
Performance Analysis of Maximum Independent Set

Algorithms on Circle Graphs

Mohamed Bakr Difallah

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master in Computer Science(MCS)

Supervisor: David Gregg

April 2024

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

April 19, 2024

Performance Analysis of Maximum Independent Set

Algorithms on Circle Graphs

Mohamed Bakr Difallah, Master in Computer Science

University of Dublin, Trinity College, 2024

Supervisor: David Gregg

Graph theory is a branch of mathematics with a great number of real world applications
due to its strong ability to abstract many real world problems into a set of nodes and
adjacent edges. One type of a graph is called a circle graph, which represents a circle’s
chords and the intersection between them. Finding the largest number of non intersect-
ing nodes in this graph, called the maximum independent set is a problem that many
algorithms have been developed to tackles, as it has applications in computational geom-
etry, circuit development and compiler optimisation. However many of these algorithms
lack experimental data to support their theoretical performance analysis. In this paper I
perform experimental analysis on many of the latest algorithms for finding the maximum
independent set of a circle graph, including an unpublished algorithm, and discuss the
results.

Acknowledgments

I would like to thank David Gregg, my supervisor for his support and guidance. I would

also like to thank everyone referenced in this paper for their scientific contribution.

Mohamed Bakr Difallah

University of Dublin, Trinity College

April 2024

iii

Contents

Abstract ii

Acknowledgments iii

Chapter 1 Introduction 1

1.1 Relevant Definitions . 2

1.1.1 Circle Graph . 2

1.1.2 Independent Set . 3

1.1.3 Interval Representation . 3

1.2 History and State of the Art . 4

Chapter 2 Algorithms 6

2.1 Endpoint Algorithms . 6

2.1.1 Naive approach . 6

2.1.2 Valiente . 8

2.1.3 Nash-Gregg and its Combined Variant 12

2.2 Exclusive Endpoint Algorithms . 15

2.2.1 Bonsma-Breuer . 15

2.2.2 Improved Bonsma-Beuer . 17

Chapter 3 Evaluation 21

3.1 Experiments . 22

iv

3.1.1 Lookup Table . 22

3.1.2 Interval Generation . 23

3.2 Results for Distinct Endpoint Algorithms 25

3.2.1 Execution time . 25

3.2.2 Memory Consumption . 27

3.2.3 Iteration Count . 30

3.3 Results for Common Endpoint Algorithms 32

Chapter 4 Conclusions & Future Work 38

Bibliography 40

v

List of Figures

1.1 Chord diagram, circle graph and interval representation 4

2.1 Chord diagram, circle graph and interval representation (duplicate) 8

2.2 Chord diagrams with common and distinct endpoints 20

3.1 Density and Independence Number against RMax 26

3.2 Number of Intervals against PKeep . 27

3.3 Density and Independence Number against PKeep 28

3.4 execution time of the distinct endpoint algorithms 29

3.5 Memory consumption of the distinct endpoint algorithms 31

3.6 Iteration count of the distinct endpoint algorithms 33

3.7 execution time of the common endpoint algorithms 35

3.8 Memory consumption of the common endpoint algorithms 36

3.9 Iteration count of the common endpoint algorithms 37

vi

Listings

2.1 Naive algorithm . 8

2.2 Valiente’s Algorithm . 11

2.3 Nash-Gregg Algorithm . 14

2.4 Basic Bonsma-Breuer algorithm . 17

2.5 Improved Bonsma-Breuer algorithm . 19

vii

Chapter 1

Introduction

Graph theory is a branch of mathematics that appears in a large variety of real word

applications and has had many uses in the field of theoretical mathematics, computer

science and engineering. Graphs are made up of nodes, which can represent any object,

and edges between these nodes, which can represent connections between the objects.

Graph theory appeared in the 18th century when Leonhard Euler solved the Seven Bridges

of Königsberg problem by representing pieces of land as nodes and bridges between them

as edges. Many problems as it turns out could be solved this way, by interpreting systems

in the real world as a set of nodes and incident edges. Over time, many algorithms have

emerged to solve a variety problems through this abstraction. A famous example is the

shortest path problem where the nodes of a graph represent an intersection or destination

and its edges represent paths between them.

Graphs have types and properties based on the relationship between their nodes and

edges or based on what they represent. They also contain features that may be relevant to

the problem being solved. One such featured is called an independent set, which is the set

of nodes that have no edges connecting them. One type of graph is the circle graph. This

is a graph that represents a chord diagram where the circle’s chords are modeled as nodes

and the intersection between the chords are represented with edges. In this paper we dis-

cuss algorithms for finding the cardinality of the largest independent set in a circle graph.

1

Many algorithms have been developed to solve this problem and theoretical analysis of

these algorithms shows us that both the memory and the execution time performance of

the state of the art has been constantly improving as I will discuss in section 1.2. While

theoretical analysis is crucial to understanding the platform independent performance of

the algorithm, empirical analysis can often reveal hidden flaws and inefficiencies, which

may be unaccounted for. However there has been little to no empirical analysis of max-

imum independent set algorithms on circle graphs with the notable exception of Nash

et al. (2009). In this paper I aim to build on the work of Nash et al. (2009) by providing

empirical performance data on three algorithms presented by Nash and Gregg (2010). I

will also provide data on the performance of an algorithm by Bonsma and Breuer (2009)

and compare it to and unpublished improvement in Nash and Gregg (shed).

1.1 Relevant Definitions

I will now describe some important concepts that are crucial to understanding the problem

of calculating the cardinality of the maximum independent set of a circle graph and

computing the solution.

1.1.1 Circle Graph

A circle graph is formally defined as an undirected graph that is isomorphic to the in-

tersection graph of a finite set of chords in a circle. In less formal terms: let’s take a

circle and a set of chords drawn in this circle where the chords may or may not cross each

other, this is called a chord diagram, and the points where the chords touch the circle are

called vertices. Each chord is represented by a node in the graph, and in the case where

chords intersect, i.e. cross each other, an edge exists between the nodes that represent

those chords. In the example in figure 1.1, chord C intersects with chords B, D and E

in the chord diagram, so an edge exists between node C and each of the other 3 nodes.

Meanwhile chord A does not intersect with any of the other chords in the circle and so

2

there are no edges between its corresponding node and the other nodes in the circle graph.

1.1.2 Independent Set

An independent set of a graph is a subset of vertices in a graph no two of which are

adjacent, meaning that it is the list of nodes in a graph that have no edges between any

of them. The maximum independent set is the largest possible independent set in the

graph, i.e. the largest number of nodes that don’t have edges between them. Therefore

in the case of the circle graph it represents the largest possible set of chords in a circle

that do not intersect with each other. Note that there can be many independent sets and

even maximum independent sets formed from different combinations of chords. In figure

1.1 the chords A and C do not intersect with each other making them an independent

set of size 2, however it is not the maximum independent set as there exists a larger set

of chords namely A, B and D. The independence number of the circle graph is defined as

the cardinality of the maximum independent set, i.e. its size. Therefore the independence

number of the circle graph in figure 1.1 is 3.

1.1.3 Interval Representation

To solve the problem of finding the maximum independent set of a circle graph, most

algorithms make use of an abstraction where the circle is represented as a line and each

chord is represented as an interval on that line. This is known as an interval represen-

tation. The points on the line represent the vertices in the chord diagram ordered in a

direction and the interval endpoints correspond to these vertices. This can be interpreted

as cutting the circumference of the circle between two vertices and stretching it out flat.

Many interval representations of the same circle graph can exist depending on where the

circumference is cut. The density of the interval representation is the maximum number

of intervals crossing any point on the real line. Chords are independent in this representa-

tion if their corresponding intervals do not overlap, or if one interval is completely inside

3

Figure 1.1: Chord diagram (left). A circle graph representing the chord diagram (middle)
and their interval representation (right).

the other. The example in 1.1 shows that the independent pair of chords A and C do not

overlap, while another independent pair C and D do overlap but D is completely inside

C. The density of the interval representation in this case is 4 because intervals B, C, D

and E overlap at a single point (6 or 7).

1.2 History and State of the Art

Algorithms for finding the maximum independent set in a circle graph began appearing

in the late 20th century. Gavril (1973) presents an algorithm that solves this problem in

O(m3) time (where m is the number of intervals in the interval representation). Supowit

(1987) tackles the issue of routing two pin nets in a channel using two layers, a problem

which often occurs in the field of microfluidic bio-chip technologies. This paper shows

that the problem of finding the optimal set of nets to route is equivalent to finding the

maximum independent set of a circle graph and presents aO(m2) time and space algorithm

for solving this problem. Apostolico et al. (1992) present algorithms for finding cliques

in a circle graph as well as its maximum independent set, the latter of which requires

O(dm) time and space, where d is the density of the circle graph, while Valiente (2003)

presents an algorithm that solves this problem in O(l) time and O(m) space, where l is

the total length of the chords in the interval representation. Significant improvements

were made to this algorithm by Nash et al. (2009). In this paper redundant computations

4

were removed from both algorithms. This is especially the case with Valiente’s algorithm

where the optimised version was experimentally shown to perform 3 times faster than

its original version. An output sensitive algorithm was developed by Nash and Gregg

(2010) that runs in O(αm) time and O(m) space where α is the independence number of

the circle graph. The algorithm can be further improved by combining it with another

algorithm and switching to it based on the density of the interval representation.

The algorithms given above all apply to the case where the chords in the graph do not

share an endpoint, however there have been algorithms developed to solve the version of

the problem where any number of chords may share an endpoint. Liu and Ntafos (1988)

solve the problem of partitioning a polygon into smaller pieces. An algorithm for finding

the maximum independent set of a circle graph that runs in O(m3) time is a step in that

solution. Chang and Lee (1992) give an algorithm that runs in O(nm) time where n is the

number of endpoints in the interval representation. Another algorithm in the category

is presented by Bonsma and Breuer (2009), where the problem of counting hexagonal

patches in a planar graph is reduced to finding the maximum independent set of a circle

graph running in O(nm) time and O(m2) space.

It’s interesting to note that many of these algorithms were developed as a direct

result of attempting to solve another problem in computational geometry, either as a

simplification or as a step in the problem, or while developing a solution to a real world

application. However there is a lack of experimentation with little time and memory

consumption data. A notable exception is Nash et al. (2009) as mentioned previously.

This lack of experimentation may be because of the difficulty of comparing each algorithm

as the format of their input may differ. This point will be elaborated on in 3.1.

5

Chapter 2

Algorithms

In this chapter I describe the operation of each of the algorithms that will be tested.

2.1 Endpoint Algorithms

I will begin by describing the algorithms that operate on interval representations with

distinct endpoints.

2.1.1 Naive approach

One of the earlier algorithms is by Supowit (1987) which runs in O(m2) time and and uses

O(m2) space, as was mentioned earlier. While the algorithm’s time makes it impractical

for real applications, the mathematical approach introduced by the paper forms the basis

for many later algorithms. Specifically Nash and Gregg (2010) provide an algorithm

similar to Supowit’s which they refer to as a naive approach, which forms the basis for

the output sensitive algorithm introduced in the same paper. I now describe this naive

approach which will from now be referred to as the naive algorithm.

Let ix,y denote and interval with left endpoint x and right endpoint y. Given a set

of intervals I, where Ix,y ⊂ I represents the subset of intervals with left endpoint greater

than or equal to x and right endpoint less than or equal to y, MIS[Ix,y] or represent the

6

cardinality or size of the maximum independent set of intervals between endpoints x and

y. Similarly CMIS[Ix,y] or CMIS[ix,y] represents the cardinality or size of the contained

maximum independent set of intervals between the endpoints x and y, not including the

interval ix,y if it exists. This can be represented as CMIS[Ix,y] = MIS[Ix+1,y−1]. The

algorithm makes use of the following properties. Given an interval ix,y on the real line in

the interval representation:

If x is the right end point of an interval, then MIS[Ix,y] = MIS[Ix+1,y]. This follows

since if x is the right endpoint of an interval then its left endpoint is less than x and hence

outside the range [x, y], meaning that we can be certain that its associated interval is not

in the set of intervals Ix,y allowing us to exclude the point x. If x is the left endpoint

of an interval j = ix,z, then: MIS[Ix,y] = MIS[Ix,y] if z > y, otherwise MIS[Ix,y] =

max(MIS[Ix+1,y], 1+CMIS[j]+MIS[Iz+1,y]). Similarly to the first property, if z, which

is the right endpoint to x, is greater than y, then it falls outside the range [x, y], meaning

that the interval j is not in the set of intervals in Ix,y, which again allows us to exclude

the point x. However if z is less than y, we derive the MIS value from three components:

the interval itself (1), the MIS contained in the interval (CMIS[j]) and the remaining

intervals that come after (MIS[Iz+1,y]). A greater MIS value may have already been

calculated so the MIS[Ix+1,y] is selected instead if its value is larger.

Two lists are maintained, M of size n which represents MIS[Ix,y] and C of size m

which represents CMIS[Ix,y]. The algorithm iterates over the interval line from left to

right and assigns the value to y. If y is the right endpoint of an interval i = [x, y]. then

C[i] = M [x+ 1], since it has already finished calculating the CMIS for every interval in

the set of intervals in Ix,y. For each iteration of y it iterates down from y−1 to 0, assigning

this value to x. Applying the first property, M [x] = M [x + 1]. Then, if x is the left end

point of an interval j = [x, z], the second property is applied. M [x] is overwritten with

the larger value between M [x+1]and1+C[j] +MIS[z+1]. At the end of the algorithm,

M [0] contains the cardinality of the maximum independent set. The pseudo-code can be

seen in 2.1.1

7

Figure 2.1: A copy of figure 1.1 placed here for convenience.

m = <number o f i n t e r v a l s>

n = m ∗ 2

M = [0] ∗ n

C = [0] ∗ m

for y from 0 upto n − 1 :

i f y i s the r i g h t endpoint o f i = (z , y) :

C[i] = M[z + 1]

for x from y − 1 downto 0 :

M[x] = M[x + 1]

i f x i s the l e f t endpoint o f j = (x , z) and z <= y :

M[x] = max(M[x + 1] , 1 + C[j] + M[z + 1])

return M[0]

Listing 2.1: Pseudo-code for the naive algorithm

2.1.2 Valiente

Valiente (2003) introduces an algorithm for calculating the maximum independence set

of a circle graph that requires O(l) time and O(n) space complexities, where l is the

total length of all intervals in the interval representation. Though as we will show later

8

this is misleading as Nash et al. (2009) make significant improvements to this algorithm

through time reducing optimisations by removing redundant calculations and skipping

unnecessary iterations.

Valiente’s algorithm makes use of a simple reduction where the problem of calculating

the maximum independent set of a circle graph is reduced to calculating the maximum

independent set of an interval graph. An interval graph is similar to a circle graph, with

the exception being that two intervals also intersect if one interval is completely inside

the other. Looking at figure 2.1, while chords B and D don’t intersect in the circle graph

they would intersect in an interval graph. The maximum independent set of an interval

graph can be found inO(n) time and space complexity, given the CMIS values of all

intervals, using two properties introduced by Gupta et al. (1982) that are similar to the

properties described in the naive approach. Let G[Ix] be the cardinality of the maximum

independent set of intervals between endpoints x and n: G[Ix] = MIS[Ix,n]: If a is the

right end-point of an interval, then G[Ix] = G[Ix+1]. This makes sense since if x is the

right end-point of an interval i = iz,x, it must be the case that z < x and hence z is outside

the range [x, n]. Therefore x can be excluded, since its corresponding interval is not in

the range. In addition G[In] = 0, since there is only 1 end-point in the range [n, n] and as

such cannot it contain any intervals. If x is the left end-point on an interval i = ix,y, then

G[Ix] = max(G[Ix+1], CMIS[i] +G[Iy+1]). CMIS[i] denotes the maximum independent

set contained in ix,y, and G[Iy+1 refers to the maximum independent set outside after

ix,y, since these ranges are disjoint they can be used to form a maximum independent

set. G[Ia+1] is in the same range but may have a larger value from a previous calculation,

so that value is used instead in that case. G[I0] returns the weight of the maximum

independent set.

The algorithm that uses the aforementioned properties allows us to obtain the max-

imum independent set of an interval graph given values for CMIS[Ix,y] in O(n) time as

mentioned before. To obtain the maximum independent set Valiente’s algorithm calcu-

lates the CMIS values for every interval in the circle graph. The original version of

9

the algorithm ensures that CMIS values are calculated by sorting the intervals in non-

decreasing order of length. Since an interval can only contain shorter intervals this ensures

that all CMIS values are available when calculating the CMIS value for any interval.

The optimization instead achieves this by scanning left to right over the real line and at

each right end-point calculating the CMIS values via a right to left scan. During the

right to left scan, the algorithm will inevitably encounter the right endpoint of the value

of the interval it has just calculated, therefore a value is maintained that stores the left

endpoint of that interval to avoid recalculating its CMIS value.

The algorithm works as follows: Two lists are maintained M and C, with each of their

cells set to 0, and a value last which is set to 0. Then the algorithm iterates from 0 to

n−1 using a variable y. On each iteration if y is the right endpoint of an interval iz,y, then

the algorithm iterates downwards from last to z+1 using a variable x. On each iteration

if x is the left end-point of an interval j = ix,v and M [v + 1] + C[j] > M [x+ 1] then the

assignment M [x] = M [z + 1] + C[j] occurs, otherwise the assignment M [q] = M [q + 1]

occurs. After the inner loop ends, the assignment C[j] = M [x+1]+1 occurs and variable

last is set to x. When the outer loop ends, another downward loop is done from n− 2 to

0 and the same steps as the previous downward loop are performed, with the exception

of the assignment to C[j] since we already have the CMIS values. The cell M [0] then

contains the cardinality of the maximum independent set when the algorithm terminates.

The pseudo-code for this algorithm can be seen in 2.1.2.

10

m = <number o f i n t e r v a l s>

n = m ∗ 2

M = [0] ∗ n

C = [0] ∗ m

l a s t = 0

for y from 0 upto n − 1 :

i f y i s the r i g h t endpoint o f i = (z , y) :

for x from l a s t downto z + 1 :

M[x] = M[x + 1]

i f x i s the l e f t endpoint o f j = (x , z) :

M[x] = max(M[x] , C[j] + M[z + 1])

C[i] = M[z + 1] + 1

l a s t = z

for x from n − 1 downto 0 :

M[x] = M[x + 1]

i f x i s the l e f t endpoint o f i = (x , y) :

M[x] = max(M[x] , C[i] + M[y + 1])

return M[0]

Listing 2.2: Pseudo code showing the operration of Valiente’s algorithm.

Note the second loop running n iterations using using the CMIS values

to generate the cardinality of the maximum independent set

11

2.1.3 Nash-Gregg and its Combined Variant

The paper by Nash and Gregg (2010) builds on the naive approach discussed earlier to

present an output sensitive algorithm that runs in O(αn) time where α is the independence

number of the circle graph, or in other words, the output result of the algorithm. This is

very useful in cases where the maximum independent set of a circle graph is expected to

be very small relative to the total set of chords, and smaller than the density.

This algorithm uses the following definition of an update set Sy, Sy = {x|MIS[Ix,y] >

MIS[Ix,y−1], 0 ≤ x ≤ y}. In addition, it is shown that MIS[Ix,y] = 1 +MIS[Ix,y−1] for

each x in the set Sy.

Sets M and C are maintained just like the naive approach, that represent MIS and

CMIS respectively. The algorithm iterates over the interval line from left to right and

assigns the value to y. If y is the right end-point of an interval j = iz,y the assignment

C[j] = M [z + 1] occurs. Then instead of iterating down to 0, a function called update is

called by passing in lists C and M and endpoint y.

The update algorithm creates a stack S that represents the update set Sy. If y is

the right endpoint of an interval j = ix,y] the assignment M [x] = 1 + C[j] occurs and

x is pushed onto the stack. Then the following is performed until the stack is empty.

The stack Stack is popped into x and if x > 0andM [x] > M [x− 1] then the assignment

M [x−1] = M [x] occurs, then x−1 is pushed onto Stack. If x−1 is the right end-point of an

interval k = ip,x−1 and 1+C[k]+M [x] > M [p] then the assignmentM [p] = 1+C[k]+M [x]

occurs and p is pushed onto the stack. When the stack is empty the update function

returns and the algorithm continues its iteration.

When the update function returns M [x] = MIS[Ix,y] if the list M has been modified.

Note that the assignments in the update algorithm apply the two properties discussed

in the naive approach. The time of the algorithm O(αn) is derived from the iterations

performed by popping and pushing onto the stack. A stack push occurs whenever an

assignment to M occurs and that only occurs whenever a cell of M is overwritten by a

12

greater number, which means that the size of the stack is directly related to the cardinality

of the independent set. I have also noted that M [Ix,y] = 1 + M [Ix,y−1] for each x ∈ Sy

showing that each assignment of M increases the value by 1, meaning the total size of

the stack and independence number are very close. As the update function iterates over

the size of the stack this means its iteration time is directly related to the independence

number, which results in the O(αn) time complexity. The pseudo-code can be seen in

2.1.3

This algorithm can be further conditionally improved by combining it with the opti-

mised version of Valiente’s algorithm. This is done by constantly checking if the inde-

pendence number of the circle graph surpasses the density and switching the calculation

to Valiente’s algorithm whenever this occurs. This is useful for applications where there

may be a large difference between the density of the graph and the independence number

but it is uncertain which is larger.

The algorithm works by modifying the update function to return a boolean flag. When-

ever the function modifies the list M, it checks if the value that has just been entered is

larger than the density. If that is the case the function terminates and returns True. In

the main function, if the flag returned by update is set, then the algorithm is aborted and

Valiente’s algorithm is called instead. Otherwise it continues to run the output sensitive

algorithm as normal. Since Valiente’s algorithm has a time complexity of O(l) where

l ≤ dn and the standard version of this algorithm has a time complexity of O(αn), this

combined algorithm has a time complexity of O(nmind, α).

13

m = <number o f i n t e r v a l s>

n = m ∗ 2

M = [0] ∗ n

C = [0] ∗ m

for y from 0 upto n − 1 :

i f y i s the r i g h t endpoint o f i = (z , y) :

C[i] = M[z + 1]

update (y)

return M[0]

update (y) :

Stack = []

i f y i s the r i g h t endpoint o f an i n t e r v a l i = (x , y) :

M[x] = 1 + C[i]

Stack . push (x)

while Stack i s not empty :

z = Stack . pop ()

i f M[z] > M[z − 1] :

M[z − 1] = M[z]

Stack . push (z − 1)

i f z − 1 i s the r i g h t endpoint o f an i n t e r v a l

j = (zp , z − 1) :

i f 1 + C[j] + M[z] > M[zp] :

M[zp] = 1 + C[j] + M[z]

Stack . push (z)

Listing 2.3: The basic variant of the Nash-Gregg output sensitive algo-

rithm

14

2.2 Exclusive Endpoint Algorithms

In this section we will describe the operation of two algorithms that can operate on a

circle graph where the chords may share an endpoint. These algorithms can also operate

on exclusive endpoint circle graphs, though they are significantly slower.

2.2.1 Bonsma-Breuer

So far we have only described algorithms that operate on circle graphs where the chords

do not share an endpoint. These algorithms cannot operate on circle graphs where the

chords may have common endpoints as accessing a chord via its endpoint may no longer

return a single value. This problem can be solved by converting this circle graph to a

form where the chords do not share endpoints as shown in figure 2.2. This is done by

creating new endpoints for each shared endpoint and ensuring that the newly created

chords intersect. However as noted by Bonsma and Breuer (2009), this can take O(n4) in

the worst case, making it an inefficient and slow solution.

Bonsma and Breuer (2009) have developed an algorithm that solves this problem in

O(nm) time and O(max(m,n)) space complexity algorithm that is described now:

Lx,y denotes the set of intervals with left endpoint at x and right endpoint less than

y.

Lx,y = {ix,z|i ∈ I, z ≤ y}

MIS[S] denotes the cardinality of the maximum independent set contained in the

set of intervals S. U [S] denotes a value formed from a set of intervals S according to

the following definition: U [S] = max{(1 + CMIS[i] +MIS[Ix+1,y])∀ix,y ∈ S}. Similarly

to the previous algorithms discussed, a recurrence is used for computing the maximum

independent set. This recurrence is makes use of the aforementioned definitions as follows:

M [Ix,y] = max(MIS[Ix,y], U [Lx,y])

Two arrays, M and C, are maintained that represent MIS and CMIS respectively.

The algorithm operates by iterating from 0 to n − 1 and assigning that value to y, at

15

each iteration, it iterates downwards from y − 1 to 0 assigning that value to x. In each

iteration the assignment M [x] = M [x+1] occurs. Then, for each interval ix,z where z ≤ y,

if 1+C[i]+M [z+1] > M [x] then the assignment M [x] = 1+C[i]+M [z+1] occurs. This

loop over intervals ix,z is the application of the definition U[S]. To finish the downward

loop, if there is an interval j = ix,y, then the assignment C[j] = M [x + 1] occurs. The

pseudo code for this algorithm is in 2.2.1.

16

m = <number o f i n t e r v a l s>

n = <number o f endpoints>

M = [0] ∗ n

C = [0] ∗ m

for y from 0 upto n − 1 :

for x from y − 1 downto 0 :

M[x] = M[x + 1]

f o r each i n t e r v a l j = (x , z) where x <= z :

M[x] = max(M[x + 1] , 1 + C[j] + M[z + 1])

i f x i s the l e f t endpoint o f i = (x , y) :

C[i] = M[x + 1]

return M[0]

Listing 2.4: The basic implementation of the Bonsma-Breuer algorithm

2.2.2 Improved Bonsma-Beuer

The approach taken by Bonsma and Breuer’s algorithm is notably similar to the naive

approach discussed earlier. The algorithm computes MIS[Ix,y] for every possible pair of

x and y in the iteration which is unnecessary as many of these values are not used in the

computation. In an unpublished paper Nash and Gregg (shed) suggest an improvement

to this algorithm that is inspired by Valiente’s algorithm.

The problem is reduced to calculating the values of CMIS for each interval the using

these value to calculate the maximum independent set of an interval graph. This max-

imum independent set can be computed given the CMIS values. If there are intervals

j = ix,y and k = iz,y, then if x > z, i.e. j is shorter than k, CMIS[j] will have already

been computed when evaluating CMIS[k]. This occurs because during the downward

loop, the CMIS will be calculated for all intervals that share a right endpoint, with the

17

CMIS for intervals with higher left endpoints being computed first.

Two arrays, M and C, are maintained that represent MIS and CMIS respectively.

The algorithm iterates from 0 to n−1 and assigns the value to y. In each iteration, if there

is an interval j = iv,y, the algorithm iterates downwards from y−1 to v assigning the value

to x, otherwise the iteration is skipped. In each iteration the assignment M [x] = M [x+1]

occurs, then for each interval k = ix,z where z < y, if 1 + C[k] +M [z + 1] > M [x] then

the assignment M [x] = 1 + C[k] + M [z + 1] occurs. Let cy be the number of intervals

contained in the longest interval with right end-point y. C denotes the sum of all cy ∈ {0, 1,

. . . , n − 1}. Similarly let ly be the length of the longest interval with right endpoint y,

and let L be the sum of all ly ∈ {10, 1, ..., n − 1}. This improved algorithm has a time

complexity of O(L+ C). 2.2.2 shows the pseudo-code for this algorithm.

18

m = <number o f i n t e r v a l s>

n = <number o f endpoints>

M = [0] ∗ n

C = [0] ∗ m

for y from 0 upto n − 1 :

i f y i s the r i g h t endpoint o f i = (z , y) get the l ong e s t :

for x from y − 1 downto z + 1 :

M[x] = M[x + 1]

f o r each i n t e r v a l j = (x , z) where x <= z :

M[x] = max(M[x + 1] , 1 + C[j] + M[z + 1])

i f x i s the l e f t endpoint o f i = (x , y) :

C[i] = M[x + 1]

for x from n − 1 downto 0 :

M[x] = M[x + 1]

f o r each i n t e r v a l j = (x , z) where x <= z :

M[x] = max(M[x + 1] , 1 + C[j] + M[z + 1])

return M[0]

Listing 2.5: The improved variant of the Bonsa-Breuer algorithm. Note

the similarity to Valiente’s algorithm in the final loop (for x from n - 1

downto 0)

19

Figure 2.2: Chord diagram with shared endpoints (left), is converted to
a chord diagram with exclusive endpoints by splitting the endpoint so
that the chords still intersect.

20

Chapter 3

Evaluation

In this chapter I describe the methodology used to test the algorithms described in Chapter

2, then discuss the results. The following will be used to test execution time, memory

usage at peak and iteration count of each algorithm. The code was written in C++ and

the standard library function chrono :: high resolution clock :: now() is used to obtain

the time measurements. The measurements were all collected on a machine running a

AMD Ryzen 5600x. Table 3.1 clarifies how the algorithms are referred to from here on

out and in the figures.

Name Description
Naive The naive approach similar to Supowit’s algorithm described in section 2.1.1

Valiente The improved variant of Valiente’s algorithm described in section 2.1.2
Nash-Gregg The standard variant of the output sensitive algorithm described in 2.1.3
Combined The combined variant of Nash-Gregg described in the same section 2.1.3

Bonsma-Breuer The aglorithm for common endpoints described in section 2.2.1
Improved The improved variant of Bonsma-Breuer described in section 2.2.2

Table 3.1: This table clarifies which algorithm is being referred by which
name

21

3.1 Experiments

I now describe the experimental setup, how the sample inputs were generated and how

these inputs were used to obtain the data.

3.1.1 Lookup Table

When describing the execution time and memory complexity of the algorithms, the time

it takes to obtain certain information about the interval representation such as whether a

given endpoint is a right or left endpoint, or how many intervals it is incident to is often

not addressed. The speed of the first operation for example would vary depending on

how the input is processed, but could take O(m) time in the worst case, where m is the

number of intervals. To avoid this variation a lookup table is generated using the interval

representation as input, by storing relevant information in arrays and using endpoints

as indexes. This lookup table allows the algorithms to obtain the relevant information

in O(1) for the distinct endpoint case. It operates by storing several variables and lists,

namely a list of intervals and an list of endpoints that use endpoints as keys. The variation

of the lookup table for the distinct endpoint case is created in O(m) time and uses O(n)

space, exposing the following functions:

getDensity: This function retrieves the density of the graph, which is obtained in O(l)

time where l is the total length of all intervals.

getNumOfIntervals: This retrieves the number of intervals. The number of endpoints

is derived by doubling this value.

getCorrespondingInterval: This retrieves the interval incident to a given endpoint.

Intervals are returned as key to and array that stores the interval.

getCorrespondingEndpoint: Given an endpoint, this retrieves the other endpoint that

forms the same interval.

22

Due to the method of storing information in arrays with endpoints as indexes, this

same lookup table cannot be used for the common endpoint case because the indexes

would then conflict as they may have multiple corresponding intervals and endpoints. A

different lookup table is used instead that is adapted for the this case. The performance

of the lookup table is slightly worse as it needs to iterate over multiple intervals and

endpoints to retrieve the correct information. To facilitate this a significantly larger

amount is memory is used by making the array of intervals 2-dimensional and making the

array of endpoints store a dynamic list of its corresponding endpoints. This table is still

created in O(m) time but uses O(n2) space. Its functions are the following:

getNumOfIntervals and getNumOfEndpoints: Retrieves the number of intervals and

the number of endpoints respectively. Unlike the distinct endpoint lookup table, the

number of intervals doesn’t correspond to the number of endpoints so they cannot

be derived from each other. This takes O(1) time.

getIntervalsBefore: Given inputs x and y, this retrieves the list of intervals with left

endpoint x and right endpoint less than or equal to y. This takes O(m′) time in the

worst case where m′ is the frequency of the most common endpoint.

getInterval: Given two input x and y this retrieves the interval with x and y as end-

points.

getLongestInterval :Given and endpoint y this retrieves the longest interval with right

endpoint at y. This takes O(1) time as the intervals in each list were sorted in the

initialisation step.

3.1.2 Interval Generation

To test the distinct algorithms I followed a methodology similar to Nash et al. (2009) to

generate the intervals two types of intervals. The first was generated by creating a list of

values from 1 to n where n is the desired number of endpoints. This ordered list was then

23

shuffled to create a random permutation of said values. The intervals are then obtained

by taking each pair of values as the two endpoints of an interval. Mathematically, the

intervals can be represented by a permutation of the set S = {0, 1,. . . , n − 1}, where an

interval i is obtained from i = [S2i, S2i+1] . This type of interval will henceforth be called

a Permutation interval.

The second type of interval was generated using a method described by Scheinerman

(1990). This method allows for the generation of intervals of various lengths granting

control over the density of intervals. These intervals are generated by selecting a set of

random values in the range [0, 1] to be a centre Ci in the set C = {C1, C2,. . . , Cn}. Then

another set of random values in the range [0, RMax] is selected to be radius Ri in the set

R = {R1,..., Rn}. Then for each Ci ∈ C and Ri ∈ R, interval i = [Ci − Ri, Ci + Ri]. The

values can then be substituted for their rank in ascending order to determine the interval

endpoints. RMax is the maximum possible length of the radius which will vary depending

on the density of intervals we want to generate. This type of interval will be called Radial

intervals. Nash et al. (2009) show that the mean density of a large number of Permutation

intervals is n/2, while the mean density of radial intervals increases greatly from at values

of RMax from 0 to 3 and begins to plateau at 4.0, as can be seen from figure 3.1a. We

can also see from figure 3.1b that changing the value of RMax initially decreases the

independence number of the generated intervals, but increases again beginning at around

RMax 1.0. Recall from 1.1.3 that two chords form an independent set if its corresponding

intervals don’t intersect or one is completely inside the other. Initially, the low value of

RMax generates intervals that are too short to intersect with one another, but as it

increases that longer intervals begin intersecting with each other. Increasing the range

further however creates opportunities for intervals to be inside one another increasing the

independence number. For the test cases, permutation intervals will be generated with

sizes from 1000 to 20000 at a step of 1000. 15 of each size will be generated and the mean

of results are used to obtain the data. Radial intervals will also be generated at a fixed

size of 5000, with RMax increasing from 0.2 to 10 at a step of 0.2.

24

For the common endpoint case I now present a method for generating intervals that

may share common endpoints: Given the set of endpoints S = {S1, S2,..., Sn} and an

empty set X, a random index i is generated in the range [1, n]. While S ̸= ∅ An element

Si is removed from S and added to X. There is a probability PKeep however that Si

will not be removed from S allowing it can be reused as an endpoint. Increasing PKeep

increases the frequency that and endpoint is reused, which in turn increases the number

of intervals generated. This is done until the S is empty. Every pair must be checked to

ensure that no two endpoints of the same interval are the same. When S = ∅, X may have

an odd number of endpoints insufficient to generate the intervals. In this case a random

value from X can be chosen as the final endpoint. Figure 3.2 shows how the number of

intervals generated increases as PKeep is increased. The number initially increases slowly

then begins to increase rapidly as PKeep → 100. This exponential increase is reflected

in the increase of the density shown in figure 3.3a. Figure 3.3b shows a similar albeit

slower rate of increase, due to new intersections being formed as the number of intervals

increases.

3.2 Results for Distinct Endpoint Algorithms

The following are the results of testing the distinct endpoint algorithms and comparing

them.

3.2.1 Execution time

I now discuss the results of measuring the execution time of the algorithms. 3.4a shows

the time of each algorithm of the distinct endpoint algorithms for permutation type in-

tervals as they increase in amount. As expected, the naive algorithm by far had the worst

execution time out of the four algorithms tested. Valiente’s algorithm can be seen to

perform drastically better, running 20 times faster at an interval count of 20000. The

output sensitive algorithm and its combined variant performed the best out of all algo-

25

(a)

(b)

Figure 3.1: The change in density of the interval representation (a) and
its independence number (b) as RMax is increased

26

Figure 3.2: The change in the number of intervals in the interval repre-
sentation as PKeep is increased

rithms with the combined variant running very slightly faster. These two algorithms ran

3 times faster than Valiente’s algorithm at 20000 intervals.

Figure 3.4b shows the execution time of each algorithm with radial intervals as RMax

is increased. The naive approach performed the worst as expected, with Valiente’s algo-

rithm initially getting slower and then speeding up again as the density increases, which

highlight its deceptive O(l) execution time. The Nash-Gregg algorithm and its combined

variant perform identically, initially getting faster as the independence number is reduced

as shown in figure 3.1b, then remaining stable. The combined algorithm only shows

improvements at really low density values, when RMax < 0.05. It cannot switch to Va-

liente’s algorithm at higher densities as the independence number tends to be much lower

than the density, causing it to never trigger the switch condition.

3.2.2 Memory Consumption

I now discuss the memory performance of the algorithms. Figure 3.5a shows the memory

consumption of each algorithm for permutation type intervals. The memory consumption

27

(a)

(b)

Figure 3.3: The change in the density in the interval representation (a)
and its independence number (b) as PKeep is increased.

28

(a)

(b)

Figure 3.4: The execution time of the distinct endpoint algorithms. In
(a) permutation intervals are used the interval size is increased, and in
(b) the interval size is kept static at 5000 and RMax is increased

29

of the Naive approach and Valiente’s algorithm is the same, as both only store the CMIS

and MIS arrays when computing the the independence number. The Nash-Gregg algo-

rithm and the combined algorithms share the same memory consumption, which is higher

than the former two algorithms. The stack data structure used in these two algorithms is

created by initialising an array of size m where m is the number of intervals, and changing

a variable size to modify the correct cell when popping and pushing. While this consumes

more memory, the alternative of using a dynamic stack was much slower.

Figure 3.5b shows the memory consumption of each algorithm as the radius is in-

creased. Since the memory complexity O(n) depends entirely on the number of endpoints,

there was no change in memory consumption, which was expected. Once again the con-

sumption of the Nash-Gregg algorithm and its combined variant is slightly larger due to

the statically sized stack.

3.2.3 Iteration Count

I now discuss the inner loop iterations count of the algorithms. For the permutation

intervals in figure 3.6a, we can see that the Naive approach performs the worst case as

expected since it iterates over every possible pair of endpoints. Valiente’s algorithm is

a significant improvement to this since it reduces the number of intervals it needs to

compute for by skipping intervals with already computed CMIS values. Even though

their execution time complexity suggested they would perform better than the former two

algorithms, the Nash-Gregg algorithm and the combined algorithm performed even better

than expected. The iteration count appears negligible compared to the naive approach

and is 100 times less compared to Valiente’s algorithm. The reason the time performance

is not as drastically better is due to the time spent allocating and freeing the stack, which

is done by creating it at the start of each call of update and freed when it returns to avoid

a memory leak.

The number of iterations shown in figure 3.6b also reflects the time measurements I

30

(a)

(b)

Figure 3.5: The peak memory conumption of the distinct endpoint al-
gorithms. In (a) permutation intervals are used the interval size is
increased, and in (b) the interval size is kept static at 5000 and RMax
is increased

31

discussed previously. Once again the Naive algorithm performs the worst, while Valiente’s

algorithm initially gets slower then becomes faster as RMax is increased. This time it

takes a much higher density for the Valiente’s algorithm to perform better than Nash-

Gregg and the combined algorithm since the expensive assignments are not accounted for

in this measurement.

3.3 Results for Common Endpoint Algorithms

The following are the results of testing the common endpoint algorithms.

Figure 3.7 shows the execution time of the two common endpoint algorithms. As can

be seen in figure 3.7a, the improved variant of the Bonsma-Breuer algorithm runs up to

1.5 times faster than the standard variant algorithm. We can also see from figure 3.7b that

as the execution time increases as PKeep increases, with the speed of the increase getting

larger with PKeep. Since we’ve shown earlier that the increase in PKeep results in an

increase in the number of chords, this result shows that the algorithms’ execution times

are dependent on the number of intervals as described with its O(mn) time complexity.

Figure 3.8 shows the peak memory consumption of the two common endpoint algo-

rithms. Both algorithms have the same memory consumption. Unlike the execution time

of the algorithm the increase in memory consumption is linear, however the increase is still

faster the higher the value of PKeep. When increasing PKeep the memory consumption

does not change until PKeep exceeds 96%. This occurs because the memory complexity

is O(max(n,m)) and at higher values of PKeep the number of intervals begins to exceed

the number of endpoints.

Figure 3.9 shows how the number of loop iterations reflects the speed of the algorithm.

The difference in performance between the Bonsma-Breuer algorithm and the improved

variant is identical to the time performance. Figure 3.9a shows how the improved variant

increases the number of loop iterations more slowly than the standard variant and figure

3.9b shows how increasing PKeep increases the iteration count slowly at first then quickly

32

(a)

(b)

Figure 3.6: The number of iteration in the distinct endpoint algorithms.
In (a) permutation intervals are used the interval size is increased, and
in (b) the interval size is kept static at 5000 and RMax is increased

33

beginning at around PKeep = 60%. The time complexity O(mn) for the standard variant

of Bonsma-Breuer is derived from this iteration count, as the increasing value of PKeep

increases the number of intervals, therefore increasing m. Meanwhile since the density

and total length of intervals are also increasing with the increase in PKeep, L and C are

also increasing which increases the iteration count of the improved variant due to its time

complexity O(L+ C).

34

(a)

(b)

Figure 3.7: The execution time of the common endpoint algorithms. In
(a) PKeep was kept static at 15 and the interval size was increased,
and in (b) the interval size is kept static at 1000 and Pkeep is increased

35

(a)

(b)

Figure 3.8: The peak memory consumption of the common endpoint
algorithms. In (a) PKeep was kept static at 15 and the interval size
was increased, and in (b) the interval size is kept static at 1000 and
Pkeep is increased

36

(a)

(b)

Figure 3.9: The number of iteration in the common endpoint algorithms.
In (a) PKeep was kept static at 15 and the interval size was increased,
and in (b) the interval size is kept static at 1000 and Pkeep is increased

37

Chapter 4

Conclusions & Future Work

This paper has provided results for previously unimplemented state of the art algorithms

for finding the cardinality of the maximum independent set of a circle graph. I first de-

scribed some of the latest state of the art algorithms that exist both for the case where

the chords in a circle have distinct vertices and in the case where these chords may share

a vertex. I provided experimental results for Valiente’s algorithm, the latest previously

implemented algorithm, and for the Nash-Gregg algorithm which I have shown to be more

efficient than Valiente’s algorithm at low density values for Radial intervals. The com-

bined variant of this algorithm showed little improvement on the base version since the

cardinality is significantly lower than the density above a low value of RMax for radial

intervals, giving it no opportunity to adapt. I also presented a technique for generating

intervals that may share endpoints and have shown the effect varying its primary pa-

rameter PKeep has on the independence number, density and the number of intervals.

I used this technique to evaluate the performance of the Bonsma-Breuer algorithm and

compared it to an unpublished improved variant. This improved version was shown to be

significantly better at all values of PKeep, with the improvement increasing as PKeep

increases. Although the execution times of both algorithms was significantly worse than

the distinct endpoint algorithms. In the case of that set of algorithms, the results showed

Valiente’s algorithm with the improvements made by Nash et al. (2009) was shown to

38

be the best at high densities, while at lower densities the Nash-Gregg algorithm and its

combined variant performed noticeably better.

Since radial intervals were not sufficient to account for the optimisation of the combined

Nash-Gregg algorithm, future work could attempt to generate interval type that could

parameterise the cardinality and density separately to allow for the algorithm’s switch to

occur at known conditions. Future work could also explore the performance of parallel

algorithms such as the near maximum independent set computed in Takefuji et al. (1990).

An analysis was done on the performance of such an algorithm on hyper-graphs by ? for

example, and a version adapted to circle graphs could produce better results than what

was shown in this paper.

39

Bibliography

Apostolico, A., Atallah, M. J., and Hambrusch, S. E. (1992). New clique and independent

set algorithms for circle graphs. Discrete Applied Mathematics, 36(1):1–24.

Bonsma, P. and Breuer, F. (2009). Counting hexagonal patches and independent sets in

circle graphs.

Chang, R. C. and Lee, H. S. (1992). Finding a maximum set of independent chords in a

circle. Inf. Process. Lett., 41:99–102.

Gavril, F. (1973). Algorithms for a maximum clique and a maximum independent set of

a circle graph. Networks, 3(3):261–273.

Gupta, U. I., Lee, D. T., and Leung, J. Y. (1982). Efficient algorithms for interval graphs

and circular-arc graphs. Networks, 12(4):459–467.

Liu, R. and Ntafos, S. (1988). On decomposing polygons into uniformly monotone parts.

Information Processing Letters, 27(2):85–89.

Nash, N. and Gregg, D. (2010). An output sensitive algorithm for computing a maximum

independent set of a circle graph. Inf. Process. Lett., 110(16):630–634.

Nash, N. and Gregg, D. (unpublished). New algorithms for maximum independent sets

of circle graphs. unpublished.

Nash, N., Lelait, S., and Gregg, D. (2009). Efficiently implementing maximum indepen-

dent set algorithms on circle graphs. ACM J. Exp. Algorithmics, 13.

40

Scheinerman, E. R. (1990). An evolution of interval graphs. Discrete Mathematics,

82(3):287–302.

Supowit, K. (1987). Finding a maximum planar subset of a set of nets in a channel. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 6(1):93–94.

Takefuji, Y., Chen, L.-L., Lee, K.-C., and Huffman, J. (1990). Parallel algorithms for

finding a near-maximum independent set of a circle graph. IEEE Transactions on

Neural Networks, 1(3):263–267.

Valiente, G. (2003). A new simple algorithm for the maximum-weight independent set

problem on circle graphs. In International Symposium on Algorithms and Computation.

41

	Abstract
	Acknowledgments
	Chapter Introduction
	Relevant Definitions
	Circle Graph
	Independent Set
	Interval Representation

	History and State of the Art

	Chapter Algorithms
	 Endpoint Algorithms
	Naive approach
	Valiente
	Nash-Gregg and its Combined Variant

	Exclusive Endpoint Algorithms
	Bonsma-Breuer
	Improved Bonsma-Beuer

	Chapter Evaluation
	Experiments
	Lookup Table
	Interval Generation

	Results for Distinct Endpoint Algorithms
	Execution time
	Memory Consumption
	Iteration Count

	Results for Common Endpoint Algorithms

	Chapter Conclusions & Future Work
	Bibliography

