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Abstract

With the exponential surge in the use and popularity of Artificial Intelligence, Conversational
Agents also known as Chatbots are becoming prevalent as they are being used across innumer-
able domains and applications.Today chatbots and virtual assistant systems like Siri, Alexa,
Google Assistants are becoming an intrinsic part of human lives and becoming more human
alike. However, with the adoption of conversational bots in various domains, developing highly
efficient and engaging bots from scratch remains difficult and demands extensive supervision
from human developers. This could be due to a variety of factors, such a scarcity of domain
specific training data as collecting the data of sufficient quantity and quality can take a lot of
time and cost, a lack of domain knowledge to efficiently respond to user queries/questions,
or undefined scope of the agents.

This work proposes a system based on the Conversation-Driven Design concept for iteratively
developing conversational agents (Chatbots). This essentially gives a conversational agent the
ability to learn and adapt from actual user conversations. The proposed system’s architecture
modifies the traditional Wizard of Oz (WOz) technique in order to incrementally capture
the domain-specific chatbot corpus while also improving the conversational agent’s responses
based on input from a domain expert user acting as a Wizard.

The experimental results and evaluation presented in this work corroborates the idea that the
proposed system can be used efficiently to iteratively evolve conversational agents in closed
domain applications to make them more engaging, intuitive, and human-like.
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Chapter 1

Introduction

This chapter introduces the main idea and motivation behind the research. This also defines
a research question and the research objectives proposed to address it. Finally, it provides
a brief overview of the technical approach proposed in this research, as well as an outline
illustrating the overall structure of the report.

1.1 Motivation

Conversation in natural language is an essential component of human evolution and culture.
Indeed, language is the distinguishing feature of the human species in general (1). Today,
thanks to advances in fields such as Artificial Intelligence and, more specifically, Natural
Language Processing, it is even possible to create a computer program that can understand
and converse in natural language. Traditionally, these programs have been referred to as
"Conversational Agents" or "Digital Assistants" (1). These programs typically interact with
the end user through text or speech. The ideation and development of the Virtual Assistants
started more than 50 years ago with dialog systems like ELIZA (2) , PARRY (3) which are static
rule-based systems with no intelligence. But with tremendous research and progress in this
area, today digital assistants like Siri, Alexa, and Google assistant are becoming ubiquitous
and can perform a variety of tasks such as controlling home appliances, assisting users in
finding directions and locations, playing music, and so on. These agents are broadly classified
under the category of task-based agents as they are designed to perform a specific set of
tasks. Most of the agents/bots implemented today like a chatbot on a banking website come
under this category as they perform a fixed set of tasks like a money transfer.

However, today Conversational agents are being used across innumerable domains and appli-
cations, and in many of these domains, these agents are designed to have a natural extended
conversation with the user or to answer arbitrary questions from the user rather than focusing
on a fixed set of tasks. Typically these types of agents are being adopted in domains like
historical museums, art galleries, and libraries to provide an engaging channel to interact with
the users. But building such a closed domain conversational agent from a scratch is highly
challenging because of the following reasons -

• Scarcity of quality domain specific training data that is the type of queries or questions
users can ask.
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• Lack of domain knowledge for generating coherent and engaging responses.

• Development phases may take significant time inhibiting testing of the agent in real-
world conversations.

This creates the need for a system that will allow to iteratively gather new training data,
improve the responses of the agents, and be able to test the agent in an early phase of
development. Some common approaches like (4) suggest training bots/agents on a huge
corpus of crowdsourced data, but collecting such a large corpus of data demands extensive
time and effort and they may not reflect the dialogs or a set of words that can occur in domain
specific to an agent (5).

Some state-of-the-art methods like (6) uses similar Wizard of Oz (WOz)(7, 8) based methods
on speech interfaces rather than conversational interface. Other state-of-the-art methods
(9, 10, 11) which have proposed similar iterative designs of the agents using the concept of
crowd-sourcing for gathering training data and responses are either too complex or fail to
define a common technique to address all the main challenges listed previously.

Thus this work fills the inherent gap in state-of-the-art research by proposing a system to
enable conversational agents to iteratively learn and adapt throughout their development.
The proposed system addresses all the main challenges faced in the development of conversa-
tional agents by enabling incremental capturing of the domain-specific corpus (gathering what
question user might ask about through crowd-sourcing), incorporating domain knowledge to
process and respond to the user questions (by allowing domain experts to analyze and correct
how the bot responses to those questions) and leverage it into a conversational model (retrain
the model based on expert wisdom and data).

1.2 Research Question

This dissertation poses a question of how to design a methodology/system for iterative design
and improvement of Conversational Agents (Chatbot).

1.3 Research Objective

This work has identified the following research objectives to address the research question
posed -

1. To design and implement a baseline Q&A agent/bot using an open source chat frame-
work.

2. To design a platform for conducting a Wizard of Oz based experiment (7, 8) to simul-
taneously gather the new training data from the end user and improve the responses of
the bot based on inputs of an expert user (wizard).

3. To design a methodology to track the end-user conversations and use them along with
expert user inputs for iterative training of the agent.
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4. To evaluate the proposed system through the feedback provided by the end users based
on their interaction with the agent, and feedback provided by the expert users.

1.4 Implementation Overview

To achieve the above-mentioned research objectives, this work has implemented a baseline
chatbot using a Rasa open source bot framework (12). The domain of this conversational bot
is related to the project “Beyond 22” 1 which is an international collaborative research project
aimed at creating a Virtual Record treasury that will be the virtual recreation of Ireland’s
public record office which was destroyed during the opening engagement of a Civil War. So
conversational bot implemented is a Q&A-type bot that would answer the questions of the
users related to the specific aspects of the project "Beyond 22" such as the history of Ireland’s
public record office building, and the fire incident that destroyed the record office, etc. This
work also has used some data cleaning and augmentation methods which can be used for
bootstrapping the training data creation.

Further, this work has implemented a middleware system for conducting a modified “Wizard
of Oz” (WOz) type experiment (7, 8). This middleware hosts two interfaces. A user interface
allows the end users to interact with a bot and an Expert user interface allows domain experts
to improve bot responses using domain knowledge. An iterative pipeline defined as part of
the middleware is then used to continuously capture the end-user conversations and use them
for further refinement and gathering of the training corpus of the bot and simultaneously use
inputs from expert users to make agent’s responses highly engaging and comprehensive. The
proposed interface is evaluated by performing the experiment on real users by inviting them
to converse with an agent. Also, historians involved in the project Beyond 2022 have been
asked to act as a Wizard in this experiment.

1.5 Dissertation Outline

Chapter 2 contains a detailed discussion about the background and overall motivation behind
the idea. It also gives a detailed overview of the existing research methods and the inherent
gap left by the previous work which is fulfilled by this proposed work. Chapter 3 gives im-
plementation details and overall architecture of the proposed system along with the intuition
behind the technology choices. In Chapter 4 evaluation of the proposed methodologies has
been presented along with experimental results. Finally, Chapter 5 discusses the research
contribution of this work along with the research objective achieved. It also specifies the
advantages as well as limitations of the proposed system finally defining the scope for future
work.

1https://beyond2022.ie/
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Chapter 2

State Of the Art

This chapter goes into great detail about the motivation for this research project. It also
provides a comprehensive overview of the existing methods and techniques for iteratively
developing and improving conversational agents. It concludes by highlighting an inherent gap
in current research work and explaining how the proposed system facilitates filling that gap
and addressing the proposed research question.

2.1 Background

Conversation in natural language is an essential component of human evolution and culture.
Indeed, language is the distinguishing feature of the human species in general (1). Today
with the revolution in fields like Artificial Intelligence and specifically in Natural Language
Processing, it is even possible to build a computer program to understand and converse in
natural language. Traditionally, these programs have been referred to as "Virtual Assistant" or
"Digital Assistant" (1). The development of Virtual Assistants began more than 50 years ago
with dialog systems such as ELIZA (2), PARRY (3), which are static rule-based systems with
no intelligence. With continuous research and development in this domain, virtual assistant
systems such as Siri, Alexa, Google Assistants, and chatbots are becoming an integral part of
people’s lives. These agents are broadly classified under the category of task-based agents as
they are designed to perform a specific set of tasks. Most of the agents/bots implemented
today like a chatbot on a banking website come under this category as they perform a fixed
set of tasks like a money transfer.

However, today conversational agents or dialog systems are being adopted in innumerable do-
mains including online learning (13), customer servicing (14). Even the traditional institutions
like museums, art galleries and libraries are deploying these on their websites to provide an
engaging way for their users to know about the various books and resources (15, 16). But
in all these use cases conversation agent systems are designed to have a natural extended
conversation with the user or to answer arbitrary questions from the user rather than fo-
cusing on a fixed set of tasks. So these agents also referred to as dialog agents are used
to mimic human-to-human conversations. Despite being an advancement in technology and
its widespread adoption building such conversational or dialog agents in any domain remains
challenging. In fact, natural conversations between a human and these systems still remain far
from natural and fail to engage the users (17). Many research in the field of Human-Computer

4



Interactions (17, 18) attributes this to poor quality of responses from the bot. As highlighted
in the section this is due to the result of some of the challenges like -

• Lack Of Training Data
The Efficiency of the Natural Language Understanding (NLU) model within conversa-
tional agents depends on the quality and quantity of training data which in turn depends
on the amount of effort the developer of these systems invests to gather or create the
conversational data. But in use cases where an agent is required to conduct a natural
conversation with the end user and understand the answer to any free-flowing queries in
the particular domain creating data from a scratch by anticipating different ways users
can interact with a bot is almost impossible. Hence there is a need to iteratively gather
the training data.

• Lack of Domain Knowledge For Response Generation
Developers of the agents usually have to encode the responses to train the dialog
management model so that an agent can learn how to respond in specific scenarios.
Therefore there is a need to encode the domain knowledge in the responses to handle
specific queries of users in the domain of the agent. But often developers of these
agents don’t have appropriate domain knowledge and have to involve domain users to
create the responses.

Natural Language Understanding (NLU) engine and Dialog Management Engine are the two
core parts of any conversational agent. The NLU engine is responsible for understanding
the natural language and converting it into recognizable actions (intents) while the Dialog
Management module is responsible for performing the appropriate actions and generating the
responses. Different types of techniques are being in use to gather augment training and
response data for the training of the NLU engine and dialog management model respectively.
But these techniques differ based on the type of conversational agent. Conversational agents
are broadly classified into rule-based and data-driven conversational agents (1). While on the
one hand rule-based agents are generally used to develop the goal-oriented bot where all the
possible user utterances and responses are encoded by the developers by manually defining
domain-specific rules and mappings between the user query and a bot response. As a result,
the natural language capabilities of such agents are limited and not extensible.

On the other hand, data-driven agents are trained using open-sourced conversational data
(4) and instead of encoding rules, the user intents are identified using probabilistic similar-
ity/matching with a training example. Similarly, responses are generated using the same
technique by finding the best matching response. But the response generated may not be
coherent and engaging as it depends on the quality of training samples. Also as highlighted in
(5) the conversational corpus used for training may not contain the dialogs or a set of words
that can occur in a domain specific to an agent.

So irrespective of the underlying category of the dialog systems, there is a need for a method-
ology to iteratively gather the training data (user queries) and also enable developers of the
agent to involve the domain expert to gather and improve the agent’s responses. However as
the user plays a very critical role in any dialog system, these systems are closely related to the
field of Human-Computer Interaction (HCI) (1). And thus many principles and techniques in
the field of HCI can be leveraged to come up with such a methodology.
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The methodology proposed by this work is thus based on some of the techniques in the field
of HCI like the Wizard of Oz (7, 8, 19) system based on the principle of user-centered design
as suggested in (20). The proposed system makes modifications to the traditional Wizard of
Oz technique and makes use of conversational-driven design philosophy to build a platform to
gather the training data from actual user conversations and also allows the domain experts to
improve the responses of the agent at the same time. This will help to make the conversational
agent more engaging and human-like.

2.2 Wizard Of Oz (WOz)

The Wizard of Oz (WOz) is a well-known method in the field of Human-Computer Interactions
(HCI) for testing a prototype of an automated system in its early stages of development. The
technique’s name is derived from the story book called "The Wizard of Oz"(21) in which a
magical Wizard is revealed to be nothing more than a human-controlled simulation. It is a
technique in which end users are led to believe they are interacting with a computer system
when, in fact, the system is mocked by a researcher or a human (Wizard) behind the interface
(1, 7). As a result, the main advantage of this technique is that end-user interactions with
a system can be interpreted and recorded without having to build/implement the system as
Wizard can control the interactions without the involvement of any actual system.

As a result, Wizard of Oz is a common technique used to develop systems that lack stan-
dardized design patterns and necessitate predicting how end users will interact with or use
the system (7, 19). To implement this technique, a research setup must include end-users
interacting with a system in one location and researchers (wizards) simulating the system in
another location via a separate wizard interface.

This technique is highly flexible and truly iterative in that, in the early stages of system devel-
opment, a Wizard will simulate most of the system functionality, and then data recorded from
earlier phases can be used to improve the system while minimizing the wizard’s involvement
and making the system truly automated (19, 22).

With its close relation to the field of HCI, this technique is used as a major tool to build dialog
systems (8, 23, 24). In general, the wizard gets the user queries and can respond through a
graphical interface. However, it is being majorly used as the method for collecting the training
corpus in which results from Wizard of Oz systems are in turn used for training the dialog
agents.

2.3 Conversation Driven Development

Past research (5, 17) has highlighted that the quality of conversational agents depends on
the quality and quantity of training data including the encoded responses. But it is always
difficult to create the training data from a scratch and that also in a large amount as required
for training of the natural language models used in any conversational agents. Particularly a
domain-specific chatbot training corpus must have words or jargon specific to that domain
yet most of the open-sourced conversation data may not reflect it accurately.
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There originates a need for a philosophy of Conversational Driven Development (CDD) which
is based on the principle of user-centered design. This philosophy reflects the principle of
learning from the actual user interactions (25, 26).That is to use interactions with the real
users to gather the training data as well as to learn where agents are not performing well.
This process generically contains the following actions (25, 26) which enables the iterative
improvement of the conversational agent-

1. Share
Developing a conversational agent from a scratch is quite challenging and may require
a significant investment of time. So this action in the CDD principle requires sharing
the prototype of the agents with users as early as possible to get to know how the
agent performs in real-world conversation. And in such as way developers will be able
to test early what can go wrong. Now some techniques like Wizard of Oz as discussed
in previous section can be used to share the prototype of the agent with the end users.

2. Review
The user conversations captured from early prototyping of such systems can act as a
goldmine and can be used to create effective learning data for an agent. Hence the
developers should invest the time to carefully review the conversation data.

3. Annotate
Once reviewed appropriate techniques should be used to annotate the conversation data
to turn it into a training example that can be used to train the NLU engine of the agent.

4. Testing
End-to-end testing of the agent is always effective and required after each iteration and
cycle of retraining of the agent. So After retraining the agent with conversational agent
developers should create end-to-end test cases to test the agent.

5. Track
This action corresponds to the evaluation of the overall performance and efficiency of
the agent which will help to analyze how an agent is improving over time. Different
parameters such as feedback from the end users can be used to perform the evaluation.
Also, agents can use other implicit factors and self-learning for the evaluation.

2.4 Methods Based on Wizard Of Oz And Crowd-
Sourcing

Wizard Of Oz With its close relation to the field of HCI, has been used as a major tool to
build dialog systems across multiple research and studies. All of this research either proposes
customized platforms and systems or leverages publicly available platforms like Amazon Me-
chanical Turk 1 to conduct Wizard Of Oz experiments through actual participation of the
users (Crowdsourcing).

1https://www.mturk.com/
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(24) uses the Wizard of Oz method to analyze how users of the agents would interact with
agents having different personas like an emotional bot. The research has conducted a study
with 14 users and has the individual expert users act as a wizard for each persona of the bot
(emotional bot, fun bot, etc). However, results only reflect what users expect from these
kinds of mood bots or bots who can perform chitchat. It does not highlight how this study
can be used for the iterative design of the bot. Also, the results in the study are based on
open-ended bots rather than a domain-specific agent.

(23) makes use of the Wizard Of Oz study to similarly gather different ways a user can interact
with. Rather it focuses on a goal-based agent where the expert user acting as an agent were
performing the task of booking a vacation as requested by the end user. As there is no
involvement of an actual agent in this study there is no way to test out the agent in real-world
conversation. Also as this study focus on goal/task-based agent, it is not applicable for either
open-ended or domain-specific conversational agents.

The system proposed in (27) aligns with most of the research objectives proposed by this
work. This study provides a platform for iteratively gathering the training corpus for the
conversational agent. It provides an interface to end users who can perform conversations
with a bot. In addition, it provides a separate interface for the privileged (Expert) users to
annotate the recorded conversation. Though the main aim of the conversation annotation
is to generate the data that would be suitable for the training of the agent. For this, the
proposed system provides an easy and intuitive interface where an expert user can annotate
the utterances and responses by scoring them in terms of the following factors -

• Subjectivity: Score for response coherency and suitability within a dialog context.

• Polarity: Score for indicating whether the text is negative, positive, or neutral in the
linguistic sense.

• Offensiveness: Score for offensive words and phrases in utterances.

• Swear: Score for any vulgarity in utterances/responses.

Hence all the utterances and responses in the conversational data with higher annotations
scores are filtered out. As described this work does use principles of the Wizard Of Oz
technique but it does not allow the developers to engage the expert users to directly improve
actual responses from the agent. This work also doesn’t involve the actual agent in live
conversation inhibiting its testing in the earlier phase.

Studies (28) show that to further improve the chatbot responses the Wizard of Oz type
studies can be used where developers can create an interface to allow expert users to modify
the response.

(6) proposes a system called "SUEDE" which defines the tool for performing the Wizard of
Oz experiment. Though leverages this technique for designing of speech interface. In a way,
it provides an intuitive interface that developers can use design the speech interface in an
iterative manner in form of user prompts(speech) and script/response from the agent.
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A system called "chorus" is proposed in (11). "Chorus" system provides an alternative in-
terface for performing the Wizard of Oz experiment. In fact, it allows multiple users to act
as expert users by integrating it with a crowd-sourcing platform. It uses a voting mechanism
in order to attain coordination between multiple expert users and to generate the single best
possible response to user queries but the overall voting process can be slow and also only
works when a minimum of one other expert user has voted for the particular response. Also,
this system takes into consideration tasks-based agents where the expert user just assists
to complete the user tasks rather than requiring to input domain knowledge as required in
domain-specific agents.

(10) proposes a conversational agent called "Edina" based on the concept of "self-dilaogs".
This system tweaks the Wizard of Oz experiment in such a way that the crowd-workers
(participating users) play the role of both end user, as well as expert users that is a single
user, helps to inculcate the data for user utterances as well as agent’s responses. This helps
to gather how users talk about a particular topic in a specific domain. Some of the main
advantages of self-dialog policy as highlighted in this research is that the data collection
process is fast and also economical as the system doesn’t rely on two different users to
capture a conversation. And it also helps to bring more naturalness to the conversation. Once
the data is recorded in the agent’s knowledge base this work then uses a rule-based engine
and a matching score component at the run time to generate the appropriate responses.
The matching score component given a user query calculates linguistic similarity with the
response in the knowledge base using different methods like Inverse Document Frequency
(IDF) (29). But this similarity score also takes into consideration context within a dialog so
the similarity is measured based on Bag-of-Words model learned from a recorded corpus. The
response generated by this component is also validated against the rule-based engine which
uses deterministic rules to determine the response for a particular user query.

The Use of a rule-based approach may play as a limitation of this approach. Also, a single
user may or may not be able to accurately reflect varied user queries and may also incept
some bias in the response to the corresponding request. This technique uses this data to feed
into a system knowledge base but doesn’t define any pipeline or methodology to iteratively
improve the same.

In general, as highlighted in the research (30) which has done a comprehensive analysis of the
wide variety of methodologies and other research work being used field of Human-Computer
Interaction, most of the state-of-the-art research work utilizes the techniques in HCI like the
Wizard of Oz only as methods for usability/experience testing of the system prototypes or as
means of data collection methods.

Hence there is a scope where the traditional Wizard of Oz method can be extended which
can be used to not only test the conversational agent prototypes and how users interact with
it, but also to iteratively gather the training corpus of the conversational agent and also to
improve the response quality by enabling engagement of domain experts.
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2.5 Methods Based on Conversation Driven Develop-
ment

Conversation Driven Development (CDD) is based on the principle of training the conversa-
tional agent by leveraging the interaction or conversation they have with the real users this
enables the agent to iteratively learn and adapt itself. The Rasa X (12, 31) which has been
used in the proposed architecture is the tool developed by Rasa open source bot framework
team and it supports the philosophy of Conversation driven design (25, 32). Other chatbot
frameworks like dialogflow 2 also provide similar tools and interfaces. Although these tools
provide easy and intuitive ways to conduct conversations with users and use those for learn-
ing and adapting the share the agent in its early development phase to the users and then
annotate the conversational data captured to convert it into training data, it doesn’t allow
the developers to embed domain knowledge into the agent’s knowledge base. That is it does
not allow developers of these agents to involve expert users to improve the responses which
are cardinal processes in any domain-specific conversational agent.

Also as suggested in research (33) training naively on the conversational corpus can lead to
poor results because it can reinforce the failure paths selected by the agent also it may lead
to learn out-of-domain conversation paths. (33) tries to automate the iterative construction
of training data from agents’ conversations with the users. work like tries to detect the failure
paths in the agent’s conversation flow based on the user feedback utterances. So from the
user’s feedback, it detects how useful or unuseful an agent’s response was. For example, user
utterances like "that’s great" indicates positive feedback on the other hand utterances like
"That’s not what I meant" indicates negative feedback. This work further tries to build a
language classification model to detect failure scenarios using user feedback. But the issue is
the method proposed can work on general-purpose conversational data but not on domain-
specific data. Also, the work does not propose the mechanism for how to use these failure
scenario detection for the iterative improvement of the agent.

To overcome this some of the studies suggest automatic learning for the improvement of the
agent (34, 35, 36). (36) uses a type of self-feeding chatbot which automatically learns from
the user messages and response pairs in the training data. It uses sentiment analysis and
pattern matching model to mine the response by matching a user query to a previously seen
query/message in training data. But it also defines pattern matching thresholds between 60%
to 90% for deciding when to learn/retraining is required. Pattern matching results lower than
each of the thresholds will cause the agent to re-learn the user message response pair and
any matching results below 60% will cause the agent to not give the selected response and
to deflect the conversation.

While (34) proposes use a reinforcement learning model to predict when to ask questions or
user feedback, to learn the accurate response based on the user input/feedback.

As highlighted in the research (37) the main limitation of these approaches is that as these
methods depend on machine learning models to predict when learning/retraining is required,

2https://dialogflow.cloud.google.com
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somehow a less accurate or bad model will also be bad at predicting when the agent has failed.
Hence regardless of the user feedback these techniques typically also require other factors to
gauge the usability of the user feedback to learn from it. Hence in the absence of a reliable
model, these agents using these techniques will also start learning inappropriate responses
or even the knowledge which is out-of-domain. Hence, all of these techniques based on the
concept of automatic learning can adapt the agent through its conversations require complex
machine learning models and still don’t allow any means of incorporating domain-specific
knowledge or answers in the agent’s knowledge base.

2.6 Conclusion

Previous sections give a detailed overview of the current state of the research and various tech-
niques and methods in use based on the Wizard of Oz and Conversation Driven Development
techniques.

But analyzing all this work it is visible that there is a clear gap in the area of how these
methods related to the field of Human-Computer Interaction (HCI) can be used for iterative
design and improvement of the conversational agent. Most of the research work uses these
methodologies either just to test the prototypes of the conversational agents or just to gather
the training corpus. Other works do allow the developers of the agents to involve the expert
user in response improvement but these methods are either too complex and/or don’t offer
any iterative methodology of how it can be leveraged to make conversational agents learn and
adapt throughout their life cycle.

The work proposed in this work aims to fill that inherent gap by proposing a system that
essentially combines the Wizard Of Oz and Conversation Driven Development techniques.
The system proposed essentially defines a methodology that can be used to iteratively increase
the scope of the conversational agent (gather training corpus) as well as improve its responses
making the conversational agent more engaging and human-like.
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Chapter 3

Design & Implementation

This chapter gives the implementation details of all the phases involved in this work. Section
3.1 describes the process adopted to gather and augment the training corpus required to build
a baseline bot. Section 3.2 describes the implementation of the baseline Q&A bot which can
answer specific queries regarding the project "Beyond 2022" and the underlying technologies
used. Lastly, section 3.3 describes the architecture proposed by this work which allows the
baseline conversational agent to iteratively learn and improve throughout its lifecycle.

3.1 Data Gathering, Cleaning and Augmentation

3.1.1 Seed Data Gathering

About Project Beyond 2022

As the conversational agent implemented by this work is part of the project Beyond 2022.
This section gives a quick overview of this project. Project Beyond 20221 is an international
collaborative research project funded by the government of Ireland that aims to create the
virtual reconstruction of the Public record office of Ireland which was unfortunately destroyed
in the fire incident caused during the opening engagement of Irish Civil War dated on 30th
June 1922. With 5 core partner universities within Ireland along with over 40 partnering
institutions in Ireland, UK, and USA this work tries to recover all the records which were
lost in the incident and make them freely accessible to millions of people in the world. Many
historians in Ireland and across the globe are also participating in this project to know more
about what was lost in this and how it can be rediscovered.

The project has been launched on the centenary of the event in June 2022 and is freely
available and accessible to people within and outside Ireland where people can virtually search
and view these historic documents and records. Thus as part of this effort, this project also
ideates deploying a chatbot on the virtual record treasury website 2 to provide interactive
informative assistance to the users while accessing this virtual record treasury.

1https://beyond2022.ie/
2https://www.virtualtreasury.ie/virtual-treasury
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Data Collection through Interactions

As the domain of the conversational agent implemented in this work is related to project
Beyond 2022 it was necessary to extract some of the queries users might have about this
project or queries users might ask when they visit the virtual archive website created as part
of the project Beyond 2022. So that it can be used as a seed corpus to create a baseline bot.
The initial training data for a baseline bot was extracted from Q&A sessions conducted with
historians involved in the project Beyond 2022.

The recorded interaction data was converted into a training data format as required by the
Rasa framework as described in section 3.2.1. Simple python utility script was created using
pandas API 3 to parse and convert the conversation data in a way that the questions asked
were used as sample intents or user queries and the inputs/answers from the historians were
used as a response to those queries/questions. This data was fed to the data cleaning and
paraphrasing components before being used to train the baseline bot. The data cleaning
and paraphrase(data augmentation) components described in subsequent sections are being
reused in phase whenever the new training data and responses were captured using the system
defined in section 3.3.

3.1.2 Data Cleaning

This work used simple data cleaning techniques to clean the conversation data including, user
queries and responses from domain expert users before it is used to train the conversation
agent. It mainly filters the redundant messages. With the use of crowd-sourcing to gather
the conversation data, it is always necessary to clean any messages containing any sensitive
or rage words. This need has been highlighted by the example of the Microsoft bot Tay (38)
about the problems that can arise when conversation data is directly used to train the bot.
Hence as part of pre-processing step, this work uses empath client package 4 in python as
proposed in (39) to detect and remove the messages having rage and/or sensitive words.

3.1.3 Data Augmentation Using Paraphrasing

Paraphrasing is a popular task of creating alternative variations of a sentence that preserve
its meaning with variations in grammatical rules and words (40). Today it’s been used heavily
used in other tasks such as content creation, language translation, and data augmentation.
Many different techniques and algorithms in Natural Language Processing have been in use
for paraphrasing (41). These include rule-based algorithms as suggested in (42) or data-
driven approach suggested in (43). More recently it’s been solved by treating it as a language
translation task. While some work (44) also implements the same using bilingual training
corpus where we can translate the corpus from one language to other the process known as
back-translation.

The efficiency and quality of any conversation agent depend on the efficiency and accuracy of
its Natural Language Understanding (NLU) models which is the heart of such systems. NLU
models are used to classify and convert the natural language into an action that an agent can
perform. While developing any chatbot or conversational agent the main task is to gather

3https://pandas.pydata.org/
4https://github.com/Ejhfast/empath-client
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and create the training corpus for the intents and actions the agent can handle to improve
the accuracy of NLU model. More specifically to be able to make the bot/agent to perform
efficiently in real-world conversation it is pertinent to collect different variations in which an
end user can ask the same question/query.

Hence the accuracy and performance of the NLU model can be improved by incorporating
varied data into the chatbot corpus. But with limited availability of domain-specific data
availability, this work uses a Natural Language Paraphraser as a tool for training data aug-
mentation to further make the NLU model accurate and robust. In fact, many latest studies
(45) have shown that data augmentation can be used to improve the accuracy of many Natural
Language Processing tasks including the text classification used in NLU models.

Paraphrasing models can be customized or built from a scratch using various methods dis-
cussed previously. But building it from a scratch was beyond scope of this research and hence
this work has used an existing paraphrase model called Parrot (46) . Rasa core framework
team has also developed a paraphraser for augmenting text data but is still in the experimental
phase. (46) model is built specifically for the data augmentation task in NLU models in con-
versations agent; As the paraphrasing model has been trained on short sentences of about 32
words because text which is typed or spoken by the end-user on conversational agent interface
is usually very small.

(47) suggests different evaluation metrics which are used to evaluate the goodness of the
paraphraser. As discussed in (47) there are three main key metrics used to evaluate the
performance of a paraphraser. These are “Adequacy” (is the meaning of the original sentence
preserved adequately?), “Fluency” (is the generated variation that uses fluent language), and
“Diversity” (linguistic differences in the original sentence and its paraphrase). Parrot API5

provides the additional configurations in order to tune these quality metrics according to the
underlying use case.

3.2 Implementing Baseline Conversational Agent

This works implements a baseline conversation agent using Rasa open-source framework (48).
Rasa gives the open-source machine learning framework for Natural Language Understanding
used in text or voice-based conversations. It also allows to build and connect a bot with
different types of channels like Facebook messenger, Slack etc. Later the REST-based channel
has been used to connect the Rasa bot server instance to a custom Wizard of Oz middleware
implemented in python as a web server. Initially, Rasa command line interface (CLI) was used
which gives the set of commands to perform common actinons like training a bot, starting
a bot server with a trained bot etc. But further, as this work adopts a Conversation driven
approach that uses actual user conversations to adapt and improve the bot/agent (25) .
Hence this work has used tool called Rasa X (12, 31) provided by the Rasa community. Rasa
X is a browser-based tool layered on top of Rasa open source server which allows to you view,
analyze filter the real conversations with the user, and turn these conversations into training
data.

5https://github.com/PrithivirajDamodaran/Parrot_Paraphraser
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Following are the main components in Rasa framework used for building the baseline bot of
related to the domain of project “Beyond 2022” -

3.2.1 Training and Response Data Setup

Training data for all the intents (actions) is configured in YAML file format as required by the
Rasa open source framework. The YAML file consist of the training data/samples grouped by
intents shown in figure 3.1 Rasa has two main components within it which are NLU engine and

Figure 3.1: Training Data in YAML format

Dialog Management engine.NLU engine uses the data presented in format discussed earlier
to train the machine learning model in order to understand the and convert natural language
into a recognizable intent.

On the other hand, the Dialog Management engine is used to decide what action or response
agent should select. Rasa core uses two types of training data format to train its Dialog
Management engine namely Rules and Stories to define conversational flow between the end
user and agent in form of user intents and corresponding actions the bot should take. Rules
are typically used in use cases where conversations happened usually in small pieces and always
requires the agent to take the fixed action or response.

This is especially suitable for this work which develops a Q&A conversation agent where the
user can ask queries/questions related to the domain of the project “Beyond 2022” and agent
replies with a particular response. Although each type of question from a user is represented
as a separate intent, the dialog management engine handles it in the same way that is to
retrieve the appropriate response based on specific user questions. Hence instead of writing
a separate rule/action for each type of possible question, this work uses a feature of retrieval
intents in Rasa. It basically allows to group together intents. So all the intents are defined as
sub intents of the main intent faq (this can be also seen in figure 3.1) so that we can easily
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define a single action or rule to handle them. This feature has been used as it makes writing
rules for the dialog management engine quite easy. Now this action in turn makes use of
ResponseSelector (49) which is a machine learning model used to select the exact response
based on a specific question user has asked.

3.2.2 Natural Language Understanding (NLU) Pipeline

Rasa provides a baseline configuration (50) which are used for training the NLU model.
However, main advantage of Rasa is that it allows to easily extend its default configurations
in order to create the model as per the requirement of specific use case. The configurations
consist of various components (50) which forms the pipeline used by NLU engine for intent
recognition , response extraction , text pre-processing. Figure 3.2 shows the final NLU pipeline
and different components and configuration this work has used to train the agent.

Figure 3.2: NLU Pipeline Configuration.

Following are the main components within the NLU pipeline

1. Text pre-processing components
Following components have been used to perform text pre-processing and feature cal-
culations on user messages. The features calculated are in turn used for the intent
classification and response selection models.

(a) Tokenizers
Whitespace Tokenizer has been used to pre-process the input user message and
split it into individual tokens (words). It generates the token for all the words
or group of character separated by whitespace. This also cleans the user input
message as every character which is not in the regex set (a-zA-Z0-9_#@&) is
replaced by the whitespace.
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(b) Featurizers
Featurizers in Rasa are used to calculate token as well as sentence level features
(51). Featurizers mainly generate features in form of dense or sparse feature vectors
which are then used by different models like intent classifier and entity recognition.
Typically token level features generates the feature vectors of size (No.of tokens *
No. of features) are used to train the sequential classifiers. On the other hand the
diamensiaonlity of sentence features is (1 * No. of features) and is typically used
in Bag-of-word based models/classifiers (52) . This works has used out-of-the-box
available Featurizers in Rasa framework which are as follows -

i. RegexFeaturizer
This is used to detect the list of regular expressions within the user messages.
It takes in the output of the tokenizer. So for each Regex this will count
whether the that Regex is present or not finally creating a list or vector of
features which can be used by classifier.

ii. LexicalSyntacticFeaturizer
Use to analyse and calculate linguistic and syntactical features in a user mes-
sage. It creates the features using sliding window mechanism over all the
tokens in a user message. Some of the default features which are calculated
includes prefix and suffix of token, checking whether the token is start of the
sentence etc.

iii. CountVectorsFeaturizer
It creates Bag-of-word vector/matrix of the user utterances as well as re-
sponses. Internally it uses CountVectorizer API in Scikit-learn library (53).
It basically counts the frequency of occurrence of each word within the user
message, hence the dimensions of vector/matrix depend on number of unique
words in entire training corpus. This featurizer has been configured to create
bag-of-word feature vector for both word as well as character level n-grams.
By default it works on word level n-grams but its been also configured to calcu-
late these features based on character level ngrams using “char_wb” analyser
in Rasa as shown in pipeline figure 3.2.

2. Intent and Response Classifiers Models
Rasa open source provides multiple out-of-the-box classification models based on simple
word embeddings such as LogisticRegressionClassifier or simple KeywordIntentClassifier.
Although these classifier fails to handle complexity involved in use case under consider-
ation.

To handle the complexity and variety involved in the user input data , this work uses
the DIET (Dual Intent and Entity Transformer) language model suggested recently by
study (54). It is a transformer based multi-task model which can be used for both
intent and entity recognition task and has a built in support in Rasa open source frame-
work. But main advantage of this architecture is that it can work with a combination
of sentence level dense features like word-embeddings and sparse token level or char-
acter ngram based sparse features as calculated in in the featurizer pipeline. Also the
overall architecture is very lightweight and is faster to train as compared to other simi-
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lar models language understanding models like StarSpace(55) which makes use of only
sentence level dense features like pretrained word embeddings like GloVe (56). Infact
the DIET implementation in Rasa allows to import these pretrained word embeddings
into pipeline. And hence this work has used DIETClassifier in Rasa for intent recognition.

As described in section 3.2.1 the dialog management engine within Rasa makes use of
ResponseSelection model (49) to select the response for the specific user question or
query. ResponseSelection model is also a supervised model classification model with the
structure very similar to DIETClassifier which predicts the bot response from configured
response set. It can also work with sentence level dense features as well as token
based sparse features. It uses learned embeddings of both user messages and response
messages and then calculates the similarity between these vectors and try to maximise
the similarity between user message and corresponding response configured. At inference
time this model will receive the input from pre-processing and intent classifier stages
and it will try to predict the response which has the highest similarity with the user
intent/message.

Rasa open source also allows to customize and configure the hyperparameter to customise
and adapt these classifier models according to a use case. This includes hyperparameters like
number of epochs used to train the model , the hidden layer size etc. Figure 3.2 shows the
final configuration pipeline finalized using which the best performance was obtained. Table
3.2 shows the performance results obtained on the baseline training data. These results were
obtained using command line utility (57) provided by Rasa by runnig 5-Fold cross validation
on models.

Table 3.1: Intent and Response Selection Model Evaluation - Training

Model Accuracy Precision F1-score

Intent Classifier 0.721 0.700 0.710
Response Selector 0.773 0.774 0.773

Table 3.2: Intent and Response Selection Model Evaluation - Test

Model Accuracy Precision F1-score

Intent Classifier 0.651 0.651 0.651
Response Selector 0.687 0.680 0.683
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3.3 WOzBot Architecture

This section describes the overall architecture of the proposed system which modifies tradi-
tional Wizard Of Oz technicque to enable the baseline conversation agent to iteratively learn
and adapt.

The Wizard of Oz technique has long been used in the field of Human-Computer Interaction
(HCI) for early prototyping and testing of software systems in the nascent stage of development
(7). Many studies (19, 58) have used this technique to just mock or simulate some automated
system through an expert user or a wizard, particularly in the case of conversational agents,
such experiments are primarily being used to capture user messages/interactions that are in
turn used as the training corpus (8, 23).

This work modifies the traditional Wizard of Oz technique in such a way that an expert user
acts as a mediator between an end user and conversation agents rather than acting as a
system itself. This modification enables iterative testing of conversations in actual real-world
conversational scenarios, as well as modification of responses based on input from an expert
user or a wizard.

Figures 3.3 and 3.4 depict the traditional WOz method and the modified WOz method pro-
posed in this work, respectively. It is clear from figure 3.3 that in traditional settings, the expert
user directly simulates a conversation agent.There is no actual involvement of a conversational
agent in real conversations.The conversational data is then used directly to train/retrain the
conversational agent.

However, as shown in fig 3.4, the suggested method involves the conversational agent in a
live conversation with the end user. In live conversations, the expert user acts as a mediator
and can change/modify the bot responses. This allows the developers of the agent to test
the efficacy of the agent in real-world conversations, collect new training data and responses,
and improve the existing bot within a single setting. The recorded responses are validated for
correctness against the queries asked by the users. Further, the collected user messages along
with the appropriate responses are fed to the data cleaning and paraphrasing pipeline before
being used for retraining of the agent.
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Figure 3.3: Traditional Wizard of Oz Flow

Figure 3.4: Modified Wizard of Oz Flow

Figure 3.5 shows the detailed architecture of proposed system and individual components in-
volved in this architecture.The working details of each of the component within this architec-
ture and underlying technologies used have been explained in detail in remaining section.

1. WOz Middleware
The Wizard-of-Oz middleware is the cardinal part of this system that supports the
implementation of the "Wizard-of-Oz" experiment. Essentially this middleware acts as
an additional layer between an end user and a conversational agent, further allowing
domain experts to act as a mediator.The middleware has been implemented using a
python FastAPI 6 web server. There are three endpoints exposed through the FastAPI
web server which are as follows -

6https://github.com/tiangolo/fastapi
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Figure 3.5: WOzBot Architecture

(a) A simple REST endpoint that connects with the REST channel endpoint of the
Rasa bot.

(b) A WebSocket endpoint that connects with the end user dashboard. The end user
dashboard provides a way for the end users to actually use and converse with the
bot.

(c) A WebSocket endpoint that connects with the expert user dashboard. This dash-
board provides an intuitive way for the expert user to improve inappropriate chatbot
responses based on their domain knowledge if required.

The overall flow captured within the WOz middleware is as follows -

(a) Once the end user gets connected to the end-user dashboard. The user essentially
gets connected to a conversational agent through the WOz middleware. From the
end-user dashboard, a user can perform actual conversations with a bot. When-
ever a user sends any query/question, that request will come to the WebSocket
connection at WOz middleware. The middleware simply routes the user request
to a Rasa conversational agent over the RESTful channel.

(b) On receiving a response from the Rasa over the Rest channel instead of directly
forwarding the response to an end user, the system checks if there is any expert user
available at this time. If so, the system will forward the original user message along
with the original response of the bot to the expert dashboard over a WebSocket
connection.

(c) On the expert user dashboard, the expert user will be able to see the original user
message along with the chatbot response. This allows domain experts to use their
domain knowledge to directly change/edit inaccurate chatbot responses. Once
changed/edited an expert user can approve the response which will be sent back
to the WOz middleware over the same WebSocket connection.

(d) In case if the original bot response has been changed/altered (which is identified in
Wizard dashboard using simple edit events in Handsontable JavaScript API (59))
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the WOz middleware will capture the original message from the user, a response
from the bot along with a changed/edited response from the domain expert into
the systems knowledge base (SQLite database)7. This captured data is in turn
used for retraining the bot. This is also recorded in order to calculate number of
bot responses altered by the expert user which has been used as intrinsic criteria
for evaluating the system.

(e) After the inputs from domain experts, the final response is forwarded to the end
user dashboard.

2. End user Interface
The end user interface allows users to interact with a conversational agent through a
chat interface. This has been implemented using a Bootstrap framework 8. As shown
in figure 3.6 interface initially gives an overview of the scope of the conversation agent
to a user. From here user can initiate a conversation with an agent by clicking on "Chat
With Assistant" button. Figure 3.7 shows the chat interface. The interface allows the
user to exit the conversation at any time. This interface forwards user queries to and
receives a response from a Wizard-of-Oz middleware through a WebSocket channel. As
shown in figure 3.8 at end of the conversation with a user, this interface also records
feedback from the user about the overall chat experience and the quality of response
which has been used for the evaluation of effectiveness of the proposed system.

Figure 3.6: User Interface Landing Page

3. Wizard Interface
The Wizard/Expert user interface allows domain experts to get connected with a system
and to act as a wizard. The Bootstrap framework and JavaScript package known as
Handsontable (59) have been used to define an intuitive interface that expert users can
use to improve the responses from the bot using their domain knowledge. This interface
is connected with Wizard of Oz middleware through a WebSocket channel. Whenever a

7https://www.sqlite.org/index.html
8https://getbootstrap.com/
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Figure 3.7: Chat Interface

Figure 3.8: User Feedback Page

user message is received, it is first forwarded to Rasa core (48) agent to get the original
response. Upon receiving the response from the agent instead of directly transferring it
to the end-user, middleware forwards the original message along with the response of the
bot to this dashboard over a WebSocket channel. As shown in figure 3.9 this dashboard

populates this data in a simple Handsontable spreadsheet/table. Further figure shows
how easily this interface allows the expert users to modify the response from the bot
if required. Once modified the expert users can click on the "Approve" checkbox as

23



shown in so that the approved response is sent back to the end user as shown in figure
3.11 and 3.12 respectively. The UI keeps track of the responses changed/altered by an
expert user through a “afterChange” event hook in Handsontable JavaScript API. This
is used to keep track of a number of times an expert user has to modify the original
bot response which is being used as one of the intrinsic measures for the evaluation of
this system.

Figure 3.9: Expert Dashboard showing User message along with Bot Response.

Figure 3.10: Editable Bot Response

Figure 3.11: Expert User Response Approval Functionality

4. Rasa Open Source
Rasa is a popular open-source conversational framework which has been used to develop
the conversational agent (48). There are two main components of the Rasa open-source
framework which are as follows -

(a) Rasa NLU:
Rasa Natural Language Understanding (NLU) (60) engine is a crux of the Rasa
framework which provides a way to extract a meaning or intent within the messages
from the end user so that conversational agent can understand and act upon it.
The Rasa NLU internally uses the machine learning libraries like TensorFlow, Spacy
and it provides lot of extension hook points in order to configure and customise the
NLU pipeline according to the dataset. The configurations of different parameters
and hyperparameters used is explained in details in section 3.2.

(b) Rasa Dialog Management:
Rasa Dialog management is a machine learning based module within Rasa core
which is used to select the appropriate action/response based on the user message
and dialog context.

The Rasa open source is connected with a Rasa X (31) instance and it forwards all the
conversations (conversation events) to a Rasa X through an event broker (12).
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Figure 3.12: User Getting Back Approved Response.

5. Rasa X
Rasa X is essentially a browser-based tool that layers on top of the Rasa open source
(12). This tool is best suited for the Conversation Driven Design suggested by the
proposed system as it allows to records the entire conversation history of the Rasa
agent. Further it allows to sort, filter and analyse these interactions. Rasa X allows an
efficient and intuitive way to add and/or correct recorded utterances and responses to
the training data that can be used to retrain the agent (31). The conversational data
collected from the actual user interactions hence can be use to -

• Identify which intents the bot identifies successfully and/or unsuccessfully.

• Improve the assistant response to the intents.

The communication between Rasa Open Source and Rasa X is captured in figure 3.13.
As shown in figure 3.13 Event Broker bridges the communication between Rasa and
Rasa X. It uses event driven publisher-subscriber architecture to forward conversation
(conversation events) from Rasa Core to Rasa X (12). So, Event broker receives the
messages from Rasa core which acts as a producer and then publishes to message
queue within Rasa X acting as a subscriber. Rasa X persist these conversation events in
SQLite database which can be letter analysed as described earlier through an intuitive
UI provided by Rasa X.
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Figure 3.13: Communication Between Rasa Core And Rasa X.

6. Data Cleaning, Paraphrasing and Agent Retraining:
WOz Middleware records the conversation history between the end user and a conver-
sational agent along with the inputs from an expert user. Within each conversation all
the responses which are changed/edited by the expert users gets recorded in SQLite
database along with the conversation id, original user message and original response
from the bot. After each experimental session recorded data is then use to manually
retrain the bot through Rasa X. The overall process adopted is as follows -

(a) The changed/edited response recorded are then cleaned using similar data cleaning
methods described in section 3.1.2.

(b) The original user message is expanded using paraphrasing as described in section
3.1.3. This helps to get a variety of ways users can express a particular intent
(query) and helps to augment the training data.

(c) Rasa X conversation inbox is then utilised in order to manually correct and/or add
the data to retrain the bot. As shown in fig the Rasa X provides a conversation
inbox to view all the conversations with the end user. Within each conversation
we can view the predicted intents and actions(response) along with the confidence
level. This enables to analyse the how successfully bot identifies the particular
intent and corresponding response.

(d) Within this conversation inbox Rasa X provides different types of filters to find
out the relevant conversation. In this case conversations are filtered based on
conversation ID’s recorded earlier as shown in figure 3.14. For each recorded user
message within the particular conversation following process is followed -

• Check the predicted intent of the user message. If predicted intent is correct,
only the response is changed/edited according to the input provided by the
end user.

• If predicted intent is incorrect, it is checked if the user query matches with
any other intent within a training corpus. If it is, the intent is corrected using
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the conversational UI as shown in figure 3.15.
In the figure 3.15 it can be observed that within the conversation the user
is asking about any casualties in fire incidence but the agent identifies it
incorrectly giving a response about the cause of the fire. Rasa x provides an
easy interface to correct such misclassification as highlighted in figure 3.15
and store the corrected data in a training corpus.

Figure 3.14: Reviewing Conversations Based on Conversation ID.

Figure 3.15: Correcting Misclassified Intent In Rasa X.

• If the user query results in a way does not correspond to any of the existing
intent, a user message along with the other paraphrased sentences are added
as utterances of the new intent.

After following the above process for all the recorded messages in all the conversations
within a particular experimental session , agent is retrained. All the results of the
training process are recorded and are used for the evaluation of the effectiveness of the
the conversational agent at the end of each experimental iteration.
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Chapter 4

Evaluation

This chapter discusses the experimental results which are used to evaluate the proposed system
based on different factors.

4.1 Wizard Of Oz Experiment

The efficacy of the proposed system has been evaluated by performing the Wizard of Oz
experiment on real users. Participants were invited to take part in this experiment, as a part
of which they were required to interact with a conversational bot. The participants were
asked to connect to an end user interface described in the section through which they can
converse with a bot. During the experiment, users were unaware of the involvement of expert
users.

Historians involved in project Beyond 2022 were asked to perform the role of the Wizard in this
experiment. The expert users would connect to a system through an expert user dashboard
allowing them to change/improve the bot response.

The experiment was conducted on a total of 10 participants over 3 sessions. The explicit
user feedback from each of the sessions is analyzed separately. Also, the conversation data
captured in each session has been used to retrain the conversation agent and measure its
performance.

4.2 Evaluating User Feedback

Both explicit, as well as implicit mechanisms were used to capture the feedback of end users
as well as expert users involved in the experiment. Some of the evaluation criteria are based
on research (61) which standardizes different factors which can be used to evaluate any
conversational system.

1. Explcit Feedback
As at the end of the conversation with an agent, end users were asked to submit small
feedback in terms of the number of stars on a scale of 1-5 regarding the following
factors-
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• Overall chat experience -
The end users were asked to give their feedback about how good their overall
experience was while conversing with a bot. This measure helped analyze the
overall performance of the bot in terms of user engagement.

• Quality of response -
The end users were asked to give their feedback about the quality of responses
from the agent. This measure helped to analyze the quality of the response from
the bot and iterative improvement in the response to satisfy the information need
of the users.

Similarly, historians or expert user was asked to give feedback in terms of rating
on a scale of 1-5 about the quality of response from the agent.

2. Implicit Feedback
As described in section 3, all edit events on the expert user dashboard were captured
to keep internal track of the number of times an expert user had to change/modify the
original bot response allowing to measure and analyze the overall response improvement
of the bot.

Table 4.1 shows the result of feedback received from the end users after each experimental
session conducted. Similarly table 4.2 shows the explicit feedback from the expert users as
well as implicit feedback captured by the system.

Table 4.1: End User Feedback on scale of 1-5 Stars

Average Rating for
Chat Experience

Average Rating for
Response Quality

Session 1 2.8 4
Session 2 3.5 4
Session 3 4 5

Table 4.2: Expert User Feedback on scale of 1-5 Stars Along with Implicit Feedback

Average Rating for
Response Quality

Percentage Of Edited
Response

Session 1 1 95%
Session 2 3 65%
Session 3 4 48%

The clear co-relation can be observed in the collected feedback from the end users as well as
expert users. It can be observed that in the first session of the experiment implicit feedback
indicates that the expert user had to change/modify almost about 95% of the responses from
the bot. This can be also confirmed from the accuracy measures of the conversation agent
presented which indicates that the agent was not able to handle most of the user queries. As
a result of this, the overall time the user had to wait for the bot response resulted in a lower
rating for the overall chat experience from the user.

Although the average rating for the response quality from the end user is good as the response
was anyway modified by an expert user based on the domain knowledge.
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But it can be seen that as the conversation data captured from the earlier session was used
to retrain the bot, the percentage of bot responses expert users had to modify gradually
decreases further improving the overall chat experience of the end users and keeping them
more engaged. This can be observed from the increased rating from the user for the overall
experience in subsequent experimental sessions.

4.3 Evaluating Performance of Conversational Agent

One of the main objectives of the proposed system is to iteratively improve the conversa-
tional agent to make it more engaging and human-like. Therefore it is essential to evaluate
the performance improvement of the conversational agent throughout each stage of the con-
ducted experiment. There are different parameters being considered to gauge the performance
improvements of a conversational agent the main parameters considered are as follows -

1. Natural Langauge Understanding(NLU) model Metrics
The conversational data captured in each of the experimental sessions were used for
retraining the bot. The performance of the intent classifier and Response selection model
is being evaluated in terms of different metrics like accuracy, precision, and F1-score of
the model. The results presented reflects how the performance of the conversational
agent in terms of user query handling and response generation iteratively evolved through
each experimental session highlighting the effectiveness of the proposed method. All
these metrics were measured using the Rasa Command Line interface tools (57) which
enable testing models and generate performance metrics reports. All of these metrics
were obtained by testing these models using a 5-fold cross-validation method.

2. Conversational Agent Corpus Expansion Metrics
Various metrics are being used to analyze how the proposed method helps to iteratively
capture the training corpus of the bot and in a way increase the scope of the queries a
bot can handle. These include metrics like the number of intents after each experimental
phase and the average number of utterances per intent.

Table 4.3 presents the results evaluation results for NLU model performance. Table 4.4
presents results evaluating corpus expansion of the agent.

It can be observed from the evaluation results that experimental sessions allowed to itera-
tively capture varied user queries/intents through actual user interaction this also resulted in
improvement of NLP models within the conversational agent. In table 4.4, it can be observed
that the number of unique intents within a conversational agent increased over time resulting
in an overall broadening of the overall scope of an agent.

Also results in table 4.3 shows that with the increase in quality and quantity of training corpus
(including the user utterance and ideal bot response) at end of each experimental session, the
performance metrics of both intent classifier and response selection model within the Rasa
improved significantly.
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Table 4.3: Intent and Response Selection Model metrics at the end of each experimental
phase

Experiment Phase Model Accuracy Precision F1-score

Baseline Bot Intent Classifier 0.7210 0.7001 0.7101
Response Selector 0.7733 0.7748 0.7735

Session 1 Intent Classifier 0.8335 0.8495 0.8490
Response Selector 0.8567 0.8572 0.8534

Session 2 Intent Classifier 0.9006 0.9149 0.9140
Response Selector 0.9279 0.9220 0.9216

Session 3 Intent Classifier 0.9161 0.9288 0.9160
Response Selector 0.9596 0.9620 0.9590

Table 4.4: Number of Intents at the end of each experimental phase

Experimental
Phase Number Of Intents Total Number Of

Utterances
Average Utterances

Per Intent
Baseline Bot 20 300 15.00

Session 1 32 796 24.87
Session 2 40 932 23.30
Session 3 44 1040 23.63

Thus all the evaluation results presented in this chapter reflect the effectiveness of the proposed
system to iteratively improve the scope and performance of the conversational agent making
it adapt and learn from actual user conversations throughout its development lifecycle.
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Chapter 5

Conclusion

This chapter concludes this report. It gives final remarks on the proposed system in the work
and assesses it against the research objectives stipulated. It also discusses the limitations of
the proposed work and possibilities of extension and future work.

5.1 Research Objective Assessment

Following is the overall review of this work in terms of research objectives as described in
section 1.3.

1. Developing a Baseline Bot

Research Objective - To design and implement a baseline Q&A agent/bot using an
open source chat framework.

This work has successfully implemented a baseline Q&A chatbot for answering the user
queries related to a specific aspect of the project Beyond 2022. The work uses Rasa
open source framework to build and implement the baseline bot. This work also defines
efficient data cleaning and data augmentation methods(Section 3.1.2 and 3.1.3) which
are used to improve both the quality and quantity of the seed training data. Further,
it also defines how these components can be reused across the development cycle of
the agent. This work also defines and reasons for different Natural language processing
algorithms and models (Section 3.2.2) that can be leveraged to build the Q&A type bot
with high performance. This can be easily extended across multiple domains.

2. Implementing a system for Conducting Wizard of Oz Experiment

Research Objective - To design a platform for conducting a Wizard of Oz based ex-
periment to simultaneously gather the new training data from the end user and improve
the responses of the bot based on inputs of an expert user (wizard).

As described in section 3.5 system proposed by this work modifies the traditional Wizard
of Oz technique. The proposed system is designed in such a way that allows histori-
ans(Wizard) to act as a mediator between the end users and a conversational agent,
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allowing them to change and improve the actual responses from the agent based on the
domain knowledge. It also allows the system at the same time to incrementally capture
the additional training corpus which can be used along with the modified responses to
retrain the agent to make it more efficient. The design also allows using WOz experi-
ment to test the performance of the bot with real-time conversations with end users.
Both the user interface (2) as well as expert user interfaces (3) designed within this
work are very simple and intuitive allowing users to easily participate in such experiments
without demanding any technical skills. The overall design of the system is highly ex-
tensible so that it can be re-used to perform the Wizard Of Oz experiment to test and
evaluate the conversational agents in any domain.

3. Methodology to store and use conversations for iterative improvement

Research Objective - To design a methodology to track the end-user conversations
and use them along with expert user inputs for iterative training of the agent.

The work uses Conversation Driven Developement startegy (25) in order to leverage
the re al time conversation to mine the training data from it. The work makes use of
tools like Rasa X (12, 31) which are internally designed to support such development
philosophy. In addition it uses simple mechanisms on the proposed wizard interface to
track the conversations with the user along with the inputs from the expert users which
helps to improve the responses from the agent. All the user message along with the
inputs from the expert users are stored in efficient and lightweight tracker store from
where they can be easily exported for bot retraining. This work also defines a standard
procedure as described in section 6 to use these stored conversations in order to retrain
the agent.

4. Proposed System Evaluation

Research Objective - To evaluate the proposed system through the explicit feedback
provided by the end users based on their interaction with the agent, as well as implicit
feedback measures.

This work uses simple explicit as well as an implicit feedback mechanism to gauge the
performance and effectiveness of the system. It uses explicit ratings provided by end
users as well as an expert user to analyze how the responses from the bot improve
over iteratively. It also uses some of the implicit measures like NLU model performance
metrics, the size of the training data corpus etc. to evaluate how the proposed system
helps the developer of the agents to improve the accuracy and performance of the
conversational agent using actual user interactions. All these evaluation measures have
been applied in the actual experimental settings defined in the chapter 4 to obtain the
results further encouraging the adoption of the proposed system.
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5.2 Remarks

• This works proposes a methodology based on the concept of Conversation-Driven De-
velopment (CDD) to iteratively design the conversational agent and to make it learn
and adapt throughout its lifecycle based on actual user interactions.

• The proposed system design makes use of the Wizard of Oz technique but it modifies
the traditional technique in such a way that allows the developers of the agent to gather
the training corpus and to improve the bot responses within the same setting during
the interactions.

• Along with improving agent response the proposed system also allows developer of
agents to iteratively broaden the scope of the it allowing it handle varied types of queries.

• The design of the proposed system is very simple and intuitive making it very extensible
to use for the development of the conversational agent across numerous domains.

• The WOz middleware architecture proposed makes this system easy and economical to
adopt. Also, it works on generic REST and Webhook protocols so that it can be easily
integrated with any chatbot or NLP framework.

• This technique will allow the developers of conversational agents to test the agent in
the early development phase through actual interaction which can give valuable insight
in terms of the efficiency of the agent at a very early stage. Also, it allows involving
the domain expert at an early stage to improve its responses right from the nascent
development stage.

5.3 Future Scope

5.3.1 Limitations

• The proposed approach is evaluated on a total of 10 users hence although the evalua-
tion results are promising the efficiency of the system can be evaluated by performing
the experiment on a large number of users and may be on the conversation agents in
disparate domains.

• This system fully relies on an expert user to instantaneously provide appropriate and
reliable answers to a user query. But the even expert users would not know the exact
response to give to a user query at a particular time. Also, this work does not provide
any means to suggest or to help the expert users to build responses.

• The experiment conducted as part of this research only involved one expert, and a single
user may not be able to handle multiple users’ queries efficiently this can be visible in
the experimental results that the delay caused by this indirectly lowers the overall user
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experience ratings/feedback. Hence the measure of the effectiveness of this method on
overall user experience may not reliable which further can be tested by the extending
system to multiple expert users.

• The proposed system does not address and specifies the way the system can be ex-
tended to involve multiple expert users. Also if multiple expert users are involved how
coordination in response generation between those users can be handled.

5.3.2 Future Avenues

Implementing Response Review Dashboard

The current work allows to automatically capture all the user messages and input from the
expert users (wizards) in form of modification in bot response. However, responses from the
expert users may not be accurate or may contain some noisy text/data. In some cases, even
expert users may not be able to give the appropriate answers to a query. To handle such
scenarios currently, the developers adopting this system will have to manually review each of
the responses in the database and filter out them.

Instead to help developers easily analyze and filter out response improvements a simple dash-
board can be designed to provide developers of the agent with an easy interface to filter out
responses that cannot be used in the retraining of the agent. This dashboard can provide
a simple user interface that would allow developers to review the responses collected from
the conversation data and in case require modify or delete it. Some simple tools like (62)
can be used to automatically delete the responses that contain sensitive words or have a high
negative sentiment score. This will be especially useful to avoid the issues in the training
agents directly on conversation history as visible in the case of some famous conversational
agents like Microsoft’s Tay (38).

Extending system To A Multi-Wizard Setup

The proposed system design only allows a single expert user to connect with the system. So
in case when multiple users get connected to a system simultaneously, they would experience
extra dealy from a system as a single expert user may not be able to handle multiple concurrent
user queries. This puts a limit on the number of concurrent end users who can connect to a
system. Instead, this system can be extended to support the involvement of multiple expert
users which will enable to concurrently handle a large number of end-user requests. This will
further enable to conduct this experiment on a larger scale allowing to capture a huge number
of conversations.

Contextual Query Handling

The chatbot response improvement technique suggested here is best suitable for the free-
flowing Q&A type agent. However, in some use cases, the agent is required to generate
user-specific responses based on the context within a dialog. Hence the modification will be
required to adopt the proposed system for the improvement of contextual bots.
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Adopting Expert Systems

In a typical scenario, a wizard or expert user may or may not know the exact answer to a
user’s queries according at a particular time. In such cases, this architecture can be extended
by including some sort of expert database system or domain-specific Knowledge Graphs which
can be used to suggest possible responses to an expert user.

Extending System Over Multiple Channels

The design of the proposed system is best suited for traditional text-based agents/bots.
However, with the advancement in the field of AI and natural language understanding, voice-
based bots/agents are also getting prevalent. Hence current system design can be extended
to support the iterative design of the conversational agents over different channels including
voice-based agents/bots.
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