figure 4.5: Adaptive Neighbor Synthetic (ANS) [8]
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of the original value and the matrix formed using the new synthetic data. This

metric intends to see how well the inter-column dependencies are maintained

in the newly synthesised data. The representation is a matrix created using the

Equation 1 where XR is the real data, and XS is the synthetic data.

PCD(XR, XS) =∥ Corr(XR)− Corr(XS) ∥ (1)

• Log Cluster Evaluation Uc [27]: This metric evaluates the underlying latent

structure of the data by using Cluster analysis. Clusters are created on the com-

plete dataset (real + synthetic data). The Elbow method helps determine the

optimal number of Clusters symbolised as G for the given dataset. The Equation

2 helps to get the value of Uc, nj represents the total number of points in the jth

cluster. The lower the value of Uc, the better the data spread. If the value is too

high, it means the synthetic data is overshadowing the original data, and a NA

value means that there are clusters in the data that do not have either real or

synthetic data.

Uc = log(
1
G

G

∑
j=1

[
nR

j

nj
− c]2)

c =
nR

(nR + nS)

(2)
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4.5 Predictive Analysis

Predictive analysis is creating a statistical model that learns from patterns observed in

the data. There are 2 principal categories to classify all the ML algorithms:

• Supervised Learning: Here, there is an available target column, and the train-

ing objective is to understand the patterns in the data to predict the target vari-

able. Supervised learning algorithms involve Classification and Regression al-

gorithms.

• Unsupervised learning: unlike supervised learning, here we do not have an

explicit target variable, and the learning process involves finding patterns in the

data. The unsupervised Learning method consists of clustering algorithms.

Since we need to classify the patient records as LROT or Relapse, a known target, Thus

making supervised classification algorithms the main focus.

For the Current dataset, we have mainly implemented two algorithms:

1. Decision Tree [16]: It is a decision-making tool based on a binary tree-like model

of decision-making and the resultant consequences. The algorithm uses the Gini

index entropy method expressed in the equation 3 to identify the data split. The j

value in the equation is the number of classes in the ith node, while P represents

the ratio of classes of the ith node. The decision tree method is advantageous as

it is a non-parametric learning algorithm which creates a model which is easy to

visualize and understand. The disadvantage of using a decision tree is that it is

susceptible to noise in the data.

Gini = 1 − (
j

∑
i=−1

(p(i|t))2) (3)

2. Random Forest [19] It is a decision tree-based ensemble learning algorithm based

15



on out-of-bag error. An ensemble learning model uses multiple classifiers in-

stead of a single classifier algorithm to have an improved prediction result. The

out-of-bag error involves having subsets of data created randomly with replace-

ment to train the individual classifier. This way, the classifiers are exposed to

different aspects of the data making the overall model less biased. The baseline

classifier in the random forest model is the decision tree algorithm. The model’s

performance could be adjusted by changing the number of trees in the model,

which is defined by the n-estimator parameter. Another significant difference

between random forest and decision tree is the bagging and boosting algorithms

that bring a certain amount of stochasticity to the model. The stochasticity En-

suring that two random forest models trained on the same dataset could lead to

different prediction results on the same test data.

4.5.1 Model Selection

One of the essential parts of Machine Learning is finding the most optimal Hyper-

parameter values for the algorithm for which the model will make the most optimal

predictions. For this purpose, we have used RandomSearch ?? and K-Fold Cross-

validation [18].

RandomSearch involves a user identifying the adjustable hyperparameters and in-

putting a range of values for each one of those hyperparameters. The RandomSearch

algorithm then creates an ML model using a randomly created hyperparameter set

(values are randomly selected from the inputted value set). The model is then stored

before a new hyperparameter set is selected, and the process repeats n times (in our

case, 10 but is an adjustable parameter of RandomSearch). The best model is selected

by comparing all the models’ mean cross-validation scores. Algorithm 2 explains how

cross-validation works. This model selection method ensures that the model is not

biased, achieved by cross-validation due to the multiple pieces of training on each

subset. It also allows for the full exploration of the hyperparameter sample space.

RandomSearch helps explore the sample space with a limited number of models sav-

16



ing time and computational space.

Algorithm 2 K-fold Cross-Validation

Require: k > 1
Require: Data = Input_Dataset
Require: ML_Algorithm

datasetlist = krandomsplitso f Data
accuracy_list = []; model_list = []
counter = 1
while counter ≤ k do

model = Train(ML_Algorithm, (Data − datasetlist[k]))
accuracy = Test(ML_Algorithm, datasetlist[k])
accuracy_list.append(accuracy)
model_list.append(model)
counter = counter + 1

end while
return accuracy_list

4.6 Prediction Evaluation

Following are the classification evaluation metrics used to compare the model perfor-

mance:

1. Confusion Matrix [14]: It is a square matrix summary of the prediction result.

The number of rows and columns equals the number of target classes. In the case

of the binary target, the matrix is as shown in Figure 4.6: The confusion matrix

Figure 4.6: Confusion Matrix [17]

metrics are as follows:

• True Positive (TP): The correctly predicted +ve class.

• True Negative (TN): The correctly predicted -ve class.

17



• False Positive (FP): The wrongly predicted +ve class.

• False Negative (FN): The wrongly predicted -ve class.

2. Precision [9]: It helps measure how close the measurement of the same items are

to each other. TP
(TP+FP)

3. Recall [9]: It helps measure how close the measurement of different items are to

each other. TP
(TP+FN)

4. F1 Score [9]: It is the harmonic mean of the precision and recall. The metric helps

compare the individual values of precision and recall and help find the model

with best value for both. The maximum F1 score possible is 1, this is when both

the precision and recall is 1 indicating a perfect model. The minimum score for

F1 is 0 this happens when either the value of precision or recall is 0 indicating a

biased model. F1 = 2 precision.recall
(precision+recall) =

tp
tp+0.5( f p+ f n)
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5 | Result

5.1 Synthetic Data Evaluation

The synthetic data evaluation methods help evaluate the quality of the newly created

data and ensure that it has similar properties as the original dataset. We are using

2 ways to ensure the quality of synthetic data evaluation the Pairwise Correlation

Difference test and Log Cluster.

5.1.1 SMOTE

Figure 5.1: Data Pipeline for predicting ANCA Data Prediction

The Figure 5.1 shows the PCD matrix for the original data and the newly created Syn-

thetic data created using the SMOTE algorithm. We see minimal values in the matrix,
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denoting no significant shift in the correlation matrix. The overall mean absolute dif-

ference for the matrix is 0.019.

The Log cluster value for the SMOTE data is -8.98 (10 clusters were selected A.1),

which is a good metric. The algorithm has generated 3740 new rows from the orig-

inal 455 uniquely imputed rows, including 22 not null original data points and 433

imputed values obtained by performing 10 imputations on the 47 rows with missing

data.

5.1.2 BSMOTE

Figure 5.2: Data Pipeline for predicting ANCA Data Prediction

The Figure 5.2 shows the PCD matrix for the original and B-SMOTE synthetic data.

The values in the matrix are comparatively much higher than what we see in the case

of SMOTE algorithm, with an absolute average coming to an approx of 0.203, which

is significantly higher ( approximately 10 times more) than the absolute mean value

observed in the case of SMOTE algorithm.

Since the B-SMOTE algorithm only creates the synthetic data points close to the bor-

ders leaving a few clusters void of synthetic data, leaving some Clusters with no

synthetic data in them. The Log cluster value, in this case, is -3.47 (10 clusters were
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selected A.2), which is lower than the SMOTE algorithms indicating better cluster in-

tegrity than that of the SMOTE algorithm. The algorithm generates around 194 unique

synthetic data points from the original 455 data points.

5.1.3 ANS

Figure 5.3: Data Pipeline for predicting ANCA Data Prediction

The Figure shows the PCD matrix for the original and ANS synthetic data. The values

in the matrix are comparable to the PCD matrix of the SMOTE algorithm with a few

inflexion points. The absolute mean value of the matrix is 0.026, which is only a little

higher than the SMOTE absolute mean value.

The log cluster value for the ANS algorithm is -7.51 (10 clusters were selected A.3),

which is lower than that observed for the SMOTE algorithm. Indicate that the clus-

ter integrity for The ANS is more than that of SMOTE Algorithm; the difference is

negligible. The total number of unique synthetic data points obtained using the ANS

algorithm is 3635 over the original 455 data points.

21



5.2 Machine Learning

RMF and DT models are used to predict the Relapse of the Vasculitis in the patient.

The evaluation of the models is thus a significant part of the workflow as it helps us

identify the best prediction method for the data set while ensuring no bias. Selection

of the best RMF and DT modes is done using the Random Search algorithm. (Results

of the Random search are in Appendix A.1, A.2, A.3, A.4, A.5, A.6)

5.2.1 SMOTE

Column Name Decision Tree Random Forest
AntiPR3MPOLevel 0.232 0.210

NeutrophilLymphocyteratio 0.079 0.128
Neutrophilcountx109L 0.197 0.124
EosinophilCountx109L 0.036 0.120

UninalysisProtein 0.097 0.079
Lymphocytecountx109L 0.170 0.079

CRP 0.059 0.063
UninalysisBlood 0.060 0.056

IgGgdL 0.016 0.055
Plateletcountx109L 0.045 0.047

WeightKG 0.008 0.038

Table 5.1: SMOTE Feature Importance; Sorted Descending on Random Forest Feature
importance

The Figure 5.4 is a 5-length imputed decision tree (the entire DT of max depth 15 is

available in the Appendix A.4). Parallelly the Table 5.1 outlines the feature importance

based on the Gini index for features analysed in the Decision tree and the average

Gini index obtained by the multiple trees constituting the RandomForest model. The

majority of the columns in the table show that the order of the features is not affected

when ordered on the Random Forest values or the Decision tree values. The only

exception is the Eosinophil Count, which goes up to the 4th position in the Random

forest case while at the 9th position when ordered for the Gini index.

The Figure 5.5 shows the Correlation matrix and the DT and RMF model classification

report. The correlation matrix shows that the number of incorrect predictions is much
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Figure 5.4: SMOTE Decision tree; imputed for depth 5
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Figure 5.5: SMOTE Confution Matrix and Classification Report

less for the RMF model (2) compared to the DT (10). It leads to a better F1 score

and accuracy (0.98 for DT and 1 for RMF) for the RMF model for both the positive

and Negative predictions. Indicating means the model is overall unbiased and has

excellent prediction capability.

5.2.2 BSMOTE

Column Name Decision Tree Random Forest
CRP 0.306 0.214

Neutrophilcountx109L 0.046 0.142
AntiPR3MPOLevel 0.045 0.107
UninalysisProtein 0.273 0.091

IgGgdL 0.133 0.085
NeutrophilLymphocyteratio 0.067 0.085

WeightKG 0.036 0.073
Plateletcountx109L 0.094 0.063

Lymphocytecountx109L 0.000 0.060
EosinophilCountx109L 0.000 0.046

UninalysisBlood 0.000 0.034

Table 5.2: B-SMOTE Feature Importance; Sorted Descending on Random Forest Fea-
ture importance

The Figure 5.6 is a 5-length imputed decision tree (the entire DT of max depth 7 is

available in the Appendix A.5). Parallelly the Table 5.2 outlines the feature importance
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Figure 5.6: B-SMOTE Decision tree; imputed for depth
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based on the Gini index for features analysed in the Decision tree and the average Gini

index obtained by the multiple trees constituting the RandomForest model. Similar to

the SMOTE algorithm, we see that the order of feature importance does not change

much for both the DT and RMF models. The distinguishing feature, though, is the 0

value we see for the last three most insignificant features of the DT model, essentially

ignoring them completely.

Figure 5.7: B-SMOTE Confution Matrix and Classification Report

The Figure 5.7 shows the confusion matrix and the classification report for the DT and

RMF model trained on the B-SMOTE synthetic data. The confusion matrix shows that

even though the RMF model has 20 more points correctly predicted, the model has a

bias for -ve prediction. The classification report shows a significantly higher precision

and recall rate for the LROT prediction than the Relapse value, further reinforcing the

bias highlighted by the confusion matrix.

5.2.3 ANS

The Figure 5.8 is a 5-length imputed decision tree (the entire DT of max depth 7 is

available in the Appendix A.6). Parallelly the Table 5.3 outlines the feature importance

based on the Gini index for features analysed in the Decision tree and the average Gini

index obtained by the multiple trees constituting the RandomForest model. Unlike the

26



Figure 5.8: ANS Decision tree; imputed for depth
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Column Name Decision Tree Random Forest
CRP 0.063 0.214

Neutrophilcountx109L 0.060 0.142
AntiPR3MPOLevel 0.174 0.107
UninalysisProtein 0.293 0.091

IgGgdL 0.049 0.085
NeutrophilLymphocyteratio 0.118 0.085

WeightKG 0.031 0.073
Plateletcountx109L 0.015 0.063

Lymphocytecountx109L 0.066 0.060
EosinophilCountx109L 0.102 0.046

UninalysisBlood 0.029 0.034

Table 5.3: ANS Feature Importance; Sorted Descending on Random Forest Feature
importance

SMOTE and B-SMOTE algorithms, we do see a significant change in the order of the

feature importance for the RMF and DT models. The fact that the ANS model makes

the data spread more expansive than the SMOTE model causes a shift in the subsets

of the data, which affects the overall Gini index average leading to the change in the

order of the feature significance.

Figure 5.9: ANS Confution Matrix and Classification Report

The Figure 5.9 shows the confusion matrix and the classification report for the DT and

RMF model trained on the ANS synthetic data, which helps infer that the RMF model,

in this case, performs better than the DT model. Unlike the BSMOTE, both models
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have a comparable Precision and recall rate, concluding that the models are unbiased.

The overall performance of both models is much better than the models trained on the

B-SMOTE synthetic data but still falls short when compared to the SMOTE models by

a very slim margin.

5.3 Result Summary

Column Name Decision Tree Random Forest
Parameter SMOTE B-SMOTE ANS

Synthetic Data Row Count 3740 194 3635
PCD (absolute mean) 0.019 0.203 0.026

Log Cluster -8.98 -3.47 -7.51
Best ML Algorithm Random Forest Random Forest Random Forest
Best ML Accuracy 100% 69% 98%

Table 5.4: Summary of all the important metrics

The table 5.4 summarises the above result. From the table, we can infer that given the

low value of the PCD absolute mean and low log cluster value (taking the row count

into consideration) coupled with great prediction result, we can conclude the SMOTE

algorithm is the best performing model.
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6 | Discussion

There are various rare diseases or disorders which, if left undiagnosed or unattended,

could be fatal. One such rarely occurring autoimmune condition is the ANCA vasculi-

tis which causes inflammation of blood vessels stiffening the flow of blood to various

parts of the body. Leaving these conditions as are could result in tissue damage affect-

ing one or many body organs such as the eyes, skin, lungs, gut, kidneys or nervous

system. Even after performing immunosuppressive therapies, the risk of the patient’s

mortality reduces by 2.3%, and a parallel risk of relapse in approximately 50% of the

cases persists [12]. Another issue is diagnosing rare conditions since they share symp-

toms with various other diseases and, in some cases, may involve expensive tests or

diagnostic procedures like CT-scan or MRI scan. Thus having a reliable predictive

model that looks at the various biomarkers in the data to detect a relapse would be

beneficial. This thesis aims to generate synthetic data around this relapse data so that

we can more optimally analyse and create predictive ML models with low bias and

high precision.

One of the preliminary asks of any predictive algorithm is reliable data in sufficient

quantity to train the model so that it is not under-fitted. When we consider rare dis-

eases such as ANCA vasculitis, we often see that the most significant problem is the

shortage of data. The available data has a lot of missing values in them and are highly

restrictive. Thus, synthetic data generation is a convenient solution to the problem

since it helps overcome the problem of insufficient data and allows more exhaus-

tive analysis without risking confidential data. This task can be achieved using the R
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programming language library "smotefamily", which bundles multiple synthetic data

generation algorithms like SMOTE, B-SMOTE and ANS. The main application of such

algorithms is to balance out imbalanced datasets enabling better model training with

low bias.

Synthetic data is only valid when it has similar properties to the original data. In this

thesis report, we evaluated the synthetic data using 2 metrics, PCD and Log cluster.

PCD ensures that the newly generated synthetic data has the same inter-column de-

pendency properties as the original data. At the same time, the Log cluster technique

help evaluates the spread, providing the maintenance of the underlying structure of

the data. Since the data count generated by all the 3 algorithms is different, it is es-

sential to consider that while evaluating these methods. From the Results section, it

is clear that the SMOTE algorithm is an ideal choice, given it generates 3740 new and

unique data points while keeping a very low absolute PCD mean of 0.019, ensuring

the properties of the original data do not change. The high log cluster value could be

attributed to the newly generated points being almost 8 times more than that initially

imputed dataset.

Simple supervised classification Machine learning algorithms could suffice the task

of predicting the relapse with high precision when trained on the newly created syn-

thetic dataset. Overall the ensemble nature of the Random forest gave it an edge over

the decision tree model by a slim margin in accuracy, making it the ideal choice for

predicting the relapse chance in a patient.
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7 | In The End

7.1 Future work

This thesis report has only scratched the surface of using synthetic data generation

algorithms to create hyper-realistic data for rare medical conditions such as ANCA

vasculitis. More evaluation of the synthetic data [7] needs to be done to ensure no

new patterns are made. Work also needs to be done to identify methods for including

non-numeric columns in the data generation process, as they also play an essential

role in statistical analysis and machine learning.

Another future work task would include testing SMOTE-based algorithms for data

generations on other rare conditions. As we know, each data has its properties and

behaviour. It is essential to test if the algorithms will run smoothly on a different

dataset and maintain the same characteristics as the original data. The actual test of

this method would be on a validation dataset that was separate from the data from

which the synthetic data set was created. This could be done by using live patient

records as testing data to identify any missed scenario or condition that could affect

the model’s outcome.

Like any research, the final step would always be a way to use the proposed method

in the real world. This method will open possibilities to make high-precision machine

learning models using a limited dataset for rare diseases. Since the technique still

needs medical professionals to work in tandem to provide the patient with the nec-

essary treatment, it is crucial that we perfrom explainable analysis and create models

32



with easy-to-understand outcomes and not just a black box.

7.2 Conclusion

The main objective of this report was to identify a method for creating synthetic data

given a dataset to train an unbiased and high-precision machine learning model. The

thesis used the ANCA Vasculitis data from the RKD registry database. SMOTE, B-

SMOTE and ANS were the three synthetic data generation algorithms used. On eval-

uation, we saw that the SMOTE algorithm created sufficient hyperrealistic data to

train a machine learning model. While there was not much difference in the accuracy

of both the decision tree model and the Random forest model, the trend was consis-

tent throughout all the synthetic datasets. Constructing the ML models solely on the

synthetic gives the freedom to use the data in a much broader manner since it is com-

puter generated and does not belong to any individual, thus breaching no privacy

clauses.
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A | Appendix

A.1 Elbow Curve for Log Cluster

Figure A.1: Cluster count identification for Log Cluster - SMOTE
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Figure A.2: Cluster count identification for Log Cluster - B-SMOTE
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Figure A.3: Cluster count identification for Log Cluster - ANS
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A.2 RandomSearch Result

params mean_test_score rank_test_score
"{’max_features’: None, ’criterion’: ’gini’}" 0.9516083916083916 1
"{’max_features’: ’sqrt’, ’criterion’: ’gini’}" 0.9401398601398601 6
"{’max_features’: ’log2’, ’criterion’: ’gini’}" 0.9365034965034965 8

"{’max_features’: None, ’criterion’: ’entropy’}" 0.9448951048951049 4
"{’max_features’: ’sqrt’, ’criterion’: ’entropy’}" 0.9387412587412587 7
"{’max_features’: ’log2’, ’criterion’: ’entropy’}" 0.9507692307692308 2
"{’max_features’: None, ’criterion’: ’log_loss’}" 0.9457342657342658 3
"{’max_features’: ’sqrt’, ’criterion’: ’log_loss’}" 0.9359440559440559 9
"{’max_features’: ’log2’, ’criterion’: ’log_loss’}" 0.944055944055944 5

Table A.1: SMOTE DT RandomSearch Result

params mean_test_score rank_test_score
"{’n_estimators’: 180, ’criterion’: ’gini’}" 0.9773426573426572 7

"{’n_estimators’: 428, ’criterion’: ’entropy’}" 0.975944055944056 10
"{’n_estimators’: 265, ’criterion’: ’gini’}" 0.9773426573426572 7
"{’n_estimators’: 304, ’criterion’: ’gini’}" 0.9793006993006994 1
"{’n_estimators’: 150, ’criterion’: ’gini’}" 0.9784615384615385 4
"{’n_estimators’: 111, ’criterion’: ’gini’}" 0.979020979020979 3
"{’n_estimators’: 480, ’criterion’: ’gini’}" 0.9779020979020979 6
"{’n_estimators’: 498, ’criterion’: ’gini’}" 0.9784615384615385 4

"{’n_estimators’: 342, ’criterion’: ’entropy’}" 0.9762237762237762 9
"{’n_estimators’: 467, ’criterion’: ’gini’}" 0.9793006993006992 2

Table A.2: SMOTE RMF RandomSearch Result
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params mean_test_score rank_test_score
"{’max_features’: None, ’criterion’: ’gini’}" 0.9516083916083916 1
"{’max_features’: ’sqrt’, ’criterion’: ’gini’}" 0.9401398601398601 6
"{’max_features’: ’log2’, ’criterion’: ’gini’}" 0.9365034965034965 8

"{’max_features’: None, ’criterion’: ’entropy’}" 0.9448951048951049 4
"{’max_features’: ’sqrt’, ’criterion’: ’entropy’}" 0.9387412587412587 7
"{’max_features’: ’log2’, ’criterion’: ’entropy’}" 0.9507692307692308 2
"{’max_features’: None, ’criterion’: ’log_loss’}" 0.9457342657342658 3
"{’max_features’: ’sqrt’, ’criterion’: ’log_loss’}" 0.9359440559440559 9
"{’max_features’: ’log2’, ’criterion’: ’log_loss’}" 0.944055944055944 5

Table A.3: B-SMOTE DT RandomSearch Result

params mean_test_score rank_test_score
"{’n_estimators’: 180, ’criterion’: ’gini’}" 0.9773426573426572 7

"{’n_estimators’: 428, ’criterion’: ’entropy’}" 0.975944055944056 10
"{’n_estimators’: 265, ’criterion’: ’gini’}" 0.9773426573426572 7
"{’n_estimators’: 304, ’criterion’: ’gini’}" 0.9793006993006994 1
"{’n_estimators’: 150, ’criterion’: ’gini’}" 0.9784615384615385 4
"{’n_estimators’: 111, ’criterion’: ’gini’}" 0.979020979020979 3
"{’n_estimators’: 480, ’criterion’: ’gini’}" 0.9779020979020979 6
"{’n_estimators’: 498, ’criterion’: ’gini’}" 0.9784615384615385 4

"{’n_estimators’: 342, ’criterion’: ’entropy’}" 0.9762237762237762 9
"{’n_estimators’: 467, ’criterion’: ’gini’}" 0.9793006993006992 2

Table A.4: B-SMOTE RMF RandomSearch Result

params mean_test_score rank_test_score
"{’max_features’: None, ’criterion’: ’gini’}" 0.9516083916083916 1
"{’max_features’: ’sqrt’, ’criterion’: ’gini’}" 0.9401398601398601 6
"{’max_features’: ’log2’, ’criterion’: ’gini’}" 0.9365034965034965 8

"{’max_features’: None, ’criterion’: ’entropy’}" 0.9448951048951049 4
"{’max_features’: ’sqrt’, ’criterion’: ’entropy’}" 0.9387412587412587 7
"{’max_features’: ’log2’, ’criterion’: ’entropy’}" 0.9507692307692308 2
"{’max_features’: None, ’criterion’: ’log_loss’}" 0.9457342657342658 3
"{’max_features’: ’sqrt’, ’criterion’: ’log_loss’}" 0.9359440559440559 9
"{’max_features’: ’log2’, ’criterion’: ’log_loss’}" 0.944055944055944 5

Table A.5: ANS DT RandomSearch Result
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params mean_test_score rank_test_score
"{’n_estimators’: 180, ’criterion’: ’gini’}" 0.9773426573426572 7

"{’n_estimators’: 428, ’criterion’: ’entropy’}" 0.975944055944056 10
"{’n_estimators’: 265, ’criterion’: ’gini’}" 0.9773426573426572 7
"{’n_estimators’: 304, ’criterion’: ’gini’}" 0.9793006993006994 1
"{’n_estimators’: 150, ’criterion’: ’gini’}" 0.9784615384615385 4
"{’n_estimators’: 111, ’criterion’: ’gini’}" 0.979020979020979 3
"{’n_estimators’: 480, ’criterion’: ’gini’}" 0.9779020979020979 6
"{’n_estimators’: 498, ’criterion’: ’gini’}" 0.9784615384615385 4

"{’n_estimators’: 342, ’criterion’: ’entropy’}" 0.9762237762237762 9
"{’n_estimators’: 467, ’criterion’: ’gini’}" 0.9793006993006992 2

Table A.6: ANS RMF RandomSearch Result

A.3 Full Decion Trees
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Figure A.4: Complete SMOTE Decition TREE
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Figure A.5: Complete B-SMOTE Decition TREE
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Figure A.6: Complete ANS Decition TREE
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