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Due to the continuous development of big data technologies, researchers have an increas-
ing demand for data analysis of high-dimensional data. Clustering analysis, one of the
critical data analysis techniques, has many applications. For example, in bioinformatics
or NLP, input datasets include tens to thousands of features (or dimensions), which makes
data processing quite difficult. Clustering methods can help researchers to extract data
with critical features from large data sets. Most modern subspace clustering methods
apply spectral clustering algorithms for the final clustering step, which needs the exact
number of clusters in advance. This thesis aims to optimise the final segmentation step to
improve the algorithm’s stability and obtain a method with good performance and good
clustering results suitable for clustering analysis of high-dimensional data.
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Chapter 1

Introduction

1.1 Motivation

Clustering is a popular technique for the unsupervised classification of objects into clusters

and allows for partitioning groups with similar features without labels. The clustering

algorithm is essential to data analysis and other fields, with a wide range of applications.

For example, in bioinformatics or NLP, the input datasets include tens to thousands of

features (or dimensions), which presents considerable difficulties for data processing. The

clustering methods can help researchers extract key data features from high-dimensional

datasets.

With the continuous development of clustering technology, many excellent clustering

algorithms have emerged. One of the well-known clustering techniques is the KMeans

approach, which can be used to divide the input dataset into k clusters. While MacQueen

(1967) coined the phrase, Stuart Lloyd of Bell Labs originally suggested the standard

approach as a pulse-code modulation technique in 1957. However, due to the selection of

the k value, the pure k-means method is not highly adaptable in real-world applications.

The hierarchical clustering method is a well-known technique for cluster analysis and

requires no specific number for the clusters. The output of hierarchical clustering is a

tree diagram structure, which provides a convenient way to explore all levels of entity

relationships (Ma and Dhavala (2018)). By leveraging the spectrum (eigenvalues) of the

similarity matrix, the spectral clustering technique minimizes the number of dimensions

before clustering the data. The normalized cuts algorithm and Shi-Malik algorithm are

popular normalized spectral clustering methods proposed by Shi and Malik (2000), which

are mostly utilized in the study of image segmentation. In density-based clustering,

clusters are defined as denser regions than the rest of the dataset and sparse regions

are delineated by defining noise and boundary points (Kriegel et al. (2011)). The most

popular density-based clustering method is currently DBSCAN (Ester et al. (1996)). In

1
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contrast to many unique methods, it has a clearly defined cluster model dubbed ”density-

accessibility,” which is comparable to link-based clustering in that it is based on connection

points under a particular distance threshold.

With the continuous development of big data technology, data collection handled

by data analysis is becoming increasingly significant, which in part makes traditional

clustering algorithms technically difficult in clustering some specific data set. For example,

in the high-dimensional sparse data, the cluster class only exist in the subspace composed

of some attributes. Some valuable features are embedded in many features, and traditional

clustering algorithms are less efficient in obtaining subspace clusters. Suppose a clustering

algorithm can identify the subspace cluster and directly find the essential features among

a huge amount of data points. In that case, it will play a vital role in establishing a

good clustering or classification model. The subspace clustering method is a clustering

algorithm using the advanced step of feature selection based on the feature correlation

to detect all clusters in all subspaces. However, the subspace clustering methods seldom

pay attention to the final segmentation step. Almost all the subspace clustering methods

use spectral clustering as the last step to finding the clusters. However, the spectral

clustering method is suitable for datasets known to have a specific number of clusters.

The experimental results of spectral clustering methods are inconsistent from run to run,

and the execution time for a massive amount of data points is slow. In this paper, we

mainly focus on optimizing the last part of the segmentation using a density-based method

(DBSCAN) instead of spectral clustering as the final step to improve the stability of the

algorithm and obtain a method suitable for high-dimensional data clustering analysis with

good performance and clustering effect.

1.2 Contributions

In this paper, we have completed the following contributions:

(1) Reviewed the traditional and subspace clustering methods, and focus particularly

on spectral-based subspace clustering methods.

(2) Learned about and implemented KMeans clustering methods as baseline, Sparse

Subspace Clustering, Sparse subspace clustering by orthogonal matching pursuit

(SSC-OMP), Elastic net Subspace Clustering (EnSC), Low-Rank Representation

(LRR), and Least squares subspace clustering (LSSC).

(3) Generated synthetic data on different angles, noise levels and dimensions. Applied

clustering methods on synthetic data to analyse the clustering performance of the

different clustering methods.
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(3) Proposed a novel method to improve the clustering performance of subspace clus-

tering method by replacing spectral clustering with DBSCAN on the final clustering

step.

(4) Experiment the novel approach using real data Hopkins 155 dataset and Extended

Yale B database.

1.3 Thesis Structure

The overall paper is organized as follows. The literature review of various clustering

methods will be discussed in Chapter 2. Chapter 3 presents the experiment of popular

existing sparse Subspace Clustering methods on the synthetic data of varying angles, noise

level and dimensions. In Chapter 4, we describe a novel method using DBSCAN instead

of spectral clustering with sparse representation. And finally, we discuss the results of the

experiment of the novel method on real data and conclusion in Chapter 5. The objective

of this paper is to propose a novel clustering method, apply it into real data and evaluate

its performance.



Chapter 2

Literature Review

2.1 Clustering Methods

Numerous studies have been done on supervised classification, and neural networks, deci-

sion trees, Bayesian classifiers, etc., all contain some of the first supervised classification

techniques. Unsupervised classification differs from supervised classification, where we are

given tagged patterns. In contrast to supervised classification, which provides us with la-

belled patterns, the unsupervised classification does not apply any labels to any patterns.

Clustering is a common name for unsupervised categorization. In machine learning, data

mining, and bioinformatics, clustering is a commonly used statistical data analysis ap-

proach. As an initial step to comprehending the topics (datasets) in a machine learning

system, we frequently group instances together in machine learning. Clustering is the

process of putting unlabeled instances together and is based on unsupervised machine

learning because the samples are unlabeled. When examples include labels, clustering

turns into classification. In general, given a set of subsets 𝑆1, 𝑆2, · · · , 𝑆𝑘 , the step of the

clustering structure can be represented as:

𝑆1 ∩ 𝑆2 ∩ 𝑆3, · · · ,∩𝑆𝑘 = ∅ (2.1)

, which means that each element in 𝑆(𝑆1, · · · , 𝑆𝑘 ) will be a member of the specified subset

and not the overlap subset. Because no patterns are labelled in clustering, it is thought to

be more challenging than supervised classification. When using supervised classification,

the assigned labels serve as a guide for classifying the individual data objects. It might

be challenging to determine which category a pattern will belong to without labelling.

Several variables or traits may be thought to be good candidates for clustering. The

issue can get worse due to the curse of dimensionality. High dimensionality affects the

algorithm’s consistency and increases processing costs. Although there are some features,

4
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there have been reported solutions in the form of selection methods (Saxena et al. (2010)).

Hierarchical clustering and partitional clustering are two types of data clustering tech-

niques. While partitional clustering algorithms select all clusters at once, hierarchical

clustering techniques leverage previously discovered clusters to find subsequent clusters.

Hierarchical methods can be unifying (bottom-up) or dividing (top-down). Each com-

ponent begins as a separate cluster in an agglomerative algorithm, which subsequently

combines them into a single, larger cluster. Division algorithm starts with the complete

collection and then splits it into more manageable clusters (Madhulatha (2012)).

Partitional clustering minimises a given criterion of clustering by iteratively repo-

sitioning data points between clusters until the best division is obtained. Algorithms

for partitioned clustering separate the data points into k partitions, each representing a

cluster. Partitioning is done by using an objective function. In order to make things

within clusters ”similar” and objects in other clusters ”dissimilar,” clusters are built to

maximize objective partitioning criteria, such as a distance-based dissimilarity function.

Applications that demand a specific number of clusters can benefit from partitioned clus-

tering techniques (Popat and Emmanuel (2014)). Partitional methods are advantageous

for applications needing large data sets for which the production of a dendrogram is

computationally prohibitive. The partitional methods generate clusters by optimizing a

function to define the local or global criterion. Here are some of the popular clustering

methods (Jain et al. (1999)):

a. Squared Error Clustering Method :

(1) Choose the first set of patterns that are divided into a defined number of

clusters and cluster centres.

(2) Assign each pattern to the closest cluster centre, then use that location to

determine the cluster’s centroid. Repeat this process until the cluster members

are stable or until convergence is obtained.

(3) Merge and divide clusters depending on heuristic data, using step 2 repetition

as an option

b. Graph-Theoretic Clustering, which is based on the concepts of the minimal spanning

tree, aslo known as MST of the data. However, the MST edges in the largest dataset

need to be deleted to generate cluster efficiently.

Hierarchical clustering algorithms divide or merge data sets into a series of nested

partitions (Murtagh and Contreras (2017)). Clustering in the cohesive approach begins

with each object in a distinct cluster and then moves on to cluster the closest cluster

pairings until all objects are gathered in a single cluster. Contrarily, in split hierarchical
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clustering, all items are initially grouped into a single cluster before being divided into

smaller clusters until they are all grouped into unitary clusters (Voorhees (1986), Rani1

and Rohil (2013)). All of these hierarchical methods show a natural way of representing

clusters, called a tree diagram. ROCK, BIRCH (which uses hierarchical balanced iterative

reduction and clustering), and CURE are examples of such algorithms (using representa-

tive clustering) (Popat and Emmanuel (2014)). Sibson (1973), Rohlf (1973) and Defays

(1977) proposed the efficient hierarchical clustering algorithms with 𝑂 (𝑛2) time complex-

ity of the single link methods and a nonunique complete link algorithm , which have been

widely used. There have been numerous grouping and stratification techniques put out

through time. These techniques can use graphical representations, such as Sneath and

Sokal (1966) created for building hierarchical clusters. The second category of hierarchical

clustering techniques includes centroid, median, and minimal variance methods, enabling

cluster centres to be selected. The second one canbe described by the dissimilaries or

alternatively by the cluster center, coordinates (Murtagh and Contreras (2012), Murtagh

and Contreras (2017)).

2.2 Density-Based Clustering Methods

Hierarchical clustering is a clustering algorithm gathering data points whit same features

and dividing data points with opposite features. Hierarchical clustering has two different

approaches: Agglomerative clustering and Divisive clustering. Agglomerative hierarchical

clustering methods represent a cluster with pixel description and utilize the nest sequence

to combine the clusters. In comparison, divisive hierarchical clustering will consider all

the patterns in one of the clusters and divide them then. And the steps of the hierar-

chical clustering methods are easily interpreted by using the graph representation and

can ignore the effect of the initial set-up and local minima Wilson et al. (2002) Frigui

and Krishnapuram (1997). The partitional clustering algorithms, which employ the sum

of distances from the vector of the pixel to the prototype of the cluster contained in 𝑛-

dimension space, will, however, output a single partition of the data via iterations. And

each pixel is set from 0 to 1 as an extent to each cluster assigned. And the process of the

partitional clustering algorithms combine with the wide range of knowledge from different

aspects by utilizing various objective distance functions Wilson et al. (2002) Frigui and

Krishnapuram (1997). The most significant difference between hierarchical and partial

clustering is the running time. The Partitional algorithm processes a piece of data and

finds the best point for that piece of data, and it is faster than the hierarchical approach.

However, the higher the value of k, the higher the transaction cost. Another difference is

the input-output. This difference consists of the different methods of layered and partial
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algorithms. A hierarchical algorithm finds many optimality points, usually giving us a

local optimum rather than a global one and sometimes, this local optimum may be the

global optimum. But hierarchical methods handle all of the data points and also provide

an optimum point to handle it.

Mean shift stands for a procedure of iteration that can shift each instance (data

points) to the average data points around them and builds upon the concpet oif the

kernel density estimation. Given a set of data 𝑆 embedded in a 𝑛-dimensional space of

Euclidean and a flat kernel 𝐾, which is the obejective function in the 𝜆 − 𝑏𝑎𝑙𝑙:

𝐾 (𝑥) =
{
1 𝑖 𝑓 ∥𝑥∥ ≤ 𝜆
0 𝑖 𝑓 ∥𝑥∥ > 𝜆

(2.2)

And given 𝑥 ∈ 𝑋, the sample mean is defined as:

𝑚(𝑥) =
∑
𝑥∈𝑆 𝐾 (𝑠 − 𝑥)𝑠∑
𝑠∈𝑆 𝐾 (𝑠 − 𝑥

(2.3)

According to the above equations, Fukunaga and Hostetler (1975) called the difference

𝑚(𝑥) − 𝑥 as mean shift and the repeated operations of the data points is the mean shift

algorithm, which has been used for the cluster analysis (Cheng (1995)). Here are two

main mean shift clustering algorithms (Anand et al. (2013)):

a. Euclidean Mean Shift Clustering: Given 𝑛 data points embeded in 𝑑-dimensional

space and the sample data points density estimator obtains with the kernel 𝑘 (𝑥) de-
fined by:

𝑓 (𝑥) = 1

𝑛

𝑛∑︁
𝑖=1

1

ℎ𝑑
𝑖

𝑘 (∥ 𝑥 − 𝑥𝑖
ℎ𝑖
∥2) (2.4)

The local maximum of the objective function can be reached using mean shift process

iteratively:

𝛿𝑥 =

∑𝑛
𝑖=1

𝑥𝑖

ℎ𝑑+2
𝑖

𝑔(∥ 𝑥−𝑥𝑖
ℎ𝑖
∥2)∑𝑛

𝑖=1
1

ℎ𝑑+2
𝑖

𝑔(∥ 𝑥−𝑥𝑖
ℎ𝑖
∥2)
− 𝑥 (2.5)

, where the current mean is 𝑥 and the 𝛿𝑥 is the mean shift vector.

b. Mean Shift Clustering in Kernel Spaces: Anand et al. (2013) improved the

above mean shift clustering algorithm from the euclidean space to the general space.

Given 𝜒 as the input space and data points 𝑥𝑖 ∈ 𝜒. Each data point is mapped to

a 𝑑𝜙-dimensional feature space applying the following objective function:

𝜙(𝑥) = [𝜙1(𝑥) 𝜙2(𝑥) · · · 𝜙𝑑𝑝ℎ𝑖 (𝑥)]
𝑇 (2.6)
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The mean shift procedure can be iterated:

𝛿𝑦 =

∑𝑛
𝑖=1

𝜙(𝑥𝑖)
ℎ
𝑑𝜙+2
𝑖

𝑔(∥ 𝑦−𝜙(𝑥𝑖)
ℎ𝑖
∥2)∑𝑛

𝑖=1
1

ℎ
𝑑𝜙+2
𝑖

𝑔(∥ 𝑦−𝜙(𝑥𝑖)
ℎ𝑖
∥2)
− 𝑦 (2.7)

Rodriguez and Laio (2014) proposed the Density Peaks Clustering method, which

uses the local density 𝜌𝑖 and its distance 𝛿𝑖 from the data points in the high density

space. Given the dataset 𝑋𝑁×𝑀 = [𝑥1, 𝑥2, · · · , 𝑥𝑁 ]𝑇 and 𝑥𝑖 = [𝑥1𝑖, 𝑥2𝑖, 𝑥𝑀𝑖] is a vector with

𝑀 attributes and the Euclidean distance 𝑑 (𝑥𝑖, 𝑥 𝑗 ) defined as follows:

𝑑 (𝑥𝑖, 𝑥 𝑗 ) = ∥𝑥𝑖 − 𝑥 𝑗2∥ (2.8)

The local density of a data points is defined as:

𝜌𝑖 =
∑︁
𝑗

𝜒(𝑑 (𝑥𝑖, 𝑥 𝑗 ) − 𝑑𝑐) (2.9)

𝜒(𝑥) =
{
1, 𝑥 < 0

0, 𝑥 ≤ 0
(2.10)

𝜌𝑖 can also be defined as:

𝜌𝑖 =
∑︁
𝑗

exp(−
𝑑 (𝑥𝑖, 𝑥 𝑗 )2

𝑑2𝑐
) (2.11)

, where 𝑑𝑐 is an input parameter, which controls the degradation rate of the weight. The

calculation of 𝛿𝑖 contains the minimum distance and defined as:

𝛿𝑖 =


min
𝑗 :𝜌𝑖>𝜌 𝑗

(𝑑 (𝑥𝑖, 𝑥 𝑗 )), 𝑖 𝑓 ∃ 𝑗 𝑠.𝑡.𝜌𝑖 > 𝜌 𝑗

max
𝑗
(𝑑 (𝑥𝑖, 𝑥 𝑗 )), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.12)

When using a local cluster criterion, density-based clustering algorithms define clusters

as areas in the data space with higher density than areas with noise or boundary points.

However, the high-density zones may be arbitrarily separated into the data points, with

the potential for arbitrary sizes and forms. The grid-based subspace clustering method

is one of the common ways to find the high-density area, which means partitioning each

dimension space into non-overlapping grids (Jahirabadkar and Kulkarni (2013)). Clusters

in high-dimensional data are frequently and widely found using density-based methods.

These algorithms find the subspaces in the high-density data, and the target clusters are

contained within them.
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The various density-based methods proposed in the literature mainly differ in the

following aspects:

1. How to estimate the density 𝑝(𝑥)?

2. How to define the connectivity?

3. Is the algorithm suitable for achieving scalability for a large dataset?

DBSCAN (Ester et al. (1996)) is the first density based clustering algorithm, which

based on the concept of density. In DBSCAN, given a distance threshold 𝑒𝑝𝑠 and a

density threshold number 𝑚𝑖𝑛𝑃𝑡𝑠:

1. 𝑒𝑝𝑠 : It represents that if the distance between two data points is lower or equal to

𝑒𝑝𝑠, these points can be considered as neighbors.

2. 𝑚𝑖𝑛𝑃𝑡𝑠: It represents the minimum number of points to form a dense region.

Density-based spatial clustering of applications with noise (DBSCAN), a new cluster-

ing technique described by Ester et al., uses just one input parameter and assists the user

in choosing a suitable value. The DBSCAN algorithm applies both 2D and 3D Euclidean

space as well as some high density space and can formalize the clusters and noise intu-

itively. The main idea of this method is that for each point in the cluster, the density of

a given radius domain must be greater than a certain threshold. The Eps-neighborhood

of a point is defined:

𝑁𝐸𝑝𝑠(𝑝) = {𝑞 ∈ D|𝑑𝑖𝑠𝑡 (𝑝, 𝑞) ≤ 𝐸𝑝𝑠}

If a point p is direct density-reachable from a point q, that means:

1) p∈ 𝑁𝐸𝑝𝑠(𝑞)

2)
��𝑁𝐸𝑝𝑠 (𝑞)�� ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 (Core condition)

Algorithm 1 Density-based Spatial Clustering of Applications with Noise (DB-
SCAN)(Ester et al. (1996))

Input: Data matrix 𝐷, radius 𝐸𝑝𝑠 and density threshold 𝑀𝑖𝑛𝑃𝑡𝑠.

1: ∀𝑛 ∈ 1 : 𝑁 do

2: if n not member of cluster then

3: Create new cluster

4: while neighbors of n satisfy do

5: add them to cluster

6: end while

7: end if
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DBSCAN clustering model is a density-based spatial clustering algorithm, which splits

regions with adequate density into clusters and detects clusters of any shape in a noisy

spatial database. According to the conventional definition of density, the number of points

(including the point itself) that fall inside a circle centred on point a and with radius 𝑟 can

be used to estimate the density of point an in a data collection given a radius 𝑟. Density

depends on radius. The points in the sample set can be divided into the following three

groups using the definition of density provided above:

a. Core points: points that contain more than the number of MinPts (the minimum

number) in the region of radius r are called core points.

b. Boundary points: points in the region of radius r that contain less than the number

of MinPts but are direct neighbours of the core points.

c. Noise points: points that are neither core points nor boundary points. Noise points

will not be included in the clusters, and boundary points and core points form the

‘clusters’ of the clusters.

Figure 2.1: Clustering using the KMeans
algorithm

Figure 2.2: Clustering using the DBSCAN
algorithm

The Figure 2.1 & 2.2 shows the clustering effects of KMeans algorithm and DBSCAN

algorithm on two half-moon data sets. It can be seen from the figures that the DBSCAN

algorithm can accurately identify two half-moon-shaped data clusters. Compared with

the DBSCAN algorithm, the KMeans algorithm has lower accuracy.

The clustering model using DBSCAN utilizes a simple minimum estimation of the

density level regarding to a threshold about the number of the neighbors. The objective of

the DBSCAN clustering model is to divide the areas of them using the criteria of satisfying

the minimum density. There are two important parameters in DBSCAN clustering model:

the number of neighbors 𝑚𝑖𝑛𝑃𝑡𝑠 and the radius 𝜀. All the points in the neighbor of a core

point within the radius 𝜀 of it can be considered as the same cluster of the core point (also
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called direct density reachable). If there is no core point in the set, they are called border

points and all the data points in this set are density connected (Schubert et al. (2017)).

Figure 2.3: Illustration of the DBSCAN cluster model (Schubert et al. (2017))

The Figure 2.3 shows the concepts of the DBSCAN clustering model. In the situation

of this figure,the parameter 𝑚𝑖𝑛𝑃𝑡𝑠 is 4 and the radius of the core point is illustrated by

the circles’ radius. Point A is a core point, Point B and C are the border points while

Point N is a noise point.

The DBSCAN algorithm linearly scans the set of data points to look for things that

haven’t been processed yet. Its neighbours are iteratively extended and added to the clus-

ter when a core point is discovered. Non-core points are allocated to the noise. Objects

given to a cluster are skipped when encountered in subsequent linear scans. This funda-

mental algorithm is the standard method for computing inverse closures of relationships

with the minimal modification that only the core points are extended. Algorithm 2 gives

simplified pseudocode of this DBSCAN algorithm.
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Algorithm 2 Original Sequential DBSCAN Algorithm(Schubert et al. (2017))

Input: A set of database, radius 𝜀, density threshold 𝑚𝑖𝑛𝑃𝑡𝑠, distance function 𝑑𝑖𝑠𝑡 and

the labels of the data points.

1: foreach point p in data set do

2: if label(p) ≠ undefined then continue

3: Neighbors 𝑁 ← RangeQuery(DB, dist, p, 𝜀)

4: if |𝑁 | < 𝑚𝑖𝑛𝑃𝑡𝑠 then
5: label(p) ← Noise

6: continue

7: 𝑐 ← next cluster label

8: label(p) ← 𝑐

9: Seed set 𝑆 ← 𝑁\{𝑝}
10: foreach 𝑞 in 𝑆 do

11: if label(q) = Noise then label(q) ← 𝑐

12: if label(q) ≠ undefined then continue

13: Neighbors 𝑁 ← RangeQuery(DB, dist, q, 𝜀)

14: label(q) ← 𝑐

15: if |𝑁 | <minPts then continue

16: 𝑆 ← 𝑆 ∪ 𝑁

The original DBSCAN clustering model is a simplified pseudo-code based on the con-

cept of DBSCAN model. There is a function called RangeQuery, which only execute if

the label isn’t labelled.

CLIQUE is the first grid-based, non-overlapping subspace clustering algorithm for

the high dimensional data, which discovers the subspaces of them (Agrawal et al. (1998)).

CLIQUE utilizes an Apriori-like method to recursively navigate the possible subspaces

from the bottom to the top. An axis-parallel grid is used to partition the data space

into equal-sized blocks, and only cells with densities higher than a certain threshold are

kept. Finding such dense cells begins with one-dimensional dense cells using a bottom-

up technique. An iterative process that goes from (k-1) dimensional dense cells to (k-

2) dimensional dense cells develops k-dimensional cells by self-joining all of the (k-1)

dimensional dense cells with the first (k-2) dimensions. All candidates that were generated

but were not dense will be removed. The clusters are discovered to be the most extensive

collection of connected dense cells after creating all the dense cells of interest.

SUBCLU is the first subspace clustering algorithm that extends the DBSCAN al-

gorithm to detect clusters in high dimensional data based on the notion of DBSCAN

(Kailing et al. (2004)). It discovers all the subspaces in the high dimension space using
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a greedy algorithm to overcome the grid-based approaches’ limitations. The input den-

sity parameters 𝜀-radius and 𝜇-density threshold are used to execute DBSCAN on each

dimension to initially construct all 1-dimensional clusters. This method holds the mono-

tonicity attribute in the core object specification that is used to define the clusters. This is

used to locate clusters in all high-dimensional candidate subspaces using an Apriori-based

method (Jahirabadkar and Kulkarni (2013)).

2.3 Spectral Clustering Method

Spectral clustering algorithm is a popular clustering method, which doesn’t require the

assumptions of the whole structure of the data set. Spectral clustering algorithms perform

well for the data set with arbitrary size and shape. In 1973, Donath and Hoffman (2003)

first proposed the concept of the spectral clustering model and introduced the technique

of graph partitioning. At the same year, Fiedler (1973) gave the proof of the dichotomy

of the graph is closely related to the second eigenvector of the Laplacian matrix. Hagen

and Kahng (1992) discovered the relations between graph partition and clustering and

proposed the ratio cut method first in 1992. Since 2000, spectral clustering model becomes

a hot spot of many areas such as data mining, bio-information. computer vision and image

classification (Jia et al. (2014)).

Von Luxburg (2007) described different graph Laplacian operators and their basic

properties, deduces several common algorithms in detail through several different ways,

and points out their advantages and disadvantages. Given a matrix W, the simple way is

to solve the mincut problem:

𝑐𝑢𝑡 (𝐴1, · · · , 𝐴𝑘 ) :=
1

2

𝑘∑︁
𝑖=1

𝑊 (𝐴𝑖, 𝐴𝑖) (2.13)

The mincut occasionally only isolates a single vertex from the rest of the graph, which

is not what we want. One of the solution is to make the sets 𝐴1, · · · , 𝐴𝑘 relatively large.

And the RatioCut and normalized cut Ncut is two most common solution to solve this

problem:

𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡 (𝐴1, · · · , 𝐴𝑘 ) :=
1

2

𝑘∑︁
𝑖=1

𝑊 (𝐴𝑖, 𝐴𝑖)
|𝐴𝑖 |

=

𝑘∑︁
𝑖=1

𝑐𝑢𝑡 (𝐴𝑖, 𝐴𝑖)
|𝐴𝑖 |

(2.14)

𝑁𝑐𝑢𝑡 (𝐴1, · · · , 𝐴𝑘 ) :=
1

2

𝑘∑︁
𝑖=1

𝑊 (𝐴𝑖, 𝐴𝑖)
𝑣𝑜𝑙 (𝐴𝑖)

=

𝑘∑︁
𝑖=1

𝑐𝑢𝑡 (𝐴𝑖, 𝐴𝑖)
𝑣𝑜𝑙 (𝐴𝑖)

(2.15)

The two objective functions discussed above thus aim to achieve a ”balance” of clusters, as

determined by the number of vertices or the weights of edges. But the formerly straight-
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forward mincut problem becomes NP-hard with the addition of equilibrium requirements.

This kind of issue can be facilitated by spectral clustering.

2.4 Subspace Clustering Methods

Clustering algorithms aim to find groupings of related things that are often represented as

a point in a multi-dimensional space. Technology improvements have facilitated and accel-

erated data acquisition, leading to larger, more complex datasets with numerous objects

and dimensions. Existing techniques must be modified to preserve the quality of cluster-

ing, and speed as datasets expand and change. When different dimensional subsets of the

dataset are connected differently, multidimensionality still affects many older clustering

algorithms. Algorithms for subspace clustering aim to reveal this kind of link. Unim-

portant attributes must be eliminated for the clustering algorithm to concentrate solely

on the pertinent two-dimensional space to discover these clusters. In addition to being

simpler to understand, the groups located in the lower dimensional area can better direct

future research. The idea of ‘Subspace Clustering’ has been introduced to address the

issue of the clusters being embedded in different subsets of dimensions in high-dimensional

data.

To locate clusters in various subspaces of the same dataset, subspace clustering is an

extension of feature selection. The number of axis-parallel subspaces where clustering

may exist grows exponentially as the size of the data space rises. To develop suitable trial

methods for locating subspaces, research in this area is focused mainly on this. Beginning

with state-of-the-art methods for axis-parallel subspace clustering, two conflicting funda-

mental strategies for searching subspaces—top-down search and bottom-up search—are

pursued. It is essential to use a heuristic approach to find suitable subspaces, which de-

termines the subspace clustering algorithms’ characteristics, which presents a difficulty

for subspace clustering algorithms (Friedman (1994), Strang (2006)). Figure 2.4 presents

a hierarchy of subspace clustering algorithm organized by the the search techniques.
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Figure 2.4: Hierarchy of Subspace Clustering Algorithms (Parsons et al. (2004)

)

Top-Down Subspace Search The top-down approach is justified by identifying

subspaces of clusters starting from the complete dimensional space. This is often accom-

plished by selecting a subset of characteristics for a given collection of points (possible

cluster members) such that these points match the specified clustering requirements when

projected onto that particular subspace. The challenge is that at least some of the cluster

members must be known to determine the subspace of a cluster. On the other hand, the

subspace of each cluster must be understood to identify its members. Most top-down sys-

tems rely on the localization assumption, which is a somewhat rigid premise, to avoid this

circular dependence. It is expected that the local neighbourhoods (in the full-dimensional

data space) of cluster centroid that can be used to generate the subspaces of a cluster. In

other words, even in the full-dimensional space, it is assumed that the subspaces of each

cluster may be learned from the local neighbourhoods of cluster representatives or cluster

members. Other top-down approaches that do not rely on locality build a collection of

prospective cluster members using random sampling as a heuristic (Kriegel et al. (2012)).

Bottom-Up Subspace Search The search space of the frequent itemset issue in the

transactional database domain of shopping basket analysis is similar to the exponential
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search space of all feasible subspaces of the data space to be traversed. For example,

an itemset may contain lots of items. The core concept behind the APRIORI algorithm

(Agrawal et al. (1994)) is to start with a size 1 itemset (referred to as a ”transaction”)

that contains a single item, regardless of any additional items that may be present, and

then exclude from the search larger itemsets that are no longer frequent because it is

already known which smaller itemsets are frequent (Kriegel et al. (2012)).

2.5 Sparse Subspace Clustering Methods

Sparse Subspace Clustering Since each data point in a subspace union can be effec-

tively represented as a linear or affine combination of other points, Elhamifar and Vidal

(2012) proposed and studied an algorithm based on this self-expressive property of the

data. This algorithm, called sparse subspace clustering (SSC), is based on prior research

on subspace clustering methods. The approach can solve issues with local spectrum-

based clustering algorithms, including selecting the right neighbourhood size and han-

dling points close to subspace intersections. By incorporating the necessary models into

the sparse optimisation process, the sparse subspace clustering approach may directly

address data disturbances like noise, sparse discrete entries and missing entries, and more

broad classes of affine subspaces. The sparse subspace clustering successfully retrieves the

precise sparse representation of the data set when the subspaces and data point distribu-

tion are appropriate.

Let {𝑆ℓ}𝑛ℓ=1 be the representation of 𝑛 linear subspace of dimensions and given a set of

𝑁 non-noise data points {𝑦𝑖}𝑁𝑖=1 which embedded in the union of n subspaces. The matrix

containing all data points is represented as:

𝑌 ≜ [𝑦1 · · · 𝑦𝑁 ] = [𝑌1 · · ·𝑌𝑛]Γ (2.16)

, where 𝑌ℓ ∈ R𝐷×𝑁𝑙 is a 𝑟𝑎𝑛𝑘 − 𝑑𝑙 matrix of the 𝑁𝑙 > 𝑑𝑙 points that lie in 𝑆𝑙 and Γ ∈ R𝑁×𝑁

is an unknown permutation matrix. To solve the clustering problem in two steps. In the

first step, we find several other points belonging to the same subspace for each data point.

To do this, the authors propose a global sparse optimisation procedure whose solution

encodes information about the membership of the data points in the underlying subspace

of each point. Information about the data point’s membership in each point’s underlying

subspace. In a second step, use this information in the spectral clustering framework to

infer the clustering of the data. The following equation:

𝑦𝑖 = 𝑌𝑐𝑖, 𝑐𝑖𝑖 = 0 (2.17)
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, which has infinite solutions and can be restricted solutions by minimizing some objective

functions. For example, minimize the ℓ𝑞 − 𝑛𝑜𝑟𝑚 solutions:

min ∥𝐶𝑖∥𝑞 𝑠.𝑡. 𝑦𝑖 = 𝑌𝑐𝑖, 𝑐𝑖𝑖 = 0 (2.18)

After solving the above optimizing problem, we will obtain sparse representations. The

subsequent phase involves using the sparse coefficients to infer the segmentation of the

data points into several subspaces. We can use a weighted graph G = (𝜈, 𝜀,𝑊), where 𝜈
refers to the set of N nodes in the graph, 𝜀 ⊆ 𝜈 × 𝜈, and 𝑊 ∈ R𝑁×𝑁 is a symmetric matrix

which represents the edges of the graph. The following Algorithm 1 summarizes the basic

steps of the Sparse Subspace Clustering algorithm.

Algorithm 3 Sparse Subspace Clustering (SSC)(Elhamifar and Vidal (2012))

Input: Given a set of data points {𝑦𝑖}𝑁𝑖=1 in the n linear subspaces {𝑆𝑖}𝑛𝑖=1:
1: Use the following formula to solve the sparse optimization program:

2: For uncorrupted data:

min ∥𝐶∥1 𝑠.𝑡. 𝑌 = 𝑌𝐶, 𝑑𝑖𝑎𝑔(𝐶) = 0

3: For corrupted data:

min ∥𝐶∥1 + 𝜆𝑒∥∥1 +
𝜆𝑧

2
∥𝑍 ∥2𝐹

𝑠.𝑡. 𝑌 = 𝑌𝐶 + 𝐸 + 𝑍, 𝑑𝑖𝑎𝑔(𝐶) = 0

4: Normalize C as 𝑐𝑖 ← 𝑐𝑖
∥𝑐𝑖 ∥∞ .

5: Set the weights on the edges of a similarity graph with 𝑁 nodes:

𝑊 = |𝐶 | + |𝐶 |𝑇

6: Apply sparse subspace clustering method into the similarity graph built by 𝑛 con-

nected components embedded in the 𝑛 subspace:

𝑊 =


𝑊1 · · · 0
...

. . .
...

0 · · · 𝑊𝑛

 Γ
Output: Finally, output the segmentation of the data points:𝑌1, 𝑌2, · · · , 𝑌𝑛.

Sparse Subspace Clustering By Orthogonal Matching Pursuit You et al.

(2016b) studied a subspace clustering method based on orthogonal matching pursuit, and
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proved that it was computationally effective, and guaranteed the similarity of subspace

under a wide range of conditions. The sparse representation can be solved by following

optimizing problem since every data points in 𝑆𝑖 can be expressed:

𝐶∗𝑗 = argmin
𝑐 𝑗
∥𝑐 𝑗 ∥0 𝑠.𝑡. 𝑥 𝑗 = 𝑋𝑐 𝑗 , 𝑐 𝑗 𝑗 = 0 (2.19)

, where ∥𝑐∥0 is the number of the nonzero points in 𝑐. Elhamifar and Vidal optimized

the above NP hard problem using following ℓ1 solution:

𝐶∗𝑗 = argmin
𝑐 𝑗
∥𝑐 𝑗 ∥1 𝑠.𝑡. 𝑥 𝑗 = 𝑋𝑐 𝑗 , 𝑐 𝑗 𝑗 = 0 (2.20)

The above two equations provide subspace preserving by providing a sparse representation

𝑐 𝑗 , and under certain conditions, the orthogonal matching pursuit algorithm (Algorithm

4) can solve the problem min𝑐 ∥𝐴𝑐 − 𝑏∥22 𝑠.𝑡. ∥𝑐∥0 ≤ 𝑘 by choosing one column of

𝐴 = [𝑎1, · · · , 𝑎𝑀] and calculating the coefficients for the selected one until 𝑘 elements are

selected. The 𝑐∗
𝑗
∈ R𝑁 can be calculated by OMP while a zero is inserted into the j th

entry. And then, using spectral clustering to the affinity matrix 𝑊 as the Algorithm 5

shown.

Algorithm 4 Orthogonal Matching Pursuit (OMP)(You et al. (2016b))

Input: 𝐴 = [𝑎1, · · · , 𝑎𝑀] ∈ R𝑚×𝑀 , 𝑘max, 𝜖 .

1: Initialize 𝑘 = 0, residual 𝑞0 = 𝑏, support set 𝑇0 ≠ 0.

2: while 𝑘 < 𝑘max and ∥𝑞𝑘 ∥2 > 𝜖 do

3: 𝑇𝑘+1 = 𝑇𝑘 ∪ {𝑖∗}, where 𝑖∗ = arg𝑖=1,··· ,𝑀 max |𝑎𝑇
𝑖
𝑞𝑘 |1.

4: 𝑞𝑘+1 = (I − P𝑇𝑘+1)𝑏, where 𝑃𝑇𝑘+1 is the projection onto the span of the vectors

𝑎 𝑗 , 𝑗 ∈ 𝑇𝑘+1.
5: 𝑘 ← 𝑘 + 1.
6: end while

Output: 𝑐∗ = argmin𝑐:𝑆𝑢𝑝𝑝(𝑐)⊆𝑇𝑘 ∥𝑏 − 𝐴𝑐∥2.

Algorithm 5 Sparse Subspace Clustering by Orthogonal Matching Pursuit (SSC-
OMP)(You et al. (2016b))

Input: Data 𝑋 = [𝑥1, · · · , 𝑥𝑁 ], 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑘max, 𝜖

1: Compute 𝑐∗
𝑗
from OMP(X−𝑘 , 𝑥 𝑗 )

2: Set 𝐶∗ = [𝑐∗1, · · · , 𝑐
∗
𝑁
] and 𝑊 = |𝐶∗ | + |𝐶∗𝑇 |.

3: Compute segmentation from 𝑊 by spectral clustering.

Output: Segmentation of data 𝑋.
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Elastic net Subspace Clustering You et al. (2016a) proposed a geometric algorithm

for the elastic net subspace clustering. They pointed out that the main difference of those

latest clustering methods is about the choice of the regularizer 𝑟 (·). Although elastic nets

have recently been introduced for subspace clustering in Fang et al. (2014) and Panagakis

and Kotropoulos (2014), the authors point out that these studies do not provide condi-

tions that guarantee that affinity is subspace preserving, nor do they provide potential

improvements in connectivity. They, therefore, give requirements for affinity-preserving

subspaces and a balance between subspace preservation and connectivity properties. The

objective function is as follows:

𝑓 (𝑐;b, 𝐴) := 𝜆∥𝑐∥1 +
1 − 𝜆
2
∥𝑐∥22 +

𝛾

2
∥b − 𝐴𝑐∥22 (2.21)

Next, normalize b and {𝑎 𝑗 }𝑁𝑗=1 as a unit of ℓ2 norm, and the elastic net optimize problem

can be computed as follows:

𝑐∗(b, 𝐴) := arg𝑐min 𝑓 (𝑐;b, 𝐴). (2.22)

Then, utilize the concepts of Oracle Point and Oracle Region to present a geometric

analysis:

a. Oracle Point:

𝛿(b, 𝐴) := 𝛾 · (b − 𝐴𝑐∗(b, 𝐴)). (2.23)

The dependency of the Oracle Point has been omitted by writing 𝛿(b, 𝐴) as 𝛿. And
the Oracle Point is unique because the 𝑐∗ is also unique, which means the Oracle

Point can only be calculated until the 𝑐∗ has been calculated. The function 𝑐∗ is

defined by:

(1 − 𝜆)𝑐∗ = 𝜏𝜆 (𝐴𝑇𝛿) (2.24)

The equation 2.24 shows that the solution 𝑐∗ can be calculated straightforward when

the Oracle Point 𝛿 is not defined.

b. Oracle Region:

Δ(b, 𝐴) := {𝑣 ∈ R𝐷 : ∥𝑣∥2 = 1, 𝜇(𝑣, 𝛿) > 𝜆

∥𝛿∥2
} (2.25)
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Algorithm 6 Elastic net Subspace Clustering (EnSC)(You et al. (2016a))

Input: 𝐴 = [𝑎1, · · · , 𝑎𝑁 ] ∈ R𝐷×𝑁 ,b ∈ R𝐷 , 𝜆 and 𝛾

1: Initialize the support set 𝑇0 and set 𝑘 ← 0.

2: loop

3: Compute 𝑐∗(b, 𝐴𝑡𝑘 ) as the equation 2.22 by using any solver.

4: Compute 𝛿(𝑏, 𝐴𝑇𝑘 ) from 𝑐∗(𝑏, 𝐴𝑇𝑘 ) as the equation 2.24 shows.

5: Active set update: 𝑇𝑘+1 ← { 𝑗 : 𝑎 𝑗 ∈ Δ(𝑏, 𝐴𝑇𝑘 )}.
6: If 𝑇𝑘+1 ⊆ 𝑇𝑘 , terminated;otherwise set 𝑘 ← 𝑘 + 1.
7: end loop

Output: A vector 𝑐 equals to 𝑐𝑇𝑘 = 𝑐
∗(𝑏, 𝐴𝑇𝑘 ) or zeros, and its support is 𝑇𝑘+1.

Although the elastic net optimization problem has been used to solve the subspace clus-

tering, the previous work could not be considered an efficient algorithm for the lagre scale

dataset and it requires to calculate the whole data matrix 𝐴. However, the Elastic net

Subspace Clustering method is proposed to reduce the scale of the problem by using the

concepts of the Oracle Region and Oracle Point as the Algorithm 6 shows.

You et al.exploit the mixture of 𝐿1 and 𝐿2 norms to balance the properties of the

subspace preserving and connectedness. And their analysis is built upon the optimiza-

tion problem min𝑐 𝑓 (𝑐; 𝑥 𝑗 , 𝑋 𝑡− 𝑗 ) and treat all points from other subspaces as newly added

columns. Finally, they got the result given 𝑥 𝑗 ∈ 𝑆𝑡 that the vector 𝑐∗(𝑥 𝑗 ), 𝑋− 𝑗 is subspacee
preserving if and only if 𝑥𝑘 ∉ Δ(𝑥 𝑗 , 𝑋 𝑡− 𝑗 ) for all 𝑥𝑘 ∉ 𝑆𝑡 . To ensure that the subspace is

maintained, we need a small oracle region. And to ensure that connectivity is maintained,

we need a large oracle region. The elastic net balances the 𝐿1 regularization and 𝐿2 reg-

ularization. And the oracle region will decrease as 𝜆 is increased from zero. Finally, the

Elastic net Subspace Clustering algorithm finds a effective condition for the affinity for the

balck between the subspace preserving and the connectivity. Let 𝑥 𝑗 ∈ S𝑙 , 𝛿 𝑗 = 𝛿(𝑥 𝑗 , 𝑥𝑙− 𝑗 )
be the Oracle Point. Then, the 𝑐∗(𝑥 𝑗 , 𝑋− 𝑗 ) is subspace preserving if

max
𝑘:𝑥𝑘∉𝑆𝑡

𝜇(𝑥𝑘 , 𝛿 𝑗 ) ≤
𝑟2
𝑗

𝑟 𝑗 + 1−𝜆
𝜆

(2.26)

Low-Rank Representation Liu et al. (2013) proposed a novel method named Low-

Rank Representation(LRR) by seeking the lowest-rank representation and proved that the

convex program in this algorithm could address the subspace clustering. To divide samples

into their corresponding subspaces and simultaneously correct any faults, the authors

proposed the Low-Rank Representation (LRR) method in this study to find subspace

structures from corrupted data. The recently developed RPCA method, which can expand
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corrupted data recovery from a single subspace to several subspaces, is generalized in LRR.

The shape interaction matrix (SIM) methodology is further generalized by LRR, which

offers a method for defining a SIM between two different matrices and regaining the true

row space.

Let 𝑋0 ∈ R𝑑×𝑛 embedded in a set of 𝑛 d-dimensional data points, and given a set of

observation vectors is defined by:

𝑋 = 𝑋0 + 𝐸0 (2.27)

To recover the low-rank representation matrix 𝑋0 from the 𝑋, which is corrupted by

the above equation. So, we consider to utilize the regularization for the following rank

minimized problem:

min
𝐷,𝐸

𝑟𝑎𝑛𝑘 (𝐷) + 𝜆∥𝐸 ∥ℓ, 𝑠.𝑡. 𝑋 = 𝐴𝑍 + 𝐸 (2.28)

where 𝜆 > 0 is a parameter, A is a matrix which spans the data space and ∥ · ∥ℓ represents
a regularization strategy. Z is the lowest-rank representation of data 𝑋0. And the above

equation is more suitable for the data points in a single low-rank subspace. However, the

complexity within data collections is far greater. To handle this problem, the above rank

minimization problem can be defined as:

min
𝑍,𝐸

𝑟𝑎𝑛𝑘 (𝑍) + 𝜆∥𝐸 ∥ℓ, 𝑠.𝑡. 𝑋 = 𝐴𝑍 + 𝐸 (2.29)

, where the 𝑍∗ is called the minimizer also the lowest rank representation of those data

points according to the dictionary 𝐴. To solve the optimized problem 2.29 effectively, it

can convert to the following rank minimized problem;’

min
𝑍
𝑟𝑎𝑛𝑘 (𝑍), 𝑠.𝑡. 𝑋 = 𝐴𝑍 (2.30)

The above solution is not unique, so the nuclear norm can replace with the rank function.

The convex optimization problem is defined as:

min
𝑍
∥𝑍 ∥∗, 𝑠.𝑡. 𝑋 = 𝐴𝑍 (2.31)

It is shown that the nuclear norm is appropriate to replace the rank function, so a low-rank

recovery to 𝑋0 can be defined by:

min
𝑍,𝐸
∥𝑍 ∥∗ + 𝜆∥𝐸 ∥2,1, 𝑠.𝑡. 𝑋 = 𝐴𝑍 + 𝐸 (2.32)

, where ℓ2,1 norm represents the error term 𝐸 . To optimize the below problem, it can be
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convert to the equivalent problem:

min
𝑍,𝐸,𝐽
∥𝐽∥∗ + 𝜆∥𝐸 ∥2,1, 𝑠.𝑡. 𝑋 = 𝐴𝑍 + 𝐸, 𝑍 = 𝐽 (2.33)

This problem can be minimized by ALM method:

L = ∥𝐽∥∗+𝜆∥𝐸 ∥2,1+𝑡𝑟 (𝑌𝑇1 (𝑋−𝐴𝑍−𝐸))+𝑡𝑟 (𝑌
𝑇
2 (𝑍−𝐽))+

𝜇

2
(∥𝑋−𝐴𝑍−𝐸 ∥2𝐹+∥𝑍−𝐽∥2𝐹) (2.34)

The Algorithm 7 shows the whole process of outputting segments by using low-rank

representation.

Algorithm 7 Low-Rank Representation (LRR)(Liu et al. (2013))

Input: Data matrix 𝑋, number 𝑘 of subspaces.

1: Obtain the minimizer 𝑍∗ to the problem 2.32.

2: Compute the skinny 𝑆𝑉𝐷 𝑍∗ = 𝑈∗
∑∗(𝑉∗)𝑇 .

3: Construct an affinity matrix 𝑊 by

[𝑊]𝑖, 𝑗 = ( [𝑈𝑈𝑇 ]𝑖 𝑗 )2. (2.35)

4: Use 𝑊 to perform NCut and segment the data samples into 𝑘 clusters.

Output: Segmentation of data 𝑋.

KMeans Method The KMeans method is designed to partition data into 𝐾 classes

using squared Euclidean distance between the vector for any instance. Given a data set

𝑋 = {𝑥1, · · · , 𝑥𝑁 }, 𝑥𝑛 ∈ 𝑅𝑑 The data point, cluster centroid 𝐶𝑘 in 𝑃-dimensional space is

found by averaging the squared Euclidean distance value between one object over another

object in a cluster. The 𝑗th variable’s centroid value in cluster 𝐶𝑘 is definde as follows:

𝑥
(𝑘)
𝑗

=
1

𝑛𝑘

∑︁
𝑖∈𝐶𝑘

𝑥𝑖 𝑗 (2.36)

The centroid vector of the cluster 𝐶𝑘 is defined by:

𝑥 (𝑘) = (𝑥 (𝑘)1 , 𝑥
(𝑘)
2 , · · · , 𝑥 (𝑘)𝑝 ) (2.37)

Algorithm 8 shows the detailed steps of the KMeans algorithm:
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Algorithm 8 KMeans Method(Singh and Reddy (2014))

Input: Data points 𝐷 and number of clusters 𝐾.

1: Initiate 𝑘 centroids randomly.

2: Associate each data point in 𝐷 with the nearest centroid and divide the data points

into k clusters.

3: Recalculate the position of centroids.

4: Repeat Step 2 and Step 3 until there are no more changes in the membership of the

data points in the cluster.

Output: Data points in the cluster memberships.



Chapter 3

Experiment on Synthetic Data

In this section, we measured the performance of several representative subspace clus-

tering methods. We chose Sparse Subspace Clustering (SSC) (Elhamifar and Vidal

(2012)), Sparse subspace clusterign by orthogonal matching pursuit (SSC-OMP) (You

et al. (2016b)), Low Rank Representation (LRR) (Liu et al. (2013)), Elastic net Subspace

Clustering (EnSC) (You et al. (2016a)), Least Squares Subspace Clustering (LSSC) (Lu

et al. (2012)) and KMeans as a baseline to make the experiments. To measure the scala-

bility of the algorithms, we measured the runtime, the clustering accuracy, NMI metrics,

ARI metrics and varied the number of instances or dimensions for all algorithms. We

also investigated the ability of each algorithm in determining the correct subspace for

different situation by discussing the metrics of all algorithms. Finally, we picked up top

2 performing clustering methods for the next experiment. Here is the details about the

metrics:

(1) Time: The time that each clustering methods spent on the dataset.

(2) Normalized Mutual Information(NMI): NMI is defined by:

𝑁𝑀𝐼 (𝑋,𝑌 ) = 𝐼 (𝑋;𝑌 )
(log 𝑘+log 𝑐)

2

(3.1)

, where 𝑋 is a random variable for the cluster, 𝑌 is a random variable for the previous

existing labels on the same dataset, 𝑘 is the number of the clusters, and 𝑐 is the

number of previous existing classes. In general, an NMI value leas between 0 and

1, and the higher the NMI value is, the better the clustering quality is (Hu et al.

(2009)).

24
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(3) Adjusted Rand Index(ARI): ARI is defined by:

𝐴𝑅𝐼 (𝑃∗, 𝑃) =

∑
𝑖, 𝑗

(
𝑁𝑖 𝑗

2
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(3.2)

,where 𝑁 is the number of the data points in the given dataset and 𝑁𝑖, 𝑗 is the number

of the data points of the class label 𝐶∗
𝑗
∈ 𝑃∗ assigned to cluster 𝐶𝑖 in partition 𝑃.

In general, an ARI value leas between 0 and 1. Only if a partition is nearly equal

to the intrinsic structure and close to 0 for a random partition (Yang (2017)).

(4) Clustering accuracy: The accuracy is defined by:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, 𝑦) = max
𝑝𝑒𝑟𝑚∈𝑃

1

𝑛

𝑛−1∑︁
𝑖=0

1(𝑝𝑒𝑟𝑚(𝑦𝑖) = 𝑦𝑖) (3.3)

where 𝐾 is the number of the clusters and 𝑃 is the set of all permutation in [1;𝐾].

3.1 Experiment on Synthetic Data

In this section, we conducted experiments on synthetic data to evaluate different subspace

clustering methods: SSC, SSC-OMP, LRR, EnSC, LSSC, and KMeans as a baseline. We

used time, Normalized Mutual Information(NMI) and Adjusted Rand Index(ARI) as the

metrics to evaluate the performance of the algorithms. And we will compare the results of

the above methods in terms of different angles between spaces, noise levels, and subspace

dimensions.

3.1.1 Synthetic Data with Varying Angles

Using the normal distribution and 𝐿1 regularization with noise up to 0.01 in this series

of experiments, we generated data from two one-dimensional subspaces embedded in a

three-dimensional space. There are 200 data points in each cluster. We also adjusted

the angle 𝜃 between the two subspaces during the experiment from 10 to 60 degrees,
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evaluating each subspace algorithm in each case. Figure 3.1 & Figure 3.2 show the 2

subspaces rendered at 30 and 60 degrees respectively.

Figure 3.1: Subspace angle presented at 30
degrees

Figure 3.2: Subspace angle presented at 60
degrees

3.1.2 Synthetic Data with Varying Noise Level

Next, we exploreed the clustering performance of different clustering algorithms for dif-

ferent levels of noise. First, we generated 200 data points from four four-dimensional

subspaces embedded in a 20-dimensional space. Different noise levels 𝜎 were then added

to the data points from 0.0 to 0.5. Compared to the previous experiments, we kept the

settings otherwise unchanged and increased the value in the matrix as the various noise

levels.

3.1.3 Synthetic Data with Varying Dimensions

with the different subspace dimensions 𝑃𝑘 . we set the ambient space dimension to be 20

and the subspace dimension from 2 to 16, with the noise being 0.0. The data points are

generated from 4 subspaces with the number of 200.

3.2 Results

In this section, we displayed the results of six clustering algorithm on generated synthetic

data and finally chose 2 clustering algorithm with top 2 clustering performance for the

next step.
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3.2.1 Results on Varying Angles

It can be seen in the Figure 3.3 shows that the processing time of the EnSC algorithm

increases with the increase of the subspace display angle. The NMI and ARI indexes of

the EnSC method increase rapidly when the subspace angle is 20 degrees, and the two

indexes can reach 0.6 and 0.7 at the highest from 30 degrees. At first, the time of the

KMeans method decreases with the increase of subspace angle; When the subspace angle

is 40 degrees, the use time of the KMeans method gradually increases. However, with the

increase of subspace angle, NMI and ARI indexes of the Kmeans method will decrease and

eventually tend to zero. The overall time spent by the LRR algorithm decreases with the

increase of subspace angle, showing a ”sawtooth” shape. The NMI and ARI indexes of the

LRR algorithm increase with the rise of subspace angle. The above situation shows that

the LRR algorithm is suitable for data sets with large subspace angles. The time spent

by the pedigree clustering method increases with subspace angle, and the two indexes

can reach 0.95 and 1.0, respectively. The time spent by the SSC method presents an

irregular ”mountain peak” shape with the increase of the angle of data set zygote space,

reaching the peak when the angle is 30 degrees and reaching the bottom when the angle

is 50 degrees. The NMI and ARI indexes of the SSC method increase with the increase

of subspace angle, and these two indexes are gradually close to 1.0. SSC method is more

suitable for data sets with subspace angle greater than 30 degrees because time is less

when the angle is larger, and the NMI index and ARI index are constantly approaching

1.0. The time spent by the SSC-OMP method reaches the maximum when the subspace

angle is 40 degrees and then decreases continuously. When the subspace angle of the NMI

and ARI index of the SSC-OMP method is equal to 40 degrees, it reaches the highest

value, which is about 0.95, and then slowly decreases to about 0.87. With the increase

of subspace angle, the time spent by the LSSC algorithm shows a downward trend, but

it rebounds slightly. The NMI and ARI indexes of the LSSC algorithm increase with the

increasing subspace angle, and these two indexes can reach 0.8 and 0.9, respectively, at

the highest. It can be said that the SSC-OMP algorithm and LSSC algorithm are more

suitable for data sets with slightly larger subspace angles. In this case, it takes less time

and can obtain higher NMI and ARI indexes.



Draft of 6:31 pm, Friday, August 19, 2022 28

Figure 3.3: Clustering performance of six methods on varying angles
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From the Table 3.1, we can obtain that only the clustering accuracy of KMeans, as

a baseline, decreases as the subspace angle increases. The SSC, LRR, EnSC, LSSC and

SSC-OMP algorithms all increase in clustering accuracy as the subspace angle increases.

The SSC, LRR, EnSC, LSSC and SSC-OMP algorithms have the best clustering accuracy

as the subspace angle increases and converge to 1.0. It also shows that the SSC, LRR and

SSC-OMP algorithms are not affected by the number of the subspace angle in the data

set and maintain a high level of accuracy (>0.9).

𝜃=10 𝜃=20 𝜃=30 𝜃=40 𝜃=50 𝜃=60

KMeans 0.514 0.514 0.514 0.506 0.506 0.506

SSC 0.915 0.965 0.980 0.985 0.990 0.987

LRR 0.925 0.972 0.985 0.990 0.992 0.992

EnSC 0.531 0.531 0.907 0.910 0.915 0.917

LSSC 0.790 0.850 0.872 0.875 0.885 0.905

SSC-OMP 0.917 0.965 0.982 0.992 0.985 0.982

Table 3.1: Accuracy of clustering methods on varying angles

In summary, the LRR algorithm, the EnSC algorithm, the SSC algorithm, the SSC-

OMP algorithm, and the LSSC algorithm increase the NMI and ARI metrics as the

subspace angle in the data set continues to grow. Among them, the SSC- OMP algorithm

and the LRR algorithm can eventually achieve a perfect clustering performance of nearly

1.0 for the NMI metric. For the clustering accuracy, the LRR algorithm and the SSC-

OMP algorithm maintained high clustering accuracy (>0.9) across all configurations. The

above analysis shows that the LRR and SSC-OMP algorithms can sustain high clustering

performance in data sets with large subspace angles, which means that both algorithms

are more flexible for data sets with unknown structures.

3.2.2 Results on Varying Noise Level

Figure 3.4 shows the mutual information of the time, adjusted random exponent and

normalisation for each clustering method at different noise levels. For the EnSC algorithm,

the time consumed reaches a peak when the noise reaches 0.1, after which the magnitude

of time converges to a stable value of 1.1 seconds. The NMI and ARI metrics of the EnSC

algorithm decrease as the noise level increases, eventually converging to 0, which means

that EnSC is not suitable for data sets with relatively large noise levels or that it is ideal

for clean data sets because the NMI metric and ARI metric of the algorithm is 1.0 at noise

equals to 0. For the KMeans algorithm, the time spent decreases as the noise. The NMI
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and ARI metrics of the KMeans algorithm decrease as the noise level increases. The time

spent by the LRR algorithm is ‘sawtooth’ as the noise increases, and the overall trend

decreases. The NMI and ARI metrics for the SSC algorithm decrease as the noise level

increases and then level off after rapid growth from 0 to 0.1. The NMI and ARI metrics

of the SSC-OMP algorithm decrease as the noise level increases, eventually converging to

0. The LSSC algorithm takes less and less time as the noise level increases. NMI and

ARI metrics decrease as the noise level increases, eventually converging to 0.
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Figure 3.4: Clustering performance of six methods on varying noise levels
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Table 3.2 showcases the clustering accuracy of the six clustering methods on varying

noise level. The clustering accuracy of the SSC algorithm even decreases from 1.0 to 0.299

directly due to the noise going from 0 to 0.1. Each clustering algorithm seems to have

a noise ‘jumping off point’. For example, the noise ‘jump point’ for the LRR algorithm

is when the noise equals 0.2, a direct reduction of almost 0.4 from the previous level,

which means that the best noise level for the LRR algorithm is below 0.2. The overall

performance of the LRR and EnSC algorithms in the table is better than the other four

algorithms, with noise ‘jump points’ of 0.2 and 0.1, respectively, which may seem low.

Still, overall these two algorithms outperform the other algorithms in terms of clustering

accuracy for large sets of noise levels. Interestingly, the KMeans algorithm, as a baseline

algorithm, outperforms even some of the subspace clustering algorithms in the case of

significant noise levels, presumably because of the difference between the advantages of

simple and complex algorithms in data sets with high internal confusion is not very clear.

𝜎= 0.0 𝜎=0.1 𝜎=0.2 𝜎=0.3 𝜎=0.4 𝜎=0.5

KMeans 0.324 0.288 0.329 0.328 0.291 0.281

SSC 1.000 0.299 0.289 0.269 0.306 0.293

LRR 1.000 0.989 0.724 0.340 0.285 0.293

EnSC 1.000 0.964 0.400 0.294 0.285 0.283

LSSC 0.316 0.250 0.250 0.250 0.250 0.250

SSC-OMP 1.000 0.395 0.296 0.293 0.283 0.276

Table 3.2: Accuracy of various clustering methods on various noise levels

In summary, all six clustering algorithms performed best when the noise level was

equal to 0. The clustering accuracy, NMI, and ARI metrics of the EnSC, LRR, SSC

and SSC-OMP algorithms were all around 1.0 when the noise level was 0. All clustering

algorithms showed varying degrees of performance degradation as the noise level increased.

The NMI and ARI metrics of the LRR and EnSC algorithms do not converge to 0 until

the noise level in the data set equals 0.3. The clustering accuracy of these two algorithms

is consistently higher than the other algorithms as the noise level in the data set increases.

Through the above analysis, data sets with high internal confusion can affect the impact of

clustering algorithms to some extent. In the absence of noise, many clustering algorithms

can individually perform well, but when noise is added, some clustering algorithms fail

to deliver satisfactory results. The LRR and EnSC algorithms perform better than the

other clustering algorithms, according to the above description.
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3.2.3 Results on Varying Dimensions

Figure 3.5 shows the time, clustering accuracy, adjusted random index and normalized

mutual information of each clustering method in different dimensions. When 𝑃𝑘 is between

2 and 6, the time spent by the EnSC algorithm gradually decreases, while when 𝑃𝑘 is

between 6 and 16, the time spent by this algorithm gradually increases and decreases.

When 𝑃𝑘 is equal to 14, the time spent by this algorithm is the maximum. With the

increasing of dimensions, the algorithm as a whole increase and then decreases. When 𝑃𝑘

is equal to 4, the NMI and ARI indexes of the EnSC algorithm rise to the highest level of

1.0 and remain until 𝑃𝑘 is equal to 12, and then the two indexes of this algorithm get into

the way and decrease and approach to 0. Therefore, EnSC is suitable for data sets with

𝑃𝑘 between 4 and 10 and can maintain a high level of clustering performance. The time

spent by the KMeans algorithm is generally jagged, which means that the time spent by

the KMeans algorithm seems to have nothing to do with the dimensions in the data set.

When 𝑃𝑘 equals 6, the NMI and ARI indexes of the KMeans algorithm drop sharply and

finally approach 0. When 𝑃𝑘 reaches 6, the LRR algorithm takes the most time when 𝑃𝑘

comes to 8, and when 𝑃𝑘 exceeds 10, it takes about 10s. When 𝑃𝑘 is less than 10, the

NMI and ARI indexes of the LRR algorithm keep the best level of 1.0 and then gradually

decrease to 0 with the increase of 𝑃𝑘 . The best applicable range of the LRR algorithm

is when 𝑃𝑘 is less than 10. The time spent by the SSC algorithm increases with the

number of dimensions. The NMI and ARI indexes of SSC keep stable when 𝑃𝑘 is less

than ten and then gradually decrease to 0 with the increase of 𝑃𝑘 . The time spent by the

SSC-OMP algorithm increases with the increase of dimensionality. SSC-OMP algorithm

is more suitable for data sets with 𝑃𝑘 less than 6. At this time, this algorithm’s NMI and

ARI indexes remain at the level of 1.0. With the decrease of 𝑃𝑘 , the LSSC algorithm takes

less time. When 𝑃𝑘 is greater than 4, the NMI and ARI metric of the LSSC algorithm

equals 0. LSSC is not applicable when 𝑃𝑘 is greater than 4.
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Figure 3.5: Clustering performance of six methods on varying dimensions
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Table 3.3 displays the clustering accuracy of the six clustering methods on varying

dimensions. All clustering algorithms have high clustering accuracy in low dimensions

except the EnSC algorithm, which is able to maintain high clustering accuracy in high

dimensions. The LSSC algorithm is not adapted to high dimensions, and the clustering

accuracy in the case of subspace dimensions equal to 4 is directly reduced from 1 to 0.25.

this indicates, to some extent, that LSSC generally applies to ultra-low dimensional data

sets or clean data sets that need to be processed after dimensionality reduction.

𝑃𝑘 = 2 𝑃𝑘 = 4 𝑃𝑘 = 6 𝑃𝑘 = 8 𝑃𝑘 = 10 𝑃𝑘 = 12 𝑃𝑘 = 14 𝑃𝑘 = 16

KMeans 0.379 0.344 0.281 0.294 0.270 0.294 0.271 0.273

SSC 1.000 0.995 1.000 0.998 0.990 0.940 0.791 0.308

LRR 1.000 1.000 1.000 0.999 0.999 0.979 0.688 0.925

EnSC 0.751 1.000 1.000 1.000 1.000 1.000 0.986 0.784

LSSC 1.000 0.250 0.250 0.250 0.250 0.250 0.250 0.250

SSC-OMP 1.000 1.000 1.000 0.995 0.989 0.949 0.771 0.338

Table 3.3: Accuracy of various clustering methods on various dimensions

In summary, the KMeans and LSSC algorithms are suitable for data sets with low

subspace dimensions (𝑃𝑘 less than 4), as they perform best when 𝑃𝑘 equals two and the

NMI and ARI metrics reach their peak. The EnSC algorithm is somewhat different in

that it applies to data sets with subspace dimensions between 4 and 12, indicating that

the EnSC algorithm is more suitable for data sets with higher dimensions. By looking at

the clustering accuracy of each algorithm, it can be seen that the LRR algorithm and the

EnSC algorithm consistently perform well as the subspace dimensions continue to change.

However, it is worth mentioning that almost all clustering algorithms perform best in low-

dimensional data sets. The above experiments on data sets of different dimensions also

show that the ability to reduce dimensionality is an essential component of a clustering

algorithm to make better use of it.

3.3 Discussion and Conclusions

According to the above analysis, it can be found that EnSC, LRR, SSC, and LSSC

algorithms can maintain high NMI and ARI metrics even when the subspace angle is

increased. Among them, the LRR algorithm maintains a high level of clustering accuracy

above 0.9 even when the subspace angle constantly changes, indicating that the LRR

algorithm requires relatively low complexity within the data set. The clustering accuracy

of each clustering algorithm in the table shows that the other algorithms, except the EnSC
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and LSSC algorithms, are not very sensitive to the subspace angle, and their experimental

results have remained relatively stable. All six algorithms show a decrease in NMI metrics,

ARI metrics and clustering accuracy as the noise level increases. However, the LRR

and EnSC algorithms are more ’tolerant’ of increasing noise. In this respect, it can

be seen that all clustering algorithms perform better on clean data sets, which implies

the importance of pre-processing the data for the data set. The ”comfort zone” for the

EnSC algorithm is between 𝑃𝑘 equals 4 and 12, while the ”comfort zone” for the LRR,

SSC and SSC-OMP algorithms is between 𝑃𝑘 equals 4 and 12. In terms of clustering

accuracy, the EnSC and LRR algorithms consistently outperformed the other clusters

as the dimensionality of the subspace changed. We can experiment with dimensionality

and discover that the clustering method performs better with low-dimensional datasets.

So a good dimensionality reduction operation is also an important step to help improve

the clustering performance. Based on the above analysis, the EnSC algorithm and the

LRR algorithm were judged to be the best among the six algorithms in terms of different

subspace angles, noise levels and dimensions.



Chapter 4

A Novel Clustering Method

4.1 Method

In Chapter 3, we obtained that the Low Rank Representation (LRR) and Elastic net

Subspace Clustering (EnSC) are the top 2 performing subspace clustering methods af-

ter experimenting with synthetic data with varying angles, noise levels and dimensions.

However, the above two clustering methods use spectral clustering to complete the final

clustering step. Spectral clustering helps us to overcome two major problems in cluster-

ing: one is the shape of the clusters, and the other is determining the cluster centroids.

KMeans algorithms generally assume that the clusters are spherical or circular, i.e. within

a k-radius of the cluster centroids, and multiple iterations can determine the cluster cen-

troids. In spectral clustering algorithms, clusters do not follow a fixed shape or pattern.

Points that are distant but connected belong to the same cluster, while points that are

closer together may belong to different clusters if they are not connected, which means

that the algorithm can work for data of different shapes and sizes. However, spectral

clustering can be computationally expensive for large data sets, as it requires the cal-

culation of eigenvalues and eigenvectors and then clustering. The algorithm, therefore,

takes a lot of running time to run and even suffers the consequences of multiple runs with

unsustainable results. Additionally, before beginning the spectral clustering process, the

k-value for the number of clusters must be fixed. However, this issue can be resolved

using the DBSCAN clustering algorithm. DBSCAN does not need one to predetermine

the number of clusters in the data, in contrast to spectral clustering. It can even locate a

cluster surrounded by other clusters but not connected to them. DBSCAN only needs two

parameters and is generally unaffected by ordering points in the database because of the

notion of noise in the algorithm, which is particularly robust to outliers. The DBSCAN

algorithm is able to find the most suitable parameters through a certain search for pa-

rameters, in order to achieve a clustering algorithm that fits the data set and achieves the
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best clustering performance. In this paper, we proposed a novel method that combines

two well-performing clustering methods using the DBSCAN method to extract the final

clustering instead of spectral clustering.

4.2 Algorithm

As described in Section 4.1, we have concentrated on the final clustering operation. We,

therefore, propose to first apply the subspace clustering algorithm directly to the data set

and obtain the solution to the convex problem and the output Affinity Matrix and then

replace the traditional spectral clustering algorithm with the DBSCAN algorithm, which

is more controlled to find neighbours near the centroid and does not require the input of

the number of clusters.

Figure 4.1 showcases the main idea of this novel method. Through Chapter 3, we

obatined the top 2 clustering performing method EnSC and LRR comparing the NMI

metrics, ARI metrics and clustering accuracy of six clustering algorithm by using synthetic

data. And apply this two algorithms to solve the convex optimization problems as follows:

EnSC: 𝑐∗(b, 𝐴) := arg𝑐min 𝑓 (𝑐;b, 𝐴). (4.1)

LRR: min
𝑍
∥𝑍 ∥∗, 𝑠.𝑡. 𝑋 = 𝐴𝑍 (4.2)

And then DBSCAN method is replacing spectral clustering method are then applied on

the affinity matrix

𝑊 = |𝐶 | + |𝐶 |𝑇 (4.3)

, where C is the solution to the convex optimization problem to obtain the final clustering.
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Figure 4.1: Illustration of the novel method

Spectral clustering is more costly for high-dimensional data sets because it requires

knowing the exact number of clusters k in advance, calculating the eigenvalues and eigen-

vectors, and then performing the clustering. Spectral clustering algorithms require long

run times and sometimes inconsistent results from multiple runs. As the DBSCAN algo-

rithm is already very mature, the cost of replacing the last step of the subspace clustering

algorithm is low, and the gain is considerable. In contrast to spectral clustering, DBSCAN

does not require the experimenter to specify the number of clusters in the data before-

hand. Since the concept of noise, boundary points, is already defined in the DBSCAN

algorithm, searching for neighbouring points within a radius 𝜀 of the centroid is very

efficient. In addition, DBSCAN requires only two parameters to be entered manually.

The researcher can find the two parameters most optimised to achieve the best clustering

algorithm for the dataset and achieve the best clustering performance. As the Figure 4.1

shows that the new method maintains the integrity of the first half of the algorithm while

changing the final segmentation step for more flexibility. It is possible to choose a method

with higher clustering effectiveness to solve the convex problem.
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Algorithm 9 Improved EnSC method

Input: 𝐴 = [𝑎1, · · · , 𝑎𝑁 ] ∈ R𝐷×𝑁 ,b ∈ R𝐷 , 𝜆 and 𝛾, radius 𝜀, density threshold 𝑚𝑖𝑛𝑃𝑡𝑠,

distance function 𝑑𝑖𝑠𝑡.

1: Initialize the support set 𝑇0 and set 𝑘 ← 0.

2: loop

3: Compute 𝑐∗(b, 𝐴𝑡𝑘 ) as the equation 2.22 by using any solver.

4: Compute 𝛿(𝑏, 𝐴𝑇𝑘 ) from 𝑐∗(𝑏, 𝐴𝑇𝑘 ) as the equation 2.24 shows.

5: Active set update: 𝑇𝑘+1 ← { 𝑗 : 𝑎 𝑗 ∈ Δ(𝑏, 𝐴𝑇𝑘 )}.
6: If 𝑇𝑘+1 ⊆ 𝑇𝑘 , terminated;otherwise set 𝑘 ← 𝑘 + 1.
7: end loop

8: (Obtain the Affinity Matrix)

9: foreach point p in Affinity Matrix do

10: if label(p) ≠ undefined then continue

11: Neighbors 𝑁 ← RangeQuery(Affinity Matrix, dist, p, 𝜀)

12: if |𝑁 | < 𝑚𝑖𝑛𝑃𝑡𝑠 then
13: label(p) ← Noise

14: continue

15: 𝑐 ← next cluster label

16: label(p) ← 𝑐

17: Seed set 𝑆 ← 𝑁\{𝑝}
18: foreach 𝑞 in 𝑆 do

19: if label(q) = Noise then label(q) ← 𝑐

20: if label(q) ≠ undefined then continue

21: Neighbors 𝑁 ← RangeQuery(Affinity Matrix, dist, q, 𝜀)

22: label(q) ← 𝑐

23: if |𝑁 | < 𝑚𝑖𝑛𝑃𝑡𝑠 then continue

24: 𝑆 ← 𝑆 ∪ 𝑁
Output: Labelled clusters

As the Algorithm 9 shows the complete EnSC algorithm using the new method. You

can see that the first half uses the efficient EnSC to solve the convex problem, then the

Affinity Matrix obtained as a data set is used as input to DBSCAN, and finally, the

labelled data points are obtained. From this, we can also extend the definition of the

algorithm with more generality, as shown in Algorithm 10.
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Algorithm 10 The general algorithm

Input: Data matrix 𝑋, radius 𝜀, density threshold 𝑚𝑖𝑛𝑃𝑡𝑠.

1: Initial the variables and set up the definition of the convex problem 𝑓 (𝑋).
2: Obtain the solution of the convex problem and Affinity Matrix 𝐷.

3: Utilize DBSCAN algorithm with radius 𝜀, density threshold 𝑚𝑖𝑛𝑃𝑡𝑠 and Affinity Ma-

trix 𝐷.

Output: Return relabelled matrix.

The Algorithm 10 demonstrates that it is possible to select the algorithm with the

best results to solve the convex problem defined by the algorithm and then obtain the

Affinity Matrix for the final clustering operation with DBSCAN. The DBSCAN was chosen

because it is used to separate high-density clusters from low-density clusters and is good

at finding regions in the data with high-density observations. It is good at distinguishing

between high and low-density clusters in a given dataset. And it is also well suited for

dealing with outliers in a dataset. In this paper, we have chosen the EnSC algorithm

and the LRR algorithm, and Chapter 5 will show concrete clustering results applied to a

real-world data set and compare them with the original algorithm.



Chapter 5

Experiment on Real Data

In this section, we evaluated the performance of the novel clustering method proposed

from Chapter 4 using two real-world datasets. We selected the Hopkins 155 dataset and

the Extend Yale B face dataset to test the performance of the novel clustering method on

a real-world dataset. In this series of experiments, we continued to use time, NMI metrics,

ARI metrics and clustering performance as criteria for evaluating the performance of the

new clustering method in terms of affinity matrix.

5.1 Dataset Description

This section provides description regarding the datasets that have been used in this dis-

sertation.

5.1.1 Hopkins 155 Dataset

The Hopkins 155 dataset consists of 156 motion video sequences, each corresponding to

a low-dimensional subspace and including the features derived from all frames (Tron and

Vidal (2007)). This dataset contains sequences with 2 or 3 motions, which can be divided

into 3 sequence categories:

1. Checkerboard: It contains 103 sequences of indoor scenes.

2. Traffic: It contains 38 sequences of outdoor traffic scenes.

3. Other(Articulated/non-rigid): It contains 13 sequences showing head, face, and

people walking, etc
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5.1.2 Extended Yale B

The Extended Yale B database contains 16128 images of 28 human subjects under 9

poses and 64 illumination conditions (Georghiades et al. (2001)). These images were

taken under different lighting conditions and with a variety of facial expressions.

Figure 5.1: The Extended Yale B face dataset

First, we imported the Hopkins 155 and Extended Yale B data sets and separated

the image data from the labelled data. The unimproved and improved EnSC and LRR

algorithms were then applied to the image dataset. The improved EnSC algorithm and

LRR algorithm will solve the convex problem and then apply the output affinity matrix

to the spectral clustering algorithm and DBSCAN method, respectively. Finally, the

corresponding labelled data from the experimental results are output and compared with

the actual labelled data to produce the corresponding runtime, NMI metrics, ARI metrics

and clustering accuracy to evaluate the performance of each clustering algorithm, as shown

in Figure 5.1, Figure 5.3, 5.2 and Figure 5.4.
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5.2 Experiment Result

5.2.1 Hopkins 155 Dataset

Time NMI ARI Accuracy

Spectral Clustering 1.732 0.580 0.135 0.200

DBSCAN 1.656 0.683 0.088 0.358

Table 5.1: New EnSC method applied on Extended Yale B

Time NMI ARI Accuracy

Spectral Clustering 0.858 0.211 0.018 0.097

DBSCAN 0.806 0.633 0.045 0.372

Table 5.2: New LRR method applied on Extended Yale B

5.2.2 Extended Yale B

Time NMI ARI Accuracy

Spectral Clustering 28.884 0.645 0.238 0.207

DBSCAN 23.597 0.563 0.029 0.220

Table 5.3: New EnSC method applied on Extended Yale B

Time NMI ARI Accuracy

Spectral Clustering 16.650 0.135 0.025 0.089

DBSCAN 16.333 0.407 0.009 0.193

Table 5.4: New LRR method applied on Extended Yale B

5.2.3 Discussion

As Figure 5.1 and 5.2 show that the improved EnSC algorithm with a 10% higher NMI

metric and 15.8% higher clustering accuracy for the Hopkins 155 data set than before

the improvement, and the improved LRR algorithm with a 42.2% higher NMI metric,

2.7% higher ARI metric and 27.5% higher clustering accuracy for the Hopkins 155 data

set than before the improvement. As Figure 5.4 shows that the improved LRR algorithm

has a 27.2% higher NMI metric and a 10.4% higher clustering accuracy for the Extend
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Yale B data set than before the improvement. From the above analysis, it can be learned

that using the DBSCAN algorithm as the last step of the clustering operation can perform

better than the traditional clustering algorithm that uses the spectral clustering algorithm

as the final step of the clustering operation. This is because the spectral clustering

algorithm requires inputting the number of clusters in advance. In contrast, the algorithm

can adjust the DBSCAN algorithm to find the most suitable parameters to achieve optimal

clustering performance.



Chapter 6

Conclusions & Future Work

This chapter summaries this dissertation work from following three aspects: First, we

discussed the conclusion of this dissertation. Second, we talked about the challenge faced

in this thesis. Third, we proposed the future work of this project.

6.1 Conclusion

This dissertation aimes to develop a novel clustering method to improve the clustering

performance of high-dimensional datasets. We further learned about the idea of modern

clustering methods and implemented them in Python. And we generate the synthetic

data on varying angles, noise levels, and dimensions. Then we evaluated the clustering

performance of modern clustering methods using synthetic data and analysed the result

deeply to obtain the top-performing clustering method in a different situation. Next,

we pointed out that most subspace clustering methods use spectral clustering to deal

with the affinity matrix, which needs the exact number of clusters in advance. And this

thesis also discussed the advantages and disadvantages of using spectral clustering as

the final clustering step and the advantage of using DBSCAN instead. We described a

novel method that combines two well-performing clustering methods using the DBSCAN

method to extract the final clustering instead of spectral clustering.

6.2 Challenge

During this dissertation work, many technical challenges have been faced. For example,

spent a lot of time understanding complex and difficult clustering concepts and imple-

menting modern clustering algorithms. And the parameters of the clustering algorithm

are very tricky to choose and need to be chosen using scientific methods to conduct ex-
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periments. There are technical challenges, such as how to deal with the lack of significant

experimental results.

6.3 Future Work

For this dissertation, there is still valuable work to be done. Firstly, in the Convex

Problem treatment, more modern clustering algorithms can be used for the selection, such

as Block Diagonal Representation (BDR), Structured Sparse Subspace Clustering (S3C),

Affine Sparse Subspace Clustering (ASSC), Weighted Sparse Subspace Representation

(WSSR) algorithms, etc. In addition, for the treatment of Affinity Matrix, we have only

compared two algorithms here, Spectral Clustering and DBSCAN; there are still other

algorithms, such as the Boost algorithm, that can be used for comparison experiments.

In addition, the parameter selection method for the DBSCAN algorithm is not scientific

enough, resulting in a final experimental result that is not as significant as desired.
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