

School of Computer Science and Statistics

Federation of Local K8s Clusters

through a Central Cluster in the Cloud

Kemal Sedat Ceyhan

Supervisor: Dr. Stefan Weber

August 2022

A Dissertation submitted in partial fulfillment of the

requirements for the degree of Master of Science

in Computer Science (Future Networked Systems)

http://www.scss.tcd.ie/

i

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Signed: KEMAL SEDAT CEYHAN Date: 18/08/2022

Sedat Ceyhan

Sedat Ceyhan

ii

Abstract

Kubernetes is the leading open-source tool responsible for automating the deployment and
management of containerized applications. One of the most important advantages of
Kubernetes is "high availability" of applications. It increases software scalability and
availability. Kubernetes can scale up and down applications and supporting infrastructure
resources in response to changing organizational demands, enabling dynamic management of
company resources. Kubernetes also enables flexibility in multi-cloud scenarios by ensuring
that applications may run in either a public or private cloud.

The safest way to deploy a Kubernetes application across different regions for high-availability
and disaster recovery is to create multiple-clusters in different regions. This would allow the
same application to serve multiple geographical regions, improving availability & performance,
disaster recovery and scaling application beyond a single cluster’s limits. Multi-cluster
deployment solves a range of difficulties; however, it increases the complexity of operation
and maintenance as well. We will need to deploy resources and handle the clusters
separately. These are the issues that Kubernetes Cluster Federation attempts to address for
Multi-Cluster Kubernetes via a centralized administration interface. Kubernetes Cluster
Federation is a mechanism for managing the configuration of several Kubernetes clusters using
a centralized "federation control manager." Although a popular tool, there are almost no
resources out there creating a Cluster Federation setup between a Central Cloud cluster acting
as the host cluster and on-premises clusters running on a local machine acting as the member
clusters.

This research proposes a POC where we will use a Cluster Federation tool called KubeFed to
create a solution in which the functionalities and resources of a central cluster in the Cloud are
automatically propagated to a local cluster on an independent machine in a separate location.
These local clusters can live on small computing machines all over the world and get
configurations and resources from a central cluster. End-users can make requests to local
machines in nearby branches and receive the same services as those supplied by the central
cluster situated further away. This way, we can propagate resources from a central cluster to
local machines all around the world and decrease the end-user’s latency and improve
performance.

iii

Acknowledgement

Thank you to my parents who always believed in me and supported me along the way. I really
appreciate all your help and I sincerely believe that their emotional support hast been a big
part of this thesis.

I also would like to take this chance to thank Dr. Stefan Weber for all his help and guidance. I
am grateful for all the ideas and input you provided for this thesis. I especially appreciate your
work ethic and how you always spared your time for my research. I also want to thank
Professor Stephen Barrett for his valuable input during our demo session.

iv

Contents

1 Introduction 1

1.1 Goal of the Thesis .. 4
1.2 Structure .. 5

2 Background 6
2.1 Kubernetes and its History ... 6
2.2 The Evolution in App Deployment ... 7
2.3 Kubernetes Benefits ... 8
2.4 Kubernetes Architecture ... 9

2.4.1 Control Plane Components ... 10
• Kube-apiserver .. 10
• Scheduler ... 11
• Controller Manager .. 12
• Etcd ... 12

2.4.2 Node Components .. 13
• Container Runtime ... 13
• Kubelet ... 13
• Kube-proxy ... 13

2.5 Kubernetes Objects ... 14
2.5.1 Namespace .. 15
2.5.2 Pod .. 15
2.5.3 ReplicaSet .. 15
2.5.4 Deployment .. 15
2.5.5 Service .. 16
2.5.6 ConfigMap .. 18
2.5.7 Secrets ... 18
2.5.8 Labels & Selectors .. 18

• NodeSelector and Labelling Nodes 19
• Affinity and Anti-Affinity ... 19

2.5.9 Custom Resource Definitions (CRD) ... 20
2.6 Summary ... 20

v

3 Kubernetes Multi-Cluster 21
3.1 Multi-Cluster Approach in K8s .. 21

3.1.1 Multi-Cluster Kubernetes Advantages ... 22
3.1.2 Multi-Cluster Kubernetes Architecture ... 23

3.2 Kubernetes Cluster Federation .. 25
3.2.1 Cluster Federation Description and Benefits .. 25
3.2.2 Cluster Federation Caveats .. 27

3.3 Other Alternatives ... 27
3.3.1 Cluster API ... 28
3.3.2 Other Tools Offered by Cloud Providers .. 28

3.4 Summary .. 30

4 Cluster Federation Projects 31
4.1 KubeFed Project (Version 2) ... 31

4.1.1 KubeFed Detailed Overview ... 31
4.1.2 KubeFed Caveats ... 36

4.2 ClusterMesh Cilium ... 37
4.3 Network Service Mesh .. 38
4.4 Submariner ... 38
4.5 Consul .. 39
4.6 Shipper ... 39
4.7 Admiralty .. 40
4.8 Summary ... 40

5 Design and Implementation 42
5.1 Proposed Solution ... 43
5.2 Requirements and Fulfillements .. 44

5.2.1 Creating a Local Minikube Cluster ... 44
5.2.2 Connectivity between Minikube and GKE .. 45
5.2.3 Exposing Minikube API Server .. 48
5.2.4 Installing KubeFed on Central GKE Cluster .. 52
5.2.5 Deploying Resources on GKE Host-Cluster ... 54
5.2.6 Exposing “fed-app-service” of Local Minikube 59

5.3 Summary .. 62

6 Evaluation 63
6.1 Latency... 63
6.2 Resiliency ... 66

6.2.1 Disconnection of ngrok Agents .. 66
6.2.2 Disconnection of the Central GKE Cluster ... 67

vi

6.3 Security .. 67
6.4 Summary .. 68

7 Future Work 69
7.1 Automating the Solution .. 69
7.2 Resiliency in KubeFed ... 69
7.3 Resource Allocation in KubeFed ... 70
7.4 Disconnection of API Server .. 71
7.5 Summary ... 71

8 Conclusion 72

A1 Appendix 76
A1.1 Creating the Minikube and its Certificates ... 76
A1.2 Exposing the Minikube ... 77
A1.3 Google Cloud Console: Merging Config Files .. 77
A1.4 Installing KubeFed on the gke-host-cluster ... 78
A1.5 Application Deployment on gke-host-cluster ... 79
A1.6 Exposing “fed-app-service” of Minikube .. 82

vii

List of Figures

1.1 Kubernetes Multi-Cluster Federation ... 2

2.1 Application Deployment Process Evolution ... 7

2.2 Kubernetes Benefits .. 9

2.3 Kubernetes Cluster Architecture ... 10

2.4 Control Plane API workflow ... 11

2.5 Control Plane Scheduler workflow .. 12

2.6 Example Kubernetes Deployment ... 16

2.7 Example Kubernetes Default Service ... 17

2.8 Placing workloads on a particular node through Labels & Selectors 19

2.9 Placing workloads on particular Nodes through Node Affinity 20

3.1 Different Types of Multi-Cluster K8s Architectures .. 24

3.2 Federation of two clusters from different regions through a Manager 26

3.3 Cluster API Components ... 28

3.4 Conformant Kubernetes Clusters we can add to Anthos Management 29

4.1 List of Federated Clusters Observed from Host Cluster 32

4.2 KubeFed components automatically deployed as Kubernetes Pods 33

4.3 Sample KubeFed Template Diagram .. 34

4.4 Conversion of Deployment resource into Federated Deployment 34

4.5 Main KubeFed Components ... 36

5.1 Setting up Minikube on the Local Machine .. 44

5.2 Central GKE cluster located in Australia Region ... 45

5.3 KubeConfig files on the Local Machine with and without Certificates 46

5.4 Local Environment’s “kubeconfig” file uploaded to Cloud Shell 46

5.5 Merged Kubeconfig files in GCP ... 47

viii

5.6 GCP having access to our local Minikube as a cluster context 48

5.7 Unable to access the resources of local Minikube from GCP 48

5.8 Exposing port=8001 for Minikube API server .. 49

5.9 Ngrok URL forwarding requests to the Local API server of Minikube 49

5.10 Minikube API server changed to ngrok URL in kubeconfig_merged 50

5.11 Successfully accessing to the resources of local Minikube from GCP 51

5.12 Creation of a test-namespace in Minikube cluster from GCP 51

5.13 test-namespace successfully created in the local Minikube Cluster 51

5.14 Installing KubeFed in GCP .. 52

5.15 kubefed-controller-manager pods deployed to kube-federation-system NS........ 53

5.16 Minikube joining the Federation and becoming a Member-Cluster 53

5.17 Confirmation of Minikube’s Federation .. 53

5.18 List of Federated Clusters ... 54

5.19 FederatedNamespace object created in the GKE host-cluster 55

5.20 Namespace called “federated-ns” automatically created in Local Minikube 55

5.21 Google-Hello FederatedDeployment created in the GKE Host-Cluster 56

5.22 Deployment pods automatically created in the GKE host-cluster 56

5.23 Deployment pods automatically created in our Local Minikube Cluster 57

5.24 Google-Hello FederatedService created in the GKE Host-Cluster 57

5.25 Service object automatically created in the GKE host-cluster 58

5.26 Load-Balancer created for “fed-app-service” Service of GKE cluster 58

5.27 Reaching the “fed-app” deployment running in GKE host-cluster (AU) 59

5.28 Service object automatically created in the local Minikube cluster 59

5.29 Forwarding requests from Service Port to Container Port 60

5.30 Reaching the “fed-app” deployment running locally in Minikube (EU) 60

5.31 Ngrok URL forwarding requests to the Local Service of Minikube 61

5.32 Reaching the “fed-app” deployment running in Local Minikube Externally 61

6.1 Latency of the central GKE cluster hosted in AU .. 64

6.2 Latency of the Minikube cluster hosted in Dublin .. 64

6.3 Latency of the central GKE Cluster hosted in AU from London 65

6.4 Latency of the Local Minikube Cluster hosted in EU from London 65

6.5 Changed ngrok Endpoint for the Minikube API Server .. 66

1

Chapter 1

Introduction

Since last decade, we have witnessed the increased use of virtualization technologies allowing
us to run countless virtual machines (VMs) on a single physical server. Virtualization greatly
improved the isolation of the running applications and provided a good amount of security.
This abstraction of resources resulted in the production of highly scalable, cost-efficient, and
innovative applications [62]. Virtualization allows you to run several operating systems on a
single physical server's hardware. However, virtualization requires a great number of resources
(e.g., CPU and RAM) as each VM contains an operating system and a virtual copy of all the
hardware that an operating system needs. Moreover, moving VMs between different services
(e.g., cloud providers) is not a trivial task. This led to the emergence of containerization. A
container is a lightweight software unit that contains all the necessary code, libraries and
dependencies, allowing their corresponding application to run seamlessly from one computing
setting to another [1]. What makes a container lightweight compared to a VM is that, the
container shares the host operating system’s Kernel with other containers where the
operating system’s shared item is read-only [2]. Rather than having multiple operating systems
running in each VM, with containers, we deal with only one operating system, facilitating the
scalability and ease of deployment of our applications [63, 64]. Understandably, the increased
use of containerization resulted in the emergence of container orchestration platforms
responsible for coordinating multiple containers running on multiple nodes. Kubernetes has
been the leading technology for the orchestration of containerized applications. When a
developer aims to create a highly available distributed system, one of the first things that
come up to our minds is using Kubernetes. The rise of microservices caused an increased usage
of container technologies because the containers offered the perfect host for small,
independent applications such as microservices. In today’s world, applications consist of
hundreds of containers; managing such a number of containers across multiple environments
using scripts and/or self-made tools can be quite challenging and sometimes impossible. This
produced the need for having container orchestration technologies such as Kubernetes.
Kubernetes offers high availability, scalability and disaster recovery through automatic
application deployment, load-balancing and resource allocation. It manages a cluster of nodes
that includes hundreds of containers. It is the leading orchestration tool for containerized
applications deployed in either virtual or physical devices [3, 65]. We will talk more about the
main Kubernetes objects and its architecture in detail in the next chapter.

A Kubernetes cluster is a collection of nodes that execute containerized apps. As we
mentioned before, containerization of an application consists of packaging it with its libraries
and/or dependencies together with all the required services [4]. This process facilitates the

https://www.docker.com/resources/what-container/#:%7E:text=A%20container%20is%20a%20standard,one%20computing%20environment%20to%20another
https://www.burwood.com/blog-archive/containerization-vs-virtualization#:%7E:text=Virtualization%20enables%20you%20to%20run,single%20virtual%20machine%20or%20server
https://rafay.co/the-kubernetes-current/container-orchestration-tools-comparison/#:%7E:text=Kubernetes%20was%20open%2Dsourced%20by,becoming%20the%20de%20facto%20standard.
https://hackernoon.com/how-did-kubernetes-win-the-container-orchestration-war-lp1l3x01
https://www.ibm.com/cloud/learn/containerization

2

deployment and “moving around” process of applications. Containers may run across different
computers and environments thanks to Kubernetes clusters. A cluster can include nodes from
any location or environment (e.g., on-premises together with cloud, virtual, physical, etc.) With
the popularity of the container technology and Kubernetes among companies, it is not unusual
for businesses to operate many clusters instead of a single cluster. The use of a single cluster
may present certain problems: single point of failure, inability to control the users' access to
certain resources within the cluster, applications competing with each other for the use of
shared resources, etc. This resulted in the use of ‘multi-cluster’ approach in Kubernetes [5]. By
deploying multiple clusters, organizations aim to improve their applications’ overall
availability, scalability and failure and business isolation [6]. However, since the applications
are deployed to different clusters’ nodes separately, they need to be managed separately as
well. All the configurations and application deployments need to be repeated on each cluster
even if the applications are exactly the same. This resulted in the emergence of “Cluster
Federation” concept.

The core assumption of Kubernetes Cluster Federation is that a unique source of
application configuration (e.g., deployment, service, etc.) is applied to a central location known
as the Host Cluster, and that the configuration is automatically propagated to all clusters in the
environment according to specified criteria. This provides the application with a unified view
of all Kubernetes clusters as a single cluster. In an ideal world, there should be no need to
configure or deploy the application numerous times in separate clusters, or to retain an
application's state per cluster. The app developer does all the work in the host cluster and all
the configurations are automatically reflected in the child or member clusters [7]. Below is a
figure demonstrating the process of cluster federation:

Figure 1.1: Kubernetes Multi-Cluster Federation

https://www.containiq.com/post/kubernetes-multiple-clusters-vs-single-cluster
https://platform9.com/blog/multi-cluster-kubernetes-deployments-when-and-why/
https://caylent.com/blog/kubernetes/kubernetes-cluster-federation-with-admiralty

3

The Cluster Federation is achieved by a host cluster that contains controller managers
responsible for the propagation of Kubernetes resources among child clusters. After that, the
deployed resources are federated through the host cluster. The application developer can
change the configuration of certain resources of child clusters with the help of the host
cluster’s controller managers. Kubernetes Cluster Federation facilitates the process of
application deployment by creating a ‘single cluster’ environment while enjoying the benefits
that come from multi-cluster setting: We create multiple clusters, each having multiple nodes
and applications running in these nodes just like in a regular “multi-cluster” setting. However,
in cluster federation, we make one of the many clusters the “Host Cluster” where the others
are “Member Clusters”. We create the configurations and deploy the applications on the Host
Cluster, and all the resources are automatically propagated to the member clusters. Thus, we
enjoy the ease of management that comes from a single cluster setup, while having the
resiliency, high availability, and disaster recovery features of a multi cluster environment.

Most of the Kubernetes Cluster Federation or Management tools are still in
development and the ones offered by big cloud providers and used in production do not fully
provide the freedom to manage different types of clusters other than what their platform
offers. For instance, Google Anthos [8] is not a Cluster Federation tool that has the feature of
automatically propagating resources across multiple member clusters from a single Host
Cluster, but it is a production-ready solution for multi-cluster management within GCP or
across different cloud providers. Anthos lets us manage workloads running on third-party
cloud environments such as Oracle, Azure, AWS, as well as on-premises Kubernetes clusters. It
enables developers to monitor and manage the configurations and policies of clusters running
in different environments through a single platform called Anthos. However, it has a limited
range of environments that it supports, and it is a multi-cluster management tool rather than a
federation tool [9]. The solutions offered by other cloud providers are similar.

The open-source Cluster Federation tools (e.g., KubeFed) that are mostly still in
development phase do allow the federation of multiple Kubernetes clusters across different
regions deployed in different cloud providers. For instance, using the most popular open-
source cluster federation tool called KubeFed, the host cluster can run in GKE and federate
deployment resources across multiple Azure clusters. Although there are a few examples
creating such a setup out there, the number of such examples and the instructions to simulate
the setup are quite limited with no tangible demonstration. However, there are almost no
resources out there creating a Cluster Federation setup between a Central Cloud cluster acting
as the host cluster and on-premises clusters running on a local machine acting as the member
clusters. In such a scenario, the federated on-premises cluster running on a local machine
could be a small branch of a company and the central cloud cluster could be the host cluster
federating resources from a central cloud (e.g., GCP, AWS, Azure) to the local machines at
branches in different regions. The goal of our thesis will be to create the POC simulating this
scenario.

https://cloud.google.com/anthos/docs/tutorials/explore-anthos
https://cloud.google.com/anthos/docs/concepts/overview

4

1.1 Goal of the Thesis

Imagine we have a central cluster with several applications running on different nodes in a
Cloud. These applications running on a central cloud can have any type of functionalities such
as banking, healthcare, gaming, etc. And we want these same functionalities to also reside in
several small branches outside the central cloud platform. These branches can be local
machines located in regions different from the central cloud’s cluster to improve latency and
availability. We can think of these local machines as machines with low-medium processing
units. As mentioned in the previous section, such a scenario can be achieved through Cluster
Federation, however, there are no tangible examples or instructions for creating this setup.
Through cluster federation tools, we can automatically propagate the central cloud cluster’s
resources, and therefore functionalities, to the clusters located in local machines that are
independent from the Cloud Platform. This way, all the resources in the central cloud cluster
can also reside in local branches in different regions and be accessible by the users in those
regions. On top of providing the same functionalities of the central cloud to the local machines
on the branches, this would also decrease the latency for the end-users. An example scenario
with this setup may include lots of small local machines with low computing power for IoT
devices. The clusters running in these local machines may be federated by a ‘host-cluster’
residing in a central cloud and the local clusters can automatically execute the applications
deployed in the host-cluster of the central cloud. This way, the local machines can execute the
computing processes at the edge network for the IoT devices located all over the world and
decrease latency. Moreover, the applications in the clusters of the local machines can be easily
reconfigured and propagated by the host-cluster running in the central cloud.

Hence, this thesis designs a Proof of Concept to create a simulation of the scenario
described above. We will use a Minikube cluster in our local environment using our own
machine in Dublin, Europe. This will represent a ‘local branch’ in Europe. The central cluster
that will serve as the ‘host-cluster’ for the Cluster Federation will reside in a Cloud Provider.
This host-cluster will be located in a region different from Europe and will be responsible for
propagating resources to the Minikube cluster in our local machine. All the resources and
functionalities created in the central cloud cluster will be automatically propagated to
Minikube. Users near this local branch in Europe can use the applications running in the
central cloud cluster by simply accessing the Minikube cluster residing in a local machine near
them. This will require establishing a connection between the Minikube cluster running on a
local machine and the central cloud. For our solution, we will use the KubeFed tool, which is
the leading open-source Cluster Federation technology.

5

1.2 Structure of the Thesis

The next sections of this thesis are as follows. Chapter 2 provides a comprehensive overview
on Kubernetes, the main technology this thesis is based on. We briefly talk about Kubernetes
background and then explain its overall architecture and list its main components. In Chapter
3, we talk about the concept of “Multi-Cluster Kubernetes” together with its advantages and
disadvantages. We then connect it to Cluster Federation and provide a brief overview about
how Cluster Federation fits into the world of multi-cluster Kubernetes. In Chapter 4, we
mention some of the popular Cluster Federation tools with focus on KubeFed and how it works
since it is one of the main tools we will use in our design. Chapter 5 provides our design &
implementation for the proposed POC in this thesis. In Chapter 6, we will evaluate our POC
solution by providing its advantages and disadvantages through measurements. In Chapter 7,
we will talk about how our project fits into the real-world and what could be improved if we
had enough time and resources. Finally, we will conclude our thesis in Chapter 8.

6

Chapter 2

Background

This chapter provides more detail on Kubernetes, its main components and its underlying
architecture. This will help us for the later sections on Cluster Federation and POC design &
implementation. The first section will introduce a brief history and evolution of Kubernetes
[10]. The second section will describe the underlying architecture of Kubernetes in detail.
Finally, we will describe the main Kubernetes objects that are widely used by almost all
Kubernetes developer.

2.1 Kubernetes and its History

Before talking about Kubernetes, we need to introduce Google’s Borg system first, which is the
precursor of Kubernetes. Google defines its Borg system as a cluster manager responsible for
running hundreds of thousands of jobs, from many thousands of various applications, across a
number of clusters each with up to tens of thousands of machines [66]. This was a very small
project that initially included around 5 people in 2004.

Later in 2013, Google came up with Omega, an intelligent scheduler for thousands of
clusters. What made Omega unique was its new cluster scheduling mechanism that would be
the foundation of Kubernetes. Omega highly utilized parallelism, shared-state, and lock-free
optimistic concurrency control to use each cluster’s full potential [67]. Google used Omega for
both short-term batch type jobs and for their infrastructure services (e.g., BigTable).

During the mid 2014, Google introduced Kubernetes, an open-source variation of their
long-used Borg. One of the big differences is that Borg was written in C++, and Kubernetes in
Golang. Later in 2015, the collaboration between Google and the Linux foundation resulted in
a rapid use and popularity of Kubernetes. Currently, Kubernetes is managed by the Cloud
Native Computing Foundation (CNCF) [61]. It is being used by almost all big company that
deals with container orchestration today [68, 65]. Kubernetes is the leading open-source tool
responsible for automating the deployment and management of containerized applications.
We mentioned in the introduction that containers help packaging applications with their
respective libraries and dependencies. The containerization helps the application become a
single runnable unit that can be executed in any platform without any extensive configuration.
This immensely simplifies the mass execution of applications since the developers won’t have

https://blog.risingstack.com/the-history-of-kubernetes/
https://www.cncf.io/
https://www.sumologic.com/blog/why-use-kubernetes/

7

to deal with any installation of application requirements. Now, we have hundreds of
thousands of easily executable containers. However, this will introduce a new problem: how to
manage all these containers and make sure that we have no downtime (e.g., containers
smoothly taking each other’s place when some go down, etc.) This is where Kubernetes comes
in! In the next section, we will talk about the evolution of application deployment throughout
the last 20 years to demonstrate the advantages that Kubernetes provides.

2.2 The Evolution in App Deployment

In the last two decades, the application deployment process has changed significantly. Below is
an illustration of these changes [11]. Official Kubernetes site has given three categories to
illustrate the evolution of application deployment processes: traditional deployment,
virtualized deployment and container deployment [11].

Figure 2.1: Application Deployment Process Evolution [11]

Traditional deployment refers to running applications on physical machines. An application
developer would build applications and execute them on either a single or different physical
machines. The obvious problem in this scenario is the lack of isolation between different
applications running on the same physical server. There may be multiple applications running
on the same machine and one of them may be using more resources than the others, leading
the other applications to perform poorly. This is a typical example of resource competition
between applications. In traditional deployment, application developers would have hard time
creating boundaries between applications to allocate each with their own proper resources. To
deal with this issue, it is possible to run each application on a different physical machine,
totally isolating them from each other for a better resource allocation. However, this may not
always be feasible as this approach is neither financially viable nor scalable. Dealing with
multiple servers for only small deployments would yield unnecessary cost. It is also highly
probable that applications deployed on different physical servers be allocated more resources

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

8

than they need.

To deal with the above-mentioned issues, we were introduced with the virtualization.
Virtualized deployment allowed developers to run multiple Virtual Machines on a single
physical machine’s CPU [11]. By running applications on different VMs, we enjoy an increased
isolation between apps in a single physical server without the need to deploy them in multiple
physical machines. With the increased isolation in a single machine, VMs offered a high level of
security and a better resource utilization. Since the applications are virtually isolated, they
couldn’t easily access each other’s data or resources. The power to add, remove or update
many virtually isolated applications in a single physical machine improved scalability and
dramatically reduced hardware costs. However, the isolation of applications came with a
significant overhead. Since each virtual machine is a full machine that has all the components,
it also includes its own OS on top of the virtualized hardware [11].

To deal with the ‘heavy-weight’ nature of virtual machines, a new solution came to the rescue:
containerization. Containers are similar to the virtual machines, but they are ‘light-weight’.
This is because containers share the Operating System among the applications unlike VMs that
have their own Operating Systems each. Like VMs, containers also have their own CPU share,
memory, filesystem, etc., but they can be easily moved around across different cloud or OS
distributions [11]. This property is what makes containers unique today. Furthermore, due to
their “light-weight” nature, containers are so much faster than VMs. Starting, stopping, and
updating containers require much less work than Virtual Machines. The power of
containerization is what makes Kubernetes popular today.

2.3 Kubernetes Benefits

One of the most important benefits that Kubernetes brings is “high availability” of
applications. It provides increased software scalability and availability. Kubernetes can scale up
and down the applications and supporting infrastructure resources according to the
organization's changing demands, enabling the dynamic management of company resources
[12, 11]. This helps organizations save a lot on their ecosystem management with automated
and smart relocation of resources based on workloads. Moreover, it provides perfect disaster
recovery by checking the lifecycle of resources constantly; it saves the latest state information
and keeps the applications running from the latest recorded state.

Kubernetes also provides flexibility in multi-cloud environments by making sure that
the applications successfully operate in any public or private environment. Kubernetes also
simplifies the smooth migration of applications from on-premises environment to public or
private clouds. Essentially, Kubernetes helps facilitate the development, deployment and
release processes of applications. Below is a summary of Kubernetes benefits:

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://devspace.cloud/blog/2019/10/31/advantages-and-disadvantages-of-kubernetes
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

9

Figure 2.2: Kubernetes Benefits

2.4 Kubernetes Architecture

Kubernetes consists of three main components: cluster, node and pod. Kubernetes cluster is
basically a set of worker machines (e.g., nodes) responsible for executing containerized
applications. A node [13] is a simple server, either a physical or virtual machine consisting of
computing hardware. It is basically a representation of a single machine in a Kubernetes
cluster. A node is either a datacenter physical machine, or a virtual machine hosted on a cloud
provider such as GCP, AWS or Azure. We can view a node as a machine that consists of a set of
RAM and CPU resources to be used for running applications.

A Kubernetes cluster [14] is simply put an “intelligent node pool”. When you deploy
applications to the cluster, it manages work distribution to specific nodes smartly for the
application developer. If any nodes are added to or withdrawn from the cluster, the cluster will
reallocate work as needed. It shouldn't matter to the application developer what particular
machines are responsible for executing the code. We can think of a Kubernetes Cluster as a
hivemind that takes all the responsibility of dealing with individual machines (e.g., nodes) for
application deployment.

We have previously talked about what a container [15] is and how it packages an
application for an easy execution and moving around. Instead of executing containers directly,
Kubernetes encapsulates one or more containers into a higher-level structure known as a pod
[16]. Containers residing in the same pod share the same local network and resources. Pods
provide intercommunication between containers as if they were on the same computer, while
being isolated from others. They may hold multiple containers and be easily scaled up and
down based on the load. Moreover, pods are the smallest units of a Kubernetes cluster. A pod
is an abstraction over a container. They create a running environment, or a layer on top of the
container so that an application developer won’t need to directly work with containers. They
are ephemeral units residing in nodes and meant to be deleted and recreated multiple times
during the lifetime of a Kubernetes cluster.

https://kubernetes.io/docs/concepts/architecture/nodes/
https://www.vmware.com/topics/glossary/content/kubernetes-cluster.html
https://kubernetes.io/docs/concepts/containers/
https://kubernetes.io/docs/concepts/workloads/pods/

10

A Kubernetes cluster contains two types of nodes: master nodes (also called control
plane) and worker nodes [17]. Master nodes are responsible for providing the communication
between the application developer and the cluster itself and scheduling the workload among
the nodes. The worker nodes are responsible for executing applications containing the
business logic. Thus, they generally require more resources (e.g., memory, CPU, etc.) than the
master nodes. Below is a diagram showing the overall architecture of a Kubernetes cluster. It
shows all the necessary components required in both the control plane and the worker nodes.
In the next section, we will give a brief description for all these components [17].

Figure 2.3: Kubernetes Cluster Architecture [17]

2.4.1 Control Plane Components

The control plane is the brain of a Kubernetes cluster responsible for making global decisions
about the cluster [17]. For instance, when a pod is unhealthy, the control plane deletes and
recreates a new pod. In general, the control plane components run on the same machine
(master node) and this machine does not run the user created containers in it. Rather, the
control plane is responsible for managing the applications running on the worker nodes. There
are four processes that run on every master node that control the cluster state and the worker
nodes.

Kube-apiserver

Control plane’s API server [17] is responsible for exposing the Kubernetes API acting as the
front-end for the application developers. When a user wants to deploy a new application in a
Kubernetes cluster, they interact with the API server using some client (e.g., Kubernetes
Dashboard, command line tool like kubectl, etc.) The API server can be thought as a cluster

k-proxy

kubelet

sched
schedsched

Control Plane

Node

Kubernetes cluster

api
api

api

c-c-m
c-c-m

c-c-m

c-m
c-m

c-m

Node Node

k-proxy

kubelet kubelet

k-proxy
Control plane

Scheduler
sched

Cloud controller
manager

)optional(c-c-m

Controller
rmanage c-m

kubelet
kubelet

proxy-kube
k-proxy

(persistence store)
etcd

Node

API server
api

https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/

11

gateway which gets the initial request of any updates into or queries from the cluster. It also
acts as a gatekeeper for authentication, making sure that only the authenticated and
authorized requests get through the cluster. Whenever the user wants to schedule new pods,
deploy new applications, or any other components, the user must talk to the API server on the
master node. Then, the API server validates the request, after which it forwards the request to
other control plane processes in order to schedule the pod or create a particular component
that the user requested. The same process applies when the application developer wishes to
query the status of deployments or cluster health, etc. The user makes the request, and the
API server returns a response.

Figure 2.4: Control Plane API workflow

Scheduler

Now, the user sends a request to the API server to schedule a new pod. After the API server
validates the user’s request, it will be handed over to the scheduler in order to start that
application pod in one of the worker nodes. Instead of just randomly assigning it to any node,
the scheduler has an intelligent way of deciding on which specific worker node, the next pod
or component will be scheduled. The scheduler checks how much resources (e.g., CPU, RAM)
the application to be scheduled will need, and then the scheduler will go through the worker
nodes and see the available resources on each one of them. For instance, if one of the worker
nodes is the least busy or has the most resources available, the scheduler will schedule the
new pod on that node [17, 18].

https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/

12

Figure 2.5: Control Plane Scheduler workflow

Controller Manager

What happens when pods die on any node? There must be a way to detect that the pods died
and then reschedule those pods to recover the cluster state as soon as possible. What
Kubernetes Controller Manager [17, 19] does is to detect those state changes like crashing of
pods and help the cluster reach its desired state once again. To achieve this, Controller
Manager makes a request to the Scheduler to reschedule those dead pods, and the process
described in the Scheduler section happens again: The Scheduler decides where to put the
new pod based on the worker nodes’ resource calculation and sends the request to the
“kubelet” of the appropriate worker node to restart the new pod.

etcd

This is the last control plane process that can be considered as the cluster brain. This is
because every change in the cluster gets saved or updated into the key-value store of etcd. All
the processes described above in the controller manager and scheduler sections happen
thanks to the data stored in the etcd [20]. For instance, the Scheduler knows what resources
are available on each worker node through etcd’s data. Using that information, scheduler
schedules pods on worker nodes that have the most available resources. Cluster Manager
knows that a cluster state changed through etcd as well. Finally, when we make a request to
the Control Plane’s API server to query the cluster health, the API server’s response is based on
the stored data in etcd. However, we need to keep in mind that application data (e.g.,
database data) is not stored in etcd. etcd stores only cluster state information which is used
for the master processes to communicate with the worker processes and vice versa.

https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://etcd.io/

13

2.4.2 Node Components

The Kubernetes worker nodes run the pods that are responsible for the application workloads.
These components run on every node, maintain running pods and offer Kubernetes runtime
environment. There are three main node processes as described below.

Container Runtime

The container runtime [21] is the software that oversees the container execution. Kubernetes
supports multiple container runtimes, including Docker, containerd, CRI-O, or any
implementation of the Kubernetes Container Runtime Interface (CRI) [22]. The most common
is the Docker runtime, and we will be using Docker throughout our work.

kubelet

As we have previously mentioned in the Control Plane section, kubelet [23] runs on each
cluster node and is responsible for running containers in pods. Application developer makes a
request to the Control Plane API server to run, stop or restart a pod, and the Scheduler decides
on which node a new pod will be scheduled. The process that actually starts that pod with a
container is the kubelet. The kubelet gets the request from the scheduler and executes that
request on the node. kubelet gets the pod configurations from the API server and
communicates with the container runtime to run them on the nodes.

kube-proxy

kube-proxy is basically a network proxy running on each node, responsible for maintaining
network rules on nodes [17]. kube-proxy implements essential functionalities for Kubernetes
services, which we will discuss in the next section. By updating rules in IP tables, kube-proxy
helps the communication from and to the pods in the cluster.

https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/#:%7E:text=The%20kubelet%20is%20the%20primary,object%20that%20describes%20a%20pod.
https://kubernetes.io/docs/concepts/overview/components/

14

2.5 Kubernetes Objects

Kubernetes defines various types of objects, and these objects form the building blocks of
Kubernetes [24]. The Kubernetes API discussed in the previous section is used for querying and
managing these objects (e.g., create, delete, update, get, etc.) There are quite many
Kubernetes objects, however, in most cases we work with only a handful of them. Kubernetes
Objects, in most cases, have the following fields as can be seen from the example
configuration files (Figure 2.6 and 2.7).

• apiVersion: This is the specific version of the Kubernetes object’s schema

• kind: This is a string val. that represents the Kubernetes object’s associated REST
resource

• ObjectMeta: The Kubernetes object’s metadata that includes ‘name’, ‘labels’,
‘annotations’, etc.

• ResourceSpec: Description of the Kubernetes object’s desired state as defined by the
application deployer

• ResourceStatus: The current state of the resource

The application developer can execute basic CRUD operations on these Kubernetes resources
such as:

• CREATE: creating the Kubernetes resources in the storage backend. The creation
happens with the desired state

• READ: There are three main operations that come with the READ:

o GET: Fetch a specific resource using their name

o LIST: Fetch all the Kubernetes objects of a specific type within a specified
namespace. The application deployer can restrict the fetched results to match a
selector query

o WATCH: Serves to stream the results for an object(s) as it gets updated

• UPDATE: There are two main operations that come with the UPDATE:

o Replace: Serves to replace the existing spec with the provided one

o Patch: Apply a change to a specified field

• DELETE: Delete a resource from the cluster. Sometimes the child objects of the resource
need to be removed before we can delete the parent resource

In the next section, we will briefly introduce the core Kubernetes objects that are relevant to
the thesis.

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

15

2.5.1 Namespace

In a Kubernetes cluster, we generally organize resources using namespaces [25]. We can think
of a namespace as a virtual cluster inside a Kubernetes cluster where we create virtual
subgroups of resources. The other objects that we will talk about in this section are all
deployed within a particular namespace of a Kubernetes cluster. Kubernetes cluster provides 4
namespaces out of the box: default, kube-node-lease, kube-public, kube-system. For instance,
the kube-system namespace in a cluster includes components that are the system processes.
Upon the creation of a cluster, default namespace is the namespace in which all the
Kubernetes objects (e.g., deployments, pods, services) are created if no other namespace is
specified. The question we need to ask next is: why do we need namespaces? They help the
isolation of resources within a single cluster. Different groups of developers with different
teams/projects in the same cluster can share resources without interfering with each other’s
work. For instance, there may be three different custom created namespaces for
development, testing, and production work in a single cluster with each having specific
resource quota.

2.5.2 Pod

Pods [16] are the smallest processing units in a Kubernetes cluster. They are a collection of a
single or multiple containers sharing the same resources (e.g., network, storage, etc.) that are
scheduled together on the same pod. They are basically wrappers around one or multiple
containers. Pods are ephemeral and meant to be destroyed and recreated during the lifetime
of a Kubernetes cluster. Each pod in the cluster is assigned an IP address that’s used by all the
containers within that particular pod. Other pods in the cluster use each other’s IP addresses
for communication. A Kubernetes developer does not directly create or manage pods. Instead,
they handle ‘deployments’, which we will talk about soon.

2.5.3 ReplicaSet

ReplicatSet is responsible for maintaining a stable set of replica pods running at any given time
[26]. It ensures that a desired number of pods are always running in the cluster. For instance, if
a pod in the ReplicaSet is deleted, the ReplicaSet notices that the number of running replica
pods read from the ResourceStatus do not match with the desired number of replicas read
from the ResourceSpec, and the ReplicaSet creates more pods to match the number of desired
state. An application developer generally does not work with ReplicaSets directly and lets the
‘Deployment’ object handle the replicas.

2.5.4 Deployment

Kubernetes Deployment object [27] is responsible for the creation, update, and deletion of
pods. In practice, the application deployer would not be creating pods or ReplicaSets but
creating deployments where they specify how many replicas they need to run. Users can scale

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://www.vmware.com/topics/glossary/content/kubernetes-deployment.html

16

up and down the number of replicas of pods they need. A deployment automatically creates a
ReplicaSet, which then creates the desired number of pods specified in the ‘ResourceSpec’. As
mentioned before, a Pod is a layer of abstraction on top of a container(s); Deployment is
another layer of abstraction on top of a pod(s). Below is an example nginx deployment from
the official Kubernetes website [28]. This deployment file creates a ReplicaSet that includes
three nginx pods:

Figure 2.6: Example Kubernetes Deployment [28]

• In this example deployment file, a deployment with the name “nginx-deployment” is

created under the “.metadata.name” section.

• Under the “.spec.replicas” section, we can see that a total of three replica pods are
created.

• The selector section with the “app: nginx” key-value helps the Deployment know which
Pods to manage.

• The template section has the Pod labels under “.metadata.labels” field (app: nginx). This
matches with the key-value in the selector section.

• The spec field has a “containers” (.spec.containers) sub-field. We can see that the Pods
only have a single container with the ‘nginx’ Docker image.

2.5.5 Service

As mentioned in the ‘Pod’ section, Kubernetes pods are ephemeral and are meant to be
destroyed and recreated during the lifetime of a Kubernetes cluster. Pods have their unique IP
addresses that other cluster objects use for communication. However, every time a pod gets
destroyed and recreated, they are assigned a new IP address. Using that newly assigned IP

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

17

address for communication may overcomplicate things in the cluster since it is very common
for pods to be recreated and assigned new IPs. This is where Service come to the rescue. A
Service [29] is a static IP address that can be attached to each pod to expose them. The
important point is that the lifecycles of Pods and Services are not connected. Even if the Pod
dies, the Service, and its static IP address will remain intact, and the users can access the pods
using the same Service static IP. There are several service types providing different access
scopes to the pods [69]. The service types are:

• ClusterIP: If no Service type is provided in the configuration file, the Service gives a
ClusterIP to the pods. The ClusterIP essentially corresponds to an internal IP address, and
pods with ClusterIP can only be accessed by other resources in the same cluster and not
by external objects.

• NodePort: The pods with NodePort service type are accessible from outside the cluster
through a static NodePort in the range of 30,000 – 32,767. The Service is essentially
exposed through a static port of each Node’s IP. The access to the NodePort service
happens through a request in the form of ‘<NodeIP>:<NodePort>’.

• LoadBalancer: This type is the most popular one. It exposes the Kubernetes Service
externally through a cloud provider’s LB solution (e.g., GCP, AWS, Azure). The
LoadBalancer automatically redirects the external requests to the corresponding service.

Below is an example service that we connect to the ‘nginx’ deployment from the previous
section. Notice that no Service type is provided. This corresponds to the ‘ClusterIP service type.

Figure 2.7: Example Kubernetes Default Service

Remember that our previous nginx deployment had “app:nginx” label. Notice in our Service
configuration that in the selector field we have the same “app:nginx” label. This means that
our service exposes any Pod in the cluster with the “app:nginx” label. To summarize, we have a
Service with the name “nginx-service”, redirecting all requests that come from TCP port 80 to
port 9376 for any Pod that has the label “app:nginx”.

18

2.5.6 ConfigMap

A ConfigMap [30] is a key-value dictionary of configuration settings. They allow application
developers to separate configuration data/files (e.g., environment specific configurations)
from containers to make applications portable. They may contain config. information such as
strings, hostnames, URLs as key-value pairs for certain Kubernetes objects. The configuration
settings and which Kubernetes objects they are applied to are determined through ‘Labels &
Selectors’, which is described in the next section. We need to keep in mind that ConfigMaps
are not encrypted and thus not recommended for storing sensitive data. Another Kubernetes
object called “Secrets” are used for storing confidential information.

2.5.7 Secrets

Secrets are similar to ConfigMaps, but store small amount of confidential data such as
passwords, ssh keys, OAuth tokens, etc.

2.5.8 Labels & Selectors

When we create Kubernetes objects, we sometimes work with Configuration files where we
organize and create associations between certain objects. Labels are essentially key-value
assignments attached to Kubernetes objects and used for grouping them, and Selectors serve
to choose groups of objects with the same label [31]. Figure 2.6 is a Kubernetes Deployment
object where the pods are labelled as “app: nginx”. Figure 2.7 is a Kubernetes Service object
that has the selector for all the Kubernetes objects having the label “app: nginx” as can be
seen in lines 6 and 7. This suggests that the Service object (nginx-service) is attached to all
pods with the label “app: nginx”. Labels and Selectors are crucial parts of Kubernetes
configuration files.

In our design & implementation section, we will assign workloads from a central cloud
cluster to a local cluster in a branch (e.g., our local computer). In particular, we will assign
workloads to a particular server (e.g., node) in our local cluster from a central cloud. To
achieve this, we can limit the deployment of certain pods so that they can only run on specific
set of node(s) using label selectors [32]. In general, Kubernetes doesn’t expect such
configuration as it has a scheduler automatically placing pods across different nodes based on
the existing loads. However, we sometimes want to control which nodes we wish the pods to
run at because these nodes may be located closer to a particular end user or we may want to
co-locate multiple pods on the same exact node that are extensively communicating with each
other [32]. In Kubernetes, we allocate workloads (e.g., pods) to particular node(s) in three
main ways: (i) nodeSelector using node labels, (ii) Affinity and anti-affinity, (iii) nodeName
field. The one that we will use in our design & implementation is the Kubernetes preferred way
of selecting nodes: nodeSelector and node labels.

https://www.aquasec.com/cloud-native-academy/kubernetes-101/kubernetes-configmap/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

19

2.5.8.1 NodeSelector and Labelling Nodes

In general, when we wish to label nodes, we do it manually through a command below:

kubectl label node local-cluster-node-m01 abc=xyz

Here, we are labelling the node “local-cluster-node-m01” with the label of “abc=xyz”.
Remember that the labels are just key-value pairs. Using this label with a NodeSelector will
place the workloads (e.g., pods) on any node with the “abc=xyz” label, in our case, just the
“local-cluster-node-m01” node:

Figure 2.8: Placing workloads on a particular node through Labels & Selectors

In Figure 2.8, notice that below the containers field, we have a ‘nodeSelector’ field where we
give the labels of nodes on which we want the pods to be deployed. In this example, we are
deploying three Nginx pod replicas onto all nodes with “abc=xyz” label. We may want such a
scenario if for instance the Nginx pod replicas need to communicate with each other
extensively.

2.5.8.2 Affinity and Anti-Affinity

Node affinity is similar to the NodeSelector method, but it allows to give more specific
conditions. While NodeSelector allows us to allocate pods to nodes using a simple ‘key-value’
pair label; Node Affinity allows us to give a logical set of conditions for the selection of nodes.
Below is an example configuration file using Node Affinity from the official Kubernetes website
[32]:

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

20

Figure 2.9: Placing workloads on particular Nodes through Node Affinity [32]

In Figure 2.9, in order for the pods to be deployed in the desired nodes, the nodes must have a
label with the key= topology.kubernetes.io/zone and the value must be either of antarctica-
east1 or antarctica-west1 . The node also preferably has a label with the key=another-node-
label-key and the value of another-node-label-value [32].

2.5.9 Custom Resource Definitions (CRD)

A Kubernetes resource is an endpoint in Kubernetes API that allows you to store an API object
of any kind. For instance, Service resources serve to store a collection of the Service objects. A
Custom Resource helps create your own API objects and define your own kind such as Pods,
Deployments, ConfigMaps, ReplicaSets, etc. [33 , 34]. Custom Resource Definitions or CRDs
allow application developers to extend existing Kubernetes capabilities by adding new kinds of
API objects useful for the application. CRDs are what we use to create Custom Resources and
they allow these Custom Resources to be used as Kubernetes resources.

2.6 Summary

In this chapter, we gave an in-depth background of Kubernetes, why it is used, its components
and main architecture. The information provided in this chapter will help us in the design &
implementation section of our thesis. We learnt that Kubernetes is the leading tool for
container orchestration that helps us automate the process of deployment, updates,
development, and release of an application. So far, we have only focused on a single cluster
setup in Kubernetes. In the next section, we will talk about “Multi-cluster Kubernetes” and
touch upon the “Cluster Federation” concept. These two concepts are the two building blocks
of our thesis.

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://docs.openshift.com/aro/3/dev_guide/creating_crd_objects.html

21

Chapter 3

Kubernetes Multi-Cluster

In this chapter, we will introduce the Multi-Cluster Kubernetes approach, talk about its various
use-cases and implementations, and summarize the benefits that come with it. After we draw
a clear picture of the Multi-Cluster Kubernetes, we will introduce the concept of “Cluster
Federation”, which is the foundation of this thesis. In the next chapter, we will talk about
existing Kubernetes Federation Projects and particularly focus on KubeFed project, which is
the open-source project with which this thesis aims to build a working solution on a cross-
platform context (e.g., host cluster in cloud with a member cluster running on a local Minikube
representing a branch of an application).

3.1 Multi-Cluster Approach in K8s

As mentioned in the previous chapter, a Kubernetes application is deployed in a cluster that
includes multiple master and worker nodes responsible for hosting application pods with
containers. In simple cases, a single Kubernetes cluster may be sufficient for a company’s
business needs, however, it has multiple drawbacks [35]. Multi-Cluster Kubernetes is simply a
strategy of creating an environment in which we use more than one Kubernetes cluster for
application deployment. These clusters might reside on the same physical host, on various
hosts in the same data center, or even in different clouds in different countries.

A single cluster approach is generally more cost-effective and facilitates administration
of the Kubernetes resources, however, there are certain drawbacks to this strategy. As the
name suggests, a single cluster may result in a single point of failure for the deployed
applications. Some examples of such failures could be configuration errors, infrastructure
outages, control planes going down, etc. [36]. Secondly, a single cluster most probably
contains multiple running applications sharing the same resources (e.g., networking, OS,
hardware, etc.) [36]. Although, Kubernetes namespaces may help to virtually isolate different
applications running on the same cluster, this may not be enough to fully prevent the
unwanted interactions between different applications, hence increasing the possibility of
security risks and resource competition. Another similar example would be a scenario in which
a company uses a single cluster to deploy all their applications. Different teams may be
assigned to different applications, but they might still access other teams’ applications in the
same cluster. This would obviously exacerbate possible attack surfaces. Moreover, a
Kubernetes cluster can grow to host at most 5,000 nodes, 150,000 pods and 300,000

https://www.mirantis.com/cloud-native-concepts/getting-started-with-kubernetes/what-is-kubernetes-multi-cluster/#why_multi_cluster
https://aaltodoc.aalto.fi/handle/123456789/110500
https://aaltodoc.aalto.fi/handle/123456789/110500

22

containers [36]. This amount of resource may not be necessary in most cases, however, it is
still worth mentioning. The drawbacks mentioned in this paragraph pushed organizations to
adopt a Multi-Cluster Kubernetes approach, so they can deploy their applications across
multiple Kubernetes clusters for a higher availability and a better isolation. In the next section,
we will give a more detailed overview of the benefits that come from Multi-Cluster strategy.

It should also be noted that, although we can add multiple nodes to a single cluster to
offer some sort of high availability, a single cluster currently cannot have nodes from different
regions. More specifically, all the nodes in a single cluster must be from the same region,
however, they can span across different zones within a region. The safest way to deploy a
Kubernetes application across different regions for high-availability and disaster recovery is to
create multiple-clusters in different regions. This would allow the same application to serve
multiple geographical regions [37]. We will implement such solution in the design &
implementation section where one of the clusters will be our local Minikube cluster and the
central cluster will reside in GCP Australian region.

3.1.1 Multi-Cluster Kubernetes Advantages

By deploying Kubernetes applications across multiple clusters, multi-cluster K8s aims to tackle
the limitations mentioned in the previous section. Below are some of its advantages [38]:

• Higher Availability and Performance: Application developers can deploy different
clusters across different geographical locations, providing geo-redundancy [36]. Same
applications may be deployed in multiple clusters in different regions for high availability
and low latency. It may be more practical to have different clusters in each location,
while being able to centrally manage them. This is not a feature that a single cluster can
offer since all the nodes in the cluster must be from the same region. Although, multi-
cluster deployment allows us to deploy clusters across different regions and possibly
cloud providers, if we cannot easily manage these clusters from completely different
environments through a single controlling point, then our lives wouldn’t get any easier
with multi-cluster deployment either. The central management of different clusters is
also a foreshadowing to the ‘Cluster Federation’ concept that this thesis revolves
around. A multi-cluster deployment across different regions and cloud providers without
a single federation control manager might quickly become a nightmare.

• Tenant Isolation: As suggested in the introduction, it is challenging to work with multiple
Kubernetes environments to handle development, testing, and production settings in
the same cluster. Different teams can be assigned to different projects (e.g., production
or testing, etc.) in the same cluster, and the isolation between the applications running
in different projects within the same cluster can be somewhat provided through
namespaces. However, the security mechanism of Kubernetes makes it challenging to
segregate different environments from one another. A problematic application running
in one namespace can still affect applications running in different namespaces but still
sharing the same hardware, etc. Kubernetes multi-cluster setups ease the process of
isolating users and projects by cluster.

https://aaltodoc.aalto.fi/handle/123456789/110500
https://www.getambassador.io/learn/multi-cluster-kubernetes/
https://blog.equinix.com/blog/2020/05/26/is-just-one-kubernetes-cluster-enough/
https://blog.equinix.com/blog/2020/05/26/is-just-one-kubernetes-cluster-enough/

23

• Failover: With a multi-cluster system, application developers make sure that workloads
do not encounter downtime caused by a fault within a single cluster by effortlessly
relocating them to different clusters [35].

• Avoiding Vendor Lock-In: Through a multi-cluster setup, application developers can
deploy their clusters on different cloud providers of their choices, fully utilizing different
capabilities and pricings offered by multiple cloud providers. For instance, in our design
section, we will have one of the clusters in our ‘local branch’ running in Minikube.

• Scaling Applications beyond a Single Cluster’s Limits: As mentioned in the introduction,
there is a limit to the number of nodes, pods and containers deployed on a single cluster.
By deploying applications in multiple clusters, you can increase the computing power
even further. This would work best with a Multi-Cloud Kubernetes environment.

• Edge Computing and IoT: With multi-cluster approach, we can deploy local clusters
responsible for processing data at the edge and send the output to regional clusters.
These regional clusters may also perform certain operations and return the output to a
central cluster. In an IoT setting, the local clusters at the edge may include smaller
compute devices acting as “leaf nodes” for the cluster.

3.1.2 Multi-Cluster Kubernetes Architecture

As we see in the work of Saba Feroz Memon from Aalto University [36] and the descriptions
made in several company products [39, 37], there are several use-cases for the Multi-Cluster
Kubernetes setup, requiring different types of architectures as can be seen in Figure 3.1. Below
we will summarize some of these use-cases:

• Replicating Clusters: In this setup, one of the clusters is the ‘main’ cluster (or host
cluster in Cluster Federation terms) responsible for hosting the main applications; the
other clusters are replicas that have the copies of the host cluster’s applications. This
approach provides high-availability and disaster recovery by allowing the same
application to run in different geographical locations. The clients’ requests can be routed
to the geographically nearest cluster to decrease latency. This setup will be a part of our
design & implementation section through “cluster federation”.

• Cluster per Deployment Unit: In this setup, we have separate clusters for each
deployment unit of an application (e.g., development, testing, production). Imagine we
have 3 different applications with each having production, development, and testing
environments. In this scenario, we would have three separate clusters each containing
all 3 applications, but only one of the three deployment units (dev, testing, or
production). In this setup, an entire development, testing, or production team can work
on their own cluster for all three applications. There is an isolation of deployment units
rather than the isolation of applications. Refer to Figure 3.1 for a clearer picture.

• Cluster per Application: In this setup, rather than having a cluster per deployment unit,
we have a cluster per application. Again, imagine we have 3 applications. In this case,
each cluster would contain only the deployment units of a single application. A Single
Cluster would contain all the development, testing, and production deployment units of

https://www.mirantis.com/cloud-native-concepts/getting-started-with-kubernetes/what-is-kubernetes-multi-cluster/
https://aaltodoc.aalto.fi/handle/123456789/110500
https://learnk8s.io/how-many-clusters
https://www.getambassador.io/learn/multi-cluster-kubernetes/

24

a single application. There is an isolation of applications rather than the isolation of
deployment units. This method allows for the adaptation of each cluster based on the
application they are hosting. Refer to Figure 3.1 for a clearer picture.

• Cluster per both Application and Deployment Unit: This strategy is an amalgam of the
previous two setups. Imagine we have 3 different applications and 3 different
deployment units (e.g., development, testing, production). In this scenario, we would
have a separate cluster per application per deployment unit, giving us a total of 9
separate clusters. This allows for a total isolation, reducing the effect of an event on
production unit.

• Cluster per Application Features: This strategy deploys a cluster per different features
of a single application. This helps developers to work on specific features of a mission-
critical application separately, hence isolating between an application’s different
components for a more focused and secure feature development.

Below are representations of above architectures influenced by the work of Saba Feroz
Memon [36]:

Figure 3.1: Different Types of Multi-Cluster K8s Architectures

https://aaltodoc.aalto.fi/handle/123456789/110500

25

3.2 Kubernetes Cluster Federation

In the previous section, we have defined what the ‘Multi-Cluster Kubernetes’ means and its
various use-cases. We have described its benefits and why most companies are following the
multi-cluster strategy. We emphasized that Multi-Cluster Kubernetes is generally used for
providing High Availability, Low Latency, Failure and Business Isolation and avoiding Vendor
Lock-in. We mentioned that this isolation could be partially provided in a Single-Cluster
scenario by creating different namespaces and deploying the resources separately. However,
we also pointed out that this does not offer a secure isolation compared to deploying
applications on different clusters. We’ve also talked about how a single cluster cannot have
nodes from different regions. Thus, deploying a Kubernetes application across multiple
clusters helps the application span multiple geographical regions for high availability and
disaster recovery.

Multi-cluster deployment solves a range of difficulties, as shown by the
aforementioned examples. However, it increases the complexity of operation and
maintenance as well. In a single cluster scenario, application deployment and upgrades are
much less complicated as the developer can easily modify or update the YAML of the cluster.
Changing application configuration and watching it propagate in a single cluster is much more
straightforward than a multi-cluster setting. If we are dealing with multiple clusters, we can
modify the YAML files one by one for each cluster, but the trick is to make sure that the
application load status is the same across different clusters. This would be even more
challenging if the clusters are from completely different regions and/or cloud providers. In
these scenarios, it would be quite difficult to manage all these clusters from different
environments. How can we implement service discovery or load-balancing among different
clusters that we are managing? These are the challenges that Kubernetes Cluster Federation
aims to solve for Multi-Cluster Kubernetes through a single point of management [40, 41]

3.2.1 Cluster Federation Description and Benefits

Kubernetes Cluster Federation is a strategy to manage the configuration of multiple
Kubernetes clusters through a single point called “federation control manager” [70]. Deployers
have the option to choose which clusters the manager will coordinate and what their
configurations will look like through a single group of APIs. This process helps the application
deployer to manage multi-cluster deployments more smoothly and transparently [40].
Through a single point, the application deployer can deploy applications across multiple
clusters and watch the deployment status of all the federated resources. Most Cluster
Federation tools allow the deployer to select whether certain clusters have a particular
configuration or all of them share the exact same resources, a concept which we will visit in
the next chapter (e.g., KubeFed). Two important components of Cluster Federation are:

https://www.revolgy.com/insights/blog/istio-multi-cluster-federation-and-hybrid-cloud#:%7E:text=High%20availability%3A%20By%20spreading%20the,prevents%20cluster%20provider%20lock%2Din.
https://unofficial-kubernetes.readthedocs.io/en/latest/concepts/cluster-administration/federation-service-discovery/
https://www.revolgy.com/insights/blog/istio-multi-cluster-federation-and-hybrid-cloud#:%7E:text=High%20availability%3A%20By%20spreading%20the,prevents%20cluster%20provider%20lock%2Din.

26

• Syncing Resources Across Clusters: This is the fundamental challenge that application
deployers encounter when they deploy applications across multiple clusters (especially
across different regions and cloud providers). Through Cluster Federation, deployments
on multiple clusters possibly running on different cloud providers can automatically sync.

• Intercluster Discovery: Ability to automatically configure DNS servers and Load-
Balancers with backends, discovering all member clusters possibly running on different
cloud providers.

Below is a sample Cluster Federation setup with two federated member clusters, each from
different regions.

Figure 3.2: Federation of two clusters from different regions through a Manager

Imagine that the organization has two separate clusters, one in us-central1 and the other in
europe-west-2. They may both run on the same cloud provider or completely different
environments. Through a single Federation Manager, the same configuration can be easily
applied to both clusters in different regions. It facilitates the coordination of the application
configuration and deployment across multiple clusters. Cluster Federation helps the
coordination of clusters from completely different regions and/or cloud providers and helps
responsiveness and resiliency of the applications on federated clusters [36, 71]. The
application’s configuration is applied to the Federation Manager, and it schedules the
deployment with the exact same configuration across the clusters. If the cluster in us-central1
fails, the same application will still be available in europe-west-2 or vice versa. However, keep
in mind that if the Federated Control Plane gets down, the already deployed applications will
continue to work, but we won’t be able to federate them or check the applications’ desired
states from a single point.

https://aaltodoc.aalto.fi/handle/123456789/110500

27

Overall, Kubernetes Cluster Federation provides ‘ease of configuration to the desired state’.
From a single group of APIs, the deployer can make sure that a ReplicaSet or Deployment is
configured to execute a desired number of pods across multiple clusters, etc. Federation also
complements the high-availability feature of multi-cluster deployment with ease of
management feature since Federation facilitates the coordination of clusters running the same
application across different geographical regions and cloud providers [42].

3.2.2 Cluster Federation Caveats

However, nothing comes with only advantages. There are many good reasons to use
Kubernetes Cluster Federation as described in the previous sections, but there are also several
things to consider [42]:

• Higher Network Bandwidth and Associated Costs: The Federation Manager monitors
all the member clusters to make sure that they stick to the desired current state. In most
cases, we will be running our clusters in multiple regions or possibly different cloud
providers, which can substantially increase the networking costs. In many cases,
conventional approaches to Cluster Federation (e.g., native cluster management found
in most public cloud platforms) may be much less costly.

• Limited Cross-Cluster Isolation: As previously described, a single Federation Manager is
responsible for the configuration and deployment of applications across multiple
clusters. Thus, if a bug appears in the control plane, it has the potential to affect all the
clusters.

• Lack of Maturity in Current Federation Projects: Most of the Cluster Federation
projects are recent and do not support all resources. Most of the projects are active in
development process as we will discover in the next chapter. Moreover, Cluster
Federation tools generally do not provide their own security mechanisms, thus most
security solutions must be custom integrated. Another missing feature of Cluster
Federation tools that we will focus on in our design & implementation section is their
lack of support for creating a hybrid-environment with on-premises and cloud settings
(e.g., central cluster in the cloud and the member cluster federated on a local machine).
We will create such an environment for our implementation in the upcoming chapters.

3.3 Other Alternatives

Kubernetes Cluster Federation is not the only means to manage multiple Kubernetes clusters.
There are two other well established strategies that companies choose to use: the Cluster API,
currently a Kubernetes sub-project, and Google Anthos, a Kubernetes solution offered by
Google [9]. These are not particularly used for Cluster Federation, however, they are widely
used for Cluster Management.

https://unofficial-kubernetes.readthedocs.io/en/latest/concepts/cluster-administration/federation/
https://unofficial-kubernetes.readthedocs.io/en/latest/concepts/cluster-administration/federation/
https://cloud.google.com/anthos/docs/concepts/overview

28

3.3.1 Cluster API

Cluster API [43] is a Kubernetes Open-Source project that aims to help cluster operators
simplify cluster lifecycle management. It hopes to answer the question of: “what if we were to
use Kubernetes itself to manage Kubernetes?”. As we know, Kubernetes provides declarative
APIs for managing workloads. What if we were able to create declarative APIs for managing
cluster lifecycle, and that’s what the Cluster API does. Cluster API provides Kubernetes style
APIs and patterns (declarative APIs) that allow a cluster operator/administrator to
declaratively define what a cluster should look like and then have Cluster API reconcile that
declarative definition. Kubeadm is a crucial tool used by Cluster API to reuse and integrate
existing ecosystem components rather than recreating them from scratch. Cluster API mostly
serves to scale up and down existing workload clusters, unlike KubeFed tool which aims to
federate configurations across member clusters. Cluster API aims to facilitate the creation and
replication of node infrastructure across clusters whereas KubeFed aims to help with the
replication of Kubernetes resources such as deployments and services across clusters. Cluster
API has two types of clusters: a Management Cluster and a Workload Cluster. The
Management Cluster is responsible for managing the lifecycle of the Workload Clusters just
like how a single cluster is responsible for managing the lifecycle of its nodes. Through Cluster
API, we can check the lifecycles of nodes in multiple workload clusters from a single
management point.

Figure 3.3: Cluster API Components

3.3.2 Other Tools Offered by Cloud Providers

There are some other Cluster Management tools provided by some of the biggest Cloud
Providers. Some of these tools only work within their own cloud provider and not across
different providers, but most of them offer cross-platform features. Some of these tools are

https://cluster-api.sigs.k8s.io/

29

Google Anthos, Red Hat’s OpenShift, AWS outposts and Azure Arc. Among them, Google
Anthos is the most flexible and mature cluster management tool, however, it is not a Cluster
Federation tool. It helps application deployers view all the managed clusters from a single
point called Anthos. Most of the Cluster families (e.g., EKS, GKE, VMware, OpenShift) are
supported by Google Anthos. Google Anthos allows us to attach agreed upon third party
clusters to our fleet and lets us view our existing third-party clusters along with our Anthos
clusters. From a single point of management (e.g., UI with a Dashboard), Anthos provides a
centralized configuration control with Anthos Config Management and Microservice
architecture management through Anthos Service Mesh [44]. Below are the conformant
Kubernetes clusters that we can add to our management using Anthos:

Figure 3.4: Conformant Kubernetes Clusters we can add to Anthos Management

As mentioned before, Google Anthos is not a Federation tool where we select one of the
clusters as the host-cluster and the others as member clusters. Resources are not
automatically propagated to a member cluster through a host-cluster. Rather, Anthos is an
enterprise solution that helps us configure all our registered clusters without needing to leave
its platform. Anthos Config Management offers many advantages since it seamlessly
synchronizes configurations and policies across various clusters. Below are some of the
important features and advantages that Google Anthos brings:

• Simplified Management of Clusters: From a simple platform, we are able to manage
(e.g., deploy configurations, policies, etc.) across clusters from different environments.

• Consistent Configurations and Policy Management: Anthos provides an auditable
version control system to manage and keep track of all the configurations of our clusters.

• Scalable across Environments: Centralizing the configuration and management of
multiple clusters from different environments using a single platform, Anthos provides
automated, scalable and resilient ways to manage complex systems.

• Secure and compliant: User can define a single set of policies and can be assured that
the security policies will be consistently applied across all the environments registered to
Anthos. Moreover, Anthos Config Management continuously monitors the states of the
clusters and make sure that the policies correspond to the application deployer’s desired
policies.

https://cloud.google.com/anthos/clusters/docs/attached/how-to/attach-kubernetes-clusters

30

Google Anthos is a perfect tool to manage any type of cluster in Figure 3.4 through a single
platform. We can also see that Anthos is a strong production ready tool compared to KubeFed,
which is still in development. However, Anthos doesn’t perform “Cluster Federation” in the
sense that regular federation projects like KubeFed does, and it doesn’t support all cluster
types and Kubernetes versions. For simple cluster Federation solutions, KubeFed may have
more advantages since it is only designed for resource federation, and it is environment
agnostic. Moreover, it is much easier to set up than Anthos. However, if we need a more
robust solution that considers all security issues and requires a platform to watch all the
configurations of multiple clusters from different environments, Anthos would be a much
better choice. We need to consider the needs of our solution and choose an appropriate tool
accordingly.

3.4 Summary

In this chapter, we have talked about the concepts that this thesis will focus on: Kubernetes
Multi-Cluster deployment and Kubernetes Cluster Federation. We defined what Multi-Cluster
deployment refers to and some of its benefits such as: high availability and performance,
tenant isolation, fighting failover, avoiding vendor lock-in, scaling applications beyond a single
cluster’s limits, etc. We then provided different architectures for Multi-Cluster Kubernetes
based on different use-cases. We also mentioned certain drawbacks of multi-cluster
deployment such as complexity of operation and maintenance compared to a single cluster
scenario. We then introduced the main concept of our thesis: Kubernetes Cluster Federation
and how it provides ease of management for multi-cluster settings through a single set of API
points. However, most of the cluster federation tools are still in development process and
have certain important caveats that need to be considered as well. In the next section, we will
introduce certain Federation Projects, putting our emphasis on a particular one called
“KubeFed”.

31

Chapter 4

Cluster Federation Projects

In the previous chapter, we have introduced the concept of Multi-Cluster Kubernetes and how
it is used in production. We provided the most commonly used multi-cluster architectures and
their benefits compared to a single cluster setting. We have also briefly mentioned the
limitations and drawbacks of multi-cluster Kubernetes and how Kubernetes Cluster Federation
may help mitigate such drawbacks. We gave a sample diagram showing how Cluster
Federation generally works in Kubernetes and also provided its benefits together with its
limitations. We have also offered a small section on Cluster Federation alternatives provided
by the major cloud providers. In this chapter, we will talk more in detail about the current
cluster federation tools, particularly emphasizing on the KubeFed project, which is the heart
and soul of our thesis’s design and implementation.

4.1 KubeFed Project (Version 2)

KubeFed is the official Kubernetes Cluster Federation implementation built by a Kubernetes
Special Interest Group (SIG) [45]. KubeFed enables users to coordinate the configurations of
several Kubernetes clusters from inside a Host cluster through a single set of APIs. In most
cases, KubeFed and the Kubernetes Cluster Federation concept are used interchangeably. In
the next section, we will provide a detailed overview of KubeFed and its many benefits.

4.1.1 KubeFed Detailed Overview

KubeFed helps us synchronize resources from a central ‘Host Cluster’ to the ‘Federated
Clusters’ that can be hosted in any regions and/or cloud providers, a property that a vanilla
multi-cluster Kubernetes deployment lacks. This also corresponds to the term frequently used
in the project: “propagation”. It corresponds to distributing resources from the host cluster to
all the federated member clusters. A single Configuration File (YAML) is created and executed
in the Host cluster, which propagates to all, or selected member clusters based on the
configuration of the YAML file. This means that the KubeFed Host Cluster allows the app
deployer to deploy applications across multiple clusters through a single set of API points.

 There are two types of clusters in KubeFed:

https://github.com/kubernetes-sigs/kubefed

32

• Host Cluster: Cluster that is responsible for exposing the KubeFed API and run the
Federation Control Plane to federate applications across member clusters. A host cluster
can also be a member of its own. We schedule federated resources in the Host Cluster
and see these resources automatically deployed as regular resources in the Member
Clusters.

• Member Cluster: Cluster that is registered through the KubeFed API. Member clusters
are federated by the application deployer through the Host Cluster. When we schedule
federated resources in the Host Cluster, the resources are automatically deployed in the
Member Clusters.

Figure 4.1: List of Federated Clusters Observed from Host Cluster

The Host Cluster includes two crucial components called KubeFed API and KubeFed Controller
Manager. These are the building blocks for the KubeFed. When KubeFed is installed to the
Host-Cluster, these two components are automatically deployed as pods in a namespace of
our preference. Refer to Figure 4.1 where all KubeFed controller manager and API servers are
deployed as pods in host-cluster’s “kube-federation-system” namespace that we created:

• KubeFed API Server: The KubeFed API Server is exposed by the host cluster. The
KubeFed Controller Manager uses the API server to communicate with other clusters.
This makes the KubeFed API server quite similar to the Kubernetes API server in that, the
former helps the KubeFed controller manager manage and coordinate the member
clusters; the latter helps the Kubernetes control manager to query, create, delete
Kubernetes resources [36].

• KubeFed Controller Manager: KubeFed Controller Manager is very similar to the
Kubernetes Controller Manager in that Kubernetes Controller Manager constantly
monitors the state of pods, deployments, nodes within a single cluster whereas the
KubeFed Controller manager monitors the state of all the federated clusters to preserve
the desired state of the member clusters. In order to synchronize the state of all the
Federated resources with those deployed in the member clusters, the KubeFed
Controller Manager uses a push reconciler strategy [36].

33

Figure 4.2: KubeFed components automatically deployed as Kubernetes Pods

Moreover, KubeFed uses two kinds of configuration information as mentioned in [45]:

• Cluster Configuration: The member clusters that we wish KubeFed to target [45]. This
basically includes the register information required for the KubeFed Control Plane to add
member clusters.

• Type Configuration: To define the types of APIs to be handled by KubeFed [45]. Each
Type Configuration is a Custom Resource Definition (CRD) object that includes three
configuration components: templates, placement, overrides. Below we will describe
these components as they are important for our design & implementation.

Coming back to the concept of propagation, corresponding to the mechanism for distributing
resources to Federated Member clusters, there are three main components of resource
propagation from a host cluster to the member clusters. These components reside in a
configuration file (YAML) of a federated resource. The configuration file containing these
components is applied within the Host-Cluster as a FederatedDeployment, FederatedService,
etc., and they are deployed as regular Deployments or Services in the member clusters:

• Templates: Similar to the basic Kubernetes configuration files in YAML, the template
describes basic information of the resource to be federated among the member clusters
(e.g., Deployment, Service, DaemonSet) [45]. The template may include the image of the
deployed container, env. variables and the number of instances [46]. Template needs to
include all the information necessary to create the deployment.

• Placement: The ‘Placement’ section of the configuration file includes the federated
member clusters that will contain the deployed resources. Not every federated cluster
needs to include the deployed federated resources. The application developer may
choose to opt out certain member clusters [46].

• Overrides: Override section of the configuration file is responsible for overriding the
features of the resources in the original template to match certain specific criteria of a
member cluster. The overridden conditions can be the number of replicas, secret-keys,
etc.

https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed
https://www.sobyte.net/post/2022-03/kuberentes-federation/
https://www.sobyte.net/post/2022-03/kuberentes-federation/

34

Figure 4.3: Sample KubeFed Template Diagram

Below is a comparison between a regular Nginx deployment and the Federated version of the
same Nginx deployment:

Figure 4.4: Conversion of Deployment resource into Federated Deployment

The first thing that we do in KubeFed is to create a Federated Namespace resource in the Host
Cluster. This Federated Namespace is just a regular namespace that will be created in all the
member clusters, and whenever the host cluster creates federated resources in this
namespace, they will be deployed in the member clusters as well. The right-hand side of the
Figure 4.4 is an example federated resource that we create in the federated namespace of the
host cluster, which will force the deployment of this resource among the same federated
namespace of the member clusters. Below, we will give more detail on how this all works.

35

In order to create regular Nginx Deployments in member clusters (the deployment
configuration on the left-hand side of Figure 4.4), the host cluster will deploy a
FederatedDeployment configuration as can be seen on the right hand-side of Figure 4.4. This
FederatedDeployment of Nginx, in fact, corresponds to a regular Nginx deployment on the left-
hand side. Moreover, this Federated Nginx Deployment is deployed in the
FederatedNamespace of the Host Cluster (a namespace that appears in both the host cluster
and all the member clusters where all the federated resources are created). What we see
deployed on the member clusters is the regular Nginx deployment on the left-hand side of
Figure 4.4. The FederatedDeployment configuration file is for the host cluster to give certain
specifics to the deployment. We deploy the FederatedDeployment on the right-hand side of
figure 4.4 in the host cluster, and this will automatically create regular Deployments on the
left-hand side of figure 4.4 in the member clusters. Unless the host cluster is also federating
itself (namely the host cluster is a member cluster of itself as well), the deployments will not
be created in the host cluster; the FederatedDeployment would only propagate deployments
to the member clusters. Notice the underlined sections: placement, template, and overrides.
A few things are happening in this configuration file:

• Placement: Under the placement field, we are selecting all the member clusters for the
propagation of this particular Nginx deployment. By leaving the “matchLabels” section
empty, we are choosing all the member clusters.

• Template: The template section is just the information required for the Nginx
deployment. Notice that this section (L.10 – L.21) is identical to the regular Nginx
deployment on the left-hand side (L.5 – L.16).

• Overrides: Remember that this section corresponds to overriding certain requirements
for the deployment. In this case, we are only changing the deployment for the “child-
kubefed-cluster-1” member cluster by overriding its number of Nginx pod replicas to 4.

The final three components are the building blocks for higher-level APIs:

• Status: Describes the status of the resources that are distributed across the federated
member clusters.

• Policy: Describes the subset of member clusters that can include the federated
resources.

• Scheduling: Describes how the workloads are distributed across the federated member
clusters.

The diagram below provides a big picture of how all the KubeFed components function
together [45]:

https://github.com/kubernetes-sigs/kubefed

36

Figure 4.5: Main KubeFed Components [45]

The advantages and caveats mentioned in the Cluster Federation chapter applies to KubeFed
as well. Refer to the previous chapter for the general benefits and drawbacks of KubeFed. In
the next section, we will talk about some of the disadvantages specific to KubeFed that we
encountered during our own experiments.

4.1.2 KubeFed Caveats

We have previously mentioned that the host cluster in KubeFed monitors all the member
clusters to make sure that they are all in the desired states. Running these multiple clusters in
different cloud providers or regions increase the networking costs dramatically. Thus,
increasing the number of clusters in different regions would also increase the cost of
communication between the host cluster and member clusters [47].

Another interesting limitation in KubeFed is its lack of automatic resource allocation
among member clusters. As of now, KubeFed only allows the selection of member clusters
manually to deploy the federated resources (e.g., placement section of the federated
configuration files). We manually give our selection of member clusters for particular
resources, and they are deployed in the member clusters. KubeFed does not really support
automated policy-based scheduling. The host cluster basically propagates resources to the
member clusters without checking in advance whether the target clusters actually have the
necessary resources (e.g., storage, ram, etc.) left to host these federated resources. This is a
big drawback that causes inefficient use of resources, thus KubeFed is not ready to scale to
handle thousands of clusters expected in most multi-cluster use-cases (e.g., fog computing).

https://github.com/kubernetes-sigs/kubefed
https://people.wikimedia.org/%7Ejayme/k8s-docs/v1.16/docs/concepts/cluster-administration/federation/

37

We conducted a small test on GCP using free credits. We created a host cluster with KubeFed
and two member clusters each with a master node together with two worker nodes. One of
the member clusters is created with nodes with higher CPU and RAM compared to the other
cluster. We observed that the cluster with low resources was over-allocated with respect to its
nodes’ total CPU, and the cluster with higher resources was under-allocated. This happened
because KubeFed does not check the cluster’s available resources before deploying pods. It
does not compare the member clusters’ resource status before distributing pods among them.
The scheduling and distribution of pods among clusters are purely manual.

Another issue with KubeFed that is discussed in detail in the work of Saba Feroz
Memon from Aalto University [36] is KubeFed’s single point of failure. We previously discuess
how the federation of KubeFed works. We have a host cluster federating resources across the
member clusters. All the Federation control plane (e.g., Federation Controller Manager pods
and API webhooks in Figure 4.2) are deployed in the host cluster. If the host cluster fails, the
federated resources that have already been deployed in the member clusters will continue
exist with no issue, but they will no longer be federated since all the federation controller
manager pods lived in the failed host cluster. This presents a single point of failure in KubeFed.

In the next sections, we will talk about some other Federation Projects that are not as
popular as KubeFed. Moreover, some of these projects are no longer in use.

4.2 ClusterMesh Cilium

Cilium is a networking tool that offers network connectivity and load balancing between
applications running on Kubernetes containers; ClusterMesh is an extension of Cilium that
offers pod IP routing, service discovery, network policy enforcement and other networking
plugins between multiple clusters [48]. ClusterMesh is essentially the multi-cluster
implementation of Cilium. Clusters in a ClusterMesh have all their own etcd servers
responsible for keeping track of cluster states and talking with other clusters through their
proxies. The official documentation of ClusterMesh Cilium [49] states that the greatest benefit
offered by ClusterMesh is high availability of Clusters. The deployed services on one cluster can
be replicated onto other clusters belonging to different regions. When one of the clusters fails,
the requests can be forwarded to the other replica. The other benefit stated in the official
document is that multiple tenants can be provided shared services through ClusterMesh.
Finally, ClusterMesh can facilitate the migration of workloads from one Cloud provider to
another by splitting stateless and stateful services across different clusters. However,
ClusterMesh is not as flexible as KubeFed since it requires Cilium-managed etcd for the
creation of certificates and management of compaction. Moreover, ClusterMesh needs Cilium
as its “Container Network Interface” and it is more challenging to set up as opposed to other
Container Network Interfaces [50].

https://aaltodoc.aalto.fi/handle/123456789/110500
https://docs.cilium.io/en/stable/intro/
https://cilium.io/blog/2019/03/12/clustermesh/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/

38

4.3 Network Service Mesh

There are certain limitations to Kubernetes networking. K8s networking cannot provide
advanced L2/L3 network features and cannot meet some of the dynamic reuqirements of
pods; most importantly, it lacks support for cross-cluster, multi-cloud and hybrid-cloud
connectivity. These are not issues encountered by an every- day Kubernetes users but may as
well become limitations for big projects. Kubernetes networking features can’t quite meet the
needs of Network Function Virtualization. Network Service Mesh (NSM) is a Cloud Native
Foundation project that offers sophisticated L2/L3 networking capabilities for Kubernetes
applications. Network Service Mesh does not interact with the Kubernetes Container
Networking Interface; rather, it is a completely independent mechanism that comprises of
many components that may be deployed inside or outside of a Kubernetes cluster. It is a multi-
cloud/hybrid-cloud network solution that is native to the cloud. It is a network service
providing networking functionalities (e.g., routers, firewalls, VPN gateways, etc.) providing
features at L2/L3 layers. Network Service Mesh offers L2/L3 connectivity (e.g., VPN, firewall)
on applications running in Kubernetes clusters [51]. Most of the advanced network features
that Network Service Mesh offers are not provided by default Kubernetes Container
Networking Interface plugins. It essentially aims to offer holistic networking features to
Kubernetes clusters. The problem is that Network Service Mesh does not provide federation or
orchestration features out of the box. It is mostly restricted to networking capabilities only.

4.4 Submariner

Kubernetes deployments include network virtualization allowing containers running on
multiple nodes within the same cluster to communicate with each other. However, containers
running in different Kubernetes clusters require additional resources (e.g., NodePorts, Ingress
controllers). Submariner is a Cloud Computing Foundation Sandbox project aiming to connect
overlay networks of different Kubernetes clusters. It essentially provides a secure and fast
connectivity between different Kubernetes clusters through network routes and tunnels. This
allows network communications among applications running on different clusters without us
needing to create NodePorts, ingress controllers or load balancers [52]. It creates the
necessary tunnels and routes needed to enable containers from different clusters to
communicate directly. The most important benefits of Submariner are its disaster recovery,
high availability and fault tolerance through the inter-communication feature between
pods/services running on multiple clusters across on-premises and cloud environments.
Submariner’s architecture consists of several components: a Broker, Gateway Engine, Service
Discovery, Globalnet Controller, Network Plugin Syncer and Route Agent [52].

https://networkservicemesh.io/
https://submariner.io/getting-started/architecture/
https://submariner.io/getting-started/architecture/

39

Again, Submariner is more of a holistic networking service for Kubernetes rather than a
seamless Cluster Federation tool. Moreover, it is not quite easy to set up Submariner as it may
not be compatible with all Kubernetes plug-ins, requiring additional configurations.

4.5 Consul

Consul is a service mesh aiming to provide communications between microservices [36, 53].
The main features that Consul offers are service discovery, health checks for cluster health and
encrypted traffic through TLS and support for multiple data centers. It uses its own key-value
store for storing cluster data. Similar to KubeFed, Consul also offers Federation features
through Consul Federation [54]. It can be seen that Consul Federation has more support and
offers a more resilient Federation solution compared to KubeFed; however, it requires more
configurations to have a working set up. In KubeFed, we install all the requirements on the
host-cluster and do not involve the member clusters in the initial setup at all. On the other
hand, with Consul, we have to install the tools and dependencies on each “secondary cluster”
in the federation as well. In addition to the primary cluster’s (e.g., host cluster in KubeFed)
config file, every secondary cluster (e.g., member cluster in KubeFed) requires a separate Helm
Config file as well since they have different settings. One can observe that Consul requires a
more intricate setup process, and the updates in clusters may not be automatic. However, we
should note that Consul provides a better documentation than KubeFed. It also offers a UI to
observe the federated clusters in one dashboard. The reason we chose to work with KubeFed
in our thesis is that KubeFed is the precursor of Kubernetes Federation projects, and it doesn’t
use any third-party tools for network connectivity within Kubernetes. It relies solely on
Kubernetes Container Network Interface and other native Kubernetes resources.

4.6 Shipper

Shipper is a now discontinued project that has a lot of similar features to KubeFed. Like
KubeFed, Shipper also has a management cluster and application clusters. The management
cluster is where we install and run Shipper. It contains all the cluster objects and secrets
necessary to connect to the application clusters [55, 36]. We deploy the Shipper tool only on
the management cluster and not on the application clusters. The application clusters are
where we Shipper deploys resources. Unlike KubeFed, Shipper focuses on disaster recovery
and rollback strategies rather than high availability and decreased latency. Shipper in the
management cluster keeps track of all the rollout steps and facilitates the process of rolling
back or aborting a deployment. It also allows the application deployers to override the rollout
strategy used for each application cluster [36]. If a problem occurs in an application cluster,

https://aaltodoc.aalto.fi/handle/123456789/110500
https://www.consul.io/docs/connect
https://www.consul.io/docs/k8s/installation/multi-cluster/kubernetes
https://github.com/bookingcom/shipper
https://aaltodoc.aalto.fi/handle/123456789/110500
https://aaltodoc.aalto.fi/handle/123456789/110500

40

the management cluster can revert to the previous deployment. Some of the limitations of
Shipper are that it cannot use rollout strategies for certain Kubernetes resources such as
StatefulSets, HorizontalPodAutoscalers and ReplicaSets [36]. Moreover, Shipper has a strong
integration with Helm and takes Helm as input, limiting the application deployer’s use of
regular K8s resources. Similar to KubeFed, Shipper has a single point of failure as well. If the
management cluster fails, we won’t be able to store the application configurations or roll
out/revert applications running on application clusters.

4.7 Admiralty

Admiralty is a recent Cluster Federation project that is the most similar to KubeFed among all
the listed projects in this chapter [56, 57]. Just like KubeFed, Admiralty uses a set of
Kubernetes controllers to propagate resources to multiple member clusters. Admiralty calls
these clusters either “source cluster” or “target cluster”. Source clusters are similar to
KubeFed’s host clusters in that they both propagate resources to the member or target
clusters; namely, we schedule resources in the source clusters, and they are deployed in the
target clusters of Admiralty. All the Admiralty tools are installed in the source cluster. The main
difference between Admiralty and KubeFed comes from how they propagate resources to the
source or member clusters. When the source cluster schedules a pod to be deployed in a
target cluster, Admiralty creates a dummy sleeping pod. Admiralty then uses a mutating pod
admission webhook to block the pod creation to start a new round of scheduling and makes a
pod placement decision for the federation and deploys the pods in the target clusters [58, 36].
In Admiralty, there are some intricate pod scheduling processes that result in the creation of
temporary pods before deploying the final pods on the source clusters. It is a relatively new
project with only five developers but has a potential to become the leading open-source
Federation project.

4.8 Summary

In this chapter, we touched upon various Kubernetes Cluster Federation Projects, their
advantages, and disadvantages. Some of the projects provide a “Network-Centric” approach,
focusing on the networking and communication between containerized applications located in
multiple clusters. They aim to establish a strong network connection between multiple
clusters. Others provide a more “Kubernetes-Centric” approach focusing on changing the
existing Kubernetes resources and configurations to create a centralized control plane that
manages and orchestrates multiple clusters (e.g., KubeFed, Admiralty, Shipper). All these
projects essentially aim to facilitate the management of a. multi-cluster Kubernetes setup

https://aaltodoc.aalto.fi/handle/123456789/110500
https://github.com/admiraltyio/admiralty
https://admiralty.io/docs/quick_start/
https://admiralty.io/docs/concepts/scheduling/#proxy-pods
https://aaltodoc.aalto.fi/handle/123456789/110500

41

where some of these clusters may be located on-premises and some located in the Cloud, etc.
To create our solution in the next chapter, we chose to use KubeFed project since it is more
popular and have a better community support. KubeFed has much more contributors than the
other projects and it is actively being contributed [45].

https://github.com/kubernetes-sigs/kubefed

42

Chapter 5

Design and Implementation

In the previous chapters, we talked about the main technologies that we will use in our
solution. They included Kubernetes, Multi-Cluster architecture and Kubernetes Cluster
Federation, focusing particularly on the KubeFed open-source project. We described how
multi-cluster setup works and why it is used by most companies for application deployment.
The same application can be deployed in several clusters located in different regions. This
would improve high availability and provide low latency for the end-users. We also
mentioned that all these clusters are managed separately and the application deployer would
need to deploy the applications separately to each cluster. We talked about how Cluster
Federation helps solve this problem by selecting one of the clusters as the “host-cluster” and
making the rest of the clusters the “member-clusters”. The application deployer can simply
create resources in the host-cluster and these same resources (e.g., deployments, services,
etc.) will be automatically propagated to the member clusters. Thus, the member clusters will
have the same functionalities that the host-cluster has. We mentioned in the introduction
section that our purpose in this thesis is to provide a solution where the functionalities
located in a central cloud cluster will also reside in several local branches outside the central
cloud platform. The local branches may consist of machines with low-medium processing
units located in regions different from the central cloud’s cluster to improve availability and
latency. These local branches are independent from the cloud provider where the central
host cluster resides (e.g., they can be machines such as a user’s computer), and all the
resources that are created in the central cloud cluster should be automatically propagated in
the local branches that may be located all around the world. An example scenario may
include small local machines with low computing power for IoT devices, and the end-users
can make requests to these local machines, which in turn will execute the computing
processes at the edge network. Then, these machines may return the results to the central
cloud. Moreover, the resources running in the clusters of the local machines can be easily
updated and propagated by the host cluster running in the central cloud based on specific
needs.

In this chapter, we will talk about how these concepts and several other techniques can
be used to create a connectivity between a cluster running in a local machine and a host-
cluster running on a central cloud, and then automatically propagate the resources residing in

43

the central cloud cluster to the local on-premises cluster. Thus, the local machines all around
the world can have the same functionalities and resources that the central cloud has. The
first section will briefly go through the problem statement and overview the proposed POC
solution. The second section will include the requirements that we need to fulfill to achieve
the desired solution together with an in-depth overview of how our proposed POC fulfills
these requirements. We will then close the chapter with a summary in the third section.

5.1 Proposed Solution

In the last chapter, we described that KubeFed tool can exactly provide the automatic
propagation of resources from the host-cluster to the member clusters. The federation
controller manager running in the host cluster can manage the deployment of resources on
several member clusters. The application deployer connects with the host cluster and applies
configuration information for applications to be deployed, and these applications/resources
are automatically propagated to member clusters through the KubeFed controller manager.
Thus, KubeFed Cluster Federation tool is a good starting point to automatically propagate the
functionalities of a central host cluster residing in the Cloud to on-premises member clusters
running on local machines. However, there are almost no examples out there creating a
Cluster Federation setup between a Central Cloud cluster acting as the host cluster and on-
premises clusters running on local machines acting as the member clusters. This is the setup
we wish to create as our POC solution. The member clusters are not a part of any cloud
provider, but rather they are local machines such as a user’s computer. We wish to federate
local clusters running in these local machines all around the world through a host cluster in a
central cloud, and all these independent local clusters will have the same resources that the
host cluster has. Moreover, the configurations of the propagated resources running on the
local machines can be automatically reconfigured through the central host cluster based on
specific needs of an application. End-users will be able to make their requests to the local
machines possibly residing at the Edge Network in various locations instead of making their
requests to the host-cluster residing in the central cloud. This will increase availability and
decrease latency for the end-users while providing the same resources residing in the central
host cluster to the local clusters.

Our POC aims to create “Cluster Federation” between a cluster running on a local
machine and a cluster running on a central cloud by first establishing connectivity between
these two environments. Once the connectivity is established and the central cluster running
on the cloud has access to the local cluster, we will deploy KubeFed Controller Managers into
the central cluster and federate the local cluster running on a simple MacBook Pro. All the
resource configurations deployed on the central “host-cluster” will be automatically

44

propagated to the local cluster outside the cloud platform; both environments will have the
same resources and the same application accessible through two different URLs each.

Our local machine in this POC solution will be a MacBook Pro (2017) running in Europe
(Dublin) region, and the cluster running in this local machine will be a Minikube cluster that is
only accessible locally by default. The central “host-cluster” running on the cloud will be a
GKE cluster located in Google Cloud Platform’s Australia region. After successfully
establishing connectivity between the Minikube cluster running locally on a MacBook Pro
(EU) and the central GKE cluster running on GCP (AU), we will deploy resources on the host
GKE cluster and see the resources automatically propagated to the local Minikube cluster. To
establish a connectivity between the local Minikube cluster and the central GKE cluster, we
need to expose the Minikube cluster in some way since the Minikube API server cannot be
accessed from outside our local machine by default. This will be further discussed in the
requirements section.

The next section will provide a detailed overview of a list of requirements that need to
be fulfilled together with how they are fulfilled to create a working POC solution.

5.2 Requirements and Fulfillments

In this section, we will list the requirements that need to be fulfilled in the order they are
fulfilled. For each requirement, we will provide a detailed solution with example commands
and screenshots.

5.2.1 Creating a Local Minikube Cluster

As mentioned previously, we are going to use our MacBook Pro (2017) as our local machine,
and we need to create a local cluster in which to automatically deploy the resources of the
central cluster running in the cloud. For this, we will use a local Minikube cluster. The
Minikube cluster will represent our local branch and the central GKE cluster running in the
Google Cloud Platform will propagate resources to this local Minikube cluster. We created
the Minikube cluster with one master node and one worker node through our local terminal.
We will deploy the workloads on the worker node (minikube-m02). Below is a screenshot
showing our local setup:

45

Figure 5.1: Setting up Minikube on the Local Machine

As the next requirement, we need to create certificates for our Minikube cluster and
introduce these certificates to the Cloud Platform so that it has access to our local clusters.
Moreover, since our local machine resides in Dublin, Europe, our Minikube cluster and all its
nodes will be from Dublin, Europe as well. However, the central cluster running in GKE will be
from Australia region; it will federate and configure the resources of our local Minikube
cluster located in Europe.

Figure 5.2: Central GKE cluster located in Australia Region

To automatically propagate its resources to the local Minikube cluster, the central GKE cluster
needs to connect to our local environment first, which brings us to the next section.

5.2.2 Connectivity between Minikube and GKE

To provide the central GKE cluster’s resources to the local Minikube cluster through KubeFed,
we need to first establish a connectivity between the GKE cluster and the Minikube cluster.
The solution aims to combine the KubeConfig files of both platforms to create a unique
KubeConfig_merged file in Cloud Shell so that the Minikube cluster is visible to the Cloud
platform. A Kubeconfig is a YAML file that contains the Kubernetes cluster's credentials,
certificate, and secret token. If you are utilizing a managed Kubernetes cluster, the cluster
administrator or a cloud platform may provide you with this configuration file. When you use
kubectl, it connects to the Kubernetes cluster API using the information in the kubeconfig file.
The default Kubeconfig file location has the path of “$HOME/.kube/config” [59]. A
KubeConfig file contains the following information to connect to the Kubernetes clusters:

1. certificate-authority-data: Cluster CA

2. server: Cluster endpoint (IP/DNS of master node)

3. name: Cluster name

4. user: name of the user/service account.

5. token: Secret token of the user/service account.

Combining the KubeConfig files of both platforms to create the kubeconfig_merged file does
not expose the Minikube for external connections, however it is a necessary step before
exposing our local Minikube cluster. As an initial requirement, we need to create client-
certificate-data and client-key-data for our local Minikube cluster. Below are the KubeConfig
files before and after the creation of these certificates. We get these outputs by running

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

46

“kubectl config view” in our local terminal for our Minikube cluster. As you can see, on the
left-hand side, we have the ‘minikube’ cluster context in our local config file, however, we
have no certificates. The “user” key of the config file has no value in it. We get the screenshot
on the right-hand side after creating the certificates for the Minikube cluster. Since the
certificates are long strings, they are redacted in the output. The KubeConfig file that we get
on the right-hand side is the one that the Google Cloud Platform needs in order to connect to
our local Minikube cluster:

Figure 5.3: KubeConfig files on the Local Machine with and without Certificates

Now we have the necessary certificates of our Minikube so that the central GKE cluster
running on Google Cloud Platform can access it. We now need to upload the local kubeconfig
file on the right-hand side of the figure 5.1 to the Google Cloud Shell. When we list the files
on the Cloud Shell, we need to see the local “config” file in it:

47

Figure 5.4: Local Environment’s “kubeconfig” file uploaded to Cloud Shell

We have successfully uploaded our local environment’s kubeconfig file to the Cloud Shell,
and we can clearly see the certificates information of our Minikube cluster. This information
is necessary for combining local kubeconfig file and GCP’s kubeconfig file to create a
kubeconfig_merged file in the cloud platform, and this is the next step that we will perform.
Running the command below will create a “kubeconfig_merged” file that will contain all the
information of the local Minikube cluster and our central GKE cluster by combining their
kubeconfig files:

KUBECONFIG=<path to GKE kubeconfig file>:<path to the uploaded Minikube
kubeconfig file> kubectl config view --flatten > ~/kubeconfig_merged

Figure 5.5: Merged kubeconfig files in GCP

Above is the newly merged kubeconfig file created by combining our local Minikube cluster’s
kubeconfig and the central cloud cluster’s kubeconfig files. The GKE is now using this
kubeconfig file as its cluster data. Notice that we have both the Minikube and the central GKE
clusters (gke_kubefed-project-358322_australia-southeast1-a_gke-kubefed-host) in the
configuration file. We can also see that GKE has access to our local Minikube cluster’s client-
certificate-data together with its client-key-data. We also see the certificate-authority-data of
our central GKE cluster under the same configuration file. Consequently, our cloud platform

48

has access to the local Minikube cluster. When we run kubectx to get the cluster contexts in
GCP, we should see our local Minikube cluster along with the central GKE cluster:

Figure 5.6: GCP having access to our local Minikube as a cluster context

Observe in Figure 5.6 that our central cloud can now see Minikube among its list of cluster
contexts. This was a necessary step to establish a connectivity between our local Minikube
cluster and the central GKE cluster. However, we still cannot access the API server of our local
Minikube cluster to create/query its resources. Below is a screenshot showing that we are
still unable to query the node information of our local Minikube from the central GKE cluster.
Refer to figure 5.1 to see the running nodes of our Minikube cluster accessed from our local
terminal:

Figure 5.7: Unable to access the resources of local Minikube from GCP

This brings us to the next requirement.

5.2.3 Exposing Minikube API server

Remember that kube-apiserver is one of the Control Plane components of Kubernetes. The
API server of the control plane is responsible for exposing the Kubernetes API as the front-
end for application developers. When a user wishes to deploy new resources in a Kubernetes
cluster, they communicate with the API server. By default, our local Minikube’s API server is
not publicly exposed. Thus, we cannot propagate resources to our Minikube cluster from the
central cloud as can be seen in Figure 5.7. There are three main ways to expose our local API
server externally: acquiring a Public IP address, VPN or tunnelling.

To make things simple, we will use the tunnelling approach to expose our local
Minikube API server. We will use a software tunnelling tool called ngrok. ngrok is a globally
distributed reverse-proxy that helps developers expose their applications running on any
cloud, private network or local machine; we are interested in exposing the app running on

49

our local machine in this case, and ngrok is one of the fastest ways to expose our Minikube
API server running on localhost [60]. We will install a ngrok agent with a specific auth token
on our local machine. The ngrok agent will use this tunnel auth token to connect to the ngrok
cloud and establish a connection to the ngrok service. Once we have an established
connection, we will receive a public endpoint to which we can make external requests (e.g.,
requests to Minikube API server). This ngrok public endpoint will forward our external
requests to our local service (e.g., local API server). When we make a request to this ngrok
endpoint, the ngrok edge encrypts the request and forwards it to our locally running ngrok
agent, and this ngrok agent is responsible for sending this request to our local upstream
service. The communication between the ngrok edge and our local ngrok agent is secure and
TLS encrypted. Similarly, the traffic from user to the ngrok edge and traffic from ngrok agent
to our local service use the same encryption protocols [60].

Before setting up ngrok tunnelling, we need our kubectl proxy to allow external traffic
to our local cluster. We will allow all incoming requests to the Minikube API server:

Figure 5.8: Exposing port=8001 for Minikube API server

Now our API server is listening to the requests made locally on port 8001. The command in
Figure 5.8 opened specifically the port 8001 since it is kube-proxy’s default port. The
Minikube API server is now exposed locally via http://localhost:8001. As the next step, we
need ngrok to act as a second proxy forwarding requests received from its generated public
endpoint to http://localhost:8001. When the central GKE cluster makes requests to the
public ngrok endpoint, the requests will be automatically forwarded to
http://localhost:8001.

 We run the following command to create a ngrok public endpoint and forward all
requests made to this public endpoint to our local API server of the Minikube:

ngrok http --scheme=http 8001

https://ngrok.com/
https://ngrok.com/
http://localhost:8001/
http://localhost:8001/
http://localhost:8001/

50

Figure 5.9: ngrok URL forwarding requests to the Local API server of Minikube

The URL that’s underlined in yellow in Figure 5.9 is the ngrok generated public endpoint that
we will use to access our local Minikube’s API server. The blue-underlined address is the local
API server to which all the requests made to the ngrok generated URL will be forwarded.

We have now set up everything needed to publicly expose our Minikube API server so
that the cloud platform can make queries to create resources in our local branch. We have to
make a few changes in the merged kubeconfig file of GCP. Notice in Figure 5.5 that the API
server of our Minikube is just a local address, which cannot be accessed externally by the
cloud platform. For GKE to make successful requests to Minikube’s API server, we need to
change this local address with the ngrok generated URL (underlined in yellow) in Figure 5.9:

kubectl config set-cluster minikube --server='<ngrok generated url>'

Changing the address of Minikube on Cloud Shell will automatically change the
kubeconfig_merged file on the cloud:

Figure 5.10: Minikube API server changed to ngrok URL in kubeconfig_merged

We can now make queries to the local API server of our Minikube from the GCP. The central
cloud’s kubeconfig_merged file will consider the unique ngrok generated URL to be the API
server to which it will make queries for creating resources in Minikube. All the requests we
make to the ngrok generated URL from the central cloud will be forwarded to our local
Minikube API server (e.g., http://localhost:8001) by the ngrok agent. Below is a successful
query to our local Minikube cluster from GCP contrary to Figure 5.7:

http://localhost:8001/

51

Figure 5.11: Successfully accessing to the resources of local Minikube from GCP

As another example, we will create a namespace called “test-namespace” in our local
Minikube cluster through GKE; namely we will use the connectivity that we’ve just
established to the Minikube cluster from the GCP and make a “create a namespace” request
to Minikube’s API server from our central cloud. As a result, we expect the namespace
resource to be created in the Minikube when we check its namespaces locally:

Figure 5.12: Creation of a test-namespace in Minikube cluster from GCP

We can see from Figure 5.12 that we made a successful request to our Minikube’s API server
from GCP to create a test-namespace. Below is a screenshot from our local terminal showing
that the test-namespace is indeed created in our local Minikube cluster:

Figure 5.13: test-namespace successfully created in the local Minikube Cluster

52

We successfully established a connectivity between our local Minikube cluster and the
central GKE cluster. We can now query, create and update resources in our local Minikube
cluster through GCP. We’re using ngrok generated URL to make our requests; and those
requests are forwarded to the local API server. We can remove the “test-namespace” from
our local Minikube cluster now that we showed the existence of connectivity.

 Now that we have fulfilled the connectivity requirement, the next step is to install all
the KubeFed tools on the central GKE cluster. After we install all the KubeFed tools, the GKE
cluster will be the host-cluster for the cluster federation. Then, we will make our local
Minikube a member cluster. We will deploy resources on the GKE host-cluster and see them
automatically propagated to the local Minikube cluster. This will provide the same
functionalities that our central cloud has to our local branch.

5.2.4 Installing KubeFed on Central GKE Cluster

As a next step, we will be deploying the KubeFed Controller Managers on our central GKE
cluster residing in Australia. Remember from the previous chapter that KubeFed Controller
Manager is very similar to Kubernetes Controller Manager, with the exception that
Kubernetes Controller Manager constantly monitors the state of pods, deployments, and
nodes within a single cluster, whereas KubeFed Controller Manager monitors the state of all
federated clusters to maintain the desired state of the member clusters. The KubeFed
Controller Manager utilizes a push reconciler technique in order to synchronize the status of
all Federated resources with those deployed in the member clusters. In our case, KubeFed
Controller Manager will be responsible for checking whether all the desired resources are
automatically propagated to our local Minikube cluster.

 Below, we are creating a namespace called “kube-federation-system” inside our
central GKE cluster whose context name is “gke-kubefed-host” (we changed the context
name to a simpler name with no underscore character as Kubefedctl doesn’t allow
underscore in context names). All the KubeFed tools (e.g., KubeFed controller manager and
webhook pods) will be deployed in this namespace. The commands used for creating the
setup will be provided in the Appendix section at the end of our thesis. The output we get is
as shown:

Figure 5.14: Installing KubeFed in GCP

53

Figure 5.15: kubefed-controller-manager pods deployed to kube-federation-system Namespace

We can see that a namespace called “kube-federation-system” is automatically created in our
central GKE cluster; all the federation controller manager pods are deployed in this
namespace, effectively turning our central GKE cluster residing in Australia region into a
KubeFed host-cluster. Since we have all the components running in our central GKE cluster
necessary for the federation of the local Minikube cluster in Europe, we can now add our
local Minikube into the federation.

Figure 5.16: Minikube joining the Federation and becoming a Member-Cluster

From Figure 5.16, we see that Minikube has successfully joined the Federation. This will
automatically create a “kube-federation-system” namespace in our local Minikube cluster as
we can see on Figure 5.17 below. The creation of this namespace is just to confirm that
Minikube is now a member cluster of our cluster federation. No resources will be deployed in
this namespace.

54

Figure 5.17: Confirmation of Minikube’s Federation

Since we want to deploy the same resources on both the local Minikube cluster and the
central GKE host-cluster, we will make the GKE host-cluster a member of its own; namely, the
host-cluster will federate itself, and the federated resources created in the GKE host-cluster
will propagate to not only the local Minikube cluster, but also to the host-cluster itself. This
way, we will have the same resources and applications running in both the local Minikube
cluster and the GKE host-cluster.

 We repeat the same process above for the GKE host-cluster and run the following
command kubectl get kubefedclusters -n kube-federation-system in Google Cloud
Shell to see all the federated clusters in our setup. As expected, we have two federated
clusters: local Minikube and GKE host-cluster:

Figure 5.18: List of Federated Clusters

We have successfully created the Federation environment and we can now create resources
in the host-cluster and see them propagated to both our local Minikube cluster in Europe and
the central GKE host-cluster itself.

5.2.5 Deploying Resources on GKE Host-Cluster

Now, we have a KubeFed host-cluster (central GKE cluster) and two member clusters: local
Minikube and the central GKE cluster itself. We want the resources and applications created
in the central GKE cluster located in Australia to be propagated to both member clusters. To
achieve this, we need to create a “FederatedNamespace” object in our GKE host-cluster.
Remember from the previous chapter on KubeFed that, all the federated resources we create
in the host-cluster (e.g., FederatedDeployment, FederatedService, FederatedNamespace,
etc.) are propagated as regular resources in the member clusters (e.g., Deployment, Service,
Namespace, etc). Thus, the FederatedNamespace object that we will create in the GKE host-
cluster will be propagated to our local Minikube cluster as a regular namespace object. Below
is the FederatedNamespace object called “federated-ns” we are creating in the GKE host-
cluster:

55

Figure 5.19: FederatedNamespace object created in the GKE host-cluster

Deploying the FederatedNamespace object in Figure 5.19 inside the GKE host-cluster will
automatically create a regular namespace object called “federated-ns” in all the member
clusters. In particular, we will see the creation of a “federated-ns” namespace in our local
Minikube cluster. All the resources created in this FederatedNamespace by the central GKE
host-cluster will be propagated to the “federated-ns” namespace of all our member clusters
(e.g., local Minikube cluster). Below is a screenshot showing the creation of a namespace
called “federated-ns” inside our local Minikube. This namespace is automatically created in
our local Minikube cluster since we ran the configuration (Figure 5.19) in the host GKE
cluster:

Figure 5.20: Namespace called “federated-ns” automatically created in Local Minikube

When we deploy resources in the “federated-ns” namespace of our GKE host-cluster, those
resources will be automatically propagated to the “federated-ns” namespace of the local
Minikube cluster.

 We will now create a simple FederatedDeployment object in the “federated-ns”
namespace of our GKE-host cluster. This is a simple web application that outputs a “Hello”
message. Once we deploy this application in the GKE host-cluster, we will see the creation of
the exact same application in the “federated-ns” namespace of our member clusters (e.g.,
local Minikube cluster and the self-federated GKE host-cluster). The FederatedDeployment
object will be propagated to the member clusters as regular Deployment objects. Below is
the FederatedDeployment object we are deploying in the GKE host-cluster:

56

Figure 5.21: Google-Hello FederatedDeployment created in the GKE Host-Cluster

We can observe the “fed-app” application pods being created in both the local Minikube
cluster and the GKE host-cluster. The first figure below shows the creation of the “fed-app”
pods in the GKE host-cluster (since it is a member cluster of its own) and the second figure
shows the creation of the pods in our local Minikube cluster residing in Europe:

Figure 5.22: Deployment pods automatically created in the GKE host-cluster

57

Figure 5.23: Deployment pods automatically created in our Local Minikube Cluster

To expose our Deployment, we will attach a Service object to it. Again, we will create a
FederatedService resource in the “federated-ns” namespace of our GKE-host cluster and
consequently, the FederatedService resource will be created as a regular Service object in the
“federated-ns” namespace of our member clusters (e.g., local Minikube cluster and the self-
federated GKE host-cluster). Below is our FederatedService resource. Notice that we’re
exposing our service at port=5678, and our targetPort=8080 is the container port of our
deployment in Figure 5.21. This FederatedService will be propagated to our member clusters
as a regular Service object and be attached to the “fed-app” deployment residing in both the
local Minikube and GKE host-cluster.

Figure 5.24: Google-Hello FederatedService created in the GKE Host-Cluster

Notice that in the selector field, we have “app: fed-app”. This is how we are attaching this
service to the deployment in Figure 5.21. Deploying this FederatedService object in the GKE
host-cluster will result in an automatic deployment of “fed-app-service” Service objects in
the member clusters; these new Service objects will be attached to both member clusters’
“fed-app” deployments. These services are used for exposing the “fed-app” deployments.
Moreover, we deployed the Service object with type=LoadBalancer as you can see from
Figure 5.24. Since the Service is of type LoadBalancer, the Google Platform automatically

58

created a LoadBalancer from Australia region and assigned this automatically created
LoadBalancer’s external IP address to the Service object created in the GKE host-cluster.

Figure 5.25: Service object automatically created in the GKE host-cluster

Notice in Figure 5.25 that the “fed-app-service” Service created in GKE host-cluster is
assigned an external IP address. This IP address corresponds to the automatically created
LoadBalancer in Australia region:

Figure 5.26: Load-Balancer created for “fed-app-service” Service of GKE cluster

We can now reach the “fed-app” application running in the GKE-host cluster using the
external IP address specified by the LoadBalancer, and the port number of 5678 specified in
the Service configuration file in Figure 5.24. Hitting the web app running at 35.201.5.41:5678,
we get the following result:

59

Figure 5.27: Reaching the “fed-app” deployment running in GKE host-cluster (AU)

We can successfully access the application deployed on the GKE host-cluster.

 Since the local Minikube cluster is one of the two federated member clusters, the
same Service object is also deployed in the “federated-ns” namespace of our local Minikube
cluster. However, unlike the GKE host-cluster, there is no external IP address automatically
assigned to our Minikube cluster’s Service object. Thus, we cannot access to the “fed-app”
application deployed in local Minikube cluster (EU) externally:

Figure 5.28: Service object automatically created in the local Minikube cluster (w/o public IP)

This brings us to the next requirement: exposing the “fed-app-service” Service deployed to
our local Minikube cluster.

5.2.6 Exposing “fed-app-service” of Local Minikube

We now have a KubeFed host-cluster (central GKE cluster) and two member clusters: local
Minikube and the central GKE host-cluster itself. Since the GKE host-cluster is residing in
Google Cloud Platform, its Service object was automatically assigned an external IP address
through a Google Load Balancer located in Australia. We can thus access the “Google Hello”
web-app deployed in the GKE host-cluster as can be seen from Figure 5.27.

 However, the Federated Service object propagated to our local Minikube cluster is not
assigned any external IP address. Hence, we cannot connect to the “Google Hello” web-app

60

deployed in the Minikube cluster as can be seen in Figure 5.28. To solve this problem, we
need to expose the Federated Service object of our local Minikube cluster externally in some
way. We will follow the same approach we had for externally exposing the Minikube API
server, namely we will use a second ngrok agent in addition to the one we are using for
exposing the API server. We will receive a second public endpoint to which we can make
external requests (e.g., requests to the local “fed-app-service” Service object). This ngrok
public endpoint will forward our external requests to our local service (e.g., local “fed-app-
service” Service). The external requests to this additional ngrok endpoint will be forwarded to
our second ngrok agent responsible for sending the requests to our local upstream service.

 Before setting up the second ngrok tunnelling for our “fed-app-service” resource, we
need to do a small forwarding. Remember from our “fed-app-service” FederatedService
configuration file in Figure 5.24 that our service is listening on port 5678. However, the target
port=8080 (Figure 5.24) is the container port of the “fed-app” deployment (Figure 5.21) that
we are interested in. More specifically, targetPort=8080 is the port on which our example
application “fed-app” listens; it is the container port to which our Kubernetes Service “fed-
app-service” should forward requests. Hence, we need to forward all requests from the
service port (5678) to the container port (8080):

Figure 5.29: Forwarding requests from Service Port to Container Port

We are now forwarding all requests from the service port (5678) to the container port of our
“fed-app” deployment (8080) in Minikube. We can now reach our application locally via
http://localhost:5678. Below is the same “fed-app” application we are accessing locally
in our Minikube cluster. This is the same application we previously accessed in GKE host-
cluster using GCP Load Balancer (Figure 5.27).

Figure 5.30: Reaching the “fed-app” deployment running locally in Minikube (EU)

http://localhost:5678/

61

Our Federated Service “fed-app-service” is now listening to the incoming local requests on
port 5678. The Service object propagated to the member Minikube cluster is now exposed
locally via http://localhost:5678. Similar to how we exposed our Minikube API server
externally, we need to expose our “fed-app-service” resource residing in the local Minikube
cluster externally as well. As mentioned previously, we will use a second ngrok tunnelling
agent. ngrok will forward requests made to its generated public endpoint onto
http://localhost:5678. When the end-users make requests to the public ngrok endpoint,
the requests will be automatically forwarded to http://localhost:5678.

 We run the following command to create a ngrok public endpoint and forward all
requests made to this public endpoint onto our “fed-app-service” resource running locally at
http://localhost:5678:

ngrok http --scheme=http 5678

Figure 5.31: ngrok URL forwarding requests to the Local Service of Minikube

The URL that’s underlined in yellow above is the second ngrok generated public endpoint that
we will use to access our “fed-app-service” resource running in our local Minikube cluster.
The blue-underlined address is the local “fed-app-service” resource to which all the requests
made to the ngrok generated URL will be forwarded. We can now access the “fed-app”
application running in our local Minikube cluster externally:

Figure 5.32: Reaching the “fed-app” deployment running in Local Minikube Externally

http://localhost:5678/
http://localhost:5678/
http://localhost:5678/
http://localhost:5678/

62

5.3 Summary

In this chapter, we have successfully created a solution in which the functionalities and
resources of a central cluster residing in the Cloud are automatically propagated to a local
cluster living in an independent machine from a different region. These local clusters can
reside in small computing machines all around the world and receive their configurations and
resources from a central cluster. End-users can make their requests to the local machines
located in closer branches and be provided the same services residing in the central cluster
located further away from them. To achieve this, we used a MacBook Pro (2017) as our local
machine and a Minikube cluster as the local cluster. They are located in Dublin, Europe. We
used the Google Cloud Platform as our central Cloud and created a GKE cluster located in
Australia. Before federating our local Minikube cluster from the central GKE cluster, we
established a connectivity between the two environments. We created certificates for the
Minikube and shared it with GKE, and then exposed our Minikube API server using ngrok
tunnelling tool. ngrok forwarded the requests made to the generated URL onto our
Minikube’s local API server. After having established connectivity, we started federating the
Minikube cluster from the central GKE cluster using the KubeFed tool. We scheduled a simple
deployment and a service in the GKE cluster and observed the successful propagation of the
same resources into our member clusters (e.g., local Minikube cluster and the GKE cluster
itself). GCP automatically created a Load Balancer in the Australian region for the federated
service object deployed onto the GKE cluster, and we reached the web application using the
Load Balancer’s IP. For our Minikube cluster, we used another ngrok agent to create an
additional endpoint for the local service. ngrok forwarded the requests made to the
generated URL onto our local service, and we exposed the same application running on the
Minikube as well. At the end of our implementation, we had the same web application
running on both our local Minikube cluster (EU) and the central GKE cluster (AU), both
accessible externally.

63

Chapter 6

Evaluation

The preceding chapter covered the suggested solution together with the requirements that
needed to be fulfilled for a working POC solution. We then described the components used to
fulfill those requirements. In this chapter, we will evaluate the POC described in the previous
chapter. We deployed the same application on a central GKE cluster in Australia and on a
local Minikube cluster living on a machine located in Europe. For our initial evaluation, we will
compare the latencies of these applications

6.1 Latency

In our solution, we are providing the same resources and functionalities of a central cluster to
a local cluster residing in a different region. When the end-user wants to reach the
application running on the central cluster, they will make their requests to the closest local
machines near them. In our case, the central cluster is represented by a GKE cluster hosted in
Google’s Australia region and our local cluster is a Minikube cluster running on a MacBook
Pro (2017) machine located in Dublin. Remember from our design & implementation section
that we are running the same deployment resource (fed-app) on both clusters. The
containerized application is a simple “Google-Hello” web application in our case. Since the
application hosted by our Minikube cluster is located in Europe, we are expecting to receive
lower latency compared to the application hosted by the central GKE cluster in Australia.

Our first experiment will consist of us making requests to both applications from our
local machine in Dublin. We will check the latencies of our requests using Google Chrome’s
Developer Tools. In particular, we will check the time it takes to receive the results of our
requests through the “Network” section of the Developer tools. For our second test, we will
use a third-party tool called “dotcom-tools” [72] to check the latencies of both web-servers
from a European region other than ours. Below are the results of our first experiment:

https://www.dotcom-tools.com/web-servers-test

64

Figure 6.1: Latency of the central GKE cluster hosted in AU

The figure above reflects the time it takes to get the contents of the web-app hosted in our
central GKE cluster (AU). We are making the “GET” request from our own local machine in
Dublin. Notice from figure 6.1 that the time it takes to get the contents of the web-app is
approximately 375 ms. The high latency was expected since the central cluster is located in a
completely different continent. Now, we will make the same experiment with the web
application running on our local Minikube cluster:

Figure 6.2: Latency of the Minikube cluster hosted in Dublin

The figure above reflects the time it takes to get the contents of the web-app hosted in our
local Minikube cluster (EU). We are making the “GET” request from our own local machine in
Dublin and as expected the latency for getting the contents of the web-app is significantly
lower than the central GKE cluster. The latency in this case is 74 ms.

In our next experiment, we will use the “dotcom-tools” [72] and check the latencies of
our applications from a London region. This tool makes several requests to a web-application
in question from different points in that region and takes the average of all the latencies to
return a final result. Below are the results of our second experiment:

https://www.dotcom-tools.com/web-servers-test

65

Figure 6.3: Latency of the central GKE Cluster hosted in AU from London

Figure 6.4: Latency of the Local Minikube Cluster hosted in EU from London

The average latency to the web-app hosted in the central GKE cluster (AU) from the London
region is approximately 532 ms [Figure 6.3] and latency to the web-app hosted in the local
Minikube cluster (EU-Dublin) is approximately 130 ms. The results conform to our previous
experiment.

These experiments show that we can propagate the resources and functionalities of
our central Cloud cluster onto many local machines near the end-users and can expect a
lower latency for the same application when the end-users make their requests to the local
machines. Since these local machines are small computing processes, they can be numerous
and located in large numbers. In such a scenario, there would always be a local machine with
the central cluster’s resources near the end-user, which would result in lower latencies. We
showed through our design & implementation together with the latency experiments that, in
an ideal scenario where all our local machines are resilient to failures, located in large
numbers in several regions and are able to successfully host the resources of the central
cluster, we would be creating a highly available, low latency environment for the end-users.
However, this is not the case. Our POC is not fully resilient as we will demonstrate in the next
section.

66

6.2 Resiliency

Our goal in this thesis was to create an environment where the local clusters living in small
computing machines are connected to a central cluster and have the same resources and
functionalities of the central cluster living in the Cloud through federation. We also wanted to
show that when we access the same application running on the closer local cluster, we would
get lower latencies, and we achieved our goal. We did not focus on the resiliency of the
solution. Here we will show some of the issues that exist in a few of our components, and in
the next chapter we will talk about potential future work that can help mitigate these issues.

6.2.1 Disconnection of ngrok agents

Remember from the sections 5.2.3 and 5.2.6 in Chapter 5 that we used ngrok tunnelling tool
to expose our local Minikube cluster’s API server and “fed-app-service” resource respectively.
We used two ngrok agents to create two public endpoints. These public endpoints forwarded
all the requests made to our local Minikube cluster to the corresponding local addresses (e.g,
local Minikube API server and the local service resource). However, if the ngrok tunnel
connection drops and we reestablish the connection, the ngrok endpoint will change to
another URL. The tunnel connection will continue; however, the external requests will fail.
This is because we changed the server API address of our local Minikube in the
“kubeconfig_merged” file with the previous ngrok endpoint [Figure 5.10]. However, this
endpoint is no longer in use and there is a new ngrok endpoint assigned to the API server.
Thus, the central cluster will no longer federate the local Minikube cluster unless the API
server of the Minikube is changed with the new ngrok url in the “kubeconfig_merged” file of
the central cluster. Below is an example diagram showing the change of ngrok endpoint for
the Minikube API Server:

Figure 6.5: Changed ngrok Endpoint for the Minikube API Server

67

The API Endpoint initially provided by the ngrok service no longer exists, and it is changed
with a completely new URL. For the central GKE cluster to make successful queries to the
Minikube API server, the old URL needs to be changed with the new endpoint in GKE’s
“kubeconfig_merged”. Since this change is not propagated automatically, manual work may
be required. Since this will prevent the central GKE cluster from making successful queries to
our local Minikube’s API server, the Federation will be disrupted. The lack of automation for
the replacement of our ngrok Endpoints is an issue in our solution. We will talk about
potential solutions in the “Future Work” Chapter.

6.2.2 Disconnection of the Central GKE Cluster

For Cluster Federation, we are using the KubeFed Federation tool [45]. As we know, KubeFed
consists of one host cluster and one or more member clusters. The host cluster schedules
resources and they are automatically propagated to the member clusters. However, since all
the KubeFed controller managers reside in the host cluster, if the host cluster fails, the
member clusters will no longer be federated. We checked that the already deployed
resources will continue to exist in the local Minikube cluster, but we will no longer be able to
federate new resources across the member clusters using the central host cluster. This
presents a single point of failure in our POC. We may have multiple Minikube clusters residing
in different local machines. The end-users will continue to access the applications already
deployed to the local clusters (e.g., fed-app), but the central host cluster residing in the Cloud
will no longer be able to federate new resources across the member clusters. A potential
solution to this problem will be discussed in the “Future Work” section. We will briefly discuss
the solution offered by Saba Feroz Memon from Aalto University [36].

6.3 Security

We are using ngrok tunnelling to expose the local API Sever of our Minikube cluster and also
the local “fed-app-service” object deployed in Minikube. As mentioned in the previous
chapter, when the end-user makes a request to this ngrok endpoint, the ngrok edge does
encrypt the request and forwards it to our locally running ngrok agent, which then sends this
request to our local upstream service. The entire communication between the ngrok edge
and our local ngrok agent is secure and encrypted using the TLS protocol. Moreover, the
traffic from user to the ngrok edge and traffic from ngrok agent to our locally running service
use the same encryption protocols [60]. Thus, we can state that the ngrok tunnel used for
externally exposing our local services are secure. However, to locally expose our API server,
we ran kubectl proxy –disable-filter true --address 0.0.0.0 . This causes our local
API server to listen to all incoming requests without filtering. We followed this approach to
facilitate the creation of our POC, however, this is a potential security issue. In a production
use case, we need to whitelist only the required sources.

https://aaltodoc.aalto.fi/handle/123456789/110500
https://ngrok.com/

68

6.4 Summary

In this chapter, we evaluated the implemented POC solution described in the previous
section. We first evaluated the latency of our solution. We concluded that requests made to
our local Minikube cluster significantly decreased the latency compared to those made to the
central GKE cluster located in the Australian region. Through the “Design & Implementation”
chapter and the “Latency” section of our “Evaluation” chapter, we showed that we can host
the resources of a central Cloud cluster in the local clusters residing in small computing
machines located all around the world. Thus, we can provide the same functionalities to the
local clusters and also decrease the latency for the end-users. We then evaluated some of the
requirements necessary to put our POC solution into production. We mentioned two
resiliency issues that our solution currently has. One of them is the temporary endpoints
assigned by ngrok to our local services. Since these addresses are not permanent, ngrok
generates new endpoints each time there is disconnection, which may disrupt the federation
and certain applications. We also mentioned KubeFed’s single point of failure that may
disrupt the federation of member clusters. We then talked about the security of our POC. The
external requests are all TLS encypted by ngrok, improving the security of our local services.
However, our local API Server is not filtering any requests, which may prove to be
problematic in production.

69

Chapter 7

Future Work

In this chapter, we will elaborate on the limitations and issues provided in the “Evaluation”
chapter. We will talk about some of the limitations of our POC and try to provide possible
approaches to tackle these limitations. We will also point out to the areas that require future
work for a more resilient and production ready solution.

7.1 Automating the Solution

As demonstrated in the “Design & Implementation” Chapter, there are lots of moving
connectivity parts in our solution. Most of the requirements build on top of each other and
any connectivity issue may result in the failure of our POC solution. The implementation
required manual entry of certain commands in particular environments (e.g., local terminal
and Google Cloud Shell). Moreover, we manually changed certain configurations and forced
some of the environments to use the changed configurations. All this requires delicate
manual work where the order of actions is critical. Automating such a solution would have
lots of benefits, however, it is no trivial task. Our current solution is using ngrok tunnelling,
and the automation tool would need to establish the tunnel and use the generated endpoints
in different platforms. For instance, the Minikube API Server’s endpoint would need to
change automatically in the “kubeconfig” file of the central GKE cluster. Before that, local
Minikube’s “kubeconfig” file would need to be uploaded in the central GKE cluster and
automatically merged with the central cluster’s “kubeconfig” file. Automating the order of
actions together with handling the connectivity failures may require an extensive future
work. However, a successful implementation would bring our POC closer to being a
production ready solution.

7.2 Resiliency in KubeFed

In KubeFed, the application deployer communicates with the host cluster for the propagation
of federated resources among the member clusters. The host cluster ensures that the
federated applications on the member clusters are in the desired state through the KubeFed
Controller Manager pods. In our solution, we may have a central cluster living in the Cloud

70

and several member clusters living in small computing machines all around the world. As we
discussed in the “Evaluation” chapter, the host cluster is a single point of failure. If the host
cluster fails, the member clusters will continue to function as expected. All previously
federated resources will continue to exist in the member clusters and serve the end-users.
However, we would not be able to federate our member clusters any longer, namely we
would not be able to automatically create resources in the member clusters from a single
point (e.g. host cluster) or ensure that the deployed resources in the member clusters are in
the desired state. This is an existing problem in the open-source KubeFed project. In a real-
world scenario, we may need multiple host clusters federating our member clusters. When
one of the host clusters fails, another host cluster would continue from where the previous
cluster left off and starts federating the member clusters, and if the new host cluster also
fails, another host cluster would take its place and so on. This would bring resiliency to the
federation component in our solution. There is a POC work that focuses on this particular
issue. In their work, Saba Feroz Memon [36] describes this problem in detail and suggests a
solution that relies on leader election mechanism. As a result, their work adopts a novel
strategy by constructing active-passive redundant KubeFed host clusters to ensure resiliency
in Kubernetes Federation administration [36]. Multiple host clusters are installed instead of a
single host cluster, and one cluster is designated as the leader cluster and operates in the
active mode, while the rest of the clusters function as follower clusters (e.g., passive). The
leader cluster is similar to our central GKE host cluster, but in addition to its normal
functionalities, it replicates all the configuration information of the federated applications
onto the follower host clusters. When the leader host cluster fails, one of the follower
clusters would become a candidate to turn into the leader cluster. Since all the resources
were already replicated, the new leader cluster would be up-to-date and the federation could
continue from where it left off. This approach would make the KubeFed component of our
solution more resilient and provides high availability of our KubeFed host clusters [36].

7.3 Resource Allocation in KubeFed

If our solution goes into production, we will have thousands of local clusters living in small
computing machines located all around the world, and these local clusters would act as the
member clusters in the federation. In our POC, we had only two member clusters and one of
them was the local Minikube cluster residing in MacBookPro (2017) (EU). Our goal is to have
local clusters with the resources and functionalities of a central host cluster all around the
world so that the latency of the end-users would be minimal. However, in its current form,
this is not quite possible with KubeFed. One of the reasons is the lack of resiliency in KubeFed
as explained in 7.2. Another one is due to KubeFed’s limited support for the automated
policy-based scheduling. Currently, KubeFed allows application deployers to choose the
clusters in which to manually host the federated resources. The problem with this is that
KubeFed simply propagates federated applications to the member clusters without any prior
checks on whether the member clusters have enough resources. We discussed that in our
solution the member clusters are resided in small to medium computing machines, and in a
real-world scenario, the local machines can be of any type. However, KubeFed treats all the
member clusters as homogenous entities. Thus, KubeFed currently cannot scale to manage

https://aaltodoc.aalto.fi/handle/123456789/110500
https://aaltodoc.aalto.fi/handle/123456789/110500
https://aaltodoc.aalto.fi/handle/123456789/110500

71

hundreds or thousands of member clusters. A more intelligent scheduling scheme may be
implemented in KubeFed to avoid any resource misplacement or wastage. Future work
should focus on building a multi-cluster scheduling solution that assigns the deployments
scheduled on the central host cluster onto one or more clusters from a specific set of
member clusters that have enough available resources and capacity to match the
deployment request made by the host cluster.

7.4 Disconnection of API Server

To build our POC, we used the simplest tool to expose our local services (e.g., local API Server
and the local applications). We used ngrok tunneling tool to generate a public endpoint
responsible for forwarding the requests to our local services. However, since these public
endpoints are ephemeral, they are regenerated in case of disconnection. Thus, the requests
made to the old ngrok public endpoints fail. To solve this issue, we manually changed the old
URL with the new public endpoint in the “kubeconfig” file of our GKE host cluster. If this
manual work can be replaced with some sort of automation as described in section 7.1, our
solution would be more resilient. Other solutions may include static public endpoints
assigned to our local services or the use of VPN instead of tunnelling.

7.5 Summary

In this chapter we talked about certain concepts and tools used in our POC that require
future work for a production ready solution. Our POC’s aim was to show that we can provide
the same resources and functionalities of a central cluster residing in the Cloud to a local
cluster located in a computing machine from a different region through KubeFed tool. We
also showed that end-users can make their requests to local clusters instead of the central
cluster (as they have the same applications) to decrease latency. However, in a real-world use
case, we will have thousands of local clusters living in different local machines from different
regions. If our POC can be adapted to this scenario, our solution would provide many
advantages, but there are certain parts that would require future work for our POC to
become feasible in production. One of these requirements is improving KubeFed’s resiliency
and resource scheduling logic. Without these requirements, KubeFed cannot be used in a
production scenario. Another area that may require future work is the automation of the
entire process. However, since there are lots of moving connectivity parts in the solution, this
may prove to be challenging. Finally, we discussed using a static public IP address or VPN for
exposing the local services running on local clusters.

72

Chapter 8

Conclusion

This research aimed to determine whether we could use a Cluster Federation tool to create a
solution where the functionalities and resources of a central cluster in the Cloud are
automatically propagated to local clusters residing in a smaller independent machine in a
separate location.

The research achieved this through:

• Using a Kubernetes Cluster Federation tool called KubeFed

• Creating a Minikube Cluster in a local machine (MacBook Pro) residing in Dublin

• Externally exposing the Minikube API Server through tunnelling

• Connecting the central GKE cluster located in the Australian region with the local
Minikube

• Installing all the KubeFed tools on the central GKE cluster

• Federating the member clusters (e.g., local Minikube cluster) and scheduling
federated resources in the member clusters through the central GKE cluster

• Exposing the resources on the local Minikube Cluster

• Comparing latencies of the same application residing both in the Minikube (EU) and
the central GKE cluster (AU)

We have shown that with a resilient implementation of such setup with thousands of local
clusters all around the world, we can easily deploy the same resources automatically across
the local clusters through a single central cluster in the Cloud. On top of providing the same
resources and functionalities across many local clusters through a central control plane, this
would decrease the latency for the end-users who can access the same resources from the
closest local machine. However, improving the resiliency of the POC is no trivial task and is
required for the solution to go in production. As mentioned in the previous chapter on
“Future Work”, there are several areas that need further research and improvements. Most
of these problems originate from KubeFed’s lack of maturity. Currently, the KubeFed project
is still in development and requires an extensive work to improve its resiliency to support the
federation of thousands of member clusters at the same time.

73

Bibliography

[1] What is a container. URL: https://www.docker.com/resources/what-
container/

[2] Containerization vs Virtualization. URL: https://www.burwood.com/blog-
archive/containerization-vs-virtualization

[3] Comparison of orchestration tools. URL: https://rafay.co/the-
kubernetes-current/container-orchestration-tools-comparison

[4] Containerization. URL:
https://www.ibm.com/cloud/learn/containerization

[5] Multiple Clusters vs Single Cluster. URL:
https://www.containiq.com/post/kubernetes-multiple-
clusters-vs-single-cluster

[6] Multi-Cluster Kubernetes rationale. URL:
https://platform9.com/blog/multi-cluster-kubernetes-
deployments-when-and-why/

[7] Admiralty Federation. URL:
https://caylent.com/blog/kubernetes/kubernetes-cluster-
federation-with-admiralty

[8] Google Anthos. URL:
https://cloud.google.com/anthos/docs/tutorials/explore-
anthos

[9] Anthos Concepts. URL:
https://cloud.google.com/anthos/docs/concepts/overview

[10] History of Kubernetes. URL: https://blog.risingstack.com/the-
history-of-kubernetes/

[11] Kubernetes Concepts Overview. URL:
https://kubernetes.io/docs/concepts/overview/what-is-
kubernetes/

[12] K8s Advantages & Disadvantages. URL:
https://devspace.cloud/blog/2019/10/31/advantages-and-
disadvantages-of-kubernetes

[13] K8s Nodes. URL
https://kubernetes.io/docs/concepts/architecture/nodes/

https://www.docker.com/resources/what-container/#:%7E:text=A%20container%20is%20a%20standard,one%20computing%20environment%20to%20another.
https://www.docker.com/resources/what-container/#:%7E:text=A%20container%20is%20a%20standard,one%20computing%20environment%20to%20another.
https://www.burwood.com/blog-archive/containerization-vs-virtualization
https://www.burwood.com/blog-archive/containerization-vs-virtualization
https://rafay.co/the-kubernetes-current/container-orchestration-tools-comparison
https://rafay.co/the-kubernetes-current/container-orchestration-tools-comparison
https://www.ibm.com/cloud/learn/containerization
https://www.containiq.com/post/kubernetes-multiple-clusters-vs-single-cluster
https://www.containiq.com/post/kubernetes-multiple-clusters-vs-single-cluster
https://platform9.com/blog/multi-cluster-kubernetes-deployments-when-and-why/
https://platform9.com/blog/multi-cluster-kubernetes-deployments-when-and-why/
https://caylent.com/blog/kubernetes/kubernetes-cluster-federation-with-admiralty
https://caylent.com/blog/kubernetes/kubernetes-cluster-federation-with-admiralty
https://cloud.google.com/anthos/docs/tutorials/explore-anthos
https://cloud.google.com/anthos/docs/tutorials/explore-anthos
https://cloud.google.com/anthos/docs/concepts/overview
https://blog.risingstack.com/the-history-of-kubernetes/
https://blog.risingstack.com/the-history-of-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://devspace.cloud/blog/2019/10/31/advantages-and-disadvantages-of-kubernetes
https://devspace.cloud/blog/2019/10/31/advantages-and-disadvantages-of-kubernetes
https://kubernetes.io/docs/concepts/architecture/nodes/

74

[14] K8s Cluster. URL:
https://www.vmware.com/topics/glossary/content/kubernetes-
cluster.html

[15] K8s Container. URL:
https://kubernetes.io/docs/concepts/containers/

[16] K8s Pod. URL:
https://kubernetes.io/docs/concepts/workloads/pods/

[17] K8s Components. URL:
https://kubernetes.io/docs/concepts/overview/components/

[18] K8s kube-scheduler. URL
https://kubernetes.io/docs/concepts/scheduling-
eviction/kube-scheduler/

[19] K8s kube-controller-manager. URL:
https://kubernetes.io/docs/reference/command-line-tools-
reference/kube-controller-manager/

[20] K8s etcd. URL: https://etcd.io/

[21] K8s container-runtime. URL:
https://kubernetes.io/docs/setup/production-
environment/container-runtimes/

[22] K8s CRI. URL: https://kubernetes.io/blog/2016/12/container-
runtime-interface-cri-in-kubernetes/

[23] K8s kubelet. URL: https://kubernetes.io/docs/reference/command-
line-tools-reference/kubelet

[24] K8s objects. URL:
https://kubernetes.io/docs/concepts/overview/working-with-
objects/kubernetes-objects/

[25] K8s namespaces. URL:
https://kubernetes.io/docs/concepts/overview/working-with-
objects/namespaces/

[26] K8s replicaset. URL:
https://kubernetes.io/docs/concepts/workloads/controllers/r
eplicaset/

[27] K8s deployment VMware example. URL:
https://www.vmware.com/topics/glossary/content/kubernetes-
deployment.html

[28] K8s deployment. URL:
https://kubernetes.io/docs/concepts/workloads/controllers/d
eployment/

[29] K8s service. URL: https://kubernetes.io/docs/concepts/services-
networking/service/

https://www.vmware.com/topics/glossary/content/kubernetes-cluster.html
https://www.vmware.com/topics/glossary/content/kubernetes-cluster.html
https://kubernetes.io/docs/concepts/containers/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://etcd.io/
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://www.vmware.com/topics/glossary/content/kubernetes-deployment.html
https://www.vmware.com/topics/glossary/content/kubernetes-deployment.html
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/

75

[30] K8s configmap. URL: https://www.aquasec.com/cloud-native-
academy/kubernetes-101/kubernetes-configmap/

[31] K8s labels & selectors. URL:
https://kubernetes.io/docs/concepts/overview/working-with-
objects/labels/

[32] Assigning workloads to nodes. URL:
https://kubernetes.io/docs/concepts/scheduling-
eviction/assign-pod-node/

[33] K8s Custom Resource Definitions. URL:
https://kubernetes.io/docs/concepts/extend-kubernetes/api-
extension/custom-resources/

[34] K8s CRDs Openshift def. URL:
https://docs.openshift.com/aro/3/dev_guide/creating_crd_obj
ects.html

[35] K8s multi-cluster. URL: https://www.mirantis.com/cloud-native-
concepts/getting-started-with-kubernetes/what-is-
kubernetes-multi-cluster/#why_multi_cluster

[36] KubeFed Resiliency Thesis. URL:
https://aaltodoc.aalto.fi/handle/123456789/110500

[37] K8s Multi-Cluster. URL: https://www.getambassador.io/learn/multi-
cluster-kubernetes/

[38] K8s single vs multi-cluster. URL:
https://blog.equinix.com/blog/2020/05/26/is-just-one-
kubernetes-cluster-enough/

[39] Comparison of cluster amounts. URL: https://learnk8s.io/how-many-
clusters

[40] Istio Federation tool. URL:
https://www.revolgy.com/insights/blog/istio-multi-cluster-
federation-and-hybrid-cloud

[41] Cluster Federation Advantages. URL: https://unofficial-
kubernetes.readthedocs.io/en/latest/concepts/cluster-
administration/federation-service-discovery/

[42] Cluster Federation Advantages. URL: https://unofficial-
kubernetes.readthedocs.io/en/latest/concepts/cluster-
administration/federation/

[43] Cluster API. URL: https://cluster-api.sigs.k8s.io/

[44] Google Anthos how to. URL:
https://cloud.google.com/anthos/clusters/docs/attached/how-
to/attach-kubernetes-clusters

https://www.aquasec.com/cloud-native-academy/kubernetes-101/kubernetes-configmap/
https://www.aquasec.com/cloud-native-academy/kubernetes-101/kubernetes-configmap/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://docs.openshift.com/aro/3/dev_guide/creating_crd_objects.html
https://docs.openshift.com/aro/3/dev_guide/creating_crd_objects.html
https://www.mirantis.com/cloud-native-concepts/getting-started-with-kubernetes/what-is-kubernetes-multi-cluster/#why_multi_cluster
https://www.mirantis.com/cloud-native-concepts/getting-started-with-kubernetes/what-is-kubernetes-multi-cluster/#why_multi_cluster
https://www.mirantis.com/cloud-native-concepts/getting-started-with-kubernetes/what-is-kubernetes-multi-cluster/#why_multi_cluster
https://aaltodoc.aalto.fi/handle/123456789/110500
https://www.getambassador.io/learn/multi-cluster-kubernetes/
https://www.getambassador.io/learn/multi-cluster-kubernetes/
https://blog.equinix.com/blog/2020/05/26/is-just-one-kubernetes-cluster-enough/
https://blog.equinix.com/blog/2020/05/26/is-just-one-kubernetes-cluster-enough/
https://learnk8s.io/how-many-clusters
https://learnk8s.io/how-many-clusters
https://www.revolgy.com/insights/blog/istio-multi-cluster-federation-and-hybrid-cloud
https://www.revolgy.com/insights/blog/istio-multi-cluster-federation-and-hybrid-cloud
https://unofficial-kubernetes.readthedocs.io/en/latest/concepts/cluster-administration/federation-service-discovery/
https://unofficial-kubernetes.readthedocs.io/en/latest/concepts/cluster-administration/federation-service-discovery/
https://unofficial-kubernetes.readthedocs.io/en/latest/concepts/cluster-administration/federation-service-discovery/
https://unofficial-kubernetes.readthedocs.io/en/latest/concepts/cluster-administration/federation/
https://unofficial-kubernetes.readthedocs.io/en/latest/concepts/cluster-administration/federation/
https://unofficial-kubernetes.readthedocs.io/en/latest/concepts/cluster-administration/federation/
https://cluster-api.sigs.k8s.io/
https://cloud.google.com/anthos/clusters/docs/attached/how-to/attach-kubernetes-clusters
https://cloud.google.com/anthos/clusters/docs/attached/how-to/attach-kubernetes-clusters

76

[45] KubeFed official doc. URL: https://github.com/kubernetes-
sigs/kubefed

[46] KubeFed detailed overview. URL: https://www.sobyte.net/post/2022-
03/kuberentes-federation/

[47] Federation Overview. URL:
https://people.wikimedia.org/~jayme/k8s-
docs/v1.16/docs/concepts/cluster-administration/federation/

[48] Cilium URL: https://docs.cilium.io/en/stable/intro/

[49] Cilium Federation. URL:
https://cilium.io/blog/2019/03/12/clustermesh/

[50] K8s network. URL: https://kubernetes.io/docs/concepts/extend-
kubernetes/compute-storage-net/network-plugins/

[51] Network Service Mesh. URL: https://networkservicemesh.io/

[52] Submariner Federation. URL: https://submariner.io/getting-
started/architecture/

[53] Consul. URL: https://www.consul.io/docs/connect

[54] Consul Federation. URL:
https://www.consul.io/docs/k8s/installation/multi-
cluster/kubernetes

[55] Shipper Federation. URL: https://github.com/bookingcom/shipper

[56] Admiralty Federation Source. URL:
https://github.com/admiraltyio/admiralty

[57] Admiralty Federation Overview. URL:
https://admiralty.io/docs/quick_start/

[58] Admiralty Federation – Proxy Pods. URL:
https://admiralty.io/docs/concepts/scheduling/#proxy-pods

[59] Configure Access to Multiple Clusters. URL:
https://kubernetes.io/docs/tasks/access-application-
cluster/configure-access-multiple-clusters/

[60] Ngrok Tunnelling tool. URL: https://ngrok.com/

[61] Cloud Native Computing Foundation. URL: https://www.cncf.io

[62] Jain, N., and Choudhary, S., “Overview of virtualization in cloud computing”,
2016 Symposium on Colossal Data Analysis and Networking (CDAN), 2016, pp.
1-4, doi: 10.1109/CDAN.2016.7570950.

https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed
https://www.sobyte.net/post/2022-03/kuberentes-federation/
https://www.sobyte.net/post/2022-03/kuberentes-federation/
https://people.wikimedia.org/%7Ejayme/k8s-docs/v1.16/docs/concepts/cluster-administration/federation/
https://people.wikimedia.org/%7Ejayme/k8s-docs/v1.16/docs/concepts/cluster-administration/federation/
https://docs.cilium.io/en/stable/intro/
https://cilium.io/blog/2019/03/12/clustermesh/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://networkservicemesh.io/
https://submariner.io/getting-started/architecture/
https://submariner.io/getting-started/architecture/
https://www.consul.io/docs/connect
https://www.consul.io/docs/k8s/installation/multi-cluster/kubernetes
https://www.consul.io/docs/k8s/installation/multi-cluster/kubernetes
https://github.com/bookingcom/shipper
https://github.com/admiraltyio/admiralty
https://admiralty.io/docs/quick_start/
https://admiralty.io/docs/concepts/scheduling/#proxy-pods
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://ngrok.com/
https://www.cncf.io/

77

[63] Truyen, E., Van Landuyt, D., Reniers, V., Rafique, A., Lagaisse, B., and Joosen, W.
“Towards a container-based architecture for multi-tenant saas applications”,
December 12-16 2016, pp. 1-6.

[64] Nguyen, Nguyen & Kim, Taehong. (2021). “Balanced Leader Distribution
Algorithm in Kubernetes Clusters”, Sensors. 21. 869. 10.3390/s21030869, pp. 1-
13.

[65] Reasons Kubernetes won the Container Orchestration War.
https://hackernoon.com/how-did-kubernetes-win-the-
container-orchestration-war-lp1l3x01

[66] Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., & Wilkes, J.
(n.d.), “Large-scale cluster management at Google with Borg”, Bordeaux,
France, 2015

[67] Schwarzkopf, M, Konwinski, A, Abd-El-Malek, M, Wilkes, J., “Omega: flexible,
scalable schedulers for large compute clusters”, Prague, Czech Republic, 2013

[68] 5 Reasons why every CIO should consider Kubernetes. URL:
https://www.sumologic.com/blog/why-use-kubernetes/

[69] Vohra, D., “Kubernetes Management Design Patterns: With Docker, CoreOS
Linux, and Other Platforms”, USA, 2017

[70] F. Faticanti, D. Santoro, S. Cretti and D. Siracusa, "An Application of Kubernetes
Cluster Federation in Fog Computing," 2021 24th Conference on Innovation in
Clouds, Internet and Networks and Workshops (ICIN), 2021, pp. 89-91, doi:
10.1109/ICIN51074.2021.9385548.

[71] Kim, D.; Muhammad, H.; Kim, E.; Helal, S.; Lee, C. “TOSCA-Based and
Federation-Aware Cloud Orchestration for Kubernetes Container
Platform”. Appl. Sci. 2019, 9, 191. https://doi.org/10.3390/app9010191

[72] Dotcom-tools. URL: https://www.dotcom-tools.com/web-servers-
test

https://hackernoon.com/how-did-kubernetes-win-the-container-orchestration-war-lp1l3x01
https://hackernoon.com/how-did-kubernetes-win-the-container-orchestration-war-lp1l3x01
https://www.sumologic.com/blog/why-use-kubernetes/
https://doi.org/10.3390/app9010191
https://www.dotcom-tools.com/web-servers-test
https://www.dotcom-tools.com/web-servers-test

78

A1 Appendix

In this appendix, we will provide the instructions necessary to create the setup we have in the
“Design & Implementation” section (Chapter 5). The local cluster will be the Minikube Cluster
and the central Cloud cluster will be the GKE cluster. To create the setup, one will need to
install Minikube in their local machine; a GCP account and a GKE cluster in the GCP project.

A1.1 Creating the Minikube and its Certificates

Assuming we have successfully installed kubectl, docker and Minikube on our local Machine,
we need to follow these steps in our local terminal:

Deleting existing Minikube to avoid any conflict:

minikube delete

Starting a local Minikube cluster in our machine:

minikube start

Adding an additional worker node to our local cluster:

minikube node add --worker

Labelling the worker node so that the workloads are deployed there:

Kubectl label node minikube-m02 nodeToDeploy=yes

Resetting all the existing configurations and certificates to avoid any future conflict

kubectl config unset users.minikube.client-key
kubectl config unset users.minikube.client-certificate
kubectl config unset clusters.minikube.certificate-authority

79

Creating new client certificates for the Minikube. This will change its kubeconfig

kubectl config set users.minikube.client-certificate-data $(base64 -b
0 ~/.minikube/profiles/minikube/client.crt)

kubectl config set users.minikube.client-key-data $(base64 -b 0
~/.minikube/profiles/minikube/client.key)

kubectl config set clusters.minikube.insecure-skip-tls-verify true

A1.2 Exposing the Minikube

In this part, we will be exposing our local Minikube’s API server. The commands below are run
in separate terminals. They should be kept alive during the entirety of this demo.

On a separate terminal run the below command to expose port 8001 of Minikube API Server:

kubectl proxy --disable-filter true --address 0.0.0.0

On a separate terminal run the below command to create a ngrok endpoint and assign this
endpoint to our local API Server to expose it externally. This step requires the installation of
the ngrok tunnelling agent [ngrok installation]:

ngrok http --scheme=http 8001

A1.3 Google Cloud Console: Merging Config Files

Before starting this section, we need to create a GKE cluster in the Australian region using GCP.
We named this cluster “gke-kubefed-host”. This is the host cluster running in the central cloud.

In this section, we create one global ‘kubeconfig_merged’ file in the gcloud Shell. This config
file will contain both the Minikube and the gke-host-cluster contexts. Below are the steps that
need to be followed in order. They are all executed in the Google Cloud Shell:

Upload the CONFIG file of the local Minikube cluster to Google Cloud Shell:

We need to upload our Minikube’s kubeconfig file to Google Cloud Shell. When uploading the
local config file, look for the file located in ~/.kube/config and upload it to Cloud Shell.

Remove the GCP’s own Kube config file to delete all the previous contexts and avoid
conflicts

rm .kube/config

https://ngrok.com/download

80

Create a new .kube/config file for the central GKE cluster itself. To do this, right click on the
gke cluster’s name on the GKE dashboard and click the options next to the cluster name.
Copy paste the line to the gcloud Shell. This will connect you to the central GKE cluster and
create its own config file. The command would look like this:

gcloud container clusters get-credentials gke-kubefed-host --region
us-central1 --project vital-keep-357119

Combine the Local Minikube’s KubeConfig file with our GKE kubeconfig file to create a final
kubeconfig_merged file. This kubeconfig will contain all the information of local minikube
cluster and our GKE host cluster

KUBECONFIG=~/.kube/config:~/config kubectl config view --flatten >
~/kubeconfig_merged

We need to ask GKE to use this newly formed configuration as the new KubeConfig file for
the cluster

export KUBECONFIG=~/kubeconfig_merged

For the GKE to externally access (e.g., query, create, delete) the Minikube cluster, change the
API server’s local URL with the ngrok endpoint we generated in section A1.2

kubectl config set-cluster minikube --server='<ngrok generated url>

Changing the context name for the GKE cluster so that it works for KubeFed as KubeFed does
not accept underscore in cluster context names. Replace the old context name with your old
context name

kubectl config rename-context gke_vital-keep-357119_us-central1_gke-
kubefed-host gke-kubefed-host

Label one of the nodes of our central GKE cluster to deploy all the workloads on that
particular central node. Replace the node name with yours

kubectl label node gke-kubefed-host-default-pool-5cb8421a-2zjc
nodeToDeploy=yes

A1.4 Installing KubeFed on the gke-host-cluster

In this section, we will install the KubeFed client together with KubeFed itself on our gke-host-
cluster residing on the cloud. All the commands in this section are executed in the gcloud Shell.

81

Install the KubeFed Client. These commands follow each other

VERSION=0.9.2

OS=linux

ARCH=amd64

curl -LO https://github.com/kubernetes-
sigs/kubefed/releases/download/v${VERSION}/kubefedctl-${VERSION}-
${OS}-${ARCH}.tgz

tar -zxvf kubefedctl-*.tgz

chmod u+x kubefedctl

sudo mv kubefedctl /usr/local/bin/

Now, install the KubeFed tool through helm. This will create a new namespace called “kube-
federation-namespace where all the KubeFed controller manager pods are deployed”

helm repo add kubefed-
charts https://raw.githubusercontent.com/kubernetes-
sigs/kubefed/master/charts

helm --namespace kube-federation-system upgrade -i kubefed kubefed-
charts/kubefed --version=0.9.2 --set
controllermanager.clusterHealthCheckPeriod=30s --create-namespace

Federate the local Minikube cluster together with the gke-kubefed-host cluster

kubefedctl join minikube --cluster-context minikube --host-cluster-
context gke-kubefed-host --v=2

kubefedctl join gke-kubefed-host --cluster-context gke-kubefed-host --
host-cluster-context gke-kubefed-host --v=2

Check that both clusters joined the federation

kubectl -n kube-federation-system get kubefedclusters

A1.5 Application Deployment on gke-host-cluster

In this section, we will deploy the resources on the gke-host-cluster, and as shown in chapter
5, these resources will be automatically created in the member clusters. All the commands are
executed in the gcloud Shell.

https://github.com/kubernetes-sigs/kubefed/releases/download/v$%7bVERSION%7d/kubefedctl-$%7bVERSION%7d-$%7bOS%7d-$%7bARCH%7d.tgz
https://github.com/kubernetes-sigs/kubefed/releases/download/v$%7bVERSION%7d/kubefedctl-$%7bVERSION%7d-$%7bOS%7d-$%7bARCH%7d.tgz
https://github.com/kubernetes-sigs/kubefed/releases/download/v$%7bVERSION%7d/kubefedctl-$%7bVERSION%7d-$%7bOS%7d-$%7bARCH%7d.tgz

82

Create a namespace called “federated-ns” in the gke-host-cluster (global-federated-ns.yaml)

cat << EOF | kubectl apply -f -
apiVersion: v1
kind: Namespace
metadata:
 name: federated-ns

EOF

Create a FederatedNamespace called “federated-ns” in the gke-host-cluster’s “federated-ns”
namespace created above (federated-ns.yaml)

cat << EOF | kubectl apply -f -
apiVersion: types.kubefed.io/v1beta1
kind: FederatedNamespace
metadata:
 name: federated-ns
 namespace: federated-ns
spec:
 placement:
 clusterSelector:
 matchLabels: {}

EOF

83

Create a FederatedDeployment resource in the FederatedNamespace. This resource will be
propagated as a regular deployment resource across the member clusters (federated-
googleHello-deployment.yaml)

cat << EOF | kubectl apply -f -
apiVersion: types.kubefed.io/v1beta1
kind: FederatedDeployment
metadata:
 name: fed-app
 namespace: federated-ns
spec:
 placement:
 clusterSelector:
 matchLabels: {}
 template:
 spec:
 selector:
 matchLabels:
 app: fed-app
 template:
 metadata:
 labels:
 app: fed-app
 spec:
 containers:
 - image: gcr.io/google-samples/hello-app:2.0
 name: echo
 ports:
 - containerPort: 8080
 name: http
 nodeSelector:
 nodeToDeploy: 'yes'

EOF

84

Create a FederatedService resource in the FederatedNamespace. This resource will be
propagated as a regular service resource across the member clusters (federated-googleHello-
service.yaml)

cat << EOF | kubectl apply -f -
apiVersion: types.kubefed.io/v1beta1
kind: FederatedService
metadata:
 name: fed-app-service
 namespace: federated-ns
spec:
 template:
 spec:
 ports:
 - name: 5678-8080
 port: 5678
 protocol: TCP
 targetPort: 8080
 selector:
 app: fed-app
 type: LoadBalancer
 placement:
 clusterSelector:
 matchLabels: {}

EOF

A1.6 Exposing “fed-app-service” of Minikube

The FederatedService resource “fed-app-service” just created above is propagated to our local
Minikube cluster as a regular service object. In order for this service object to be globally
accessible, we need to expose it. Below commands are run in separate terminals in our local
environment. The previous two local terminals running as described in A1.2 should still be
running.

On a separate terminal run the below command to forward all requests from the service
port (5678) to the container port of our “fed-app” deployment (8080)

kubectl port-forward service/fed-app-service -n federated-ns 5678:5678

On a separate terminal run the below command to create a second ngrok public endpoint
and forward all requests to our “fed-app-service” resource running locally:

ngrok http --scheme=http 5678

	Federation of Local K8s Clusters through a Central Cluster in the Cloud
	Declaration
	Abstract
	Acknowledgement
	Contents
	Introduction
	Figure 1.1: Kubernetes Multi-Cluster Federation
	1.1 Goal of the Thesis
	1.2 Structure of the Thesis

	Background
	2.1 Kubernetes and its History
	2.2 The Evolution in App Deployment
	Figure 2.1: Application Deployment Process Evolution [11]

	2.3 Kubernetes Benefits
	Figure 2.2: Kubernetes Benefits

	2.4 Kubernetes Architecture
	Figure 2.3: Kubernetes Cluster Architecture [17]

	2.4.1 Control Plane Components
	Kube-apiserver
	Figure 2.4: Control Plane API workflow

	Scheduler
	Figure 2.5: Control Plane Scheduler workflow

	Controller Manager
	etcd
	2.4.2 Node Components
	Container Runtime
	kubelet
	kube-proxy
	2.5 Kubernetes Objects
	2.5.1 Namespace
	2.5.2 Pod
	2.5.3 ReplicaSet
	2.5.4 Deployment
	Figure 2.6: Example Kubernetes Deployment [28]

	2.5.5 Service
	Figure 2.7: Example Kubernetes Default Service

	2.5.6 ConfigMap
	2.5.7 Secrets
	2.5.8 Labels & Selectors
	2.5.8.1 NodeSelector and Labelling Nodes
	Figure 2.8: Placing workloads on a particular node through Labels & Selectors

	2.5.8.2 Affinity and Anti-Affinity
	Figure 2.9: Placing workloads on particular Nodes through Node Affinity [32]

	2.5.9 Custom Resource Definitions (CRD)
	2.6 Summary

	Kubernetes Multi-Cluster
	3.1 Multi-Cluster Approach in K8s
	3.1.1 Multi-Cluster Kubernetes Advantages
	3.1.2 Multi-Cluster Kubernetes Architecture
	Figure 3.1: Different Types of Multi-Cluster K8s Architectures

	3.2 Kubernetes Cluster Federation
	3.2.1 Cluster Federation Description and Benefits
	Figure 3.2: Federation of two clusters from different regions through a Manager

	3.2.2 Cluster Federation Caveats
	3.3 Other Alternatives
	3.3.1 Cluster API
	Figure 3.3: Cluster API Components

	3.3.2 Other Tools Offered by Cloud Providers
	Figure 3.4: Conformant Kubernetes Clusters we can add to Anthos Management

	3.4 Summary

	Cluster Federation Projects
	4.1 KubeFed Project (Version 2)
	4.1.1 KubeFed Detailed Overview
	Figure 4.1: List of Federated Clusters Observed from Host Cluster
	Figure 4.2: KubeFed components automatically deployed as Kubernetes Pods
	Figure 4.3: Sample KubeFed Template Diagram
	Figure 4.4: Conversion of Deployment resource into Federated Deployment
	Figure 4.5: Main KubeFed Components [45]

	4.1.2 KubeFed Caveats
	4.2 ClusterMesh Cilium
	4.3 Network Service Mesh
	4.4 Submariner
	4.5 Consul
	4.6 Shipper
	4.7 Admiralty
	4.8 Summary

	Design and Implementation
	5.1 Proposed Solution
	5.2 Requirements and Fulfillments
	In this section, we will list the requirements that need to be fulfilled in the order they are fulfilled. For each requirement, we will provide a detailed solution with example commands and screenshots.
	5.2.1 Creating a Local Minikube Cluster
	As mentioned previously, we are going to use our MacBook Pro (2017) as our local machine, and we need to create a local cluster in which to automatically deploy the resources of the central cluster running in the cloud. For this, we will use a local M...
	Figure 5.1: Setting up Minikube on the Local Machine

	As the next requirement, we need to create certificates for our Minikube cluster and introduce these certificates to the Cloud Platform so that it has access to our local clusters. Moreover, since our local machine resides in Dublin, Europe, our Minik...
	Figure 5.2: Central GKE cluster located in Australia Region

	5.2.2 Connectivity between Minikube and GKE
	Figure 5.3: KubeConfig files on the Local Machine with and without Certificates
	Figure 5.4: Local Environment’s “kubeconfig” file uploaded to Cloud Shell
	Figure 5.5: Merged kubeconfig files in GCP
	Figure 5.6: GCP having access to our local Minikube as a cluster context
	Figure 5.7: Unable to access the resources of local Minikube from GCP

	5.2.3 Exposing Minikube API server
	Figure 5.8: Exposing port=8001 for Minikube API server
	Figure 5.9: ngrok URL forwarding requests to the Local API server of Minikube
	Figure 5.10: Minikube API server changed to ngrok URL in kubeconfig_merged
	Figure 5.11: Successfully accessing to the resources of local Minikube from GCP
	Figure 5.12: Creation of a test-namespace in Minikube cluster from GCP
	Figure 5.13: test-namespace successfully created in the local Minikube Cluster

	5.2.4 Installing KubeFed on Central GKE Cluster
	Figure 5.14: Installing KubeFed in GCP
	Figure 5.15: kubefed-controller-manager pods deployed to kube-federation-system Namespace
	Figure 5.16: Minikube joining the Federation and becoming a Member-Cluster
	Figure 5.17: Confirmation of Minikube’s Federation
	Figure 5.18: List of Federated Clusters

	5.2.5 Deploying Resources on GKE Host-Cluster
	Figure 5.19: FederatedNamespace object created in the GKE host-cluster
	Figure 5.20: Namespace called “federated-ns” automatically created in Local Minikube
	Figure 5.21: Google-Hello FederatedDeployment created in the GKE Host-Cluster
	Figure 5.22: Deployment pods automatically created in the GKE host-cluster
	Figure 5.23: Deployment pods automatically created in our Local Minikube Cluster
	Figure 5.24: Google-Hello FederatedService created in the GKE Host-Cluster
	Figure 5.25: Service object automatically created in the GKE host-cluster
	Figure 5.26: Load-Balancer created for “fed-app-service” Service of GKE cluster
	Figure 5.27: Reaching the “fed-app” deployment running in GKE host-cluster (AU)
	Figure 5.28: Service object automatically created in the local Minikube cluster (w/o public IP)

	5.2.6 Exposing “fed-app-service” of Local Minikube
	Figure 5.29: Forwarding requests from Service Port to Container Port
	Figure 5.30: Reaching the “fed-app” deployment running locally in Minikube (EU)
	Figure 5.31: ngrok URL forwarding requests to the Local Service of Minikube
	Figure 5.32: Reaching the “fed-app” deployment running in Local Minikube Externally

	5.3 Summary

	Evaluation
	6.1 Latency
	Figure 6.1: Latency of the central GKE cluster hosted in AU
	Figure 6.2: Latency of the Minikube cluster hosted in Dublin
	Figure 6.3: Latency of the central GKE Cluster hosted in AU from London
	Figure 6.4: Latency of the Local Minikube Cluster hosted in EU from London

	6.2 Resiliency
	6.2.1 Disconnection of ngrok agents
	Figure 6.5: Changed ngrok Endpoint for the Minikube API Server

	6.2.2 Disconnection of the Central GKE Cluster
	6.3 Security
	6.4 Summary

	Future Work
	7.1 Automating the Solution
	7.2 Resiliency in KubeFed
	7.3 Resource Allocation in KubeFed
	7.4 Disconnection of API Server
	7.5 Summary

	Conclusion
	A1 Appendix
	A1.1 Creating the Minikube and its Certificates
	A1.2 Exposing the Minikube
	A1.3 Google Cloud Console: Merging Config Files
	A1.4 Installing KubeFed on the gke-host-cluster
	A1.5 Application Deployment on gke-host-cluster
	A1.6 Exposing “fed-app-service” of Minikube

