
Association of Cigarette Smoking with the Relapse

of Anti-neutrophil Cytoplasmic Antibody Associated

Vasculitis: a survival analysis.

Bo Peng

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Intelligent Systems)

Supervisor: James Ng

August 2022



Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Bo Peng

August 19, 2022



Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Bo Peng

August 19, 2022



Association of Cigarette Smoking with the Relapse

of Anti-neutrophil Cytoplasmic Antibody Associated

Vasculitis: a survival analysis.

Bo Peng, Master of Science in Computer Science

University of Dublin, Trinity College, 2022

Supervisor: James Ng

Anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAVs) is a group
of diseases involving severe, systemic, small-vessel vasculitis. The disease itself is ex-
tremely dangerous and is associated with a high rate of recurrence. This paper therefore
examines the available research on ANCA-AVV recurrence and identifies smoking as a
potential influence on ANCA-AAV recurrence. This paper examines whether smoking
affects relapse through survival analysis including Kaplan-Meier curve, cox regression,
accelerated failure time model. It was concluded that smoking was a significant factor in
the relapse of ANCA-AVV patients.
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Chapter 1

Introduction

1.1 Background

The anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) are

a group of disorders involving severe, systemic, small-vessel vasculitis(AR et al. (2020))

which includes granulomatosis with polyangiitis (GPA, Wegener’s granulomatosis), micro-

scopic polyangiitis (MPA), eosinophilic granulomatosis with polyangiitis (EGPA, Churg-

Strauss syndrome) and renal-limited vasculitis (RLV). Each has unique clinical character-

istics including the lungs, kidneys, ear, nose, and throat (ENT), skin, heart, and central

and peripheral neurological systems.(Mercuzot and Simon Letertre (2021)).Not just due

to the disease or infection, but also due to comorbidities, especially cardiovascular disease,

patients with AAV continue to have a mortality rate that is 2.7 times that of the gen-

eral population. Comorbidities are additional disabling diseases, especially cardiovascular

disease, that co-occur or co-exist with AAV. Comorbidities can influence morbidity and

mortality, decrease quality of life (QoL), and raise the complexity and cost of AAV care.

Having comorbidities at the time of diagnosis increases mortality, and comorbidities might

impact a patient’s quality of life even when remission is established. This has become an

important finding in AAV patient research(Holle and Gross (2013)).

Anti-neutrophil cytoplasmic antibody (ANCA) -associated vasculitis (AAV) is a rela-

tively rare autoimmune disease that affects about 20 people per million, and the prevalence

is now about 200 per million as current improvements in treatment can extend the life

expectancy of those affected(Karangizi and Harper (2021)). The disease can occur at

any age, and even young children can be at risk, but it is most common in older people

(peaking at 55-70 years of age) and is equally prevalent in men and women (Karangizi

and Harper (2021)). They are uncommon but severe diseases with a variable clinical and

serological presentation across geographic regions. (Paramalingam et al. (2019)). Prompt

identification and treatment are crucial to limit the incidence of permanent scars and

1
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fatalities caused by vasculitis. Due to the disease’s various, non-specific manifestations,

there may be considerable diagnostic delays(Karangizi and Harper (2021)).

The treatment of AAV is based on the concept of a combination remission induction

and maintenance strategy and is stage- and activity-specific (Holle and Gross (2013)).

The current treatment plan for AAV aims to maximise the rate of induction and main-

tenance of remission while reducing the accumulation of irreversible damage and side

effects(Jones and Hiemstra (2019)). Standard treatment includes induction of remission

with high-dose glucocorticoids and high-dose oral or intravenous cyclophosphamide for

3 to 6 months, followed by maintenance of remission with azathioprine or methotrexate

while the glucocorticoids are gradually lowered and removed. The optimum duration of

maintenance treatment is not known and practice differs widely between centres. The

optimum duration of maintenance treatment is not known and practice differs widely be-

tween centres(Berden and Göçeroğlu (2012). The figure 1.1 shows the ANCA-associated

vasculitis and treatment procedure.

Figure 1.1: ANCA-associated vasculitis and treatment procedure(A and
Anders (2020))

Modern treatments have turned ANCA-related vasculitis from a life-threatening dis-

order to a chronic condition prone to relapse throughout a patient’s lifespan(Berden and

Göçeroğlu (2012)). Using immunosuppression has increased the 5-year survival rate to

80%. After treatment, these diseases tend to follow a chronic course of relapse-remission,

with 50% of patients relapsing within five years of diagnosis(Karangizi and Harper (2021)).

A 5-year follow-up of 107 patients in a major observational research revealed that approx-

imately 50 percent of those treated would have experienced one or more relapses(Berden
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and Göçeroğlu (2012)). Clinical relapses are frequent in anti-neutrophil cytoplasm anti-

body (ANCA)–associated vasculitis, demanding repeated immunosuppressive treatments

and elevating the risk of serious adverse effects(Salama (2019)). Certain susceptibility

factors for relapse, such as the clinical features of protease-3-ANCA and granulomatous

disease with polyangiitis, have been identified. However, little progress has been made

in elucidating the pathophysiological factors for relapse and why they vary significantly

between patients with different ANCA subtypes. Because clinically and immunologi-

cally clear disease relapses are evident, modest immune disease activity is frequently

ignored(Salama (2019)). Modern induction regimens are generally quite effective at in-

ducing illness remission. However, maintaining remission depends on the drug employed

and the maintenance regimen to which patients are shifted. This suggests that specific

medications may modulate certain components of the immune response or that they may

do so to varying degrees. Various cohort studies and long-term follow-up of international

trials have indicated that relapse rates at 5 years range from 21% to 89%, depending on

the induction and maintenance regimens used(McDermott and Xiaoqing Fu (2020)).

A multivariate Cox proportional hazards model indicated an association between cur-

rent smoking and flare. A correlation was also observed between relapse risk and cu-

mulative pack-years of smoking. Cigarette smoking is a major, dose-related risk factor

for ANCA-AAV flare activities. Cessation of smoking should be acknowledged as a vi-

able therapy option for ANCA-AAV patients(Yamaguchi and Ando (2018)). In a large

case-control study of patients with AAV and matched controls from the same health care

system, smoking history was strongly associated with an elevated risk of getting AAV. In

addition, a dose-response relationship was discovered, in which the cumulative amount of

smoking increased the likelihood of developing AAV. This connection was exceptionally

robust in MPO-ANCA-positive individuals and remained in subgroups of patients with

renal, head/neck, and lung disease. Multiple sensitivity analyses confirm the findings to

be reliable(McDermott and Xiaoqing Fu (2020)).

1.2 Motivation of this research

Although modern treatments have transformed ANCA-associated vasculitis from a life-

threatening disease into a chronic condition prone to recurrence throughout a patient’s

lifetime (Berden and Göçeroğlu (2012)), this has allowed patients to survive longer. Im-

munosuppressive drugs have increased the 5-year survival rate to 80%. However, after

treatment, these diseases tend to follow a chronic course of relapse-remission, with 50%

of patients relapsing within five years of diagnosis (Karangizi and Harper (2021)). This

recurrence has a significant negative impact on the long-term survival of patients with
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ANCA-AAV, and if research could be done to identify factors that influence the recur-

rence of ANCA-associated vasculitis so that earlier interventions could be made, this could

lead to a significant improvement in survival, a reduction in the likelihood of subsequent

suffering and an improvement in the quality of life of patients with the disease.

From the above background, a summary can be found that the Anti-neutrophil cy-

toplasm antibody (ANCA) associated vasculits (AAV) disease itself is extremely organ

and life threatening and has a high recurrence rate. The recurrence of the disease is not

only influenced by the treatment, but also by the patient’s own state and the surrounding

environment. Therefore, the risk and suffering of anti-neutrophil cytoplasmic antibody

(ANCA)-associated vasculitis relapse can be minimised if it is prevented in advance.

After collating and summarising the existing research in this area, there is currently

very little information in the field about whether smoking induces relapse in Anti-neutrophil

cytoplasm antibody (ANCA) associated vasculits patients. It has been shown that there

is an association between smoking and the development of ANCA-AAV, and it has also

been suggested that smoking may be associated with the recurrence of ANCA-AAV. Be-

cause of the high risk of ANCA-AAV and the high recurrence rate, it would be useful

to analyse the association between smoking and ANCA-AAV recurrence through survival

analysis and, if there is an association, to advise patients to stop smoking or not to smoke,

thereby reducing the recurrence rate and increasing the quality of life of the patient.

As a widely used statistical method in disease research, survival analysis has produced

many good results in disease research. However, the number of studies using survival

analysis as a research method in the area of ANCA-AAV is currently low. Therefore

this is a direction and topic worth exploring. This study therefore seeks to fill a gap in

that research by exploring whether smoking was an influential factor in the relapse of

ANCA-AAV patients through survival analysis, and adds examples of survival analysis

in this field of study, aiming to identify the association between smoking and ANCA-

AAV recurrence and to give patients preventive advice to reduce the recurrence rate and

enhance their quality of life.

1.3 Dissertation Overview

The paper is structured as follows.

• Chapter 2 reviews the current literature and summarises current research in the

field related to factors associated vasculitis recurrence and survival analysis models

in relation to disease recurrence as well as disease related aspects, including some

comparisons of Cox regression models and Accelerated Failure Time models.



Draft of 3:10 am, Friday, August 19, 2022 5

• Chapter 3 presents the datasets used in this study, including the source of this

data and a privacy and ethics statement for the data in this research. As well as a

description of the data and missing statistics. An introduction to the unique type

data associated with survival analysis is also introduced.

• Chapter 4 presents the survival analysis methods, the various models and the asso-

ciated methodology for the Proportional hazard Assumption test used in the study.

• Chapter 5 describes the implementation of the various models for survival analysis

including the Kaplan-Meier, cox regression model and the Accelerated Failure Time

model and the analysis of the model results. A comparative analysis of the model

results was also carried out

• Chapter 6 reflects on the findings of the study and discusses future research direc-

tions.



Chapter 2

Literature Review

This chapter reviews the research findings related to the research questions of this thesis.

The first part presents the relevant research on ANCA-Associated Vasculitis regarding

recurrence factors. The second part presents research on survival analysis in relation to

the disease, particularly in relation to factors influencing disease recurrence.

2.1 Related Work on Relapse of ANCA-Associated

Vasculitis

Although there is no shortage of research on the study of AAV recurrence, there are often

inconsistencies in the results that people come up with. In Catherine King’s study, the

authors note that despite the existence of a number of randomised controlled trials (RCTs)

and observational studies examining clinical, histological, and biochemical predictors of

AAV recurrence, the risk variables revealed by these studies vary.(King and Druce (2021))

No quantitative meta-analysis of these risk factors has been undertaken to far. In

addition, this data has not been practically translated into individualised therapy regimens

based on an individual’s risk of recurrence. Using a systematic review and meta-analysis,

the authors identified risk variables for AAV recurrence. And a model was constructed

to estimate the risk of recurrence. The authors specified a literature search strategy

to restrict studies to identify and quantify independent predictors of AAV recurrence

through further review and full text review of eligible studies using multivariate analysis or

randomised controlled trials with recurrence or sustained remission as the endpoint(King

and Druce (2021)).

Non-compliant studies were excluded following data feature extraction for those that

met the requirements, sensitivity analysis of the data, assessment of quality using the

QUPS tool and discussion by all authors. A meta-analysis of the screened studies was

6
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performed to identify available risk factor data, and Cox regression analysis was applied

to test the possible score combinations of combined risk factors.The final conclusion was

that Anti-PR3 positive, a lower serum creatinine level, and CVS involvement at the time

of diagnosis are all associated with an increased A combination of these risk variables can

be utilised to predict an individualised risk of relapse(King and Druce (2021)).

In Neil Basu’s paper, Neil Basu points out that the income of MPA and GPA pa-

tients has shifted in recent decades, although premature death is still evident compared

to the general population. Basu explains that the change in mortality from vasculitis is

largely attributable to cyclophosphamide: an important drug but also a serious compli-

cation, such as infections and cancer. As a result, a number of multicentre randomised

controlled trials have evaluated more judicious use of cyclophosphamide, including the piv-

otal CYCAZERAM study, in which long-term cyclophosphamide treatment was replaced

by azathioprine.The French WEGENT trial showed that methotrexate and azathioprine

were similarly effective in maintaining relapse-free survival in AAV, while the EUVAS IM-

PROVE trial showed that azathioprine was superior to mycophenolic acid in preventing

relapse(Basu (2021)).This means that the choice of treatment does make a difference to

the recurrence of AAV, as some treatments may have a suppressive effect, while others

may instead induce recurrence.

In addition to treatment modalities and the characteristics of the disease itself, studies

have shown that environmental exposures such as smoking also contribute to a higher

recurrence rate of AAV disease. In Makoto Yamaguchi’s study, the authors summarise

the current research and so far environmental factors, such as silica exposure, infections

(especially Staphylococcus aureus) and drug exposure, are considered to play a potentially

important role in the development of AAV.

In several cohort studies, smoking has also been considered an environmental com-

ponent that influences the onset of autoimmune disorders. However, there are currently

few research addressing the impacts of smoking on AAV. In addition, previous research

has not examined the impact of environmental factors, like as smoking, on the recurrence

of AAV. The authors examined microscopic polyangiitis (MPA) as a study to see if a

smoking history is an independent risk factor for the recurrence of MPA and if this risk

is dose-dependent. The Wilcoxon rank sum test or Fisher’s exact test was utilised to

analyse differences in clinical features between never smokers and current/former smok-

ers(Yamaguchi and Ando (2018)).

To identify relevant factors independently linked with each outcome, log-rank tests

and/or univariate and multivariate Cox proportional risk models were utilised. The

findings suggest that differences in the intensity of immunosuppressive therapy between

smokers and nonsmokers did not influence the occurrence of relapse, and that smoking
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increased the risk of relapse in Japanese MPA patients in a dose-dependent manner, even

after adjusting for clinically relevant factors. In addition to smoking status at baseline,

the authors explain that cumulative smoking history is an important predictor of MPA

relapse. This emphasises the necessity of smoking cessation in the treatment of MPA

patients(Yamaguchi and Ando (2018)).

Greg McDermott, MD, points out that the studies that have been done on the rela-

tionship between smoking and AAV risk have produced conflicting results. Some have

found no association, others have documented a non-statistically significant trend suggest-

ing an association, and still others have reported a potential protective effect of smok-

ing.However, these studies have been limited by small sample sizes, inconsistent use of

reference groups, and a focus on patients with polyangiitis granulomatosa (GPA) who are

usually PR3-ANCA positive(McDermott and Xiaoqing Fu (2020)).

The authors show that to date, from their findings, there are no large case-control

studies investigating the relationship between smoking and AAV. Or to examine dif-

ferences in these relationships depending on the type of ANCA.The authors obtained

enough cases from the Partners inception AAV cohort, Controls were obtained from the

Partners HealthCare Biobank, and grouped them according to patient smoking status

into Never smoking, former smoking and For those who were current or past smokers,

cumulative smoking exposure in pack-years was determined by calculating the product of

the number of years of smoking and the average number of packs smoked per day. The

authors found through a statistical experimental study that a higher proportion of for-

mer smokers (current or former) were found among AAV patients compared to controls,

and that smoking was associated with increased odds of AAV. When stratified by smok-

ing status, both former and current smokers were more likely to have AAV than never

smokers. And the authors also observed a strong dose-response relationship, whereby

the odds of AAV increased with increasing pack years of exposure. Patients with the

greatest cumulative number of years of smoking had the greatest odds of developing AAV

compared to never-smokers. And the results of this study remained robust even in mul-

tiple sensitivity analyses, an association that was particularly strong for patients with

MPO-ANCA(McDermott and Xiaoqing Fu (2020)).

2.2 Related Work of Application of Survival Analysis

in Diseases Research

Current studies using survival analysis to examine factors influencing AAV disease recur-

rence are very limited. However, the use of survival analysis in relapse studies and in
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disease-related studies is relatively widespread and applicable.This study is therefore also

providing a viable option for disease research in AAV, and may provide some informative

suggestions and assistance in determining the appropriate treatment options for patients.

In J . C . Carter’s study for anorexia nervosa (AN), the authors suggest that knowledge

of factors predicting relapse in anorexia nervosa (AN) is needed to develop effective relapse

prevention treatments and may also advance the understanding of the psychopathology

of AN. The authors used Kaplan-Meier survival analysis and Cox regression on data from

51 patients to examine the rate, timing and prediction of relapse, and Cox proportional

hazards regression models were used to examine the effect of continuous predictor variables

on the hazard function.Through the study it was found that among AN patients who

remained well in the first year after discharge, there was still a significant risk of relapse.

A number of variables were shown to be associated with an increased risk of relapse.

These findings have implications for the initial treatment of AN and the development of

relapse prevention strategies(CARTER and BLACKMORE (2004)).

In the study of conditional survival of patients after frontline therapy for diffuse large

B-cell lymphoma (DLBCL), the authors used the Kaplan-Meier method to generate sur-

vival curves for different EFS time points (12, 24, 36, 48 and 60 months) for patient

survival curves. The study used competing risk models to calculate the 5-year cumulative

incidence of lymphoma death(Assouline and Shen Li (2020)).

In the study, authors NingNing, Fan noted that epidemiologically based studies have

shown that there are ethnic differences in the clinical presentation and ANCA specificity of

AAV, with PR3-ANCA and GPA being the most common in Western populations, while

MPO-ANCA and MPA predominate in East Asian countries. The search for biomarkers

associated with disease activity and prognosis can help in the clinical management and

treatment of AAV. Therefore, in order to identify biomarkers associated with disease

activity and prognosis, the authors collected data on clinical indicators at the initial visit

and at follow-up through an electronic medical record system. A composite endpoint event

was defined as death or end-stage renal disease, and patients were divided into endpoint

and non-endpoint groups based on whether they reached the endpoint. The data were

then analysed using Kaplan-Meier curves for survival analysis and Cox risk proportional

regression models for risk factors affecting renal prognosis in AAV in the study(Ningning

(2021)).

In Paul A. Monach’s study, he proposed that anti-neutrophil cytoplasmic antibody-

associated vasculitis (AAV) requires improved biomarkers of current disease activity and

prediction of relapse. To be clinically meaningful, biomarkers must have good longitudinal

performance in treated patients and in patients with non-severe relapses. In differentiating

active vasculitis from remission, the predictive power of the marker combinations was
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modelled in order to investigate, adjusting for the effect of treatment on marker levels, the

inclusion of patients in sustained remission and those in exacerbation. The authors used

Cox proportional hazards models to complement the strengths as well as the weaknesses

with other statistical models. In contrast, when predicting AAV relapse, the authors

used the Cox proportional hazards model to determine whether marker concentrations in

remission prior to an episode differed from those in remission not immediately preceding

the episodeMonach and Warner (2022).

After reviewing the above-mentioned studies on the factors influencing ANCA-AAV

relapse and survival analysis in the field of the disease. This study hypothesizes that

smoking may have a potential impact on the recurrence of ANCA-AAV.



Chapter 3

Data Introduction

All the data used in this research is from Rare Kidney Disease Registry and Biobank,

authorised by PARADISE Group HQ. The data contains real clinical data about Irish

vasculitis patients.

3.1 Data privacy protection

Identifiable patient/control data are pseudonymised after recruitment by assigning a study

ID; their consent form with medical record number will be stored in a secure facility at

the local hospital. The pseudonymised data will be uploaded to the eCRF database,

which will be mapped to a dedicated password-protected computer using an IP address.

The database will be protected behind a mainframe and institutional firewall and only

dedicated personnel will have access to it. Coded biological samples are processed and

stored centrally at the RKD Biorepository and archived by the Biorepository Technician

using the industry standard Freezerworks software; only the Biorepository Technician and

Principal Research PI have access to this software(Little (2019)).

The database operates on multiple access levels, with only the Principal Research PI

and Research Nurse having full access to the database and gaining modification rights,

while other members will have limited access, with only upload and read rights; new

access requests will be approved by the Principal Research PI. The registry database

will be shared with the College’s IT service provider as its security and access rights are

managed by them. The database will be backed up regularly on an external third party

server located in Dublin(Little (2019)). This diagram 3.1 shows the flow chart for data

security and access.

In order to protect the privacy of patients contributing to the study, all researchers,

including myself, signed a strict ethics statement which can be found in the appendix.

11
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Figure 3.1: Flow diagram of data security and access (Little (2019))

3.2 Data Description

The primary study data was extracted from a comma-delimited CSV file with 4921*496

data entries. The data contained 642 patients’ personal information including gender, age,

smoking status, etc. and medical information including date of AAV diagnosis, treatment

modality, date of consultation, date of relapse, etc.

The volume of data varies considerably from patient to patient, as a record is generated

for each patient visit, and some patients may be cured and relapse-free after a few visits

for review, while others have recurrent flares.

3.3 Overview of research data

This section describes the data fields used in this study, including data interpretation as

well as data loss cases. Table 3.1 shows a general overview of the data used in the study.

The data on the various treatment modalities of induction were missing, and in order
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Field Name Description Missingness(%)

RDK ID RKD ID 0
Gender gender of patient 0

Age at diagnosis
Age at diagnosis of
AAV

0

Date Of Visit Date Of Visit /
Date of diagnosis Date of diagnosis /
Flare Edit 3 Date of AAV relapse /

smoking
Smoking status (Cur-
rent/Previous/Never)

16

Table 3.1: Data used overview

not to affect other data studies, induction was taken out as a separate subject in the

subsequent study and not added to the multivariate analysis.The maintenance treatment

data field was not included in the study because there was only one data field for whether

or not the treatment was maintenance, no more detailed data on which drug was received,

and the distribution of true and false data for maintenance itself was severely imbalanced.

3.4 Data processing

3.4.1 Survival Time

Survival data (survival times) represent the simplest form of event history data. A survival

time is the amount of time it takes for an event to occur, calculated from a well-defined

starting event. Thus, Event History and Survival Data must describe three fundamental

elements: a time origin, a scale for measuring time, and an event.(Broström (2021))

Survival times are data that quantify the amount of time that has passed since a specific

starting point until the occurrence of a given event during follow-up. This could be the

amount of time that has passed since the beginning of remission or since the diagnosis

of a disease until the individual has passed away. Rarely is the distribution underlying

the data normal, and the data is frequently ’censored’, thus standard statistical methods

cannot be employedBewick and Cheek (2004).

In a statistical examination of such data, the response is the exact time elapsed from

the time of origin to the time of occurrence.Then in practice, it is very difficult to get

a very accurate survival time. For example, in this experiment, the SURVIVAL TIME

would be the date when the patient entered the experiment for observation from the
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time of diagnosis until the patient experienced the first relapse, which is the date of

the event. However, since there is usually an indeterminate length of time between the

onset of relapse and the patient’s voluntary attendance at the hospital, this depends on

the patient’s disease condition and other environmental factors. This factor causes the

measured event date to be later than the actual event date.

The AAV patient’s diagnosis date is used in this study as the starting date of the

patient’s entry into the study. If there is a relapse of the patient’s condition at a subsequent

visit, the date of the relapse is recorded as the date of the event. If the patient did

not relapse, the time of the patient’s last visit was used as the date of the patient’s

‘censoring’/end time in the study. Figure 3.2 shows a flow chart of how the study handles

survival time.

After removing the data with recorded issues, of which the survival time is less than

0, the distribution of the data is plotted. The figure 3.3 shows the distribution of survival

time.

Figure 3.2: Flow chart of survival time
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Figure 3.3: Distribution of survival time

3.4.2 Censoring

Censoring is a type of missing data unique to survival analysis. There exists left censoring

and right censoring. It occurs when the sample or subject is followed to the end of the

investigation, but the event never occurs. It may also be the result of the sample/subject

dropping out of the research for reasons other than death, or another type of loss to follow-

up. When the event has not occurred, it is right-censored. Left censoring is a circumstance

in which the only information known about a event time is that it is less than a specified

value.(Broström (2021)) For instance, a patient’s duration in remission is censored if he

or she is still in remission at the conclusion of the trial. If a patient withdraws from the

study before to the conclusion of the study period, then that patient’s follow-up time is

also considered censored(Bewick and Cheek (2004)). Figure 3.4 shows a sample of right

censoring.

In this study, all data censoring was right-censoring.This means that although a pro-

portion of the AAV patients entered the study, the patients did not experience a relapse

throughout the study recording period until the last recorded visit or they dropped out
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of the study halfway through and may have moved away from Ireland. These patients are

lost to follow up. But we are not sure if they had a flare at the following time, it is possible

that patients may experience a relapse at a subsequent time or remain non-relapsing.

Figure 3.4: Diagram of right- censoring



Chapter 4

Model Introduction

This chapter presents the methods used in the study and the corresponding model pre-

sentations.

4.1 Survival Analysis

Survival analysis is used to analyze the rates of occurrence of events over time, without

assuming the rates are constant(Broström (2021)). The practice of survival analysis uses

rationality to characterise, measure and analyse events to make predictions not only about

survival but also about the ’time-event process’, for example, the length of time until a

state change or event occurs, e.g. from singleness to engagement, from disease onset to

disease remission, from addiction to withdrawal.

Given that life expectancy in genetic, biological, or mechanical terms may be decreased

by sickness, conflict, the environment, or other causes, much of the study in survival

analysis is comparing groups or categories or investigating variables that influence the

survival process.

Clinical trials are frequently used in medical research to evaluate the efficacy of novel

medications or disease treatment approaches. In these types of studies, survival analysis

is frequently used to assess the risk of death or illness recurrence across patients receiving

various medications or treatments. The outcomes of such analysis can also yield relevant

and significant data. Similarly, survival analysis has been utilised in biological studies.

Mathematical biologists have long been interested in evolutionary perspectives on ageing

in human and other animal populations. Using survival analysis as a fundamental research

technique, the life history of a species is demarcated, and their survival processes are

associated with a variety of physical and behavioural characteristics in order to examine

their reaction to their environment(Liu (2012)).

17
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4.2 Basic lifetime functions

When analysing survival data, two time-dependent functions are crucial: the survival

function and the hazard function. Density and cumulative distribution functions are typ-

ically used to describe statistical model characteristics. These routines are not appropriate

for usage with censored or shortened data. The survival and hazard functions are more

appropriate. The definition of the survival function S(t) is the likelihood of living until at

least time t. The hazard function h(t) is the conditional likelihood of living until death

occurs at time t. There is also a cumulative hazard function H(t) based on the hazard

function h(t).Liu (2012)

Describing time as a continuous process. Let f(t) be the probability density func-

tion (p.d.f.) of event time T . Then, according to probability theory, the cumulative

distribution function (c.d.f.) over the time interval (0, t), denoted by F (t), represents the

probability the random variable T takes from time 0 to time t(t = 0, 1, ...,∞), given by

F (t) = Pr(T ≤ t) =

∫ t

0

f(u)du.

4.2.1 Survival Function

Survival function S(t) is defined as the probability of surviving past time t, and at time

t, denoted by S(t), is simply the complement of the c.d.f.:,

S(t) = Pr(T > t) = 1− Pr(T ≤ t) = 1− F (t)

where T is the (random) life length under study.

4.2.2 Hazard Function

The hazard function is crucial to comprehending survival analysis. It measures the risk of

dying in a short interval (t, t+ s) immediately after t, hazard function at time t is defined

as the instantaneous rate of failure at time t, denoted by h(t) and mathematically defined

by,

h(t) = − 1

S(t)

dS(t)

d(t)
=
f(t)

S(t)

In survival analysis, given standardisation and its unique sensitivity to the change in the

survival function, the hazard function is the preferred indicator for expressing the relative

risk of experiencing a certain event.
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4.2.3 Cumulative Hazard Function

The cumulative hazard function is defined as the integral of the hazard function,

H(t) =

∫ t

0

h(s)ds, t ≥ 0

4.3 Life table method

As one of the descriptive approaches of survival analysis, life tables could be usually found

in the contexts of epidemiology and demography. It records the proportion of surviving

(event doesn’t occur) to the end of each time interval. Comparing statistics such as

”n-year recurrence rate”, the life table method is a better representation which reflects

sample size loss over time. Compared to other model-based analysis methods, life tables

are easier to interpret and provide an intuitive reference of risks and expectations.

Based on how the data is observed and summarized, life tables can be categorized

into two types: (1) cohort life table and (2) current life table. Cohort life table needed

to be built on information of groups of persons who joined the observation (e.g., born,

diagnosed, . . . ) at the same time and the cohort is followed up until the event occurs

(e.g., death, relapse, . . . ) for the last member of the group. In contrast, the current life

tables are grouping members by how long they have been added to the samples (e.g., by

age or length of time since diagnosis).

The cohort life table could reflect the implicit difference of survival experience from

people under different backgrounds of the times. For instance, in a decade, there may be

significant changes in economic and medical standards. However, this requirement is mak-

ing the generation of cohort life tables challenging in practice among human population

as the information of a long period is rarely available (Lahiri (2018)). And, datasets with

limited number of observations are also likely to encounter this problem when adopting

cohort life tables.

Current life tables, on the other hand, assume that an individual’s mortality is in-

dependent of the time point they joined the observations but is related to the mortality

observed from people at that age in the given population.With the assumption, the cur-

rent life tables usually contain data during a specified calendar year of a short period

of time and is not giving the exact pattern reflecting the mortality experience. Instead,

it provides a cross-sectional (Lahiri (2018)) “effective means of summarizing mortality

and survival experiences of a population and under study for that calendar year“ (WHO

(1977)).

Current life table in survival analysis usually consists of the following columns: (i)



Draft of 3:10 am, Friday, August 19, 2022 20

Interval, (ii) Number failed, (iii) Number censored, (iv) Effective sample size, (v) Survival

function, and (vi) Standard error of survival.

In this study, we adopt the current life table, which means the survival function in it

is a function of the number of days since diagnosis rather than of time.

4.4 Kaplan–Meier Curve

The graph of S(t) against t is known as the survival curve(Bewick and Cheek (2004)). The

Kaplan-Meier curve is a non-parametric estimator frequently used to estimate the survival

distribution, i.e., to compute the proportion of participants who survive a particular period

following an intervention or treatment. Even if people drop out or are observed for varying

amounts of time, it measures survival across time. When individuals are lost, survival

rates frequently decline. At each loss, the curve will demonstrate a fall, but between

losses, it will be flat(Kalra (2016)).

In any clinical or community-based study, the intervention’s effectiveness is determined

by the number of participants alive or successfully avoiding adverse outcomes, including

death. However, the reality is that not all participants can continue for the duration of the

research; a proportion typically drops out in the middle of the study, maybe because they

moved out of the study area or were lost to follow-up. In this instance, the Kaplan-Meier

curve estimate is a straightforward and trustworthy method that may be utilised to make

more accurate conclusions on the survivability of participants(Kalra (2016)). Let di be

the number of events at time ti ( di = 1 if there are no tied cases at ti ); then the Kaplan–

Meier estimator for the probability of survival at time t is,

Ŝ(t) =
∏
ti<t

ni − di
ni

The length of the horizontal line along the x-axis of the time series shows the interval’s

survival time. The vertical axis depicts the predicted survival probability. The number

of observations influences the precision of the estimate. At the conclusion of the trial,

when a small number of individuals are at hazard of an event, estimations of survival

may be incorrect. Notably, variables are not controlled for in this test, which requires

categorical predictors. Additionally, it cannot accept variables whose values change over

time(Sedgwick and Joekes (2013)).
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Figure 4.1: Example of a Kaplan Meier curve study (Bewick and Cheek
(2004))

4.4.1 Log-Rank test

Often in research, we want to be able to compare the survival probability of two or more

groups of individuals, for example by examining the differences in the effect of different

therapeutic agents on patient recovery. Although the Kaplan-Meier curve can help us to

see differences between groups, it is difficult to draw direct conclusions about which group

is more effective in a study.

Although it is possible to calculate Kaplan-Meier curves for different groups and also to

compare the proportion of survival at any given time. However, there are some problems

with this method in that it does not provide a comparison of the overall survival prob-

ability of the different groups.The Log-rank test can be used to solve this problem.The

logrank test was employed to test the null hypothesis that the probability of an event

(in this case, an AAV recurrence) happening at any given time did not vary between

patient groups. The analysis was based on the occurrence’s timing. For each time point,
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we calculate the number of recurrences observed in each group and the number of recur-

rences expected if there had been little difference between the groups(Bland and Altman

(2004)).The test statistic is calculated as follows,

χ2(logrank) =
(O1 − E1)

2

E1

+
(O2 − E2)

2

E2

,

where the O1 and O2 are the total numbers of observed events in groups 1 and 2, respec-

tively, and E1 and E2 the total numbers of expected events.The overall expected number

of events for a group is equal to the sum of the expected number of occurrences at each

event. The estimated number of events at the time of an event can be computed by mul-

tiplying the risk of death at that moment by the number of individuals still alive(Bewick

and Cheek (2004)).

When an event occurs, the same computations are run each time. If a survival time

is filtered, a person is regarded to be at risk of dying during the week of the censoring

but not later weeks. This method of dealing with censored observations is identical to

the Kaplan-Meier survival curve(Bland and Altman (1998)). It is a powerful test against

proportional hazards alternatives, but may be very weak otherwise.

The logrank test is most likely to detect differences between groups when the risk of

events in one group is constantly greater than in the other. Trying to detect differences

is more difficult for the logrank test when the survival curves of different groups cross, as

may be the case when comparing medical and surgical interventions. Survival curves are

therefore usually always plotted when analysing survival data. And the logrank test is a

pure test of significance, it does not provide an estimate or confidence interval for the size

of the difference between groups(Bland and Altman (2004)).

4.5 Cox (Proportional Hazard) Regression model

The log-rank test is used to test for variations in survival times between groups, however

it does not permit the consideration of additional explanatory variables. Similar to a mul-

tiple regression model, Cox’s proportional hazards model can test for changes in survival

times for specific groups of patients when several covariates are considered.

4.5.1 Proportional Hazard Assumption

Proportional hazards is a property of survival models that is fundamental for the devel-

opment of non-parametric regression modelsCox (1972).

The proportional hazards property is crucial to Cox regression. If h1(t) and h0(t) are
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hazard functions from two separate distributions, the definition of proportional hazard

assumption is presented as,

h1(t) = ψh0(t), for all t ≥ 0

where ψ is positive and constant.

Provided that the above expression holds, based on this expression, cumulative risk

functions H1(t) and H0(t) also have the same properties,

H1(t) = ψH0(t), for all t ≥ 0

where ψ is positive and constant and same with the ψ in hazard function. For all t ≥ 0

means the constant ψ is independent with time t.

4.5.2 Proportional Hazard Assumption test

Figure 4.2: Example of two survival curves(Broström (2021))

In Figure 4.2, and in the graph on the left, the usual first reaction is that the two

curves are consistent with the proportional hazard assumption. However, if the difference

in survival probability between the two groups at each point is calculated and the curves

are plotted, the result on the right shows that the difference in survival probability between

the two curves at different times is very large and that the two hazard functions are not

proportional.Therefore a better way to present the survival curve is needed.

Log scale could help to see smaller numbers, as well as in log-scales. The proportional
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hazard should be presented as a constant vertical distance between the curves.In order

to test the proportional hazards hypothesis, the most common graphical technique for

analysing the PH assumption is comparing estimated log-minus-log survival curves across

various (combinations of) categories of examined variables(Sestelo (2017)).

A log–log survival curve is just a modification of an estimated survival curve produced

by taking the natural log of an estimated survival probability twice. If the hazards

are proportional, the stratum-specific log-minus-log plots should demonstrate constant

differences, or be roughly parallel. These visual solutions are straightforward to apply

but have certain restrictions. Kaplan-Meier plots are ineffective for distinguishing non-

proportionality when the covariate has more than two levels because the graphs become

too cluttered . Similarly, although the PH assumption may not be violated, log-minus-log

curves are rarely completely parallel in actuality and tend to grow sparser and hence less

accurate over longer time intervals. It is impossible to estimate how close to parallel is

close enough and, hence, how proportional the risks are. Often, the decision to adopt the

PH hypothesis rests on whether or not these curves intersect(Bellera et al. (2010)).

In figure 4.3, there is a example of two survival curves are a perfect match for the

proportional hazard and can be seen to be perfectly parallel in the log-log scale. Such as

a variation of a test originally proposed by Schoenfeld (1982). This is a test of correlation

between the Schoenfeld residuals and survival time. A correlation of zero indicates that

the model met the proportional hazards assumption (the null hypothesis).

In addition to this, there are also more convenient and accurate functions in some

packages to calculate whether the data meets the PH assumption. Such as a variation of a

test originally proposed by Schoenfeld. This is a test of correlation between the Schoenfeld

residuals and survival time. The Schoenfeld residuals computation is best represented by

fitting the Cox Proportional Hazards model to a data sample. A strategy for determining

residuals in various directions was proposed by Schoenfeld. These residuals, properly

known as Schoenfeld residuals, are defined and calculated for the cox proportional hazards

model(Schoenfeld (1982)). In the same way as the specification of the partial probability

does not depend on the passage of time, the derivation of the Schoenfeld residual is

determined by the rank order of survival times(Liu (2012)). The Schoenfeld residuals are

the discrepancies that exist between the covariate vector that represents the person at

the event time ti and the expectation of the covariate vector across the risk set R(ti).

A correlation of zero indicates that the model met the proportional hazards assumption

(the null hypothesis)(Sestelo (2017)).
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Figure 4.3: Two hazard functions are constant(Broström (2021))

4.5.3 Cox (Proportional Hazard) Regression model

Cox’s proportional hazards model is comparable to a multiple regression model and can

test for changes in survival times for certain patient groups when additional variables are

considered. The response (causal) variable in this model is ’hazard’. The hazard is the

chance of dying (or experiencing the event in question) or the danger of dying at that

moment, assuming the patient survives to that point(Bewick and Cheek (2004)).

In Cox’s model, no assumptions are made about the probability distribution of hazards.

However there is an assumption of proportional hazards for the probability of survival for

both groups. The expressions of the model are as follows,

ln
h(t)

h0(t)
= b1x1 + ...+ bpxp

where h(t) is the hazard at time t; x1, x2. . . xp are the explanatory variables; and h0(t) is

the baseline hazard when all the explanatory variables are 0. The coefficients b1, b2. . . bp

are estimated from the data using a statistical package(Bewick and Cheek (2004)).

4.6 Accelerated Failure Time Model

The proportional hazards (PH) model is the most popular for analysing the impact of

multivariate factors on survival time. Nonetheless, the data do not always support the
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assumption of continuous hazards in the PH model. The violation of the PH assumption

results in the misinterpretation of estimation results and a reduction in the statistical

power of the associated tests. As opposed to the PH model, accelerated failure time (AFT)

models do not assume constant hazards in survival data. The AFT models can be utilised

as an alternative to the PH model if the premise of constant hazards is violated(Faruk

(2018)).

Similar to a multiple linear regression model, the AFT models can be rewritten to

indicate a direct relationship between the logarithm of the survival time and the explana-

tory variables(Orbe et al. (2002)). Suppose that Y = log T is linearly associated with the

covariate vector x . Then,

Y = logT = µ∗ + x′β∗ + σ̃ε,

where β∗ is a vector of regression coefficients on Y or log T , µ∗ is referred to as the intercept

parameter, and the parameter σ̃ is an unknown scale parameter. The term ε represents

random errors that follow a particular parametric distribution of T with survival function

S , cumulative distribution function F , and probability density function f .Formulating

AFT with respect to the random variable T, rather than to log T, we have,

T = exp(µ∗ + x′β∗)exp(σ̃ε)

= exp(µ∗ + x′β∗)Ẽ

where Ẽ = exp(σ̃ε) > 0 has the hazard function h0(ẽ) and is independent of β∗.

The distribution of event time T often follows some distinct patterns. The commonly

parametric distributions, which correspond to the AFT model, are Weibull, exponential,

log-normal, gamma, and log-logistic. For example, if exp(σ̃ε) ∼ Exp(...), then this AFT

model would a Exponential AFT model, while if exp(σ̃ε) ∼ Weibull(...), the model would

be a Weibull AFT model.Figure 4.4,Figure 4.5,Figure 4.6 show the probability density

functions of Weibull distribution, Exponential distribution and Gamma distribution under

different parameters respectively. We can choose the one that best matches our a prior

beliefs about the hazard function or we can compare different parametric models and

choose among them using a criterion like Akaike Information Criterion(AIC).

AIC is an estimate of the prediction error and thus the relative quality of the statistical

model for a given data setStoica and Selen (2004). The Akaike Information Criterion

(AIC) is a mathematical approach that can be used to evaluate how well a model fits the

data that it generates. In the field of statistics, AIC is a tool that is utilised to evaluate

and contrast the various alternative models in order to choose the one that provides the
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best fit for the data. The AIC is computed by employing the highest likelihood estimate

of the model in conjunction with the number of independent variables that were utilised

in the construction of the model. According to the AIC, the model that explains the

most variation with the fewest independent variables is the one that is the most suitable

representation of the data.

Figure 4.4: P.D.F of Weibull distribution in different parameters
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Figure 4.5: P.D.F of Exponential distribution in different parameters

Figure 4.6: P.D.F of Gamma distribution in different parameters



Chapter 5

Results and Evaluation

To find out if smoking is an important factor of the relapse of ANCA-AAV. This chapter

uses flare as the event and replaces the experimental data with the life table, Kaplan-Meier

curve, Cox Proportional Hazard regression model, and Accelerated Failure Time model

in the survival analysis presented in Chapter 4. The experimental results were obtained

and analysed by testing the model hypotheses in the Failure Time model. The results of

the different models are also compared and combined to reach a final conclusion.

5.1 Life Table Method

We constructed the following life table for our sample population:

From the first row, we can see that within one year after diagnosis (time=0), 34

patients out of a sample of 640 experienced a relapse. About 50% of the patients will

experience a relapse within 15 years. The number of patients in risk in the second year

drops from 640 to 514 because of the event (n.event=34 in time=0) and censoring.

In order to explore the effect of smoking on relapse, we can first categorise patients

according to their smoking history and then create life tables for each group.

Fig 5.2, 5.3, and 5.4 illustrates the change in the odds of relapse over time for patients

with different smoking histories. Here samples with unknown smoking histories (smok-

ing=4) are ignored. From the maximum time to relapse, first year relapse rate (survival

probability in time = 0) we can see that current smokers and previous smokers have a

higher risk of recurrence. Among current smokers, 50% of the patients experienced relapse

within 11 years. For previous smokers, 50% of the patients experienced within 13 to 14

years. For those who have never smoked, the number is 19 years.

We can easily see the difference in these three tables. However, it still not safe to

conclude the negative effects of smoking on relapse from the differences in life tables

alone. However, as the volume of data rises in the future and based on our subsequent

29
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Figure 5.1: Life table of relapse, event=Flare, unit of time is year

consistent findings using other methods, we believe life tables can still be used as a simple

quick reference or a material for patient education because of its intuitive nature.

Figure 5.2: Life table of current smokers (smoking=1)
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Figure 5.3: Life table of previous smokers (smoking=2)

Figure 5.4: Life table of non-smokers (smoking=3)
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5.2 Kaplan-Meier Curve results

The processed data were divided into three groups: current smokers, previous smokers,

and patients have never smoked, depending on the patient’s smoking status. The data

were then substituted into the Kaplan-Meier curve and the results are shown in figure

5.5. From this figure, we can see that there is a difference in the survivability probability

between the three groups and observe the results of the hypothesis testing experiment

to test whether there is a difference between the three groups. p-value is 0.08, which is

higher than the common standard 95% confidence interval of 0.05, but less than 0.1. The

results are still significant.

Figure 5.5: Kaplan-Meier curve of smoking

The result of plotting the survival curve on a log scale is fig 5.6,it can be seen that

the three curves are approximately parallel.

In order to see if the difference between groups are statistically significant, a log-rank

test was performed on the survival probability of the three groups. The results are shown

in figure 5.7.

The p-value in the log-rank test is 0.1, and with a alpha level of 0.1, there is evidence

against the null hypothesis that the survival curves are the same. The hazard and survival

of this three groups are moderately significant different.
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Figure 5.6: Log-Log curve of smoking

Figure 5.7: Log rank test of smoking

5.3 Cox Regression Model results

A cox regression was performed on smoking and a proportional hazard assumption test

was performed on it. the model results are shown in figure 5.8. The hazard ratio (HR) is

the ratio of the hazard rates corresponding to the conditions described by the two levels

of the explanatory variable.The result exp(coef) represents the hazard ratio. For the risk

ratio,

• HR = 1, No effect.

• HR > 1, the variable will increase in hazard.

• HR < 1, the variable will decrease in hazard.

Hazard means the flare of AAV in this research.
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As we can see from the results in fig 5.8, both smoking1 and smoking2 have a hazard

ratio of larger than 1, and based on the p-value, we can conclude that the probability of

flare for patients who are current smokers is 161%(95% CI,1.0008-2.601) of the probability

of flare for patients who never smoke. We have 95% confidence that the true value of this

hazard ratio is between 1.0008 and 2.601 (or 100.08% to 260.1%), but our best guess is

that it’s 161%.

Although the results for previous smokers represent a 127.6% probability of AAV

relapse compared to patients never smoke. And the hazard ratio is between 0.8959 and

1.819(or 89.59% to 181.9%).Although the p-value results are not significant enough and

its hazard ratio is not consistent at the 95% confidence interval to allow us to conclude

from this that the probability of AAV relapse is higher in ex-smokers than in patients who

never smoke, this result still has implications for our study, as patients who quit smoking

may have a higher risk of relapse compared to never smokers and a relatively lower risk

of relapse compared to current smokers.

Figure 5.8: Cox regression model of smoking

In order to verify the stability of the results, we add some other covariates, age, gender

to the cox regression. And then we get the results in figure 5.9.From the results, we can

see that the model results are consistent with those in figure 5.8, despite the addition of

the new covariates, which again demonstrates that probability of flares for AAV patients

who are current smokers is 184.7%(95% CI,1.112-3.068) of patients who never smoke.At

a 95% confidence interval, the probability of relapse for current smokers patients is 111%

to 307% of patients never smoke.

Although the results for previous smokers represent a 131.4% probability of AAV
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relapse compared to patients never smoke. And the hazard ratio is between 0.914 and

1.898(or 91.4% to 189.8%).Although the p-value results are not small enough and its

hazard ratio is not consistent at the 95% confidence interval to allow us to conclude from

this that the probability of AAV relapse is higher in ex-smokers than in patients who

never smoke, this result still has implications for our study, as patients who quit smoking

may have a higher risk of relapse compared to never smokers and a relatively lower risk

of relapse compared to current smokers.

Figure 5.9: Cox regression model of smoking with covariates

Although the previous log-log curve showed that the survival curves of different groups

of smokers were approximately parallel, the results were not rigorous enough. There-

fore, the cox regression model was tested again for proportional hazard assumption with

Schoenfeld residuals test. If global value and every covariate p-value are all larger than

0.05, then the proportional hazard assumption holds true. The test result is in figure

5.10,from the result, we can see neither the cox regression model with only smoking as a

variable nor the cox regression model with other covariates added was statistically signif-

icant for each covariate tested, nor was the global test statistically significant. Therefore,

we can assume proportional hazards hold.
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Figure 5.10: Proportional Hazard Test for cox regression models

5.4 Accelerated Failure Time model results

Although cox regression is the most widely used survival analysis model and through

the above experiments we have verified the PH assumption and obtained the results of

cox regression, we can still validate our previous model with the accelerated failure time

model.

Based on a comparison of AIC of different parameter AFT models, the difference

between the AIC values of the different models is very small, based on this result, we chose

the most commonly used Weibull Accelerated Failure Time model in this experiment.

After performing the same operation on the data and running it on the Weibull AFT

model, and we get the results in figure 5.11. The exp(coef) represents the Time Ratio(TR)

in AFT model.For Time Ratio,

• TR > 1, the variable would make the survival time increase.

• TR < 1, the variable would make the survival time decrease.

From the results, we can see that both the time ratio of smoking1 and smoking2 are less

than 1. This means patients who are current smokers and have quit smoking have shorter

survival time(this means the time to flare in AAV) than patients who never smoked. We

can conclude that patients who are current smokers have a 39% higher probability(95%

IC) of flare than patients never smoked.

The result that patients who have quit smoking have a 23% probability of flare than

patients never smoked is not strongly significant. The result is consistent with cox regres-

sion model without covariates.

Add covariates age, gender, and maintenance treatment to the AFT model, we get

results in figure 5.12. From the results, we can see that both the time ratio of smoking1

and smoking2 are less than 1. This means patients who are current smokers and have quit

smoking have shorter survival time(this means the time to flare in AAV) than patients

who never smoked. We can conclude that patients who are current smokers have a 46.1%

higher probability(95% IC) of flare than patients never smoked.
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The result that patients who have quit smoking have a 23.6% probability of flare

than patients never smoked is not strongly significant. The result is consistent with AFT

model without covariates. And this result is also consistent with cox regression model

with covariates.

Figure 5.11: Weibull AFT model of smoking

Figure 5.12: Weibull AFT model of smoking with covariates
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5.5 Comparison of Cox regression and Accelerated

Failure Time model

Consistent experimental results were obtained for the cox regression model and the Ac-

celerated Failure Time model, but it was difficult to directly determine which model was

better. We therefore compare the two models here using the Akaike Information Criterion

(AIC),a measure of the goodness of fit of an estimated statistical model, used to select the

optimal model with the knowledge that a smaller AIC suggests a higher likelihood(Habibi

et al. (2018)).

Figure 5.13: Weibull AFT model of smoking with covariates

Figure 5.14: Weibull AFT model of smoking with covariates

The results show that the cox regression model outperforms the AFT model, while the

univariate cox regression model has better results than the model with covariates, but the

difference in AIC between the two models is very small and not significant. Because the

AIC statistic assigns a lower penalty to more complicated models, it may place a greater

amount of weight on how well a model performs on the training dataset, and as a result,

choose more complicated models. So although the cox regression model performs better

in the AIC assessment, it may also be the more complex model.

5.6 Conclusions

McDermott and Xiaoqing Fu (2020) has found both former and current smokers were

more likely to have AAV than never smokers. And Yamaguchi and Ando (2018) found

that smoking increased the risk of relapse in Japanese MPA patients in a dose-dependent

manner, even after adjusting for clinically relevant factors. From the findings and experi-

mental results of this paper, we can conclude that smoking does cause a higher probability
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of recurrence of Ireland’s ANCA-AAV patients. In order to prevent disease relapse in pa-

tients with ANCA-AAV, patients who have been diagnosed with ANCA-AAV should be

advised to stop smoking in order to prevent ANCA-AAV recurrence.



Chapter 6

Reflections & Future Work

6.1 Reflections

• The data in this paper are somewhat limited. The conclusion that smoking triggers

relapse in patients with ANCA-AAV might be valid only for the population the

data refers to (i.e. patients in the region of Ireland), and data from more areas are

needed to derive more general conclusions.

• Although the best guess results of the model suggest that ex-smokers have a higher

risk of relapse compared to never-smokers and a lower risk of relapse compared to

patients who are still smoking, the results are only somewhat speculative as the

model results are not significant enough.

• The discussion of smoking as an environmental factor in this paper is relatively

homogeneous and does not take into account the interaction of other medical factors

including treatment modalities, preventive treatment modalities and other factors

on patient relapse with smoking.

• This article only discusses the fact that smoking leads to an increased probability

of recurrence, but not the causes that contribute to this outcome.

6.2 Future Work

• Additional data could be attempted to explore whether patients who quit smoking

have a higher probability of relapse compared to those who have never smoked, and

whether they have a lower probability of relapse compared to those who are still

smoking.

40
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• When it comes to the construction of predictive models from data, machine learning

techniques are quite popular and in the spotlight. In creating non-linear correlations,

they offer a significant advantage over typical statistical methods. However, the

application of machine learning to survival analysis is currently uncommon due to

the censored data.

In Zupan et al. (2000) ’s work, the authors present a model that enables classi-

fication methods - including machine learning classifiers - to be used for survival

analysis and validate the utility of the model using a case study on pre- and post-

operative recurrence prediction in prostate cancer, discovering that by incorporating

such weighting techniques, machine learning tools sit alongside modern statistical

methods and may provide further insight into relationships within the model data

by inducing symmetrized regression. A number of machine learning algorithms have

been tailored to deal with the complex challenges that arise in survival data and

other real-world dataWang et al. (2019).

Therefore, attempts could be made to add machine learning to survival analysis

studies to improve experimental results, and attempts could be made to construct

predictive models.

• It is possible to add treatment modalities to existing models, to study their inter-

actions and to obtain more convincing models.
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Berden, A. and Göçeroğlu, Arda, e. a. (2012). Diagnosis and management of anca asso-

ciated vasculitis. BMJ, 344.

Bewick, V. and Cheek, Liz, e. a. (2004). Statistics review 12: Survival analysis. Critical

Care, 8(4).

Bland, J. M. and Altman, D. G. (1998). Survival probabilities (the kaplan-meier method).

Bmj, 317(7172):1572–1580.

Bland, J. M. and Altman, D. G. (2004). The logrank test. Bmj, 328(7447):1073.

Broström, G. (2021). Event history analysis with R. Chapman and Hall/CRC.

CARTER, J. C. and BLACKMORE, E, e. a. (2004). Relapse in anorexia nervosa: a

survival analysis. Psychological Medicine, 34(4):671–679.

42



Draft of 3:10 am, Friday, August 19, 2022 43

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical

Society: Series B (Methodological), 34(2):187–202.

Faruk, A. (2018). The comparison of proportional hazards and accelerated failure time

models in analyzing the first birth interval survival data. In Journal of Physics: Con-

ference Series, volume 974, page 012008. IOP Publishing.

Habibi, D., Rafiei, M., Chehrei, A., Shayan, Z., and Tafaqodi, S. (2018). Comparison

of survival models for analyzing prognostic factors in gastric cancer patients. Asian

Pacific journal of cancer prevention: APJCP, 19(3):749.

Holle, J. U. and Gross, W. L. (2013). Treatment of anca-associated vasculitides (aav).

Autoimmunity Reviews, 12(4):483–486.

Jones, R. B. and Hiemstra, Thomas F, e. a. (2019). Mycophenolate mofetil versus cy-

clophosphamide for remission induction in anca-associated vasculitis: a randomised,

non-inferiority trial. Annals of the Rheumatic Diseases, 78(3):399–405.

Kalra, Aakshi, e. a. (2016). The basics of kaplan–meier estimate. Journal of the Practice

of Cardiovascular Sciences, 2(3):187.

Karangizi, A. H. and Harper, L. (2021). Small vessel vasculitides. Medicine, 50.

King, C. and Druce, Katie L, e. a. (2021). Predicting relapse in anti-neutrophil cytoplasmic

antibody-associated vasculitis: a systematic review and meta-analysis. Rheumatology

Advances in Practice, 5.

Lahiri, S. (2018). Chapter 12 - survival probabilities from 5-year cumulative life table

survival ratios (tx+5/tx): Some innovative methodological investigations. In Srinivasa

Rao, A. S. and Rao, C., editors, Integrated Population Biology and Modeling, Part A,

volume 39 of Handbook of Statistics, pages 481–542. Elsevier.

Little, M. (2019). Rare kidney disease registry and biobank protocol version 8.

Liu, X. (2012). Survival analysis: models and applications. John Wiley & Sons.

McDermott, G. and Xiaoqing Fu, e. a. (2020). Association of cigarette smoking with

antineutrophil cytoplasmic antibody-associated vasculitis. JAMA internal medicine.

Mercuzot, C. and Simon Letertre, e. a. (2021). Comorbidities and health-related quality of

life in patients with antineutrophil cytoplasmic antibody (anca) - associated vasculitis.

Autoimmunity Reviews, 20(1):102708.



Draft of 3:10 am, Friday, August 19, 2022 44

Monach, P. A. and Warner, R. L. e. a. (2022). Serum biomarkers of disease activity in

longitudinal assessment of patients with anca-associated vasculitis. ACR Open Rheuma-

tology, 4(2):168–176.

Ningning, F. (2021). Clinical analysis of anca associated vasculitis and refractory nephrotic

syndrome in single center.
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Appendix

Ethics Declaration

’RKD data is saved, if this is necessary, on a password encrypted device. RKD data

is not emailed to yourself or anyone or stored on cloud services without being encrypted.

RKD data is not shared with anyone else or discussed with anyone else. Demonstrations,

reports and publications about the project will not display actual individual level patient

data
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