
Application of Spline and Wavelet
Smoothing Techniques For Functional Data

Mohammad Mahdi Eslami

A Dissertation
Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Future
Networked Systems)

Supervisor: Prof. Mimi Zhang

August 2022



Declaration

I, the undersigned, declare that this work has not previously been submitted

as an exercise for a degree at this, or any other University, and that unless

otherwise stated, is my own work.

Mohammad Mahdi Eslami, August 19, 2022



Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this

thesis upon request.

Mohammad Mahdi Eslami, August 19, 2022



A

Application of Splines and Wavelets
Smoothing Techniques For Functional Data

Mohammad Mahdi Eslami, Master of Science in Computer Science
University of Dublin, Trinity College, 2022

Advancement in statistical technologies has empowered scientists to collect more
sophisticated data. This increasing sophistication demands a new conceptualization
and consequently, new set of tools and techniques to extract additional information
from the underlying patterns of the data. Functional Data Analysis is the study of
examining the variability of a dataset when the observations are curves instead of
discrete data samples, enabling statistical tools to further study the derivatives of
the curve which may contain relavent information to the subject. The first step in
Functional Data Analysis is to create smooth approximation functional curves from
a set of discrete data points for which some approximation methods are required to
describe the behavior of the data. Among the smoothing techniques to create the
approximation function in Functional Data Analysis, Splines and Wavelets are of
interest in this paper. Splines in nutshell employ a set of knots and fit peicewise
polynomial functions between them to provide an estimation function for the data.
Wavelets apply smoothing by decomposing the data into set of frequency sub-bands
and filter out data samples which do not lie in the specified range. This will remove
rapid changes from the data pattern, resulting in a smooth estimation.

The main purpose of this paper is to study the fundamental concepts involved in
Splines including different families of splines and different knot placement strategies.
Multiple wavelet basis as well as the viablity of each choice is also discussed in this
paper. The smoothing factors emplyed by each method to create an estimation
function are also studied in this paper by applying the methods different timeseries
and spectogramic datasets. This study also provides a practical guide through which
these techniques can be applied on functional datasets. An introdcudtion and
evaluaiton of various related packages available both in R and Python is included in
the practical guide. We implement Splines in R and use PyWavelet library for
applying wavelets. Both methods showed competency to be utilized as a smoothing
technique for functional data.s

Keywords: Functional Data Analysis, Smoothing, Curve-fitting, Splines, Wavelets,
Spline Knot Placement, R, Pywavelet.
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Chapter 1

Introduction
The rapid advancement in technology has empowered scientists to record more
sophisticated data in various contexts including biomedicine, biology, geography,
climate, neurosciences and etc. The increasing sophistication of data collection
demands a new definition and consequently, new set of tools and techniques to
extract additional information from the data. In statistical studies, data is sampled
based on a sampling schedule specified by the application requirements e.g. dense,
sparse, over a continuum e.g. time, space, wavelength etc. Traditional analysis
methods deals with these observations as a set of discrete values whereas modern
analysis tools, for instance, Functional Data Analysis (FDA) expresses these
discrete observations in form of functions. This enables the analysts to take
advantage of the additional information derived from the underlying patterns of the
data by evaluating the functions and their derivatives.

The use of differential equations as models and understanding the functional
relation between the observations are made possible by the availability of
derivatives, adding descriptions of both the dynamical and static characteristics of
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underlying patterns. The capacity to quantify these dynamics is a key advantage of
Functional Data Analysis over traditional methods. To represent data as functions,
the initial step is to creating functional objects from these discrete values. This will
be made possible if a curve which approximates the underlying process is fitted to
the discrete observations. Next, the functional objects are kept for further analysis
and the discrete points are left away. Curve fitting in nutshell is the act of creating
the mathematical function or curve that best fits a set of data points, subject to a
certain set of conditions. It may either involve smoothing techniques through which
a smooth function that roughly matches the data is created or interpolation, which
finds a perfect fit to the data points. This makes the smoothing techniques one of
the important parts in FDA framework. The smooth function created by the
smoothing technique is also referred to as a curve.

Among the different smoothing methods for Functional Data, splines and wavelets
are the two techniques discussed in this paper. In essence, splines are a collection of
end-to-end polynomials lines joined at points called knots. Each polynomial between
knots is adjusted optimally, making splines a powerful tool to capture local
behaviors present in the data. As the definition suggests, the number and the
location of knots as well the degree of the polynomials are the important factors
which control the smoothness of the curve. Knots are frequently set to have equal
spacing, However, they may alternatively appear at the determined points of
interest. Wavelet Transforms are another strategy which makes use of orthonormal
series to address some of the essential limitations of Fourier Transforms. The
process of wavelet transformation starts by convolving a basis function, called
mother wavelet, with a varying scale and translation factor to the data to extract
frequency information. Continuous Wavelet Transform (CWT) and Discrete
Wavelet Transform (DWT) are two types of wavelets. In DWT the scale increases
discrete values as oppose to CWT which increases continuous values. One of the
main applications of DWT is denoising which can result in obtaining a smooth
curve.

This paper studies the fundamental concepts involved in spline and wavelet
smoothing methods. Different types of each, their required parameters and the
implications of different choices are the main topics in this paper. A practical guide
on how to apply this techniques on functioanl datasets as well as the evaluation of
different programming tools available in this area are also provided. applications.

1.1 Background Research

The phrase Functional Data Analysis, was first used in 1991 by Ramsey and Dalzell
in there paper in which they discussed the principles of FDA and provided some
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tools for applying FDA [1]. Müller has also highlighted the fundamental
characteristics of FDA and discusses the core techniques including Functional
Principal Component Analysis (FPCA) and Functional Linear Regression in his

paper [1] . As the technology advances, more and more sophisticated categories of

data are being recorded including high frequency time series, satellite images,
neuroimages, biological data and so on. As pointed by Levitin and his fellow
researchers, these new categories of data demand new conceptualization and new set
of powerful tools to extract information from all the underlying pattern present in

the data [2]. To be precise, FDA methods often extract additional information from

the data by scrutinizing the function which describes the behavior of the data and

its derivatives [2, 3, 4] . This extraction of extra information cannot be normally

performed by using traditional statistical methods. Ramsey has explained when
data can be treated as a function in his study and the benefits of this approach in

more details [5] . FDA effectively considers the entire curve as a single entity,

therefore correlation between single sampled observations are unaffected. This
indicates a shift in how time series and associated data are handled philosophically

[2, 6]. FDA is gaining more attention in a variety of statistical analysis particularly

in medical studies. Ullah and Finch have provided a systematic review of FDA

applications in various contexts [6] . From a practical standpoint, a measurement

error is present in data and every data point is viewed on a discrete grid. Thus,
beginning with these discrete observation, the most important step in analysis is to
estimate the continuous functional data which describes the behavior of the data.
This empower analysts to further examine the derivatives of the functional data.
The derivatives of the function usually contain underlying information relevant to

the study. As pointed out by many [1, 2, 6, 7] , the first step in FDA is to make a

smooth approximation for the data. To make functional objects from these data, a
smoothing technique should be utilized to provide a smooth estimation which
represent the main characteristics of the data pattern. The smooth estimation is
also knows as estimation curve [2]. Splines techniques have a long history in

creating smooth estimation for functions [8].

Splines in nutshell are a set of polynomial functions joined at mutual points called

knots [9, 10] . Splines have been recognized as powerful nonparametric tool in

explanatory analysis [11, 12, 13]. This capability of splines has made them a best fit

in FDA to generate smooth approximation functions. A comprehensive overview of

the smoothing methods used in different FDA applications has been done by [6] .

Different choice of polynomial degree, number and the location of knots and some
other smoothing factors have created a variety of spline families. The mathematic

concepts behind each category of splines has been provided by Carl [8] . Hastie also
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in his book gives an intuitive overview of spline families applied on real datasets

[14] . Regression Splines and Smoothing Splines comprise the conventional types of

splines. Regression Splines control the smoothness of the curve using a component
called degrees of freedom which is a function of the knots and the degree of the

polynomial fits [8] . The Smoothing Splines however use a high number of

equidistant knots and a penalty component to control the smoothness [7, 14] .

Consequently, the number and the location of knots in Regression Splines play a
key role so as the penalty choice in Smoothing Splines. Many have studied the
implication of location of knots in Regression Splines. Paul and Brian in their study
compare Truncated Power Series splines with knot placed at Quantiles with

Penalized Splines with equidistant knot [15] . William also compared different

strategies of knot placement. Some say that the optimal choice of knots is obtained

when the knots are chosen based on the characteristic of the input data [16] . A

branch of smoothing splines which do not use knot at every point of the data and
fir a smooth spline by employing less number of knots are referred to as Panelized
Splines (a.k.a P-splines). P-splines use a penalty component to control the level of
smoothness. Choosing an optimal value for the penalty is a challenge for Smoothing

Splines. The sate-of-the-art is to use generalized cross validation [17, 18, 19]. A good

review of packages available in R to apply splines is given by Aris and his fellow
coworkers. Spline producers in R are easy to use and provide a variety of options to

work with [20].

The choice of smoothing method in FDA should be compatible with the essential

characteristics of the data [21] . For periodic data, a useful basis system is the

Fourier basis; for non-periodic smooth data with continuous derivatives up to a
certain order, a Spline basis are commonly used; and for data with a strong local

behavior, an applicable basis system is the wavelet basis [6, 7] . Although these

methods are all considered as the smoothing techniques, however, there are
fundamentally distinct.

The first literature related to Wavelets dates back to 1901 proposed by
mathematician Alfred Haar. The concept was then developed and proposed by Jean

Morlet and the term Wavelet was invented in 1984 [22] . Wavelet Transforms have

been introduced to address some the limitations of Fourier Transforms to provide

resolution bot in time- and frequency-domain [23] . Continuous Wavelet Transform

and Discrete Wavelet Transform are two categories of Wavelets. Wavelets are
mostly used in Signal Processing Context to extract time- and frequency-domain

information of the input data [24] . However, Wavelets can also be used as

smoothing tool [14, 24]. The term smoothing and denoising are interchangeably used
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in Wavelet context. Wavelets Transforms multiply a basis function which is
localized in the domain of the data called Mother Wavelets with different scaling

factors to the data. Such process is also knows as Convolution [14, 25] . Different

choices of Mother Wavelets significantly alter the output of the transform. Many
have investigated the effect of choosing different mother wavelets and proposed

some criteria to find the best choice for any given data [26, 27, 28].

Thanks to inherent local-adaptivity of Wavelets, they are capable of accepting a
broad range of functional forms. Wavelet basis have shown to be particularly
beneficial in FDA, particularly when one-dimensional curves are of interest. David
and Laura in their work applied Discrete Wavelet Transform on

Electrocardiography (ECG) data as the smoothing tool in FDA [29] . Another

experiment also made use of Discrete Wavelets on Wind Turbine Data [30] . In

essence, when DWT is applied, the data will be decomposed into set of frequency

subbands [25] . Then a denoising technique is applied by setting a threshold and

removing the frequencies whose their magnitude lies beyond the threshold [25, 29] .

That is one of the reasons why Wavelets are a good fit for noisy datasets and data
with strong localized behavior. Finding a good compromise for the value of the
threshold and an appropriate level of decomposition play key roles in the level of
smoothness. There have been studies which investigated the ways through which

the best value for threshold and the level of decomposition can be obtained [31, 32].

As things stand, there has been no paper in which a comprehensive comparison
between Splines and Wavelets in FDA context is made. In this paper, we review the
studies carried out in the two areas and provide practical examples which can
contrast Splines and Wavelets in FDA context.

1.2 Motivation

Having reviewed the related studies conducted in this area, it was found out that
most of the studies delve into the mathematical aspects behind the methods rather
than providing a practical guide on how to utilize them. This could be considered as
one of the reasons why smoothing techniques including Splines and Wavelets and in
general, Functional Data Analysis are receiving less attention even though they are
powerful tool which accommodate most of the requirements of analyzing the
modern sophisticated data. There was also no comprehensive analysis found that
comprehensively compares Splines and Wavelets in FDA context.

This study is intended to be read both as a review and a manual. That is, we will
review the fundamental concepts of Splines and Wavelets and discuss how they can
be used in smoothing context in detail. The aim of the study is to provide more
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intuitive comparison, rather evaluating the complex mathematical formulas,
allowing the readers to focus on the practical side of the experiments. However, the
essential mathematical characteristics of the techniques alongside with references to
more mathematical treatments for those who are interested are provided.

In addition, a practical guide through which Splines and Wavelet smoothing
techniques can be applied on real functional data are also provided. The different
options of state-of-the-art programming frameworks which implement these
techniques in R and Python are discussed and and evaluated in the practical guide.

1.2 Data Declaration

the set of Functional Datasets that have been used in this are listed in Table (1.1).
All the datasets are publicly available on online sources, some of which are built-in
datasets available in relevant R packages.

Dataset Description Type Source

Tecator data [33]
the absorbance values of a piece of
finely chopped meet measured at 100
wavelengths.

Spectrometric Online

Queensland Male Mortality Rates [34]
Age-specific mortality rates for
Australia and Australian states

Time Series R package

Sydney Temperature [35]
Sydney Daily Minimum Temperature
from 1959 to 2022

Time Series Online

Triceps Skinfold Thickness Data
Triceps skinfold thickness of 892
females under 50 years in three
Gambian villages in West Africa.

Other Online

Electricity Demand Data [34]
Half-hourly electricity demands from
Sunday to Saturday in Adelaide
between 1997 - 2007

Time Series R package

Biscuit Data [34]

700 point near infrared reflectance
(NIR) spectra. The spectral range
spans from 1100 to 2498 nm in 2 nm
increments for a piece of dough.

Spectrometric R package

El-Nino [36]

measurements of the water and the
atmosphere gathered from a number
of buoys scattered over the equatorial
Pacific.

Time Series Online

Moisture Data [34]
Near-infrared reflectance spectra of
100 wheat samples, measured in 2 nm
intervals from 1100 to 2500nm

Spectrometric R package

Phenome data [37] comprises spectra from Spectrometric Online

Dublin Bike data [38]
Bike Availability of stations 2020 -
2022 with 5mintues intervals.

Time Series Online

Table 1.1 – Functional Datasets. Functional datasets used in the study with a brief description, category and the source of each.
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1.4 Dissertation Structure

The structure of the rest of the paper is as follows. In chapter 2, we will review the
basics of Functional Data Analysis alongside with the examples of such data.
Chapter 3 is dedicated to splines and the main features of a spline fit are
elaborately discussed. Chapter 4 provides and overview of Wavelet Transforms,
different types and how they can be applied in FDA context. In Chapter 5, A
practical guide through which the two smoothing techniques can experimented has
been provided and the viability of each choice is discussed. In Chapter 6, we discuss
the implications, contributions and the future scope of this study. The complete
code of each experiment carried out within the sections are available in the relevant
appendixes.
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Chapter 2
Functional Data Analysis
The advancement in technologies has allowed the statistical studies to collect more
sophisticated data. This new sophisticated data demands a new set of tools which
are capable of extracting additional information offered by these new types of data.
In traditional data analysis approaches, the samples which are collected throughout
the experiment are often treated as a set of discrete observations. These
observations may also contain natural or sampling noises. Classic statistical
techniques can be used on such data, but they are unable to capitalize on the

additional information that the underlying functions implies [2] . Functional data

analysis (FDA) is a relatively new study that discuses how data which is
represented as functions, images or more abstract forms, are analyzed, theorized
and categorized. A function is the fundamental unit of functional data, and one or

more functions are recorded for each subject in a random sample [1] . The phrase

Functional Data Analysis was first used in 1991 by Ramsey and Dalzell in there
paper in which provide an overview for functional data propose a set of new in FDA

[39]. The term function signifies that a functional system is required to apply FDA

in applications. This demands a set of tools through which we can obtain smooth
estimation functions to represent the main characteristic of the data. This function
alongside with its derivates will then be examined to extract additional information
from the data which are often not found using traditional data analysis methods.
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2.1 Functional Data Object

To define a functional data object, let us review what the basic definition of a
function is. In mathematics, a function from a set X to a set Y, assigns to each
element of X exactly one element of Y.

The fundamental goal of FDA is to describe discrete observations sampled over a
continuum as a function, to create functional data where each function corresponds

to a single measurement of the complete measured function [2, 6] . After creating

functional data objects, the next step is to bring in modeling and prediction
techniques for the next phases of the analysis.

A functional object is not viewed as a single observation. In many cases continuum
is time. However, it is conceivable for any continuous domain. A random sample of
independent real-valued functions, such as X1(t),..., Xn(t), on a range I = [0, T]
form a basic level of a functional data. These data are also known as curve data.

2.2 FDA vs Classical Techniques

In several respects, FDA enhances the capabilities of conventional statistical
methods. It is necessary to develop new tools to capitalize on the properties of
functional data in order to study the variability of a dataset where the observations
are curves rather than points. For instance, the availability of derivatives makes it
possible to employ differential equations as models, introducing representations of
both the dynamical and static characteristics of mechanisms. The capacity to
quantify these dynamics is a key benefit of these approaches over traditional static
techniques [3].

In a functional setting, the sampling intervals are not required to be uniformly
spaced across all instances and are instead allowed to vary. In other words, the
temporal axis may vary in different applications. The data may be sampled densely,
sparsely, or neither. Functional data were initially thought of being samples of
completely observed trajectories. Later, the idea extended so that functional data

objects could be recorded with uniform intervals [1]. That is, if the continuum point

for all subjects are:

� = �1, �2, �3,…, ��

The temporal grid will be equidistant and for all i and j within the range [1,n] we
have:

∆� = ��+1 −�� = ��+1 −��
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It is the size of this interval which then defines whether the observation is dense or
spare. FDA does not assume the values obtained at various points of a single
functional object are independent. It also provides tools to deal with data which its

samples are correlated and have dependencies to each other [1].

According to Ullah Finch who has provided a comprehensive review of FDA and its
applications, FDA has widely been used in diverse categories including weather and
climate predictions, satellite images, medical and biomedical studies, analysis of

handwriting variations and etc [6] . FDA is still considered a relatively new

approach. There are many ongoing studies taking place to make FDA applicable for
a wide range of statistical studies.

2.3 FDA Properties

In this section, we will succinctly touch upon FDA properties. The top four features
of FDA found in the studies conducted so far are as follows: 1) Smoothing
Techniques 2) Dimension Reduction 3) Clustering and 4) Functional Linear Models

[1] [6] . The smoothing technique is the topic of discussion in this paper and the

latter are not in the scope of this study. However, a brief description of Functional
Principal Component Analysis which is used in dimension reduction is provided.

2.3.1 Smoothing Techniques

As mentioned earlier, the sample observations are a set of finite discrete values.
Therefore, by directly connecting the samples together without imposing any
constraints, the final curve often shows erratic behaviors. This notion necessitates
the existence of a smoothing tool to help generate smooth and consistent curve out

of the discrete values. This makes the curve become differentiable [1].

In most cases, when we state a curve or a function to be smooth, it is meant that
the it should be differentiable to some extent, which signifies that several

derivatives can be approximated or calculated from the data [2] . Analyzing these

derivatives can be a crucial part of FDA since these derivatives, particularly the

first two often have interpretations that are pertinent to the research [40].

When using longitudinal data for hierarchical linear modeling, it is necessary to
have a substantial amount of sample points and a high signal-to-noise ratio,
characteristics that are not frequently extracted using traditional methods. FDA use
derivatives in a variety of ways, and the usage of derivative information is an

essential part of FDA [2].
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The initial stage in any FDA is smoothing, which contributes in forming the
function that describes the data by transforming raw discrete data points into a
smooth function. Since it is inventible for a data to appear without inherent or
observational noises, it is necessary to reduce measurement or observational errors
so that the valid underlying pattern of the data will be emphasized. This also makes
the results of the analysis more reliable. In other words, smoothing techniques are
also employed to lessen some of the essential randomness involved in the discrete

observed data [12, 41].

The findings of Ullah and Finch suggests that, the most utilized smoothing method

has been B-spline, mainly due to its flexibility and ease of use [6] . B-splines in

essence utilize a set of data points, also known as knots, and piecewise polynomial
functions to provide a smooth estimation of the given function. Among other
smoothing methods employed in FDA studies, Wavelet basis is also of the interest
of this study.

Depending on the underlying behavior of the data being examined, a suitable

smoothing technique should be utilized [21] . The smooth estimation must

presumably represent the essential characteristics that correspond to those of the
original data samples. For instance, Fourier Transforms are typically applied to
cyclical or periodic data. Splines, including regression splines, smoothing splines and

panelized splines are often applicable on noncyclical and nonperiodic data [6] .

Wavelet bases are chosen to represent data displaying discontinuities or rapid

changes [7] . We will go through the Spline and Wavelet smoothing techniques in

the next chapters.

2.3.2 Functional Principal Component Analysis

After obtaining a smooth curve by applying smoothing techniques, it is time to
employ statistical modeling to perform the analysis. The Functional Principal
Component Analysis (FPCA) is one of the most popular multivariate analysis

techniques for extracting the core features from functional data [6,42] . It is typical

to have a high number of uniformly spaced observations for each sample curve
when studying a functional data. As a result, in order to describe the key
characteristics of a collection of sample curves in terms of a set of uncorrelated
variables, a reduction dimension approach is required. This set of uncorrelated
features can be later be used in models to perform predictions or extracting other
statistical information from the data.
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In order to apply FCPA reduction, the data is transformed into a new collection of
uncorrelated, ordered variables, where the first few keep the majority of the
variance included in all of the original variables. For more detail in mathematics

behind dimension reduction see [43].

2.4 Functional Data Examples

Having explained the concepts involved in FDA, it is time to see how real-world
functional data are defined. As briefly described earlier, a functional data set can be
described as a set of random sample of independent real-valued functions, such as
X1(t),..., Xn(t), on a range I = [0, T]. Teactor data set and Mortality rate are two
example of real world functional datasets.

2.4.1 Tecator Data Set

Consider the following dataset which is a portion of the original dataset obtained at

[33]. The data consists of 100 channel spectrum of absorbances and the amounts of

moisture (water), fat, and protein in the meat samples. Spectrometric curve Xi

corresponds to the absorbance measured at 100 wavelengths (�).

�� = (�� �1 ,…,�� �� ,…,��(�100))

Additionally, the fat content of the each meat sample is available (��) which was

determined using an analytical chemical technique. Table (2.1) shows the structure
of the data. As it can be seen in Table (2.1), the entries of the dataset are a set of
multivariate functions intaking the wavelength and generating an X function
corresponding to that wavelength. The whole Row consisting of 100 observation will
then be treated as a single entity in FDA. Figure(2.1) illustrates the Tecator data.
Each wave in Fig(2.1) corresponds to a row. X30, X12, X200. More of such data

alongside with their description, structure and plots can be found at [44] . Each of

the observed curves are then treated as a single entity in FDA.

2.4.2 FDA Package in R

FDS package in R also provides a set of functional data sets including timeseries

and spectrogram which can be used in relevant FDA studies [34] . For instance,

consider the Queensland male mortality rates (1901-2003). This is a timeseries
dataset in which each curve indicates the mortality rate of a specific age from 1901
through 2003. Timeseries are a common class of Functional Data.
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Col 1 … Col j … Col 100 Col 101

Row 1 �1(�1) … �1(��) … �215(�100) �1
...

...
...

...
...

...
...

Row i �1(�1) … ��(��) … �215(�100) ��
...

...
...

...
...

...
...

Row 215 �1(�1) … �215(��) … �215(�100) �215

Figure 2.1 Example of functional data, Spectrometric dataset. Each wave in (a) represents
a functional object, among 215 pieces of finely chopped meat. We observe one spectrometric
curve X(i) which corresponds to the absorbance measured at 100 wavelengths. (B), (C) and
(D) are samples of functional curves. Original dataset can be found in [37].

Figure 2.2 - Example of functional data. Queensland male mortality rates (1901-2003). FDS
package in R contains functional datasets including time series, semi-time series and other
types of functional data. Each curve in (A) shows the mortality rate corresponding to a to a
particular age. (B), (C) and (D) are the sample functional objects in the data.

Table 1.2 – Structure of Tecator Functional Data. Each observation of the data corresponds to a wavelength.
Each row will create a curve and be treated as a functional object in FDA.
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Chapter 3

Splines
It seems appropriate to begin this chpater with the definition of spline and
where it comes from. By definition, spline is a a thin wood or metal strip
used in building construction or a long thin part that fits into another part
of a machine and makes it turn. Historically, craftsmen utilized long thin
strips of wood or other material to fair in a smooth curve between prescribed

places [10] . It is impossible to use a single piece of wood in order to make

curves in the body of a craft e.g. vessels, airplanes. Instead, they would
divide the path into small intervals and then use small strips of wood within
each to form the curve. To better understand this, suppose that we intend to
make a smooth shape as a circle. Apparently, it is not possible to make a
circle using a single straight line. Rather, we can divide our circle path into
equal sections and draw a straight line to connect the sections with. This will
result in an N-side polygon shape while N indicates the number of sections
we make. Figure (1) shows how we can arrive at a smooth circle by bridging
the gaps between the points using a small lines. The more segments are
made on the path, the smoother the final circle becomes. If the number of
sides tends to infinity, the polygon turns into a circle without any edges.
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3.1 Interpolation

Splines are also employed in statistical applications to numerically recreate
flexible forms. Again, suppose we intend to form a smooth curve to pass
through a set of predefined points within the data range. There are multiple

ways to draw such curves [45] . Chief among these are Linear Interpolation,

Polynomial Interpolation and Spline Interpolation. To give a little context
before delving into the splines, we will briefly go through each method
mentioned above.

3.1.1 Linear interpolation

Similar to what we did in Fig(3.1), we can use lines to connect the points to
each other. However, as expected, since the number of the points are limited,
the final curve will be erratic at where the adjacent lines join. This method
is called linear interpolation. In practice, linear interpolation takes two
subsequent data points, e.g. (xa,ya) and (xb,yb) while the interpolant at the
point (x, y) is defined by the formula (3.1):

� = �� + �� −��
�− ��
�� −��

(3.1)

Figure(3.2(a)) shows the original data and the linear interpolation. Linear
Interpolation takes a few simple steps to compute. However, it is notable
that the final curve is not differentiable at the last exterior point due to the

Figure 3.1 - Transition from a rough shape to smooth shape. We can arrive at a smooth
shape like a circle using high number of straight lines joined on cyclic path. When the number
of sides tens to inf, the shape becomes smoother.
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discontinuity. The error in linear interpolation is also proportional to the
square of the distance of the points through which we reproduce the curve.

3.1.2 Polynomial Interpolation

Another method in order to interpolate through the points is to replace the
linear interpolant with a polynomial of higher degree which fits the data
globally. This method is based on the fact that if a data collection comprises
n known points, then there exists exactly one polynomial of degree n-1 or
less that runs through all the data points. In other words, the target of this
method is to find the special polynomial function which defines the relation
between the data points. This is the reason why polynomial interpolation
works with polynomials of higher degree compared to other methods.

Figure (3.2(c)) shows the polynomial interpolation passing through all the
data points. This level of smoothness delivered by the polynomial
interpolation comes at the price of finding the coefficients of the polynomial
function which fits the data resulting in adding significant computational
complexity for polynomials of high degrees. In this case, the polynomial
shown on Figure (3.2 (c)) is described by the polynomial line described with
Eq (3.2):

� = 1.2776 × 10−5.�9 − 5.84189 × 10−4. �8 + 1.15096 × 10−2 �7 − 0.120991 �6 + 0.730009 �5

− 2.54838 �4 + 5.07786 �3 − 6.09975 �2 + 5.35838 � − 2.40807 (3.2)

3.1.3 Spline Interpolation

Spline interpolation can be considered as a combination of the above
methods and it takes the advantage of both methods to generate a smooth
curve that passes through the all data points. However, instead of using a
linear function for each interval, spline interpolation uses low-degree
piecewise polynomial functions. This adds to the flexibility of the curve as it
has more local controls over the intervals between the data points compared
to Polynomial Interpolation. This method selects polynomial pieces in a way
that they smoothly join together. The resultant curve is then called a
Spline.Fig (3.2(d)) illustrates the spline interpolation of the data points. The
mathematical spline is formed by substituting the craftsman spline pieces
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with smooth functional pieces to mathematically approximate the function
with a piecewise low-degree polynomials. The type of polynomial, the
number and placement of points (a.k.a knots) is what that defines the type
of spline which will discuss it in detail in the future sections.

3.2 Splines for Functional Data

As discussed in Chapter 2, the sample observations of a functional variable
are functions that result from the observation of a statistical variable in a

continuous argument [7]. Although these observations seem to be continuous,

but in essence, they are discrete values that have been sampled in a finite
collection of sampling points that may be uniformly sampled or vary
between sample units. As a result, the correct functional form of each curve
must be reconstructed from a finite number of discrete observations and
reconstructing the functional form of the data sample which are discrete
observations is the initial step in FDA. In other words, sample observations
are not perceived as continuous objects, It is the mathematical efficiency
that enable us to perceive these data as samples of curves, surfaces and other

Figure 3.2 – Comparison of Linear, Polynomial and Spline Interpolation. (a) shows the original
data. (b) shows the the linear interpolation. (c) shows the polynomial interpolation. (d) shows the
spline interpolation. We can use different degrees for polynomial fits in spline interpolation. It is
notable that it may result in lower accuracy especially in the boundary points.

(a) (b)

(c) (d)
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supports fluctuating across a continuum [7] . The primary step in FDA is to

turn this discrete recorded data into a fully functional form, allowing each

function to be evaluated at any value of its continuous argument [16, 20] .

This means that by turning the discrete recorded data samples into a
functional curve or surface, we will also be able to estimate the value of the
function where the real data sample is not even present.

3.3 Spline, Definition and Properties

To define a spline, we may first need to define its properties.

1. Basis Functions: Each spline curve can be represented as a linear
combination of basis functions.

2. Piecewise polynomial: Each piece of the spine curve is a polynomial
function which bridges the gaps between the knots

3. Knots: where two polynomial line meet
4. Continuity and Differentiability: The level of smoothness of a curve highly

depends of the level of continuity and differentiability of the curve.

To statistically analyze the functional data, it is assumed that f(X)
represents the curve, meaning that there exists only a single Y value for each
X in the domain. The predictor X can be a single variable or multiple
variables where X ∈ R. To produce the spline curve, we first need to define a
set of knots in the range on X-space. A spline f(X) will then be a smooth
function, passing through the knots and satisfying certain differentiability
properties that make f(X) a polynomial line of degree d.

For a spline to be a smooth function, it should meet certain smoothness
criterion. Smoothness of a curve is tied with the continuity and the level of
differentiability throughout the domain of the funciton. In general, All
derivatives of order less than d in a spline curve are continuous. Imposing
further constraints to restrict level of differentiability produces different
categories of splines. In order to obtain more flexible curves the number of
knots or the degree of the polynomial can be increased. There is however a
trade-off; increasing the number of knots may overfit the data and increase
the variance, whilst decreasing the number of knots may result in a rigid and

restrictive function that has more bias [2, 7, 20] .
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3.4 Representation of Basis Expansion

To express a function with its basis expansion, it is required to
mathematically transform a function into a series or an infinite sum. when it
becomes hard to compute a function that cannot be represented with basic
operators, utilizing a proper expansion becomes a solution. The expanded
representation of the function consists of a finite number of terms, which
there sum or production provides the function approximation. The more
rough approximation we desire, the fewer terms of the sequence will be
employed.

3.4.1 Taylor and Fourier Transform

The most conventional methods among the expansions are Taylor and
Fourier transforms. All of the expansion strategies are based on a certain
characteristics and information extracted from the original function. For
instance Taylor expansion is used to determine the value of the function at
every point, provided that the value of the function and all of its derivatives
are known at every single point. The Taylor series of function f(X) can be
obtained using Eq(3.3):

�=0

∞ �� �
�!

� �− � � (3.3)

For instance, the expansion of function 푠��(�) where x = 0 will be as below:

� � =−
�3
6

+
�5
120

−
�7
5040

+
�9

362880
−

�11
39916800

+
�13

6227020800
+… (3.4)

A wide range of Taylor series applications in real world are discussed in [46,

47] . Fourier series are comprised of an infinite sum production of sines and

cosines. Due to its periodicity, it is used for analyzing periodic functions [2] .

A comprehensive explanation of Fourier series can be found in [48] and a

good analysis of its application in MRI data is found in [49].
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3.4.2 Basis Expansion

As explained in the previous section, the polynomial interpolation fits a
single structure throughout all the data points on X-space. It was then
discussed that this idea could be extended by partitioning the X-space into a
series of disjoint intervals. Then, polynomial functions can be adopted within
each interval to better capture the local behavior of the function. We explain
this notion by giving an example. Figure (3.3) illustrates the minimum

temperature of Sydney throughout the year 1859 [35] . The X-space can be

portioned into 4 sub-intervals by defining 3 split knots:

� = �1,�2 = (100, 200, 300)

Given ξ, the simplest model assumes f(X) as a piecewise constant. As a

result the complexity of the approximation reduces to estimating the
constant value which describes the function. For example, This value could
be the sample mean within the intervals. See Figure (3.3 a). This model can
be represented with four basis functions where a, b, c and d are the mean
value for the range specified in front of each function:

�0
∗ � = 1 � < 100

�1
∗ � = 1 100 < � < 200

�2
∗ � = 1 200 < � < 300

�3
∗ � = 1 300 < �

So that:

� � =
�=0

3
����

∗(�)�

The model can be relaxed by utilizing piecewise linear components instead of
constant values. Therefore, we require four additional basis functions. Figure
(3.3 b) shows how the final curve looks like by applying this model to the
data. The method can be extended to arbitrary degrees as shown in Figure
(3.3 c). However, by incrementing the degree, new parameters are added
which need to be calculated. Having K interior split points, or knots, will
create K+1 segment in the X-space.
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Each polynomial of degree d also has d+1 coefficients, resulting in (K

+1)×(d+1) parameters to be calculated. As Figure (3.3) shows, all of the

methods resulted in a set of disjoint lines.

Splines are tools to create smooth curves. Having a set of disjoint polynomial
lines representing the whole function breaches the smoothness condition.
Based on what was discussed in Chapter 2, it is not anticipated that the
spline function to be discontinuous at any points. Therefore, we impose some
constraints to guarantee the continuity of the spline at where polynomials
meet. The first and trivial constraint is that the values of the function at
knots should be the same, for example, for a piecewise linear spline, there are
three constraints:

�1 = 100 : �0 + �1�1 = �2 + �1�3

�2 = 200 : �2 + �2�3 = �4 + �2�5

�3 = 300 : �4 + �3�5 = �6 + �3�7

It is worth mentioning that it is only required to estimate the free
parameters of the systems as the dependent variables can be derived from
each other. By adding three constraints, three dependent parameters are
removed. Applying the conditions above result the spline curve to appear as
Figure (3.3 d). We may also use a basis that directly integrates the
limitations rather than having separate basis functions and constraints. For
instance:

�0
∗ � = 1 �1

∗ � = �

�2
∗ � = �− �1 + �3

∗ � = �− �2 +

�4
∗ � = �− �3 +

�00
∗ � = 1 ,�01

∗ � = � � < 100

�10
∗ � = 1 ,�11

∗ � = � 100 < � < 200

�20
∗ � = 1 ,�21

∗ � = � 200 < � < 300

�30
∗ � = 1 ,�31

∗ � = � 300 < �
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Where + denotes the positive part. To add to the smoothness of the curve,
apart from using polynomials of higher degrees, we may impose further
constraints to ensure the differentiability of the other derivatives. This will
be achieved by incorporating additional constraints at the knot locations

- 1st: constraint ensures continuity of f(·)
- 2nd constraint ensures continuity of the first derivative f′(·)
- 3rd constraint ensures continuity of the second derivative f′′(·)
- So on.

The first derivative of a function is an equation that provides information
about the slope of a tangent line to the curve at any point. If its sign is
positive, the curve is rising. If is a negative, it the curve declining. The
instantaneous rate of change of the first derivative is measured by the second
derivative. The sign of the second derivative indicates whether or not the
slope of the tangent line to function is rising and so on for the lower level
derivatives. It also provides information about the convexity and concavity
of the function at the given entry point. All these information helps us to
improve the level of the smoothness of the spline curve. Therefore, for the
splines it is necessary for all derivatives of order less than d to be continuous.
In the Sydney Data, by placing 3 knots and using a polynomial of degree 3
and imposing all the constrains that ensure the smoothness, we expect to
arrive at a smooth continuous curve as illustrated in Fig(3.3 (e)).

Having explained the idea of representing a functional curve with a set of
basis functions which incorporates all the smoothing constraints, we can say
that a general functional spline curve can be represented using the formula
below:

� � =
�=1

�+�+1
����(�)�

where the Bk are a set of basis functions described in the previous section

and βk are the associated coefficients. Provided that the degree of the

polynomials of the basis function are specified, the only task which needs to
be done in order to make an estimation for the function is to estimate the

coefficients βk. Therefore, the complexity significantly reduces compared to
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other methods of interpolation e.g. polynomial interpolation. Therefore the
estimation of f(X) can be viewed as an linear optimization problem. In other
words, spline modelling reduces the estimation of the functions f(X) to the

estimation of a small set of real-valued coefficients [2, 20].

3.5 Degrees of freedom

Splines, in essence, are piecewise polynomials linked at knots. The term
degree indicates the degree of the polynomials. A polynomial of degree 1 is
merely a line and called linear splines. Cubic splines have polynomials of
degree 3 and so forth. Degrees of Freedom (DF) specify how many
parameters must be estimated to make a smooth fit for the curve data.
Degrees of freedom is a function of number of knots and the degree and it
varies depending on the type of splines. As the number of knots increases so
as the degrees of freedom rise and the spline curve appears wigglier.

The two outermost knots are the called Boundary Knots, which are usually
positioned at the minimum and maximum of the X-space. The other knots
are known as Interior Knots which are usually the main part of the
discussion.

In general, when we partition the X-space into some intervals using K knots,
there will be K+1 intervals created. Suppose we want to connect these knots
using a polynomial of degree d. Each polynomial function of degree d, has
d+1 coefficients. Therefore, for a general spline, the number of parameters
that need to be estimated is:

�� = � + 1 �+ 1

However since there are some constrains imposed to ensure the continuity of
the derivatives of order less than d, all the variables are not independent. To
calculate the independent variables (a.k.a. Degrees of Freedom) we should
remove the dependent variables from the total. The derivatives continuity
constraints are applied at the knots where two polynomial joins resulting in
K*d constrains. Therefore, the degree of freedom for a general spline curve is:

�� = �+ 1 �+ 1 −�∗� =�+ �+ 1 (3.5)
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As shown in in Eq(3.5), the degree of freedom is a function of number of
knots and the degree of the polynomial used between the knots.

3.6 Spline Families

Many studies have described the mathematical features of the various spline

techniques [8, 19, 50] . There are multiple ways to define the basis functions,

and each spline basis has a different set of numerical characteristics [8] . In

this Section, we will introduce some of the most popular spline basis, namely
the Truncated Power Series, the B-splines, Natural Cubic Splines, Smoothing
Splines and P-splines.

3.6.1 Truncated power series

Truncated power series is the most basic form of the smooth splines [8, 20] .

As pointed out, continuity means that there are no gaps in the values of a

Figure 3.3 – Different Basis Representations (a) shows the original data which is the time series
containing Sydney temperature available at [35] . (b) shows constant basis expansion. (c) shows the
disjoint linear basis. (d) disjoint polynomial basis. (e) shows linear basis with continuity, (f) shows
polynomial basis with continuity. The main important characteristic of a smooth function is to be
continuous and differentiable as shown in (f).

(a) (b)

(c) (d)

(f)(e)
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function �(�). This can be achieved by connecting the polynomial functions
together at knots. However, there are other continuity constraints which
contribute to the level of smoothness and are not necessarily related to the
value of the function. These constraints should also be applied to the first
derivative �′(�), second derivative �″(�) and so on. Typically, continuity
at �(�), �′(�) and �″(�) is enough to make functions look smooth to the

human eye, but the application may also demand higher orders [20] . The

basis function of truncated power series is defined below, built on the
representation for continuous piecewise linear model, and increasing the
order of the local polynomials:

�1 � = 1,�2 � = �,…. ,��+1 = ��,

��+2 � = � − 1 +
� ,…,��+�+1 = �− �� +

�

Where d denotes the degree of the polynomials, K denotes the number of

knots and � represents the knots vector. + also indicates the positive range
of the function. As mentioned in Section 3.5, there are K+d+1 basis function
used to describe Truncated Power Series. As the formula indicates, it is easy
to implement the basis functions of the truncated power series. The first
term starts with a basic polynomial of degree d. It will then deviate from the
basic polynomial and translating parameters are successively added to the
spline function. A truncated power spline is d − 1 times differentiable at the
knots and has d+K+1 degrees of freedom. Figure (3.4) demonstrates the
Truncated Power Series basis functions.

Having looked at the basis function, it can be inferred that Truncated Power
Series could lead to some numerical instabilities as some of the Bk are

defined over the whole range of data resulting in correlations between some
basis splines and consequently loosing its support to accurately capture local

behavior of the curve [8, 20] . To mitigate this problem, a recursive

representation of spline basis functions has been proposed which is called B-
spline. The recursive definition of B-spline representation causes the
subsequent polynomials to inherit from each other, making the final curve as
consistent as possible. The code for generating Truncated Power Series Basis
Function can be found in appendix (1).
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3.6.2 B-splines

B-splines basis function offer an alternative, computationally convenient
representation of basis functions and it is recognized as a powerful smoothing
tool which are capable of capturing the local behavior of the data. the
recursive formula of B-splines, the knot vector has to be augmented in the
boundaries. The general polynomial basis functions are obtained using a
recursive relation described below.

��,� � =
�− ��
��+� −��

��,�−1 � +
��+�+1 − �
��+�+1 − ��+1

��+1,�−1 �

Where j is the degree and i walks through the knots vector. To help better
understand B-splines, let’s assume a cubic spline (D=3) on the range x ∈ [0,
1] with three interior knots as:

ξ
∗

= (0.25, 0.5, 0.75)

As the first step, consider B-spline with degree 0 which is a series of locally
constant functions over the range of X-space. Based on the recursive
definition of formula, to obtain basis functions with higher indexes, we

require to obtain the value of ξ0 and f(ξ0). Otherwise, the value of the first

basis function cannot be obtained. On the other hand, to obtain the

penultimate basis function, we should know the value of the last ξK+1 and

f(ξK+1) In advance. Boundary knots define the range in which the spline is

Figure 3.4 – Truncated Power Series Basis Functions.
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evaluated. That is meant by the augmentation of the knots on boundaries in
B-splines. Suppose the values of the augmented boundary knots are as
follows:

ξ0 = 0, ξK+1 = ξ4 =1

resulting the knot vector to be:

ξ
∗

= (0, 0.25, 0.50, 0.75, 1)

We can mathematically define the B-spline basis functions of degree 0 as:

��,0 � =
1 �� < � < ��+1
0 표�ℎ푒푟푤�푠푒

boundary knots are meant to ensure that all of the locally-defined Bi,0(x) are

not ill-conditioned and instead are all well-defined. Figure (3.4 a) shows the
basis function of B-spline when j= 0. It is notable that each basis function
spans over two knots. The construction of the B-spline representation of a
linear spline (j=1) is obtained by taking a weighted average of the Bi,0(x)

functions:

��,1 � =
�− ��
��+1 −��

��,0 � +
��+2 −�
��+2 −��+1

��+1,0 �

The two intervals which include three knots for the linear B-spline are [ξi,

ξi+1) and [ξi+1, ξi+2) respectively. As the formula indicates, there are three

knots involved in each basis function. Therefore, we need to further augment

the knots and also �−1 and ��+1 to the knots vector. However, since the

value of f(�−1 ) and f(��+1 ) are not specified, there are some strategies to

manage this problem. The most commonly used strategy is to set the

augmented boundary knots equal to the original boundary knots [14, 20] ,

meaning that the augmented boundary knots prior to �0 will have the same

value as �0 and augmented boundary knots beyond the �� will have the

same value as ��. Resulting the knots vector of our example to be:
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�−1= �0 = 0, ��= ��+2 = 1

ξ
∗

= (0, 0, 0.25, 0.50, 0.75, 1,1)

In this strategy the basis function for the augmented knots will be:

��,0 � = 0 �� �� = ��+1

Since the degree in linear B-spline is 1, each term of Bi,1(x) is the product of

two terms, a locally constant function and a locally linear function to form a
linear equation, resulting the overall basis function to Bi,1(x) linear as well.

Fig (). The development of the B-spline basis functions of a quadratic spline
is likewise based on the recursive relation. As the formula () shows, each
basis function spans over four subsequent knots which necessitates further

knot sequence augmentation. i.e. ξ−2 and ξK+3. The form of each quadratic

spline basis function is obtained by taking a weighted average of the
subsequent Bi,1(x) functions:

��,2 � =
�− ��
��+2 −��

��,1 � +
��+3 −�
��+3 −��+1

��+1,1 �

Similar to what we saw in linear B-spline basis functions, each component of
Bi,2(·) is the product of two functions. However, since we are constructing a
quadratic basis functions, the two components are two linear functions

defined on the intervals [ξi, ξi+2) and [ξi+1, ξi+3) respectively. As a result, each

product is locally quadratic so as the final basis functions. Fig(). To ensure
that each Bi,1(·) is well-defined, we are again required to further augment the

knot sequence with two additional boundary knots; ξ−1 and ξK+2. As such,

K+d+1=5 basis functions are defined. By convention, knots beyond the

Boundary Knots are set to equal ξ0 or ξK+1. The same process is applied

when we extend the basis function to be a cubic spline. The construction of
the B-spline representation of a cubic spline is based on a relation below, and

additional knots are added to the knots sequence, namely: ξ−3 and ξK+4. Each

basis function of degree 3 is obtained by taking a weighted average of the
Bi,2(x) functions:
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��,3 � =
�− ��
��+3 −��

��,2 � +
��+4 −�
��+4 −��+1

��+1,2 �

Each component of Bi,3(x) is the product of a locally linear and locally

quadratic function defined on the intervals [ξi, ξi+3) and [ξi+1, ξi+4)

respectively. Consequently, each product is locally cubic, as so the overall
basis function. The same process will be applied if B-splines with higher
degrees are required.

3.6.2.1 B-splines on Functional Data

Having understood the basic concepts of B-splines, it is time to conduct
experiments on some functional dataset and see how one can employ B-
splines to fit a smooth curve on the input data and what the implication of
different choices of smoothing parameters are. Figure (3.6) demonstrates the
effect of increasing number of knots. As discussed in the previous section, by
increasing the degree and the number of knots, the B-spline model starts to
capture the local behavior of data. From a basic cubic polynomial spline

Figure 3.5 – Different B-spline Basis Functions (a) shows the B-spline with degree 0.
(b) shows linear B-spline with 5 degrees of freedom. (c) shows the quadratic B-spline
basis with 6 degrees of freedom. (d) shows cubic B-spline basis with 7 degrees of
freedom.

(a) (b)

(c) (d)
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(top-left) we arrive at much more complex curve which appears to be more
promising and locally accurate. Using the same algorithm mentioned above,
similar spline fir can be generated for other datasets. Figure (3.6) illustrates
a time series data related half-hourly electricity demands in Adelaide
between July 1997 and March 2007 on Mondays. The sub charts are splines
with 3, 5, 10, 20 number of knots respectively. We can see that the accuracy
of the spline model increases as the number of knot increases.

By taking a look at Figure(3.6(g)) and (3.6(h)), we can see notice a spurt in
the very ends of the curve in the latter. This is because we have increased
the degree of the polynomials splines between each knot from 3 to 7. This
causes the curve to act dramatically, particularly on the boundary areas as
no prior or succussive knot is present to curb the polynomial of higher
degrees. Apart from the boundary areas, there is no major difference
observed between (3.6(f)) and (3.6(g)) in terms of smoothness. That is why
cubic splines are to be preferred as they are the best compromise between
the smoothness and computational complexity. (Code in appendix (3)).

3.6.3 Cubic Splines
Cubic splines are a special case and the most commonly used version of B-
splines. As described in the previous section, In cubic splines, cubic
polynomial are created in an interval between two successive knots. Since

Figure 3.6 – B-spline on Triceps Skinfold Thickness Data (a) shows the cubic B-spline with df=3. (b) shows
cubic B-spline with df=5. (c) shows cubic B-spline basis df=10. (d) shows cubic B-spline with df=20. As the
degrees of freedom increases, the spline fit starts to capture the local fluctionas in the data. It imposes a trade-
off between accuracy, smoothness and computational complexity Complete code is in appendix (2).

(a) (b)

(c) (d)
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the cubic polynomials are used in the intervals, there will be four parameters
on each of the K + 1 regions if there are K knots. As discussed earlier, to
ensure directionality, each polynomial is d-1 times differentiable minus three
constraints for each knot, resulting in a K + 4 degrees of freedom.

�� = 4 � + 1 − 3 ∗� =� + 4

A cubic spline function, with three knots (�0,�1,�2) will have 7 degrees of
freedom and can be written as:

� � = �0 +�1�+ �2�2 + �3(�)3 + �4(�−�0)3 + �5(�−�1)3 + �6 �−�2 3

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.6 – B-spline on Electricity Demand Data. The data is available in in fds package
in R. (a) shows the discrete observations of the data. (b) shows the linear interpolation. (c)
shows a cubic B-spline fit with df=3. (d) shows cubic B-spline fit with df=5. (e) shows cubic
B-spline basis df=10. (f) shows cubic B-spline with df=20. (g) and (h) compare the result
when degree of the polynomial basis rises to 7 instead 3. Note the spurt in the boundry
areas in (h) when degree = 7.
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One can simply produce cubic B-splines in R by setting the degree of the B-
spline to 3, which we touched upon that in the previous section.

3.6.4 Natural Cubic Splines

Natural Cubic Splines are another class of Splines. The motivation behind
creating this spline is that the behavior of high degree polynomials fit to
data can be erratic. This problem intensifies as we approach around the
boundaries. The boundaries are where we have no further data to fit a
polynomial curve. Therefore, continuing the trend of the polynomial curve
outside the boundaries could lead to significant roughness. In splines, we
apply a polynomial curve between each pair of the subsequent knots. As a
result, Beyond the boundary knots, where there is no more knot to connect
the boundary knots to, polynomials act much more erratically than the
corresponding global polynomials in that particular range.

To mitigate this roughness caused by polynomial curves of high degrees,
additional constraints are imposed at the boundaries to control the level of
roughness outside the range. Natural cubic splines assume that the function
is linear beyond the boundary knots.

By applying this constraint, there are 2 parameters on both boundaries that
are removed by turning cubic splines to linear spline, making degrees of

freedom decrease by four in total [20, 51] . This can be more effectively

invested by scattering additional knots in the inner area [51].To demonstrate

this, we augment the range of test data to go a little beyond the boundaries
to compare which model can predict more naturally. Fig (3.7) provides a
visual comparison of different level of roughness in boundaries in global cubic
polynomial fit, cubic B-spline and Natural Cubic Spline.

As it can be observed in Figure (3.7), the most erratic behavior in the
boundaries belong to the global polynomial fit. By comparing the behavior of
the cubic B-spline fit and the Natural Cubic Splines fit, it is seen that the
natural cubic splines has behaved more naturally (linearly), making Natural
Cubic Spline a good candidate for extrapolation.
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Figure (3.8) shows the effect of different degrees of freedom on Biscuit data

[34] . The complete code including how to load the data can be found in

appendix (3).

3.6.5 Smoothing and Panelized Spines

So far, we have reviewed some of the Spline strategies to provide a smooth
approximation for the function which describe the behavior of the data.
These methods are conventionally referred to as Regression Splines.
Regression Splines utilize a fixed-knot points. Therefore, the computational
complexity in regression splines are controlled by the number of knots and
the degree of the polynomials used in the intervals. Apart from the basis
function, the number and the location of knots significantly impact the
behavior and the shape of the final curve. In other words, the choice of basis
function turns out to have a little impact on the smoothness of the final
curve as they all create curves which appear smooth-enough to human-eye.
Thus, there are knots which provide control over the level of smoothness of
the estimated curve. A large number of knots indicates considerable
flexibility, but it may also result in data overfitting. On the other hand, A
limited number of knots may yield a preliminary approximation prone to

under-fit bias [7, 20, 52].

One way to avoid dealing with number and the location of knots is to use
Smoothing splines. Smoothing Splines were first introduced by O’Sullivan by

inserting a penalty in the second derivative of the curve [7] [42]. This method

limits the flexibility of the estimated curve and prevents over-fitting. This

Figure 3.7 – Comparison of Behavior of Splines on Boundaries. (a) is Triceps Skinfold data. (b)
shows Sydney Temperature data. The blue line is the Global Polynomial Fit of the data. The red line
indicates a Cubic B-spline and the green line shows the Natural Cubic Spline fit for the data. As it can
be seen, the behavior of the Natural Cubic Spline fit is linear in the boundaries and behaves
moderately compare to other methods. B-spline performs better than the Polynomial fit.

(a) (b)
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type of spline utilizes a large number of equidistant knots and a penalty,

based on coefficient discrepancies between successive B-splines polynomials

[52] . As oppose to regression splines in which the number of knots controls

the flexibility, it is the penalty component that controls the complexity in

smoothing splines [51].Suppose that we intend to estimate f(x) by minimizing

the following penalized residual sum of squares:

푅�� �,� =
�=1

�
�� −� ��

2 + � �''(�) ����

Where f′′(·) is the second derivative. The first term in the formula controls
closeness to the real functional data points, while the second term imposes

penalty on the curvature in the function. λ ∈ (0, ∞) is referred to as the

Figure 3.8 – Natural Cubic Splines on Biscuit Data [34] . Biscuit data is one of the datasets
available in fds package. (a) shows the Natural Cubic Spline with df=3. (b) shows Natural Cubic
Spline with df=5. (c) shows Natural Cubic Spline basis df=10. (d) shows Natural Cubic Spline with
df=20. As the degrees of freedom increases, the spline fit starts to capture the local fluctionas in the
data. It imposes a trade-off between accuracy, smoothness and computational.

(a) (b)

(c) (d)
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λ Curve Implication

0 Very Rough
f(X) can be any function which interpolates
between the data

i = 1, ..., n Smooth
The solution is a cubic spline with knots at the
unique values of Xi

∞ Very Smooth The simple least squares fit, since no 2
nd

derivative can be tolerated

Smoothing Parameter that regulates complexity by providing a trade-off
between two the terms involved in the penalty equation. To some extent,
smoothing splines solve the knot selection problem. The strategy here is to

employ a big number of equidistant knots and then allow λ to control the

level of smoothness. However, there is no general rule on how to find the
optimal value of the smoothing parameter. Some strategies are based on

finding λ using generalized cross validation which we will discuss in the next

section [7, 42].

3.6.5.2 P-splines

Smoothing splines use a large number of equidistant knots to fit the
polynomial functions between them. But how many knots would be
considered as a large number? In fact, If the number of knots is big enough,

it is unnecessary to place a knot at every x i where i = 1,...,n. This would

lead to overfitting and high computational complexity. Instead, Penalized
Regression Spline with a smaller number of knots can be used to
approximate the smoothing spline. Penalized Regression Splines are the most
often used types of Splines which implements the cubic B-spline basis

functions on a huge set of equally spaced knots [15, 20, 51].

The degree of the splines, as well as the number of knots and their location,
are included as the components of the smoothing parameters for regression
splines. On the other hand, in Smoothing Splines the knots are already
located on the X-space. In addition, cubic degree is usually utilized in
smoothing splines. Therefore, the only parameter that must be tunned in

Smoothing Splines is the penalty parameter λ. this leaves us with adjusting

only one parameter for the P-splines which has added to its popularity and

Table 3.1 – Effect of Different Values of Smoothing Parameters. The smoothing parameters is included in the
penalty component in Smoothing splines and controls the level of smoothness of the final curve.
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ease of use. If certain simplifications are not implemented in regression
splines, the process of selecting the location and number of knots for

regression splines may be a hard task in terms of combinatorics [51].

In the future sections, we will go through the knot selection for regression
splines in more details.

3.6.5.3 Selecting Smoothing Parameter

When applying penalized smoothing, the function of the smoothing
parameter is to determine the degree to which the fitted curve is smooth.
The two commonly used selection criteria are called Leave-one-out Cross

Validation (CV) and Generalized Cross Validation (GCV) [7, 20, 51] . There

are subtle differences between the two proposed methods that we refer to

[17] for further information. In summary, It has been shown that The CV

method has theoretically two primary flaws: first, it has a high
computational cost; second, it has the potential to result in the data being
under-smoothed. What is done throughout the CV method is that the N data
points are divided into K groups, also known as folds. Then the model is
trained on the remaining data while using each fold as a test set in turn. The
prediction error may be assessed on the unseen Kth fold following model
fitting with a given smoothing value. Each data point is tested once after
this process is carried out for all folds, allowing the prediction error for all
folds to be averaged. For a each smoothing parameter, the average
prediction error offers an estimate of the test error of the curve. The
smoothening parameter that minimizes the test error of the model is then

chosen [7, 51, 53] . The GCV approach is less complicated to compute and

has a long history of use in scientific research on smoothing splines [7, 18] .

GCV method also has two versions depending on whether smoothing or P-
splines are used. However, these statements might not be the case when it
comes to practical applications. In most cases, none of these method
mentioned above performed consistently better than the others, according to

a comparison study [52, 53, 54] . Therefore, it is recommended to perform

trial and error in order to make sure that the smoothness of the final curve
has reached to its optimum level. It is worth mentioning that the
incorporation of a smoothing penalty necessitates a modification in the
fitting process in order to make room for penalty component. That is, the
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penalty component has to be included into each regression function between
all the successive splines joining at knots.

3.6.5.4 Smoothing Splines in R

Splines package in R provides powerful tools to fit smoothing splines on data.
The smooth.spline() fits a smoothing or panelized spline depending on the
input arguments. There are many arguments that can be passed to the
function as an input. However, the advantage of using this function is that it
provides an interface and automatically performs the tuning parameters
process and generates a smooth function for the given data. We will give an
example using El-Nino time series available at [36]. Figure (3.9) illustrates
the data. Complete code of applying smoothing splines on El-Nino data can
be found in appendix (5):

As Figure (3.9) demonstrates, the smoothing spline which place equidistant
knots, the blue curve has fully captured even the local fluctional of the data.
The red curve is the P-spline that utilize a relatively smaller number of
knots. Table (3.3) compares the smoothing parameters of these methods.
Apparently, the complexity of Smoothing Splines is of higher orders
compared to P-splines based on the degrees of freedom involved in two

Figure 3.9 – Comparison of Smoothing Splines with P-splines on El-Nino. The El-Nino data can
be found in [36]. (a) shows the raw discrete data points. (b) shows the linear interpolation. (c) shows
the smoothing spline fit which place a knot at every single point in the domain with CV. (d) compares
the smoothing spline with P-splines. As the red line indicates, there are some small weakness in
capturing local behavior of the curve.

(a) (b)

(c) (d)
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methods. Table (3.2) reports the smoothing parameters for El-Nino using
both CV and GCV method. It is worth mentioning that the incorporated
penalty component in smoothing and panelized splines must be included in
each of the adjacent spline functions meeting at the common knots. This will
add to the complexity and imposes a trade-off between the power and the
cost of the method should be taken into account. It might be one of the
reasons why this method has been less used in practical applications even

though it provides a sufficient amount of accuracy [20].

3.7 Placement of Knots in Regression Splines

The great level of flexibility that spline modeling offers comes at the cost of
the number of tuning parameters, Basis functions, number and the location
of knots. It turns out that the choice of basis functions and the degree of the
underlying polynomials do not have nearly as much of an effect as the other

two of these factors [20, 55] . In point of fact, spline fits are very robust to

the degree of the polynomials. Cubic polynomials, with a degree of three, are
the standard choice since the curves produced by cubic curves appear
flawlessly smooth to human eye. If the derivatives of the fitted curves are of
interest, then it may be useful to use a higher degrees. Although in general,
fits with degrees greater than 3 are functionally unrecognizable from one
another.

Number of knots, spacing, and whether or not to utilize a penalty function,
such as the integral second derivative of the spline, are two of the most
important decisions. As discussed in the previous section, the degree to
which the resultant non-linear function is flexible is directly proportional to
the total number of knots in regression splines.

Many have investigated the methods through which the an appropriate set
of knots is selected. The choice of knots is an important problem when
working with B-splines. If too many knots are selected you have an
overfitting of the data. On the other hand too few knots provides an
underfitting. This fact is specially significant in the case of non-penalized
spline regression (regression splines). Some automatic numerical schemes for
optimizing the number and the position of the knots were proposed to solve

this problem [55].
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Method spar � Equivalent DF Score Time Taken

CV 0.05417272 3.995e-09 100.765 0.02671309 0.005592

GCV 0.04409647 3.382e-09 101.325 0.02820579 0.005337

Method spar �
Equivalent

DF
Score RSS

Time
Taken

Smoothing
Spline

-0.8273256 4.597e-17 257 0.01140677 3.511e-16 0.0117321

Panelized
Spline

0.04409647 3.382e-09 101.324 0.02820579 2.659774 0.01195407

In Regression Splines, the choice of number of knots and their location
significantly contributes to the level of smoothness of the spline curve. By
convention equidistant knots are selected. Note that the smoothing also use
dense equidistant knots to fit the polynomial splines between them. However,
depending on the input data, other methods has been proposed to be
adopted in order to obtain the most efficient application-specific knot vector.
Paul and Brian in their study compared B-spline using equidistant knots
with truncated power series splines where knots are based on quantiles of the

independent variable [15] . The conclusion indicated that the B-spline with

equidistant knots is preferred. Klein also provides an overview of the
applicable knot selection strategies including, equidistant, residual and

Quantile in his paper [56] . It was observed that the equidistant knots could

make the spline sensitive to the data outliers and may result in lower
accuracy compared to other methods.

The choice of knots also has important implications for sparse functional
data. When data records are not present in some intervals, it becomes
difficult for the model to capture the behavior of the data for that particular
range. Therefore, by placing a set of knots in the sparse region, it is not
guaranteed that that the model performs accurately. Using a method to
adaptively select the number and the locations of knots is as an advantage to
tackle this problem. A new method has been proposed through which the

knots are selected specific to the input data characteristics [16] . In nutshell,

they have trained a model which predicts the number and the location of

Table 3.2 – Effect of CV and GCV in Smoothing Splines. Comparing the parameters of ordinary cross validation
(cv) and generalized cross-validation (gcv) on El-Nino dataset [36].

Table 3.3 – Parameters of Smoothing Splines and P-spline. Comparing the parameters of Smoothing parameters
of Smoothing splines and P-splines on El-Nino dataset [36].
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appropriate knots. The implementation of this technique is available in R
package called DDK (Data-Driven knots). The experiment was conducted on

the a functional data set called Wine, described in the original paper [16] .

The result of the experiment showed a significant decrease in Mean Square
Error of the final fit compared to choosing equidistant knots. We will
examine this method on a set of different functional dataset to evaluate the
implications in the next sections.

3.7.1 Equidistant vs Quantile Knot Placement

The term uniform and nonuniform are interchangeably used for equidistant
and irregular knot placement respectively. One common methods of knot
placement is known as Quantile Knot Sequence. In this method of knot
placement, the quantiles from the empirical distribution of the underlying
data are used as the interior knots. The use of Quantile Knots ensures that
the same number of sample observations will be located in each interval,

despite the fact that the intervals will be of varying lengths [13].

MSE RMSE

Equidistant 0.1480091 0.3847195

Quantile 0.1549008 0.3935744

For instance, Suppose we have a functional data with estimation function f(x)
defined by the formula below. To fit the spline using 20 knots:

� � =− sin � + 0.2�+ cos (|�|)

Figure () visualizes the data in the range [-10, 10]. We can either place the
knots on the 1st to 20th Quantiles of the data range or we can place them
uniformly based on equal distance. Figure () and () visually compares two
methods proposed. Table (3.4) also reports the MSE, RMSE of the fitted
curve compared to the original functional data.

As briefly mentioned earlier, Quantile Knots place equal number of data
samples in each interval as opposed to equidistant knots in which different
number of knots lie between the intervals. Therefore, the Equidistant Knot
Placement would be a better choice if data contain noise or outliers as the

Table 3.4 – Comparison of Quantile and Equidistant Knot Placement
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effect of the outlier will be mitigated and the final curve appears more even.
However, As Table (3.4) indicates, the values of the errors are quite similar
and it is recommend to apply both methods and observe the results before
making the final choice. The results are in line with the finding of Paul and
Brian in which the combination of equidistant knots and B-splines are the

best applicable choice for a wide variety of datasets [15]. The complete code

for comparing Quantile and Equidistant knot placement can be found in
appendix (6).

3.7.2 Data-driven knot placement

In this section, we will conduct an experiment on a set functional datasets to

examine the Data-driven Knot Placement [16] for selecting optimal knot

vector for spline fitting. As briefly discussed earlier, the core idea of this
method is based on training a model which can predict the optimal number
of knots and their location based on the main input features of the data. The
placement of knots plays a key role in regression splines. Although in most
cases equidistant knot placement is preferred and works relatively accurate,
the result could be different in some sort of functional datasets. Finding
proper knots vector would involve performing some trial and error. However,
if we utilize a model which helps us to find the most efficient knot placement,
we can simply rely on the prediction of the trained model. Depending the
characteristic of the given functional data, the placement of knots would
differ. Therefore, it would be beneficial if we predict the knots placement
based on the features extracted from the input data. That is why this

Figure 3.10 – Equidistant and Quantile Knot Placement The figure above shows the raw discrete
values of data. The left figure shows the result of quantile knot placement using cubic B-spline and
the right shows the results of equidistant knot placement. In this function, the equidistant method
outperforms the quantile as it has captured the local behavior of the data.
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method called Data-driven Knot. The approach makes advantage of the
positioning of the knots and related spline bases to build a low-dimensional

method that is resilient with regard to the kind of data that is being used

[16] . While the proposed method is based on a mathematical analysis, we

focus on the practical use of the Data-driven knot placement and refer to the

original paper for more details [16]. We will use the DDK package in R [57]
to apply the method on two types of functional datasets to understand how
it works and what implication would it have.

3.7.2.1 Moisture Data

This data set consists of near-infrared reflectance spectra of 100 wheat
samples, measured in 2nm intervals from 1100 to 2500nm, and an associated

response variables, the samples’ moisture content [34] . As Figure (3.11 b)

illustrates, the model has provided the location of 20 knots on the X-space.
Which are:

�∗ (1, 24, 33, 61, 105, 114, 135, 144, 151, 214, 239, 288, 374, 382, 411, 453, 545, 556, 621, 636, 648, 665)

Figure(3.11(c)) reports the training and test errors of the models. Figure
(3.11 (d)) visually compares the result of the two approaches. As it can be
seen, in this case the spline with equidistant knots has outperformed the
data-driven approach. As it has fully matched the original data. The
moisture data however has been densely sampled and the nature of the data
is already smooth. To generalize the finding of this section we carry out the
same process on a noisier data set in the next section. The code can be found
in appendix (7).

3.7.2.2 Phoneme Data

We extend the experiment to another data set called Phoneme which can be

found in [37] . We first use the data-driven model to predict 10 knots. As

illustrated in Figure(), the knot vector given by the model is as follows:

ξ∗ = (0,8,42,57,69,77,96,108,120,149)

Figure (3.12 b) compares the visual result of the two methods. As it can be
seen, this time, the data-driven method outperforms the equidistant model
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and it has captured the pattern of the data more accurately. Table (3.5)
supports this fact. To generalize this notion, we augment the knot vector
and use the model to obtain 20 data-driven knots. The knot vector generated
by the DDK model is as follows:

ξ∗ = (0,6,10,31,37,42,50,56,61,66,70,76,81,85,91,95,101,108,117,126,135,149)

Figure(3.12 (e)) depicts the result of the experiment. It can be seen, the
data-driven has produced more accurate results and it has more control over
the local fluctuations in the data. To conclude, we can say that based on the
nature of the input data, the choice of knot placement strategy would vary.
Having considered the results yielded by two different strategies on two
different data set, we can deduce that if data sampling is dense and we the
original curve is relatively smooth, we can simply employ a set of default
equidistant knots and avoid the overhead of training model. On the other
hand, if data is relatively sparse and the original curve appears jagged, the
data-driven knot placement yields more accurate results and it is worth
relying on the model. As it can be inferred from the visual results, this
method outperforms the equidistant knots and the it has almost fully
captured the pattern of the original function. However, it should be noted

Figure 3.11 – Data-driven Knot Placemat on Moisture data. Moisture dataset is a built-in dataset in fds
package. (a) shows the whole functional dataset. (b) denotes the position of knots predicted by the model. (c) is
the training and test average mean squared error. (d) compares the data-driven spline (red line) and the
equidistant spline (blue line). In this case, the equidistant spline outperforms the DDK method.

(a) (b)

(c) (d)
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that this method adds an overhead as it requires the model to be trained to
determine the number and the location of the knots. We then construct the
spline based on the information provided. However, it is an example of how
the knot selection impacts the final curve and to what extent it can add to
the level of the smoothness. The code can be found in appendix (7) and (8).

Figure 3.12 – Data-driven Knot Placemat on Phenome data. Phenome dataset is a built-in dataset can be
found in [37]. (a) shows denotes the position of 10 knots predicted by the model. (b) compares the data-driven
spline (red line) and the equidistant spline (blue line). (c) is the training and test average mean squared error.
(d), (e) and (f) show the same things for 20 knots. The Data-driven knot placement outperforms the equidistant
method.

(a) (b)

(c)

(d) (e)

(f)

Table 3.5 – Comparison of Data-driven and Equidistant
Knot Placement with 10 knots,

Table 3.6 – Comparison of Data-driven and Equidistant
Knot Placement with 20 knots,
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Chapter 4

Wavelets
Wavelets can be considered as a next generation of the Fourier transforms

[51, 23]. To understand wavelets, it is required to see how Fourier transforms

work. Fourier Transform are used to transform a signal from its time-domain
to its frequency-domain. In other words, Fourier Transform indicates what
frequencies are present in the curve. However, it only has resolution in
frequency-domain, meaning that, it is not capable of providing any
information about the location of where the frequency happens. When the
frequency spectrum is steady, Fourier Transforms perform well. However,
the more dynamics is added to the curve , the more difficult it becomes to
locate the frequency. This is not desirable since most of the data we see in
real world has dynamic frequency. Wavelet Transform have been introduced
to address the limitations of Fourier Transform.
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Suppose there is a periodi data, described by the formula below:

� � = sin 2�. 10� + sin 2�. 50� + sin 2�. 200� + sin(2�. 300�) (4.1)

From the formula, we can deduce that the frequencies present in the curve
are 10Hz, 50Hz, 200Hz and 300Hz. (See fFgure (4.1(a))). If the curve is
tranformed into its frequency-domain using Fourier transform, it shows the
frequencies respectively. (Figure 4.1(b)) Suppose another function that
comprises of the concatenation of the functions in formula below:

� � =

sin 2�.10� 0 < � < 0.25
sin 2�.50� 0.25 < � < 0.5
sin 2�.200� 0.5 < � < 0.75
sin 2�.300� 0.75 < � < 1

(4.2)

The first term is present in the first quarter of the curve, the second one
term the second quarter and so on. It is crucial to observe that the two
frequency spectra have the same peaks, therefore we cannot distinguish
where these frequencies are present in the signal. That is why the Fourier
Transform cannot tell the difference between the first two signals.

An enhanced version of Fourier Transform called Short-Time Fourier
Transform were also introduced to address this limitation. The idea is before
performing the Fourier Transform, the original curve is segmented into
equal-length portions, which may or may not overlap. Then the transform
in performed by sliding through the curve using a window. For instance,
suppose the data has been split into five segments, If the Fourier transform
detects a certain frequency in the second segment, it can be claimed that the
frequency takes place in the second segment and we can locate the
Frequency. The problem with the proposed method is that the smaller
segments are made, the more accurately we can locate the frequency but the
less we know about the amplitude of the frequency itself. On the other hand,
if we make bigger segments, the less accurately we can locate the frequency.
Wavelet Transform overcomes the problems mentioned above. It has high
resolution both in time- and frequency-domain. That is, not only it does
provide information about the value of the frequency, but also it gives
information about the time and location where this frequency takes place.
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This versatility of the wavelets are due to the fact that they use different
scales. More generally, there is a trade-off in wavelet transforms. At scales
where time-dependent aspects are more of interest, it has high resolution in
time-domain. Likewise, at scales where frequency-dependent aspects becomes
more important, it will have high resolution in frequency-domain.

4.1 How Wavelets Work

In Fourier transform, the goal is to represent the function using a series of
sine and cosine terms, resulting in a linear combination of sine-waves. The
Wavelet Transform instead uses a series of function called Mother Wavelets
with different scales.

As we can see in Figure (4.2), unlike sine wave which stretches out from
throughout the domin, the wavelet function is localized in time. This is the
advantage of the wavelet which allows obtaining time-dependent information
from the data. Since Wavelet functions are localized in time, we can multiply
an input function with the Wavelet at various points in time. The
multiplication starts from the beginning of our curve and gradually shift the
wavelet to the finishing point. This process is also referred to as a

Convolution [25] . After we have done this for the original Mother Wavelet,

we scale it up and repeat the procedure. The basic formula of wavelets is :

Figure 4.1 –Frequency Resolution in Wavelets (a) shows the the wave generated by Eq(4.1). (b) shows the
wave in its frequency-domain. (c) shows the the wave generated by Eq(4.2) and (d) shows the wave in its
frequency domain. (b) and (d) show the same frequency despite the their time-domain equivalent being
different, indicating the lack of having time resolution in Fourier Transforms.

(a) (b)

(c) (d)
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Xa, b = −∞
∞ x t ψa,b t dt� (4.3)

Where x denotes the original function, ψ is a mother wavelet, a denotes the

scale, and b denotes the translation factor. Xa,b is the Transformed function.

4.1.1 Wavelet Scale

The functionality of the scale factor in wavelets is the same as the window
size described in the previous section. Because the term Frequency has been
previously used for the Fourier Transform, the wavelet transform is often
described in scales rather than frequencies. However, there is an equation

through which we can obtain the frequency from the scale and vice versa [25].

�� =
��
� (4.4)

where fa denotes the pseudo-frequency, fc indicates the frequency present in

the center of the mother wavelet and a is the scaling factor. As the formula

suggests, larger scale-factors (longer wavelet) result in smaller frequencies.
Therefore, by scaling up the wavelet in the time domain, we study smaller
frequencies and achieve greater resolution in the frequency domain. Similarly,
by employing a smaller scale, we may see more information in the temporal
domain. Scales are essentially the inverse of frequency.

4.2 Different Wavelets

Wavelets are classified into several distinct families. The wavelet families
differ because each family has chosen a distinct trade-off in how compact and
smooth the wavelet appears. This implies we may select a wavelet family
that best matches the characteristics of the inputdata. Each form of wavelets

Figure 4.2 –Comparison of Fourier Basis and Wavelet Basis The sine wave which form
the Fourier transform basis stretches out the whole domain whereas a wavelet basis is
localized in time, enabling wavelets to have high resolution both in time- and frequency-
domain [25].



49

has a unique shape, smoothness, and compactness that makes it useful for a
certain application. Because a wavelet must meet only two mathematical
constraints, it is simple to create a new form of wavelet. These two
constraints are called normalization and orthogonalization. That is, a
wavelet must have

1) Finite Energy:
A wavelet must be localized in time and frequency. It is integrable
and the inner product between the wavelet and the original function
always exists.

2) Zero Mean:
A wavelet has zero mean in the time domain. This is required to
verify that it is integrable and that the inverse of the wavelet tan
transform can be computed.

Within any wavelet family, there may be a number of distinct wavelet
subclasses. The number of coefficients, also referred to as the number of
vanishing points, and the amount of decomposition define the various
wavelet subclasses. The number of folding present in the mother wavelet
function can vary. This introduces the notion of Vanishing Moments. For
instance, db3 has three vanishing moments while db5 has five. The number
of vanishing moments is proportional to the wavelet's approximation order
and smoothness. With d vanishing moments, a wavelet may approximate
polynomials of degree d-1. Figure (4.4) illustrates that as the number of
vanishing moments grows, so does the wavelet's polynomial degree and it
gets smoother.

4.3 Continuous and Discrete Wavelet Transform

As described before, the Wavelet Transforms encompasses two distinct
categories, Continuous Wavelet Transforms and Discrete Wavelet
Transforms. Suppse a and b are the scale and translating factors of a wavelet
respectuively. In Continues Wavelets, These factors can take any continuous
values. For instance, a continues mother wavelet can be scaled or translated
by a factor of:

a, b = {0.1, 0.11, 0.111, 0.111, … } (4.5)
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The fundamental difference between the Discrete Wavelet Transform and
the Ordinary Wavelet Transform is that the DWT employs discrete values
for the scale and translation factor. So that in Discrete Wavelets the the
scale factor rises in power of two:

a = {1, 2, 4, 8, … } (4.6)

Moreover, the translation factor raises integer values.

b = {0, 1, 2, 3, 4, … } (4.7)

4.5 Smoothing with Discrete Wavelet Transform

Since the main purpose of this paper is to provide smoothing tools, it is time
to see how Wavelets are employed in smoothing context.

Figure 4.3 –Different Mother Wavelets These figures show the mother wavelets
available in PyWavelet library. Continues Wavelet transform and Discrete
Wavelet Transform are the two categories of wavelets. The mother wavelet is
scaled and translated and will convolved to the original function in the
transformation process. The shape of mother wavelet has a major impact on how
the output curve appears.

Figure 4.4 –Vanishing Points in Wavelets As the number of vanishing point grows, the level of smoothness
of the wavelet increases which results in having smoother output curves.
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Apparently, presence of high frequency data makes the curve appear noisy
and jagged. A smooth curve can be made by removing/detaching the high
frequency from the data. This method can be practiced by defining a

threshold and removing the frequencies higher than the defined threshold [25,

58]. The DWT is considered as a tool to break down the data into a number

of frequency subbands by implementing a series of of high- and low-pass
filters known as Filter-banks. The resultant of the high- and low-pass filters
are called Detail Coefficient and Approximation Coefficitens respectively.
The approximation coefficients are the one which is used to creconstruct the
smooth approximation of the curve. Many have used Wavelet Transforms as

a tool to apply smoothness to a set of application-specific data [59] [30].

As mentioned earlier, the process of applying Wavelet Transform to the
curve begins by multiplying a mother wavelet with the smallest scale to the
data. According to Eq (4.4), small scales correspond to high frequencies. This
implies that we examine high frequency behavior first. Since we are working
with DWT, the scaling factor utilizes discrete values e.g. 1, 2, 4, 8. When the
scale grows by a factor of two, the frequency inveresly lowers by a factor of
two. Hence, in and around half of the maximum frequency. The same process
applies in the third-level when the scale increases by a factor of four. We
securitize the data at around one-fourth of the maximum frequency and so
on. This process continues until we arrive at a state which is referred to
maximum level of decomposition.

When the data has been decomposed into a set of frequency subbands, it is
clear that the number of samples in the data has also been reduced by a
factor of two at each succeeding level of decomposition (As a result of
performing downsampling to remove high-frequency samples). The maximum
level of decomposition is then defined as the level in which the number of
samples in the data are lower than the wavelet‘s.

4.6 Choosing a Mother Wavelet

So far, we have discussed the fundamental concepts of the Wavelet
Transform. What is clear is that based on the choice for mother wavelets,
the output of the transform is completely different. Therefore, the choice of
mother wavelet becomes of crucial importance. Some have investigated the
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methods through which a suitable mother wavelet can be chosen for a given
dataset and discusses the optimal solutions to select the suitable mother

wavelet and the level of decomposition to denoise the data [26, 27, 60]. It has

been found out that the length of the mother wavelet is the first criteria that
should be taken into account. It is also suggested that the level of
decomposition should be chosen proportional to the sampling frequency of
the dataset. The higher the sampling frequency is, the more effective the
denoising process will be. There has also been some intelligent data-driven

based method proposed for choosing optimal mother wavelet [28] . A good

review of the wavelet experiments and their justification for choosing the
relevant mother wavelet can be found in . It suggests that the shape of the
mother wavelet is what that determines the final form of the transform [44].

Finding suitable mother wavelet for any given dataset is still an ongoing
field of study [44]. Most of the proposed methods have been based on trial
and error indicating that it is still an inventible component of the analysis.
However, since we are looking for smoothing techniques, we have intuitive
criteria to begin with. The two main factors that significantly impact the
shape of the curves are as follows:

1) Shape of the mother wavelets
2) Number of vanishing points

The smoother the shape of the mother wavelet is chosen, the softer the final
curve becomes. If we chose a mother wavelet which is made of straight acute
lines, we cannot expect the final curve to be smooth. The implications of the
smoothness of the mother wavelet is similar to the degree of the polynomial
in splines. Number of vanishing points also works is the equvalent of the
degrees of freedom in splines. Although higher number of vanishing points
add to the local control of the curve, however, it imposes a trade-off, high
number of vanishing points can make the curve capture the local noises and
contently reduce the smoothness of the curve.

We will apply denoising using DWT on a set of functional data to fully
grasp the notion. Consider the Phoneme data illustrated in Figure (4.5 (a)).

The description of the data can be found in [37]. Figure (4.5 (e)) depicts the

results of low- and high- pass filters up to five level of decompostion. As the
level of decompoition goes up, the approximation coefficents provide more
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abtract representation of the curve. The right-side plots in Figure (4.5) show
the wavelet transform of the data using sym mother wavelet using different
values for vanishing points. As we are trying to produce smooth curves, the
more vanishing points are employed, the smoother the outcome will be. It
can be seen that the decomposition with sym20 also captures the local
fluctuations of the original curve. Table (4.1) compares the Mean Squarred
Error of the transforms and the time taken by each.

Figure(4.6) is the result of using different mother wavelets. The wavelet
transform has been performed on the data using all available mother wavelts.
We then applied a cross-validation to chose those with higher accuracy. The
transforms shown in Figure (4.6) have been chosen out of all possible
outputs and showed the the best results in terms of accuracy. Table (4.2)
compares the results in terms of accuracy and time complexity. Although the
accuracy has increased as we use wavelets with more vanishing points,
however, the smoothness of the curve will be compromised. Sym16 seems to
be a good compromise between the accuracy and the smoothness as the
Table (4.1) and Figure(4.5) show. The complete code filter-bank is in
appendix (10) for the wavlet on phoneme data can be found in appendix (9).
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Wavelet Vanishing Points MSE RMSE
sym 4 1.1422 1.0687
sym 7 1.1204 1.0585
sym 11 0.8256 0.9086
sym 16 0.7909 0.6256
sym 20 0.5912 0.3495

Wavelet Vanishing Points MSE RMSE
sym 16 0.7909 0.6256
db 19 0.8097 0.8998
coif 6 0.8016 0.8953
bior 1.5 1.0649 1.0319

Figure 4.5 – Effect of Level of Decomposition and Vanishing Points The left-side figures are to demonstrate the effect of different level of
decomposition in Wavelets. (a) and (b) show the Phenome data which can be found in [37]. The approximation coefficients in (e) indicated
by red lines are the results of the low-pass filters and the right-side figures indicated with green are the result of high-pass filters. Note that
higher levels of decomposition result in more abstract representation of the data. Figure (b), (d), (f), (g) and (h) show the out of Wavelet
Transform with one level of decomposition and with 4, 7, 11, 16 and 20 vanishing points respectively. The more vanishing points are
employed, the more local behavior of the data is captured.

(a) (b)

(c) (d)

(e)

(f)

(g)

(h)

Level of Decomposition Effect of Vanishing Points

Table 4.1 – Evaluation metrics of using different vanishing points for mother wavelet
on Phenome Data [37]

Table 4.2 – Evaluation metrics of using mother wavelets on Phenome Data [37].
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Figure 4.6 – Comparison of Different Wavelets on Real Data. All the plots shown in this figure have been
selected after applying cross-validation on different choices of mother wavelets. The shape of mother
wavelets and the number of vanishing points employed in the transform are the key factors to make a
smooth curve from the data. (a), (b), (c) and (d) are the resultant of applying bior 1.5, coif 6, sym 11 and
db 19 mother wavelets respectively.

(a)

(b)

(c)

(d)
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Chapter 5

Practical Guide
The intention of this section is to provide a step-by-step tutorial through
which some of the smoothing techniques discussed in this study can be
applied on a set of raw functional data. We begin with a brief description of
the data. Then we discuss the available packages for applying splines and
wavelets. We then provide the code snippets alongside with the explanation.
In the final secretion, the results are discussed.

5.1 Data Description

The experiment will be carried out on Dublin Bike Availability. The original

data of Dublin Bike Stations can be found in [38] . The data consists of

information of Dublin Bike stations including longitude, latitude, number of
available bikes, number of bikes taken and etc. The data provides the
information from Wednesday, January 1st 2020 through Sunday, March 22nd

2022. The sampling schedule is every 5 minutes.
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5.2 Review of Spline Packages

The practical guide for splines has been implemented in R. R is one of the
most popular program among research statisticians, or those who conduct
statistical data analysis, is R. It has an open software license that and is free
to use. R provide powerful tools to apply splines and these tools have been

comprehensively reviewed by Aris his paper [20]. According to another study

carried out by Aris, the spline packages in R comprise of two categories,

Spline creators and regression packages [20, 61] . There are several spline

creator packages available in R, some of which alongside with their
description are listed below. Table (5.1) compares the useful spline creator
packages available in R. Having vignettes, supplemental documentation e.g.
website, book, practical guide, real life data and clear examples of
functionalities are a set of criteria which defines a good package. Other
packages are mostly based on the packages presented in Table(5.1) and
implement similar functionalities. Few others have been designed to address
application-specific requirements.

Table(5.2) shows an evaluation of different regression packages available in
R from multiple aspects. While the The detailed description of each package
is out of the scope of this chapter, An evaluation of these packages alongside
with a brief description of each has been reported in Table (5.2). For more

details, we refere to the Aris’s papaer [20, 61]. For the purpose of this study,

we implement the practical guide using splines package. The codes for
previous sections are also implement in R using splines and mgcv packages
which can be found in relevant appendix.
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splines General smoothing and regression
spline Built-in 124   

splinet Splines and Orthogonal Spline Bases 3k 0   

gss General smoothing and regression
spline 24k 5   

polsplines Polynomial spline functions 21k 0   

crs Categorical Regression Spline functions 19.8k 2   

logspline Log spline density estimation functions 7.6k 3   

pspline Polynomial spline functions 5.3k 6   

MBA Multilevel B-spline Approximation 4.9k 6   

cobs Constrained B-Splines 4.8k 2   

bezier Bezier Curve and Spline Toolkit 2.4k 1   

pbs Periodic B-Splines 1.1k 0   

bigsplines Smoothing Splines for Large Samples 0.54k 1   

Orthogonalsplinebasis Orthogonal B-Spline Functions 0.39K 0   

Kpart Spline fitting 0.27 0   

sspline Smoothing Splines on the Sphere 0.16k 0   

freeknotsplines Free-Knot Splines 0.054k 0   Table 5.1– Comparison of spline creators packages in R. The table compares the spline creator packages available in R. The
number of downloads is on a monthly basis. Reveres Dependencies means how many other packages use the original package in
their underlying implementations. Splines packages are reviewed alongside with some visual examples in [20].
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Criteria General Features

Downloads 81k 307k 103k 34k 39k 34k 11k

Vignette       

Book       

Website       

Dataset 2 7 33 50 3 1 29

Criteria Regression Models

Linear       

Non-linear       

Categorical       

Count Regression       

Survival       

Quantile Regression       

Multivariate       

Reduced Rank       

Other       

Criteria P-spline Support

P-spline       

Criteria Post-fit Functions

Retrieving Coefficients       

Retrieving Predictors       

Plot       

Table 5.2– Comparison of regression packages in R. The table compares the regression packages available in R. The
number of downloads is on a monthly basis. Reveres Dependencies means how many other packages use the original
package in their underlying implementations. A detailed overview can be found in [20].
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5.3 Review of Wavelet Packages

There have been a few wavelet-related packages available both in R and
Python. Table (5.3) gives an overview of some of the pros and cons
associated to eac wavelet package. As Table (5.2) indicates, PyWavelet
package meets most of the requirements to be recognized as a comprehensive
tool to be used in this area. Hence, it would be beneficial to investigate how
its functions are used. We use this package to implement the practical guide
for applying wavelets. Other packages which are not mentioned here falls
under application-specific categories and have been designed to address
special application requirements.

PyWavelet: PyWavelets is an open source wavelet transform software for
Python. It supports multi-dimensional DWT and 1D CWT with single and
double precision calculations. data and contain a rich list of mother wavelets.
It also support wavelet decomposition and reconstruction.

SciPy.wavelet: SciPy package in Python provides an API which can be used
to apply continues wavelets on multi-dimensional data. It contains Morlet
and Daubechies wavelets.

Wavelet: Is a wavelet toolkit in R, containing utilities for computing,
visualizing for maximal overlap discrete wavelet transformations (MODWT),
discrete wavelet transforms (DWT), and their inverses.
Additionally, it has tools for computing and displaying wavelet transform
filters, which are employed in the multi - resolution studies and the
aforementioned decompositions.

Waveslim: A package in R which implements basic wavelet functionalities to
be applied on time series (1D), images (2D), and arrays using fundamental
wavelet
3-D analysis.

WaveletComp: Cross-wavelet and phase-difference analysis of time series,
alongside with simulation techniques, and wavelet analysis and
reconstruction of time series.
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Packages

PyWavelet SciPy.wavelet Wavelet Waveslim WaveletComp

Criteria General Features

Documentation     

Website     

Manual     

Practical Guide     

Language Python Python R R R
Can be used in
Notebook

    

Installation Guide     

User-friendly
Interface

    

Datasets 6 0 4 19 4

Criteria Technical Aspects

Support of DWT     

Support of CWT     

Diverse selection
of mother wavelets

    

Support of
Vanishing Points

    

Support of multi-
dimensional DWT

    

Support of multi-
dimensional CWT

    

Criteria Post-fit Functions

Coefficient
Extraction

    

Result of low- and
high-pass filters

    

Plotting     

Table 5.3– Comparison of Wavelet Packages. The table compares the wavelet packages available in Python and
R. PyWavelet is increasingly gaining attention as it provides powerful tools with a diverse selection of mother
wavelets.
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5.4 Applying Splines in R

In this section a step-by-step tutorial through which one can apply splines on
a set of raw functional data is provided. Similar to what was discussed in
previous sections, the coding part will be done using Splines package in R.
The code for this section can be found in appendix (11).

1. Understanding the Data
The fist step in functional data analysis is to securitize the data in order
to understand what features are present, which columns are needed,
specifying the x- and y-axis of for the spline models, check if data is
uniformly/irregularly sampled and etc.

2. Loading the Data
After understanding the data and creating the indexes, it is time to
load the data. The dataset can be loaded to the program as a data
frame:

3. Specifying Test X-support for the splines
For the spline models, it is required to specify a test X-space. The
index will be used as the domain of the splines. The indexing should
be performed with respect to the uniform or irregular nature of the
sampling. This can be achieved by using seq() function in R. The
first two arguments indicate the start and the end of range
respectively. The range should be specified based on the number of
data points in the dataset. The third argument specify the number of
segments we wish to make. The more segments we make, the
smoother the curve becomes as it would have more data and the
distance between the datapoints becomes smaller.

4. Defining the spline models
Using Splines Package, there are a set of spline models including bs(),
ns() and smoothing.spline() available. Depending on what spline is
used, there are a set of optional arguments to be passed to the

df <- read_csv('station_32.csv')

x <- df[[1]] #Selecting the X-space
y <- df[[7]] #Specifying the target values

points <- seq(1, 17500, length.out = 17500) #Domain Range of Splines
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functions, which we touched upon the most useful ones in the related
sections.

Note: the parameters passed to the functions are all intended
to produce the results shown in Figure (5.4). One can play
around these values to examine how it might effect the
smoothness of the curves as we did in previous sections.

5. Training
After defining the model, it is time to train the model by passing the
training and testing set to the data. The smoothing.spline() function
which provides smoothing and p-spline methods does not require to
use lm() function to fit the data and the fitting is done once the
model is created. With cv = TRUE, the model uses ordinary cross
validation (CV) and uses GCV if cv=FALSE. Figure (5.1) shows the
curve produced by the smoothing spline with CV.

6. Predicting
By passing the trained model and test data created in step 3 to
predict() function, the final curve will be generated.

7. Plotting the data
As the final step, we can generate figures using plot() function so the
curves can also be visually analyzed. lines() also add the subsequent

# defining models

#cubic B-spline
bs.model <- bs(x,df=200)
#B-spline with degree 5
bs5.model <- bs(x,degree=5,df=200)
#Natrual Cubic Spline
ns.model <- ns(x,df=200)
#Smoothing Spline
sp.model <- smooth.spline(y ~ x, cv=FALSE,all.knots=TRUE)
#P-spline
ps.model <- smooth.spline(y ~ x, cv=FALSE,all.knots=FALSE)

#Training Data
fit.bs <- lm(y ~ bs.model)
fit.bs5 <- lm(y ~ bs5.model)
fit.ns <- lm(y ~ ns.model) #natural spline

#Predicting the Values
res.bs <- predict(fit.bs, data.frame(x=points))
res.bs5 <- predict(fit.bs5, data.frame(x=points))
res.ns <- predict(fit.ns, data.frame(x=points))
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plots to the same figure. Figure (5.4) illustrates the result of the
experiment.

5.4.2 Reproducing the Result of Quantile Knot Placement

The visual comparison of the two methods mentioned above can be produced
using mgcv package in R. We first define the domain of the functional, the
function itself and associated noise and the domain of the function.

In mgcv gam function fits the model to the data. Function s() creates the
spline. By setting bs argument in s() function to ‘cr’, the splines will be
produced based on Quantile Knot placement. If ‘bs’ is set, the normal
Equidistant Knot placement will be applied.

The result can be plotted using the snippet below. (see section 3 for the
result)
The results could be plotted by running the code below:

#Plotting the Output
dev.new(width=7, height=4)
plot(x, y, ylab="Available Bikes", xlab="Time", axes=FALSE,ylim=c(0,32))
axis(2); axis(1); box()
lines(points,res.bs , col=2, lwd=2)
lines(points,res.bs5 , col=3, lwd=2) #Green
lines(points,res.ns , col=4, lwd=2) #Dark Blue
lines(sp.model, col=5, lwd=2) #Light Blue
lines(ps.model, col=6, lwd=2) #Perpul

library(mgcv)

#fitting cubic B-spline with Quantile knots
qu_fit <- gam(y ~ s(x, bs = 'cr', k = 20))
qu_knots <- qu_fit$smooth[[1]]$xp #extract knots locations

#fitting cubic B-spline with equidistant knots
eq_fit <- gam(y ~ s(x, bs = 'bs', k = 20))
eq_knots <- eq_fit$smooth[[1]]$knots #extract knots locations

set.seed(0); x <- sort(rnorm(400, 0, pi))
set.seed(1); e <- rnorm(400, 0, 0.4)
y0 <- sin(x) + 0.2 * x + cos(abs(x))
y <- y0 + e

#summary plot
dev.new(width=8, height=4)
par(mfrow = c(1,2))
plot(x, y, col= "grey", main = "Quantile Knot Placement");
lines(x, qu_fit$linear.predictors, col = 2, lwd = 2)
abline(v = qu_knots, lty = 2)
plot(x, y, col= "grey", main = "Equidistant Knot Placement");
lines(x, eq_fit$linear.predictors, col = 2, lwd = 2)
abline(v = eq_knots, lty = 2)
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Spline Degree
Degrees of
Freedom

RMSE Time Taken

B-spline 3 200 0.4553 1.19360
B-spline 5 200 0.4498 1.25841
Natural 3 200 0.4483 1.35437
Smoothing 3 - 0.0397 0.05594
Panelized 3 - 0.4476 0.04451

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 5.1 – Results of Different Splines on Dublin Bike Data. (a) and (b) show the Dublin Bike Availability of Pearse
Station from Jan 2020 to March 2022 which can be found in [38] . (c), (d), (e), (f) and (g) show the spline fir of the data
using Smoothing Spline, P-spline, 5-degree B-spline, Cubic B-spline and Natural Cubic Spline respectively. The degrees of
freedom in (e), (f) and (g) is set to 200. The Smoothing and P-spline outperform the other methods.

Table 5.4 – Evaluation metrics of using different splines on Dublin Bike Data [38].
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5.5 Applying Wavelet in Python

In this section, we apply DWT denoising techniques on Dublin Bike data to
make a smooth fit for the curve.

1. Importing the Package
We start by importing the Pywavelet package in our python file:

2. Loading the data
We use pandas read_csv() to load the dataset, we then define the X- and
Y- space of the data by specifying their corresponding column in the
dataset.

3. DWT Function:
There are four key steps involved in applying DWT for denoising the
data:

A) We need to deconstruct the data by applying dwt. This can be done
using wavedec() function in pywt package which takes as inputs the data,
mother wavelet and the level to which we want to break down the data.

B) Calculate the threshold for the selected level. Deepening on the level
to which we want to decompose the data, the corresponding threshold
needs to be calculated. Many have proposed methods through which an

optimal threshold can be selected [31, 32, 62, 63], One way is to calculate

is based on the absolute deviation of the data. That is what madev()
function does.

C) Keep only coefficients whose value is greater than the threshold.

D) Then we reconstruct the curve using the remaining coefficients by
calling waverec() function.

import pywt

import pandas as pd

df = pd.read_csv('station32.csv')
x = df[1].values
y = df[7].values
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E) The wavelet_denoising() function also take level of decomposition as
an input. As discussed in chapter(), larger values for level of
decomposition yield more abstract representation of the curve. Since the
accuracy of the transformed curve in this experiment is also of interest,
we keep the lowest value of the level of decomposition.

4. Applying DWT Function:
To see the effect of choosing different mother wavelets, we pass all
possible options of DWTs available in pywt package.

5. Plotting the Data:
Finally we plot the results so it can help us to visually compare the
results.

Figure(5.2) shows the results of the experiment above. Table (5.6) compares
the results based on the root main squared error and time complexity.

The code for this section can be found in appendix (12).

def madev(d, axis=None):
#Mean absolute deviation of a signal
return np.mean(np.absolute(d - np.mean(d, axis)), axis)

def wavelet_denoising(x, wavelet='db4', level=1):
coeff = pywt.wavedec(x, wavelet, mode="per")
sigma = (1/0.6) * madev(coeff[-level])
thresh = sigma * np.sqrt(2 * np.log(len(x)))
coeff[1:]=(pywt.threshold(i,value=thresh,mode='soft') for i in coeff[1:])
return pywt.waverec(coeff, wavelet, mode='per')

for wav in pywt.wavelist(‘discrete_wavelets’):
filtered = wavelet_denoising(y, wavelet=wav, level=5)

plt.figure(figsize=(10, 6))
plt.plot(y, label='Raw')
plt.plot(filtered, label='Filtered')
plt.legend()
plt.title(f"DWT Denoising with {wav} Wavelet", size=15)
plt.savefig('Image/'+str(wav)+'.png')
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Figure 5.5 – Results of Different Wavelets on Dublin Bike Data. This is the result of the applying different
mother wavelets and vanishing points on Dublin Bike Data. The shape of the mother wavelet used are shown
on the left side and can be found in [67]. These are the selection of best fits in terms of accuracy selected after
applying cross-validation. The more folding is inside the mother wavelet, the more capable the wavelet
becomes to capture local behavior.

Sym2

Db38

Coif17

Bior6.8

Rbio6.8

Haar
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5.6 Discussion
In this section, we evaluate the results of the experiment using Splines and
Wavelets.

5.6.1 Splines

As it can be observed in Figure(5.1), the smoothing spline which place a
knot at every X in the X-space has fully captured the behavior of data.
However, it is no longer considered a smooth estimation as it includes the
noise of the original data. Table (5.5) compares the Mean Squared Error of
the models alongside with their time omplexity. Based on the these values,
the P-spline would be a good candidate to be applied on the dataset.

It is notable that the flexibility of the smoothing or P-spline can also be
achieved using regression B-spline. However, the burden of handling
complexity and flexibility will fall on the shoulder of knot placement. Hence,
the computational complexity of regression splines grows exponentially as
the degrees of freedom increases. On the other hand, in smoothing splines,
the smoothness is controlled by the penalty component and the
computational cost is mitigated. To gain more insight, the time consumed by
the regression B-spline with 200 knots is equal to time taken by smoothing
spline which its equivalent of degrees of freedom is 9450. Although it can be
due to the implementation of spline functions in Spline package, however,
the findings are in line with what other studies has indicated.

Spline bases work well to simulate smooth curves. For a rough
approximation of smooth sample curves correctly observed, cubic spline
interpolation with a B-spline basis might be taken into consideration. On the
other hand, reconstruction of the correct functional form of noisy smooth
curves is adequate for least squares approximation using B-spline basis.

Wavelet Vanishing Points RMSE Time Taken
sym 20 0.5663 0.00265
bior 6.8 0.6070 0.00166
db 38 0.4725 0.00647
coif 17 0.4856 0.00578
rbio 6.8 0.6371 0.00166
haar - 0.6291 0.00130

Table 5.6 – Evaluation metrics of using different wavelets on Dublin Bike Data [38].
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5.6.2 Wavelet

Figure (5.5) illustrates the results of the smoothing experiments using
wavelets. The visual format of the mother wavelet used for each curve is also
shown in Figure(5.5). Having observed the visual results, it can see that how
different selection of mother wavelets affect the final curve. The more folding
the mother wavelet contains, the more powerful the transform becomes to
capture the local behavior of the data. The compatibility between the shape
of the mother wavelet and the data pattern also plays an important role in
obtaining a smooth curve. The number of vanishing points also make the
mother wavelet appear with more folding, adding to the smoothness of the
final curve, Therefore, we used the maximum value of vanishing points for
the discrete mother wavelets used in this experiment.

As Table (5.6) suggests, Daubechies with 38 vanishing points yields the
lowest mean squared error. The visual result in Figure (5.5) supports this
fact. The order of time complexity has been reported the same with haar
being the lowest. Having considered the accuracy, time complexity and the
form of the final curve, the db38 is a good compromise for the given data set.

5.6.3 Splines and wavelets

The best spline fine for the Dublin Bike data turned out to be P-splines. P-
splines is a smoothing spline which has cubic B-spline representation and
utilizes less number of knots compared to smoothing splines. db38 mother
wavelet was also chosen from the wavelet transforms.

5.6.3.1 Accuracy

The accuracy of both spline fits and wavelet transform are of the same order
with smoothing spline being the lowest in splines and db38 being the lowest
in wavelets. However, since the smoothing spline is not as smooth as desired,
we compare the P-spline from splines with db38 from wavelets.

5.6.3.2 Time

Although the Root Mean Squared Errors (RMSE) of the splines and
wavelets were close to each other, however, the time taken for fitting the
curve in splines is considerably of higher orders. This indicates that spline
fitting for densely-sampled data could be computationally complex. One
justification for this is that the P-spline place a large number of knots, and
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then fit a cubic polynomial line between the each pair of knots. It also
impose a penalty for the adjacent cubic lines to control the level of
smoothness. This process becomes costly when the sampling is densely made
and the number of knots grows. On the other hand, Wavelets deconstruct
the data by convolving the mother wavelet to the data with incrementing
discrete scales, which is an arithmetic operation. It then calculate the
threshold for each level of decomposition and filter out the data which lies
beyond the threshold. In our case, we decomposed only to one level so it can
hold the main characteristics of the data. Otherwise, only an abstract
approximation of the data would have been obtained. (see Figure (4.5(e))
Performing an arithmetic operation on the data is considered significantly
less complex compared to spline fitting. Therefore we see that the time taken
for wavelet transforms are outstandingly lower than the splines. Therefore,
as many suggest, the wavelets would be preferred to deal with noisy data
compared to splines.
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Chapter 6

Conclusion

In this dissertation, we reviewed Splines and Wavelets as Smoothing
Techniques in the context of FDA. We started the paper with a review of
the fundamental aspects of Functional Data Analysis (FDA). FDA offers
new techniques through which additional information from the data can be
extracted. This can be done by approximating a smooth function to describe
the behavior of the data. evaluating the underlying patterns exist in the data
e.g. derivatives. The function must represent the dominant characteristics of
the original data. FDA treats the data as a functional object. To create this
function, we require some smoothing methods including Splines, Wavelets.
Although they are different tools for a common goal but they are
fundamentally different.

We discussed different families of Splines and basis functions including
Regression Splines and Smoothing Splines. The computational complexity
and the level of smoothness in Regression Splines are proportional to the
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number of knots and the degrees of freedom. Splines in nutshell utilizes a set
of knots placed on the X-spaces and fit polynomial lines between the knots
to make a smooth polynomial curve. This method has the advantage that
the computational complexity reduces to the estimation of the coefficients of
the estimation function.

We compared different methods of knot placement including equidistant,
quantile, and data-driven knot placement on a set of functional data. It
turned out that equidistant knot placement performs well in most of the
cases. Data-driven knot placement also becomes useful when data is noisy
and sampling intervals are not dense.

We also reviewed and evaluated the programming tools to apply smoothing
techniques in both Python and R. A practical guide through which the two
smoothing techniques can be applied on a set of raw functional data is
provided in this dissertation. The code for applying Splines on Dublin Bike
Data time series was written in R language. Splines packages in R are the
most commonly used tools in the literature. We applied Regression and
Smoothing Splines on data. The result of the experiment showed that P-
spline was the best compromise between the smoothness, capturing local
behavior, accuracy and time complexity.

In addition, we applied wavelet denoising using Discrete Wavelet Transforms
using PyWavelet Package in Python. The choice of mother wavelet, level of
decomposition and the frequency threshold identified as the key factors
contributing to the level of smoothness of the output curve. There are
ongoing studies to find optimal choice for the parameters mentioned above
mainly based on cross-validation. For Dublin Bike data, db38 with one level
of decomposition produced the best result. The results of the experiments
indicated that Wavelet smoothing techniques outperforms Splines in terms of
time complexity even though they provide the same amount of accuracy.
However, this could vary if the level of decomposition increases.

As the main goal of this dissertation has been to be read both as a review
and a manual, we attempted to cover fundamental aspects of the two
smoothing techniques to be used in FDA and provided practical experiments
throughout each section as well as a separate chapter dedicated to
implementations of Splines and Wavelets using R and Python.
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We strongly hope that the findings of this research could be useful for future
studies carried out in this area.

6.1 Future Scope

There are other areas to be investigated in order to elevate the work
presented by this dissertation. Other types of functional datasets such as
images or other multi-dimensional data can be examined to address the
viability of Splines and Wavelets as a smoothing tool in Functional Data
Analysis.

Furthermore, The parameter tuning in both Splines and Wavelets
significantly contributes to the level of smoothness of the estimated curve.
Hence, it is worth investigating the new techniques which address the
drawbacks of the current versions.

Splines package in R and Pywavelet package in Python used to implement
Spline smoothing and wavelet smoothing respectively and cover the practical
side of this study. Although they provide all the essential requirements of
this area, however, there are other libraries e.g. mgcv in R, SciPy in python
which also offer a set of tool both for splines and wavelets which can be
examined in future studies.

Since the smoothing techniques is the first step in FDA, it would be
insightful to see what implication the choice of smoothing technique would
have in other aspects of FDA such as FCPA.

Apart from accuracy and time complexity, other categories of evaluation
metrics can be introduced to examine the implication of different choices of
smoothing techniques. For instance, one can compare Splines and Wavelets
based on their ability in clustering functional objects.
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Appendix - 1

x <- seq(0, 1, length=100) #Defining the range
degree <- 3 # degree of series
nknot <- 5 # number of knots
knots <- (1:nknot) / (nknot+1)
x1 <- outer (x, 1:degree, "^")
x2 <- outer (x, knots,">") * outer (x, knots, "-")^degree
basis <- cbind (x1, x2)
matplot(x, basis, 'l', lwd=2, col= 1:ncol(basis),main='Truncated Power Series Basis
Function')

Appendix - 2

library(splines)
library(readr)
df <- read_csv('triceps.csv')
x <- df[["age"]]
y <- df[["lntriceps"]]
points <- seq(1, 51, length.out = 1000)
dev.new(width=7, height=4)
plot(x, y, ylab="Triceps skinfold thickness in mm (log)", xlab="Age in years")
#define B-spline and its degrees of freedom
fit.bs <- lm(y ~ bs(x,degree=3)) # bspline
final.curve <- predict(fit.bs, data.frame(x=points))
## add fit lines to the plot
plot(x, y, ylab="Triceps skinfold thickness in mm (log)", xlab="Age in years")
lines(points, predict(fit.bs, data.frame(x=points)), col=2, lwd=2)
box()

Appendix - 3

library(splines)
library(readr)
library(fds)
df <- fridaydemand
x <- fridaydemand$x
y <- fridaydemand$y[,100]
points <- seq(1, 48, length.out = 1000)
dev.new(width=7, height=4)
plot(x, y, ylab="Electricity Demand (Megawatts)", xlab="Half-hour")
#define B-spline and its degrees of freedom
fit.ns <- lm(y ~ ns(x,df=3)) # bspline
#df=3,5,10,20
#degree=3,7
## add fit lines to the plot
plot(x, y, ylab="Electricity Demand (Megawatts)", xlab="Half-hour")
lines(points, predict(fit.ns, data.frame(x=points)), col=3, lwd=2); box()
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Appendix - 4

library(splines)
library(readr)
library(fds)
df <- nirp
x <- nirp$x
y <- nirp$y[,16]
points <- seq(1100, 2498, length.out = 1000)
dev.new(width=7, height=4)
plot(x, y, ylab="Spectrum", xlab="Wavelength")
#define B-spline and its degrees of freedom
fit.ns <- lm(y ~ ns(x,df=20)) # bspline
#df=3,5,10,20
#degree=3,7
# add fit lines to the plot
plot(x, y, ylab="Spectrum", xlab="Wavelength")
lines(points, predict(fit.ns, data.frame(x=points)), col=3, lwd=2)
box()

Appendix - 5

library('splines')
require(stats); require(graphics)
library(readr)
df <- read_csv('elnino.csv')
x <- df[[3]]
y <- df[[7]]
dev.new(width=7, height=4)
plot(x, y, ylab="Absorbances", xlab="wavelengths",
axes=FALSE,col='white',ylim=c(5,45))
axis(2); axis(1); box()
f <- y ~ x
fit.sp <- smooth.spline(f, cv=FALSE,all.knots=FALSE)
fit.sp1 <- smooth.spline(f, cv=FALSE,all.knots=FALSE)
print(fit.sp)
#smooth_sp <- predict(fit.sp, data.frame(x=points))
lines(fit.sp, col=4, lwd=3)
lines(fit.sp1, col=2, lwd=2)

Appendix - 6

library(mgcv)
#sample data
set.seed(0); x <- sort(rnorm(400, 0, pi)) ## note, my x are not uniformly sampled
set.seed(1); e <- rnorm(400, 0, 0.4)
y0 <- sin(x) + 0.2 * x + cos(abs(x))
y <- y0 + e
print(x)
## fitting cubic B-spline with quintile knots
qu_fit <- gam(y ~ s(x, bs = 'cr', k = 20))
qu_knots <- qu_fit$smooth[[1]]$xp ## extract knots locations
print(qu_knots)
## fitting cubic B-spline with equidistant knots
eq_fit <- gam(y ~ s(x, bs = 'bs', k = 20))
eq_knots <- eq_fit$smooth[[1]]$knots ## extract knots locations
## summary plot
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dev.new(width=8, height=4)
par(mfrow = c(1,2))
plot(x, y, col= "grey", main = "ْQuantile Knot Placement");
lines(x, qu_fit$linear.predictors, col = 2, lwd = 2)
abline(v = qu_knots, lty = 2)
plot(x, y, col= "grey", main = "Equidistant Knot Placement");
lines(x, eq_fit$linear.predictors, col = 2, lwd = 2)
abline(v = eq_knots, lty = 2)

Appendix - 7

library(Splinets)
library(DDK)
library(ggplot2)
library(reshape2)
library(RColorBrewer)
library(readr)
library(fds)
library(splines)
# function that helps in plotting the functional data
df_plot_fda <- function(S_data, time_df, s=1, a= 0.8, n_sample = 10){
# to do
# check that the length of the time data agree with the dim of the data
# write an if statment that in case of empty time_df generate a one based on the

dim S_data
df_plot <- as.data.frame(t(S_data))
# selecting samples
df_plot_n <- df_plot[,1:n_sample]
# add the time var
df_plot_n$time <- time_df
df_plot_melt_n <- melt(df_plot_n, id.vars=c("time"))
# ploting
plot_n <- ggplot(df_plot_melt_n, aes(x=time, y = value, color=variable)) +

geom_line(size=s, alpha=a) + theme_minimal() + theme(legend.position = "none",
axis.title = element_blank(), axis.text.y = element_blank())
res <- list(plot_n, df_plot_melt_n)
return(res)

}
# get the data from the DKK pacakge
data <- Moisturespectrum$y
#Creating Train set
dt = sort(sample(nrow(data), nrow(data)*0.9))
f_data <- t(data[dt,])
#Generating index for data
t_df <- seq(1, 630)
# test data
f_data_test <- t(data[-dt,])
t_df_test <- seq(1, 630)
# ploting
plot <- df_plot_fda(S_data = f_data, time_df = t_df, a = 1, s = 0.5, n_sample = 10)
p <- plot[[1]]
p <- p + scale_color_brewer(palette = "PuOr") + theme(legend.position = "None")
initial_knots <- c(1,630)
initial_knots
# Argument L specifies the number of knots to be used.
KS <- add_knots(f = f_data, f_v = f_data, knots = initial_knots, L = 15, M = 1)
KS$Fknots
# ploting the reduction of the AMSE
# For train data
df_knots <- data.frame("x" = seq_len(length(KS[[3]])), "Error_reduction" = KS[[3]])
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# For test data
df_knots_test <- data.frame("x" = seq_len(length(KS[[4]])), "Error_reduction" =
KS[[4]])
print('df_knots_test')
print(df_knots_test)
# ploting amse reduction
{
plot(x = df_knots_test$x,y = df_knots_test$Error_reduction,type='p',pch=16, xlim

= c(0,10), ylim = c(0,0.01),ylab='Average Mean Square Error',xlab='Iterations',
bty="n", col="deepskyblue4")
lines(x = df_knots$x,y= df_knots$Error_reduction,type='p', pch=16,

col='darkorange3')
legend("topright", legend = c("Training data", "Validation data"),
col = c("darkorange3", "deepskyblue4"), lty = 3:3, cex = 0.8)

}
# ploting
plot_dist_knots <- df_plot_fda(S_data = f_data, time_df = t_df)
plot_dist_knots[[1]] + geom_vline(xintercept = KS[[1]], linetype="dotted") +
scale_color_brewer(palette = "PuOr") + theme(legend.position = "None")
#Specifying the range
points <- seq(1, 701)
x <- Moisturespectrum$x
x <- x - 1100
x <- x/2
yi <- Moisturespectrum$y[,2]
dev.new(width=10, height=4)
plot(x, yi, ylab="Absorbances", xlab="wavelengths", axes=FALSE,type='l')
axis(2); axis(1); box()
#Creating the models
fit.DDKbs <- lm(yi ~ bs(x,knots=KS$Fknots))
fit.EQbs <- lm(yi ~ bs(x,df=18))
# Plotting the results
lines(points, predict(fit.EQbs, data.frame(x=points)), axes=FALSE,col='blue', lwd=2)
lines(points, predict(fit.DDKbs, data.frame(x=points)), axes=FALSE,col='red', lwd=2)

Appendix - 8

library(Splinets)
library(DDK)
library(ggplot2)
library(reshape2)
library(RColorBrewer)
library(readr)
library(splines)
require(stats); require(graphics)
# function that helps in plotting the functional data
create_plot <- function(S_data, time_df, s=1, a= 0.8, n_sample = 10){
# write an if statment that in case of empty time_df generate a one based on the

dim S_data
df_plot <- as.data.frame(t(S_data))
# selecting samples
df_plot_n <- df_plot[,1:n_sample]
# add the time var
df_plot_n$time <- time_df
df_plot_melt_n <- melt(df_plot_n, id.vars=c("time"))
# ploting
dev.new(width=7, height=4)
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plot_n <- ggplot(df_plot_melt_n, aes(x=time, y = value, color=variable)) +
geom_line(size=s, alpha=a) + theme_minimal() + theme(legend.position = "none",
axis.title = element_blank(), axis.text.y = element_blank())
res <- list(plot_n, df_plot_melt_n)
return(res)

}
# get the data from the DKK pacakge
data <- read_csv('Phoneme.csv')
dt = sort(sample(nrow(data), nrow(data)*.9))
f_data <- data[dt,]
t_df <- seq(1, dim(f_data)[2])
# test data
f_data_test <- data[-dt,]
t_df_test <- seq(1, dim(f_data_test)[2])
# ploting
plot <- create_plot(S_data = f_data, time_df = t_df, a = 1, s = 0.5, n_sample = 2)
p <- plot[[1]]
p <- p + scale_color_brewer(palette = "PuOr") + theme(legend.position = "None")
initial_knots <- c(0, dim(f_data)[2])
KS <- add_knots(f = f_data, f_v = f_data_test, knots = initial_knots, L = 20, M = 1)
KS$Fknots
# ploting the reduction of the AMSE
#For train data
df_knots <- data.frame("x" = seq_len(length(KS[[3]])), "Error_reduction" = KS[[3]])
# For test data
df_knots_test <- data.frame("x" = seq_len(length(KS[[4]])), "Error_reduction" =
KS[[4]])
#Printing the predicted knots
print('df_knots_test')
print(df_knots_test)
# ploting amse reduction
{
plot(x = df_knots_test$x,y = df_knots_test$Error_reduction,type='p',pch=16, xlim

= c(0,10), ylim = c(0,4),ylab='Average Mean Square Error',xlab='Iterations', bty="n",
col="deepskyblue4")
lines(x = df_knots$x,y= df_knots$Error_reduction,type='p', pch=16,

col='darkorange3')
legend("topright", legend = c("Training data", "Validation data"),
col = c("darkorange3", "deepskyblue4"), lty = 3:3, cex = 0.8)

}
#ploting
plot_dist_knots <- create_plot(S_data = f_data, time_df = t_df)
plot_dist_knots[[1]] + geom_vline(xintercept = KS[[1]], linetype="dotted") +
scale_color_brewer(palette = "PuOr") + theme(legend.position = "None")
print(c(KS$Fknots))
#Read the dataframe
df <- read_csv('Phoneme2.csv')
x <- df[[1]] #X-axis
y <- df[[2]] #Y-axis
dev.new(width=7, height=4)
plot(x, y, ylab="Absorbances", xlab="wavelengths", axes=FALSE,type='l')
axis(2); axis(1); box()
#Specifying the range
points <- seq(2, 150, length.out = 150)
lines(x, y, ylab="Absorbances", xlab="wavelengths", axes=FALSE, ylim=c(2,6))
#Creating the models
fit.DDKns <- lm(y ~ bs(x,knots=KS$Fknots)) #natural spline
fit.EQns <- lm(y ~ bs(x,df=24)) #natural spline
#Making predictions
DDK_ns_predictions <- predict(fit.DDKns, data.frame(x=points))
EQ_ns_predictions <- predict(fit.EQns, data.frame(x=points))
# Plotting the results
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lines(points, predict(fit.EQns, data.frame(x=points)), axes=FALSE,col='blue', lwd=1)
lines(points, predict(fit.DDKns, data.frame(x=points)), axes=FALSE,col='red', lwd=1)

Appendix - 9

import pywt
import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
warnings.filterwarnings("ignore")
# Reading the file
df_train = pd.read_csv('Phoneme2.csv')
df_train.head()
n_times = 150
data = df_train['signal'][:n_times].values
def rmse(predictions, targets):

return np.sqrt(((predictions - targets) ** 2).mean())
def mse(predictions, targets):

return ((predictions - targets) ** 2).mean()
# Calculates the mean absolute deviation of the data
def madev(d, axis=None):

return np.mean(np.absolute(d - np.mean(d, axis)), axis)
# Defining Denoising function with threshold
def wavelet_denoising(x, wavelet='db4', level=1):

#Decomposing the data
coeff = pywt.wavedec(x, wavelet, mode="per")
#Calculating the threshold
sigma = (1/0.6745) * madev(coeff[-level])
uthresh = sigma * np.sqrt(2 * np.log(len(x)))
#Calcluate the approximation coefficients
coeff[1:] = (pywt.threshold(i, value=uthresh, mode='hard') for i in coeff[1:])
#Using the approximation coefficients to reconstruct the function
return pywt.waverec(coeff, wavelet, mode='per')

#sample wavelets than can be applied on the data
waves = ['sym4','sym7','sym11','sym16','sym20','sym4','db19','coif6','bior1.5']
plt.show()
for mother_wav in pywt.wavelist(kind='discrete'):

filtered = wavelet_denoising(data, wavelet=mother_wav, level=1)
plt.figure(figsize=(24, 4))
plt.plot(data, label='Raw')
plt.plot(filtered, label='Filtered')
print('rmse: ',mother_wav,',',rmse(filtered, data))
print('mse: ',mother_wav,',',mse(filtered, data))
plt.legend()
plt.title(f"DWT Denoising with {mother_wav} Wavelet", size=15)
plt.savefig('Image/'+str(mother_wav)+'.png')

Appendix - 10

import pywt
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Reading the imput file
filename = 'station_32.csv'
df = pd.read_csv(filename, header=None)
x = df[1].values
data = df[7].values
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fig, ax = plt.subplots(figsize=(6,1))
ax.set_title("Original Data: ")
ax.plot(data)
plt.show()
data = data
mother_wavelet = 'sym20'
fig, axarr = plt.subplots(nrows=10, ncols=2, figsize=(8,8))
# Specifying the level to which we want to decompose the data
# Larger values will result in abtract representation of data
for level in range(10):

(data, coeff_d) = pywt.dwt(data, mother_wavelet)
axarr[level, 0].plot(data, 'r')
axarr[level, 1].plot(coeff_d, 'g')
axarr[level, 0].set_ylabel("Level {}".format(level + 1), fontsize=14,

rotation=90)
axarr[level, 0].set_yticklabels([])
if level == 0:

axarr[level, 0].set_title("Approximation coefficients", fontsize=14)
axarr[level, 1].set_title("Detail coefficients", fontsize=14)

axarr[level, 1].set_yticklabels([])
plt.tight_layout()
plt.show()

Appendix - 11

library('splines')
require(stats); require(graphics)
library(readr)
MSE <- function(real_value, predicted) {
return(mean((real_value - predicted)^2))

}
RMSE <- function(real_value, predicted) {
return (sqrt(mean((real_value - predicted)^2)))

}
df <- read_csv('station_32.csv')
x <- df[[1]]
y <- df[[7]]
#Defining the range of spline
points <- seq(1, 17500, length.out = 17499)
# defining models
bs.model <- bs(x,df=200) # cubic B-spline
bs5.model <- bs(x,degree=5,df=200) # B-spline with degree 5
ns.model <- ns(x,df=200) # Natrual Cubic Spline
sp.model <- smooth.spline(y ~ x, cv=FALSE,all.knots=TRUE) #Smoothing Spline
ps.model <- smooth.spline(y ~ x, cv=FALSE,all.knots=FALSE) #P-spline
#Training Data
fit.bs <- lm(y ~ bs.model)
fit.bs5 <- lm(y ~ bs5.model)
fit.ns <- lm(y ~ ns.model) #natural spline
#Predicting the Values
res.bs <- predict(fit.bs, data.frame(x=points))
res.bs5 <- predict(fit.bs5, data.frame(x=points))
res.ns <- predict(fit.ns, data.frame(x=points))
#Plotting the Output
dev.new(width=24, height=4)
plot(x, y, ylab="Available Bikes", xlab="Time",type='l',axes=FALSE,ylim=c(0,32))
axis(2); axis(1); box()
#Calculating the RMSE
print('Cubic B-Spline:')
print(RMSE(y,res.bs))
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print('5th order B-Spline:')
print(RMSE(y,res.bs5))
print('Natrual Spline:')
print(RMSE(y,res.ns))
#Plotting the results
#Comment each you do not wish to display
lines(points,res.bs , col=2, lwd=2) #Red
lines(points,res.bs5 , col=3, lwd=2) #Green
lines(points,res.ns , col=4, lwd=2) #Dark Blue
lines(sp.model, col=5, lwd=2) #Light Blue
lines(ps.model, col=6, lwd=2) #Perpul

Appendix - 12

import pywt
import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import time
warnings.filterwarnings("ignore")
def rmse(predictions, targets):

return np.sqrt(((predictions - targets) ** 2).mean())
def mse(predictions, targets):

return ((predictions - targets) ** 2).mean()
# Reading hte fule
filename = 'station_32.csv'
df = pd.read_csv(filename, header=None)
function = df[7].values
# Calculates the mean absolute deviation of the data
def madev(d, axis=None):

return np.mean(np.absolute(d - np.mean(d, axis)), axis)
# Defining Denoising function with threshold
def wavelet_denoising(x, wavelet='db4', level=1):

#Decomposing the data
coeff = pywt.wavedec(x, wavelet, mode="per")
#Calculating the threshold
sigma = (1/0.6) * madev(coeff[-level])
uthresh = sigma * np.sqrt(2 * np.log(len(x)))
#Calcluate the approximation coefficients
coeff[1:] = (pywt.threshold(i, value=uthresh, mode='soft') for i in coeff[1:])
#Using the approximation coefficients to reconstruct the function
return pywt.waverec(coeff, wavelet, mode='per')

# Applying discrete wavelets on the input data
# Cross-validation based on Mean Squred Error
for wav in pywt.wavelist(kind='discrete'):

start = time.time()
#Specifying the level to which we intend to decompse the data
filtered = wavelet_denoising(function, wavelet=wav, level=5)
end = time.time()
col = (np.random.random(), np.random.random(), np.random.random())
plt.figure(figsize=(24, 4))
plt.plot(function, label='Raw',color='black')
plt.plot(filtered, label='Filtered',color=col)
print(wav,',',mse(filtered, function))
print(wav,',',end-start)
plt.legend()
plt.title(f"DWT Denoising with {wav} Wavelet", size=15)
plt.savefig('Image/'+str(wav)+'.png')
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