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Digital contact tracing applications, such as those using the Google/Apple Exposure
Notification (GAEN) system, have highlighted the critical role of cryptographic keys,
particularly Temporary Exposure Keys (TEKs), in protecting user privacy while enabling
contact tracing. This dissertation analyses the randomness of GAEN keys, specifically
TEKs, to verify the privacy and security claims of the GAEN applications. This study em-
ploys a battery of statistical tests called Dieharder and a number of other statistical tests
and visualisations to evaluate the randomness of GAEN keys generated by mobile devices
across the world. This study contributes to the broader discourse on cryptographic key
randomness and privacy-preserving technologies in the context of digital contact tracing.
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Chapter 1

Introduction

This section explains the motivation behind this dissertation and provides a table of terms

and definitions used throughout this paper.

1.1 Motivation

The motivation for this dissertation on the analysis of randomness of Google/Apple Ex-

posure Notification (GAEN) keys spreads across multiple areas including cryptography

and digital privacy. The primary motive stems from the fundamental importance of ran-

domness in cryptography as it ensures the unpredictability and security of cryptographic

keys and encryption protocols. Non randomness in encryption can result in vulnerabilities

to the confidentiality and integrity of sensitive data. By assessing the randomness of the

GAEN keys, further confidence can be gained in the security and privacy of the GAEN

apps.

Exposure notification and contact tracing systems like GAEN have been used across

the world as apps in an effort to combat the spread of Covid-19. GAEN uses Bluetooth

technology to exchange cryptographic keys between devices in the proximity of the user

and these keys allow users to be alerted if they were potentially exposed to the virus.

1
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These apps claim to guarantee to provide user privacy and anonymity. The randomness

of the keys being used in these systems is essential to ensure confidentiality of the users.

The GAEN apps provide a unique situation where, due to the design of the GAEN

system, a substantial volume of keys generated by devices such as smartphones are read-

ily available. Unlike most cryptographic systems where the keys are not published to the

public, the keys generated in the GAEN apps are publicly accessible. These keys have

been generated on a wide variety of devices across the world and across different manufac-

turers and operating systems. Notably, these devices use the same pseudo random number

generators (PRNGs) to generate the GAEN keys for other cryptographic applications, for

example AES (Advanced Encryption Standard) and HMAC (Hash-based Message Au-

thentication Code). The quality of the randomness produced by PRNGs is integral to the

security of the encryption algorithms that use them and a lack of randomness can lead to

predictability which can compromise security. Therefore, the GAEN keys present a rare

opportunity to not only analyse and evaluate a large dataset of keys for randomness, but

also to give insight into the PRNGs being used in all these devices.

In essence, this dissertation is motivated by an opportunity to explore the security and

privacy implications of exposure notification systems by testing the randomness of GAEN

keys. This paper aims to contribute to enhancing the trustworthiness of these apps and

validating the privacy claims of the system by ensuring that the keys produced by GAEN

are random.

1.2 Terms and Definitions

Term Definition

TEK Temporary Exposure Key
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Term Definition

GAEN Google/Apple Exposure Notification, a system

for contact tracing

Randomness ”Randomness is the absence of pattern or pre-

dictability in a sequence of events or out-

comes.” (Grinstead and Snell (1997)

RNG/PRNG (Pseudo) Random Number Generator

Binary Sequence A sequence of ones and zeros

P-value A probability between 0 and 1, measures the

strength of the evidence against the null hypoth-

esis (Dahiru (2008))

Degrees of Freedom Indicates the number of independent values that

can vary in a statistical analysis without breaking

any constraints. (Frost (2024))

Level of Significance (alpha, a) A measure of the strength of the evidence re-

quired to reject the null hypothesis and conclude

that the result is statistically significant (Frost

(2024)).

Entropy A measure of unpredictable random-

ness (Zolfaghari et al. (2022))

Kolmogorov-Smirnov (KS)

Test

A statistical test that may be used to determine if

a set of data comes from a particular probability

distribution (NIST (2012))

Word A predefined substring consisting of a fixed pat-

tern/template (e.g., 010, 0110) (NIST (2012)).

Alphabet the set of symbols or values that can occur within

the data being tested, 0 and 1 for binary
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Term Definition

Rank (of a matrix) The dimension of the vector space generated by

the matrix’s columns (Axler (2015)).

Poisson Distribution A discrete probability distribution that models

probabilities for counts of events that happen in

a specified observation space (Frost (2024)).

Covariance matrix A square matrix of the covariance between each

pair of elements of a given random vector.

Normal Distribution A continuous probability distribution that is sym-

metrical around its mean, values are clustered

around the central peak of the bell-curve (Frost

(2024).

Exponential Distribution A right-skewed continuous probability distribu-

tion with smaller values occurring more fre-

quently than higher values (Frost (2024)).

Euclid’s Method An algorithm to computed the Greatest Common

Divisors of two integers.

Binomial Distribution A discrete probability distribution that finds the

likelihood that an event will occur a specific num-

ber of times in a set number of chances (Frost

(2024)).

Table 1.1: Terms and Definitions.



Chapter 2

State of the Art

2.1 Background

This section will explain what Google/Apple Exposure Notification (GAEN) is, explore

the current research done into the privacy and security concerns of GAEN apps and define

randomness for this project’s context.

2.1.1 What is GAEN

Contact Tracing Apps

Google and Apple developed the Google/Apple Exposure Notification (GAEN) system to

facilitate contact tracing in response to the Covid-19 Pandemic. (Mention conventional

contact tracing). Nations across the world used this technology to create contract tracing

apps, for example Covid Tracker in Ireland and SwissCovid in Switzerland (Leith and

Farrell (2021)).

The way the GAEN contact tracing works, if a user enables it, is as follows (Google

(2020):

• Every 10-20 minutes the user’s device will generate a random 128-bit key, referred

5
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to as a Temporary Exposure Key (TEK).

• The user’s device will broadcast these keys using Bluetooth Low Energy (BLE).

• The user’s device will listen and store the TEKs being broadcasted from other

devices within a certain radius. These TEKs are stored locally on the device.

• If a user tests positive for Covid, they can log this into the app. The app will send

the user’s recent TEKs (around the 14 days) to a central server managed by the

local health authority.

• Every approx. 2 hours, the user’s device will download the TEKs from the central

server.

• The app compares these downloaded TEKs to the TEKs stored locally on the device.

• If there is a match, this means that the user has potentially been exposed to Covid

and the app will notify them.

Studies on GAEN-based Apps

There have been numerous studies done on contact tracing apps that use GAEN technol-

ogy. Google and Apple acknowledge that keeping users’ information private and secure is

essential to the success of the contact tracing app and claim to have created their system

with this central to the design (Google (2020)). Health data is very personal, sensitive

data which is essential to keep private and preserve the anonymity of the user. This

section explores the current research into the privacy, security and effectiveness of GAEN

apps and highlights the gap in research that this dissertation seeks to fill, an analysis of

the keys produced by GAEN which are crucial to its functionality.

The major privacy concerns of GAEN apps according to (Nguyen et al. (2022)) are

the identification of users, tracking users or extracting the social graph of users. Con-

tact tracing should aim to identify encounters rather than actual users, by doing so they
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should not leak any information that could be used to identify the user. Similarly, the

data collected should not be able to be used to create the social graph of the user, i.e. the

social connections and relationships of a user. Having this information could potentially

result in the user being identified.

Security is also a requirement for a contact tracing app according to (Nguyen et al.

(2022)). The system should be resilient to large scale data pollution attacks. These could

be fake exposure claims, where users may falsely claim they have been exposed in or-

der to get out of work or another obligation or in an attempt to damage the reputation

and credibility of the contact tracing apps. Fake exposure injection, as a relay attack,

may send users false notifications of potential exposures. The attacker could do this by

capturing the TEKs of some user and broadcasting them in another location, leading to

people being falsely notified of exposure. This could result in panic among users and

the population, putting further strain on the healthcare system by creating a demand for

unnecessary tests. It could also damage the trust in the contact tracing apps as their

accuracy would be no longer trusted.

(Nguyen et al. (2022)) assess the GAEN apps on a variety of requirements. In terms of

effectiveness, GAEN has been found to be imprecise at determining the distances between

user devices (do i need to reference an internal reference?). Its use of BLE means scanning

of the user’s surroundings for other devices can only happen with frequent pauses to save

battery life of the device. Many factors like positioning of the device’s antenna, obstacles

in the way and orientation of the device affect the computation of the distance between

devices and the errors are significant. GAEN fails to account for ’superspreaders’ of the

virus, an individual who is very contagious and infects a number of other people. GAEN

also does not have any mechanism for dealing with asymptomatic individuals, people that

are infected with the virus and are contagious but do not show symptoms. Unknowingly,

these people spread the virus. These individuals are unlikely to get tested and therefore
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won’t log their infection in the app, meaning those that come in contact with them will

not be notified of a potential exposure. This significantly impacts the effectiveness of the

contact tracing apps.

An investigation into the data shared by Europe’s contact tracing apps that use GAEN

(Leith and Farrell (2021)) discovered that a significant amount of data was being sent to

Google servers. The android implementations of the GAEN systems use Google Play

Services to facilitate GAEN-based contact tracing. The user must enable Google Play

Services. It was found that Google Play Services connects to Google servers approxi-

mately every 20 minutes, sending requests that include the handset IP address, location

data and persistent identifiers to link requests coming from the same device. The data

sent to Google in other types of requests also include phone IMEI, device hardware serial

number, SIM serial number and IMSI, phone number, WiFi MAC address, user email and

Android ID. While sharing data to backend servers is not in itself an intrusion of privacy,

the ability to link this data to a real-world user is problematic. Given that the user’s IP

address is being sent to Google very frequently, this could be used as location tracking.

It is possible to de-anonymise this location data and potentially identify the user. Given

that the user must enable Google Play Services, and therefore this data sharing, to do

contact tracing, this does raise a concern to the privacy of the user.

(Avitabile et al. (2023)) examines several potential threats and privacy concerns of

GAEN apps. They introduce a ‘paparazzi attack’ which involves using passive Bluetooth

devices to capture the keys being broadcasted from a targeted user. If this user tests

positive, the attacker can match their locally stored keys to those made publically avail-

able on the central server and learn that the user is positive for covid. This is a form of

deanonymization. Similarly, an attacker could exploit the movements of a targeted user

to gain money by linking the locations of the passive devices to the keys and sell this data

to interested parties.
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The effectiveness of these GAEN contact tracing apps is undetermined (Leith and

Farrell (2021)) (Nguyen et al. (2022))

Numerous alternative to the GAEN system have been proposed such as TraceCorona

by (Nguyen et al. (2022)) in an attempt to remedy the above privacy and security

concerns.

2.1.2 What is Randomness

In order to test for randomness/non randomness we must first define what randomness

is. ”Randomness is the absence of pattern or predictability in a sequence of events or

outcomes.” (Grinstead and Snell (1997).

A random bit sequence could be explained as the result of flipping an unbiased coin,

with two sides 1 and 0, which has an equal chance of 50 percent of landing on side 1 or

side 0. Each flip of the coin does not affect any future coin flips which means the flips are

independent of each other. This unbiased coin can therefore be considered a perfect ran-

dom bit stream generator as the appearances of 1s and 0s will be randomly and uniformly

distributed. All elements in the sequence are independent of each other and future ele-

ments in the sequence cannot be predicted using previous elements (Dang (2012)). This

simple example gives us an understanding of what it means for a set of keys to be random.

The keys must exhibit certain properties in order to be accepted as random:

• Independent meaning no previously generated keys affect a new key (Cortez et al.

(2020)).

• Equally likely meaning that the probability of a 0 or 1 appearing at any point in

the key is equal to 1/2 (Cortez et al. (2020)).
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• Scalable meaning that if the key is random, then any extracted sub sequence is also

random (Cortez et al. (2020)).

Any indication of a dependency or bias within the data would indicate non randomness.

2.2 Literature Review

This section explores how randomness testing is performed. The literature in this area is

examined and examples of the impact of randomness failures are given.

2.2.1 How to Test for Randomness

It is important to note that you cannot say for certain whether something is random or

not, you can only find evidence against non randomness. It is not possible to give theo-

retical proof of randomness of a sequence (Turan et al. (2008)). Various statistical tests

can be performed on the data in an attempt to compare and evaluate the data against

a truly random sequence since the outcome when a statistical test is applied to a truly

random sequence is known. (Bassham et al. (2010)).

A challenge when testing for randomness is that there is no agreed upon complete

set of statistical tests to deem a sequence random (Bassham et al. (2010)). There is an

infinite number of tests that you could run in order to find the presence or absence of a

pattern or bias within the data. The existence of a pattern or bias within the data would

indicate that it is non random.

Hypothesis Testing

Statistical testing is used to test against a defined null hypothesis (h0). The null hypoth-

esis in this case is that the keys being tested are random. The alternative hypothesis

(h1) is that the keys are not random. The challenge here is to determine which of these
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hypotheses can be accepted (Luengo and Villalba (2021)) . For each statistical test run

on the data, the result accepts or rejects the null hypothesis.

The following table shows the possible results on a hypothesis test (Bassham et al.

(2010)):

True Situation Conclusion: Accept H0 Conclusion: Accept H1 (Reject H0)

H0 is True, data is random No Error Type 1 Error

H1 is True, data is not random Type 2 Error No Error

Table 2.1: Hypothesis Test Results

The above situations are somewhat unknown but some control can be gained by know-

ing the probability of each of the error situations. The probability of Error Type 1 is de-

fined as α, the level of significance (Luengo and Villalba (2021)). This value is typically

0.01, 0.05 or 0.10. The probability of Error Type 2 is defined as β, referred to as contrast

power and is usually used as 1-β. (Luengo and Villalba (2021)). If the data is truly

random, rejecting the null hypothesis, meaning determining that the data is non random,

will occur a small percentage of the time. For example if α is 0.01, it would be expected

that 1 sequence in 100 sequences is rejected (Bassham et al. (2010)).

In practice, p-values are used to reject or accept the null hypothesis. A p-value can be

defined as A probability between 0 and 1, measures the strength of the evidence against

the null hypothesis (Dahiru (2008)). In the context of this project, a p-value equal to

1 indicates that the data is perfectly random while a p-value equal to 0 indicates that

the data is completely non random. If the p-value is greater than or equal to α, the null

hypothesis is accepted and the data appears to be random. If the p-value is less than α,

the null hypothesis is rejected and the data is deemed non random.
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2.2.2 Studies on Randomness Testing

The following sections explores the applications of randomness testing and its use in cryp-

tography.

Given that encryption is essential for maintaining data security in cloud computing,

(Mohamed et al. (2012)) performed randomness testing on eight modern encryption tech-

niques, including AES, MARS and DES. They tested on two different platforms, desktop

computer and Amazon EC2 Micro Instance. They evaluated the encryption techniques

implemented as Pseudo Random Number Generators (PRNGs). They used the NIST Test

Suite to perform the randomness testing. With a significance level of 0.01, any p-value

less than 0.01 meant that sequence was rejected. They found no strong evidence of any

statistical non randomness across the 8 encryption algorithms however some differences

were found between them on the two different platforms.

Statistical analysis has been run on an enhanced SDEx encryption method based on

the SHA-512 hash function (H lobaż (2020)). Using various tests like frequency, cumu-

lative sums and runs, with a significance level of 0.01, it was found that this encryption

algorithm was sufficiently random and passed the tests. They concluded that this SDEx

method based on the SHA-512 hash function was quicker and equally or more secure than

AES with a 256-bit key. They hope to use this method to secure end-to-end encryption

for data transfer.

Similarly, statistical tests for randomness have been run on new algorithms, like a

proposed stream cipher cryptographic algorithm based on the popular Vernam Cipher

(Brosas et al. (2020)). The algorithm had a success rate of 99.5% across the statistical

tests performed on it, which included frequency and longest runs of one’s tests. Due to this

success, the paper deemed the proposed algorithm effective in producing a random cipher-

text sequence and detailed further work of implementing it to help secure medical records.
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SHA256 (a hashing algorithm) is vulnerable to length extension attacks which involve

misusing particular hashes as authentication codes and using them to include extra in-

formation. (Cortez et al. (2020)) introduces a new and improved padding scheme and

hashing process for SHA256 to deal with this issue. To verify that the solution is cryp-

tographically secure, statistical tests for randomness are performed on the output of the

Message Digest. Tests such as monobit frequency, frequency within a block and runs

were carried out on the data. The results validate that the number of ones and zeros are

randomly distributed in the final hash value.

Statistical tests for randomness were also used to identify encrypted and unencrypted

bit sequences (Wu et al. (2015)). Unencrypted bit sequences are less random than

encrypted ones. From the SP800-22 rev1a standard, five tests were selected and a signif-

icance level of 0.01 was chosen. If the sequence passes more than 3 of the tests, it was

concluded that that sequence was encrypted. Otherwise the sequence was concluded as

unencrypted. The results of the experiment were that 89% of the time, unencrypted se-

quences were identified correctly and 99% of the time encrypted sequences were identified

correctly.

2.2.3 Examples of Randomness Failures

Randomness failures pose a serious threat to cryptographic security (Schuldt and Shina-

gawa (2017)). The consequences can be severe and there are many examples of real-world

incidents.

There are many examples of pseudo random number generators (PRNGs) failing and

being guessable. Notably, the Debian Linux vulnerability in 2008 that left cryptographic

keys to be guessable. It was caused by the code used to gather entropy, which provided the
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seed the PRNG used to create private keys, were removed. This resulted in only 32,768

possible keys meaning the connections made with these keys were insecure (Schneier

(2008)

In 2015, Juniper Networks announced that there were multiple security vulnerabilities

due to unauthorised code in their operating system, for their NetScreen VPN routers,

called ScreenOS (Checkoway et al. (2016)). These vulnerabilities were due to Juniper’s

use of Dual EC (Elliptical Curve) as a PRNG. Dual EC had a weakness that was ex-

ploited in the Juniper incident. It was possible for an attacker, who knew the discrete

logarithm of an input parameter Q with respect to a generator point, to see a number of

consecutive bytes from the output and hence calculate the internal state of the generator.

This allowed the attacker to predict all the future output of the generator. They were

able to exploit this lack of randomness and passively decrypt VPN traffic.

Bitcoin thefts in 2013 were due to a compromised PRNG used in Android wallets (bit-

coin.org (2013). Applications on Android using Java Cryptography Architecture (JCA)

for key generation, signing and generating random numbers were not receiving crypto-

graphically strong values because of an improper initialization of the underlying PRNG

SecureRandom on Android devices (Klyubin (2013). The predictability of the values

being generated by SecureRandom was exploited and attackers were able to guess the

private keys used in Bitcoin Wallets and steal the Bitcoins the wallet contained. Again,

attackers were able to exploit the lack of randomness.



Chapter 3

Design

This section explains how the test suite used was chosen, the tests contained in that test

suite and the other tests and dataset used to analyse the TEKs.

3.1 Challenges

3.1.1 Review of Test Suites

There are a variety of statistical test suites that have been developed to test for random-

ness. Also referred to as batteries, these are a collection of statistical tests. In this section

I will review these test suites in order to choose the appropriate one for this project’s

purposes. The notable test suites are Dieharder and NIST STS, being the most widely

used and therefore most tested.

Dieharder (Brown (2003)) is a random number test suite which was designed to test

RNGs used in a variety of applications such as cryptography and computer simulation. It

consists of 26 tests, extending the original Diehard battery which was created by George

Marsaglia in 1995 (Luengo and Villalba (2021)). This testing suite is widely used (Lu-

engo (2022)) (Hurley-Smith and Hernandez-Castro (2020)) (Lu et al. (2023)) and is

well tested. It is designed to be able to change the parameters in order to make failure

15
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unambiguous. It incorporates many of the tests in NIST STS. Because Dieharder is open

source and encourages users to give feedback, contributions are continuously being made

to improve and bug fix the tests. This results in a more reliable and stronger test suite

than one that is closed or lacks a good feedback system like NIST STS (Brown (2003).

NIST STS stands for the National Institute of Standards and Technology (NIST) Sta-

tistical Test Suite (NIST (2012)). It is used to test RNGs used in applications such as

cryptography, modelling and simulation. It contains 15 tests and is widely used (Mo-

hamed et al. (2012)) (H lobaż (2020)). These are standardised with its test parameters

fixed, reducing its flexibility.

TestU01 (L’Ecuyer and Simard (2007)) is a test suite that was created by L’Ecuyer

and Simard and implemented in C. It is an extensive battery that incorporates some of

the tests in Dieharder and NIST STS (Luengo and Villalba (2021)). It consists of six

test batteries each focusing on testing a different aspect of randomness. It only accepts

32-bit input and interprets it as values with the range of 0 and 1 (L’Ecuyer and Simard

(2007). This can lead to inaccuracies in the most-significant bits.

Ent (Walker (2002)) is a lesser used test suite created by Walker (Luengo and Villalba

(2021)). Its purpose is testing for simulation and cryptographic applications. It has two

modes, binary and byte, with different statistics being calculated depending on the mode.

Although it is fast and simple, the Ent battery has some issues with dependencies between

tests, for example the Entropy test and the Chi-squared test (Luengo and Villalba (2021)).
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3.2 Methodology

3.2.1 Data Preparation

The data used in this project was sourced from the Testing Apps for COVID-19 Tracing

(TACT) project by Farrell and Leith (Leith and Farrell (2023). The TACT project was a

study on whether the BLE used in GAEN-based contact tracing applications was effective

at identifying users who were in proximity for long enough to be deemed as exposed to

covid, if one of the users was later positive for the virus. The project ran from April 2020

until September 2023 and a number of reports were written on the findings, these include

(Leith and Farrell (2020a)), (Leith and Farrell (2020b)) and (Leith and Farrell (2021))

While the project was ongoing, the TEKs being published in 33 regions, including

Ireland, Germany and Brazil, were downloaded hourly. This resulted in a huge amount

of data and allowed for insight into the functioning of these apps. The TEKs downloaded

were in a large number of zip files.

In order to get the keys in the correct format to test, first the keys were extracted from

the zipped files. Following this, duplicate keys were identified and removed, resulting in

a file composed of only the unique keys. This significantly reduced the data size, from an

initial 56GB of all the keys in the zip files, down to 4GB, removing a substantial amount

of duplicate keys. The final dataset consists of a total of 137 million unique TEKs in ascii

format, allowing for efficient analysis of the keys. For Dieharder, the TEKs were shuffled

to make sure they were not sorted and converted in raw binary.

3.2.2 Chosen Test Suite

Dieharder was selected as the test suite for this project as it is widely used and well

tested. It also accepts files of numbers as input, which is useful as our data is a file of

TEKs. NIST STS was the other potential candidate however it only accepts streams of
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data being produced by an RNG, which is not applicable in this project. The other test

suites, TestU01 and Ent are much lesser used and less reputable than NIST STS and

Dieharder and thus were not chosen. Therefore, Dieharder was the appropriate choice to

test the TEKs, given its input type, wide range of tests and good reputation.

Description of Dieharder Tests

Below are a description of all the Dieharder tests, . ( (Brown (2003)), (Luengo and

Villalba (2021)))

• “Birthdays” test: this test selects m birthdays of a year of n days. It creates a list

of the intervals between two birthdays (time between two consecutive events). It

expects that the repeated intervals are distributed in a Poisson distribution, if the

data is random.

• Overlapping 5-Permutations Test (OPERM5): this test studies a sequence of one

million 32-bit random integers. There are 120 possible permutations of each set of 5

consecutive integers. The number of appearances of each permutation is recorded.

Each permutation is expected to appear with equal probability across the sequence.

• 32x32 Binary Rank Test: 32x32 matrices are randomly formed from the data. The

rank of the matrix is determined. The rank can be a value from 0-32, with infrequent

ranks below 29 being pooled with those of rank 29. A chi-squared test is performed

on the counts of matrices for ranks 32, 31, 30 and ≤ 29. This test is performed on

400,000 matrices each time.

• 6x8 Binary Rank Test: six random 32-bit integers are taken from the data. A

specified byte is chosen and the six bytes, one from each 32-bit integer, create a 6x8

matrix. The rank of the matrix is determined.The rank can be a value from 0-6,

with infrequent ranks below 4 being pooled with those of rank 4. A chi-squared

test is performed on the counts of matrices for ranks 6, 5 and ≤ 4. This test is

performed on 100,000 matrices each time.
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• Bitstream Test: in this test, the data is viewed as a stream of bits, a = {ai} and an

alphabet with two letters 0 and 1. The stream is considered as successive 20 letter

words that overlap. For example, the first word would be bits a1-a20 and the second

word would be bits a2-a21. The test counts the number of missing 20-letter words

in a string of 221 overlapping 20-letter words. Given that there are 220 possible

overlapping 20-letter words, the number of missing words j in a 221+19 letter (bit)

string is expected to be (nearly) normally distributed with a mean of 141,909 and

sigma of 428. This test is repeated 20 times each time.

• Overlapping Pairs Sparse Occupance (OPSO): This test considers 2 letter words

from an alphabet containing 1024 letters. Each letter is found by a specified 10

bits from a 32-bit integer in the data. 221 overlapping 2-letter words from 221+1

“keystrokes” are generated by the test and it counts the number of 2-letter words

that do not appear in the data. These counts are expected to be (nearly) a normal

distribution with mean of 141,900 and sigma 290. Therefore the number of missing

words minus the mean divided by sigma should be a standard normal variable. This

test extracts 32 bits at a time from the data file and uses a specific 10 bits, the file

is then restarted and the next 10 bits are taken and so on.

• Overlapping Quadruples Sparse Occupancy (OQSO): This test is similar to OPSO

but takes 4-letter words from an alphabet of 32 letters. Each letter is determined by

a specific string of 5 bits from the data, which is assumed to contains 32-bit random

numbers. The test calculates the average number of missing words in a sequence of

221 four-letter words, which is equivalent to 221+3 ”keystrokes”. The average number

of missing words is 141909, with a standard deviation (sigma) of 295. It compares

the results with this expected distribution.

• DNA Test: this test considers an alphabet made up of four letters: C, G, A, and T.

These letters are determined by two designated bits in the sequence being tested.

The test looks at words that are 10 letters long, like OPSO and OQSO tests, which
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means there are 220 possible words. For a string of 221 overlapping 10-letter words

(which equals 221+9 ”keystrokes”), the average number of missing words is 141909.

The standard deviation, sigma, is 339. It compares the results with this expected

distribution.

• Count the 1s (stream): This test considers the data being tested as a stream of bytes,

with four bytes making up each 32-bit integer. Each byte can contain anywhere from

0 to 8 occurrences of the number 1, with different probabilities for each count. This

stream of bytes is considered as a series of overlapping 5-letter words. Each ”letter”

in these words is determined by the number of 1s in a byte: 0, 1, or 2 gives A, 3

gives B, 4 gives C, 5 gives D, and 6, 7, or 8 gives E. There are 55 possible 5-letter

words, the count of how often each word appears in a string of 256,000 overlapping

5-letter words is calculated. The quadratic form in the weak inverse of the covariance

matrix of the cell counts provides a chi-squared test. The test returns two p-values

for 5-letter and 4-letter cell counts.

• Count the 1s Test (byte): The test considers the data being tested as a series of

32-bit integers. From each integer, specific byte is selected, the leftmost byte (bits

1 to 8). This byte can have anywhere from 0 to 8 instances of the number 1, with

probabilities of 1, 8, 28, 56, 70, 56, 28, 8, and 1 out of 256. These specified bytes

are taken from consecutive integers and turned into a string of overlapping 5-letter

words. In these words, each ”letter” is determined by how many times the number 1

appears in that byte: 0, 1, or 2 gives A, 3 gives B, 4 gives C, 5 gives D, and 6, 7, or 8

gives E. There are 55 possible 5-letter words, and from a set of 256,000 overlapping

5-letter words, how often each word appears is counted. The quadratic form in the

weak inverse of the covariance matrix of the cell counts provides a chi-squared test.

The test returns two p-values for 5-letter and 4-letter cell counts.

• Parking Lot Test: This test examines how attempts to randomly park a square car of

length 1 on a 100x100 parking lot without crashing are distributed. The number of
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attempts (n) is plotted against the number of attempts that didn’t ”crash” because

the car squares overlapped (k). This is compared to what would be expected from

a perfectly random set of parking coordinates. The results are compared to when

n=12,000, where k should average 3523 with a standard deviation of 21.9. This

average is very close to being normally distributed. The formula (k - 3523) / 21.9

is used to get a standard normal variable. Converting this to a uniform p-value, it

is used as input for a KS test with a default of 100 samples.

• Minimum Distance (2d Circle) Test: In this test 8,000 points are randomly chosen

from within a square of side 10,000. The minimum distance (d) between (nr2 - n)/2

points is computed. The minimum distance is squared to get d2. If the data is

random then d2 should be (very close to) exponentially distributed with a mean of

0.995. Thus 1-exp(-d2/.995) should be distributed according to a U(0,1) random

variable and a KS test is preformed on the resulting 100 values serves to test for

uniformity for random points in the square.

• 3d Sphere (Minimum Distance) Test: In this test 4,000 points are randomly chosen

from within a cube of edge 1,000. At each point, a sphere large enough to reach the

next closest point is centered. The volume of the smallest sphere is approximately

exponentially distributed with mean 120pi/3. Thus the radius cubed is exponen-

tially distributed with mean 30. 4000 spheres are generated 20 times by the test.

Each minimum radius cubed corresponds to a uniform variable obtained by applying

the function 1 - exp(-r3/30) to the radius, and a KS test is done on the 20 p-values.

• Squeeze Test: This test floats random integers from the data to get uniformly

distributed values on the interval (1,0). An integer k-231 is multiplied by these

values until it is reduced to 1. The test calculates t, the number of iterations that

were required to reduce k to 1, where the reduction is k=ceiling(k*U) with U being

the floating integers from the data being tested. t is computed 100,000 times with

the number of times t is less than 7 and greater than 47 expected to be exponential.
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• Sums Test (Broken): The test is noted in the documentation as unreliable and

incorrect so this test will not be considered while testing the TEKs.

• Runs Test: This test counts the number of runs (increasing and decreasing) in the

data. The covariance matrices for runs-up and runs-down are well-known, allowing

for chi-square tests on quadratic forms involving the weak inverses of these covari-

ance matrices. Runs are counted for sequences of length 10,000 and is done 10 times

and then repeated.

• Craps Test: This test plays 200,000 games of ’craps’ which is a dice game. The

number of wins and the number of throws necessary to win are recorded. The

number of wins is expected to be very close to a normal distribution with a mean of

200000p and a variance of 200000p(1-p), where p=244/495. The number of throws

to end a game vary from 1 to infinity, but counts that are greater than 21 are

grouped with 21. A chi-squared test is carried out on the number of throws. Each

32-bit integer from the data by normalising it to a an interval [0,1), then multiplying

it by 6 and adding 1 to the integer part of the result.

• Greatest Common Divisor Marsaglia and Tsang Test: This test randomly chooses

two 32-bit positive integers, u and v, from the data. Euclid’s Method is applied to

these values and two statistics are calculated: their greatest common divisor (w)

and the number of steps (k) of Euclid’s Method it took to find it. This results

in two frequency tables, the number of appearances of each value for k and the

number of occurrences of each GCD w. Chi-squared tests are done on each of these

distributions and produces two p-values. 100 p-values are calculated and then a KS

test is performed on them. 107 tsamples of u and v are generated.

• Monobit Test (STS): This test counts the 1 bits in the a long string of random

integers chosen from the data. It compares this count to the expected number and

returns a p-value.
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• Runs Test (STS): This test counts the total number of 0 runs and the total number

of 1 runs across a sample of bits selected from the data. If the data is random, then

these counts should be uniformly distributed.

• Serial Test (STS): This test calculates the frequencies of overlapping n-tuples of

bits throughout the data. The probabilities of the 2n n-bit overlapping patterns is

expected to be equal.

• Bit Distribution Test: This test calculates the frequencies of all non-overlapping

n-tuples of bits in the data and compares this to a binomial distributions using

chi-squared test.

• Generalised Minimum Distance Test: This test generalises the 2d circle and 3d

sphere minimum distance tests and calculates the minimum distance between pairs

of points in n dimensions, where n=2,3,4,5. It examines their distribution and

compares it to the expected distribution.

• Permutations Test: This test counts the order permutations of n random numbers

selected from the data. There are n! permutations, of which are expected to be

equally likely. The n samples are independent and a chi-squared test on the counts

with n! - 1 degrees of freedom is carried out.

• Lagged Sums Test: In this test pairs of values are selected from the data with a

specific lag (distance) between them and these pairs are summed. The values are

converted into p-values and a KS test is applied.

• Kolmongorov-Smirnov Test Test: This test generates a vector of uniform deviates

from the data and then applies a KS test to it. The test is run multiple times and

a final p-value is calculated.

• Byte Distribution Test: This test extracts n independent bytes from each of k

consecutive words, incrementing indexed counters in all of the n tables resulting in

a total of 256*n counters. A chi-squared fitting test is used to calculate the p-value.
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• Discrete Cosine Transform (DCT) (Frequency Analysis) Test: This test performs a

DCT on independent blocks of n-tuple words from the data. The absolute value of

each transform is checked for uniformity and independence using a chi-squared test.

• Fill Tree Test: This test inserts words from the data into small binary trees. If a

word is unable to be inserted into the tree, the current count of words in the tree and

the would-be position of the word is recorded. The test produces two p-values from

a chi-squared test against the expected values and a chi-squared test for uniformity

of where the insertions are failing.

• Fill Tree 2 Test: This test is the same as the Fill Tree test above but uses bits

instead of words.

• Monobit 2 Test: This test performs the Monobit Test described above on blocks of

a specified length from the data.

P-values

The null hypothesis (that the data is random) is usually rejected if the p-value is less

than the level of significance, which is usually 0.05. However, this is an issue for testing

for randomness as a perfect RNG is expected return a p-value less than 0.05 5% of the

time (Brown (2003). Since Dieharder runs each test multiple times, 100 p-values are

returned by each test and it is expected that good random data will fail a test 5 times.

This gives rise to uncertainty and does not provide conclusive results.

To remedy this and give accurate results, Dieharder treats the p-values as test statis-

tics. The p-values returned by the tests should be uniformly distributed in the range

of 0-1. The set of p-values is converted into a singular p-value, used to determine the

result of the test, by using a Kolmogorv-Smirnov (KS) test to compare the set of p-values

against the expected uniform distribution (Brown (2003)). This final p-value is used to

determine if the test fails or passes.
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3.2.3 Other Tests

Other tests to supplement the Dieharder test suite were implemented, these include: chi-

squared test, spectral test, lag plot and plot of counts.

Lag Plot

A lag plot is a graphical test for randomness, it displays any patterns or relationships

in the data. Random data should not have any identifiable structure in the lag plot,

a structure in the lag plot indicates that the data is not random (NIST/SEMATECH

(2012). A lag plot involves plotting a set of the data against another set of the data that

occurs later. For example, given a data set Y1, Y2 ..., Yn, Y2 and Y7 have lag 5 since 7

- 2 = 5. Lag plots can be generated for any arbitrary lag (NIST/SEMATECH (2012). A

plot of lag 1 would be a plot of Yi against Yi-1.

Chi-Squared Test

The chi-squared test for randomness iterates through the list of TEKs, counting the

occurrences of ’0’ and ’1’ in each key. The observed frequencies are calculated based

on these counts. Assuming equal probability for ’0’ and ’1’, the expected frequencies

are calculated. The chi-squared statistic is computed and the corresponding p-value for

the observed and expected frequencies. The chi-squared statistic measures the difference

between the observed frequencies and the expected frequencies under the null hypothesis

of independence. The p-value indicates the probability of obtaining a chi-squared statistic

as extreme as the observed one, assuming that the null hypothesis is true. This test helps

to quantify the degree of randomness in the TEK dataset, providing valuable insights into

its distribution and potential biases.
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Spectral Test

This test looks at the peak heights in the discrete Fast Fourier Transform. The test detects

periodic features (repetitive patterns that are near each other) in the sequence that would

indicate non randomness. Bassham et al. (2010). The binary strings are converted into a

sequence of values where ’0’ is replaced by -1 and ’1’ is replaced by 1. It computes the

discrete Fourier transform of the sequence and calculates the modulus of the first half of

the Fourier transform. It computes a threshold value (tau) based on the length of the

sequence (n) and the significance level (5 percent). It counts the actual number of peaks

that exceed the threshold (tau). It calculates a statistic (d) based on the counts of peaks.

It computes the p-value using the complementary error function (spc.erfc). If the p-value

is less than 0.05 (indicating statistical significance at the 5 percent level), that sequence

is rejected and the count of significant results is incremented. It returns the amount of

significant results (the amount of rejected keys) out of all the tested sequences.

Plot of Counts

This is a visualisation used to provide an insight into the distribution and randomness of

the data. The number of ones and zeros in each bit position are counted and the results

are plotted. A distribution where each bit position shows roughly equal counts of 1s

and 0s indicates randomness, while deviations from this could suggest non randomness.

Plotting these counts helps with the identification of any biases or correlations that might

exist within the data, aiding in the assessment of its randomness.

Hilbert Curve

The Hilbert curve can be used to visually represent randomness or non randomness in

data. The Hilbert curve is a space-filling curve that maps the data while preserving lo-

cality and gives a meaningful presentation of the data (Estevez-Rams et al. (2015)as it

allows for the identification of patterns.
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If the data is randomly distributed, its Hilbert curve will display a relatively uniform

distribution throughout its space-filling path. This means that nearby points in the

original dataset will likely remain close to each other in the curve, creating a visually

uniform pattern. If the data contains some non randomness, its Hilbert curve will reflect

this by displaying areas of higher density or clustering along portions of the curve. By

visualizing data using the Hilbert curve, patterns in the data can be identified , providing

insights into the randomness or non randomness of the dataset.

3.2.4 Random Dataset

A dataset containing random numbers was sourced from Random.org (Haahr (1998). This

website generates true random numbers from atmospheric noise. These numbers are bet-

ter than pseudo random numbers as they do not require a seed and are truly random.

This service was created in 1998 by Dr Mads Haahr in Trinity College Dublin and is now

run by Randomness and Integrity Services Ltd.

Previous testing has been done to ensure the randomness of Random.orgs numbers,

including previous dissertations in 2005 and 2001 (Haahr (1998). Dieharder was also used

to validate the numbers being generated.

The same randomness testing is applied to this random dataset as the TEKs. This

allows for a baseline to compare the results to as well as validating the tests. The dataset

contains 169 million 128-bit numbers, very similar to the set of TEKs.



Chapter 4

Evaluation

This section analyses the results from Dieharder and the other tests on the TEKs and the

random keys.

4.1 Dieharder Results

Dieharder is designed to push the tests to unambiguous failure (Brown (2003). It contains

a number of flag options to alter the parameters of the tests and change their acceptance

criteria. The command used to run the Dieharder test suite for this project was:

Dieharder -a -k 2 -Y 1 -f <filename>

The -a flag runs all the tests in the Dieharder test suite, as described in section 3.2.2.

The -k flag is to decide the KS settings. The -Y flag is the Xtrategy flag which is used to

control the ‘test to failure’ modes (Brown (2003). This flag is set to 1 to use the ‘resolve

ambiguity’ mode. Dieharder can return ‘weak’ as a test result which can be difficult to

interpret. Even perfect random numbers will return some ‘weak’ results at some point

because the p-values are uniformly distributed and will have a result in the tails of the

distribution from time to time. Even if a test returns more than one weak result, this is

not conclusive evidence that the data is non random. The ‘resolve ambiguity’ mode re-

solves this issue by adding p-samples (in blocks of 100) until the test results in a definitive

28
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pass, weak or it proceeds to failure.

An extract of the Dieharder results for the TEKs can be seen in table 4.1 and the re-

sults for the random keys can be seen in table 4.2. The full outputs are in the Appendix,

in table 5.1 and 5.2 respectively.

The TEKs passed all of the Dieharder tests, which indicates that the TEKs are good

random numbers and do not show any obvious pattern that would suggest non random-

ness.

Interestingly, the random keys passed the majority of the tests, but had nine weak results

and one failure, out of the 125 results returned by Dieharder. The weak results are not a

cause for concern as there is some statistical fluctuation when it comes to RNGs and the

numbers they produce. However, the failure of the Greatest Common Divisor Marsaglia

and Tsang test is unexpected and would be worth further exploration by Random.org

(the source of the random keys dataset) to find the cause.

Test Name n N d p-value Result

diehard birthdays 0 100 100 0.98740819 PASSED

diehard operm5 0 1000000 100 0.95452336 PASSED

diehard rank 32x32 0 40000 100 0.59831249 PASSED

diehard rank 6x8 0 100000 100 0.54719972 PASSED

diehard bitstream 0 2097152 100 0.38293106 PASSED

diehard opso 0 2097152 100 0.35772252 PASSED

diehard oqso 0 2097152 100 0.69390124 PASSED

diehard dna 0 2097152 100 0.42865960 PASSED

Table 4.1: Extract from Dieharder Results of TEKS.
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Test Name n N d p-value Result

diehard birthdays 0 100 100 0.76394892 PASSED

diehard operm5 0 1000000 100 0.18935905 PASSED

diehard rank 32x32 0 40000 100 0.21580801 PASSED

diehard rank 6x8 0 100000 100 0.02770416 PASSED

diehard bitstream 0 2097152 100 0.75370418 PASSED

diehard opso 0 2097152 100 0.32644238 PASSED

diehard oqso 0 2097152 100 0.89648137 PASSED

diehard dna 0 2097152 100 0.59449638 PASSED

Table 4.2: Extract from Dieharder Results of Random keys.

4.2 Other Test Results

4.2.1 Plot of Counts

Figure 4.1 shows the result of the plot of counts on the set of TEKs. Across all 128 bit

positions, the percentage of ones and zeros are equal at 50%. The straight line down the

middle of the chart clearly shows that there is an equal number of ones and zeros in the

set of TEKs. This result would indicate randomness as one of the characteristics of a se-

quence of bits being random is an equal probability of a one appearing or a zero appearing.

Figure 4.2 shows the result of the plot of counts on the set of random keys. Like the

TEKs, the percentage of ones and zeros across all 128 bit positions are equal at 50%.

This is the result that was expected from the set of random numbers. The graphs from

both the TEKs and the random keys are identical and there is no evidence from this test

of non randomness within the TEKs.
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Figure 4.1: Plot of Counts for TEKs



Draft of 7:37 pm, Monday, April 15, 2024 32

Figure 4.2: Plot of Counts for random keys

4.2.2 Hilbert Curve

The Hilbert Curve of the TEKs can be seen in Figure 4.3 and the Hilbert Curve of the

random keys can be seen in Figure 4.4. The Hilbert curve produced from both datasets

are very similar and both show no evidence of non randomness. A uniform pattern in

the graph indicates that the data is randomly distributed. There is no clustering or high

density areas within either graph that would indicate non randomness.The curves are this

particular shape because of the approach the Hilbert curve takes when visiting each of

the keys to plot them. It fills the space systematically.
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Figure 4.3: Hilbert Curve of TEKs
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Figure 4.4: Hilbert Curve of Random keys

4.2.3 Lag Plot

The lag plot for the TEKs are show in Figure 4.5 and the random keys in Figure 4.6.

The lag plot of both of the datasets are extremely similar, showing the same shape and

pattern. When examining the lag plots of the two datasets side by side, the patterns in

the plots are nearly identical. There is a discernible pattern in the plots and the points

are not as randomly scattered across the plot as expected. The similarity in the lag plots
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of the two datasets suggests that they share similar correlation structures or randomness

properties.

Figure 4.5: Lag Plot of TEKs
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Figure 4.6: Lag Plot of Random keys

4.2.4 Chi-squared Test

Dataset Chi-squared Statistic P-value

TEKs 0.4601405325882503 0.49755830241590926

Random keys 0.6229208548153906 0.42996394455596043

Table 4.3: Chi-squared Test Result
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The results of the chi-squared test on the TEKs and the random keys are shown in 4.3.

For the TEKs, the chi-squared statistic is calculated to be 0.4601, with a corre-

sponding p-value of approximately 0.4976. The expected frequencies for this dataset are

[8,722,282,911.0, 8,722,282,911.0]. Similarly, for the random keys dataset, the chi-squared

statistic is 0.6229, with a corresponding p-value of approximately 0.4300. The expected

frequencies for this dataset are [10,765,893,632.0, 10,765,893,632.0].

For both datasets, the p-values are much larger than the significance level of 0.05

(5%). This indicates that there is not sufficient evidence to reject the null hypothesis of

independence between the observed frequencies and the expected frequencies. There is no

significant difference between the observed and expected frequencies in either the TEKs

or the random keys.

The chi-squared statistics are also low, supporting the conclusion that the observed

frequencies closely match the expected frequencies. These results suggest that the dis-

tribution of frequencies within both datasets follows the expected patterns and does not

give evidence of non randomness.

4.2.5 Spectral Test

Dataset no. rejected total Percentage %

TEKs 6080630 137358786 4.426822758902368

Random keys 7501794 169541632 4.424750376355938

Table 4.4: Spectral Test Result

The results of the spectral test on the TEKs and the random keys, shown in 4.4 reveal

that a similar percentage of keys were rejected by the test for both datasets.
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For the TEKs, out of a total of 137,358,786 samples, 6,080,630 samples were rejected.

This corresponds to a rejection rate of 4.43%. Similarly, for the set of random numbers,

out of a total of 169,541,632 samples, 7,501,794 samples were rejected, corresponding to

a rejection rate of 4.42%.

Both datasets have a rejection rate of approximately 4.4%, which is below the level of

significance of 5%. This indicates that the observed patterns or spectral characteristics

in the datasets are not statistically significant at the 5% level. Therefore, while some

keys were rejected by the test, the overall percentage of rejections is within an acceptable

range and there is no significant indication of non randomness within the TEKs.

4.3 Conclusions

In conclusion, this dissertation thoroughly examined the randomness properties of keys

produced by GAEN (TEKs) and found strong evidence supporting their randomness.

Through statistical analysis and testing, the distribution, correlations, and patterns within

the TEKs dataset was examined to detect any deviations from randomness.

This analysis produced no evidence to indicate non randomness within the TEKs.

Across various statistical tests and methodologies, the TEKs consistently showed charac-

teristics of randomness. By being random, TEKs enhance the confidentiality and security

of sensitive data exchanged in a GAEN contact tracing system. Furthermore, the absence

of non random patterns in TEKs improves the confidence in the reliability and effective-

ness of cryptographic mechanisms related to these keys.

In conclusion, this study findings confirm the randomness of TEKs, validating their

role in the security and privacy of in GAEN contact tracing applications.



Chapter 5

Appendix

5.0.1 TEKs Results

Table for teks

Test Name n N d p-value Result

diehard birthdays 0 100 100 0.98740819 PASSED

diehard operm5 0 1000000 100 0.95452336 PASSED

diehard rank 32x32 0 40000 100 0.59831249 PASSED

diehard rank 6x8 0 100000 100 0.54719972 PASSED

diehard bitstream 0 2097152 100 0.38293106 PASSED

diehard opso 0 2097152 100 0.35772252 PASSED

diehard oqso 0 2097152 100 0.69390124 PASSED

diehard dna 0 2097152 100 0.42865960 PASSED

diehard count 1s str 0 256000 100 0.29872959 PASSED

diehard count 1s byt 0 256000 100 0.08174702 PASSED

diehard parking lot 0 12000 100 0.91403506 PASSED

diehard 2dsphere 2 8000 100 0.23586557 PASSED

diehard 3dsphere 3 4000 100 0.63468855 PASSED

diehard squeeze 0 100000 100 0.28961226 PASSED

39
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Test Name n N d p-value Result

diehard sums 0 100 100 0.00750044 PASSED

diehard runs 0 100000 100 0.88654068 PASSED

diehard runs 0 100000 100 0.23670757 PASSED

diehard craps 0 200000 100 0.89199102 PASSED

diehard craps 0 200000 100 0.68235234 PASSED

marsaglia tsang gcd 0 10000000 100 0.03007484 PASSED

marsaglia tsang gcd 0 10000000 100 0.32230404 PASSED

sts monobit 1 100000 100 0.15180696 PASSED

sts runs 2 100000 100 0.50053774 PASSED

sts serial 1 100000 100 0.05380206 PASSED

sts serial 2 100000 100 0.84490409 PASSED

sts serial 3 100000 100 0.39453536 PASSED

sts serial 3 100000 100 0.12475855 PASSED

sts serial 4 100000 100 0.01782397 PASSED

sts serial 4 100000 100 0.62109194 PASSED

sts serial 5 100000 100 0.46912814 PASSED

sts serial 5 100000 100 0.77530843 PASSED

sts serial 6 100000 100 0.29587704 PASSED

sts serial 6 100000 100 0.56715645 PASSED

sts serial 7 100000 100 0.84905787 PASSED

sts serial 7 100000 100 0.40116976 PASSED

sts serial 8 100000 100 0.93664924 PASSED

sts serial 8 100000 100 0.10486711 PASSED

sts serial 9 100000 100 0.16044494 PASSED

sts serial 9 100000 100 0.05301976 PASSED

sts serial 10 100000 100 0.92312992 PASSED
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Test Name n N d p-value Result

sts serial 10 100000 100 0.35673434 PASSED

sts serial 11 100000 100 0.98426112 PASSED

sts serial 11 100000 100 0.80067302 PASSED

sts serial 12 100000 100 0.99373847 PASSED

sts serial 12 100000 100 0.88803021 PASSED

sts serial 13 100000 100 0.66824428 PASSED

sts serial 13 100000 100 0.50746190 PASSED

sts serial 14 100000 100 0.98238726 PASSED

sts serial 14 100000 100 0.26538675 PASSED

sts serial 15 100000 100 0.39728743 PASSED

sts serial 15 100000 100 0.97041422 PASSED

sts serial 16 100000 100 0.25630622 PASSED

sts serial 16 100000 100 0.05364901 PASSED

rgb bitdist 1 100000 100 0.44512215 PASSED

rgb bitdist 2 100000 100 0.23502241 PASSED

rgb bitdist 3 100000 100 0.32191988 PASSED

rgb bitdist 4 100000 100 0.22761597 PASSED

rgb bitdist 5 100000 100 0.30123524 PASSED

rgb bitdist 6 100000 100 0.83677612 PASSED

rgb bitdist 7 100000 100 0.68327297 PASSED

rgb bitdist 8 100000 100 0.91556750 PASSED

rgb bitdist 9 100000 100 0.98795982 PASSED

rgb bitdist 10 100000 100 0.19379581 PASSED

rgb bitdist 11 100000 100 0.53441056 PASSED

rgb bitdist 12 100000 100 0.64656408 PASSED

rgb minimum distance 2 10000 1000 0.95411695 PASSED
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Test Name n N d p-value Result

rgb minimum distance 3 10000 1000 0.54118074 PASSED

rgb minimum distance 4 10000 1000 0.25746852 PASSED

rgb minimum distance 5 10000 1000 0.52797286 PASSED

rgb permutations 2 100000 100 0.68240647 PASSED

rgb permutations 3 100000 100 0.71482801 PASSED

rgb permutations 4 100000 100 0.95248263 PASSED

rgb permutations 5 100000 100 0.76625613 PASSED

rgb lagged sum 0 1000000 100 0.86229846 PASSED

rgb lagged sum 1 1000000 100 0.85446006 PASSED

rgb lagged sum 2 1000000 100 0.72559541 PASSED

rgb lagged sum 3 1000000 100 0.44885925 PASSED

rgb lagged sum 4 1000000 100 0.96344825 PASSED

rgb lagged sum 5 1000000 100 0.25164161 PASSED

rgb lagged sum 6 1000000 100 0.28999845 PASSED

rgb lagged sum 7 1000000 100 0.25609882 PASSED

rgb lagged sum 8 1000000 100 0.29886696 PASSED

rgb lagged sum 9 1000000 100 0.63708913 PASSED

rgb lagged sum 10 1000000 100 0.11998965 PASSED

rgb lagged sum 11 1000000 100 0.02340253 PASSED

rgb lagged sum 12 1000000 100 0.92961604 PASSED

rgb lagged sum 13 1000000 100 0.53433063 PASSED

rgb lagged sum 14 1000000 100 0.63635183 PASSED

rgb lagged sum 15 1000000 100 0.12766584 PASSED

rgb lagged sum 16 1000000 100 0.35077156 PASSED

rgb lagged sum 17 1000000 100 0.75718004 PASSED

rgb lagged sum 18 1000000 100 0.35537855 PASSED
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Test Name n N d p-value Result

rgb lagged sum 19 1000000 100 0.73789139 PASSED

rgb lagged sum 20 1000000 100 0.14002184 PASSED

rgb lagged sum 21 1000000 100 0.05885242 PASSED

rgb lagged sum 22 1000000 100 0.34112889 PASSED

rgb lagged sum 23 1000000 100 0.92939060 PASSED

rgb lagged sum 24 1000000 100 0.41104728 PASSED

rgb lagged sum 25 1000000 100 0.68323308 PASSED

rgb lagged sum 26 1000000 100 0.07730139 PASSED

rgb lagged sum 27 1000000 100 0.07269523 PASSED

rgb lagged sum 28 1000000 100 0.23320287 PASSED

rgb lagged sum 29 1000000 100 0.36469854 PASSED

rgb lagged sum 30 1000000 100 0.21883650 PASSED

rgb lagged sum 31 1000000 100 0.33511740 PASSED

rgb lagged sum 32 1000000 100 0.05785507 PASSED

rgb kstest test 0 10000 1000 0.65613857 PASSED

dab bytedistrib 0 51200000 1 0.60605570 PASSED

dab dct 256 50000 1 0.49995832 PASSED

dab filltree 32 15000000 1 0.75555153 PASSED

dab filltree 32 15000000 1 0.40968822 PASSED

dab filltree2 0 5000000 1 0.10438267 PASSED

dab filltree2 1 5000000 1 0.80708126 PASSED

dab monobit2 12 65000000 1 0.74779198 PASSED

Table 5.1: Dieharder Results of TEKS.
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5.0.2 Random keys Results

Table for random value

Test Name n N d p-value Result

diehard birthdays 0 100 100 0.76394892 PASSED

diehard operm5 0 1000000 100 0.18935905 PASSED

diehard rank 32x32 0 40000 100 0.21580801 PASSED

diehard rank 6x8 0 100000 100 0.02770416 PASSED

diehard bitstream 0 2097152 100 0.75370418 PASSED

diehard opso 0 2097152 100 0.32644238 PASSED

diehard oqso 0 2097152 100 0.89648137 PASSED

diehard dna 0 2097152 100 0.59449638 PASSED

diehard count 1s str 0 256000 100 0.37707042 PASSED

diehard count 1s byt 0 256000 100 0.38613176 PASSED

diehard parking lot 0 12000 100 0.98428899 PASSED

diehard 2dsphere 2 8000 100 0.57449647 PASSED

diehard 3dsphere 3 4000 100 0.47967697 PASSED

diehard squeeze 0 100000 100 0.02908390 PASSED

diehard sums 0 100 100 0.01302183 PASSED

diehard runs 0 100000 100 0.21268023 PASSED

diehard runs 0 100000 100 0.48718248 PASSED

diehard craps 0 200000 100 0.43589180 PASSED

diehard craps 0 200000 100 0.48427891 PASSED

marsaglia tsang gcd 0 10000000 100 0.39544378 PASSED

marsaglia tsang gcd 0 10000000 100 0.00073901 WEAK

marsaglia tsang gcd 0 10000000 200 0.20103622 PASSED

marsaglia tsang gcd 0 10000000 200 0.00000116 WEAK

marsaglia tsang gcd 0 10000000 300 0.15296148 PASSED
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Test Name n N d p-value Result

marsaglia tsang gcd 0 10000000 300 0.00000000 FAILED

sts monobit 1 100000 100 0.46954912 PASSED

sts runs 2 100000 100 0.99997882 WEAK

sts runs 2 100000 200 0.65262205 PASSED

sts serial 1 100000 100 0.75039800 PASSED

sts serial 2 100000 100 0.46782328 PASSED

sts serial 3 100000 100 0.96422500 PASSED

sts serial 3 100000 100 0.38336381 PASSED

sts serial 4 100000 100 0.78436629 PASSED

sts serial 4 100000 100 0.32790423 PASSED

sts serial 5 100000 100 0.93561180 PASSED

sts serial 5 100000 100 0.78894832 PASSED

sts serial 6 100000 100 0.30162394 PASSED

sts serial 6 100000 100 0.45041009 PASSED

sts serial 7 100000 100 0.60514729 PASSED

sts serial 7 100000 100 0.52470608 PASSED

sts serial 8 100000 100 0.38468429 PASSED

sts serial 8 100000 100 0.97346520 PASSED

sts serial 9 100000 100 0.67677659 PASSED

sts serial 9 100000 100 0.21257824 PASSED

sts serial 10 100000 100 0.06065198 PASSED

sts serial 10 100000 100 0.19676120 PASSED

sts serial 11 100000 100 0.25074198 PASSED

sts serial 11 100000 100 0.44324414 PASSED

sts serial 12 100000 100 0.06981655 PASSED

sts serial 12 100000 100 0.26688079 PASSED
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Test Name n N d p-value Result

sts serial 13 100000 100 0.50138141 PASSED

sts serial 13 100000 100 0.51148391 PASSED

sts serial 14 100000 100 0.38406027 PASSED

sts serial 14 100000 100 0.32968726 PASSED

sts serial 15 100000 100 0.20468696 PASSED

sts serial 15 100000 100 0.21397465 PASSED

sts serial 16 100000 100 0.16604967 PASSED

sts serial 16 100000 100 0.60748515 PASSED

rgb bitdist 1 100000 100 0.36452077 PASSED

rgb bitdist 2 100000 100 0.94306987 PASSED

rgb bitdist 3 100000 100 0.80290189 PASSED

rgb bitdist 4 100000 100 0.29185388 PASSED

rgb bitdist 5 100000 100 0.69257767 PASSED

rgb bitdist 6 100000 100 0.95139967 PASSED

rgb bitdist 7 100000 100 0.57919220 PASSED

rgb bitdist 8 100000 100 0.45468153 PASSED

rgb bitdist 9 100000 100 0.14850293 PASSED

rgb bitdist 10 100000 100 0.54937469 PASSED

rgb bitdist 11 100000 100 0.28545144 PASSED

rgb bitdist 12 100000 100 0.99636354 WEAK

rgb bitdist 12 100000 200 0.29765398 PASSED

rgb minimum distance 2 10000 1000 0.99960225 WEAK

rgb minimum distance 2 10000 1100 0.99544792 WEAK

rgb minimum distance 2 10000 1200 0.99960423 WEAK

rgb minimum distance 2 10000 1300 0.76490064 PASSED

rgb minimum distance 3 10000 1000 0.88490597 PASSED
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Test Name n N d p-value Result

rgb minimum distance 4 10000 1000 0.56548230 PASSED

rgb minimum distance 5 10000 1000 0.84433241 PASSED

rgb permutations 2 100000 100 0.81514673 PASSED

rgb permutations 3 100000 100 0.86382468 PASSED

rgb permutations 4 100000 100 0.99152004 PASSED

rgb permutations 4 100000 100 0.99152004 PASSED

rgb permutations 5 100000 100 0.31316379 PASSED

rgb lagged sum 0 1000000 100 0.26035279 PASSED

rgb lagged sum 1 1000000 100 0.99920642 WEAK

rgb lagged sum 1 1000000 200 0.29519499 PASSED

rgb lagged sum 2 1000000 100 0.28259248 PASSED

rgb lagged sum 3 1000000 100 0.99684866 WEAK

rgb lagged sum 3 1000000 200 0.75546305 PASSED

rgb lagged sum 4 1000000 100 0.97658438 PASSED

rgb lagged sum 5 1000000 100 0.44382799 PASSED

rgb lagged sum 6 1000000 100 0.97652946 PASSED

rgb lagged sum 7 1000000 100 0.87715734 PASSED

rgb lagged sum 8 1000000 100 0.42657999 PASSED

rgb lagged sum 9 1000000 100 0.32151735 PASSED

rgb lagged sum 10 1000000 100 0.48476972 PASSED

rgb lagged sum 11 1000000 100 0.94092042 PASSED

rgb lagged sum 12 1000000 100 0.72099398 PASSED

rgb lagged sum 13 1000000 100 0.81002140 PASSED

rgb lagged sum 14 1000000 100 0.15611012 PASSED

rgb lagged sum 15 1000000 100 0.92648578 PASSED

rgb lagged sum 16 1000000 100 0.78312121 PASSED



Draft of 7:37 pm, Monday, April 15, 2024 48

Test Name n N d p-value Result

rgb lagged sum 17 1000000 100 0.48839571 PASSED

rgb lagged sum 18 1000000 100 0.52741490 PASSED

rgb lagged sum 19 1000000 100 0.57382712 PASSED

rgb lagged sum 20 1000000 100 0.73919893 PASSED

rgb lagged sum 21 1000000 100 0.72509541 PASSED

rgb lagged sum 22 1000000 100 0.41689814 PASSED

rgb lagged sum 23 1000000 100 0.60260730 PASSED

rgb lagged sum 24 1000000 100 0.90147593 PASSED

rgb lagged sum 25 1000000 100 0.40242266 PASSED

rgb lagged sum 26 1000000 100 0.73316626 PASSED

rgb lagged sum 27 1000000 100 0.97377935 PASSED

rgb lagged sum 28 1000000 100 0.40299842 PASSED

rgb lagged sum 29 1000000 100 0.55415146 PASSED

rgb lagged sum 30 1000000 100 0.91395113 PASSED

rgb lagged sum 31 1000000 100 0.59378537 PASSED

rgb lagged sum 32 1000000 100 0.57760364 PASSED

rgb kstest test 0 10000 1000 0.12119363 PASSED

dab bytedistrib 0 51200000 1 0.79112485 PASSED

dab dct 256 50000 1 0.55110228 PASSED

dab filltree 32 15000000 1 0.55562237 PASSED

dab filltree 32 15000000 1 0.93018984 PASSED

dab filltree2 0 5000000 1 0.48358687 PASSED

dab filltree2 1 5000000 1 0.66316672 PASSED

dab monobit2 12 65000000 1 0.85585632 PASSED

Table 5.2: Dieharder Results of Random keys.
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Github link to the repository for this project: https://github.com/AprilS21/Dissertation
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