
A study of the naming convention used for topics in

distributed MQTT brokers’ environment

Sheetal Pravin Raut

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Intelligent Systems)

Supervisor: Prof. Dr Stefan Weber

August 2022

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Sheetal Pravin Raut

August 18, 2022

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Sheetal Pravin Raut

August 18, 2022

A study of the naming convention used for topics in

distributed MQTT brokers’ environment

Sheetal Pravin Raut, Master of Science in Computer Science

University of Dublin, Trinity College, 2022

Supervisor: Prof. Dr Stefan Weber

The world revolves around the Internet and accessing information through the Internet.
The traditional Internet infrastructure uses a host-centric paradigm. There are various
disadvantages that come into notice after different research has been conducted. So, a new
paradigm for the future Internet has been introduced that is away from the host-centric
paradigm and provides perpetual connectivity, an end-to-end principle. This paradigm is
Information-centric networking (ICN). In this type of network architecture focal point is
identified information or content or data.

In 2021, there were more than 10 billion IoT devices active. Also, It has been estimated
that this number could grow up to 25.4 billion in 2030. These IoT devices use Message
Queuing Telemetry Transport (MQTT) protocol for communication purposes. MQTT
has been based on the Publish-Subscribe Internet Routing Paradigm (PSIRP), Which
ideally a one of ICN architecture.

ICN architecture maps a name to content. That is why naming plays an important role
in terms of routing. This research focuses on studying the advantages and disadvantages of
different naming conventions in distributed MQTT broker architecture and also observing
their effects on naming conventions in different topologies. It involves the implementation
of the different naming conventions, such as a hierarchical naming convention and a
hybrid naming convention which could be used in real-time scenarios in distributed MQTT
broker. As mentioned earlier, It involves studying the effect of this naming convention on
different topologies. In terms of topology, namely chaining, i.e. hierarchical topology and
clustering, topology took into consideration. The evaluation has been conducted between
the topology and naming convention with the help of different evaluation attributes.

Acknowledgments

I would like to thank Prof. Dr Stefan Weber for supervising and providing valuable

guidance and motivation throughout the journey of the dissertation. I would also like to

thank my father, Pravin, and mother, Anjali, for providing unconditional support and

encouragement throughout my course at Trinity.

Sheetal Pravin Raut

University of Dublin, Trinity College

August 2022

iv

Contents

Abstract iii

Acknowledgments iv

Chapter 1 Introduction 1

1.1 Motivation and Aim . 1

1.2 Map . 3

Chapter 2 State of the Art 5

2.1 Background . 5

2.1.1 Information-Centric Networking . 5

2.1.2 Message Queuing Telemetry Transport (MQTT) 7

2.1.3 Naming Conventions . 13

2.2 Related Work . 14

2.3 Summary . 18

Chapter 3 Problem Statement 21

3.1 Problem Description . 21

Chapter 4 Design 22

4.1 Overview . 22

4.2 Design of Naming Conventions . 22

4.2.1 Hierarchical Naming Convention . 23

4.2.2 Hybrid Naming Convention . 23

4.3 Design of Topology . 25

4.3.1 Scenario 1 : Hierarchical or Tree Topology With Static Sensors . . . 25

4.3.2 Scenario 2 : Cluster Topology With Static Sensors 27

4.3.3 Scenario 3 : Cluster Topology With Mobile Sensors 28

v

Chapter 5 Implementation 29

5.1 Challenges Faced During Implementation 29

5.2 Tools Used . 30

5.2.1 Docker . 31

5.2.2 Docker Swarm . 31

5.2.3 Eclipse Mosquitto . 32

5.2.4 Hive MQ . 33

5.2.5 Wireshark . 34

5.3 Technical and Implementation Details . 34

5.3.1 Scenario 1 : Hierarchical or Tree Topology With Static Sensors . . . 34

5.3.2 Scenario 2 : Cluster Topology With Static Sensors 38

Chapter 6 Experiments and Discussion 43

6.1 Experiments . 43

6.1.1 Experiment 1: Addition Of A New Broker To The Existing Network

Topology . 43

6.1.2 Experiment 2: Failure Of A Broker In A Network Topology 43

6.2 Discussion and Comparison . 44

6.2.1 Comparison Between Naming Schemes 44

6.2.2 Comparison Between Network Topologies 47

Chapter 7 Conclusions & Future Work 51

7.1 Conclusion . 51

7.2 Future Work . 52

Bibliography 53

Appendices 55

vi

List of Tables

2.1 MQTT control packet : Fixed Header format 9

2.2 MQTT control packet type value and description 10

2.3 MQTT PUBLISH control packet : Fixed header packet format 10

2.4 MQTT SUBSCRIBE control packet: Fixed header packet format 11

2.5 Naming schemes benefits and drawbacks 15

2.6 Summary of related work . 20

6.1 Summary of comparison between naming schemes 46

6.2 Payload length of MQTT control packets in network topology 50

vii

List of Figures

2.1 PURSUIT architecture overview . 7

2.2 MQTT broker architecture . 8

2.3 MQTT control packet transmission between MQTT client and broker . . . 12

4.1 Encrypted data communication between MQTT client and broker 25

4.2 Hierarchical topology for Smart building automation system 26

4.3 Cluster topology for Smart building automation system 27

4.4 Cluster topology for Smart traffic management system 28

5.1 Mosquitto MQTT brokers’ bridge . 33

5.2 HiveMQ MQTT broker cluster configuration with docker swarm 34

5.3 Hierarchical topology of mosquitto MQTT brokers with bridge configuration 35

5.4 Configuration file for broker1 to create a bridge to broker5 36

5.5 Webpage for MQTT client to publish data to broker1 36

5.6 Webpage for MQTT client to subscribe to broker5 37

5.7 Webpage for MQTT client to publish encrypted data to broker1 38

5.8 Webpage for MQTT client to subscribe to and decrypt data from broker5 . 38

5.9 Cluster topology of HivqMQ MQTT brokers with docker swarm 39

5.10 Webpage for MQTT client to publish data to broker present in cluster . . . 40

5.11 Webpage for MQTT client to subscribe to broker present in the cluster . . 40

5.12 Webpage for MQTT client to publish encrypted data to broker present in

the the cluster . 41

5.13 Webpage for MQTT client to subscribe to and decrypt data received on

broker present in the cluster . 42

6.1 Hierarchy of MQTT brokers . 44

6.2 Addition of MQTT broker at hierarchy level 0 47

6.3 Addition of MQTT broker at hierarchy level 2 48

6.4 Deletion of MQTT broker at hierarchy level 0 48

6.5 Deletion of MQTT broker at hierarchy level 1 49

viii

Chapter 1

Introduction

In today’s world, every device around us is getting smarter by connecting them to the

Internet and making them accessible from anywhere, by using their data in order to

perform some action. For example, In the case of smart home automation use case, the

light of the room gets turned on whenever a person enters the room, where the presence

of any person is detected using the motion sensor that in turn sends the command to the

light sensor to turn on. This is possible because of the Internet of Things(IoT). Because

of that, devices could connect to the Internet, transmit their data, and can communicate

with other sensors, and take action based on conditions met.

In 2021, there were more than 10 billion active IoT devices observed. It has been

estimated that this number will grow exponentially and surpass 24.4 billion in 20230.Jo-

vanovic (2022) As this number talks, the IoT is the future of the Internet and evolving

domain.

1.1 Motivation and Aim

Current Internet architecture is based on a host-centric paradigm. It uses Transmission

Control Protocol/Internet Protocol (TCP/IP) networking model. This paradigm has been

successful in terms of addressing and naming schemes to date. Nowadays, smart devices

and sensors get connected to the Internet and of which in the future, the number of devices

connecting to the Internet will grow exponentially. The current network architecture will

not be able to provide support for addressing billions of devices and contents since IPV4

has limited address space. Also, IPV6 addresses are too long and not suitable to use with

resource-constrained devices.

The current network paradigm has some shortcomings, and it will not be suitable for

the coming future of the Internet. A few of the shortcomings are discussed below.

1

Persistent, location-independent naming: Current Internet architecture lacks in

terms of persistence and location-independent naming for the content. In the case of

current Internet architecture, a URL is used to locate the service or resource. It uses

the URL for IPV4 mapping. In short, it is mapping directly to a specific location.

This does not help to achieve location-independent mapping, for example, moving

a website to another domain. Then the original website will become unreachable.

Security: As current Internet architecture uses a host-centric paradigm, the security

is based on securing channels between hosts via encryption such as transport layer

security(TLS). Also, the client needs to rely on trusted third parties for data inte-

gration.

Mobility and multihoming: Current Internet architecture resolves around the host,

which is suitable for static devices. But in terms of mobility and multihoming, this

architecture has become more complex to deal with. Solutions such as mobile IP

addresses have been designed to address this issue; however, this approach suffers

from some disadvantages such as increased stretch and complexity due to problems

inherited from the host-centric approach.

To address these issues listed above new paradigm has been researched and proposed.

This approach is known as Information-Centric Network (ICN) paradigm. As the name

implies, this approach resolves around content naming. It uses content names for Network

data object mapping.

As mentioned, this architecture revolves around naming the content used in the

network. There are various naming schemes available such as hierarchical, flat-based,

attribute-value- based, and hybrid naming schemes. Each naming scheme has its own

benefits and drawbacks in terms of security, scalability, reliability, and aggregation. ICN

approach provides various architectures, which most commonly known are Data-Oriented

Network Architecture (DONA), Named Data Networking (NDN), Content-Centric Net-

working (CCN) and Publish-Subscribe Internet Technology (PURSUIT). In terms of IoT

publisher-subscribe model is most commonly used in order to transmit data between

devices. MQTT uses the same model for transmitting data.

It is the point of interest and research to study various naming schemes in detail

about their advantages and disadvantages over other naming schemes in terms of security,

scalability, aggregation, and lookup performance. Also, for IoT networks, how these

naming schemes would perform better in order to provide a more secure approach to

name data as well as work well with resource-constrained devices?

The aim of this dissertation is

2

• To study the different naming schemes, their benefits, and drawbacks.

• To design the naming schemes for useful real-time IoT use-case.

• Implement the designed naming schemes in the simulated environment of distributed

MQTT brokers.

• Evaluate the performance of those naming schemes in various network topologies of

distributed MQTT brokers.

1.2 Map

This dissertation is structured into six sections, each having its own focus area as described

below.

Chapter 1: Introduction This chapter gives an introduction to the Information-

Centric Network (ICN). It outlines the motivation and the aim behind this research

and the map for the dissertation.

Chapter 2: State Of Art This chapter gives an overview of background research

conducted as well as critiques of previously published and implemented related work

reviewed in order to design and implement the solution for the problem statement

of the dissertation.

Chapter 3: Problem Statement This chapter gives a description of the problem

statement for which the research is done as a part of the thesis.

Chapter 4: Design This chapter gives a detailed description of which designs are

used to research the problem statement. It also provides the diagram of different

distributed MQTT brokers topologies that are implemented further.

Chapter 5: Implementation This chapter talks about the list of tools and their spec-

ification used for the implementation of the design discussed in the design chapter.

It also specifies the challenges faced during the implementation.

Chapter 6: Evaluation This chapter explains the experiments conducted to evalu-

ate the designs implemented as a part of the thesis. Results of those experiments

and detailed evaluation with appropriate evaluation attributes are presented in this

chapter.

3

Chapter 7: Conclusion and Future Work Lastly, this chapter gives an insight

into the conclusions made from this thesis as well as the scope to which it can be

extended further.

4

Chapter 2

State of the Art

This Section provides a detailed description of background research conducted related to

ICN, MQTT, and many more. It also includes the details of related work been critiqued

that has paved the way to the problem statement of this dissertation.

2.1 Background

This Section describes in detail the background information about the Information-centric

networking, their architectures, MQTT protocol, its packet format, and QoS levels sup-

ported. It also summarizes the comparison of MQTT with other similar protocols in terms

of benefits and drawbacks. Also, the detailed description of various naming schemes, their

benefits, and drawbacks.

2.1.1 Information-Centric Networking

In recent times, more smart devices and sensors are getting connected to the Internet.

This number of devices is growing exponentially day by day. These devices could be a

static or mobile device that senses the data from their surrounding and forward it in order

to communicate with other devices present in the network. This network ecosystem is

referred to as the IoT.Lin et al. (2017) Most IoT applications have seen used a content-

oriented naming approach. Sensor or devices publishes data, and the user receives data as

per the subscription to data, user requests sent for specific data of interest, or actuators

perform an action as per the received command.

ICN is a new communication paradigm that has been researched to replace the current

IP-based networking.Xylomenos et al. (2014) It uses data-oriented nature for communica-

tion. The main element which drives the communication is content names rather than the

IP addresses of the content or service provider. Because of this, ICN supports location-

5

independent naming by decoupling it from content.Din et al. (2018) It also provides

support for multihoming and mobility. ICN revolves around content naming approaches,

and the efficiency, scalability, and security of this networking are directly linked to which

naming approach has been used for content naming. In terms of having effective naming

schemes, various factors of content naming should take into consideration, such as device

naming, length of names, the structure of names, name aggregation, security, meta-data,

and many more.

For the ICN concept, different architecture has been implemented to support the con-

tent naming. DONA is one of the ICN architectures which uses flat naming schemes to

address the content. This flat-based naming scheme is self-certifying. In this naming

scheme, responsibility for authenticity and availability is separated because the DONA

name handles persistence and authenticity while name resolution handles availability.

This naming format uses the structure P:L, where P denotes the public key of the pro-

ducer, which is cryptographically hashed using the hash function, and L denotes the label

chosen by the principal.Koponen et al. (2007)

Another architecture Of ICN is NDN and CCN; these use hierarchical humans readable

names to identify content.CCN is a pull-based communication model in which the service

subscriber gets the data irrespective of the location of the content provider. CCN routers

use 3 data structures in order to route the data, namely Pending Interest Task, Content

Store, and Forwarding Information Base(FIB).Arshad et al. (2018) PURSUIT is another

architecture of ICN, which is discussed in detail below.

PURSUIT Architecture

The Publish-Subscribe Internet Technology project (PURSUIT) CORDIS (2022) is the

continuation of the Publish-Subscribe Internet Routing Paradigm (PSIRP) project.PSIRP

(2022) The both of PSIRP and PURSUIT are funded by the EU Framework 7 Program.

PURSUIT project is a clean-slate ICN architecture that supports a complete publish/-

subscribe stack. The PURSUIT architecture consists of three components, namely ren-

dezvous, Topology Management (TM), and Forwarding Node (FN), which work together

to form name-based networking architecture.

PURSUIT uses self-certifying flat naming schemes that consist of a pair of multiple

Scope IDs (SIDs) and a single Rendezvous ID(RID). Each group is assigned a SID, and

each content object has its own RID. PURSUIT decouples the name resolution and rout-

ing, as these functionalities are performed by separate modules. Additionally, PSIRP

employs forwarding IDs employed by the forwarding fabric to move data once contact has

been made at a rendezvous point. The forwarding IDs (Bloom filters in LIPSIN Jokela

6

et al. (2009)) are temporary and define a path from the publisher to the subscriber.

Figure. 2.1 Ahlgren et al. (2012) Shows the steps by step process of publishing data

and subscribing for data.

Step 1: The publication belongs to a particular named scope.

Step 2: Subscriber subscribes to the name data object.

Step 3: Rendezvous system matches the publications and subscriptions.

Step 4: The subscription request consists of the scope identifier (SI) and the rendezvous

identifier (RI) that identify the content. These identifiers are used in matching procedure

results in forwarding identifiers.

Step 5-7: Data packet has been forwarding data. The forwarding identifier consists of

a Bloom filter these routers use for selecting the interfaces to which to deliver content.

Because of this, routers do not need to keep track of the forwarding state.

In PURSUIT, clients can unsubscribe, switch networks, and resubscribe again. Con-

tent provider mobility is more complex as it involves updating the routing state in the

rendezvous nodes.

Figure 2.1: PURSUIT architecture overview

2.1.2 Message Queuing Telemetry Transport (MQTT)

MQTT is a lightweight messaging protocol introduced by IBM in 1999. This messaging

protocol is designed for resource-constrained and limited devices. Gupta and Prabha.

7

(2021) MQTT uses the publisher-subscriber model for message communication that uses

Transmission Control Protocol /Internet Protocol (TCP/IP) protocol.

This design uses Publisher-subscriber architecture, using which it can publish the data

to the MQTT broker and subscribe for data from the MQTT broker. The MQTT broker

architecture consists of three important components, as shown in Figure. 2.2.

Figure 2.2: MQTT broker architecture

MQTT Client: MQTT client is either publisher or subscriber. In the case of the

publisher, the MQTT client will publish the data to the MQTT broker using the

topic name. Otherwise, the MQTT client will subscribe to the topic as per interest,

and in the future, it can receive data that got published on the subscribed topic.

In general, the publisher is the sensor that publishes data such as temperature,

humidity, heart beats rate, or current location, or it could be the actuators sending

their current status. Whereas, subscribers could be dashboard to monitor data or

take further action taken on actuators based on conditions met on received sensors

data.

MQTT Broker: MQTT Broker is considered the heart of the Publisher-subscribe

protocol. It is responsible for receiving all messages published, filtering the messages,

determining who is subscribed to each topic, sending messages to the subscriber

based on subscription, and managing sessions of MQTT clients.

Topic: Topic refers to a UTF-8 string. Topics have been used by the MQTT brokers

to filter messages for each MQTT client connected to it. As in Publisher-subscribe

architecture it uses topic-based naming. It is important to agree upon the structure

of the topic name used by the publisher and subscriber before implementation.

8

MQTT protocol is a push-based protocol. It helps to create service models such as Action-

based control commands and Event-Driven Service Models.

Action-Based Control Command Service Model

This model is possible to implement with MQTT. MQTT client can send an action

to be performed on the actuator with the topic naming. For example, In the case of

a Smart building automation system, the MQTT client wants to turn on the light

of the hallway for floor 2 in the building Red Mills. Then MQTT client will send

a command as “On” to the respective topic to represent the same location. In this

case, the MQTT client sends a command to the MQTT broker, which in turn sends

the command to the subscriber to that topic. That, in turn, performs the action

provided on the actuator present.

Event-Driven Service Model

This model is useful when data needs to be published in case of a particular event.

For example, Smart Building automation system, the lights of the hallway needs to

get turned on whenever a moment in hallway passage is detected. So that whenever

the motion sensor detects any movement will send a notification to the MQTT

broker. Then after receiving a notification on that specified topic, it will send an

action command to turn on the light actuator.

MQTT Packet Format

The MQTT protocol exchanges a series of control packets in a defined way to work. This

Section describes the format of these packets. An MQTT control consists of three parts,

namely a Fixed header, variable header, and payload.

Bit 7 6 5 4 3 2 1 0

Byte 1 MQTT Control Packet type
Flags specific to each MQTT Control

Packet type

Byte2 ... Remaining Length

Table 2.1: MQTT control packet : Fixed Header format

The fixed header is present in all types of MQTT control packets. This packet contains

the MQTT control packet type; this is a 4-bit unsigned value. A few of them are listed

below in Table.2.2

9

Name Value Direction of flow Description

CONNECT 1 Client to Server Connection request

CONNACK 2 Server to Client Connect acknowledgment

PUBLISH 3 Client to Server or Server to Client Publish message

PUBACK 4 Client to Server or Server to Client Publish acknowledgment (QoS 1)

SUBSCRIBE 8 Client to Server Subscribe request

SUBACK 9 Server to Client Subscribe acknowledgment

Table 2.2: MQTT control packet type value and description

The remaining bits[3-0] of Byte 1 in the fixed header contain the flags that are specific

to each MQTT Control Packet type. The Remaining length is a variable byte integer that

represents the number of bytes remaining within the current control packet that includes

the data in the variable header and the payload. Whereas variable header and payload

are part of the MQTT control packet and present in some of the types of MQTT control

packets. The two important MQTT control packets, PUBLISH and SUBSCRIBE, are

discussed in detail below.

MQTT Control Packet PUBLISH

A PUBLISH packet is sent from a Client to a Server or from a Server to a Client to

transport an Application Message. Table. 2.3 shows the fixed header packet format

for PUBLISH MQTT control packet.

Bit 7 6 5 4 3 2 1 0

Byte 1
MQTT Control Packet type

(3)

DUP

flag
QoS level RETAIN

0 0 1 1 X X X X

Byte2 ... Remaining Length

Table 2.3: MQTT PUBLISH control packet : Fixed header packet format

Flags used in MQTT PUBLISH control packet fixed header, PUBLISH variable

header and PUBLISH payload description are given below.

• DUP: This flag represents whether the packet that has been transmitted is

a duplicate or not. If set to 0 means its first occurrence of sending a packet.

Otherwise, it is a re-delivery of an earlier attempt to send the packet.

• QoS: This field is Quality of Service that provides the level of assurance for

the delivery of an application message. This could be 0, 1 or 2.

10

• RETAIN: If the RETAIN flag is set to 1 in a PUBLISH packet sent by a

Client to a Server, the Server MUST replace any existing retained message for

this topic and store the Application Message.

• PUBLISH variable header: This is consist of topic name, packet identifier,

and properties.

• PUBLISH payload: The payload contains the application message that is

being published. The content and format of the application are specific.

MQTT Control Packet SUBSCRIBE

The SUBSCRIBE packet is sent from the client to the Server to create one or more

subscriptions. Each Subscription registers a Client’s interest in Topics. The Server

sends PUBLISH packets to the client to forward Application Messages that were

published to Topics that match these subscriptions. Table. 2.4 shows the fixed

header packet format for SUBSCRIBE MQTT control packet.

Bit 7 6 5 4 3 2 1 0

Byte 1
MQTT Control Packet type

(8)
Reserved

1 0 0 0 0 0 1 0

Byte2 ... Remaining Length

Table 2.4: MQTT SUBSCRIBE control packet: Fixed header packet format

• Remaining length field: contains the length of the variable header plus

the length of the payload, encoded as a Variable Byte Integer.

• SUBSCRIBE Variable header: The Variable Header of the SUBSCRIBE

packet contains the following fields in the order: Packet Identifier and Proper-

ties.

• SUBSCRIBE Payload: The Payload of a SUBSCRIBE packet contains a

list of Topic Filters indicating the Topics to which the client wants to subscribe.

The Topic Filters MUST be a UTF-8 encoded string.

MQTT supports the three types of Quality of Service(QOS) levels.

QoS 0: This level is referred to as at most once or fire and forget. This level provides

a very simple and unacknowledged service. Publisher publishes data to MQTT

11

broker using PUBLISH packet. Further MQTT broker sends the data packet to the

subscriber subscribed to that topic on which data has been published. In this case,

none of the MQTT clients receives any acknowledgment.

QoS 1: This level is referred to at least once. This level is acknowledgment service.

This QoS level uses a PUBLISH/PUBACK packet sequence between the publisher

and its broker. Also, between broker and subscribers. This acknowledgment packet

provides confirmation that content has been received. It also uses a retry mechanism

in which the retry mechanism will send the content again if an acknowledgment did

not receive in a certain time. This will cause a duplicate copy of the data packets

received. Figure. 2.3 Kurdi and Thayananthan (2022) show the MQTT control

packet transmitted between publisher, subscriber and MQTT broker.

Figure 2.3: MQTT control packet transmission between MQTT client and broker

QoS 2 : This level is referred to exactly once. This level is assured service. This

QoS level uses messages PUBLISH/PUBREC and PUBREL/PUBCOMP. This level

ensures that the message will be delivered exactly once, and no duplicate copy of

data will be delivered.

There is various protocol that exists as competing protocol to MQTT, such as Con-

strained Application Protocol (CoAP), Advanced Message Queuing Protocol (AMQP),

Simple/Streaming Text Oriented Messaging Protocol (STOMP), and Simple Media Con-

trol Protocol (SMCP).MQTT protocol has benefits and drawbacks as compared to these

protocols. Those are listed below.

12

Benefits of MQTT

1. MQTT is a lightweight protocol that provides fast and efficient message delivery.

2. MQTT provides message security using Transport Layer Security/Secure Socket

Layer (TLS/SSL) encryption. In MQTT, standard port 1883 is used for non-

encrypted communication and 8883 for encrypted communication using TLS/SSL.

3. MQTT protocol provides message reliability because it uses TCP/IP protocol for

communication. Unlike UDP, TCP ensures that data is not damaged, lost, or de-

livered out of order to a receiving process.

4. MQTT consumes less power for communication, so it is a good option for connecting

low-power resource devices.

Drawbacks of MQTT

1. MQTT protocol is comparatively slow to COAP as it uses content-oriented TCP/IP

protocol.

2. MQTT broker has limited storage.

3. MQTT broker is the central point of communication for publishers and subscribers.

Because of the failure of the MQTT broker, subscribers and publishers will not be

able to communicate. That’s a reason why MQTT broker is the single point of

failure.

2.1.3 Naming Conventions

In the case of ICN architecture, everything resolves around naming the content. To name

the content, different kinds of schemes are supported. Each naming scheme has its own

ability to scale, security and aggregate. These naming schemes can be categorized into

Hierarchical, Flat, Attribute- value-based, and Hybrid.

Hierarchical Naming Convention

Hierarchical naming schemes use structural format, and they have human-readable names.

Ghodsi et al. (2011) These names consist of several components to detect the components

and services. Its structure is similar to a Uniform resource locator(URL). Component and

subcomponent in the names are separated by each other using slash (/). This naming

scheme is adopted by ICN architecture like CCN and NDN.Arshad et al. (2018)

13

Flat-Based Naming Convention

Flat naming schemes have self-certifying names, which are acquired by applying the hash

function to the content or its subcomponent or its attribute. These names are not human-

friendly.Tanenbaum and Steen (2006) Flat names are not scalable, and it requires another

service to translate self-certifying names and human-readable names.Ghodsi et al. (2011)

Flat naming schemes adopted by DONA, MobilityFirst, and NetInf.Arshad et al. (2018).

This naming scheme assures location independence, application independence, and global

uniqueness. It slow downs the aggregation mechanism , which increases the size of the

routing table and entries.

Attribute-Based Naming Convention

Attribute-value naming scheme has a list of attributes. Each attribute is composed of a

type, name, and set of values. These values could be generated by date or time, version,

location, and many more. This naming allows different kinds of information to reside

within the names. The search process is easy in this naming scheme because it allows

search using known keywords for content, but there does not uniquely identify the content.

Hybrid Naming Convention

Hybrid naming schemes combine two or three naming schemes mentioned above. The

main idea behind this is to combine the advantages of each naming scheme to achieve

more scalability, efficiency, and security. Each naming scheme have its own strength and

weaknesses, where hierarchical naming schemes supports name aggregation, flat naming

schemes have the advantage of having fixed length names, and attribute value-based

naming scheme provides ease in the search process. A hybrid naming scheme incorporates

more than one of these to provide the best feature.

These naming schemes discussed above, their examples, benefits and drawbacks are

tabularized in Table. 2.5

2.2 Related Work

This Section provides a detailed description of the previous work done in terms of using

hierarchical and hybrid naming conventions in different ICN architectures.

Hierarchical Naming Schemes

As proposed in Shang et al. (2014), hierarchical naming schemes have been designed

for secured building management systems for the UCLA campus. This naming scheme

14

Naming
Type

Example Benefits Drawbacks

Hierarchical
Naming

https://www.oasis-
open.org/committees/
download.php

1. Human readable
names

2. Names designed us-
ing a structural for-
mat

3. Supports Name ag-
gregation

4. Enhanced network
scalability

1. Requires Standard-
ization

2. Variable length of
component name;
sometimes names
may be too lengthy

Flat
Naming

aui://ls.edu.dn/
sha256(title)

1. Fixed length of
names.

2. Names are easy to
generate

1. No structure and se-
mantic to generate
name

2. Does not support
name aggregation

3. Difficult to generate
name for dynamic
content

Attribute-
value
based
naming

Name
<str>:‘Title’
Document Name
<Str>:’Document1’
Publication Year
<int>: 2019

1. Easy search process

2. Support to transmit
additional content
information

1. Unique Naming is
difficult

2. Different contents
attributed by same
name

Table 2.5: Naming schemes benefits and drawbacks

15

is used in Named Data Networking (NDN) architecture. The sample of this designed

naming scheme is

“/ndn/ucla.edu/bms/building/melnitz/studio/1/data/ panel/J/voltage /<timestamp>”

This format uses room prefix, building name, and then on a more granular level, the

location. It has a separate naming tree to get the user key for encryption of data and

also access privilege list available for the user. This provided naming scheme separates

out the data namespace and user namespace.

As proposed in Amadeo et al. (2015) paper, NDOMUS (Named Data netwOrking for

sMart home aUtomation) is a hierarchical naming scheme for smart home automation.

This naming scheme designed with structure as /homeID/task/type/subtype/location/

In this naming format, the type component specifies the task type (sensing or action);

the subtype describes which specific task to be performed, and the location identifies the

physical location (sensors or actuators). The approach proposed uses the COAP protocol

for transmitting messages between clients.

Piro et al. (2014) propose a hierarchical naming scheme designed for NDN-based

platform for smart cities. As per discussed in the paper, it provides a secure naming

approach by using the format “/domain/main-service/sub-categories-of-services/type-of-

question/additional-info” The domain, main-service, and sub-categories-of-services are

similar to other approaches to specify the service using a hierarchy of naming. Addition-

ally, the type-of-question component provides information about the type of user demand.

The value for this field could be discovered, reserve, query, and communicate, which rep-

resents that the user wants to discover a node offering a given service, reserve a service,

interrogate a remote node, and communicate something to another device, respectively.

This model discussed uses a service discovery and content delivery approach. The draw-

back of this approach is that it employs long names which would cause extra overhead

for searching or lookup processing.

Mochida et al. (2017) proposed a naming scheme for weather monitoring in smart

cities. It uses a machine learning approach to generate naming from passed queries. This

is implemented with CCN. The sample of this naming scheme is “dinfo/Japan/Tokyo-

to/Shinjuku-ku/kabukicho/1Chrome-4-1/net2/35.6938401/139.7035494/42933” It speci-

fies the type of message followed by geographical name using country, city, and local street

name, later followed by latitude, longitude, and timestamp. These names generated are

long names, which will be difficult to adopt in any IoT environment also, will further slow

down the searching process and aggregation process.

Hybrid Naming Schemes

As proposed in Arshad et al. (2018), A hybrid naming scheme is designed, which

16

consists of hierarchical and flat-based naming schemes for a smart campus system. These

naming schemes are used in Content-Centric Network (CCN) architecture. The format

of the designed naming scheme is ”DomainName/Location/Task:DeviceName|Data” The

data and device names are hashed using the FNV-1a hash function. This design provides

benefits such as high aggregation, fixed length of naming, scalable naming, and security

provided because of hashing.

Bouk et al. (2017) proposed a hybrid naming scheme consisting of hierarchical and

attribute value-based naming that has been designed for managing traffic in the smart

city. The format of the naming scheme is ”SC://service-id/spatio and or temporal scope

.../attribute:value/” This approach provides security by using asymmetric data encryp-

tion. These names are used to know the conditions of traffic and information about a

passenger.

Arshad et al. (2017) proposed the NDN-HNS the hybrid naming approach for IoT

smart campuses. This name consists of four parts. First, the root prefix indicates the

type of IoT application, such as smart homes, smart cities, and smart transport. Secondly,

the hierarchical component represents the campus information such as the campus name,

campus sub-name, campus location, and many more. Thirdly the attribute-value compo-

nent contains an attribute and value for the type of task and sub-task, such as task type,

Task-sub type. Lastly, the flat-based component provides the secured and signed name

using the SHA256 hash function. This naming scheme is a combination of three naming

schemes; names formed using these schemes are very long. This approach is not much

scalable. Also, it is challenging to achieve a fast lookup.

As proposed in Nour et al. (2020), the Multilayer Multicomponent Hierarchical Attribute-

value (M2HAV) naming for wireless devices. The designed name format is

“root prefix: Task type: Service type: Network Function: Topological Location”

Each component, apart from the root prefix, supports the setting values to the set of

properties using different attributes. It provides the benefit of short lengths with the help

of location encoding using a prefix-based labelling scheme and variable-length encoding

scheme.

As proposed in Rehman et al. (2019) Name-Integrated Query (NINQ) framework

provides a hybrid naming scheme implemented in NDN for a smart building. This

naming consists of three components, Hierarchical component, hashing-based flat com-

ponent, and query component. The sample format of this naming is ”Unique loca-

tion identifier/sublocation/floor|flat component|Query : query command” The example

of query could be WHERE DATA GTE 25, and the example of query command could be

SET DEVICE ON.

The naming scheme proposed in Javaheri et al. (2020) for PURSUIT architecture.

17

This naming scheme is designed for the use case of the smart city. This design addresses

two domains traffic on the street and services present in that room of the building. It uses

a hybrid naming approach that consists of three components, namely attributes value,

hierarchical and flat component. The sample naming format of this naming is

For traffic status ”#traffic | district / street / time: (traffic status)”

For services ”#services | building / floor / room id: (device name)”

All papers mentioned above, except Javaheri et al. (2020), proposed and implemented

various naming schemes, but they either used CCN or NDN architecture. Also, as the

naming scheme proposed in Javaheri et al. (2020), implementation of this naming scheme

is not possible with MQTT as MQTT topics are not allowed to have ’#’ in that. As re-

searched, no research has been conducted to evaluate the performance of naming schemes

based on the underlying nodes or brokers’ network topology.

2.3 Summary

This Section provides the summary of all related work referred to. Referred paper, used

naming schemes, and remarks about that approach have been tabularized in Table. 2.6

Related

Paper

Objective Hierarchical

naming

Flat

based

nam-

ing

Attribute-

value

Based

naming

ICN

archi-

tecture

Remarks

Shang

et al.

(2014)

ICN-based

naming for

Securing

building

management

systems

Yes No No NDN

Additional security

provided with

help of user

identification

also encrypted

data transmitted.

Amadeo

et al.

(2015)

NDOMUS

(Named Data

netwOrking

for sMart home

aUtomation)

Yes No No NDN

Names are long in

length but very

specific. This

approach has used

COAP protocol for

transmitting messages.

18

Piro

et al.

(2014)

IoT based

naming

for smart

cities

Yes No No NDN

The hierarchical

naming component it

uses a type-of-question

component that

supports discovery of

a node given a

provided service,

reserve to reserve

a service. It uses

extra long name, which

lead to overhead in

searching process.

Mochida

et al.

(2017)

IoT naming

scheme for

smart cities

for weather

monitoring

Yes No No CCN

It uses a machine learning

approach to generate

names, generated

names are long

in length.

Arshad

et al.

(2018)

IoT based

naming scheme

for smart

campus system

Yes Yes No CCN

It provides secure

names hased using

FNV-1a hash function

Bouk

et al.

(2017)

IoT based

naming scheme

for managing

traffic in

smart city

Yes No Yes NDN

These names are easy

to search also,

data encrypted

using Asymmetric

Key Encryption.

19

Arshad

et al.

(2017)

IoT based

naming

schemes for

smart campus

Yes Yes Yes NDN

It uses SHA256

hash function

for hashing flat

component. Names

generated are very

long and not scalable.

Nour

et al.

(2020)

Multilayer

Multicomponent

Hierarchical

Attribute-

value (M2HAV)

naming for

wireless devices

Yes No Yes CCN

It provides benefit of

short names by

location encoding,

but additional efforts

required for encoding

and decoding those

short names

Rehman

et al.

(2019)

IoT based

naming for

Name-Integrated

Query (NINQ)

Yes Yes No NDN

Names generated are

too long making it

difficult for

searching and

lookup process.

Javaheri

et al.

(2020)

IoT based

naming for

smart city

Yes Yes Yes PURSUIT

It uses all three

naming schemes to

design names.

Table 2.6: Summary of related work

20

Chapter 3

Problem Statement

In today’s world, every device or thing needs to be smart and accessible from anywhere,

anytime. For example, in a daily scenario, a person wants to turn on the heater in the

bedroom of the apartment from the office, So that before arriving in the room, it is warm

already. This is possible because of the Internet of Things(IoT). It is also referred to as

ubiquitous computing, which allows devices to be connected to the Internet in turn that

devices will be accessed from anywhere.

3.1 Problem Description

IoT consists of various sensors, actuators, and dashboards. These sensors send the data

such as room temperature or the status of the light. They could be referred to as publishers

as they publish the data for further processing. The dashboard could be referred to as

subscribes, which subscribes to this data to process it further and take some action.

The actuators are on which the action is performed, such as turning the light on and

setting the temperature for AC. These publishers and subscribers use Publish-Subscribe

Internet Routing Paradigm (PSIRP) to communicate with each other. PSIRP is one of

the architectures of the Information-Centric Network (ICN). MQTT protocol uses the

same paradigm as a core to transport messages from one client to another.

While routing, the data in these network names plays a crucial role, as data or content

is being mapped with names. MQTT uses topic-based naming, which means that the

topic names are mapped to content or data that gets published. This led to the study of

various naming conventions that could be adopted in the MQTT protocol for distributed

brokers’ IoT environment. It involves addressing those naming conventions’ advantages

and disadvantages. Along with that, to simulate and evaluate the real-time distributed

environment by considering different topologies such as hierarchical or cluster topology.

21

Chapter 4

Design

This chapter provides complete details about the use-case scenario considered while ad-

dressing the research question specified in the problem statement. Also provides various

designs to address every aspect of the problem statement.

4.1 Overview

As the main goal of this research is to study different naming conventions in a distributed

brokers environment for IoT devices and with various topologies, one real-time use case

taken into consideration is the smart building automation system. The smart building

automation system is a system that provides a dashboard to a building manager. This

dashboard provides a manager top-level view of all the sensors data present in each house

in the building. In this building, every house is equipped with smart actuators such as a

light - to turn it on or off remotely, an air conditioner - to turn AC on or off remotely or set

the temperature remotely, and sensors such as a humidity sensor - to check humidity levels

in a particular room, and temperature sensor - to check the temperature of a particular

room. These sensors and actuators can be present in different rooms such as the kitchen,

hall, and bedroom.

These sensors and actuators will provide real-time data, which could be accessed by

the building manager from the dashboard given. This design uses Publisher-subscribe

architecture using that it publishes the data to the MQTT broker.

4.2 Design of Naming Conventions

Everything in ICN revolves around naming. Naming plays an important role in Publisher-

subscribe architecture. Publisher and subscriber need to agree upon the structure of

22

the naming convention before actual implementation to make it convenient. Because

subscriber needs knowledge about the topics on which data will be published in the

future so that subscriber can request subscriptions accordingly. Two naming conventions

were designed as a part of this research and have been discussed in detail below.

4.2.1 Hierarchical Naming Convention

As the name implies, the hierarchical naming convention follows the structural format.

The naming indicates the hierarchy going from the top level to the bottom in that each

level has been separated from another by a slash(/). For instance, the hierarchical naming

structure for the topic will be :

/domainName/location/task/sensorName

In the case of a smart building automation system, the building name is referred to as

a domain level; after that, it uses a floor number. Then goes one level deeper to identify

apartments using their number. Accordingly, adds the name of the room to which it has

been referred. After this task has been used, the task could be either sensing or action.

Sensing refers to sensing data and publishing it. Whereas action refers to the action that

needs to be taken. It takes an extra value that should be used while performing an action

further. Such as turning on the AC or turning it off. Sample topic for smart building

automation system could be :

/redMills/floor2/apt23/bedroom/sensing/temperature

As it is seen, the above topic has been used to sense the temperature of apartment 23,

the bedroom which is located on the second floor of the red mills building. For instance,

to turn on the light in the hall of same apartment 23 in the red mills building following

topic will be used:

/redMills/floor2/apt23/hall/action/light

And data will be: On In this naming convention, the assumption is made that network

is secured to transfer any sensitive data or information transmitted within the network

that is not sensitive enough. That is why during publication, data is sent as plain text

with the topic name.

4.2.2 Hybrid Naming Convention

The hybrid naming convention approach designed as a part of this research combines

hierarchical and flat-based naming conventions. The sample hybrid naming structure for

the topic will be :

23

/domainName/location/task/sensorName:sensorID

This naming convention is similar to the hierarchical naming convention, but it has the ad-

ditional element, which is sensorID to uniquely identify the sensor present in the specified

location in the topic.

In the case of a smart building automation system sample topic could be:

/redMills/floor2/apt23/bedroom/sensing/light:AL2K78

Above given topic, it is used to sense whether light with sensor ID AL2K78 present in

the bedroom of apartment 23 located on the second floor of building red mills is turned

on or off.

This sensorID needs to be unique globally. That will be helpful if there are two or

more sensors present in the room to uniquely identify them with the help of ID and not

create any kind of confusion. For instance, if there are two lights present in the hall, it is

possible to turn on or turn off the specific light from two lights with the help of specifying

the appropriate sensor ID.

Additionally, in this naming convention, the assumption has been made that the net-

work is not secured. Also, it could be that data is much sensitive to send in such an

environment. For example, this can be true if sensors are sending data related to some-

one’s health, such as blood pressure, oxygen levels, and many more. If this sensitive data

gets leaked, it will be riskier, and it could disclose important information related to a

person. By considering those scenarios, in the case of hybrid naming convention, data

has been encrypted before sending it to the broker.

Two ways of data encryption are possible in MQTT, namely End-to-End (E2E) en-

cryption and client-to-broker encryption. In the case of End-to-End (E2E), encryption

it is considered that both publisher and subscriber clients are present in an unsecured

environment. Whereas in the case of client-to-broker encryption, it is considered that

the publisher client is in an unsecured environment, but subscribers are well known and

trusted. In this design, End-to-End encryption is used, considering there is no trusted

environment.

As shown in Figure. 4.1 Data will be encrypted before publishing to the MQTT bro-

ker. MQTT broker forwards the encrypted data around the network and sends it to the

subscriber as per subscription requests made by subscribers. It is the responsibility of the

subscriber to decrypt the data to use it further.

There are two data encryption methods, namely Asymmetric Key Encryption and

Symmetric Key Encryption. This use-case discussed above involves IoT devices. These

devices are lightweight devices with very less computing power, so symmetric key encryp-

tion has been the best option for them. As that will consume less power. In Symmetric

24

Figure 4.1: Encrypted data communication between MQTT client and broker

Key Encryption single key is used to encrypt and decrypt the data. It is the best practice

to have a separate key for each topic present or created newly.

4.3 Design of Topology

This research not only focuses on different naming conventions but also looks for the

evaluation of these naming conventions in different network topologies as specified in the

problem statement under the Section. 3 To check, the same two types of network topology

are considered hierarchical or tree topology and cluster topology for the distributed MQTT

broker.

4.3.1 Scenario 1 : Hierarchical or Tree Topology With Static

Sensors

In this topology, MQTT brokers are arranged in tree form. Where all leaf brokers send

data to their parent broker. And data subscription is done to the MQTT broker present

at the top level of the tree.

As shown in Figure. 4.2 the scenario was designed for the smart building automation

system. In which the building manager is provided with a dashboard to manage all the

resources. In this building, every house is equipped with smart actuators such as a light

sensor - to turn it on or off remotely, an air conditioner sensor - to turn AC on or off

25

remotely, and sensors such as a humidity sensor - to check humidity levels in a particular

room, and temperature sensor - to check the temperature in a particular room. These

sensors and actuators can be present in different rooms such as the kitchen, hall, and

bedroom.

As the name suggests, this topology provides a broker at each level to create a hi-

erarchy structure. MQTT broker present at each level is responsible for MQTT client’s

connections at that level and levels below that. As shown in Figure. 4.2 It is a tree topol-

ogy with depth 2. MQTT broker is present on each floor of the building, and one MQTT

broker is present on top of all brokers present on the floor.

Figure 4.2: Hierarchical topology for Smart building automation system

Apartment on a specific floor will publish their data to the MQTT broker present on

that floor with a topic name with a hierarchical or hybrid naming convention:

/apt23/bedroom/sensing/temperature

Whereas these MQTT brokers further send the data to the top-level brokers by pre-

fixing topic depending upon the MQTT broker on which floor it is located:

/redMills/floor2/

The Building manager needs to subscribe to the topic :

26

/redMills/floor2/apt23/bedroom/sensing/temperature

In order to access the data.

As you can notice, this scenario involves static sensors means these sensors will not

be moving in the network and will be situated in a permanent position.

4.3.2 Scenario 2 : Cluster Topology With Static Sensors

For cluster topology, All MQTT brokers are presented in a ring where each broker commu-

nicates with their neighboring broker. It is different from hierarchical topology as while

publishing data topic name did not split up like hierarchical topology.

As shown in Figure. 4.3 A cluster of five MQTT brokers for a smart building automa-

tion system is provided. Unlike hierarchical topology, these brokers are not at a different

level, but all MQTT brokers are at the same level. In this case, the apartment can send

data to any of the MQTT Brokers present in the cluster, and subscribers can get the

published data by subscribing to any of the MQTT Brokers in the cluster.

Figure 4.3: Cluster topology for Smart building automation system

27

4.3.3 Scenario 3 : Cluster Topology With Mobile Sensors

IoT network consists of sensors. These sensors could be static or mobile. Both of the

scenarios designed and discussed above use static sensors. This use case is designed

specifically for mobile sensors. In this use case, sensors give the status of the number of

passengers presents currently in the buses moving around the city. Here the dashboard

provides to city manager with the number of passengers and bus numbers and the current

location of the moving bus. To make it easier for the city managers to utilize resources

efficiently by routing more buses on busy routes. As shown in Figure. 4.4 Five MQTT

brokers are connected to each other through clusters. The bus roaming around the city

has the sensors, and it sends a timely update about the count to the MQTT Broker. In

this case, as the bus is moving so, it will need to publish its data to the MQTT broker,

which is close to it locationally, rather than sending the data to the fixed MQTT broker.

This involves the challenge of searching for a broker located closely to the bus. As this

is a cluster topology, the city manager can register their interest to any MQTT broker to

receive an update about the data he/she is interested in.

Figure 4.4: Cluster topology for Smart traffic management system

28

Chapter 5

Implementation

This Section provides implementation tools used to implement the design discussed in the

Section. 4.3. It also gives a brief about the issues faced during the implementation. It

includes the technical design of the actual implementation and their screenshots.

5.1 Challenges Faced During Implementation

As discussed in the Section. 3.1, to implement the designs described in Section. 4.3 dis-

tributed MQTT brokers’ environment needed to be implemented. To conduct the various

experiments using an actual environment would have cost the most in terms of money as

well as resources. That is the reason why the network simulating tools option took into

consideration. There are various network simulation tools available. Each simulation tool

offers different features and has different capabilities and advantages. Choosing a single

simulator from many of these was a challenge. A selected tool is needed to be capable of

testing and experiencing the scenario specified in the design Section. Few of the network

simulator tools have been studied and tried to run a sample network simulation on them

to check whether they satisfy the requirements or not. The list of those network simulator

tools and the reason why those were not chosen is given below:

1. Cooja Simulator :

Cooja simulator Cooja (2022) is based on Contiki OS.OS (2022) This simulator pro-

vides a graphical user interface through which it is very easy to create mote of differ-

ent types. It provides support for adding nodes for sensors like light. This simulator

also supports the mobility of nodes at a basic level. But, it does not provide sup-

port for the MQTT protocol. Instead it supported the MQTT SN protocol.Ignacio

(2022) MQTT SN is different from MQTT protocol at various levels.Stanford-Clark

and Truong (2013) It uses the UDP protocol for data transmission. It uses topic id

29

over the topic names. As this research focused on topic names used in the MQTT

protocol, this simulator is skipped.

2. Graphical Network Simulator-3 (GNS3) :

GNS3 is open source and free network simulator software. It is a network simulator

used to emulate, test, configure and troubleshoot virtual and real networks. This

provides support to emulate not only the Cisco networking devices but also Cisco

virtual switches, Cisco ASAs, Brocade vRouters, and Docker instances. This sim-

ulator is commonly used for wired devices and is not well suited for the emulation

of wireless sensor networks. Therefore this simulator is skipped for this implemen-

tation.

3. Objective Modular Network Testbed in C++ (Omnet++) :

It is a network simulator that is an extensible, component-based simulation library

and framework written in C++. This simulator provides the support for emulation

of the wireless sensor networks. But Omnet++ simulator does not provide native

support for MQTT. Therefore this simulator also has been skipped.

4. Optimized Network Engineering Tools (Opnet) :

This simulator is used to simulate any kind of network and measure the performance

of that network. It provides support for the emulation of a wireless sensor network,

as provided in the documentation. Opnet simulator has only a commercial version.

There is no free and open source version available. Therefore, could not able to

test and verify the support for the MQTT protocol. That’s the reason why this

simulator has also been skipped.

After noticing the limitation and shortcomings of the network simulation tools listed

above, to implement the distributed MQTT brokers, environment docker containers are

chosen. Network simulator such as Omnet++ and cooja does support the mobility of

sensors, whereas it is not possible to have mobile sensors in the docker container envi-

ronment. That’s the reason why scenario 4.3.3 implementation is not possible to do with

the docker container. So, the first two scenarios with hierarchical and hybrid naming

conventions have both been implemented with hierarchical and cluster network topology.

5.2 Tools Used

This Section provides details about which tools are used in order to implement the sce-

narios designed and their purpose of usage.

30

5.2.1 Docker

As discussed in the Section. 5.1 implementation challenges are faced. There was a need

to create a distributed MQTT broker environment that could be emulated and tested for

the research of different naming conventions. After skipping all of the network simulators

discussed. Docker has been selected to implement the containers of MQTT brokers.

Docker provides an implementation more similar to the real-world environment. Docker

supports containerization because docker containers can be created from docker images

presented or pulled from websites. These containers run on the docker engine. These

containers provide some advantages as listed below :

1. Lightweight These containers share the OS of the kernel and are not required to

set up an OS for each application separately. Because of this, it has been highly

efficient. Docker containers are process-oriented and do not require a hardware

hypervisor like a Virtual machine (VM). Also, it requires very few resources as

compared to VM.

2. Very fast VM takes minutes to start or reboot. Whereas the docker container takes

a few seconds to load and restart. Also, it is very easy to create, deploy, or modify

the services on docker.

3. Secure Docker provides a safer environment for the application running and keep

them isolated from one another as per the industry standards.

In this implementation, these docker containers are used to create multiple instances of

the MQTT broker, which further interact with each other based on the topology imple-

mentation.

5.2.2 Docker Swarm

A docker swarm is a group of either physical or virtual machines that run the docker

application. But these applications are configured in a way to join together in a cluster.

Docker swarm is a container orchestration tool that allows the user to manage multiple

containers deployed on a single virtual host. A docker swarm contains three types of items,

namely nodes, services or tasks, and load balancers. Nodes are individual Docker engine

instances that control your cluster and manage the containers that run your services and

tasks. Load balancing is also part of Docker Swarm clusters to route requests across

nodes.Powell (2021)

Docker swarm has two types of nodes, namely manager node and worker node. The

primary function of the manager node is to assign the task to the worker nodes in the

31

swarm. In a docker swarm, multiple worker nodes can be created, whereas a maximum of

seven manager nodes can be created. Each worker node receives the task to be executed by

the manager node. Also, by default manager node is a worker node. Apart from managing

tasks wherever resources are available, it also performs the task. For the implementation

of a cluster of MQTT brokers, a docker swarm is used.

Docker swarm leverage a few benefits as listed below

1. Cluster management integrated with docker-engine There is no need for any

additional orchestration software to create a docker swarm; it is easily created with

Docker Engine Command Line Interface (CLI).

2. Scaling It is very easy to add new worker nodes or delete worker nodes with the

help of a command. As swarm manager automatically adapts and accommodates

the docker swarm as per the state requested using the command.

3. Highly availability In a docker swarm, there is a need for a manager node to

assign tasks to the worker node. Having multiple manager nodes present in the

docker swarm makes the cluster available all the time, even if one of the manager

nodes fails for some reason, as a docker swarm allows the creation of manager nodes

up to seven.

4. Load balancing Docker swarm provides the capability to schedule the tasks to

ensure the efficient usage of available resources. The swarm manager node ensures

that the workload has been assigned in a way to run on the most appropriate host

to manage and optimize resources efficiently.

5.2.3 Eclipse Mosquitto

Eclipse Mosquitto is an open-source message broker that supports the various version of

the MQTT protocol. Mosquitto is lightweight and suitable for low-power devices. The

Docker image used for this implementation is

docker pull eclipse-mosquitto 1

The latest tag of this image has been used. This docker image of Mosquitto broker

supports MQTT of version 5.0. Mosquitto broker supports the vertical scaling of MQTT

brokers, that is, the chaining of the MQTT broker. By adding a connection in the

configuration file, it is possible to forward all the messages received on the specified topic

or all topics on one broker to another broker-specific topic.

1https://hub.docker.com/_/eclipse-mosquitto

32

https://hub.docker.com/_/eclipse-mosquitto

As shown in Figure.5.1 The message has been published on broker1 on topic /temp, and

the message could be retrieved by subscribing to topic /level1/temp at broker2. As the

configuration for only topic /temp has been added in broker1, forward it to broker2 by

appending /level1 to it. At broker 1, Only those messages received on /temp will be

forwarded, and no messages received on any other topic will be forwarded like /humidity.

Figure 5.1: Mosquitto MQTT brokers’ bridge

5.2.4 Hive MQ

Hive MQ is an MQTT broker. This allows fast, efficient, and reliable movement of data

to and from connected IoT devices with the help of a client-based messaging platform.

The Docker image used for this implementation is

docker pull hivemq/hivemq4:dns-latest 2

The DNS-latest tag of this image has been used. This docker image of hive MQ

supports MQTT of version 5.0. This tag supports the DNS cluster service discovery,

which allows the scaling dynamically. Hive MQ instances are added or removed runtime

as soon as they become available via DNS. Docker orchestration environment supports

service discovery using a round-robin fashion. Hive MQ supports the horizontal scaling

of the MQTT brokers. It allows the creation of the cluster of MQTT brokers with the

help of the docker swarm. There is no need to add a specific configuration in a config file

like a Mosquitto bridge configuration.

As shown in Figure. 5.2, The cluster of three docker nodes is created. Each node

contains a swarm load balancer which allows the load balancing between the available

2https://hub.docker.com/r/hivemq/hivemq4

33

https://hub.docker.com/r/hivemq/hivemq4

resources. 1883 port of each node is published, which is the default port for the MQTT

protocol.

Figure 5.2: HiveMQ MQTT broker cluster configuration with docker swarm

5.2.5 Wireshark

Wireshark is a free and open-source packet sniffer and analysis tool. This tool is used

to capture network traffic on various network devices connected to the local machine. It

involves network traffic from Ethernet, Bluetooth, Wireless (IEEE. 802.11), and more.

This tool is used for evaluation purposes of packets transmitted between MQTT client

and broker and another way round.

5.3 Technical and Implementation Details

This Section gives a brief about the actual technical implementation done for addressing

the designs discussed. It also includes the screenshots captured of the web pages for

publisher and subscriber MQTT clients.

5.3.1 Scenario 1 : Hierarchical or Tree Topology With Static

Sensors

As discussed in Section. 4.3, Figure. 5.3 shows the implementation-specific diagram for

hierarchical or tree configuration of distributed MQTT brokers with static sensors. The

34

tree shown in the figure has two levels.Broker1, broker2, broker3, and broker4 are present

at the lower level, and broker5 is at a higher level broker for all of the brokers. Each

broker uses port number 1883 to listen to the published message for the MQTT protocol.

For broker1, port 127.0.0.1: 9002 is used for WebSocket connection. Similarly, for bro-

ker5, port 127.0.0.1:9001 is used for WebSocket connection. WebSocket connection allows

communication between the docker container and the localhost running program.

Figure 5.3: Hierarchical topology of mosquitto MQTT brokers with bridge configuration

To create a bridge from all brokers at a lower level to a higher level, configuration

for the bridge needs to be added. Figure. 5.4 shows a sample of the configuration files

provided for broker1.

As specified, the connection name “bridge” that uses forwarding address “172.17.0.3”,

which is the address of broker5 to port “1883”. As mentioned in the next line, it is

specified using the format

topic topic pattern direction QOS local prefix remote prefix

It could be noticed from the sample configuration file topic pattern mentioned is # that is,

all topics present on broker1. Direction specified as out means messages will be forwarded

to the address specified of broker5 by prefixing topic “redmills/floor1/” to all topics

received as its remote prefix.

35

Figure 5.4: Configuration file for broker1 to create a bridge to broker5

Hierarchical Naming Convention

As shown in Figure. 5.5 shows the screenshot of the MQTT publisher page. That is written

using HTML and javascript. It uses the paho-MQTT client to connect to the broker1 using

WebSocket. It could be seen in the screenshot that the port is mentioned as 9002. To pub-

lish the data, 20 have been published on the topic “/apt23/bedroom/sensing/temperature”.

Figure 5.5: Webpage for MQTT client to publish data to broker1

As shown in Figure. 5.6 shows the screenshot of the MQTT subscriber page. That is

written using HTML and JavaScript. It uses the paho-MQTT client to connect to the

broker5 using WebSocket. It could be seen in the screenshot that the port is mentioned

36

as 9001. It subscribes to the topic ‘#’ that is all topics at the broker5. As specified in the

configuration file, “redmills/floor1” has been prefixed to the topic received. So, this data

20 will be available on the topic “redmills/floor1/apt23/bedroom/sensing/temperature”,

as shown in the text box.

Figure 5.6: Webpage for MQTT client to subscribe to broker5

Hybrid Naming Convention

As shown in Figure. 5.7 shows the screenshot of the MQTT publisher page. That is

written using HTML and JavaScript. It uses the paho-MQTT client to connect to the

broker1 using WebSocket.It could be seen in the screenshot that the port is mentioned as

9002. It is mentioned in the design that data has been encrypted before publishing it to

the topic. To encrypt data CryptoJS.AES.encrypt() method is used along with passkey.

As provided, encrypted data has been printed in the text box. To publish the encrypted

data has been published on the topic “/apt23/bedroom/sensing/temperature:AL2K36”.

As shown in Figure. 5.8 shows the screenshot of the MQTT subscriber page. That is

written using HTML and JavaScript. It uses the paho-MQTT client to connect to the

broker5 using WebSocket. It could be seen in the screenshot that the port is mentioned

as 9001. It subscribes to the topic ‘#’ that is all topics at the broker5. As specified

in the configuration file, “redmills/floor1” has been prefixed to the topic received. Bro-

ker5 receives the encrypted data, which is then decrypted using CryptoJS.AES.decrypt()

method along with passkey used during encryption of data. So, this decrypted data will

be available on the topic “redmills/floor1/apt23/bedroom/sensing/temperature:AL2K36”

as shown in the text box.

37

Figure 5.7: Webpage for MQTT client to publish encrypted data to broker1

Figure 5.8: Webpage for MQTT client to subscribe to and decrypt data from broker5

5.3.2 Scenario 2 : Cluster Topology With Static Sensors

As discussed in Section. 4.3, Figure. 5.9 shows the implementation-specific diagram for

cluster configuration of distributed MQTT brokers with static sensors. It contains a

cluster of five nodes. These clusters were created using a docker swarm. Each node

runs an instance of service hivemq that also contains a swarm load balancer. These

load balancer helps to manage the available resources efficiently. Each load balancer is

connected with all services available and running on various nodes. In this cluster, only

38

one node from the cluster has been exposed with port number 8000 for WebSocket.

Figure 5.9: Cluster topology of HivqMQ MQTT brokers with docker swarm

Hierarchical Naming Convention

As shown in Figure. 5.10 shows the screenshot of the MQTT publisher page. That

is written using HTML and JavaScript. It uses the paho-MQTT client to connect to

the broker1 using WebSocket.It could be seen in the screenshot that the port is men-

tioned as 8000. To publish the data, 15 have been published on the topic “redmill-

s/floor1/apt23/bedroom/sensing/temperature”

As shown in Figure. 5.11 shows the screenshot of the MQTT subscriber page. That

is written using HTML and JavaScript. It uses the paho-MQTT client to connect to the

broker1 using WebSocket. It could be seen in the screenshot that the port is mentioned as

8000. It subscribes to the topic ‘#’, which is all topics present in the cluster received. So,

this data 15 will be available on the topic “redmills/floor1/apt23/bedroom/sensing/temperature”,

as shown in the text box.

39

Figure 5.10: Webpage for MQTT client to publish data to broker present in cluster

Figure 5.11: Webpage for MQTT client to subscribe to broker present in the cluster

Hybrid Naming Convention

As shown in Figure. 5.12 shows the screenshot of the MQTT publisher page. That is writ-

ten using HTML and JavaScript. It uses the paho-MQTT client to connect to the broker1

using WebSocket.It could be seen in the screenshot that the port is mentioned as 8000. It

is mentioned in the design data has been encrypted before publishing it to the topic. To

encrypt data CryptoJS.AES.encrypt() method is used along with passkey. As provided,

encrypted data has been printed in the text box. To publish the encrypted data has been

40

published on the topic “redmills/floor1/apt23/bedroom/sensing/temperature:Al2k36”

Figure 5.12: Webpage for MQTT client to publish encrypted data to broker present in
the the cluster

As shown in Figure. 5.13 shows the screenshot of the MQTT subscriber page. That

is written using HTML and JavaScript. It uses the paho-MQTT client to connect to the

broker1 using WebSocket. It could be seen in the screenshot that the port is mentioned as

8000. It subscribes to the topic ‘#’, which is all topics present in the cluster received. Bro-

ker1 receives the encrypted data, which is then decrypted using CryptoJS.AES.decrypt()

method along with passkey used during encryption of data. So, this decrypted data will

be available on the topic “redmills/floor1/apt23/bedroom/sensing/temperature:Al2k36”,

as shown in the text box.

41

Figure 5.13: Webpage for MQTT client to subscribe to and decrypt data received on
broker present in the cluster

42

Chapter 6

Experiments and Discussion

This Section contains the experiment conducted on the network topology designed for

distributed MQTT brokers’ environments. Also, a detailed discussion about the results

of those experiments. This discussion consists of a comparison made between the naming

conventions and network topologies.

6.1 Experiments

This Section provides an overview of experiments conducted on a distributed MQTT

broker network topology.

6.1.1 Experiment 1: Addition Of A New Broker To The Exist-

ing Network Topology

In this experiment, a new broker has been added to the existing network topology. As

shown in Figure. 6.1 This shows hierarchical network topology; for this topology, the

MQTT broker has been added at a different level to check the additional overhead required

to set up the new broker. In the case of a cluster topology, a new MQTT broker has been

added to a cluster as there is no hierarchy present.

6.1.2 Experiment 2: Failure Of A Broker In A Network Topol-

ogy

In this experiment, one of the MQTT broker from the network has been failed manually

to check the consequences on network topology. This experiment is designed to evaluate

the aftereffects of the failure of the MQTT broker, whether the subscriber could get the

data seemingly or not, would whether the part of the network will be disconnected or not.

43

Figure 6.1: Hierarchy of MQTT brokers

In the case of hierarchical topology, brokers at different levels failed manually to observe

the consequences. Whereas in the case of a cluster, as it forms a ring, only one broker

from the available brokers has failed manually.

6.2 Discussion and Comparison

This Section provides the comparison made between designed naming approaches and

MQTT brokers’ topology. Also, the discussion on the results obtained from experiments

conducted.

6.2.1 Comparison Between Naming Schemes

This Section provides a detailed comparison made between hierarchical naming schemes

and designed hybrid naming schemes. This comparison is performed using a few of the

comparison factors.

Aggregation Of Topic

In MQTT, topic names are used during subscription to the broker and also while publish-

ing data to the respective broker. It is possible to filter the topic by using topic filters.

This topic filter supports the aggregation of the topic. For example, a subscriber con-

nected to an MQTT broker needs to subscribe to all topics on which data is published.

Instead of subscribing to each topic separately. It will only subscribe to ‘#’, which in

turn provides a subscription for all topics available.

Two types of wildcards are used for topic filtering.

• #: Multilevel wildcard

44

– The multilevel wildcard is used to match any number of levels within the topics.

– Multilevel wildcard represents zero or more levels.

– For example, /apt23/# subscription will match to the topics

/apt23/bedroom/sensing/humidity , /apt23/kitchen/action/light.

• ?: single level wildcard

– Single level wildcard matches one and only one level.

– For example, /apt23/? Subscription will match to the topic /apt23/bedroom/ and

not /apt23/bedroom/sensing/

Hierarchical naming schemes allow a higher level of topic aggregation as these name

schemes consist of structured string literals separated using slash (/). It supports the use

of both the topic filter wildcard.

1. #: Multilevel wildcard

For example, If available topics in hierarchical naming scheme are as follows

redmills/floor2/apt23/bedroom/sensing/temeprature ,

redmills/floor2/apt23/kitchen/sensing/temeprature,

redmills/floor2/apt23/kitchen/action/ac,

Then to get all the data present related to apartment 23 only, a subscription to

topic /redmills/floor2/apt23/# is sufficient.

2. ?: Single level wildcard

For example, If available topics in hierarchical naming scheme are as follows

redmills/floor2/apt23/bedroom/sensing/temeprature ,

redmills/floor2/apt23/kitchen/sensing/temeprature,

redmills/floor2/apt23/kitchen/action/ac,

Then to get all the temperature-related data present for apartment 23 only, a sub-

scription to topic /redmills/floor2/apt23/?/sensing/temperature is sufficient.

A hybrid naming scheme implemented is a combination of hierarchical and flat-based

naming schemes. This naming schemes consist of a string literal separated using slash(/)

and appended by the device id with a semicolon(:) at the end. It does offer the advantage

of topic aggregation as a hierarchical naming scheme. But as this naming scheme uses

device id after the colon(:) which could not get covered in aggregation.

For example, If available topics in hybrid naming scheme are as follows

redmills/floor2/apt23/bedroom/sensing/temeprature:2Dbnj7 ,

redmills/floor2/apt23/kitchen/sensing/temeprature:Jul6gh,

45

redmills/floor2/apt23/kitchen/action/ac:Uoh765,

redmills/floor2/apt23/kitchen/sensing/light:L78hul

Then to get all the data from sensing devices present for all the rooms in apartment

23 only, a subscription to topic /redmills/floor2/apt23/?/sensing/# is sufficient. But if

further there is a need to get all the temperature-related data present for apartment 23

only, a subscription to topic /redmills/floor2/apt23/?/sensing/temperature is not possible

in this case as content after a semicolon(:) will not get filter by topic filter.

Security

In hierarchical naming schemes, it sends data as plain text by taking into consideration

that data has been transmitted in a secured environment. That’s the reason why if in

case data packets are leaked; a third person would be able to read the data simply by

looking at the leaked data packet. Whereas, in the case of hybrid naming convention,

End-to-End(E2E) data encryption is used during data publication. The hybrid naming

convention uses Symmetric key encryption to encrypt the data. This data encryption

provides an extra layer of protection to the data. This is very helpful while transmitting

sensitive data such as personal information, health data, and many more. Although this

approach provides an advantage, there is an extra overhead cost required in terms of

encrypting the data at the publisher end and decrypting the data at the subscriber end.

Flexibility To Add New Topic

The hierarchical naming convention offers the flexibility to add new topics without any

extra overhead. Publishers can publish the data to the new topic created as per the

structure given, and subscribers can subscribe to this new topic. In the case of a hybrid

naming convention, It uses a unique device id in the topic. For that purpose, additional

configuration is needed at the publisher side to add the device id in the configuration file

so that the device id will be unique and constant for future instances.

The summary of the comparison between these naming schemes is tabularized under

Table. 6.1

Naming scheme
Total number

of component

Does it have a fixed number

of component in naming
Secure Aggregation Scalable

Hierarchical naming 6 No No Yes Yes

Hybrid naming 7 Yes Yes
Less as compared to

hierarchical naming

Less as compared to

hierarchical naming

Table 6.1: Summary of comparison between naming schemes

46

6.2.2 Comparison Between Network Topologies

This Section provides a detailed discussion of the results and a description of the compar-

ison done on the basis of the observations after conducting experiments. The following

sections contain comparisons made between naming schemes as well as between network

topology using the various factors.

Setup Cost To Add A New Broker

In the case of a hierarchical topology, to add a new MQTT broker as a docker container,

an additional bridge configuration is required to forward the data packets in the MQTT

configuration file. Hierarchical topology resembles the tree structure, As shown in Fig-

ure. 6.2, in which the addition of a broker at the top level will cause configuration file

changes to all the intermediate child brokers. For example, adding a broker at level n will

need updation in the configuration file of the broker at level n+1.

Figure 6.2: Addition of MQTT broker at hierarchy level 0

Whereas in the case of adding a broker at the bottom of the tree, there are no changes

needed in an existing broker configuration files, but a new bridge configuration needs to

be added for the newly added broker. This can be depicted in Figure. 6.3.

On the other hand, in the case of cluster topology, to add a new MQTT broker to the

existing cluster, no additional manual configuration file changes are required. It is easier

to scale up and scale down the cluster with the help of a single command.

Command to scale:

47

Figure 6.3: Addition of MQTT broker at hierarchy level 2

docker service scale hivemq=5 1

Consequences Of Failure Of Broker

In the case of a hierarchical topology as it resembles the tree structure. MQTT broker at

different levels has been marked failure manually to check the consequences. As shown in

Figure. 6.4. If the broker at the top level marked failed, there is no way for subscribers

to get the data as that’s the only broker visible to all subscribers. Subscriber will get

disconnected from the broker network and will not be able to receive any data. The QoS

level of the message being published does not affect the message being reached, as after

restarting or recovering; the broker subscriber needs to re-establish the connection with

the broker.

Figure 6.4: Deletion of MQTT broker at hierarchy level 0

1https://www.hivemq.com/docs/hivemq/4.8/user-guide/docker.html

48

https://www.hivemq.com/docs/hivemq/4.8/user-guide/docker.html

In another scenario, as depicted in the Figure. 6.5, if a broker other than the top level

fails, then only that part of the network will get disconnected from the top level broker.

The subscriber did not get aware of this situation. The subscribe did receive the data

from available publishing brokers, whereas failed brokers would continue sending the data

after recovering.

Figure 6.5: Deletion of MQTT broker at hierarchy level 1

In case of an MQTT broker failure in a cluster topology, this implementation uses a

docker swarm which is a manager node that constantly checks the number of tasks running;

if any of the tasks get failed, it creates a new task immediately. Also, all brokers are at the

same level. That’s why the failure of any broker does not break the network or disconnect

any part of the network. Additionally, failure broker gets recovered automatically; no

manual recovery of a broker is required.

Payload Length

The Table. 6.2 shows the payload length of all MQTT control packets captured for hier-

archical and cluster network topology with both hierarchical and hybrid naming schemes.

PUBLISH and SUBSCRIBE payload length varies in the case of a hierarchical naming

scheme as the topic name gets prefixed while sending data from one broker to another.

Whereas in the case of a cluster, payload length remains the same for PUBLISH and

SUBSCRIBE control packets. Also, The payload length for hybrid naming is more than

the hierarchical naming payload as in the case of hybrid naming, encrypted data has been

sent than the plain text.

49

Network Topology Naming Scheme MQTT control packet
Payload Length

(Byte)

Hierarchical Topology

Hierarchical naming
PUBLISH 42

SUBSCRIBE 58

Hybrid naming
PUBLISH 91

SUBSCRIBE 107

Cluster Topology

Hierarchical naming
PUBLISH 49

SUBSCRIBE 49

Hybrid naming
PUBLISH 98

SUBSCRIBE 98

Table 6.2: Payload length of MQTT control packets in network topology

50

Chapter 7

Conclusions & Future Work

This Section describes in detail the conclusion of the research being conducted. The

conclusion is drawn on the basis of results observed after conducting the experiments as

a part of the thesis. Also, the future scope of this thesis.

7.1 Conclusion

This work was motivated because of the increased usage of IoT devices. These devices

use data-oriented naming rather than the host-centric approach. This led to having an

understanding and design of the naming scheme, which provides benefits in terms of

security, scalability, and flexibility.

A review of existing approaches and work leads to an understanding that most of

the design and implementation provided earlier most commonly use CCN or NDN ar-

chitecture. Only one work has been dedicated to PURSUIT architecture. Furthermore,

as reviewed, none of the work presented before evaluated the performance of the naming

scheme as per the underneath network topology used for the implementation of nodes.

As per the naming schemes designed and implemented as part of the thesis, it can be

concluded that the hierarchical naming schemes approach is more scalable and aggregated

than the designed hybrid naming scheme approach. On the other hand, the hybrid naming

scheme approach is more secure.

In terms of the selection of naming approach, there is a need to address the overhead

of security vs scalability. In terms of use cases in which more sensitive data has been

involved, such as IoT system for health monitoring, it shares the sensitive data which

needs to be protected, and leakage of these data would be risky. In that case, the hybrid

naming scheme fits perfectly.

In terms of topology, cluster topology is a good option to select for any IoT use case.

51

It offers various benefits such as

• Load balancer allows the efficient utilization of resources by sharing the tasks among

available nodes

• Brokers are available all the time, as the failure of any broker does not cause the part

of the network to get disconnected or data unavailable to the client like hierarchical

network topology.

• It is easier to manage various brokers in terms of adding the new one; no additional

setup or config file changes are required. It can be scaled up or down with the help

of single command.

7.2 Future Work

In this thesis, the hierarchical naming scheme and the hybrid naming scheme have been

implemented with network topologies such as hierarchical topology and cluster topology.

The scenarios considered in the thesis contain a network of static sensors. To extend the

same research in the future, it is possible to evaluate the same naming schemes within

a given network topology but with mobile sensors. There are various real-time use cases

possible in which mobile sensors can be used. One of them has been explained under

Section. 4.3.3.

To implement such a scenario, as mentioned in the research, there was a lack of network

simulation tools to provide support for the implementation of the distributed environment

using mobile sensors. So there is a need to search for tools to satisfy these requirements.

Additionally, more research can be conducted to implement the new variation of hybrid

naming schemes with the hierarchical and attribute-value-based naming scheme. Eval-

uating the performance of those naming schemes with the current implemented naming

schemes as a baseline would be possible.

52

Bibliography

Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., and Ohlman, B. (2012). A survey

of information-centric networking. IEEE Communications Magazine, 50(7):26–36.

Amadeo, M., Campolo, C., Iera, A., and Molinaro, A. (2015). Information centric net-

working in iot scenarios: The case of a smart home. In 2015 IEEE International

Conference on Communications (ICC), pages 648–653.

Arshad, S., Azam, M. A., Ahmed, S. H., and Loo, J. (2017). Towards information-

centric networking (ICN) naming for internet of things (IoT). In Proceedings of the

International Conference on Future Networks and Distributed Systems. ACM.

Arshad, S., Shahzaad, B., Azam, M. A., Loo, J., Ahmed, S. H., and Aslam, S. (2018).

Hierarchical and flat-based hybrid naming scheme in content-centric networks of things.

IEEE Internet of Things Journal, 5(2):1070–1080.

Bouk, S. H., Ahmed, S. H., Kim, D., and Song, H. (2017). Named-data-networking-based

its for smart cities. IEEE Communications Magazine, 55(1):105–111.

Cooja (2022). Cooja simulator. https://anrg.usc.edu/contiki/index.php/Cooja_

Simulator. [Online; accessed 16-Aug-2022].

CORDIS (2022). Publish subscribe internet technology. https://cordis.europa.eu/

project/id/257217. [Online; accessed 16-Aug-2022].

Din, I. U., Hassan, S., Khan, M. K., Guizani, M., Ghazali, O., and Habbal, A. (2018).

Caching in information-centric networking: Strategies, challenges, and future research

directions. IEEE Communications Surveys Tutorials, 20(2):1443–1474.

Ghodsi, A., Koponen, T., Rajahalme, J., Sarolahti, P., and Shenker, S. (2011). Naming

in content-oriented architectures. In Proceedings of the ACM SIGCOMM Workshop on

Information-Centric Networking, ICN ’11, page 1–6, New York, NY, USA. Association

for Computing Machinery.

53

https://anrg.usc.edu/contiki/index.php/Cooja_Simulator
https://anrg.usc.edu/contiki/index.php/Cooja_Simulator
https://cordis.europa.eu/project/id/257217
https://cordis.europa.eu/project/id/257217

Gupta, P. and Prabha., I. O. (2021). A survey of application layer protocols for inter-

net of things. In 2021 International Conference on Communication information and

Computing Technology (ICCICT). IEEE.

Ignacio, A. (2022). aignacio/mqtt-sn-contiki example. https://github.com/aignacio/

mqtt-sn-contiki_example. [Online; accessed 16-Aug-2022].

Javaheri, A., Hashemi, S. N. S., and Bohlooli, A. (2020). Hybrid naming scheme based

pursuit architecture for smart city. In 2020 4th International Conference on Smart

City, Internet of Things and Applications (SCIOT), pages 33–38.

Jokela, P., Zahemszky, A., Esteve Rothenberg, C., Arianfar, S., and Nikander, P. (2009).

Lipsin: Line speed publish/subscribe inter-networking. In Proceedings of the ACM

SIGCOMM 2009 Conference on Data Communication, SIGCOMM ’09, page 195–206,

New York, NY, USA. Association for Computing Machinery.

Jovanovic, B. (2022). Internet of things statistics for 2022 - taking things apart. https:

//dataprot.net/statistics/iot-statistics/. [Online; accessed 16-Aug-2022].

Koponen, T., Chawla, M., Chun, B.-G., Ermolinskiy, A., Kim, K. H., Shenker, S., and

Stoica, I. (2007). A data-oriented (and beyond) network architecture. SIGCOMM

Comput. Commun. Rev., 37(4):181–192.

Kurdi, H. and Thayananthan, V. (2022). A multi-tier mqtt architecture with multiple bro-

kers based on fog computing for securing industrial iot. Applied Sciences, 12(14):7173.

Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., and Zhao, W. (2017). A survey on

internet of things: Architecture, enabling technologies, security and privacy, and appli-

cations. IEEE Internet of Things Journal, 4(5):1125–1142.

Mochida, T., Nozaki, D., Okamoto, K., Qi, X., Wen, Z., Sato, T., and Yu, K. (2017).

Naming scheme using nlp machine learning method for network weather monitoring

system based on icn. In 2017 20th International Symposium on Wireless Personal

Multimedia Communications (WPMC), pages 428–434.

Nour, B., Sharif, K., Li, F., Moungla, H., and Liu, Y. (2020). A unified hybrid information-

centric naming scheme for iot applications. Comput. Commun., 150(C):103–114.

OS, C. (2022). Contiki os. https://github.com/contiki-os/contiki. [Online; accessed

16-Aug-2022].

54

https://github.com/aignacio/mqtt-sn-contiki_example
https://github.com/aignacio/mqtt-sn-contiki_example
https://dataprot.net/statistics/iot-statistics/
https://dataprot.net/statistics/iot-statistics/
https://github.com/contiki-os/contiki

Piro, G., Cianci, I., Grieco, L., Boggia, G., and Camarda, P. (2014). Information centric

services in smart cities. Journal of Systems and Software, 88:169–188.

Powell, R. (2021). Docker swarm vs kubernetes: how to choose a container orchestra-

tion tool. https://circleci.com/blog/docker-swarm-vs-kubernetes/. [Online;

accessed 16-Aug-2022].

PSIRP (2022). Publish subscribe internet routing paradigm. http://www.psirp.org/.

[Online; accessed 16-Aug-2022].

Rehman, M. A. U., Ullah, R., and Kim, B. S. (2019). Ninq: Name-integrated query

framework for named-data networking of things. Sensors, 19(13).

Shang, W., Ding, Q., Marianantoni, A., Burke, J., and Zhang, L. (2014). Securing building

management systems using named data networking. IEEE Network, 28(3):50–56.

Stanford-Clark, A. and Truong, H. (2013). Mqtt for sensor networks (mqtt-sn) protocol

specification version 1.2. https://www.oasis-open.org/committees/download.php/

66091/MQTT-SN_spec_v1.2.pdf. [Online; accessed 16-Aug-2022].

Tanenbaum, A. S. and Steen, M. v. (2006). Distributed Systems: Principles and Paradigms

(2nd Edition). Prentice-Hall, Inc., USA.

Xylomenos, G., Ververidis, C. N., Siris, V. A., Fotiou, N., Tsilopoulos, C., Vasilakos, X.,

Katsaros, K. V., and Polyzos, G. C. (2014). A survey of information-centric networking

research. IEEE Communications Surveys Tutorials, 16(2):1024–1049.

55

https://circleci.com/blog/docker-swarm-vs-kubernetes/
http://www.psirp.org/
https://www.oasis-open.org/committees/download.php/66091/MQTT-SN_spec_v1.2.pdf
https://www.oasis-open.org/committees/download.php/66091/MQTT-SN_spec_v1.2.pdf

Appendix

Abbreviation Expansion

IoT Internet of Things

ICN Information Centric Networking

MQTT Message Queuing Telemetry Transport

PSIRP Publish-Subscribe Internet Routing Paradigm

TCP/IP Transmission Control Protocol/Internet Protocol

DONA Data-Oriented Network Architecture

NDN Named Data Networking

CCN Content-Centric Networking

PURSUIT Publish-Subscribe Internet Technology

MQTT SN Message Queuing Telemetry Transport for Sensor Network

E2E End-to-End

UDP User Datagram Protocol

GNS3 Graphical Network Simulator-3

Opnet Optimized Network Engineering Tools

Omnet++ Objective Modular Network Testbed in C++ Omnet++

VM Virtual Machine

NetInf The Network of Information

CoAP Constrained Application Protocol

AMQP Advanced Message Queuing Protocol

STOMP Simple/Streaming Text Oriented Messaging Protocol

SMCP Simple Media Control Protocol

URL Uniform Resource Locator

56

	Abstract
	Acknowledgments
	Chapter Introduction
	Motivation and Aim
	Map

	Chapter State of the Art
	Background
	Information-Centric Networking
	Message Queuing Telemetry Transport (MQTT)
	Naming Conventions

	Related Work
	Summary

	Chapter Problem Statement
	Problem Description

	Chapter Design
	Overview
	Design of Naming Conventions
	Hierarchical Naming Convention
	Hybrid Naming Convention

	Design of Topology
	Scenario 1 : Hierarchical or Tree Topology With Static Sensors
	Scenario 2 : Cluster Topology With Static Sensors
	Scenario 3 : Cluster Topology With Mobile Sensors

	Chapter Implementation
	Challenges Faced During Implementation
	Tools Used
	Docker
	Docker Swarm
	Eclipse Mosquitto
	Hive MQ
	Wireshark

	Technical and Implementation Details
	Scenario 1 : Hierarchical or Tree Topology With Static Sensors
	Scenario 2 : Cluster Topology With Static Sensors

	Chapter Experiments and Discussion
	Experiments
	Experiment 1: Addition Of A New Broker To The Existing Network Topology
	Experiment 2: Failure Of A Broker In A Network Topology

	Discussion and Comparison
	Comparison Between Naming Schemes
	Comparison Between Network Topologies

	Chapter Conclusions & Future Work
	Conclusion
	Future Work

	Bibliography
	Appendices

