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Abstract 
 
Kubernetes is the leading open-source tool responsible for automating the deployment and 
management of containerized applications. One of the most important advantages of 
Kubernetes is "high availability" of applications. It increases software scalability and 
availability. Kubernetes can scale up and down applications and supporting infrastructure 
resources in response to changing organizational demands, enabling dynamic management of 
company resources. Kubernetes also enables flexibility in multi-cloud scenarios by ensuring 
that applications may run in either a public or private cloud. 
 

The safest way to deploy a Kubernetes application across different regions for high-availability 
and disaster recovery is to create multiple-clusters in different regions. This would allow the 
same application to serve multiple geographical regions, improving availability & performance, 
disaster recovery and scaling application beyond a single cluster’s limits. Multi-cluster 
deployment solves a range of difficulties; however, it increases the complexity of operation 
and maintenance as well.  We will need to deploy resources and handle the clusters 
separately. These are the issues that Kubernetes Cluster Federation attempts to address for 
Multi-Cluster Kubernetes via a centralized administration interface. Kubernetes Cluster 
Federation is a mechanism for managing the configuration of several Kubernetes clusters using 
a centralized "federation control manager." Although a popular tool, there are almost no 
resources out there creating a Cluster Federation setup between a Central Cloud cluster acting 
as the host cluster and on-premises clusters running on a local machine acting as the member 
clusters. 
 

This research proposes a POC where we will use a Cluster Federation tool called KubeFed to 
create a solution in which the functionalities and resources of a central cluster in the Cloud are 
automatically propagated to a local cluster on an independent machine in a separate location. 
These local clusters can live on small computing machines all over the world and get 
configurations and resources from a central cluster. End-users can make requests to local 
machines in nearby branches and receive the same services as those supplied by the central 
cluster situated further away.  This way, we can propagate resources from a central cluster to 
local machines all around the world and decrease the end-user’s latency and improve 
performance. 
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Chapter 1 
 
Introduction 
 
Since last decade, we have witnessed the increased use of virtualization technologies allowing 
us to run countless virtual machines (VMs) on a single physical server. Virtualization greatly 
improved the isolation of the running applications and provided a good amount of security. 
This abstraction of resources resulted in the production of highly scalable, cost-efficient, and 
innovative applications [62]. Virtualization allows you to run several operating systems on a 
single physical server's hardware. However, virtualization requires a great number of resources 
(e.g., CPU and RAM) as each VM contains an operating system and a virtual copy of all the 
hardware that an operating system needs. Moreover, moving VMs between different services 
(e.g., cloud providers) is not a trivial task. This led to the emergence of containerization. A 
container is a lightweight software unit that contains all the necessary code, libraries and 
dependencies, allowing their corresponding application to run seamlessly from one computing 
setting to another [1]. What makes a container lightweight compared to a VM is that, the 
container shares the host operating system’s Kernel with other containers where the 
operating system’s shared item is read-only [2]. Rather than having multiple operating systems 
running in each VM, with containers, we deal with only one operating system, facilitating the 
scalability and ease of deployment of our applications [63, 64]. Understandably, the increased 
use of containerization resulted in the emergence of container orchestration platforms 
responsible for coordinating multiple containers running on multiple nodes.  Kubernetes has 
been the leading technology for the orchestration of containerized applications. When a 
developer aims to create a highly available distributed system, one of the first things that 
come up to our minds is using Kubernetes. The rise of microservices caused an increased usage 
of container technologies because the containers offered the perfect host for small, 
independent applications such as microservices. In today’s world, applications consist of 
hundreds of containers; managing such a number of containers across multiple environments 
using scripts and/or self-made tools can be quite challenging and sometimes impossible. This 
produced the need for having container orchestration technologies such as Kubernetes. 
Kubernetes offers high availability, scalability and disaster recovery through automatic 
application deployment, load-balancing and resource allocation. It manages a cluster of nodes 
that includes hundreds of containers. It is the leading orchestration tool for containerized 
applications deployed in either virtual or physical devices [3, 65]. We will talk more about the 
main Kubernetes objects and its architecture in detail in the next chapter.  
 

A Kubernetes cluster is a collection of nodes that execute containerized apps. As we 
mentioned before, containerization of an application consists of packaging it with its libraries 
and/or dependencies together with all the required services [4]. This process facilitates the 

https://www.docker.com/resources/what-container/#:%7E:text=A%20container%20is%20a%20standard,one%20computing%20environment%20to%20another
https://www.burwood.com/blog-archive/containerization-vs-virtualization#:%7E:text=Virtualization%20enables%20you%20to%20run,single%20virtual%20machine%20or%20server
https://rafay.co/the-kubernetes-current/container-orchestration-tools-comparison/#:%7E:text=Kubernetes%20was%20open%2Dsourced%20by,becoming%20the%20de%20facto%20standard.
https://hackernoon.com/how-did-kubernetes-win-the-container-orchestration-war-lp1l3x01
https://www.ibm.com/cloud/learn/containerization
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deployment and “moving around” process of applications. Containers may run across different 
computers and environments thanks to Kubernetes clusters. A cluster can include nodes from 
any location or environment (e.g., on-premises together with cloud, virtual, physical, etc.) With 
the popularity of the container technology and Kubernetes among companies, it is not unusual 
for businesses to operate many clusters instead of a single cluster. The use of a single cluster 
may present certain problems: single point of failure, inability to control the users' access to 
certain resources within the cluster, applications competing with each other for the use of 
shared resources, etc. This resulted in the use of ‘multi-cluster’ approach in Kubernetes [5]. By 
deploying multiple clusters, organizations aim to improve their applications’ overall 
availability, scalability and failure and business isolation [6]. However, since the applications 
are deployed to different clusters’ nodes separately, they need to be managed separately as 
well. All the configurations and application deployments need to be repeated on each cluster 
even if the applications are exactly the same. This resulted in the emergence of “Cluster 
Federation” concept.  
 

The core assumption of Kubernetes Cluster Federation is that a unique source of 
application configuration (e.g., deployment, service, etc.) is applied to a central location known 
as the Host Cluster, and that the configuration is automatically propagated to all clusters in the 
environment according to specified criteria. This provides the application with a unified view 
of all Kubernetes clusters as a single cluster. In an ideal world, there should be no need to 
configure or deploy the application numerous times in separate clusters, or to retain an 
application's state per cluster. The app developer does all the work in the host cluster and all 
the configurations are automatically reflected in the child or member clusters [7]. Below is a 
figure demonstrating the process of cluster federation:  

 

 
Figure 1.1: Kubernetes Multi-Cluster Federation 

 
 
 

https://www.containiq.com/post/kubernetes-multiple-clusters-vs-single-cluster
https://platform9.com/blog/multi-cluster-kubernetes-deployments-when-and-why/
https://caylent.com/blog/kubernetes/kubernetes-cluster-federation-with-admiralty
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The Cluster Federation is achieved by a host cluster that contains controller managers 
responsible for the propagation of Kubernetes resources among child clusters. After that, the 
deployed resources are federated through the host cluster. The application developer can 
change the configuration of certain resources of child clusters with the help of the host 
cluster’s controller managers. Kubernetes Cluster Federation facilitates the process of 
application deployment by creating a ‘single cluster’ environment while enjoying the benefits 
that come from multi-cluster setting: We create multiple clusters, each having multiple nodes 
and applications running in these nodes just like in a regular “multi-cluster” setting. However, 
in cluster federation, we make one of the many clusters the “Host Cluster” where the others 
are “Member Clusters”. We create the configurations and deploy the applications on the Host 
Cluster, and all the resources are automatically propagated to the member clusters. Thus, we 
enjoy the ease of management that comes from a single cluster setup, while having the 
resiliency, high availability, and disaster recovery features of a multi cluster environment.  
 

Most of the Kubernetes Cluster Federation or Management tools are still in 
development and the ones offered by big cloud providers and used in production do not fully 
provide the freedom to manage different types of clusters other than what their platform 
offers. For instance, Google Anthos [8] is not a Cluster Federation tool that has the feature of 
automatically propagating resources across multiple member clusters from a single Host 
Cluster, but it is a production-ready solution for multi-cluster management within GCP or 
across different cloud providers. Anthos lets us manage workloads running on third-party 
cloud environments such as Oracle, Azure, AWS, as well as on-premises Kubernetes clusters. It 
enables developers to monitor and manage the configurations and policies of clusters running 
in different environments through a single platform called Anthos. However, it has a limited 
range of environments that it supports, and it is a multi-cluster management tool rather than a 
federation tool [9]. The solutions offered by other cloud providers are similar.  
 

The open-source Cluster Federation tools (e.g., KubeFed) that are mostly still in 
development phase do allow the federation of multiple Kubernetes clusters across different 
regions deployed in different cloud providers. For instance, using the most popular open-
source cluster federation tool called KubeFed, the host cluster can run in GKE and federate 
deployment resources across multiple Azure clusters. Although there are a few examples 
creating such a setup out there, the number of such examples and the instructions to simulate 
the setup are quite limited with no tangible demonstration. However, there are almost no 
resources out there creating a Cluster Federation setup between a Central Cloud cluster acting 
as the host cluster and on-premises clusters running on a local machine acting as the member 
clusters. In such a scenario, the federated on-premises cluster running on a local machine 
could be a small branch of a company and the central cloud cluster could be the host cluster 
federating resources from a central cloud (e.g., GCP, AWS, Azure) to the local machines at 
branches in different regions. The goal of our thesis will be to create the POC simulating this 
scenario.   
 
 
 
 
 
 

https://cloud.google.com/anthos/docs/tutorials/explore-anthos
https://cloud.google.com/anthos/docs/concepts/overview
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1.1 Goal of the Thesis 
 
Imagine we have a central cluster with several applications running on different nodes in a 
Cloud. These applications running on a central cloud can have any type of functionalities such 
as banking, healthcare, gaming, etc. And we want these same functionalities to also reside in 
several small branches outside the central cloud platform. These branches can be local 
machines located in regions different from the central cloud’s cluster to improve latency and 
availability. We can think of these local machines as machines with low-medium processing 
units. As mentioned in the previous section, such a scenario can be achieved through Cluster 
Federation, however, there are no tangible examples or instructions for creating this setup. 
Through cluster federation tools, we can automatically propagate the central cloud cluster’s 
resources, and therefore functionalities, to the clusters located in local machines that are 
independent from the Cloud Platform. This way, all the resources in the central cloud cluster 
can also reside in local branches in different regions and be accessible by the users in those 
regions. On top of providing the same functionalities of the central cloud to the local machines 
on the branches, this would also decrease the latency for the end-users. An example scenario 
with this setup may include lots of small local machines with low computing power for IoT 
devices. The clusters running in these local machines may be federated by a ‘host-cluster’ 
residing in a central cloud and the local clusters can automatically execute the applications 
deployed in the host-cluster of the central cloud. This way, the local machines can execute the 
computing processes at the edge network for the IoT devices located all over the world and 
decrease latency. Moreover, the applications in the clusters of the local machines can be easily 
reconfigured and propagated by the host-cluster running in the central cloud.    
 

Hence, this thesis designs a Proof of Concept to create a simulation of the scenario 
described above. We will use a Minikube cluster in our local environment using our own 
machine in Dublin, Europe. This will represent a ‘local branch’ in Europe. The central cluster 
that will serve as the ‘host-cluster’ for the Cluster Federation will reside in a Cloud Provider. 
This host-cluster will be located in a region different from Europe and will be responsible for 
propagating resources to the Minikube cluster in our local machine. All the resources and 
functionalities created in the central cloud cluster will be automatically propagated to 
Minikube. Users near this local branch in Europe can use the applications running in the 
central cloud cluster by simply accessing the Minikube cluster residing in a local machine near 
them. This will require establishing a connection between the Minikube cluster running on a 
local machine and the central cloud. For our solution, we will use the KubeFed tool, which is 
the leading open-source Cluster Federation technology.   
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1.2 Structure of the Thesis 
 
The next sections of this thesis are as follows. Chapter 2 provides a comprehensive overview 
on Kubernetes, the main technology this thesis is based on. We briefly talk about Kubernetes 
background and then explain its overall architecture and list its main components. In Chapter 
3, we talk about the concept of “Multi-Cluster Kubernetes” together with its advantages and 
disadvantages. We then connect it to Cluster Federation and provide a brief overview about 
how Cluster Federation fits into the world of multi-cluster Kubernetes. In Chapter 4, we 
mention some of the popular Cluster Federation tools with focus on KubeFed and how it works 
since it is one of the main tools we will use in our design. Chapter 5 provides our design & 
implementation for the proposed POC in this thesis. In Chapter 6, we will evaluate our POC 
solution by providing its advantages and disadvantages through measurements. In Chapter 7, 
we will talk about how our project fits into the real-world and what could be improved if we 
had enough time and resources. Finally, we will conclude our thesis in Chapter 8. 
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Chapter 2 
 
Background 
 
This chapter provides more detail on Kubernetes, its main components and its underlying 
architecture. This will help us for the later sections on Cluster Federation and POC design & 
implementation. The first section will introduce a brief history and evolution of Kubernetes 
[10]. The second section will describe the underlying architecture of Kubernetes in detail. 
Finally, we will describe the main Kubernetes objects that are widely used by almost all 
Kubernetes developer. 
 
2.1 Kubernetes and its History 
 
Before talking about Kubernetes, we need to introduce Google’s Borg system first, which is the 
precursor of Kubernetes. Google defines its Borg system as a cluster manager responsible for 
running hundreds of thousands of jobs, from many thousands of various applications, across a 
number of clusters each with up to tens of thousands of machines [66]. This was a very small 
project that initially included around 5 people in 2004. 
 

Later in 2013, Google came up with Omega, an intelligent scheduler for thousands of 
clusters. What made Omega unique was its new cluster scheduling mechanism that would be 
the foundation of Kubernetes. Omega highly utilized parallelism, shared-state, and lock-free 
optimistic concurrency control to use each cluster’s full potential [67]. Google used Omega for 
both short-term batch type jobs and for their infrastructure services (e.g., BigTable).  

 

During the mid 2014, Google introduced Kubernetes, an open-source variation of their 
long-used Borg. One of the big differences is that Borg was written in C++, and Kubernetes in 
Golang. Later in 2015, the collaboration between Google and the Linux foundation resulted in 
a rapid use and popularity of Kubernetes. Currently, Kubernetes is managed by the Cloud 
Native Computing Foundation (CNCF) [61]. It is being used by almost all big company that 
deals with container orchestration today [68, 65]. Kubernetes is the leading open-source tool 
responsible for automating the deployment and management of containerized applications. 
We mentioned in the introduction that containers help packaging applications with their 
respective libraries and dependencies. The containerization helps the application become a 
single runnable unit that can be executed in any platform without any extensive configuration. 
This immensely simplifies the mass execution of applications since the developers won’t have 

https://blog.risingstack.com/the-history-of-kubernetes/
https://www.cncf.io/
https://www.sumologic.com/blog/why-use-kubernetes/
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to deal with any installation of application requirements. Now, we have hundreds of 
thousands of easily executable containers. However, this will introduce a new problem: how to 
manage all these containers and make sure that we have no downtime (e.g., containers 
smoothly taking each other’s place when some go down, etc.) This is where Kubernetes comes 
in! In the next section, we will talk about the evolution of application deployment throughout 
the last 20 years to demonstrate the advantages that Kubernetes provides. 

 
2.2 The Evolution in App Deployment 
 
In the last two decades, the application deployment process has changed significantly. Below is 
an illustration of these changes [11]. Official Kubernetes site has given three categories to 
illustrate the evolution of application deployment processes: traditional deployment, 
virtualized deployment and container deployment [11]. 

 

 
Figure 2.1: Application Deployment Process Evolution [11] 

 
Traditional deployment refers to running applications on physical machines. An application 
developer would build applications and execute them on either a single or different physical 
machines. The obvious problem in this scenario is the lack of isolation between different 
applications running on the same physical server. There may be multiple applications running 
on the same machine and one of them may be using more resources than the others, leading 
the other applications to perform poorly. This is a typical example of resource competition 
between applications. In traditional deployment, application developers would have hard time 
creating boundaries between applications to allocate each with their own proper resources. To 
deal with this issue, it is possible to run each application on a different physical machine, 
totally isolating them from each other for a better resource allocation. However, this may not 
always be feasible as this approach is neither financially viable nor scalable. Dealing with 
multiple servers for only small deployments would yield unnecessary cost. It is also highly 
probable that applications deployed on different physical servers be allocated more resources 
 

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
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than they need.  
 

To deal with the above-mentioned issues, we were introduced with the virtualization. 
Virtualized deployment allowed developers to run multiple Virtual Machines on a single 
physical machine’s CPU [11]. By running applications on different VMs, we enjoy an increased 
isolation between apps in a single physical server without the need to deploy them in multiple 
physical machines. With the increased isolation in a single machine, VMs offered a high level of 
security and a better resource utilization. Since the applications are virtually isolated, they 
couldn’t easily access each other’s data or resources. The power to add, remove or update 
many virtually isolated applications in a single physical machine improved scalability and 
dramatically reduced hardware costs. However, the isolation of applications came with a 
significant overhead. Since each virtual machine is a full machine that has all the components, 
it also includes its own OS on top of the virtualized hardware [11].  
 

To deal with the ‘heavy-weight’ nature of virtual machines, a new solution came to the rescue: 
containerization. Containers are similar to the virtual machines, but they are ‘light-weight’. 
This is because containers share the Operating System among the applications unlike VMs that 
have their own Operating Systems each. Like VMs, containers also have their own CPU share, 
memory, filesystem, etc., but they can be easily moved around across different cloud or OS 
distributions [11]. This property is what makes containers unique today.  Furthermore, due to 
their “light-weight” nature, containers are so much faster than VMs. Starting, stopping, and 
updating containers require much less work than Virtual Machines. The power of 
containerization is what makes Kubernetes popular today. 
 
2.3 Kubernetes Benefits 
 
One of the most important benefits that Kubernetes brings is “high availability” of 
applications. It provides increased software scalability and availability. Kubernetes can scale up 
and down the applications and supporting infrastructure resources according to the 
organization's changing demands, enabling the dynamic management of company resources 
[12, 11]. This helps organizations save a lot on their ecosystem management with automated 
and smart relocation of resources based on workloads.  Moreover, it provides perfect disaster 
recovery by checking the lifecycle of resources constantly; it saves the latest state information 
and keeps the applications running from the latest recorded state.  

Kubernetes also provides flexibility in multi-cloud environments by making sure that 
the applications successfully operate in any public or private environment. Kubernetes also 
simplifies the smooth migration of applications from on-premises environment to public or 
private clouds. Essentially, Kubernetes helps facilitate the development, deployment and 
release processes of applications. Below is a summary of Kubernetes benefits: 

 

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://devspace.cloud/blog/2019/10/31/advantages-and-disadvantages-of-kubernetes
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
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Figure 2.2: Kubernetes Benefits 

 
2.4 Kubernetes Architecture 
 
Kubernetes consists of three main components: cluster, node and pod. Kubernetes cluster is 
basically a set of worker machines (e.g., nodes) responsible for executing containerized 
applications. A node [13] is a simple server, either a physical or virtual machine consisting of 
computing hardware. It is basically a representation of a single machine in a Kubernetes 
cluster. A node is either a datacenter physical machine, or a virtual machine hosted on a cloud 
provider such as GCP, AWS or Azure. We can view a node as a machine that consists of a set of 
RAM and CPU resources to be used for running applications.  
 

A Kubernetes cluster [14] is simply put an “intelligent node pool”. When you deploy 
applications to the cluster, it manages work distribution to specific nodes smartly for the 
application developer. If any nodes are added to or withdrawn from the cluster, the cluster will 
reallocate work as needed. It shouldn't matter to the application developer what particular 
machines are responsible for executing the code. We can think of a Kubernetes Cluster as a 
hivemind that takes all the responsibility of dealing with individual machines (e.g., nodes) for 
application deployment.  

 

We have previously talked about what a container [15] is and how it packages an 
application for an easy execution and moving around. Instead of executing containers directly, 
Kubernetes encapsulates one or more containers into a higher-level structure known as a pod 
[16]. Containers residing in the same pod share the same local network and resources. Pods 
provide intercommunication between containers as if they were on the same computer, while 
being isolated from others. They may hold multiple containers and be easily scaled up and 
down based on the load. Moreover, pods are the smallest units of a Kubernetes cluster. A pod 
is an abstraction over a container. They create a running environment, or a layer on top of the 
container so that an application developer won’t need to directly work with containers. They 
are ephemeral units residing in nodes and meant to be deleted and recreated multiple times 
during the lifetime of a Kubernetes cluster. 

 
 

https://kubernetes.io/docs/concepts/architecture/nodes/
https://www.vmware.com/topics/glossary/content/kubernetes-cluster.html
https://kubernetes.io/docs/concepts/containers/
https://kubernetes.io/docs/concepts/workloads/pods/
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A Kubernetes cluster contains two types of nodes: master nodes (also called control 
plane) and worker nodes [17].  Master nodes are responsible for providing the communication 
between the application developer and the cluster itself and scheduling the workload among 
the nodes. The worker nodes are responsible for executing applications containing the 
business logic. Thus, they generally require more resources (e.g., memory, CPU, etc.) than the 
master nodes. Below is a diagram showing the overall architecture of a Kubernetes cluster. It 
shows all the necessary components required in both the control plane and the worker nodes. 
In the next section, we will give a brief description for all these components [17]. 

 

 
Figure 2.3: Kubernetes Cluster Architecture [17] 

 
2.4.1 Control Plane Components 
 
The control plane is the brain of a Kubernetes cluster responsible for making global decisions 
about the cluster [17]. For instance, when a pod is unhealthy, the control plane deletes and 
recreates a new pod. In general, the control plane components run on the same machine 
(master node) and this machine does not run the user created containers in it. Rather, the 
control plane is responsible for managing the applications running on the worker nodes. There 
are four processes that run on every master node that control the cluster state and the worker 
nodes. 

 
Kube-apiserver 
 
Control plane’s API server [17] is responsible for exposing the Kubernetes API acting as the 
front-end for the application developers. When a user wants to deploy a new application in a 
Kubernetes cluster, they interact with the API server using some client (e.g., Kubernetes 
Dashboard, command line tool like kubectl, etc.) The API server can be thought as a cluster 
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https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
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https://kubernetes.io/docs/concepts/overview/components/
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gateway which gets the initial request of any updates into or queries from the cluster. It also 
acts as a gatekeeper for authentication, making sure that only the authenticated and 
authorized requests get through the cluster. Whenever the user wants to schedule new pods, 
deploy new applications, or any other components, the user must talk to the API server on the 
master node. Then, the API server validates the request, after which it forwards the request to 
other control plane processes in order to schedule the pod or create a particular component 
that the user requested. The same process applies when the application developer wishes to 
query the status of deployments or cluster health, etc. The user makes the request, and the 
API server returns a response.  
 

 
Figure 2.4: Control Plane API workflow 

 
 
Scheduler 
 
Now, the user sends a request to the API server to schedule a new pod. After the API server 
validates the user’s request, it will be handed over to the scheduler in order to start that 
application pod in one of the worker nodes. Instead of just randomly assigning it to any node, 
the scheduler has an intelligent way of deciding on which specific worker node, the next pod 
or component will be scheduled. The scheduler checks how much resources (e.g., CPU, RAM) 
the application to be scheduled will need, and then the scheduler will go through the worker 
nodes and see the available resources on each one of them. For instance, if one of the worker 
nodes is the least busy or has the most resources available, the scheduler will schedule the 
new pod on that node [17, 18]. 

https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
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Figure 2.5: Control Plane Scheduler workflow 

 
 
Controller Manager 
 
What happens when pods die on any node? There must be a way to detect that the pods died 
and then reschedule those pods to recover the cluster state as soon as possible. What 
Kubernetes Controller Manager [17, 19] does is to detect those state changes like crashing of 
pods and help the cluster reach its desired state once again. To achieve this, Controller 
Manager makes a request to the Scheduler to reschedule those dead pods, and the process 
described in the Scheduler section happens again:  The Scheduler decides where to put the 
new pod based on the worker nodes’ resource calculation and sends the request to the 
“kubelet” of the appropriate worker node to restart the new pod. 

 
etcd 
 
This is the last control plane process that can be considered as the cluster brain. This is 
because every change in the cluster gets saved or updated into the key-value store of etcd. All 
the processes described above in the controller manager and scheduler sections happen 
thanks to the data stored in the etcd [20]. For instance, the Scheduler knows what resources 
are available on each worker node through etcd’s data. Using that information, scheduler 
schedules pods on worker nodes that have the most available resources.  Cluster Manager 
knows that a cluster state changed through etcd as well. Finally, when we make a request to 
the Control Plane’s API server to query the cluster health, the API server’s response is based on 
the stored data in etcd. However, we need to keep in mind that application data (e.g., 
database data) is not stored in etcd. etcd stores only cluster state information which is used 
for the master processes to communicate with the worker processes and vice versa. 
 
 
 

https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://etcd.io/


13 

2.4.2 Node Components 
 
The Kubernetes worker nodes run the pods that are responsible for the application workloads. 
These components run on every node, maintain running pods and offer Kubernetes runtime 
environment. There are three main node processes as described below.  

 
Container Runtime 
 
The container runtime [21] is the software that oversees the container execution. Kubernetes 
supports multiple container runtimes, including Docker, containerd, CRI-O, or any 
implementation of the Kubernetes Container Runtime Interface (CRI) [22]. The most common 
is the Docker runtime, and we will be using Docker throughout our work. 

 
kubelet 
 
As we have previously mentioned in the Control Plane section, kubelet [23] runs on each 
cluster node and is responsible for running containers in pods. Application developer makes a 
request to the Control Plane API server to run, stop or restart a pod, and the Scheduler decides 
on which node a new pod will be scheduled. The process that actually starts that pod with a 
container is the kubelet. The kubelet gets the request from the scheduler and executes that 
request on the node. kubelet gets the pod configurations from the API server and 
communicates with the container runtime to run them on the nodes.  

 
kube-proxy 
 
kube-proxy is basically a network proxy running on each node, responsible for maintaining 
network rules on nodes [17]. kube-proxy implements essential functionalities for Kubernetes 
services, which we will discuss in the next section. By updating rules in IP tables, kube-proxy 
helps the communication from and to the pods in the cluster. 

 
 
 
 
 
 
 

https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/#:%7E:text=The%20kubelet%20is%20the%20primary,object%20that%20describes%20a%20pod.
https://kubernetes.io/docs/concepts/overview/components/
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2.5 Kubernetes Objects 
 
Kubernetes defines various types of objects, and these objects form the building blocks of 
Kubernetes [24]. The Kubernetes API discussed in the previous section is used for querying and 
managing these objects (e.g., create, delete, update, get, etc.) There are quite many 
Kubernetes objects, however, in most cases we work with only a handful of them. Kubernetes 
Objects, in most cases, have the following fields as can be seen from the example 
configuration files (Figure 2.6 and 2.7). 
 

• apiVersion: This is the specific version of the Kubernetes object’s schema 
 

• kind: This is a string val. that represents the Kubernetes object’s associated REST 
resource  
 

• ObjectMeta: The Kubernetes object’s metadata that includes ‘name’, ‘labels’, 
‘annotations’, etc. 

 

• ResourceSpec: Description of the Kubernetes object’s desired state as defined by the 
application deployer 

 

• ResourceStatus: The current state of the resource 
 
The application developer can execute basic CRUD operations on these Kubernetes resources 
such as: 
 

• CREATE: creating the Kubernetes resources in the storage backend. The creation 
happens with the desired state 
 

• READ: There are three main operations that come with the READ: 
 

o GET: Fetch a specific resource using their name 
 

o LIST: Fetch all the Kubernetes objects of a specific type within a specified 
namespace. The application deployer can restrict the fetched results to match a 
selector query 

 

o WATCH: Serves to stream the results for an object(s) as it gets updated 
 

• UPDATE: There are two main operations that come with the UPDATE: 
 

o Replace: Serves to replace the existing spec with the provided one 
 

o Patch: Apply a change to a specified field 
 

• DELETE: Delete a resource from the cluster. Sometimes the child objects of the resource 
need to be removed before we can delete the parent resource 

 
In the next section, we will briefly introduce the core Kubernetes objects that are relevant to 
the thesis. 
 

 
 

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
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2.5.1 Namespace 
 
In a Kubernetes cluster, we generally organize resources using namespaces [25]. We can think 
of a namespace as a virtual cluster inside a Kubernetes cluster where we create virtual 
subgroups of resources. The other objects that we will talk about in this section are all 
deployed within a particular namespace of a Kubernetes cluster. Kubernetes cluster provides 4 
namespaces out of the box: default, kube-node-lease, kube-public, kube-system. For instance, 
the kube-system namespace in a cluster includes components that are the system processes. 
Upon the creation of a cluster, default namespace is the namespace in which all the 
Kubernetes objects (e.g., deployments, pods, services) are created if no other namespace is 
specified. The question we need to ask next is: why do we need namespaces? They help the 
isolation of resources within a single cluster. Different groups of developers with different 
teams/projects in the same cluster can share resources without interfering with each other’s 
work. For instance, there may be three different custom created namespaces for 
development, testing, and production work in a single cluster with each having specific 
resource quota.  
 
2.5.2 Pod 
 
Pods [16] are the smallest processing units in a Kubernetes cluster. They are a collection of a 
single or multiple containers sharing the same resources (e.g., network, storage, etc.) that are 
scheduled together on the same pod. They are basically wrappers around one or multiple 
containers. Pods are ephemeral and meant to be destroyed and recreated during the lifetime 
of a Kubernetes cluster.  Each pod in the cluster is assigned an IP address that’s used by all the 
containers within that particular pod. Other pods in the cluster use each other’s IP addresses 
for communication.  A Kubernetes developer does not directly create or manage pods. Instead, 
they handle ‘deployments’, which we will talk about soon. 
 
2.5.3 ReplicaSet 
 
ReplicatSet is responsible for maintaining a stable set of replica pods running at any given time 
[26]. It ensures that a desired number of pods are always running in the cluster. For instance, if 
a pod in the ReplicaSet is deleted, the ReplicaSet notices that the number of running replica 
pods read from the ResourceStatus do not match with the desired number of replicas read 
from the ResourceSpec, and the ReplicaSet creates more pods to match the number of desired 
state. An application developer generally does not work with ReplicaSets directly and lets the 
‘Deployment’ object handle the replicas.   
 
2.5.4 Deployment 
 
Kubernetes Deployment object [27] is responsible for the creation, update, and deletion of 
pods. In practice, the application deployer would not be creating pods or ReplicaSets but 
creating deployments where they specify how many replicas they need to run. Users can scale 

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://www.vmware.com/topics/glossary/content/kubernetes-deployment.html
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up and down the number of replicas of pods they need. A deployment automatically creates a 
ReplicaSet, which then creates the desired number of pods specified in the ‘ResourceSpec’. As 
mentioned before, a Pod is a layer of abstraction on top of a container(s); Deployment is 
another layer of abstraction on top of a pod(s). Below is an example nginx deployment from 
the official Kubernetes website [28]. This deployment file creates a ReplicaSet that includes 
three nginx pods: 
 

 

 
Figure 2.6: Example Kubernetes Deployment [28] 

 
• In this example deployment file, a deployment with the name “nginx-deployment” is 

created under the “.metadata.name” section.  
 

• Under the “.spec.replicas” section, we can see that a total of three replica pods are 
created.  

 

• The selector section with the “app: nginx” key-value helps the Deployment know which 
Pods to manage. 

 

• The template section has the Pod labels under “.metadata.labels” field (app: nginx). This 
matches with the key-value in the selector section. 

 

• The spec field has a “containers” (.spec.containers) sub-field. We can see that the Pods 
only have a single container with the ‘nginx’ Docker image.  

 
2.5.5 Service 
 
As mentioned in the ‘Pod’ section, Kubernetes pods are ephemeral and are meant to be 
destroyed and recreated during the lifetime of a Kubernetes cluster. Pods have their unique IP 
addresses that other cluster objects use for communication. However, every time a pod gets 
destroyed and recreated, they are assigned a new IP address. Using that newly assigned IP 

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
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address for communication may overcomplicate things in the cluster since it is very common 
for pods to be recreated and assigned new IPs. This is where Service come to the rescue. A 
Service [29] is a static IP address that can be attached to each pod to expose them. The 
important point is that the lifecycles of Pods and Services are not connected. Even if the Pod 
dies, the Service, and its static IP address will remain intact, and the users can access the pods 
using the same Service static IP. There are several service types providing different access 
scopes to the pods [69]. The service types are: 
 

• ClusterIP: If no Service type is provided in the configuration file, the Service gives a 
ClusterIP to the pods. The ClusterIP essentially corresponds to an internal IP address, and 
pods with ClusterIP can only be accessed by other resources in the same cluster and not 
by external objects.  
 

• NodePort: The pods with NodePort service type are accessible from outside the cluster 
through a static NodePort in the range of 30,000 – 32,767. The Service is essentially 
exposed through a static port of each Node’s IP. The access to the NodePort service 
happens through a request in the form of ‘<NodeIP>:<NodePort>’. 

 

• LoadBalancer: This type is the most popular one. It exposes the Kubernetes Service 
externally through a cloud provider’s LB solution (e.g., GCP, AWS, Azure). The 
LoadBalancer automatically redirects the external requests to the corresponding service. 

 

Below is an example service that we connect to the ‘nginx’ deployment from the previous 
section. Notice that no Service type is provided. This corresponds to the ‘ClusterIP service type. 

 

 
Figure 2.7: Example Kubernetes Default Service 

 
Remember that our previous nginx deployment had “app:nginx” label. Notice in our Service 
configuration that in the selector field we have the same “app:nginx” label. This means that 
our service exposes any Pod in the cluster with the “app:nginx” label. To summarize, we have a 
Service with the name “nginx-service”, redirecting all requests that come from TCP port 80 to 
port 9376 for any Pod that has the label “app:nginx”. 
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2.5.6 ConfigMap 
 
A ConfigMap [30] is a key-value dictionary of configuration settings. They allow application 
developers to separate configuration data/files (e.g., environment specific configurations) 
from containers to make applications portable. They may contain config. information such as 
strings, hostnames, URLs as key-value pairs for certain Kubernetes objects. The configuration 
settings and which Kubernetes objects they are applied to are determined through ‘Labels & 
Selectors’, which is described in the next section. We need to keep in mind that ConfigMaps 
are not encrypted and thus not recommended for storing sensitive data. Another Kubernetes 
object called “Secrets” are used for storing confidential information. 
 
2.5.7 Secrets 
 
Secrets are similar to ConfigMaps, but store small amount of confidential data such as 
passwords, ssh keys, OAuth tokens, etc.  
 
2.5.8 Labels & Selectors 
 
When we create Kubernetes objects, we sometimes work with Configuration files where we 
organize and create associations between certain objects. Labels are essentially key-value 
assignments attached to Kubernetes objects and used for grouping them, and Selectors serve 
to choose groups of objects with the same label [31]. Figure 2.6 is a Kubernetes Deployment 
object where the pods are labelled as “app: nginx”. Figure 2.7 is a Kubernetes Service object 
that has the selector for all the Kubernetes objects having the label “app: nginx” as can be 
seen in lines 6 and 7. This suggests that the Service object (nginx-service) is attached to all 
pods with the label “app: nginx”. Labels and Selectors are crucial parts of Kubernetes 
configuration files.  
 

In our design & implementation section, we will assign workloads from a central cloud 
cluster to a local cluster in a branch (e.g., our local computer). In particular, we will assign 
workloads to a particular server (e.g., node) in our local cluster from a central cloud. To 
achieve this, we can limit the deployment of certain pods so that they can only run on specific 
set of node(s) using label selectors [32]. In general, Kubernetes doesn’t expect such 
configuration as it has a scheduler automatically placing pods across different nodes based on 
the existing loads. However, we sometimes want to control which nodes we wish the pods to 
run at because these nodes may be located closer to a particular end user or we may want to 
co-locate multiple pods on the same exact node that are extensively communicating with each 
other [32]. In Kubernetes, we allocate workloads (e.g., pods) to particular node(s) in three 
main ways: (i) nodeSelector using node labels, (ii) Affinity and anti-affinity, (iii) nodeName 
field. The one that we will use in our design & implementation is the Kubernetes preferred way 
of selecting nodes: nodeSelector and node labels. 
 
 
 
 

https://www.aquasec.com/cloud-native-academy/kubernetes-101/kubernetes-configmap/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
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2.5.8.1 NodeSelector and Labelling Nodes 
 
In general, when we wish to label nodes, we do it manually through a command below: 
 

kubectl label node local-cluster-node-m01 abc=xyz 
 

Here, we are labelling the node “local-cluster-node-m01” with the label of “abc=xyz”. 
Remember that the labels are just key-value pairs. Using this label with a NodeSelector will 
place the workloads (e.g., pods) on any node with the “abc=xyz” label, in our case, just the 
“local-cluster-node-m01” node:  
 

 
Figure 2.8: Placing workloads on a particular node through Labels & Selectors 

 
In Figure 2.8, notice that below the containers field, we have a ‘nodeSelector’ field where we 
give the labels of nodes on which we want the pods to be deployed. In this example, we are 
deploying three Nginx pod replicas onto all nodes with “abc=xyz” label. We may want such a 
scenario if for instance the Nginx pod replicas need to communicate with each other 
extensively.  

 
2.5.8.2 Affinity and Anti-Affinity 

 
Node affinity is similar to the NodeSelector method, but it allows to give more specific 
conditions. While NodeSelector allows us to allocate pods to nodes using a simple ‘key-value’ 
pair label; Node Affinity allows us to give a logical set of conditions for the selection of nodes.  
Below is an example configuration file using Node Affinity from the official Kubernetes website 
[32]:  

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
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Figure 2.9: Placing workloads on particular Nodes through Node Affinity [32] 

 
In Figure 2.9, in order for the pods to be deployed in the desired nodes, the nodes must have a 
label with the key= topology.kubernetes.io/zone and the value must be either of  antarctica-
east1 or antarctica-west1 . The node also preferably has a label with the key=another-node-
label-key and the value of another-node-label-value [32]. 
 
2.5.9 Custom Resource Definitions (CRD) 
 
A Kubernetes resource is an endpoint in Kubernetes API that allows you to store an API object 
of any kind. For instance, Service resources serve to store a collection of the Service objects. A 
Custom Resource helps create your own API objects and define your own kind such as Pods, 
Deployments, ConfigMaps, ReplicaSets, etc. [33 , 34]. Custom Resource Definitions or CRDs 
allow application developers to extend existing Kubernetes capabilities by adding new kinds of 
API objects useful for the application. CRDs are what we use to create Custom Resources and 
they allow these Custom Resources to be used as Kubernetes resources.  

 
2.6 Summary 
 
In this chapter, we gave an in-depth background of Kubernetes, why it is used, its components 
and main architecture. The information provided in this chapter will help us in the design & 
implementation section of our thesis. We learnt that Kubernetes is the leading tool for 
container orchestration that helps us automate the process of deployment, updates, 
development, and release of an application. So far, we have only focused on a single cluster 
setup in Kubernetes. In the next section, we will talk about “Multi-cluster Kubernetes” and 
touch upon the “Cluster Federation” concept. These two concepts are the two building blocks 
of our thesis.  
 

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://docs.openshift.com/aro/3/dev_guide/creating_crd_objects.html
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Chapter 3 
 
Kubernetes Multi-Cluster 
 
In this chapter, we will introduce the Multi-Cluster Kubernetes approach, talk about its various 
use-cases and implementations, and summarize the benefits that come with it. After we draw 
a clear picture of the Multi-Cluster Kubernetes, we will introduce the concept of “Cluster 
Federation”, which is the foundation of this thesis. In the next chapter, we will talk about 
existing Kubernetes Federation Projects and particularly focus on KubeFed project, which is 
the open-source project with which this thesis aims to build a working solution on a cross-
platform context (e.g., host cluster in cloud with a member cluster running on a local Minikube 
representing a branch of an application).  

 
3.1 Multi-Cluster Approach in K8s 
 
As mentioned in the previous chapter, a Kubernetes application is deployed in a cluster that 
includes multiple master and worker nodes responsible for hosting application pods with 
containers. In simple cases, a single Kubernetes cluster may be sufficient for a company’s 
business needs, however, it has multiple drawbacks [35]. Multi-Cluster Kubernetes is simply a 
strategy of creating an environment in which we use more than one Kubernetes cluster for 
application deployment. These clusters might reside on the same physical host, on various 
hosts in the same data center, or even in different clouds in different countries. 
 

A single cluster approach is generally more cost-effective and facilitates administration 
of the Kubernetes resources, however, there are certain drawbacks to this strategy.  As the 
name suggests, a single cluster may result in a single point of failure for the deployed 
applications. Some examples of such failures could be configuration errors, infrastructure 
outages, control planes going down, etc. [36]. Secondly, a single cluster most probably 
contains multiple running applications sharing the same resources (e.g., networking, OS, 
hardware, etc.) [36]. Although, Kubernetes namespaces may help to virtually isolate different 
applications running on the same cluster, this may not be enough to fully prevent the 
unwanted interactions between different applications, hence increasing the possibility of 
security risks and resource competition.  Another similar example would be a scenario in which 
a company uses a single cluster to deploy all their applications. Different teams may be 
assigned to different applications, but they might still access other teams’ applications in the 
same cluster. This would obviously exacerbate possible attack surfaces. Moreover, a 
Kubernetes cluster can grow to host at most 5,000 nodes, 150,000 pods and 300,000 

https://www.mirantis.com/cloud-native-concepts/getting-started-with-kubernetes/what-is-kubernetes-multi-cluster/#why_multi_cluster
https://aaltodoc.aalto.fi/handle/123456789/110500
https://aaltodoc.aalto.fi/handle/123456789/110500
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containers [36]. This amount of resource may not be necessary in most cases, however, it is 
still worth mentioning. The drawbacks mentioned in this paragraph pushed organizations to 
adopt a Multi-Cluster Kubernetes approach, so they can deploy their applications across 
multiple Kubernetes clusters for a higher availability and a better isolation. In the next section, 
we will give a more detailed overview of the benefits that come from Multi-Cluster strategy. 

 

It should also be noted that, although we can add multiple nodes to a single cluster to 
offer some sort of high availability, a single cluster currently cannot have nodes from different 
regions. More specifically, all the nodes in a single cluster must be from the same region, 
however, they can span across different zones within a region. The safest way to deploy a 
Kubernetes application across different regions for high-availability and disaster recovery is to 
create multiple-clusters in different regions. This would allow the same application to serve 
multiple geographical regions [37]. We will implement such solution in the design & 
implementation section where one of the clusters will be our local Minikube cluster and the 
central cluster will reside in GCP Australian region.  

 
3.1.1 Multi-Cluster Kubernetes Advantages 
 
By deploying Kubernetes applications across multiple clusters, multi-cluster K8s aims to tackle 
the limitations mentioned in the previous section. Below are some of its advantages [38]: 
 

• Higher Availability and Performance: Application developers can deploy different 
clusters across different geographical locations, providing geo-redundancy [36]. Same 
applications may be deployed in multiple clusters in different regions for high availability 
and low latency. It may be more practical to have different clusters in each location, 
while being able to centrally manage them. This is not a feature that a single cluster can 
offer since all the nodes in the cluster must be from the same region. Although, multi-
cluster deployment allows us to deploy clusters across different regions and possibly 
cloud providers, if we cannot easily manage these clusters from completely different 
environments through a single controlling point, then our lives wouldn’t get any easier 
with multi-cluster deployment either. The central management of different clusters is 
also a foreshadowing to the ‘Cluster Federation’ concept that this thesis revolves 
around. A multi-cluster deployment across different regions and cloud providers without 
a single federation control manager might quickly become a nightmare.  
 

• Tenant Isolation: As suggested in the introduction, it is challenging to work with multiple 
Kubernetes environments to handle development, testing, and production settings in 
the same cluster. Different teams can be assigned to different projects (e.g., production 
or testing, etc.) in the same cluster, and the isolation between the applications running 
in different projects within the same cluster can be somewhat provided through 
namespaces. However, the security mechanism of Kubernetes makes it challenging to 
segregate different environments from one another. A problematic application running 
in one namespace can still affect applications running in different namespaces but still 
sharing the same hardware, etc. Kubernetes multi-cluster setups ease the process of 
isolating users and projects by cluster. 

https://aaltodoc.aalto.fi/handle/123456789/110500
https://www.getambassador.io/learn/multi-cluster-kubernetes/
https://blog.equinix.com/blog/2020/05/26/is-just-one-kubernetes-cluster-enough/
https://blog.equinix.com/blog/2020/05/26/is-just-one-kubernetes-cluster-enough/
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• Failover:  With a multi-cluster system, application developers make sure that workloads 
do not encounter downtime caused by a fault within a single cluster by effortlessly 
relocating them to different clusters [35]. 
 

• Avoiding Vendor Lock-In: Through a multi-cluster setup, application developers can 
deploy their clusters on different cloud providers of their choices, fully utilizing different 
capabilities and pricings offered by multiple cloud providers. For instance, in our design 
section, we will have one of the clusters in our ‘local branch’ running in Minikube. 

 

• Scaling Applications beyond a Single Cluster’s Limits: As mentioned in the introduction, 
there is a limit to the number of nodes, pods and containers deployed on a single cluster. 
By deploying applications in multiple clusters, you can increase the computing power 
even further. This would work best with a Multi-Cloud Kubernetes environment. 

 

• Edge Computing and IoT:  With multi-cluster approach, we can deploy local clusters 
responsible for processing data at the edge and send the output to regional clusters. 
These regional clusters may also perform certain operations and return the output to a 
central cluster. In an IoT setting, the local clusters at the edge may include smaller 
compute devices acting as “leaf nodes” for the cluster. 

 
3.1.2 Multi-Cluster Kubernetes Architecture 
 
As we see in the work of Saba Feroz Memon from Aalto University [36] and the descriptions 
made in several company products [39, 37], there are several use-cases for the Multi-Cluster 
Kubernetes setup, requiring different types of architectures as can be seen in Figure 3.1. Below 
we will summarize some of these use-cases: 
 

• Replicating Clusters: In this setup, one of the clusters is the ‘main’ cluster (or host 
cluster in Cluster Federation terms) responsible for hosting the main applications; the 
other clusters are replicas that have the copies of the host cluster’s applications. This 
approach provides high-availability and disaster recovery by allowing the same 
application to run in different geographical locations. The clients’ requests can be routed 
to the geographically nearest cluster to decrease latency. This setup will be a part of our 
design & implementation section through “cluster federation”.  
 

• Cluster per Deployment Unit: In this setup, we have separate clusters for each 
deployment unit of an application (e.g., development, testing, production). Imagine we 
have 3 different applications with each having production, development, and testing 
environments. In this scenario, we would have three separate clusters each containing 
all 3 applications, but only one of the three deployment units (dev, testing, or 
production). In this setup, an entire development, testing, or production team can work 
on their own cluster for all three applications. There is an isolation of deployment units 
rather than the isolation of applications. Refer to Figure 3.1 for a clearer picture. 

 

• Cluster per Application: In this setup, rather than having a cluster per deployment unit, 
we have a cluster per application. Again, imagine we have 3 applications. In this case, 
each cluster would contain only the deployment units of a single application. A Single 
Cluster would contain all the development, testing, and production deployment units of 

https://www.mirantis.com/cloud-native-concepts/getting-started-with-kubernetes/what-is-kubernetes-multi-cluster/
https://aaltodoc.aalto.fi/handle/123456789/110500
https://learnk8s.io/how-many-clusters
https://www.getambassador.io/learn/multi-cluster-kubernetes/
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a single application. There is an isolation of applications rather than the isolation of 
deployment units. This method allows for the adaptation of each cluster based on the 
application they are hosting. Refer to Figure 3.1 for a clearer picture. 

 

• Cluster per both Application and Deployment Unit: This strategy is an amalgam of the 
previous two setups. Imagine we have 3 different applications and 3 different 
deployment units (e.g., development, testing, production). In this scenario, we would 
have a separate cluster per application per deployment unit, giving us a total of 9 
separate clusters. This allows for a total isolation, reducing the effect of an event on 
production unit. 

 

• Cluster per Application Features: This strategy deploys a cluster per different features 
of a single application. This helps developers to work on specific features of a mission-
critical application separately, hence isolating between an application’s different 
components for a more focused and secure feature development. 

 

Below are representations of above architectures influenced by the work of Saba Feroz 
Memon [36]: 
 
 

 
Figure 3.1: Different Types of Multi-Cluster K8s Architectures  

 
 
 

 

https://aaltodoc.aalto.fi/handle/123456789/110500
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3.2 Kubernetes Cluster Federation 
 
In the previous section, we have defined what the ‘Multi-Cluster Kubernetes’ means and its 
various use-cases. We have described its benefits and why most companies are following the 
multi-cluster strategy. We emphasized that Multi-Cluster Kubernetes is generally used for 
providing High Availability, Low Latency, Failure and Business Isolation and avoiding Vendor 
Lock-in. We mentioned that this isolation could be partially provided in a Single-Cluster 
scenario by creating different namespaces and deploying the resources separately. However, 
we also pointed out that this does not offer a secure isolation compared to deploying 
applications on different clusters. We’ve also talked about how a single cluster cannot have 
nodes from different regions. Thus, deploying a Kubernetes application across multiple 
clusters helps the application span multiple geographical regions for high availability and 
disaster recovery.  
 

Multi-cluster deployment solves a range of difficulties, as shown by the 
aforementioned examples. However, it increases the complexity of operation and 
maintenance as well.  In a single cluster scenario, application deployment and upgrades are 
much less complicated as the developer can easily modify or update the YAML of the cluster. 
Changing application configuration and watching it propagate in a single cluster is much more 
straightforward than a multi-cluster setting. If we are dealing with multiple clusters, we can 
modify the YAML files one by one for each cluster, but the trick is to make sure that the 
application load status is the same across different clusters. This would be even more 
challenging if the clusters are from completely different regions and/or cloud providers. In 
these scenarios, it would be quite difficult to manage all these clusters from different 
environments.  How can we implement service discovery or load-balancing among different 
clusters that we are managing? These are the challenges that Kubernetes Cluster Federation 
aims to solve for Multi-Cluster Kubernetes through a single point of management [40, 41] 

 
3.2.1 Cluster Federation Description and Benefits 
 
Kubernetes Cluster Federation is a strategy to manage the configuration of multiple 
Kubernetes clusters through a single point called “federation control manager” [70]. Deployers 
have the option to choose which clusters the manager will coordinate and what their 
configurations will look like through a single group of APIs. This process helps the application 
deployer to manage multi-cluster deployments more smoothly and transparently [40]. 
Through a single point, the application deployer can deploy applications across multiple 
clusters and watch the deployment status of all the federated resources. Most Cluster 
Federation tools allow the deployer to select whether certain clusters have a particular 
configuration or all of them share the exact same resources, a concept which we will visit in 
the next chapter (e.g., KubeFed). Two important components of Cluster Federation are:  
 

https://www.revolgy.com/insights/blog/istio-multi-cluster-federation-and-hybrid-cloud#:%7E:text=High%20availability%3A%20By%20spreading%20the,prevents%20cluster%20provider%20lock%2Din.
https://unofficial-kubernetes.readthedocs.io/en/latest/concepts/cluster-administration/federation-service-discovery/
https://www.revolgy.com/insights/blog/istio-multi-cluster-federation-and-hybrid-cloud#:%7E:text=High%20availability%3A%20By%20spreading%20the,prevents%20cluster%20provider%20lock%2Din.
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• Syncing Resources Across Clusters: This is the fundamental challenge that application 
deployers encounter when they deploy applications across multiple clusters (especially 
across different regions and cloud providers). Through Cluster Federation, deployments 
on multiple clusters possibly running on different cloud providers can automatically sync. 
 

• Intercluster Discovery: Ability to automatically configure DNS servers and Load-
Balancers with backends, discovering all member clusters possibly running on different 
cloud providers. 

 

Below is a sample Cluster Federation setup with two federated member clusters, each from 
different regions. 
 

 
Figure 3.2: Federation of two clusters from different regions through a Manager 

 
Imagine that the organization has two separate clusters, one in us-central1 and the other in 
europe-west-2. They may both run on the same cloud provider or completely different 
environments. Through a single Federation Manager, the same configuration can be easily 
applied to both clusters in different regions. It facilitates the coordination of the application 
configuration and deployment across multiple clusters. Cluster Federation helps the 
coordination of clusters from completely different regions and/or cloud providers and helps 
responsiveness and resiliency of the applications on federated clusters [36, 71]. The 
application’s configuration is applied to the Federation Manager, and it schedules the 
deployment with the exact same configuration across the clusters. If the cluster in us-central1 
fails, the same application will still be available in europe-west-2 or vice versa. However, keep 
in mind that if the Federated Control Plane gets down, the already deployed applications will 
continue to work, but we won’t be able to federate them or check the applications’ desired 
states from a single point.  

https://aaltodoc.aalto.fi/handle/123456789/110500


27 

Overall, Kubernetes Cluster Federation provides ‘ease of configuration to the desired state’. 
From a single group of APIs, the deployer can make sure that a ReplicaSet or Deployment is 
configured to execute a desired number of pods across multiple clusters, etc. Federation also 
complements the high-availability feature of multi-cluster deployment with ease of 
management feature since Federation facilitates the coordination of clusters running the same 
application across different geographical regions and cloud providers [42].  

 
3.2.2 Cluster Federation Caveats 
 
However, nothing comes with only advantages. There are many good reasons to use 
Kubernetes Cluster Federation as described in the previous sections, but there are also several 
things to consider [42]: 
 

• Higher Network Bandwidth and Associated Costs: The Federation Manager monitors 
all the member clusters to make sure that they stick to the desired current state. In most 
cases, we will be running our clusters in multiple regions or possibly different cloud 
providers, which can substantially increase the networking costs. In many cases, 
conventional approaches to Cluster Federation (e.g., native cluster management found 
in most public cloud platforms) may be much less costly. 
 

• Limited Cross-Cluster Isolation: As previously described, a single Federation Manager is 
responsible for the configuration and deployment of applications across multiple 
clusters. Thus, if a bug appears in the control plane, it has the potential to affect all the 
clusters.  

 

• Lack of Maturity in Current Federation Projects: Most of the Cluster Federation 
projects are recent and do not support all resources. Most of the projects are active in 
development process as we will discover in the next chapter.  Moreover, Cluster 
Federation tools generally do not provide their own security mechanisms, thus most 
security solutions must be custom integrated. Another missing feature of Cluster 
Federation tools that we will focus on in our design & implementation section is their 
lack of support for creating a hybrid-environment with on-premises and cloud settings 
(e.g., central cluster in the cloud and the member cluster federated on a local machine). 
We will create such an environment for our implementation in the upcoming chapters. 

 
3.3 Other Alternatives 
 
Kubernetes Cluster Federation is not the only means to manage multiple Kubernetes clusters. 
There are two other well established strategies that companies choose to use: the Cluster API, 
currently a Kubernetes sub-project, and Google Anthos, a Kubernetes solution offered by 
Google [9]. These are not particularly used for Cluster Federation, however, they are widely 
used for Cluster Management.  
 

https://unofficial-kubernetes.readthedocs.io/en/latest/concepts/cluster-administration/federation/
https://unofficial-kubernetes.readthedocs.io/en/latest/concepts/cluster-administration/federation/
https://cloud.google.com/anthos/docs/concepts/overview
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3.3.1 Cluster API 
 
Cluster API [43] is a Kubernetes Open-Source project that aims to help cluster operators 
simplify cluster lifecycle management. It hopes to answer the question of: “what if we were to 
use Kubernetes itself to manage Kubernetes?”. As we know, Kubernetes provides declarative 
APIs for managing workloads. What if we were able to create declarative APIs for managing 
cluster lifecycle, and that’s what the Cluster API does. Cluster API provides Kubernetes style 
APIs and patterns (declarative APIs) that allow a cluster operator/administrator to 
declaratively define what a cluster should look like and then have Cluster API reconcile that 
declarative definition. Kubeadm is a crucial tool used by Cluster API to reuse and integrate 
existing ecosystem components rather than recreating them from scratch. Cluster API mostly 
serves to scale up and down existing workload clusters, unlike KubeFed tool which aims to 
federate configurations across member clusters. Cluster API aims to facilitate the creation and 
replication of node infrastructure across clusters whereas KubeFed aims to help with the 
replication of Kubernetes resources such as deployments and services across clusters. Cluster 
API has two types of clusters: a Management Cluster and a Workload Cluster. The 
Management Cluster is responsible for managing the lifecycle of the Workload Clusters just 
like how a single cluster is responsible for managing the lifecycle of its nodes. Through Cluster 
API, we can check the lifecycles of nodes in multiple workload clusters from a single 
management point. 
 
 

 
Figure 3.3: Cluster API Components 

 
3.3.2 Other Tools Offered by Cloud Providers 
 
There are some other Cluster Management tools provided by some of the biggest Cloud 
Providers. Some of these tools only work within their own cloud provider and not across 
different providers, but most of them offer cross-platform features. Some of these tools are 

https://cluster-api.sigs.k8s.io/
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Google Anthos, Red Hat’s OpenShift, AWS outposts and Azure Arc. Among them, Google 
Anthos is the most flexible and mature cluster management tool, however, it is not a Cluster 
Federation tool. It helps application deployers view all the managed clusters from a single 
point called Anthos. Most of the Cluster families (e.g., EKS, GKE, VMware, OpenShift) are 
supported by Google Anthos. Google Anthos allows us to attach agreed upon third party 
clusters to our fleet and lets us view our existing third-party clusters along with our Anthos 
clusters. From a single point of management (e.g., UI with a Dashboard), Anthos provides a 
centralized configuration control with Anthos Config Management and Microservice 
architecture management through Anthos Service Mesh [44]. Below are the conformant 
Kubernetes clusters that we can add to our management using Anthos: 
 

 
Figure 3.4: Conformant Kubernetes Clusters we can add to Anthos Management 

 
As mentioned before, Google Anthos is not a Federation tool where we select one of the 
clusters as the host-cluster and the others as member clusters. Resources are not 
automatically propagated to a member cluster through a host-cluster. Rather, Anthos is an 
enterprise solution that helps us configure all our registered clusters without needing to leave 
its platform. Anthos Config Management offers many advantages since it seamlessly 
synchronizes configurations and policies across various clusters. Below are some of the 
important features and advantages that Google Anthos brings:  
 

• Simplified Management of Clusters: From a simple platform, we are able to manage 
(e.g., deploy configurations, policies, etc.) across clusters from different environments. 
  
• Consistent Configurations and Policy Management: Anthos provides an auditable 
version control system to manage and keep track of all the configurations of our clusters. 

 

• Scalable across Environments: Centralizing the configuration and management of 
multiple clusters from different environments using a single platform, Anthos provides 
automated, scalable and resilient ways to manage complex systems.  

 

• Secure and compliant: User can define a single set of policies and can be assured that 
the security policies will be consistently applied across all the environments registered to 
Anthos. Moreover, Anthos Config Management continuously monitors the states of the 
clusters and make sure that the policies correspond to the application deployer’s desired 
policies.   

 

https://cloud.google.com/anthos/clusters/docs/attached/how-to/attach-kubernetes-clusters
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Google Anthos is a perfect tool to manage any type of cluster in Figure 3.4 through a single 
platform. We can also see that Anthos is a strong production ready tool compared to KubeFed, 
which is still in development. However, Anthos doesn’t perform “Cluster Federation” in the 
sense that regular federation projects like KubeFed does, and it doesn’t support all cluster 
types and Kubernetes versions. For simple cluster Federation solutions, KubeFed may have 
more advantages since it is only designed for resource federation, and it is environment 
agnostic. Moreover, it is much easier to set up than Anthos.  However, if we need a more 
robust solution that considers all security issues and requires a platform to watch all the 
configurations of multiple clusters from different environments, Anthos would be a much 
better choice. We need to consider the needs of our solution and choose an appropriate tool 
accordingly.  

 
3.4 Summary 
 
In this chapter, we have talked about the concepts that this thesis will focus on: Kubernetes 
Multi-Cluster deployment and Kubernetes Cluster Federation.  We defined what Multi-Cluster 
deployment refers to and some of its benefits such as: high availability and performance, 
tenant isolation, fighting failover, avoiding vendor lock-in, scaling applications beyond a single 
cluster’s limits, etc. We then provided different architectures for Multi-Cluster Kubernetes 
based on different use-cases. We also mentioned certain drawbacks of multi-cluster 
deployment such as complexity of operation and maintenance compared to a single cluster 
scenario. We then introduced the main concept of our thesis: Kubernetes Cluster Federation 
and how it provides ease of management for multi-cluster settings through a single set of API 
points. However, most of the cluster federation tools are still in development process and 
have certain important caveats that need to be considered as well. In the next section, we will 
introduce certain Federation Projects, putting our emphasis on a particular one called 
“KubeFed”.  
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Chapter 4 
 
Cluster Federation Projects 
 
In the previous chapter, we have introduced the concept of Multi-Cluster Kubernetes and how 
it is used in production. We provided the most commonly used multi-cluster architectures and 
their benefits compared to a single cluster setting. We have also briefly mentioned the 
limitations and drawbacks of multi-cluster Kubernetes and how Kubernetes Cluster Federation 
may help mitigate such drawbacks. We gave a sample diagram showing how Cluster 
Federation generally works in Kubernetes and also provided its benefits together with its 
limitations. We have also offered a small section on Cluster Federation alternatives provided 
by the major cloud providers. In this chapter, we will talk more in detail about the current 
cluster federation tools, particularly emphasizing on the KubeFed project, which is the heart 
and soul of our thesis’s design and implementation. 

 
4.1 KubeFed Project (Version 2) 
 
KubeFed is the official Kubernetes Cluster Federation implementation built by a Kubernetes 
Special Interest Group (SIG) [45]. KubeFed enables users to coordinate the configurations of 
several Kubernetes clusters from inside a Host cluster through a single set of APIs. In most 
cases, KubeFed and the Kubernetes Cluster Federation concept are used interchangeably. In 
the next section, we will provide a detailed overview of KubeFed and its many benefits. 

 
4.1.1 KubeFed Detailed Overview 
 
KubeFed helps us synchronize resources from a central ‘Host Cluster’ to the ‘Federated 
Clusters’ that can be hosted in any regions and/or cloud providers, a property that a vanilla 
multi-cluster Kubernetes deployment lacks. This also corresponds to the term frequently used 
in the project: “propagation”. It corresponds to distributing resources from the host cluster to 
all the federated member clusters. A single Configuration File (YAML) is created and executed 
in the Host cluster, which propagates to all, or selected member clusters based on the 
configuration of the YAML file. This means that the KubeFed Host Cluster allows the app 
deployer to deploy applications across multiple clusters through a single set of API points. 

 There are two types of clusters in KubeFed:  

https://github.com/kubernetes-sigs/kubefed
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• Host Cluster: Cluster that is responsible for exposing the KubeFed API and run the 
Federation Control Plane to federate applications across member clusters. A host cluster 
can also be a member of its own. We schedule federated resources in the Host Cluster 
and see these resources automatically deployed as regular resources in the Member 
Clusters. 
 

• Member Cluster: Cluster that is registered through the KubeFed API. Member clusters 
are federated by the application deployer through the Host Cluster. When we schedule 
federated resources in the Host Cluster, the resources are automatically deployed in the 
Member Clusters. 

 
 

 
Figure 4.1: List of Federated Clusters Observed from Host Cluster 

 
The Host Cluster includes two crucial components called KubeFed API and KubeFed Controller 
Manager. These are the building blocks for the KubeFed. When KubeFed is installed to the 
Host-Cluster, these two components are automatically deployed as pods in a namespace of 
our preference. Refer to Figure 4.1 where all KubeFed controller manager and API servers are 
deployed as pods in host-cluster’s “kube-federation-system” namespace that we created: 
 

• KubeFed API Server: The KubeFed API Server is exposed by the host cluster. The 
KubeFed Controller Manager uses the API server to communicate with other clusters. 
This makes the KubeFed API server quite similar to the Kubernetes API server in that, the 
former helps the KubeFed controller manager manage and coordinate the member 
clusters; the latter helps the Kubernetes control manager to query, create, delete 
Kubernetes resources [36]. 
 

• KubeFed Controller Manager: KubeFed Controller Manager is very similar to the 
Kubernetes Controller Manager in that Kubernetes Controller Manager constantly 
monitors the state of pods, deployments, nodes within a single cluster whereas the 
KubeFed Controller manager monitors the state of all the federated clusters to preserve 
the desired state of the member clusters.  In order to synchronize the state of all the 
Federated resources with those deployed in the member clusters, the KubeFed 
Controller Manager uses a push reconciler strategy [36]. 
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Figure 4.2: KubeFed components automatically deployed as Kubernetes Pods 

 
Moreover, KubeFed uses two kinds of configuration information as mentioned in [45]: 
 

• Cluster Configuration: The member clusters that we wish KubeFed to target [45]. This 
basically includes the register information required for the KubeFed Control Plane to add 
member clusters. 
 

• Type Configuration: To define the types of APIs to be handled by KubeFed [45]. Each 
Type Configuration is a Custom Resource Definition (CRD) object that includes three 
configuration components: templates, placement, overrides. Below we will describe 
these components as they are important for our design & implementation.  

 

Coming back to the concept of propagation, corresponding to the mechanism for distributing 
resources to Federated Member clusters, there are three main components of resource 
propagation from a host cluster to the member clusters. These components reside in a 
configuration file (YAML) of a federated resource. The configuration file containing these 
components is applied within the Host-Cluster as a FederatedDeployment, FederatedService, 
etc., and they are deployed as regular Deployments or Services in the member clusters: 
 

• Templates: Similar to the basic Kubernetes configuration files in YAML, the template 
describes basic information of the resource to be federated among the member clusters 
(e.g., Deployment, Service, DaemonSet) [45]. The template may include the image of the 
deployed container, env. variables and the number of instances [46]. Template needs to 
include all the information necessary to create the deployment. 
 

• Placement: The ‘Placement’ section of the configuration file includes the federated 
member clusters that will contain the deployed resources. Not every federated cluster 
needs to include the deployed federated resources. The application developer may 
choose to opt out certain member clusters [46]. 

 

• Overrides: Override section of the configuration file is responsible for overriding the 
features of the resources in the original template to match certain specific criteria of a 
member cluster. The overridden conditions can be the number of replicas, secret-keys, 
etc.  

https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed
https://www.sobyte.net/post/2022-03/kuberentes-federation/
https://www.sobyte.net/post/2022-03/kuberentes-federation/
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Figure 4.3: Sample KubeFed Template Diagram 

 
Below is a comparison between a regular Nginx deployment and the Federated version of the 
same Nginx deployment: 
 

 

 
Figure 4.4: Conversion of Deployment resource into Federated Deployment 

 
The first thing that we do in KubeFed is to create a Federated Namespace resource in the Host 
Cluster. This Federated Namespace is just a regular namespace that will be created in all the 
member clusters, and whenever the host cluster creates federated resources in this 
namespace, they will be deployed in the member clusters as well. The right-hand side of the 
Figure 4.4 is an example federated resource that we create in the federated namespace of the 
host cluster, which will force the deployment of this resource among the same federated 
namespace of the member clusters. Below, we will give more detail on how this all works.  
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In order to create regular Nginx Deployments in member clusters (the deployment 
configuration on the left-hand side of Figure 4.4), the host cluster will deploy a 
FederatedDeployment configuration as can be seen on the right hand-side of Figure 4.4. This 
FederatedDeployment of Nginx, in fact, corresponds to a regular Nginx deployment on the left-
hand side. Moreover, this Federated Nginx Deployment is deployed in the 
FederatedNamespace of the Host Cluster (a namespace that appears in both the host cluster 
and all the member clusters where all the federated resources are created). What we see 
deployed on the member clusters is the regular Nginx deployment on the left-hand side of 
Figure 4.4. The FederatedDeployment configuration file is for the host cluster to give certain 
specifics to the deployment. We deploy the FederatedDeployment on the right-hand side of 
figure 4.4 in the host cluster, and this will automatically create regular Deployments on the 
left-hand side of figure 4.4 in the member clusters. Unless the host cluster is also federating 
itself (namely the host cluster is a member cluster of itself as well), the deployments will not 
be created in the host cluster; the FederatedDeployment would only propagate deployments 
to the member clusters. Notice the underlined sections: placement, template, and overrides. 
A few things are happening in this configuration file: 

 

• Placement: Under the placement field, we are selecting all the member clusters for the 
propagation of this particular Nginx deployment. By leaving the “matchLabels” section 
empty, we are choosing all the member clusters. 
 

• Template: The template section is just the information required for the Nginx 
deployment. Notice that this section (L.10 – L.21) is identical to the regular Nginx 
deployment on the left-hand side (L.5 – L.16). 

 

• Overrides: Remember that this section corresponds to overriding certain requirements 
for the deployment. In this case, we are only changing the deployment for the “child-
kubefed-cluster-1” member cluster by overriding its number of Nginx pod replicas to 4.   

 

The final three components are the building blocks for higher-level APIs: 
 

• Status: Describes the status of the resources that are distributed across the federated 
member clusters. 
  
• Policy: Describes the subset of member clusters that can include the federated 
resources. 

 

• Scheduling: Describes how the workloads are distributed across the federated member 
clusters.  

 

The diagram below provides a big picture of how all the KubeFed components function 
together [45]:  

 
 

https://github.com/kubernetes-sigs/kubefed
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Figure 4.5: Main KubeFed Components [45] 

 
The advantages and caveats mentioned in the Cluster Federation chapter applies to KubeFed 
as well. Refer to the previous chapter for the general benefits and drawbacks of KubeFed. In 
the next section, we will talk about some of the disadvantages specific to KubeFed that we 
encountered during our own experiments.  

 
4.1.2 KubeFed Caveats 
 
We have previously mentioned that the host cluster in KubeFed monitors all the member 
clusters to make sure that they are all in the desired states. Running these multiple clusters in 
different cloud providers or regions increase the networking costs dramatically. Thus, 
increasing the number of clusters in different regions would also increase the cost of 
communication between the host cluster and member clusters [47]. 
 

Another interesting limitation in KubeFed is its lack of automatic resource allocation 
among member clusters. As of now, KubeFed only allows the selection of member clusters 
manually to deploy the federated resources (e.g., placement section of the federated 
configuration files). We manually give our selection of member clusters for particular 
resources, and they are deployed in the member clusters. KubeFed does not really support 
automated policy-based scheduling. The host cluster basically propagates resources to the 
member clusters without checking in advance whether the target clusters actually have the 
necessary resources (e.g., storage, ram, etc.) left to host these federated resources. This is a 
big drawback that causes inefficient use of resources, thus KubeFed is not ready to scale to 
handle thousands of clusters expected in most multi-cluster use-cases (e.g., fog computing). 

https://github.com/kubernetes-sigs/kubefed
https://people.wikimedia.org/%7Ejayme/k8s-docs/v1.16/docs/concepts/cluster-administration/federation/
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We conducted a small test on GCP using free credits. We created a host cluster with KubeFed 
and two member clusters each with a master node together with two worker nodes. One of 
the member clusters is created with nodes with higher CPU and RAM compared to the other 
cluster. We observed that the cluster with low resources was over-allocated with respect to its 
nodes’ total CPU, and the cluster with higher resources was under-allocated. This happened 
because KubeFed does not check the cluster’s available resources before deploying pods. It 
does not compare the member clusters’ resource status before distributing pods among them. 
The scheduling and distribution of pods among clusters are purely manual.  
 

Another issue with KubeFed that is discussed in detail in the work of Saba Feroz 
Memon from Aalto University [36] is KubeFed’s single point of failure. We previously discuess 
how the federation of KubeFed works. We have a host cluster federating resources across the 
member clusters. All the Federation control plane (e.g., Federation Controller Manager pods 
and API webhooks in Figure 4.2) are deployed in the host cluster. If the host cluster fails, the 
federated resources that have already been deployed in the member clusters will continue 
exist with no issue, but they will no longer be federated since all the federation controller 
manager pods lived in the failed host cluster. This presents a single point of failure in KubeFed.  

 

In the next sections, we will talk about some other Federation Projects that are not as 
popular as KubeFed. Moreover, some of these projects are no longer in use. 

 
4.2 ClusterMesh Cilium 
 
Cilium is a networking tool that offers network connectivity and load balancing between 
applications running on Kubernetes containers; ClusterMesh is an extension of Cilium that 
offers pod IP routing, service discovery, network policy enforcement and other networking 
plugins between multiple clusters [48]. ClusterMesh is essentially the multi-cluster 
implementation of Cilium. Clusters in a ClusterMesh have all their own etcd servers 
responsible for keeping track of cluster states and talking with other clusters through their 
proxies. The official documentation of ClusterMesh Cilium [49] states that the greatest benefit 
offered by ClusterMesh is high availability of Clusters. The deployed services on one cluster can 
be replicated onto other clusters belonging to different regions. When one of the clusters fails, 
the requests can be forwarded to the other replica. The other benefit stated in the official 
document is that multiple tenants can be provided shared services through ClusterMesh. 
Finally, ClusterMesh can facilitate the migration of workloads from one Cloud provider to 
another by splitting stateless and stateful services across different clusters. However, 
ClusterMesh is not as flexible as KubeFed since it requires Cilium-managed etcd for the 
creation of certificates and management of compaction. Moreover, ClusterMesh needs Cilium 
as its “Container Network Interface” and it is more challenging to set up as opposed to other 
Container Network Interfaces [50]. 

 
 

https://aaltodoc.aalto.fi/handle/123456789/110500
https://docs.cilium.io/en/stable/intro/
https://cilium.io/blog/2019/03/12/clustermesh/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
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4.3 Network Service Mesh 
 
There are certain limitations to Kubernetes networking. K8s networking cannot provide 
advanced L2/L3 network features and cannot meet some of the dynamic reuqirements of 
pods; most importantly, it lacks support for cross-cluster, multi-cloud and hybrid-cloud 
connectivity. These are not issues encountered by an every- day Kubernetes users but may as 
well become limitations for big projects. Kubernetes networking features can’t quite meet the 
needs of Network Function Virtualization. Network Service Mesh (NSM) is a Cloud Native 
Foundation project that offers sophisticated L2/L3 networking capabilities for Kubernetes 
applications. Network Service Mesh does not interact with the Kubernetes Container 
Networking Interface; rather, it is a completely independent mechanism that comprises of 
many components that may be deployed inside or outside of a Kubernetes cluster. It is a multi-
cloud/hybrid-cloud network solution that is native to the cloud. It is a network service 
providing networking functionalities (e.g., routers, firewalls, VPN gateways, etc.) providing 
features at L2/L3 layers. Network Service Mesh offers L2/L3 connectivity (e.g., VPN, firewall) 
on applications running in Kubernetes clusters [51]. Most of the advanced network features 
that Network Service Mesh offers are not provided by default Kubernetes Container 
Networking Interface plugins. It essentially aims to offer holistic networking features to 
Kubernetes clusters. The problem is that Network Service Mesh does not provide federation or 
orchestration features out of the box. It is mostly restricted to networking capabilities only.  
 
4.4 Submariner 
 
Kubernetes deployments include network virtualization allowing containers running on 
multiple nodes within the same cluster to communicate with each other. However, containers 
running in different Kubernetes clusters require additional resources (e.g., NodePorts, Ingress 
controllers). Submariner is a Cloud Computing Foundation Sandbox project aiming to connect 
overlay networks of different Kubernetes clusters. It essentially provides a secure and fast 
connectivity between different Kubernetes clusters through network routes and tunnels. This 
allows network communications among applications running on different clusters without us 
needing to create NodePorts, ingress controllers or load balancers [52]. It creates the 
necessary tunnels and routes needed to enable containers from different clusters to 
communicate directly. The most important benefits of Submariner are its disaster recovery, 
high availability and fault tolerance through the inter-communication feature between 
pods/services running on multiple clusters across on-premises and cloud environments. 
Submariner’s architecture consists of several components: a Broker, Gateway Engine, Service 
Discovery, Globalnet Controller, Network Plugin Syncer and Route Agent [52].  

https://networkservicemesh.io/
https://submariner.io/getting-started/architecture/
https://submariner.io/getting-started/architecture/
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Again, Submariner is more of a holistic networking service for Kubernetes rather than a 
seamless Cluster Federation tool. Moreover, it is not quite easy to set up Submariner as it may 
not be compatible with all Kubernetes plug-ins, requiring additional configurations. 
 
4.5 Consul 
 
Consul is a service mesh aiming to provide communications between microservices [36, 53]. 
The main features that Consul offers are service discovery, health checks for cluster health and 
encrypted traffic through TLS and support for multiple data centers. It uses its own key-value 
store for storing cluster data. Similar to KubeFed, Consul also offers Federation features 
through Consul Federation [54]. It can be seen that Consul Federation has more support and 
offers a more resilient Federation solution compared to KubeFed; however, it requires more 
configurations to have a working set up. In KubeFed, we install all the requirements on the 
host-cluster and do not involve the member clusters in the initial setup at all. On the other 
hand, with Consul, we have to install the tools and dependencies on each “secondary cluster” 
in the federation as well. In addition to the primary cluster’s (e.g., host cluster in KubeFed) 
config file, every secondary cluster (e.g., member cluster in KubeFed) requires a separate Helm 
Config file as well since they have different settings. One can observe that Consul requires a 
more intricate setup process, and the updates in clusters may not be automatic. However, we 
should note that Consul provides a better documentation than KubeFed. It also offers a UI to 
observe the federated clusters in one dashboard. The reason we chose to work with KubeFed 
in our thesis is that KubeFed is the precursor of Kubernetes Federation projects, and it doesn’t 
use any third-party tools for network connectivity within Kubernetes. It relies solely on 
Kubernetes Container Network Interface and other native Kubernetes resources.  
 
4.6 Shipper 
 
Shipper is a now discontinued project that has a lot of similar features to KubeFed. Like 
KubeFed, Shipper also has a management cluster and application clusters. The management 
cluster is where we install and run Shipper. It contains all the cluster objects and secrets 
necessary to connect to the application clusters [55, 36]. We deploy the Shipper tool only on 
the management cluster and not on the application clusters. The application clusters are 
where we Shipper deploys resources. Unlike KubeFed, Shipper focuses on disaster recovery 
and rollback strategies rather than high availability and decreased latency. Shipper in the 
management cluster keeps track of all the rollout steps and facilitates the process of rolling 
back or aborting a deployment. It also allows the application deployers to override the rollout 
strategy used for each application cluster [36]. If a problem occurs in an application cluster, 

https://aaltodoc.aalto.fi/handle/123456789/110500
https://www.consul.io/docs/connect
https://www.consul.io/docs/k8s/installation/multi-cluster/kubernetes
https://github.com/bookingcom/shipper
https://aaltodoc.aalto.fi/handle/123456789/110500
https://aaltodoc.aalto.fi/handle/123456789/110500
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the management cluster can revert to the previous deployment. Some of the limitations of 
Shipper are that it cannot use rollout strategies for certain Kubernetes resources such as 
StatefulSets, HorizontalPodAutoscalers and ReplicaSets [36]. Moreover, Shipper has a strong 
integration with Helm and takes Helm as input, limiting the application deployer’s use of 
regular K8s resources. Similar to KubeFed, Shipper has a single point of failure as well. If the 
management cluster fails, we won’t be able to store the application configurations or roll 
out/revert applications running on application clusters.  

 
4.7 Admiralty 
 
Admiralty is a recent Cluster Federation project that is the most similar to KubeFed among all 
the listed projects in this chapter [56, 57]. Just like KubeFed, Admiralty uses a set of 
Kubernetes controllers to propagate resources to multiple member clusters. Admiralty calls 
these clusters either “source cluster” or “target cluster”. Source clusters are similar to 
KubeFed’s host clusters in that they both propagate resources to the member or target 
clusters; namely, we schedule resources in the source clusters, and they are deployed in the 
target clusters of Admiralty. All the Admiralty tools are installed in the source cluster. The main 
difference between Admiralty and KubeFed comes from how they propagate resources to the 
source or member clusters. When the source cluster schedules a pod to be deployed in a 
target cluster, Admiralty creates a dummy sleeping pod. Admiralty then uses a mutating pod 
admission webhook to block the pod creation to start a new round of scheduling and makes a 
pod placement decision for the federation and deploys the pods in the target clusters [58, 36]. 
In Admiralty, there are some intricate pod scheduling processes that result in the creation of 
temporary pods before deploying the final pods on the source clusters.  It is a relatively new 
project with only five developers but has a potential to become the leading open-source 
Federation project.  
 
4.8 Summary 
 
In this chapter, we touched upon various Kubernetes Cluster Federation Projects, their 
advantages, and disadvantages. Some of the projects provide a “Network-Centric” approach, 
focusing on the networking and communication between containerized applications located in 
multiple clusters. They aim to establish a strong network connection between multiple 
clusters. Others provide a more “Kubernetes-Centric” approach focusing on changing the 
existing Kubernetes resources and configurations to create a centralized control plane that 
manages and orchestrates multiple clusters (e.g., KubeFed, Admiralty, Shipper). All these 
projects essentially aim to facilitate the management of a. multi-cluster Kubernetes setup 

https://aaltodoc.aalto.fi/handle/123456789/110500
https://github.com/admiraltyio/admiralty
https://admiralty.io/docs/quick_start/
https://admiralty.io/docs/concepts/scheduling/#proxy-pods
https://aaltodoc.aalto.fi/handle/123456789/110500
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where some of these clusters may be located on-premises and some located in the Cloud, etc. 
To create our solution in the next chapter, we chose to use KubeFed project since it is more 
popular and have a better community support. KubeFed has much more contributors than the 
other projects and it is actively being contributed [45]. 

https://github.com/kubernetes-sigs/kubefed
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Chapter 5 
 
Design and Implementation 
 
In the previous chapters, we talked about the main technologies that we will use in our 
solution. They included Kubernetes, Multi-Cluster architecture and Kubernetes Cluster 
Federation, focusing particularly on the KubeFed open-source project. We described how 
multi-cluster setup works and why it is used by most companies for application deployment. 
The same application can be deployed in several clusters located in different regions. This 
would improve high availability and provide low latency for the end-users. We also 
mentioned that all these clusters are managed separately and the application deployer would 
need to deploy the applications separately to each cluster.  We talked about how Cluster 
Federation helps solve this problem by selecting one of the clusters as the “host-cluster” and 
making the rest of the clusters the “member-clusters”. The application deployer can simply 
create resources in the host-cluster and these same resources (e.g., deployments, services, 
etc.) will be automatically propagated to the member clusters. Thus, the member clusters will 
have the same functionalities that the host-cluster has. We mentioned in the introduction 
section that our purpose in this thesis is to provide a solution where the functionalities 
located in a central cloud cluster will also reside in several local branches outside the central 
cloud platform. The local branches may consist of machines with low-medium processing 
units located in regions different from the central cloud’s cluster to improve availability and 
latency. These local branches are independent from the cloud provider where the central 
host cluster resides (e.g., they can be machines such as a user’s computer), and all the 
resources that are created in the central cloud cluster should be automatically propagated in 
the local branches that may be located all around the world. An example scenario may 
include small local machines with low computing power for IoT devices, and the end-users 
can make requests to these local machines, which in turn will execute the computing 
processes at the edge network. Then, these machines may return the results to the central 
cloud. Moreover, the resources running in the clusters of the local machines can be easily 
updated and propagated by the host cluster running in the central cloud based on specific 
needs. 

 

In this chapter, we will talk about how these concepts and several other techniques can 
be used to create a connectivity between a cluster running in a local machine and a host-
cluster running on a central cloud, and then automatically propagate the resources residing in 
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the central cloud cluster to the local on-premises cluster. Thus, the local machines all around 
the world can have the same functionalities and resources that the central cloud has. The 
first section will briefly go through the problem statement and overview the proposed POC 
solution. The second section will include the requirements that we need to fulfill to achieve 
the desired solution together with an in-depth overview of how our proposed POC fulfills 
these requirements. We will then close the chapter with a summary in the third section.   

 
5.1 Proposed Solution 
 
In the last chapter, we described that KubeFed tool can exactly provide the automatic 
propagation of resources from the host-cluster to the member clusters. The federation 
controller manager running in the host cluster can manage the deployment of resources on 
several member clusters. The application deployer connects with the host cluster and applies 
configuration information for applications to be deployed, and these applications/resources 
are automatically propagated to member clusters through the KubeFed controller manager. 
Thus, KubeFed Cluster Federation tool is a good starting point to automatically propagate the 
functionalities of a central host cluster residing in the Cloud to on-premises member clusters 
running on local machines. However, there are almost no examples out there creating a 
Cluster Federation setup between a Central Cloud cluster acting as the host cluster and on-
premises clusters running on local machines acting as the member clusters. This is the setup 
we wish to create as our POC solution. The member clusters are not a part of any cloud 
provider, but rather they are local machines such as a user’s computer. We wish to federate 
local clusters running in these local machines all around the world through a host cluster in a 
central cloud, and all these independent local clusters will have the same resources that the 
host cluster has. Moreover, the configurations of the propagated resources running on the 
local machines can be automatically reconfigured through the central host cluster based on 
specific needs of an application. End-users will be able to make their requests to the local 
machines possibly residing at the Edge Network in various locations instead of making their 
requests to the host-cluster residing in the central cloud. This will increase availability and 
decrease latency for the end-users while providing the same resources residing in the central 
host cluster to the local clusters.  
  

Our POC aims to create “Cluster Federation” between a cluster running on a local 
machine and a cluster running on a central cloud by first establishing connectivity between 
these two environments. Once the connectivity is established and the central cluster running 
on the cloud has access to the local cluster, we will deploy KubeFed Controller Managers into 
the central cluster and federate the local cluster running on a simple MacBook Pro. All the 
resource configurations deployed on the central “host-cluster” will be automatically 



44 

propagated to the local cluster outside the cloud platform; both environments will have the 
same resources and the same application accessible through two different URLs each.  

 

Our local machine in this POC solution will be a MacBook Pro (2017) running in Europe 
(Dublin) region, and the cluster running in this local machine will be a Minikube cluster that is 
only accessible locally by default. The central “host-cluster” running on the cloud will be a 
GKE cluster located in Google Cloud Platform’s Australia region. After successfully 
establishing connectivity between the Minikube cluster running locally on a MacBook Pro 
(EU) and the central GKE cluster running on GCP (AU), we will deploy resources on the host 
GKE cluster and see the resources automatically propagated to the local Minikube cluster. To 
establish a connectivity between the local Minikube cluster and the central GKE cluster, we 
need to expose the Minikube cluster in some way since the Minikube API server cannot be 
accessed from outside our local machine by default. This will be further discussed in the 
requirements section. 

The next section will provide a detailed overview of a list of requirements that need to 
be fulfilled together with how they are fulfilled to create a working POC solution. 

 
5.2 Requirements and Fulfillments 
 
In this section, we will list the requirements that need to be fulfilled in the order they are 
fulfilled. For each requirement, we will provide a detailed solution with example commands 
and screenshots.   

 
5.2.1 Creating a Local Minikube Cluster 
 
As mentioned previously, we are going to use our MacBook Pro (2017) as our local machine, 
and we need to create a local cluster in which to automatically deploy the resources of the 
central cluster running in the cloud. For this, we will use a local Minikube cluster. The 
Minikube cluster will represent our local branch and the central GKE cluster running in the 
Google Cloud Platform will propagate resources to this local Minikube cluster. We created 
the Minikube cluster with one master node and one worker node through our local terminal. 
We will deploy the workloads on the worker node (minikube-m02). Below is a screenshot 
showing our local setup: 
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Figure 5.1: Setting up Minikube on the Local Machine 

 
As the next requirement, we need to create certificates for our Minikube cluster and 
introduce these certificates to the Cloud Platform so that it has access to our local clusters. 
Moreover, since our local machine resides in Dublin, Europe, our Minikube cluster and all its 
nodes will be from Dublin, Europe as well. However, the central cluster running in GKE will be 
from Australia region; it will federate and configure the resources of our local Minikube 
cluster located in Europe. 
 
 

 
 

Figure 5.2: Central GKE cluster located in Australia Region 

 
To automatically propagate its resources to the local Minikube cluster, the central GKE cluster 
needs to connect to our local environment first, which brings us to the next section. 

 
5.2.2 Connectivity between Minikube and GKE  
 
To provide the central GKE cluster’s resources to the local Minikube cluster through KubeFed, 
we need to first establish a connectivity between the GKE cluster and the Minikube cluster. 
The solution aims to combine the KubeConfig files of both platforms to create a unique 
KubeConfig_merged file in Cloud Shell so that the Minikube cluster is visible to the Cloud 
platform. A Kubeconfig is a YAML file that contains the Kubernetes cluster's credentials, 
certificate, and secret token. If you are utilizing a managed Kubernetes cluster, the cluster 
administrator or a cloud platform may provide you with this configuration file. When you use 
kubectl, it connects to the Kubernetes cluster API using the information in the kubeconfig file. 
The default Kubeconfig file location has the path of “$HOME/.kube/config” [59]. A 
KubeConfig file contains the following information to connect to the Kubernetes clusters: 

1. certificate-authority-data: Cluster CA 

2. server: Cluster endpoint (IP/DNS of master node) 

3. name: Cluster name 

4. user: name of the user/service account. 

5. token: Secret token of the user/service account. 

Combining the KubeConfig files of both platforms to create the kubeconfig_merged file does 
not expose the Minikube for external connections, however it is a necessary step before 
exposing our local Minikube cluster. As an initial requirement, we need to create client-
certificate-data and client-key-data for our local Minikube cluster. Below are the KubeConfig 
files before and after the creation of these certificates. We get these outputs by running 

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
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“kubectl config view” in our local terminal for our Minikube cluster. As you can see, on the 
left-hand side, we have the ‘minikube’ cluster context in our local config file, however, we 
have no certificates. The “user” key of the config file has no value in it. We get the screenshot 
on the right-hand side after creating the certificates for the Minikube cluster. Since the 
certificates are long strings, they are redacted in the output. The KubeConfig file that we get 
on the right-hand side is the one that the Google Cloud Platform needs in order to connect to 
our local Minikube cluster: 
 
 

 
 
 

Figure 5.3: KubeConfig files on the Local Machine with and without Certificates 
 
Now we have the necessary certificates of our Minikube so that the central GKE cluster 
running on Google Cloud Platform can access it. We now need to upload the local kubeconfig 
file on the right-hand side of the figure 5.1 to the Google Cloud Shell. When we list the files 
on the Cloud Shell, we need to see the local “config” file in it: 
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Figure 5.4: Local Environment’s “kubeconfig” file uploaded to Cloud Shell 
 

We have successfully uploaded our local environment’s kubeconfig file to the Cloud Shell, 
and we can clearly see the certificates information of our Minikube cluster. This information 
is necessary for combining local kubeconfig file and GCP’s kubeconfig file to create a 
kubeconfig_merged file in the cloud platform, and this is the next step that we will perform. 
Running the command below will create a “kubeconfig_merged” file that will contain all the 
information of the local Minikube cluster and our central GKE cluster by combining their 
kubeconfig files: 

 
KUBECONFIG=<path to GKE kubeconfig file>:<path to the uploaded Minikube 
kubeconfig file> kubectl config view --flatten > ~/kubeconfig_merged 

 
 

 
Figure 5.5: Merged kubeconfig files in GCP 

 
Above is the newly merged kubeconfig file created by combining our local Minikube cluster’s 
kubeconfig and the central cloud cluster’s kubeconfig files. The GKE is now using this 
kubeconfig file as its cluster data. Notice that we have both the Minikube and the central GKE 
clusters (gke_kubefed-project-358322_australia-southeast1-a_gke-kubefed-host) in the 
configuration file. We can also see that GKE has access to our local Minikube cluster’s client-
certificate-data together with its client-key-data. We also see the certificate-authority-data of 
our central GKE cluster under the same configuration file. Consequently, our cloud platform 
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has access to the local Minikube cluster. When we run kubectx to get the cluster contexts in 
GCP, we should see our local Minikube cluster along with the central GKE cluster: 
 
 

 
 

Figure 5.6: GCP having access to our local Minikube as a cluster context 

 
Observe in Figure 5.6 that our central cloud can now see Minikube among its list of cluster 
contexts. This was a necessary step to establish a connectivity between our local Minikube 
cluster and the central GKE cluster. However, we still cannot access the API server of our local 
Minikube cluster to create/query its resources. Below is a screenshot showing that we are 
still unable to query the node information of our local Minikube from the central GKE cluster. 
Refer to figure 5.1 to see the running nodes of our Minikube cluster accessed from our local 
terminal:   
 
 

 
Figure 5.7: Unable to access the resources of local Minikube from GCP 

 
This brings us to the next requirement. 

 
5.2.3 Exposing Minikube API server 
 
Remember that kube-apiserver is one of the Control Plane components of Kubernetes. The 
API server of the control plane is responsible for exposing the Kubernetes API as the front-
end for application developers. When a user wishes to deploy new resources in a Kubernetes 
cluster, they communicate with the API server. By default, our local Minikube’s API server is 
not publicly exposed. Thus, we cannot propagate resources to our Minikube cluster from the 
central cloud as can be seen in Figure 5.7. There are three main ways to expose our local API 
server externally: acquiring a Public IP address, VPN or tunnelling.  
 

To make things simple, we will use the tunnelling approach to expose our local 
Minikube API server. We will use a software tunnelling tool called ngrok. ngrok is a globally 
distributed reverse-proxy that helps developers expose their applications running on any 
cloud, private network or local machine; we are interested in exposing the app running on 
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our local machine in this case, and ngrok is one of the fastest ways to expose our Minikube 
API server running on localhost [60]. We will install a ngrok agent with a specific auth token 
on our local machine. The ngrok agent will use this tunnel auth token to connect to the ngrok 
cloud and establish a connection to the ngrok service. Once we have an established 
connection, we will receive a public endpoint to which we can make external requests (e.g., 
requests to Minikube API server). This ngrok public endpoint will forward our external 
requests to our local service (e.g., local API server). When we make a request to this ngrok 
endpoint, the ngrok edge encrypts the request and forwards it to our locally running ngrok 
agent, and this ngrok agent is responsible for sending this request to our local upstream 
service. The communication between the ngrok edge and our local ngrok agent is secure and 
TLS encrypted. Similarly, the traffic from user to the ngrok edge and traffic from ngrok agent 
to our local service use the same encryption protocols [60].  

 

Before setting up ngrok tunnelling, we need our kubectl proxy to allow external traffic 
to our local cluster. We will allow all incoming requests to the Minikube API server: 

 
 

 
 

Figure 5.8: Exposing port=8001 for Minikube API server 
 
Now our API server is listening to the requests made locally on port 8001. The command in 
Figure 5.8 opened specifically the port 8001 since it is kube-proxy’s default port. The 
Minikube API server is now exposed locally via http://localhost:8001. As the next step, we 
need ngrok to act as a second proxy forwarding requests received from its generated public 
endpoint to  http://localhost:8001. When the central GKE cluster makes requests to the 
public ngrok endpoint, the requests will be automatically forwarded to 
http://localhost:8001.    

 We run the following command to create a ngrok public endpoint and forward all 
requests made to this public endpoint to our local API server of the Minikube: 
 

ngrok http --scheme=http 8001 
 

https://ngrok.com/
https://ngrok.com/
http://localhost:8001/
http://localhost:8001/
http://localhost:8001/
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Figure 5.9: ngrok URL forwarding requests to the Local API server of Minikube 
 

The URL that’s underlined in yellow in Figure 5.9 is the ngrok generated public endpoint that 
we will use to access our local Minikube’s API server. The blue-underlined address is the local 
API server to which all the requests made to the ngrok generated URL will be forwarded. 
 

We have now set up everything needed to publicly expose our Minikube API server so 
that the cloud platform can make queries to create resources in our local branch. We have to 
make a few changes in the merged kubeconfig file of GCP. Notice in Figure 5.5 that the API 
server of our Minikube is just a local address, which cannot be accessed externally by the 
cloud platform. For GKE to make successful requests to Minikube’s API server, we need to 
change this local address with the ngrok generated URL (underlined in yellow) in Figure 5.9: 

 
kubectl config set-cluster minikube --server='<ngrok generated url>' 
 

Changing the address of Minikube on Cloud Shell will automatically change the 
kubeconfig_merged file on the cloud: 
 
 

 
Figure 5.10: Minikube API server changed to ngrok URL in kubeconfig_merged 

 
We can now make queries to the local API server of our Minikube from the GCP. The central 
cloud’s kubeconfig_merged file will consider the unique ngrok generated URL to be the API 
server to which it will make queries for creating resources in Minikube. All the requests we 
make to the ngrok generated URL from the central cloud will be forwarded to our local 
Minikube API server (e.g., http://localhost:8001) by the ngrok agent. Below is a successful 
query to our local Minikube cluster from GCP contrary to Figure 5.7: 
 
 
 

http://localhost:8001/
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Figure 5.11: Successfully accessing to the resources of local Minikube from GCP 

 
As another example, we will create a namespace called “test-namespace” in our local 
Minikube cluster through GKE; namely we will use the connectivity that we’ve just 
established to the Minikube cluster from the GCP and make a “create a namespace” request 
to Minikube’s API server from our central cloud. As a result, we expect the namespace 
resource to be created in the Minikube when we check its namespaces locally: 

 

 
Figure 5.12: Creation of a test-namespace in Minikube cluster from GCP 

 
We can see from Figure 5.12 that we made a successful request to our Minikube’s API server 
from GCP to create a test-namespace. Below is a screenshot from our local terminal showing 
that the test-namespace is indeed created in our local Minikube cluster: 
 
 

 
Figure 5.13: test-namespace successfully created in the local Minikube Cluster 
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We successfully established a connectivity between our local Minikube cluster and the 
central GKE cluster. We can now query, create and update resources in our local Minikube 
cluster through GCP. We’re using ngrok generated URL to make our requests; and those 
requests are forwarded to the local API server. We can remove the “test-namespace” from 
our local Minikube cluster now that we showed the existence of connectivity.  
 

 Now that we have fulfilled the connectivity requirement, the next step is to install all 
the KubeFed tools on the central GKE cluster. After we install all the KubeFed tools, the GKE 
cluster will be the host-cluster for the cluster federation. Then, we will make our local 
Minikube a member cluster. We will deploy resources on the GKE host-cluster and see them 
automatically propagated to the local Minikube cluster. This will provide the same 
functionalities that our central cloud has to our local branch. 

 
5.2.4 Installing KubeFed on Central GKE Cluster 
 
As a next step, we will be deploying the KubeFed Controller Managers on our central GKE 
cluster residing in Australia. Remember from the previous chapter that KubeFed Controller 
Manager is very similar to Kubernetes Controller Manager, with the exception that 
Kubernetes Controller Manager constantly monitors the state of pods, deployments, and 
nodes within a single cluster, whereas KubeFed Controller Manager monitors the state of all 
federated clusters to maintain the desired state of the member clusters. The KubeFed 
Controller Manager utilizes a push reconciler technique in order to synchronize the status of 
all Federated resources with those deployed in the member clusters. In our case, KubeFed 
Controller Manager will be responsible for checking whether all the desired resources are 
automatically propagated to our local Minikube cluster.  
 

 Below, we are creating a namespace called “kube-federation-system” inside our 
central GKE cluster whose context name is “gke-kubefed-host” (we changed the context 
name to a simpler name with no underscore character as Kubefedctl doesn’t allow 
underscore in context names). All the KubeFed tools (e.g., KubeFed controller manager and 
webhook pods) will be deployed in this namespace. The commands used for creating the 
setup will be provided in the Appendix section at the end of our thesis. The output we get is 
as shown: 
 

 

 
Figure 5.14: Installing KubeFed in GCP 
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Figure 5.15: kubefed-controller-manager pods deployed to kube-federation-system Namespace 

 
We can see that a namespace called “kube-federation-system” is automatically created in our 
central GKE cluster; all the federation controller manager pods are deployed in this 
namespace, effectively turning our central GKE cluster residing in Australia region into a 
KubeFed host-cluster. Since we have all the components running in our central GKE cluster 
necessary for the federation of the local Minikube cluster in Europe, we can now add our 
local Minikube into the federation.  

 
 

 
 

Figure 5.16: Minikube joining the Federation and becoming a Member-Cluster 

 
From Figure 5.16, we see that Minikube has successfully joined the Federation. This will 
automatically create a “kube-federation-system” namespace in our local Minikube cluster as 
we can see on Figure 5.17 below. The creation of this namespace is just to confirm that 
Minikube is now a member cluster of our cluster federation. No resources will be deployed in 
this namespace. 
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Figure 5.17: Confirmation of Minikube’s Federation 
 

Since we want to deploy the same resources on both the local Minikube cluster and the 
central GKE host-cluster, we will make the GKE host-cluster a member of its own; namely, the 
host-cluster will federate itself, and the federated resources created in the GKE host-cluster 
will propagate to not only the local Minikube cluster, but also to the host-cluster itself. This 
way, we will have the same resources and applications running in both the local Minikube 
cluster and the GKE host-cluster.  
 

 We repeat the same process above for the GKE host-cluster and run the following 
command  kubectl get kubefedclusters -n kube-federation-system in Google Cloud 
Shell to see all the federated clusters in our setup. As expected, we have two federated 
clusters: local Minikube and GKE host-cluster: 
 
 

 
Figure 5.18: List of Federated Clusters 

 
We have successfully created the Federation environment and we can now create resources 
in the host-cluster and see them propagated to both our local Minikube cluster in Europe and 
the central GKE host-cluster itself. 

 
5.2.5 Deploying Resources on GKE Host-Cluster 
 
Now, we have a KubeFed host-cluster (central GKE cluster) and two member clusters: local 
Minikube and the central GKE cluster itself. We want the resources and applications created 
in the central GKE cluster located in Australia to be propagated to both member clusters. To 
achieve this, we need to create a “FederatedNamespace” object in our GKE host-cluster. 
Remember from the previous chapter on KubeFed that, all the federated resources we create 
in the host-cluster (e.g., FederatedDeployment, FederatedService, FederatedNamespace, 
etc.) are propagated as regular resources in the member clusters (e.g., Deployment, Service, 
Namespace, etc). Thus, the FederatedNamespace object that we will create in the GKE host-
cluster will be propagated to our local Minikube cluster as a regular namespace object. Below 
is the FederatedNamespace object called “federated-ns” we are creating in the GKE host-
cluster: 
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Figure 5.19: FederatedNamespace object created in the GKE host-cluster 

 
Deploying the FederatedNamespace object in Figure 5.19 inside the GKE host-cluster will 
automatically create a regular namespace object called “federated-ns” in all the member 
clusters. In particular, we will see the creation of a “federated-ns” namespace in our local 
Minikube cluster. All the resources created in this FederatedNamespace by the central GKE 
host-cluster will be propagated to the “federated-ns” namespace of all our member clusters 
(e.g., local Minikube cluster). Below is a screenshot showing the creation of a namespace 
called “federated-ns” inside our local Minikube. This namespace is automatically created in 
our local Minikube cluster since we ran the configuration (Figure 5.19) in the host GKE 
cluster: 
 
 

 
Figure 5.20: Namespace called “federated-ns” automatically created in Local Minikube 

 
When we deploy resources in the “federated-ns” namespace of our GKE host-cluster, those 
resources will be automatically propagated to the “federated-ns” namespace of the local 
Minikube cluster.   
 

 We will now create a simple FederatedDeployment object in the “federated-ns” 
namespace of our GKE-host cluster. This is a simple web application that outputs a “Hello” 
message. Once we deploy this application in the GKE host-cluster, we will see the creation of 
the exact same application in the “federated-ns” namespace of our member clusters (e.g., 
local Minikube cluster and the self-federated GKE host-cluster). The FederatedDeployment 
object will be propagated to the member clusters as regular Deployment objects. Below is 
the FederatedDeployment object we are deploying in the GKE host-cluster: 
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Figure 5.21: Google-Hello FederatedDeployment created in the GKE Host-Cluster 

 
We can observe the “fed-app” application pods being created in both the local Minikube 
cluster and the GKE host-cluster. The first figure below shows the creation of the “fed-app” 
pods in the GKE host-cluster (since it is a member cluster of its own) and the second figure 
shows the creation of the pods in our local Minikube cluster residing in Europe:  
 
 
 

 
Figure 5.22: Deployment pods automatically created in the GKE host-cluster 
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Figure 5.23: Deployment pods automatically created in our Local Minikube Cluster 

 
To expose our Deployment, we will attach a Service object to it. Again, we will create a 
FederatedService resource in the “federated-ns” namespace of our GKE-host cluster and 
consequently, the FederatedService resource will be created as a regular Service object in the 
“federated-ns” namespace of our member clusters (e.g., local Minikube cluster and the self-
federated GKE host-cluster). Below is our FederatedService resource. Notice that we’re 
exposing our service at port=5678, and our targetPort=8080 is the container port of our 
deployment in Figure 5.21. This FederatedService will be propagated to our member clusters 
as a regular Service object and be attached to the “fed-app” deployment residing in both the 
local Minikube and GKE host-cluster.  
 
 

 
Figure 5.24: Google-Hello FederatedService created in the GKE Host-Cluster 

 
Notice that in the selector field, we have “app: fed-app”. This is how we are attaching this 
service to the deployment in Figure 5.21. Deploying this FederatedService object in the GKE 
host-cluster will result in an automatic deployment of “fed-app-service” Service objects in 
the member clusters; these new Service objects will be attached to both member clusters’ 
“fed-app” deployments. These services are used for exposing the “fed-app” deployments. 
Moreover, we deployed the Service object with type=LoadBalancer as you can see from 
Figure 5.24. Since the Service is of type LoadBalancer, the Google Platform automatically 
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created a LoadBalancer from Australia region and assigned this automatically created 
LoadBalancer’s external IP address to the Service object created in the GKE host-cluster.  
 
 

 
 

Figure 5.25: Service object automatically created in the GKE host-cluster 

 
Notice in Figure 5.25 that the “fed-app-service” Service created in GKE host-cluster is 
assigned an external IP address. This IP address corresponds to the automatically created 
LoadBalancer in Australia region: 
 
 

 
 

Figure 5.26: Load-Balancer created for “fed-app-service” Service of GKE cluster 

 
We can now reach the “fed-app” application running in the GKE-host cluster using the 
external IP address specified by the LoadBalancer, and the port number of 5678 specified in 
the Service configuration file in Figure 5.24. Hitting the web app running at 35.201.5.41:5678, 
we get the following result: 
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Figure 5.27: Reaching the “fed-app” deployment running in GKE host-cluster (AU) 

 
We can successfully access the application deployed on the GKE host-cluster.  
 

 Since the local Minikube cluster is one of the two federated member clusters, the 
same Service object is also deployed in the “federated-ns” namespace of our local Minikube 
cluster. However, unlike the GKE host-cluster, there is no external IP address automatically 
assigned to our Minikube cluster’s Service object. Thus, we cannot access to the “fed-app” 
application deployed in local Minikube cluster (EU) externally:  
 
 
 

 
Figure 5.28: Service object automatically created in the local Minikube cluster (w/o public IP) 

 
This brings us to the next requirement: exposing the “fed-app-service” Service deployed to 
our local Minikube cluster. 

 
5.2.6 Exposing “fed-app-service” of Local Minikube 
 
We now have a KubeFed host-cluster (central GKE cluster) and two member clusters: local 
Minikube and the central GKE host-cluster itself. Since the GKE host-cluster is residing in 
Google Cloud Platform, its Service object was automatically assigned an external IP address 
through a Google Load Balancer located in Australia. We can thus access the “Google Hello” 
web-app deployed in the GKE host-cluster as can be seen from Figure 5.27.  
 

 However, the Federated Service object propagated to our local Minikube cluster is not 
assigned any external IP address. Hence, we cannot connect to the “Google Hello” web-app 
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deployed in the Minikube cluster as can be seen in Figure 5.28. To solve this problem, we 
need to expose the Federated Service object of our local Minikube cluster externally in some 
way. We will follow the same approach we had for externally exposing the Minikube API 
server, namely we will use a second ngrok agent in addition to the one we are using for 
exposing the API server. We will receive a second public endpoint to which we can make 
external requests (e.g., requests to the local “fed-app-service” Service object). This ngrok 
public endpoint will forward our external requests to our local service (e.g., local “fed-app-
service” Service). The external requests to this additional ngrok endpoint will be forwarded to 
our second ngrok agent responsible for sending the requests to our local upstream service. 
 

 Before setting up the second ngrok tunnelling for our “fed-app-service” resource, we 
need to do a small forwarding. Remember from our “fed-app-service” FederatedService 
configuration file in Figure 5.24 that our service is listening on port 5678. However, the target 
port=8080 (Figure 5.24) is the container port of the “fed-app” deployment (Figure 5.21) that 
we are interested in. More specifically, targetPort=8080 is the port on which our example 
application “fed-app” listens; it is the container port to which our Kubernetes Service “fed-
app-service” should forward requests. Hence, we need to forward all requests from the 
service port (5678) to the container port (8080): 
 

 

 
Figure 5.29: Forwarding requests from Service Port to Container Port 

We are now forwarding all requests from the service port (5678) to the container port of our 
“fed-app” deployment (8080) in Minikube. We can now reach our application locally via 
http://localhost:5678. Below is the same “fed-app” application we are accessing locally 
in our Minikube cluster. This is the same application we previously accessed in GKE host-
cluster using GCP Load Balancer (Figure 5.27).    

 

 
Figure 5.30: Reaching the “fed-app” deployment running locally in Minikube (EU) 

 
 

http://localhost:5678/
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Our Federated Service “fed-app-service” is now listening to the incoming local requests on 
port 5678. The Service object propagated to the member Minikube cluster is now exposed 
locally via http://localhost:5678. Similar to how we exposed our Minikube API server 
externally, we need to expose our “fed-app-service” resource residing in the local Minikube 
cluster externally as well. As mentioned previously, we will use a second ngrok tunnelling 
agent. ngrok will forward requests made to its generated public endpoint onto 
http://localhost:5678. When the end-users make requests to the public ngrok endpoint, 
the requests will be automatically forwarded to http://localhost:5678. 
 

 We run the following command to create a ngrok public endpoint and forward all 
requests made to this public endpoint onto our “fed-app-service” resource running locally at 
http://localhost:5678: 
 

ngrok http --scheme=http 5678 
 
 
 

 
Figure 5.31: ngrok URL forwarding requests to the Local Service of Minikube 

 
The URL that’s underlined in yellow above is the second ngrok generated public endpoint that 
we will use to access our “fed-app-service” resource running in our local Minikube cluster. 
The blue-underlined address is the local “fed-app-service” resource to which all the requests 
made to the ngrok generated URL will be forwarded. We can now access the “fed-app” 
application running in our local Minikube cluster externally: 
 
 

 
Figure 5.32: Reaching the “fed-app” deployment running in Local Minikube Externally 

 

http://localhost:5678/
http://localhost:5678/
http://localhost:5678/
http://localhost:5678/
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5.3 Summary 
 
In this chapter, we have successfully created a solution in which the functionalities and 
resources of a central cluster residing in the Cloud are automatically propagated to a local 
cluster living in an independent machine from a different region. These local clusters can 
reside in small computing machines all around the world and receive their configurations and 
resources from a central cluster. End-users can make their requests to the local machines 
located in closer branches and be provided the same services residing in the central cluster 
located further away from them. To achieve this, we used a MacBook Pro (2017) as our local 
machine and a Minikube cluster as the local cluster. They are located in Dublin, Europe. We 
used the Google Cloud Platform as our central Cloud and created a GKE cluster located in 
Australia. Before federating our local Minikube cluster from the central GKE cluster, we 
established a connectivity between the two environments. We created certificates for the 
Minikube and shared it with GKE, and then exposed our Minikube API server using ngrok 
tunnelling tool. ngrok forwarded the requests made to the generated URL onto our 
Minikube’s local API server. After having established connectivity, we started federating the 
Minikube cluster from the central GKE cluster using the KubeFed tool. We scheduled a simple 
deployment and a service in the GKE cluster and observed the successful propagation of the 
same resources into our member clusters (e.g., local Minikube cluster and the GKE cluster 
itself). GCP automatically created a Load Balancer in the Australian region for the federated 
service object deployed onto the GKE cluster, and we reached the web application using the 
Load Balancer’s IP. For our Minikube cluster, we used another ngrok agent to create an 
additional endpoint for the local service. ngrok forwarded the requests made to the 
generated URL onto our local service, and we exposed the same application running on the 
Minikube as well. At the end of our implementation, we had the same web application 
running on both our local Minikube cluster (EU) and the central GKE cluster (AU), both 
accessible externally.  
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Chapter 6 
 
Evaluation 
 
The preceding chapter covered the suggested solution together with the requirements that 
needed to be fulfilled for a working POC solution. We then described the components used to 
fulfill those requirements. In this chapter, we will evaluate the POC described in the previous 
chapter. We deployed the same application on a central GKE cluster in Australia and on a 
local Minikube cluster living on a machine located in Europe. For our initial evaluation, we will 
compare the latencies of these applications  

 
6.1 Latency 
 
In our solution, we are providing the same resources and functionalities of a central cluster to 
a local cluster residing in a different region. When the end-user wants to reach the 
application running on the central cluster, they will make their requests to the closest local 
machines near them. In our case, the central cluster is represented by a GKE cluster hosted in 
Google’s Australia region and our local cluster is a Minikube cluster running on a MacBook 
Pro (2017) machine located in Dublin. Remember from our design & implementation section 
that we are running the same deployment resource (fed-app) on both clusters. The 
containerized application is a simple “Google-Hello” web application in our case. Since the 
application hosted by our Minikube cluster is located in Europe, we are expecting to receive 
lower latency compared to the application hosted by the central GKE cluster in Australia. 
  

Our first experiment will consist of us making requests to both applications from our 
local machine in Dublin. We will check the latencies of our requests using Google Chrome’s 
Developer Tools. In particular, we will check the time it takes to receive the results of our 
requests through the “Network” section of the Developer tools. For our second test, we will 
use a third-party tool called “dotcom-tools” [72] to check the latencies of both web-servers 
from a European region other than ours. Below are the results of our first experiment: 
 
 
 
 
 

https://www.dotcom-tools.com/web-servers-test
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Figure 6.1: Latency of the central GKE cluster hosted in AU   

 
The figure above reflects the time it takes to get the contents of the web-app hosted in our 
central GKE cluster (AU). We are making the “GET” request from our own local machine in 
Dublin. Notice from figure 6.1 that the time it takes to get the contents of the web-app is 
approximately 375 ms. The high latency was expected since the central cluster is located in a 
completely different continent. Now, we will make the same experiment with the web 
application running on our local Minikube cluster:  
 
 

 
Figure 6.2: Latency of the Minikube cluster hosted in Dublin  

 
The figure above reflects the time it takes to get the contents of the web-app hosted in our 
local Minikube cluster (EU). We are making the “GET” request from our own local machine in 
Dublin and as expected the latency for getting the contents of the web-app is significantly 
lower than the central GKE cluster. The latency in this case is 74 ms.  
 

In our next experiment, we will use the “dotcom-tools” [72] and check the latencies of 
our applications from a London region. This tool makes several requests to a web-application 
in question from different points in that region and takes the average of all the latencies to 
return a final result. Below are the results of our second experiment: 

 
  

 
 

https://www.dotcom-tools.com/web-servers-test
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Figure 6.3: Latency of the central GKE Cluster hosted in AU from London 

 
 

 
Figure 6.4: Latency of the Local Minikube Cluster hosted in EU from London 

 
 
The average latency to the web-app hosted in the central GKE cluster (AU) from the London 
region is approximately 532 ms [Figure 6.3] and latency to the web-app hosted in the local 
Minikube cluster (EU-Dublin) is approximately 130 ms. The results conform to our previous 
experiment. 
 

These experiments show that we can propagate the resources and functionalities of 
our central Cloud cluster onto many local machines near the end-users and can expect a 
lower latency for the same application when the end-users make their requests to the local 
machines. Since these local machines are small computing processes, they can be numerous 
and located in large numbers. In such a scenario, there would always be a local machine with 
the central cluster’s resources near the end-user, which would result in lower latencies. We 
showed through our design & implementation together with the latency experiments that, in 
an ideal scenario where all our local machines are resilient to failures, located in large 
numbers in several regions and are able to successfully host the resources of the central 
cluster, we would be creating a highly available, low latency environment for the end-users. 
However, this is not the case. Our POC is not fully resilient as we will demonstrate in the next 
section.  
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6.2 Resiliency 
 
Our goal in this thesis was to create an environment where the local clusters living in small 
computing machines are connected to a central cluster and have the same resources and 
functionalities of the central cluster living in the Cloud through federation. We also wanted to 
show that when we access the same application running on the closer local cluster, we would 
get lower latencies, and we achieved our goal. We did not focus on the resiliency of the 
solution. Here we will show some of the issues that exist in a few of our components, and in 
the next chapter we will talk about potential future work that can help mitigate these issues. 

 
6.2.1 Disconnection of ngrok agents 
 
Remember from the sections 5.2.3 and 5.2.6 in Chapter 5 that we used ngrok tunnelling tool 
to expose our local Minikube cluster’s API server and “fed-app-service” resource respectively. 
We used two ngrok agents to create two public endpoints. These public endpoints forwarded 
all the requests made to our local Minikube cluster to the corresponding local addresses (e.g, 
local Minikube API server and the local service resource). However, if the ngrok tunnel 
connection drops and we reestablish the connection, the ngrok endpoint will change to 
another URL. The tunnel connection will continue; however, the external requests will fail. 
This is because we changed the server API address of our local Minikube in the 
“kubeconfig_merged” file with the previous ngrok endpoint [Figure 5.10]. However, this 
endpoint is no longer in use and there is a new ngrok endpoint assigned to the API server. 
Thus, the central cluster will no longer federate the local Minikube cluster unless the API 
server of the Minikube is changed with the new ngrok url in the “kubeconfig_merged” file of 
the central cluster. Below is an example diagram showing the change of ngrok endpoint for 
the Minikube API Server: 
 
 
 
 

 
Figure 6.5: Changed ngrok Endpoint for the Minikube API Server 
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The API Endpoint initially provided by the ngrok service no longer exists, and it is changed 
with a completely new URL. For the central GKE cluster to make successful queries to the 
Minikube API server, the old URL needs to be changed with the new endpoint in GKE’s 
“kubeconfig_merged”. Since this change is not propagated automatically, manual work may 
be required. Since this will prevent the central GKE cluster from making successful queries to 
our local Minikube’s API server, the Federation will be disrupted. The lack of automation for 
the replacement of our ngrok Endpoints is an issue in our solution. We will talk about 
potential solutions in the “Future Work” Chapter.  

 
6.2.2 Disconnection of the Central GKE Cluster 
 
For Cluster Federation, we are using the KubeFed Federation tool [45]. As we know, KubeFed 
consists of one host cluster and one or more member clusters. The host cluster schedules 
resources and they are automatically propagated to the member clusters. However, since all 
the KubeFed controller managers reside in the host cluster, if the host cluster fails, the 
member clusters will no longer be federated. We checked that the already deployed 
resources will continue to exist in the local Minikube cluster, but we will no longer be able to 
federate new resources across the member clusters using the central host cluster. This 
presents a single point of failure in our POC. We may have multiple Minikube clusters residing 
in different local machines. The end-users will continue to access the applications already 
deployed to the local clusters (e.g., fed-app), but the central host cluster residing in the Cloud 
will no longer be able to federate new resources across the member clusters. A potential 
solution to this problem will be discussed in the “Future Work” section. We will briefly discuss 
the solution offered by Saba Feroz Memon from Aalto University [36]. 

 
6.3 Security 

 
We are using ngrok tunnelling to expose the local API Sever of our Minikube cluster and also 
the local “fed-app-service” object deployed in Minikube. As mentioned in the previous 
chapter, when the end-user makes a request to this ngrok endpoint, the ngrok edge does 
encrypt the request and forwards it to our locally running ngrok agent, which then sends this 
request to our local upstream service. The entire communication between the ngrok edge 
and our local ngrok agent is secure and encrypted using the TLS protocol. Moreover, the 
traffic from user to the ngrok edge and traffic from ngrok agent to our locally running service 
use the same encryption protocols [60]. Thus, we can state that the ngrok tunnel used for 
externally exposing our local services are secure. However, to locally expose our API server, 
we ran  kubectl proxy –disable-filter true --address 0.0.0.0 . This causes our local 
API server to listen to all incoming requests without filtering. We followed this approach to 
facilitate the creation of our POC, however, this is a potential security issue. In a production 
use case, we need to whitelist only the required sources.  

 
 

https://aaltodoc.aalto.fi/handle/123456789/110500
https://ngrok.com/
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6.4 Summary 
 
In this chapter, we evaluated the implemented POC solution described in the previous 
section. We first evaluated the latency of our solution. We concluded that requests made to 
our local Minikube cluster significantly decreased the latency compared to those made to the 
central GKE cluster located in the Australian region. Through the “Design & Implementation” 
chapter and the “Latency” section of our “Evaluation” chapter, we showed that we can host 
the resources of a central Cloud cluster in the local clusters residing in small computing 
machines located all around the world. Thus, we can provide the same functionalities to the 
local clusters and also decrease the latency for the end-users. We then evaluated some of the 
requirements necessary to put our POC solution into production. We mentioned two 
resiliency issues that our solution currently has. One of them is the temporary endpoints 
assigned by ngrok to our local services. Since these addresses are not permanent, ngrok 
generates new endpoints each time there is disconnection, which may disrupt the federation 
and certain applications. We also mentioned KubeFed’s single point of failure that may 
disrupt the federation of member clusters. We then talked about the security of our POC. The 
external requests are all TLS encypted by ngrok, improving the security of our local services. 
However, our local API Server is not filtering any requests, which may prove to be 
problematic in production.  
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Chapter 7 
 
Future Work 
 
In this chapter, we will elaborate on the limitations and issues provided in the “Evaluation” 
chapter. We will talk about some of the limitations of our POC and try to provide possible 
approaches to tackle these limitations. We will also point out to the areas that require future 
work for a more resilient and production ready solution. 

 
7.1 Automating the Solution 
 
As demonstrated in the “Design & Implementation” Chapter, there are lots of moving 
connectivity parts in our solution. Most of the requirements build on top of each other and 
any connectivity issue may result in the failure of our POC solution. The implementation 
required manual entry of certain commands in particular environments (e.g., local terminal 
and Google Cloud Shell). Moreover, we manually changed certain configurations and forced 
some of the environments to use the changed configurations. All this requires delicate 
manual work where the order of actions is critical. Automating such a solution would have 
lots of benefits, however, it is no trivial task. Our current solution is using ngrok tunnelling, 
and the automation tool would need to establish the tunnel and use the generated endpoints 
in different platforms. For instance, the Minikube API Server’s endpoint would need to 
change automatically in the “kubeconfig” file of the central GKE cluster. Before that, local 
Minikube’s “kubeconfig” file would need to be uploaded in the central GKE cluster and 
automatically merged with the central cluster’s “kubeconfig” file. Automating the order of 
actions together with handling the connectivity failures may require an extensive future 
work. However, a successful implementation would bring our POC closer to being a   
production ready solution. 

 
7.2 Resiliency in KubeFed 
 
In KubeFed, the application deployer communicates with the host cluster for the propagation 
of federated resources among the member clusters. The host cluster ensures that the 
federated applications on the member clusters are in the desired state through the KubeFed 
Controller Manager pods. In our solution, we may have a central cluster living in the Cloud 
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and several member clusters living in small computing machines all around the world. As we 
discussed in the “Evaluation” chapter, the host cluster is a single point of failure. If the host 
cluster fails, the member clusters will continue to function as expected. All previously 
federated resources will continue to exist in the member clusters and serve the end-users. 
However, we would not be able to federate our member clusters any longer, namely we 
would not be able to automatically create resources in the member clusters from a single 
point (e.g. host cluster) or ensure that the deployed resources in the member clusters are in 
the desired state. This is an existing problem in the open-source KubeFed project. In a real-
world scenario, we may need multiple host clusters federating our member clusters. When 
one of the host clusters fails, another host cluster would continue from where the previous 
cluster left off and starts federating the member clusters, and if the new host cluster also 
fails, another host cluster would take its place and so on. This would bring resiliency to the 
federation component in our solution. There is a POC work that focuses on this particular 
issue. In their work, Saba Feroz Memon [36] describes this problem in detail and suggests a 
solution that relies on leader election mechanism. As a result, their work adopts a novel 
strategy by constructing active-passive redundant KubeFed host clusters to ensure resiliency 
in Kubernetes Federation administration [36]. Multiple host clusters are installed instead of a 
single host cluster, and one cluster is designated as the leader cluster and operates in the 
active mode, while the rest of the clusters function as follower clusters (e.g., passive). The 
leader cluster is similar to our central GKE host cluster, but in addition to its normal 
functionalities, it replicates all the configuration information of the federated applications 
onto the follower host clusters. When the leader host cluster fails, one of the follower 
clusters would become a candidate to turn into the leader cluster. Since all the resources 
were already replicated, the new leader cluster would be up-to-date and the federation could 
continue from where it left off. This approach would make the KubeFed component of our 
solution more resilient and provides high availability of our KubeFed host clusters [36].  

 
7.3 Resource Allocation in KubeFed 
 
If our solution goes into production, we will have thousands of local clusters living in small 
computing machines located all around the world, and these local clusters would act as the 
member clusters in the federation. In our POC, we had only two member clusters and one of 
them was the local Minikube cluster residing in MacBookPro (2017) (EU). Our goal is to have 
local clusters with the resources and functionalities of a central host cluster all around the 
world so that the latency of the end-users would be minimal. However, in its current form, 
this is not quite possible with KubeFed. One of the reasons is the lack of resiliency in KubeFed 
as explained in 7.2. Another one is due to KubeFed’s limited support for the automated 
policy-based scheduling. Currently, KubeFed allows application deployers to choose the 
clusters in which to manually host the federated resources. The problem with this is that 
KubeFed simply propagates federated applications to the member clusters without any prior 
checks on whether the member clusters have enough resources. We discussed that in our 
solution the member clusters are resided in small to medium computing machines, and in a 
real-world scenario, the local machines can be of any type. However, KubeFed treats all the 
member clusters as homogenous entities. Thus, KubeFed currently cannot scale to manage 

https://aaltodoc.aalto.fi/handle/123456789/110500
https://aaltodoc.aalto.fi/handle/123456789/110500
https://aaltodoc.aalto.fi/handle/123456789/110500
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hundreds or thousands of member clusters. A more intelligent scheduling scheme may be 
implemented in KubeFed to avoid any resource misplacement or wastage. Future work 
should focus on building a multi-cluster scheduling solution that assigns the deployments 
scheduled on the central host cluster onto one or more clusters from a specific set of 
member clusters that have enough available resources and capacity to match the 
deployment request made by the host cluster.  

 
7.4 Disconnection of API Server 
 
To build our POC, we used the simplest tool to expose our local services (e.g., local API Server 
and the local applications). We used ngrok tunneling tool to generate a public endpoint 
responsible for forwarding the requests to our local services. However, since these public 
endpoints are ephemeral, they are regenerated in case of disconnection. Thus, the requests 
made to the old ngrok public endpoints fail. To solve this issue, we manually changed the old 
URL with the new public endpoint in the “kubeconfig” file of our GKE host cluster. If this 
manual work can be replaced with some sort of automation as described in section 7.1, our 
solution would be more resilient. Other solutions may include static public endpoints 
assigned to our local services or the use of VPN instead of tunnelling.   

 
7.5 Summary 
 
In this chapter we talked about certain concepts and tools used in our POC that require 
future work for a production ready solution. Our POC’s aim was to show that we can provide 
the same resources and functionalities of a central cluster residing in the Cloud to a local 
cluster located in a computing machine from a different region through KubeFed tool. We 
also showed that end-users can make their requests to local clusters instead of the central 
cluster (as they have the same applications) to decrease latency. However, in a real-world use 
case, we will have thousands of local clusters living in different local machines from different 
regions. If our POC can be adapted to this scenario, our solution would provide many 
advantages, but there are certain parts that would require future work for our POC to 
become feasible in production. One of these requirements is improving KubeFed’s resiliency 
and resource scheduling logic. Without these requirements, KubeFed cannot be used in a 
production scenario. Another area that may require future work is the automation of the 
entire process. However, since there are lots of moving connectivity parts in the solution, this 
may prove to be challenging. Finally, we discussed using a static public IP address or VPN for 
exposing the local services running on local clusters.  
 
 
 
 
  
 



72 

 
 
 

 
Chapter 8 
 
Conclusion 
 
This research aimed to determine whether we could use a Cluster Federation tool to create a 
solution where the functionalities and resources of a central cluster in the Cloud are 
automatically propagated to local clusters residing in a smaller independent machine in a 
separate location.  
 

The research achieved this through: 
 

• Using a Kubernetes Cluster Federation tool called KubeFed 
 

• Creating a Minikube Cluster in a local machine (MacBook Pro) residing in Dublin 
 

• Externally exposing the Minikube API Server through tunnelling 
 

• Connecting the central GKE cluster located in the Australian region with the local 
Minikube 

 

• Installing all the KubeFed tools on the central GKE cluster 
 

• Federating the member clusters (e.g., local Minikube cluster) and scheduling 
federated resources in the member clusters through the central GKE cluster 

 

• Exposing the resources on the local Minikube Cluster 
 

• Comparing latencies of the same application residing both in the Minikube (EU) and 
the central GKE cluster (AU) 

 
We have shown that with a resilient implementation of such setup with thousands of local 
clusters all around the world, we can easily deploy the same resources automatically across 
the local clusters through a single central cluster in the Cloud. On top of providing the same 
resources and functionalities across many local clusters through a central control plane, this 
would decrease the latency for the end-users who can access the same resources from the 
closest local machine. However, improving the resiliency of the POC is no trivial task and is 
required for the solution to go in production. As mentioned in the previous chapter on 
“Future Work”, there are several areas that need further research and improvements. Most 
of these problems originate from KubeFed’s lack of maturity. Currently, the KubeFed project 
is still in development and requires an extensive work to improve its resiliency to support the 
federation of thousands of member clusters at the same time.  
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A1 Appendix 
 
In this appendix, we will provide the instructions necessary to create the setup we have in the 
“Design & Implementation” section (Chapter 5). The local cluster will be the Minikube Cluster 
and the central Cloud cluster will be the GKE cluster. To create the setup, one will need to 
install Minikube in their local machine; a GCP account and a GKE cluster in the GCP project.  

 
A1.1    Creating the Minikube and its Certificates 
 
Assuming we have successfully installed kubectl, docker and Minikube on our local Machine, 
we need to follow these steps in our local terminal: 
 
Deleting existing Minikube to avoid any conflict: 
 

minikube delete 
 
Starting a local Minikube cluster in our machine: 
 

minikube start 
 
Adding an additional worker node to our local cluster: 
 

minikube node add --worker 
 
Labelling the worker node so that the workloads are deployed there: 
 

Kubectl label node minikube-m02 nodeToDeploy=yes 
 
Resetting all the existing configurations and certificates to avoid any future conflict 
 

kubectl config unset users.minikube.client-key 
kubectl config unset users.minikube.client-certificate 
kubectl config unset clusters.minikube.certificate-authority 
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Creating new client certificates for the Minikube. This will change its kubeconfig 
 
kubectl config set users.minikube.client-certificate-data $(base64 -b 
0 ~/.minikube/profiles/minikube/client.crt) 
 

kubectl config set users.minikube.client-key-data $(base64 -b 0 
~/.minikube/profiles/minikube/client.key) 
 

kubectl config set clusters.minikube.insecure-skip-tls-verify true 

 
A1.2    Exposing the Minikube 
 
In this part, we will be exposing our local Minikube’s API server. The commands below are run 
in separate terminals. They should be kept alive during the entirety of this demo. 
 
On a separate terminal run the below command to expose port 8001 of Minikube API Server: 
 

kubectl proxy --disable-filter true --address 0.0.0.0 
 
On a separate terminal run the below command to create a ngrok endpoint and assign this 
endpoint to our local API Server to expose it externally. This step requires the installation of 
the ngrok tunnelling agent [ngrok installation]: 
 

ngrok http --scheme=http 8001 

 
A1.3    Google Cloud Console: Merging Config Files  
 
Before starting this section, we need to create a GKE cluster in the Australian region using GCP. 
We named this cluster “gke-kubefed-host”. This is the host cluster running in the central cloud. 
 
In this section, we create one global ‘kubeconfig_merged’ file in the gcloud Shell. This config 
file will contain both the Minikube and the gke-host-cluster contexts. Below are the steps that 
need to be followed in order. They are all executed in the Google Cloud Shell: 
 
Upload the CONFIG file of the local Minikube cluster to Google Cloud Shell: 
 

We need to upload our Minikube’s kubeconfig file to Google Cloud Shell. When uploading the 
local config file, look for the file located in ~/.kube/config and upload it to Cloud Shell. 
 
Remove the GCP’s own Kube config file to delete all the previous contexts and avoid 
conflicts 
 

rm .kube/config    
 

https://ngrok.com/download


80 

Create a new .kube/config file for the central GKE cluster itself. To do this, right click on the 
gke cluster’s name on the GKE dashboard and click the options next to the cluster name. 
Copy paste the line to the gcloud Shell. This will connect you to the central GKE cluster and 
create its own config file. The command would look like this:   
 

gcloud container clusters get-credentials gke-kubefed-host --region 
us-central1 --project vital-keep-357119      
 
Combine the Local Minikube’s KubeConfig file with our GKE kubeconfig file to create a final 
kubeconfig_merged file. This kubeconfig will contain all the information of local minikube 
cluster and our GKE host cluster 
 

KUBECONFIG=~/.kube/config:~/config kubectl config view --flatten > 
~/kubeconfig_merged 
 
We need to ask GKE to use this newly formed configuration as the new KubeConfig file for 
the cluster 
 

export KUBECONFIG=~/kubeconfig_merged 
 
For the GKE to externally access (e.g., query, create, delete) the Minikube cluster, change the 
API server’s local URL with the ngrok endpoint we generated in section A1.2 
 

kubectl config set-cluster minikube --server='<ngrok generated url>
   
Changing the context name for the GKE cluster so that it works for KubeFed as KubeFed does 
not accept underscore in cluster context names. Replace the old context name with your old 
context name 
 

kubectl config rename-context gke_vital-keep-357119_us-central1_gke-
kubefed-host gke-kubefed-host 
 
Label one of the nodes of our central GKE cluster to deploy all the workloads on that 
particular central node. Replace the node name with yours 
 

kubectl label node gke-kubefed-host-default-pool-5cb8421a-2zjc 
nodeToDeploy=yes 

 
A1.4    Installing KubeFed on the gke-host-cluster 
 
In this section, we will install the KubeFed client together with KubeFed itself on our gke-host-
cluster residing on the cloud. All the commands in this section are executed in the gcloud Shell.  
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Install the KubeFed Client. These commands follow each other 
 
 

VERSION=0.9.2 
 

OS=linux 
 

ARCH=amd64 
 

curl -LO https://github.com/kubernetes-
sigs/kubefed/releases/download/v${VERSION}/kubefedctl-${VERSION}-
${OS}-${ARCH}.tgz 
 

tar -zxvf kubefedctl-*.tgz 
 

chmod u+x kubefedctl 
 

sudo mv kubefedctl /usr/local/bin/ 
 
Now, install the KubeFed tool through helm. This will create a new namespace called “kube-
federation-namespace where all the KubeFed controller manager pods are deployed” 
 

helm repo add kubefed-
charts  https://raw.githubusercontent.com/kubernetes-
sigs/kubefed/master/charts 
 
helm --namespace kube-federation-system upgrade -i kubefed kubefed-
charts/kubefed --version=0.9.2 --set 
controllermanager.clusterHealthCheckPeriod=30s --create-namespace 
 
Federate the local Minikube cluster together with the gke-kubefed-host cluster 
 

kubefedctl join minikube --cluster-context minikube --host-cluster-
context gke-kubefed-host --v=2 
 
kubefedctl join gke-kubefed-host --cluster-context gke-kubefed-host --
host-cluster-context gke-kubefed-host --v=2 
 
Check that both clusters joined the federation 
 

kubectl -n kube-federation-system get kubefedclusters 

 
A1.5    Application Deployment on gke-host-cluster 
 
In this section, we will deploy the resources on the gke-host-cluster, and as shown in chapter 
5, these resources will be automatically created in the member clusters. All the commands are 
executed in the gcloud Shell. 
 
 
 

https://github.com/kubernetes-sigs/kubefed/releases/download/v$%7bVERSION%7d/kubefedctl-$%7bVERSION%7d-$%7bOS%7d-$%7bARCH%7d.tgz
https://github.com/kubernetes-sigs/kubefed/releases/download/v$%7bVERSION%7d/kubefedctl-$%7bVERSION%7d-$%7bOS%7d-$%7bARCH%7d.tgz
https://github.com/kubernetes-sigs/kubefed/releases/download/v$%7bVERSION%7d/kubefedctl-$%7bVERSION%7d-$%7bOS%7d-$%7bARCH%7d.tgz
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Create a namespace called “federated-ns” in the gke-host-cluster (global-federated-ns.yaml) 
 
cat << EOF | kubectl apply -f - 
apiVersion: v1 
kind: Namespace 
metadata: 
  name: federated-ns 
 
EOF 
 
Create a FederatedNamespace called “federated-ns” in the gke-host-cluster’s “federated-ns” 
namespace created above (federated-ns.yaml) 
 
cat << EOF | kubectl apply -f - 
apiVersion: types.kubefed.io/v1beta1 
kind: FederatedNamespace 
metadata: 
  name: federated-ns 
  namespace: federated-ns 
spec: 
  placement: 
    clusterSelector: 
      matchLabels: {} 
 
EOF 
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Create a FederatedDeployment resource in the FederatedNamespace. This resource will be 
propagated as a regular deployment resource across the member clusters (federated-
googleHello-deployment.yaml) 
 
cat << EOF | kubectl apply -f - 
apiVersion: types.kubefed.io/v1beta1 
kind: FederatedDeployment 
metadata: 
  name: fed-app 
  namespace: federated-ns 
spec: 
  placement: 
    clusterSelector: 
      matchLabels: {} 
  template: 
    spec: 
      selector: 
        matchLabels: 
          app: fed-app 
      template: 
        metadata: 
          labels: 
            app: fed-app 
        spec: 
          containers: 
          - image: gcr.io/google-samples/hello-app:2.0 
            name: echo 
            ports: 
            - containerPort: 8080 
              name: http 
          nodeSelector: 
            nodeToDeploy: 'yes' 
 
EOF 
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Create a FederatedService resource in the FederatedNamespace. This resource will be 
propagated as a regular service resource across the member clusters (federated-googleHello-
service.yaml) 
 
cat << EOF | kubectl apply -f - 
apiVersion: types.kubefed.io/v1beta1 
kind: FederatedService 
metadata: 
  name: fed-app-service 
  namespace: federated-ns 
spec: 
  template: 
    spec: 
      ports: 
        - name: 5678-8080 
          port: 5678 
          protocol: TCP 
          targetPort: 8080 
      selector: 
        app: fed-app 
      type: LoadBalancer 
  placement: 
    clusterSelector: 
      matchLabels: {} 
 
EOF 

 
A1.6    Exposing “fed-app-service” of Minikube 
 
The FederatedService resource “fed-app-service” just created above is propagated to our local 
Minikube cluster as a regular service object. In order for this service object to be globally 
accessible, we need to expose it. Below commands are run in separate terminals in our local 
environment. The previous two local terminals running as described in A1.2 should still be 
running.  

 
On a separate terminal run the below command to forward all requests from the service 
port (5678) to the container port of our “fed-app” deployment (8080) 
 

kubectl port-forward service/fed-app-service -n federated-ns 5678:5678 
 
On a separate terminal run the below command to create a second ngrok public endpoint 
and forward all requests to our “fed-app-service” resource running locally: 
 

ngrok http --scheme=http 5678 
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