
School of Computer Science and Statistics

Distributed Application Testing
Framework

Ankana Bhattacharjee

August 19, 2022

A dissertation submitted in partial fulfilment
of the requirements for the degree of

MSc (Computer Engineering)

http://www.scss.tcd.ie

Declaration

I hereby declare that this dissertation is entirely my own work and that it has not been
submitted as an exercise for a degree at this or any other university.

I have read and I understand the plagiarism provisions in the General Regulations of the
University Calendar for the current year, found at http://www.tcd.ie/calendar.

I have also completed the Online Tutorial on avoiding plagiarism ‘Ready Steady Write’, located
at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

Signed: Date:

i

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

Abstract

A large-scale distributed system needs to be tested thoroughly before production deployment.
It is crucial to inject several kinds of faults to assess application behaviour, fault tolerance
and scalability. This is often done with the help of various network simulators like NS3,
Omnet++, Mininet and Opnet. Generally this involves a considerable amount of coding
within the network simulator code in order to facilitate the desired test scenarios, involving its
own learning curve that requires substantial time and effort. This in turn affects and prolongs
the overall life-cycle of the software development and deployment. It is this process that we
seek to simplify with this project. In this dissertation, we present a proof of concept in which
a developer/tester can easily test the behaviour any large-scale application, independent of
language and architecture with the help of a graphical user interface.

Apart from the network simulator, a major component of the approach is to use an application
containerization framework like Linux containers (LXC) or Docker for a dynamic and config-
urable deployment of any application in the test environment. One of the most important
uses of containerization frameworks to to maintain a clear separation between the network
simulator and the test application code bases. This involves facilitating containers with work
in conjunction with the network simulator.

For the proof of concept, our algorithm demonstrates a few specific functionalities that we
think are critical in the process of testing any networked application namely: topology genera-
tion, link up/down, adding/removing network nodes during application run-time. We illustrate
the effectiveness of the system by testing how dynamically we can create nodes, run applica-
tions on them, how easily we can inject faults and test the behaviour of the application being
simulated.

ii

Acknowledgements
I am deeply grateful to my supervisor, Dr. Vinny Cahill for his impeccable guidance and
encouragement throughout my endeavour in this thesis. His invaluable teachings and advice
have been an irreplaceable source of learning and growth throughout this dissertation.

I would like to express gratitude to my dear father, who has always encouraged me to pursue
my career and this Master’s curriculum, for being so supportive and understanding.

Rajesh Gangam, for his indomitable knowledge and insight in network protocols,
inter-process communication, OS internals and everything else in between. It would not have
been possible to complete this work, or the curriculum for that matter, without his intuition
and guidance.

Chiara Paletta for being such a dear friend and confidant throughout my time at Trinity
College.

Lastly, a sincere and heart-felt word of thanks to my lovely cats Gingi, Houdini and Mucci,
for illuminating my days and especially my darkest hours with their much esteemed
cat-quirk.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis . 2
1.3 Contributions of this work . 3
1.4 Overview . 3

2 State Of The Art 5
2.1 Optimized Network Engineering

Tools (OPNET) . 5
2.1.1 Main OPNET Features . 6
2.1.2 OPNET Limitations . 6

2.2 Objective Modular Network
Testbed in C++ (OMNet++) . 7
2.2.1 OMNet++ Design . 7
2.2.2 Main Omnet++ Features . 8
2.2.3 OMNet++ Limitations . 8

2.3 Network Simulator 3 (NS3) . 8
2.3.1 NS3 Design . 9
2.3.2 Main NS3 Features . 9
2.3.3 NS3 Limitations . 9

2.4 Performance comparison between OMNet++ and NS3 10
2.5 Conclusion . 11

3 Network Simulator 3 (NS3) 12
3.1 Security Considerations for NS3 . 12
3.2 NS3 Concepts . 12

3.2.1 Node . 13
3.2.2 Application . 13
3.2.3 Channel . 13
3.2.4 Net Device . 13

iv

3.2.5 Topology Helpers . 13
3.3 Network Simulator Framework and the

Application Code: the need for application containers 14

4 Containerization of Applications 15
4.1 Containerization Frameworks . 16
4.2 Container Networking . 17

4.2.1 Container Networking in LXC with NS3 18
4.2.2 Container Networking in Docker with NS3 19

4.3 Security Considerations with Docker . 19
4.3.1 Docker Daemon Attack Surface . 19

4.4 Conclusion . 20

5 System Architecture 21
5.1 The NS3 Control Interface . 21

5.1.1 Graphical User Interface (GUI) . 22
5.2 Communication Between Front

and Back Ends . 24
5.2.1 File Monitoring System . 25

6 Evaluation 27
6.1 Creation of variable number of nodes . 27
6.2 Running applications in the nodes . 28
6.3 Link up/down . 29
6.4 Creating and modifying topologies . 30

6.4.1 Simplifying Creation of Topologies 31
6.5 Evaluation Summary . 32

7 Conclusion and Further Work 33

v

List of Figures

2.1 Architecture of OPNET Network Simulation (1) 6
2.2 Model Structure of OMNet (2) . 7
2.3 Basic architecture of NS2 (3) . 9
2.4 Simulation Runtime vs Drop Probability (4) 10
2.5 Memory usage vs Network size (4) . 11

4.1 Difference between LXC and Docker (5) 16
4.2 Network Latency Comparison (5) . 17
4.3 NS3 with Linux Containers (6) . 18

5.1 Control interface to NS3 . 22
5.2 Initial GUI screen . 23
5.3 GUI screen for node name and exe . 23
5.4 User inputs for node name and corresponding application 24
5.5 Communication Between Front and Back Ends 25
5.6 High Level Architecture . 26

6.1 List of containers created . 27
6.2 Packet capture for a simple client server interaction 28
6.3 Data from client to server . 29
6.4 NS3 star topology . 30
6.5 Address Resolution by Node 10.63.0.2 . 31
6.6 Address Resolution by Node 10.67.0.2 . 31

vi

1 Introduction

In this work we will consider the challenges involved in testing network behaviours in
large-scale distributed applications running across several hosts and varying computing
environments. Testing network behaviours in application over several scenarios can
potentially involve a large number of software and hardware components. While software
components are developed in code, often to test them a large number of hardware
components need to be involved to test scaling abilities and latency of the application. In
most practical cases this can be cost heavy. To tackle this issue, network simulators are
used. Network simulators are capable of simulating large-scale networks in a single host.
They are capable of generating and orchestrating various topologies like star, mesh, grid etc
and introduce various faults like packet loss, packet congestion etc. It is also possible to
control specific interfaces of the network by explicitly bringing them up or down.

Although network simulators largely reduce the time and cost needed to test large-scale
applications as compared to real networks, they involve a considerable learning curve of the
simulator framework itself, the language it is coded in, the coding standards involved in
writing code compatible with the framework and so on. Often this leads to the developer
spending a substantial amount of time and effort just to learn the workings and concepts of
the simulator framework itself,while getting familiar with the the specific coding standards of
the simulator framework in question. Most importantly, the network simulator code needs to
be modified each time the application to be tested is changed or modified. This can involve
a lot of time and effort which in turn prolongs the overall software development life cycle of
the application. Therefore the motivation of this dissertation is to develop a system that
simplifies this process by abstracting away the need to learn the workings of the network
simulator framework.

1.1 Motivation

Due to the complexities involved in application testing described above, the challenge is to
simplify network simulation on large-scale applications involving multiple nodes, as much as
possible. This can be done by developing more configurable ways of using the network

1

simulation framework. The idea is to make all application testing parameters dynamic and
configurable. Some of the important parameters include the number of nodes to generate,
the applications that each node has to run and the topology of the network. Ideally one
should be able to pass all parameters including the speed of the data transfer in the
network.

An important aspect of achieving this is to separate the network simulator code and the
application code. The network simulator framework and the application to be tested must
be completely independent of each other. This can be realized with the help of
containerization frameworks. Another desired functionality is to have the ability to control
the network simulator with the help of the graphical user interface where the user can input
network parameters and call the required framework functions via the GUI itself.

Thus we have developed the new system keeping the above requirements in consideration.
The system is evaluated on the following aspects:

• Ease of deployment of applications on the test framework

• Ability to dynamically add/remove nodes

• Ability to dynamically change the applications to be run on the simulator without any
code changes to the system, especially the simulator framework itself

• The flexibility with which new network topologies can be generated

1.2 Thesis

From the background so far, we can define our thesis as follows:

Given any distributed application built on any technology stack, is it feasible to build a
system based on a currently available network simulator that can make the application
testing as easy and configurable as possible. If so, how configurable and dynamic can the
system be made and to what extent can the application be simulated with the help of the
framework.

Therefore this thesis aims to investigate a way in which large-scale distributed applications
can be tested dynamically. Due to the sheer number of parameters that a network can have
e.g. topologies, number of nodes, interface types, protocols, channels and data rate among
others, for the practical purpose of building a proof of concept, it is necessary to to limit our
research to a subset of these parameters. Therefore for this thesis, we impose the following
limitations to our system:

• Subnet of 25, which imples that maximum number of nodes can be 255

• The topologies we are testing: bus and star

2

• We test only with IPv4 addresses that are assigned automatically and not provided by
the user

• Channel speed is not configurable

We test the following functionalities:

• Topology generation with a variable number of nodes

• Dynamically create nodes and assign applications to run on them

• Feasibility of adding/removing an interface while the simulator is running

• Feasibility and behaviour of a network when bringing a node up/down

1.3 Contributions of this work

As described in the Chapter 2, we have identified a few key limitations of using network
simulators that considerably slow down the process of large-scale application testing:

• A substantial amount of work involved in simulating applications that involve
understanding the complexities of the network simulator framework itself and tweaking
the framework code to generate test scenarios

• Tweaking the framework itself requires a working knowledge of the coding language in
which the framework is built in

• Modifying the network simulator code is very specific to the application being tested.
The code needs to be changed for every application which in turn negatively impacts
the scalability of application simulation

This thesis contributes towards mitigating the above mentioned limitations by building a
framework that allows a user to tweak some of the important parameters of a given network
dynamically through a GUI interface.

1.4 Overview

Chapter 2 comprises an overview of what network simulators are, how they can be used to
simulate applications. Specifically we discuss a few prominent network simulators in wide
use, the features they offer as well as few of their limitations where applicable to our
problem statement. We then identify the network simulator we will use and the driving
factors behind our decision. Chapter 3 takes a dive into the basic concepts that make up the
network simulator framework we have opted for. Chapter 4 discusses the need for
containerization of applications, how our network simulator can be made to work with

3

containers and finally the factors and considerations that drive our choice of the specific
container framework. Chapter 5 discusses the overall architecture of the system built, some
important aspects of the communication mechanism between the back-end and the GUI
interface and key design decisions behind the architecture. Chapter 6 contains the results of
experiments run, a high level evaluation of the performance of the system and how it
measures up with respect to the aims of the thesis. Chapter 7 discusses the conclusions of
the thesis and possibilities of further work.

4

2 State Of The Art

Given the objectives of this thesis,it is imperative to understand what network simulators are
available and what they offer. Although programmers have the choice of working with a
wide variety of simulators, each with their own features and capabilities, it is out of the
scope of this work to analyse each and every one of them. We will take a look at few of the
most widely used network simulators available to us and discuss the features they offer and
how they perform. The simulators described here vary widely in terms of capabilities, in that
some simulators like NS3, NS2 and Omnett++ are more suitable for industrial use and some
are more suitable for academic and research purposes like OPNET. But we still talk about
the latter because it is relatively easier to work with and it provides a comprehensive GUI for
simulating and debugging networks, which is of high interest for the objectives of this
thesis.

Although it would be ideal to compare all considered network simulators on a fixed set of
parameters that cater to our requirements, it is not feasible because all available network
simulator frameworks have been built targeting widely varying requirements. Hence as we go
through them, we mention some of their specific positives and negatives in relation to our
thesis requirement.

2.1 Optimized Network Engineering

Tools (OPNET)

OPNET is a network simulator built keeping low latency and high scalability in mind. It can
simulate all components of the network: routers, servers, switches and protocols. A major
advantage of the OPNET framework is its modular structure that allows for code reuse.
OPNET network model is a hierarchy of sub-networks. There are three different hierarchies
available.(1)

• Node

• Network

5

• Process

Figure 2.1: Architecture of OPNET Network Simulation (1)

2.1.1 Main OPNET Features

The following features of OPNET are useful for building a testing framework.

• Source code provides lots of components with its library

• Fast and discrete event simulation engine

• Object Oriented Modelling

• Graphical user interface supports 32-bit and 64-bit

• 32-bit and 64-bit parallel simulation kernel

• GUI-based debugging

• High performance framework capable of delivering testing scenarios for industrial scale
applications (7)

2.1.2 OPNET Limitations

We found the following limitations that could hinder the use of OPNET as a network
simulator framework of choice

• Although it has a comprehensive GUI, it still requires a substantial amount of coding
as demonstrated in (8)

• Lacks container support that makes the overall process of orchestrating and managing
application testing less configurable

6

• OPNET is an expensive software that could prevent many developers from testing
their applications using the framework.

2.2 Objective Modular Network

Testbed in C++ (OMNet++)

Andras Varga gives us an introduction of OMNet++ in (2) as a discrete event simulation
framework written in C++. It was developed mainly for modelling distributed systems in
computer networks. The motivation for developing OMNet++ was to try and fill the gap
between research oriented complicated software like Network Simulator (NS) and expensive
commercial software like OPNET (2).

2.2.1 OMNet++ Design

The development of this software was done keeping distributed applications and network
scaling in mind. This influenced the following design requirements of the framework:

• Simulations are hierarchical and made up of simple reusable modules to support
large-scale simulation.

• To cut down on debugging time, the simulation software should emphasize the need of
simple traceability and debuggability of simulation models.

• Modularity, adaptability, and the ability to incorporate various simulation models and
scenarios. This was realised with object-oriented programming concepts.

Figure 2.2 is the model structure in OMNet++ (2). The figure demonstrates the modular
structure following by the framework, emphasizing on code reusability, robustness and
maintainability that is imperative to the system we are trying to build.

Figure 2.2: Model Structure of OMNet (2)

OMNet++ has defined its own language to describe the desired topology of the simulated
network, called the NED. The components of NED consist of simple module declarations,
compound module definitions and network definitions (9). For better readability and

7

management, it is possible to partition large NED files into many smaller ones using file
inclusion.

2.2.2 Main Omnet++ Features

The following features of Omnet++ are useful for building a testing framework:

• OMNet++ provides its own GUI tool called Tkenv. It reflects state changes of the
nodes in the display and animates the flow of messages in the network.

• With OMNet++, network topologies can be modified on the fly, while the simulator is
running.

• OMNet++ has the capability of working with Docker containers (10).

• OMNet++ provides a message passing interface (MPI) that is used to facilitate
network simulation on applications running across multiple processors (11). This
feature is especially attractive to the aim of this thesis because large-scale applications
spanning a very large number of nodes can be supported more easily when multiple
processors are involved.

• Network topologies and parameters can be modified while the simulator is running

2.2.3 OMNet++ Limitations

We found the following limitations with OMNet++:

• Requires the use of NED programming language, involving a substantial learning curve.

• Can work with Docker only and not Linux containers, which may pose a security
concern.

2.3 Network Simulator 3 (NS3)

In 2008 Henderson et al. introduced the Network simulator-3 (NS3) (12). It has been
developed on top of the Network Simulator-2 (NS2) (3). Using NS2, it is possible to
simulate both wired and wireless network functions and protocols (such as routing
algorithms, TCP, and UDP). NS2 gives users a mechanism to define these network protocols
and simulate the related behaviour. NS2 was the first modular discrete event simulator, a
model that has inspired the development of the simulators discussed in the preceding
sections of this text.

8

2.3.1 NS3 Design

The basic architecture of NS2 is demonstrated in figure 2.3 which again emphasizes the
modular structure of NS3, similar to OMNet++.

Figure 2.3: Basic architecture of NS2 (3)

Like OMNet++, NS3 has its own object-oriented language called Object-oriented Tool
Command Language(OTcl) to simulate network behaviours. OTcl needs to be used in
conjunction with C++ for network simulations. NS3 has adopted several concepts from
various open source simulators like yans and Gnets (12).

2.3.2 Main NS3 Features

• Like OMNet++, NS3 supports message passing interface to allow network simulation
across multiple processors

• Has the ability to work with both Linux containers and Docker, thus providing more
room for choice

• Netanim: Netanim is an offline animator that animates the network using trace files
generated from the simulation. The simulation is now animated using an XML trace
file that was gathered throughout the simulation (13).

• ns3-lxc: This project automates the integration of NS3 with Linux containers.
Topologies and functionalities are specified using YAML files. It does however require
a learning curve in that the YAML files need to be written with high accuracy to not
lead to simulation errors and failures (14).

2.3.3 NS3 Limitations

• Unlike OMNet++, it is not possible to modify network parameters in NS3 while the
simulation is running. This is a major drawback of the the framework as it potentially
hinders the user from testing a wide range of functionalities like adding/removing
hosts and merging networks.

9

2.4 Performance comparison between OMNet++ and

NS3

To fit the requirement of this thesis, it was important for us to choose a simulator that
can

• Work and synchronise across multiple processors

• Integrate with application containers

• Scale sufficiently to simulate distributed application comprising of many nodes

To that effect, we have found two network simulators that meet all the above requirements:
NS3 and Omnet++. Wehrle et al. in (4) gives an overview of the performance of three
widely used simulators which is summarized here.

In the survey all simulations were carried out on a mesh network in the same computational
environment. The simulation run time shows NS3 to be faster than OMNet++. Figure 2.4
demonstrates the simulation run-time vs drop probability of the simulators.

Figure 2.4: Simulation Runtime vs Drop Probability (4)

NS3 also has the lowest memory usage with increasing network size as shown in 2.5.

10

Figure 2.5: Memory usage vs Network size (4)

2.5 Conclusion

We see in this chapter that network simulators have a wide range of capabilities. Each
simulator framework has been developed keeping a specific set of requirements in mind, and
there really is no one-size-fits-all network simulator. However for this work, we have two
network simulator frameworks that come very close to fulfilling all of the requirements: NS3
and OMNet++. We have picked NS3 over Omnet++ for the following reasons:

• Flexibility to work with both Linux container and Docker, potentially ensuring higher
security

• Better performance as compared to OMNet++

The drawback of using NS3 is its inability to take simulation parameters while the simulation
is running. However, with proper handling of code, this can be bypassed at the network
level.This is possible because we use containers to house the applications being tested. So
the connection to the containers can be handled during run-time at the network level, which
in turn can simulate topology changes. But the containers will consume memory and
resources when their network interfaces are switched off, which can potentially lead to a lot
of redundancy depending on the application in test.

11

3 Network Simulator 3 (NS3)

The aim of this chapter look at some of the security considerations of NS3. It is also to
introduce the concepts that make up the building blocks of NS3 as we will be using NS3 for
our application simulations. It has a built-in capability to integrate with containerized
applications and like Omnet++ it also has a message passing interface that allows network
simulations across multiple processes thus allowing simulations of applications running
across multiple hosts. It can be integrated with Linux containers (LXC) as well as Docker.
Also, it is faster in comparison to OMNet++ and will be more suitable for simulating
large-scale applications.

3.1 Security Considerations for NS3

NS3 has not reported any security issues at present. However NS3 being an open-source
software, it is unlikely to be devoid of any security issues. NS3’s attack surface is dependent
largely on vulnerabilities of the open-source libraries used in its code. Being an open-source
software, the code can be considered dynamic in nature and likely to have vulnerabilities
waiting to be exploited. Since the software focuses mainly on simulating network errors in
various network protocols, it does not deal with any application logic that is being tested on
it. Therefore, it does not anonymize the application data by default, which may cause
sensitive information like user credentials etc. to be leaked. Thus, it is critical to examine the
applications being used on NS3 and provide data anonymization by the application developer
themselves before running network simulations. One method to reduce security breaches is
to implement capability-based requests that conceal the source of every request (15).

3.2 NS3 Concepts

In the official website of NS3 (16) we can get a good understanding of the building blocks
and concepts of NS3. NS3 is a C++ framework and all major components, topologies and
functionalities are composed of C++ classes. NS3 has the following components

12

3.2.1 Node

In NS3, the simulation of the most basic computing device is called the node. The class
Node in C++ serves as a representation of this idea. The Node class offers ways to control
how computing devices are represented in simulations.

3.2.2 Application

The Application class in NS3 is the fundamental abstraction for a user program that creates
some function to be simulated. It offers techniques for handling user level applications that
are tested. New applications are created by inheriting this parent class. This is the class that
handles and contains the application being tested. So we will not be using this as the
applications will be running in containers.

3.2.3 Channel

Channel refers to the fundamental communication sub-network abstraction, which is
represented by the class Channel in C++. For managing communication sub-network
objects and tying nodes to them, the Channel class offers methods. For this work we will use
the CsmaChannel to demonstrate building network topologies.

3.2.4 Net Device

In NS3, the simulated hardware and software driver are both covered by the net device
abstraction. In order for a Node to be able to connect with other Nodes in the simulation
via Channels, a net device must be installed in the Node. A Node may be connected to more
than one Channel via different NetDevices, just like in a physical computer.

3.2.5 Topology Helpers

In NS3, topology helpers are used to connect NetDevices to Nodes, NetDevices to Channels,
assigning IP addresses. As we will see later in the implementation, NS3 has several topology
helpers to create specific topologies like bus, star and point-to-point. Making topologies
involves arranging nodes in a specific way and assigning suitable IP address to nodes in
multiple subnets. Topology helper classes in NS3 make managing nodes easier and our
framework will call the helper classes at the back-end.

13

3.3 Network Simulator Framework and the

Application Code: the need for application con-

tainers

Network simulators in general have a very large code base that inevitably arises from the
need to be able to generate a plethora of network topologies and scenarios. Oftentimes the
code base needs to be modified to simulate specific network faults on a given application. It
is rather easy to incorporate application code inextricably into the network simulator code.
This can make all the code changes extremely specific to the application in questions and
cannot be reused for other applications. It is also possible to exploit the application code on
the basis of security vulnerabilities. Therefore to make the system as configurable and
reusable as possible, we need a clear separation between the network simulator framework
and the application code. One of the most reliable ways to achieve this is by deploying
applications in containers. The containerization of application goes a long way in achieving
the aim of this thesis in the following ways:

• It ensures the independence of the network simulator code

• It guarantees that the different components of the simulated network are isolated from
each other, minimising ways to exploit security vulnerabilities of applications

14

4 Containerization of Applications

Containerization of applications means isolating applications to run in their own
environment. In a Linux environment, this is done by utilising two main functionalities:
control groups (cgroups) (17) and namespaces (18).

Control groups are used to limit and measure the total resources available to a process or a
set of processes: CPU, memory, network I/O, file system. Namespaces are used to restrict
the visibility of that process or group of processes to the rest of the system. A cgroup is like
a process in certain ways:

• It is hierarchical

• It inherits certain attributes from its parent process

The primary distinction is the possibility of many hierarchies of cgroups existing concurrently
on a system. The cgroup model is one or more distinct, disconnected trees of tasks if we
consider the Linux process model as a single tree of processes (17).

A namespace encapsulates a system resource in a way that enables the processes in the
namespace to have their own instance of the system resource. Any modifications to the
system resource are visible to all processes present in the namespace. However, they are
invisible to other processes (18).

One of the most prominent benefits of containerization is more efficient and clean use of
system resources. Incompatibility issues that frequently arise while utilizing virtualization are
dealt with when employing containerization. The development and test environments, the
test and production environments, as well as the local physical environment and the virtual
cloud environment, might not be compatible with one another. As a result, containerization
makes it simpler for both operators and application developers to deliver apps to the
production environment.

15

4.1 Containerization Frameworks

Similar to virtual machines, containers offer a means of separating distinct applications from
one another and offer a virtual environment in which to operate them.

For this thesis we considered working with Linux or Docker containers in conjunction with
NS3. Both Linux and Docker containers use cgroups and namespaces but with some
differences. Docker provides application level isolation whereas LXC provides OS level
isolation. The following diagram shows an overview of the level of isolation provided by
Docker and LXC.

The primary distinguishing feature of Docker is that, unlike LXC technology, it eliminates
the conventional virtualization and isolation of the full operating system in favour of
concentrating more on the applications and services and their separation (5). Even while
Docker was first built on top of LXC, it has since evolved into its own environment. In
contrast to LXC, which only supports one guest operating system (Host OS in the left part
of the figure above) on which all applications run packaged in containers, each with its own
isolated environment, Docker offers an environment consisting of only one guest operating
system. The Docker image is used to specify and create this environment.

Figure 4.1: Difference between LXC and Docker (5)

16

4.2 Container Networking

Container networking involves connecting physical and virtual network interfaces.

We consider the virtual ethernet (veth) kernel module to set up a connection between the
containers and the network simulator. The veth kernel mode creates a pair of virtual
networking devices connected to each other. One of the ends is then placed in the container
namespace. The veth pipe is also connected to a bridge in the default networking
namespace. The following figure demonstrates how veth pairs are connected between the
default networking namespace and the container namespace.

To make it simple to connect a namespace to a bridge in the default networking namespace,
veth pipes are frequently used in conjunction with Linux bridges.

Figure 4.2: Network Latency Comparison (5)

We can claim that Linux containers and Docker are equivalent from a networking
perspective (5). For both LXC and Docker

• One can assign an IP address to a container

• Bridge the container to the host system

Figure 4.2 from (5) shows that in the experiment, Docker had a Round Trip Time (RTT)
latency of 45 micro seconds, compared to 36 micro seconds for LXC. In other words, Docker
has a 1.25 times higher latency than LXC.

17

4.2.1 Container Networking in LXC with NS3

NS3 can be coupled with Linux containers using veth interfaces. The official page of NS3
demonstrates the steps involved in detail (6). Linux containers are built upon chroot jails.
The jail mechanism is a FreeBSD implementation of OS-level virtualization that enables
system administrators to divide a computer system into a number of separate mini systems
called that share the same kernel (19).

Figure 4.3 illustrates how NS3 works with Linux Containers using veth pairs (6). In the

Figure 4.3: NS3 with Linux Containers (6)

figure, we can see that the Linux containers are connected to the system (NS3 running on
the host) via veth pairs. The veth pairs are connected to a tap device that is created prior to
creating the Linux containers. The NS3 framework must with objects of the Node class
explained in section 3.2 to simulate nodes to the network. In this scenario, the Linux
containers are the nodes of the network. Therefore, they need to be "installed" into the
nodes created by NS3. Thus, NS3 creates stand-in nodes as demonstrated in the lower
dotted-dashed box. Each node is connected to a tap device, each tap device is connected to

18

the Linux container which forms the actual node of the network.

The associated CSMA net device receives packets that enter through the network tap, and
the network tap receives packets that enter through the CSMA net device.
Consequently, the container (and its application) will believe they are connected to the NS3
CSMA network (6).

4.2.2 Container Networking in Docker with NS3

As explained in the previous section, Docker with NS3 works pretty much the same way with
the LXC containers replaced by Docker containers. Because Docker provides application
level isolation as opposed to OS level isolation of LXC, namespaces in Docker behave a little
differently from namespaces in LXC. A comprehensive set of steps required to set up NS3
with Docker are provided in (20).

4.3 Security Considerations with Docker

Unlike Linux containers, most operations in Docker require it to have root privileges to
execute. This led us to investigate into the security concerns that may arise from the use of
Docker.

4.3.1 Docker Daemon Attack Surface

It is possible to running Docker without root permissions, but not in the case of carrying out
network operations. Since this project is all about networks and simulations, it must run on
root. This considerably magnifies the attack surface of the Docker daemon. Therefore, only
trusted applications must be run on Docker containers. But in this scenario, the term
“trusted application” is very broad and rather vague. It is only too easy to exploit a piece of
code to misbehave in various ways. Running a docker container in root mode, the
application is at a point where it talks to the host kernel and has access many kernel
subsystems that are not namespaced, like SELinux, Cgroups, files under /sys etc (21). This
can make a user privilege escalation easy to orchestrate. A privileged process running inside
a container is the same as a privileged process running outside a container.

Pietro et al. in (22) explain following security challenges associated with Docker usage that
generally arise from poor configuration:

• privilege escalation (23)

• containers can be mounted with sensitive host directories

19

4.4 Conclusion

In this chapter we have seen how containers work and the differences between Docker and
Linux Containers. We looked at how NS3 can be used in conjunction with Docker and LXC.
Finally, we briefly talked about performance differences between Docker and LXC and the
security considerations concerning the former.

The performance difference between Docker and LXC and the security concerns regarding
the former has led to an important design decision in the architecture of the system we have
built. We concluded that Linux containers would be a better choice as a container
framework because of its general robustness in terms of latency and security. Although
Docker offers higher configurability of containers and general ease of use, we have favored
Linux containers over Docker because the user ideally should not think about making Docker
files for every application that they want to run on a large number of nodes.

20

5 System Architecture

So far we have talked about the features offered by a few popular network simulators and
how applications can be containerized using Linux containers and Docker. In the previous
chapter, we discussed the driving factors for our decision to use Linux containers over
Docker. We also decided upon the network simulator we would use for our system.

In this chapter we will discuss the overall high level architecture of the system and some
factors that influenced the way we facilitate communication between the front and back
ends.

5.1 The NS3 Control Interface

Let’s once again take a look at the previous reference on how NS3 communicates with Linux
containers (6). Figure 4.3 demonstrates how containers communicate with other containers
via veth pairs connected to NS3. Our NS3 control interface will involve a method to call
NS3 simulation parameters via a GUI interface. Therefore, the figure 4.3 can be modified to
Figure 5.1.

21

Figure 5.1: Control interface to NS3

The input parameters of NS3 can be passed as command line arguments. The user should
be able to execute the following operations via the control interface:

• Create and destroy containers

• Run application inside containers

• Add/remove interfaces/nodes to the running simulation

• Create basic network topologies

5.1.1 Graphical User Interface (GUI)

For the GUI, we have used the Java Swing framework (24) to build a user interface. Every
simulation starts with specifying the number of nodes to create. The first GUI prompt is to
let the user specify the number of nodes. That determines how many containers the
back-end should create and the IP addresses are assigned in sequence. The current
implementation does not allow the user to choose the IP address.

22

Figure 5.2: Initial GUI screen

Once the user inputs the number of nodes, the GUI renders a second screen that allows the
user to enter node names and corresponding program files to run in the nodes. A screenshot
of the second input screen is provided in Figure 5.3.

Figure 5.3: GUI screen for node name and exe

The current implementation can create bus and star topologies.

23

Figure 5.4: User inputs for node name and corresponding application

All user inputs are written into a JSON string which is later parsed by the main thread in the
back end. The values parsed are used as arguments to the simulator function.

5.2 Communication Between Front

and Back Ends

We considered a few options for inter process communication methods for the front and the
back ends of the system:

• RestAPI endpoints: Using RestAPI (25) endpoints would enable the user to test
their applications remotely via a web server. Although it was a practical and viable
option, it would require managing network connections and possible network latency.
For the goal of building a simple system to demonstrate a proof of concept, this was
rather an overkill

• TCP/IP socket connection: Although it is relatively simple to build a socket
connection between the front and back ends, it still involves managing the connection.
Things are likely to get more complicated if for any reason we want to maintain
multiple connections to the server.

• Remote Procedure Calls and pipes: We considered building a mechanism of
communication using remote procedure calls like gRPC (26), pipes (27) and message
queues like RabbitMQ (28). However, implementing these do involve a considerable
amount of time.

• File monitoring: We considered a scenario in which, when an application is being
tested extensively, the user may want to fire a long sequence of instructions and want
to replay the entire sequence or part of the sequence more than once. Therefore, we

24

considered a case where we might want to provide a check-pointing mechanism to the
user for replaying instructions to the simulator.

As none of the previous options satisfy this probable requirement, we came upon the
shared file-system mechanism of sharing data between the back and front ends.We
decided to go with a file system monitoring mechanism mainly because it can provide
a simple and straightforward way of check-pointing operations performed by the
simulator. In a large distributed system, we would like to perform a number of
successive operations. In several scenarios, it may be necessary to replay all operations
in sequence. In that case, the user does not need to manually input all previous
instructions through the GUI.

5.2.1 File Monitoring System

The inotify Linux system call provides a way to monitor files and directories. An event is
fired each time any change is made to the file or directory being monitored. For this system,
we use inotify to monitor a specific directory. We have few minor changes and reused code
in (29) that uses the inotify system call (30).

Figure 5.5: Communication Between Front and Back Ends

This has changed the overall design of the system, in that the main thread of the back-end
is actually a directory monitoring system.Thus, every time a user inputs parameters:

• Front end writes parameters into a new JSON file and saved

• Front end writes the filename of the new file created into the file monitored by main
thread at back end

25

• Main thread in back end gets the event of the file modified

• Main thread the latest filename written to the file being monitored and opens the
latest file

• Main thread parses JSON string in the latest file and calls the simulator function with
the parameters retrieved from the latest file as command line arguments.

The flow above is illustrated in the Figure 5.5.

We have paid careful attention to the synchronisation aspect of the above operations. We
have made sure that the file monitoring system does not act upon the latest file before it is
properly written and closed. Therefore, the file monitoring system only waits for the file close
event. It reads the latest file name only after it is written into the file and closed.

Figure 5.6: High Level Architecture

Now that we have discussed in detail about the individual components of the framework, we
can take a look at the high level architecture of the system built. figure 5.6 illustrates the
system overall. When the latest file is read, contents of the file are parsed, and the required
simulator function is called with the input parameters.

26

6 Evaluation

We have the following criteria for evaluation of this framework:

• Creation of a variable number of nodes

• Running applications in the nodes

• Link up/down

• Creating and modifying topologies

We analyse these criteria individually in the sections that follow.

6.1 Creation of variable number of nodes

The first GUI screen requires the user to input the number of nodes needed. The input is
then parsed and Linux containers are created . For a sample input of 5, we list the Linux
containers to get the following output:

Figure 6.1: List of containers created

With the current implementation, we use a subnet of 24 and the IP addresses of the nodes
are assigned beginning at 10.63.0.1. Due to the subnet, a maximum of 255 nodes can be
created. Figure 6.1 shows the containers created after the user enters the input to create 5
containers.

27

6.2 Running applications in the nodes

Once nodes are created, a second GUI screen prompts the user to input a mapping of
applications to run in nodes. Nodes are required to be named from "1". Node 1 has the IP
address 10.63.0.1, node 2 has 10.63.0.2 and so on. We have coded the container creation in
this way for the sake of simplicity.

For testing the ease of running applications in the containers, we initially created a client
and a server using TCP sockets in Python. The server code listens continuously on the port
and the client keeps sending a dummy message to the server. We have enabled packet
capture (pcap) for testing and tracking the network behaviour. Pcap files are created by
NS3 as the test runs, which are then read and interpreted using Wireshark (31).

Figure 6.2: Packet capture for a simple client server interaction

We see in Figure 6.2 the client (10.63.0.2) sends data to the server (10.63.0.1). Clicking on
any of the tabs in green, we can see the payload. We can see the dummy data being sent.
This is demonstrated in Figure 6.3.

28

Figure 6.3: Data from client to server

6.3 Link up/down

Applications running on Linux containers are connected to NS3 via tap bridges. (6) specifies
the steps in which we can use Linux commands to bring up/down the bridge connection.
Thus when the user gives a link up/down instruction, the node name needs to be specified.
The back-end then calls a shell script to call the required Linux commands to bring the
bridge up/down.

The link up/down functionality was tested with a simple client and server application each
running on separate containers connected to NS3 via tap bridges. The client continuously
sends data to the server and the latter prints a message received log every time it gets a
message from the client. The functionality was evaluated as follows:

• Server should stop receiving messages from client once the client tap-bridge is
switched off

• Client should resume sending messages to the server once the client tap-bridge is
switched on

Both the above criteria were met in the experiment that demonstrates the correct working
of the link up/down functionality.

29

6.4 Creating and modifying topologies

In this work we have created the star and the bus toppologies. The bus topology does not
have any complications and all nodes in the network can ping every other node.

The star topology creation needs a more detailed discussion. Once the simulator is running,
the nodes need to discover the topology. NS3 provides a way to discover the same using
broadcast mechanism where each nodes broadcasts its address and finds the hub it is
connected to. NS3 imitates a real world star topology wherein each spoke node is placed in
a different subnet. The network can be depicted in Figure 6.4. The nodes in the network are
in the subnets 10.63.0.0, 10.64.0.0, 10.65.0.0, 10.66.0.0, 10.67.0.0. Therefore to make our
applications connect to the correct IP address of the server, the back-end code needed to
change. This brings us to an important conclusion: As network topologies differ, so does the
arrangement of subnets. The code needs to handle a wide range of changing topologies and
addresses and it can be very easy to have an address collision.

Figure 6.4: NS3 star topology

In the test scenario, we have created a star topology of 5 nodes, deployed a client

30

application in four of the nodes and a server application in the fifth node. The packet
capture (pcap) files demonstrate how the topology is discovered by the nodes. For the
topology depicted in 6.4, the nodes send broadcast message to do an address resolution as
demonstrated by pcap files generated. Two such packet captures are shown in figures

Figure 6.5: Address Resolution by Node 10.63.0.2

Figure 6.6: Address Resolution by Node 10.67.0.2

6.4.1 Simplifying Creation of Topologies

With the challenges involved with developing a simple star topology, there inevitably arose a
need to make topology creation simpler and more intuitive. The current star topology we
have is overly simplistic and will be rather unhelpful in mimicking practical scenarios for the
following reasons:

• Real world networks are an amalgamation of many kinds of network topologies.
Subnets can be connected to bigger networks in numerous ways that can change the
way nodes communicate in the network. This introduces several parameters that need
to be taken as user inputs, for example which node is to be assigned as the hub. A
very large network can have multiple hubs and creating the entire topology at one go
is highly error-prone as well as impractical

• This inevitably makes both the front and back ends more complex, which in turn
defeats the purpose of this thesis

Due to the limitations mentioned, we then aimed to create a functionality in which a user
could create a simple point-to-point node and attach containers to it via tap bridges. This

31

would then allow the user to extend the simple point-to-point network to any kind of
topology: mesh, star, ring or bus by adding one node at a time to the existing network
topology. This is a more practical solution as it mimics real world networks better, because
in reality different networks are merged into one big network very frequently. Conversely,
parts of a given network are often divided into smaller networks.

NS3 provides a point-to-point helper class (32) that allows the user to create one node at a
time and join it to other existing nodes. However, the point-to-point helper module does not
support bridging. Also, the user cannot create a point-to-point node while the simulator is
running. Therefore, point-to-point networking is only possible in NS3 when used without
containers. This is a critical limitation of the NS3 framework because it takes away most of
the flexibility around creating topologies.

6.5 Evaluation Summary

From the experiments conducted on the framework, we can claim that the framework can be
used to successfully:

• Create a variable number of containers

• Run applications in the nodes that interact with NS3 and other nodes in the network

• Bring links up/down

• Create basic topologies

However, NS3 framework has three major limitations:

• Nodes cannot be created/destroyed on the fly, while the simulator runs. This means
that the user must decide on the final topology and create all nodes before starting
the simulator. This is not practical for testing large-scale networks where nodes and
sub-networks are frequently added to/removed from existing networks.

• As nodes cannot be created/destroyed during simulator run-time, they must be
provisioned before starting the simulator. Many nodes in the network can have
containers running, while the tap bridge linking the containers to NS3 may be turned
off to mimic the absence of nodes. This can consume a lot of computing resources
that may render the framework not practical for industrial use.

• Although NS3 provides a point-to-point helper class that can be used to create a
variety of network topologies, it does not support bridging. This eliminates the
possibility of creating customized point-to-point networks involving application
containers, thus critically hindering the ability of the framework to create topologies
intuitively.

32

7 Conclusion and Further Work

In this thesis we have identified some of the challenges involved in the testing of large-scale
applications involving network simulator frameworks. A detailed analysis of some of the
most popular network simulators has led to an understanding of what they offer and in what
ways they are limited. Our main approach was to ensure complete isolation between the
network simulator code base and the test application framework. This was facilitated with
the use of Linux containers.

We constructed a graphical user interface (GUI) through which a user can input some of the
most important network parameters such as number of nodes, topology, and applications to
be run in the containers created. The instructions given by the user are written into files in
JSON format that are then parsed by the main thread in the back-end. The input parameters
are read and passed to the simulator function using command like arguments.

As a proof of concept, we have successfully demonstrated the following key functionalities
involved in testing any large-scale application:

• Node creation

• Running applications on created nodes

• Topology creating/modification

• Link up/down

The system can deliver the above functionalities relatively easily, as compared to performing
the same operations in the traditional way. However, the NS3 framework has a few
limitations that makes the development of more advanced functionalities not possible, or at
least very complex. The following limitations were uncovered in this work:

• Point-to-point helper class does not support bridge mode, thus hindering the
intuitiveness of topology creation.

• Once the simulator is started, it can only be stopped. No other operations can be
performed on the simulation level.

Further work in this direction would involve making necessary changes to the NS3 framework

33

to eliminate the limitations revealed by this work. Another way to tackle the limitations
would be to replace NS3 with OMNet++ and Linux containers with Docker, as the main
reasons for choosing NS3 over OMNet++ was better overall performance and higher
security through the use of Linux containers.

34

Bibliography

[1] Opnet network simulation.
https://opnetprojects.com/opnet-network-simulation.

[2] András Varga. The omnet++ discrete event simulation system. Proc. ESM’2001, 9, 01
2001.

[3] Teerawat Issariyakul and Ekram Hossain. Introduction to network simulator 2 (ns2). In
Introduction to network simulator NS2, pages 1–18. Springer, 2009.

[4] E. Weingartner, H. vom Lehn, and K. Wehrle. A performance comparison of recent
network simulators. In 2009 IEEE International Conference on Communications, pages
1–5, 2009. doi: 10.1109/ICC.2009.5198657.

[5] Marek Moravcik, Pavel Segec, Martin Kontsek, Jana Uramova, and Jozef Papan.
Comparison of lxc and docker technologies. In 2020 18th International Conference on
Emerging eLearning Technologies and Applications (ICETA), pages 481–486, 2020. doi:
10.1109/ICETA51985.2020.9379212.

[6] Ns3lxc. https://www.nsnam.org/wiki/HOWTO_Use_Linux_Containers_to_set_
up_virtual_networks.

[7] Sparsh Mittal. Opnet: An integrated design paradigm for simulations. Software
Engineering : An International Journal (SEIJ), pages 68–84, 09 2012.

[8] Hongji Yang Zheng Lu. Unlocking the Power of OPNET Modeler. Cambridge, London,
2012.

[9] Andras Varga. A practical introduction to the omnet++ simulation framework. In
Recent advances in network simulation, pages 3–51. Springer, 2019.

[10] Omnet++ gui in docker.
https://omnetpp.org/articles/2019/07/04/omnetpp-docker.html.

35

https://opnetprojects.com/opnet-network-simulation
https://www.nsnam.org/wiki/HOWTO_Use_Linux_Containers_to_set_up_virtual_networks
https://www.nsnam.org/wiki/HOWTO_Use_Linux_Containers_to_set_up_virtual_networks
https://omnetpp.org/articles/2019/07/04/omnetpp-docker.html

[11] K.M. Chandy and J. Misra. Distributed simulation: A case study in design and
verification of distributed programs. IEEE Transactions on Software Engineering, SE-5
(5):440–452, 1979. doi: 10.1109/TSE.1979.230182.

[12] Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell, and Joseph
Kopena. Network simulations with the ns-3 simulator. SIGCOMM demonstration, 14
(14):527, 2008.

[13] netanim. https://www.nsnam.org/wiki/NetAnim#:~:text=NetAnim.

[14] yaml. https://github.com/buzz66boy/ns3-lxc/blob/master/README.md.

[15] Sergio Gusmeroli, Salvatore Piccione, and Domenico Rotondi. A capability-based
security approach to manage access control in the internet of things. Mathematical and
Computer Modelling, 58(5):1189–1205, 2013. ISSN 0895-7177. doi:
https://doi.org/10.1016/j.mcm.2013.02.006. URL
https://www.sciencedirect.com/science/article/pii/S089571771300054X.
The Measurement of Undesirable Outputs: Models Development and Empirical
Analyses and Advances in mobile, ubiquitous and cognitive computing.

[16] ns3concepts.
https://www.nsnam.org/docs/tutorial/html/conceptual-overview.html.

[17] cgroups. https://access.redhat.com/documentation/en-us/red_hat_
enterprise_linux/6/html/resource_management_guide/ch01.

[18] namespaces. https://man7.org/linux/man-pages/man7/namespaces.7.html.

[19] jail. https://en.wikipedia.org/wiki/FreeBSD_jail/.

[20] Ns3docker. https://sites.google.com/thapar.edu/ramansinghtechpages/
step-wise-establishing-connection.

[21] Dsec. https://cloud.redhat.com/blog/
detecting-docker-exploits-and-vulnerabilities-your-how-to-guide.

[22] Theo Combe, Antony Martin, and Roberto Di Pietro. To docker or not to docker: A
security perspective. IEEE Cloud Computing, 3(5):54–62, 2016. doi:
10.1109/MCC.2016.100.

[23] Privesc. https:
//www.sciencedirect.com/topics/computer-science/privilege-escalation.

[24] Javaswing. https:
//docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html.

36

https://www.nsnam.org/wiki/NetAnim#:~:text=NetAnim
https://github.com/buzz66boy/ns3-lxc/blob/master/README.md
https://www.sciencedirect.com/science/article/pii/S089571771300054X
https://www.nsnam.org/docs/tutorial/html/conceptual-overview.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://en.wikipedia.org/wiki/FreeBSD_jail/
https://sites.google.com/thapar.edu/ramansinghtechpages/step-wise-establishing-connection
https://sites.google.com/thapar.edu/ramansinghtechpages/step-wise-establishing-connection
https://cloud.redhat.com/blog/detecting-docker-exploits-and-vulnerabilities-your-how-to-guide
https://cloud.redhat.com/blog/detecting-docker-exploits-and-vulnerabilities-your-how-to-guide
https://www.sciencedirect.com/topics/computer-science/privilege-escalation
https://www.sciencedirect.com/topics/computer-science/privilege-escalation
https://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html

[25] rest. https://www.redhat.com/en/topics/api/what-is-a-rest-api.

[26] grpc. grpc.io.

[27] pipe. https:
//www.gnu.org/software/libc/manual/html_node/Creating-a-Pipe.html.

[28] Mq. https://www.rabbitmq.com/.

[29] inotify.
https://github.com/jrelo/fs_monitoring/blob/master/inotify-example.c,
.

[30] inotifyman. https://man7.org/linux/man-pages/man7/inotify.7.html, .

[31] wireshark. https://www.wireshark.org/.

[32] p2phelp. https:
//www.nsnam.org/doxygen/classns3_1_1_point_to_point_helper.html.

37

https://www.redhat.com/en/topics/api/what-is-a-rest-api
grpc.io
https://www.gnu.org/software/libc/manual/html_node/Creating-a-Pipe.html
https://www.gnu.org/software/libc/manual/html_node/Creating-a-Pipe.html
https://www.rabbitmq.com/
https://github.com/jrelo/fs_monitoring/blob/master/inotify-example.c
https://man7.org/linux/man-pages/man7/inotify.7.html
https://www.wireshark.org/
https://www.nsnam.org/doxygen/classns3_1_1_point_to_point_helper.html
https://www.nsnam.org/doxygen/classns3_1_1_point_to_point_helper.html

	Introduction
	Motivation
	Thesis
	Contributions of this work
	Overview

	State Of The Art
	Optimized Network Engineering Tools (OPNET)
	Main OPNET Features
	OPNET Limitations

	Objective Modular Network Testbed in C++ (OMNet++)
	OMNet++ Design
	Main Omnet++ Features
	OMNet++ Limitations

	Network Simulator 3 (NS3)
	NS3 Design
	Main NS3 Features
	NS3 Limitations

	Performance comparison between OMNet++ and NS3
	Conclusion

	Network Simulator 3 (NS3)
	Security Considerations for NS3
	NS3 Concepts
	Node
	Application
	Channel
	Net Device
	Topology Helpers

	Network Simulator Framework and the Application Code: the need for application containers

	Containerization of Applications
	Containerization Frameworks
	Container Networking
	Container Networking in LXC with NS3
	Container Networking in Docker with NS3

	Security Considerations with Docker
	Docker Daemon Attack Surface

	Conclusion

	System Architecture
	The NS3 Control Interface
	Graphical User Interface (GUI)

	Communication Between Frontand Back Ends
	File Monitoring System

	Evaluation
	Creation of variable number of nodes
	Running applications in the nodes
	Link up/down
	Creating and modifying topologies
	Simplifying Creation of Topologies

	Evaluation Summary

	Conclusion and Further Work

