
School of Computer Science and Statistics

A distributed deployment model
for Encrypted Client Hello

Ted Johnson

Supervisor: Dr Stephen Farrell

April 2024

A dissertation submitted in partial ful�lment

of the requirements for the degree of

Master in Computer Science (MCS)

Declaration

I hereby declare that this dissertation is entirely my own work and that it has not been
submitted as an exercise for a degree at this or any other university.

I have read and I understand the plagiarism provisions in the General Regulations of the
University Calendar for the current year, found at http://www.tcd.ie/calendar.

I have completed the Online Tutorial on avoiding plagiarism `Ready Steady Write', located at
http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

I consent to the examiner retaining a copy of the thesis beyond the examining period, should
they so wish (EU GDPR May 2018).

Signed: Date:

i

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

A distributed deployment model

for Encrypted Client Hello

Ted Johnson, Master in Computer Science

University of Dublin, Trinity College, 2024

Supervisor: Dr Stephen Farrell

Encrypted Client Hello (ECH) is a proposed extension to the Transport Layer Security (TLS)
protocol that encrypts information currently leaked during connection, which is now beginning
to see implementation and adoption on the Internet. However, typical deployment strate-
gies encourage placing many TLS servers behind a single ECH-service provider to form an
anonymity set, which introduces signi�cant network centralisation and limits the types of
environments the extension can be operated in.

This report presents a method for distributing the deployment of ECH amongst a loose network
of co-operating TLS servers, such that each server functions as an ECH-service provider for
all others. This allows for ECH-enabled clients to access services through any co-operating
TLS server, greatly strengthening service availability and network �exibility. The e�ectiveness
of this solution is evaluated based on its privacy and security implications, impact to overall
network performance and ability to fairly allocate load between participating servers over
time.

Acknowledgements

This work has been completed under the guidance and persistence of Dr. Stephen Farrell,

without which I cannot say there would be much of a paper to speak of. His continued

e�orts on the implementation of Encrypted Client Hello within OpenSSL and related work as

part of the DEfO project has been fundamental to my research. Thank you.

Ted Johnson

University of Dublin, Trinity College

April 2024

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Motivation . 1

1.2 Project Objectives . 2

1.3 Research Contributions . 3

2 Background 4

2.1 Transport Layer Security . 4

2.1.1 Digital Certi�cates . 5

2.1.2 TLS 1.3 Handshake . 7

2.1.3 Extensions . 8

2.2 The Domain Name System . 9

2.2.1 Name Resolution Process . 9

2.2.2 DNS over HTTPS . 10

2.2.3 The HTTPS Resource Record . 11

2.3 Encrypted Client Hello . 11

2.3.1 Hybrid Public Key Encryption . 12

2.3.2 Split Mode Deployment . 13

2.4 Tra�c Analysis . 14

2.4.1 Tra�c Correlation Attacks . 14

2.4.2 Countermeasures . 15

2.5 Summary . 15

3 Design 16

3.1 Problem Overview . 16

3.2 Distribution Mechanisms . 18

3.2.1 DNS Publication Schema . 18

iv

3.2.2 TLS Server Co-operation . 19

3.3 Tra�c Obfuscation . 19

3.3.1 Normalisation . 20

3.3.2 Pacing and Mixing . 20

3.4 Summary . 20

4 Implementation 22

4.1 Simulation . 22

4.1.1 Virtualisation . 22

4.1.2 Networking . 23

4.2 DNS Server . 25

4.3 TLS Server . 27

4.4 TLS Client . 28

4.4.1 curl . 29

4.4.2 Mozilla Firefox . 29

4.4.3 Google Chrome . 30

4.5 Summary . 30

5 Results and Discussion 31

5.1 Data Collection . 31

5.2 Evaluation . 32

5.2.1 Load Distribution . 32

5.2.2 Performance . 32

5.2.3 Security . 33

5.3 Summary . 33

6 Conclusion 35

6.1 Learnings . 35

6.2 Future Work . 35

6.3 Re�ection . 36

Bibliography 39

A1Project Files 40

A2Verbose curl Output 41

v

List of Figures

1.2.1 Project timeline . 3

2.1.1 TLS certi�cate chain of trust . 6

2.1.2 Basic TLS 1.3 handshake . 7

2.2.1 Example DNS name resolution process . 10

2.3.1 Example execution of ECH in Split Mode 13

3.1.1 Example distributed ECH deployment . 17

3.3.1 Diagram of how a correlation attack can be used 20

4.4.1 Screenshot of Mozilla Firefox when accessing tcd.example.com 29

4.4.2 Screenshot of Google Chrome when accessing tcd.example.com 30

5.1.1 Screenshot of Wireshark after capturing a Client Hello message using ECH . 31

5.2.1 Load distribution graph . 32

5.2.2 Performance comparison graph . 33

5.2.3 Impact of tra�c obfuscation . 34

vi

List of Listings

4.1.1 Building OpenSSL from source inside build.img with DebVM 23

4.1.2 Connecting QEMU virtual machines using a network bridge 24

4.1.3 Static bridge network con�guration using systemd 24

4.1.4 Generating a new self-signed root CA X.509 certi�cate using OpenSSL . . . 24

4.1.5 Signing a new X.509 certi�cate for ns.example.com using OpenSSL 25

4.2.1 DNS over HTTPS con�guration using BIND9 25

4.2.2 example.com zone �le for distributed ECH using a shared ECH key 26

4.2.3 Rudimentary script to implement a dynamic DNS service 26

4.3.1 Generating a new ECH key pair for tcd.example.com using OpenSSL 27

4.3.2 Distributed ECH NGINX con�guration for tcd.example.com 27

4.3.3 Generating a new WireGuard key pair for tcd.example.com 28

4.3.4 Rudimentary script to shroud legitimate WireGuard communication 28

4.4.1 Command to use ECH-enabled curl on QEMU virtual machines 29

vii

1 Introduction

Encrypted Client Hello (ECH) is a proposed extension to the Transport Layer Security

protocol version 1.3 (TLS 1.3) which has begun to see implementation and adoption on the

Internet [1�3]. ECH seeks to allow encryption of the ClientHello message, which can contain

potentially sensitive information such as the Server Name Indication (SNI) and

Application-Layer Protocol Negotiation (ALPN) extensions. This is partially achieved

through serving many private domains behind a common provider to form an anonymity set

that conceals the true domain requested by the client.

Due to this, ECH introduces signi�cant centralisation to the Internet. This paper presents a

practical model for the distributed deployment of ECH amongst several co-operating TLS

servers, where each server operates both as the origin server of its own domains as well as

an ECH provider for other participating servers. The model addresses a number of

implementation challenges, predominately related to ensuring the security of the protocol is

not compromised and minimising the performance impact to the connection while

strengthening service availability.

Included in this paper is a review of the background technology and concepts relevant to the

discussion of the deployment model. This is followed by a study of the model's design and

the complications which in�uenced it. We then see how this design can be implemented

within a practical scenario and discuss some of its deployment considerations. In the

subsequent chapter, an analysis and criticism of both the results taken from this

implementation and the design as a whole is used to assess the quality of the solution.

Finally, I conclude the report with a summary of the work completed and delineate where

future contributions could best bene�t the further development of the deployment

model.

1.1 Motivation

Nottingham has previously cautioned against the introduction of centralisation through

Internet standards [4]. Of particular relevance to ECH is his highlight of the adverse e�ect

centralisation can have on infrastructure resilience and service availability through reliance

1

on a single entity. This is especially detrimental to ECH where the e�ectiveness of its

anonymity set grows with the number of private domains served by a single provider.

Nottingham also writes on susceptibility of centralisation to sti�e �permissionless� innovation

and induce an unhealthy monoculture, which may result in less overall technological progress

and robustness of the ECH protocol.

Additionally, allowing entirely independent servers to co-operate from across the Internet to

provide ECH support for each other enables several distinct organisations to work together

to o�er improved privacy for their users without the requirement for co-located servers nor

the dependence of any on the availability on another. Consider here global networks of

whistleblower services, investigative journalists and human rights non-pro�t organisations

who share an interest in protecting the con�dentiality of their members and users from

persecution and retaliation.

For these reasons, the development of a model for the distributed deployment of ECH across

several co-operating providers is a key step towards its broad adoption throughout the

Internet and its application within more elaborate scenarios.

1.2 Project Objectives

The objectives of this research project can be summarised with the following question: �How

can Encrypted Client Hello be deployed fairly amongst co-operating Transport Layer Security

servers to reduce network centralisation without compromising the security of the protocol?�

This task is composed of the following objectives:

1. Identify principal challenges and appropriate solutions. Before development can

begin proper, we must �rst understand the environment the system would operate in

and explore the technical and logistical issues it might face to determine the dominant

criteria for design. We accomplish this through research and experimentation of the

functioning of the protocol and its surrounding technologies.

2. Design, evalute and contrast deployment models. An iterative development

process is used to produce a series of incrementally improved skeletal prototypes, with

the goal to rapidly design and test for functionality guided by the design criteria and

results of previous work as heuristics.

3. Analyse model implementatons through simulation. Promising design solutions

are �eshed out into full implementations within deterministic, reproducible and

quanti�able simulated environments, where security and performance implications can

be easily isolated and compared. This allows for these e�ects to be consistently

measured against implementations based on a centralised ECH deployment model or

with ECH support disabled entirely. It is also expected that unforeseeable practical

2

challenges and considerations are to be unveiled during this work.

4. Conclude �ndings and present results. The data collected and learnings gained

during analysis of model implementations is to be compiled into a report on the overall

e�ectiveness of distributed ECH deployment and recommendations for future

researchers and service operators. Of particular use here is a study on the e�ect

distributed ECH has on performance when compared to other implementations.

In preparation of these objectives, I produced the Gantt chart included in Fig. 1.2.1 to help

gauge my progress during the four months of work. While in the �nal result I have found

more emphasis has been placed on implementation, the overall structure of the timeline has

been followed reasonable well.

Figure 1.2.1: Predicted timeline of project as of the 7th of December, 2023.

1.3 Research Contributions

This work provides evidence for the viability of the distributed deployment of ECH between

co-operative TLS servers. It supports its argument that the deployment model presented

does not compromise the security of the protocol and minimises impact to network

performance though analysis of the data produced by implementations within simulated

networking environments. Additionally, an evaluation of several tra�c masking and

normalisation techniques is given to serve as the bases for further work on disrupting tra�c

correlation attacks applicable to ECH and elsewhere. Finally, the delivered project may also

contribute academic value as a deterministic, reproducible tutorial on the deployment and

operation of ECH using commonplace software and tooling.

3

2 Background

This chapter o�ers an overview of the technology and concepts needed to understand the

context and relevance of the work within the broader world. The review is conducted

predominately through a networking, security and privacy perspective to best highlight the

aspects pertinent to the distributed deployment of ECH. This chapter also represents the

bulk of the e�ort put into investigating and studying the functioning of ECH while

identifying and experimenting with di�erent deployment models.

The contents of this chapter include a high level description of the Transport Layer Security

protocol and the Domain Name System, with a more detailed look at the components that

enable ECH functionality. This is followed by an inspection of ECH itself, its security

properties and the mechanisms which allow for distributed deployment. Finally, we survey

how a variety of tra�c analysis techniques that can be used to infer sensitive information

from patterns in network activity, as well as the countermeasures which exist to mask these

patterns.

2.1 Transport Layer Security

Transport Layer Security (TLS) is a cryptographic protocol proposed by the Internet

Engineering Task Force (IETF) which enables secure communication over public networks.

Applications and services can establish an encrypted communication channel to transmit

private information such that con�dentiality, integrity and authenticity of the data can be

ensured. TLS is commonly used to protect Internet tra�c, having seen widespread adoption

and several revisions since its original inception in 1999, superseding the Secure Sockets

Layer (SSL) speci�cations previously de�ned by Netscape Communications [5�7].

TLS is designed to operate on top of a reliable transmission protocol between a client and

server, typically the Transmission Control Protocol (TCP) when used over the Internet. In

order to prevent eavesdropping, tampering and message forgery, TLS includes a number of

security features based on a number of cryptographic mechanisms:

Con�dentiality: All service and application data exchanged between the client and server

4

is encrypted as to make it indecipherable to any intermediate party which might be

intercepting their communication. For example, consider the importance of protecting

passwords, banking information and patient health records.

Data integrity: In a similar manner, cryptographic properties are used to guarantee

transferred data cannot be modi�ed during transmission. This is critical for

safeguarding against input manipulation in consequential situations, such as while

specifying �elds for a �nancial transaction.

Authentication: TLS provides the ability for both peers to verify the identity of the other,

ensuring privileged communication is only performed with the intended recipient. Such

a condition is fundamental for establishing trust and con�dence in any sensitive

environment.

TLS 1.3 is the latest de�ned standard for the protocol, having been published in August

2018 and contributing to the deprecation of TLS 1.0 and TLS 1.1 in March 2021 [8, 9].

Lee, Kim, and Kwon have measured a comparatively rapid adoption rate, reporting support

by 48% of Alexa top 1M sites by 2021, which is attributed largely to the growth of cloud

hosting providers such as Cloud�are [10, 11]. The version introduces many major changes

over TLS 1.2, including the addition of a zero round trip time resumption (0-RTT) mode,

further encryption and optimisation of the handshake and removal of outdated cryptographic

algorithms and security mechanism with all key exchanges now providing forward secrecy. A

change of particular relevance to ECH is the encryption of the digital certi�cate received by

the client to authenticate the server.

2.1.1 Digital Certi�cates

TLS uses X.509 digital certi�cates to make assertions on the identity of entities within the

network using a chain of trust model, and are intrinsic to the authentication within the

public key infrastructure used to initiate a secure TLS key exchange [12]. Without this

assertion in place, a malicious party may insert itself into the middle of any TLS connection

to perform a man-in-the-middle attack by replacing any public key with their own outside

the knowledge of either peers. This invalidates the security of the key exchange and thus

compromises any security o�ered by TLS. Therefore, to have any con�dence in a secure

connection, we must be able to trust the authenticity of received public keys by associating

them with a trustworthy digital certi�cate.

It is not feasible to have a trusted party for every entity install a certi�cate for every other

entity, as this becomes impractical within larger networks, in which certi�cates may be

created and replaced. Instead, this trustworthiness is established through the associativity,

where cryptographic signatures provide a mechanism for one certi�cate to attest to the

validity of another as depicted in Fig. 2.1.1. A Certi�cate Authority (CA) may issue new

5

certi�cates using their private key to produce a signature that can be authenticated using

the public key present in their own certi�cate. Furthermore, the certi�cate of the CA was

issued by its parent CA and contains a signature, which itself can be authenticated in a

similar manner. In this way, certi�cates are organised into a hierarchical chain of trust, where

the trustworthiness of a certi�cate is asserted by the trustworthiness of its issuer. This chain

of trust continues until a root certi�cate issued by a root CA using a self-signed signature is

encountered at the base of the hierarchy, which is implicitly trusted by all entities.

Figure 2.1.1: A chain of trust established between the unknown owner certi�cate and the
implicitly trusted root CA certi�cate in order to authenticate the identity of the owner against
its associated public key.

An organisation or individual must request new certi�cates from a CA using a Certi�cate

Signing Request (CSR). The CA is then responsible for verifying the identity of the

organisation or individual before issuing the certi�cate. To ensure the validity of certi�cates

are consistent over time, X.509 certi�cates expire after a set period and must be renewed.

Today, this renewal procedure has been widely automated using the Automatic Certi�cate

Management Environment (ACME) protocol, which allows for web servers to complete

challenges set by the CA to prove ownership of their domain name and public key without

human involvement [13]. This has enabled a much shorter certi�cate rotation period, and it

is common to see certi�cates set to expire within three months.

Through this process, an entity is only required to trust a few well-established root

certi�cates to be capable of validating the authenticity of many certi�cates and their public

keys. These root certi�cates are generally installed by an inherently trusted party, such as

6

the device manufacturer or operating system, but new certi�cates may be installed by the

user.

Typically on the Internet, it is only necessary for the identity of the server to be

authenticated by the client, while the client remains unauthenticated to the server in the

TLS context. In either case, certi�cates may be exchanged between the server and client

during the TLS handshake.

2.1.2 TLS 1.3 Handshake

The TLS handshake is the series of messages exchanged between the client and server to

establish the connection. It speci�es the steps required to negotiate connection parameters,

authenticate peer identities and yield a shared secret. TLS 1.3 was designed to improve the

security and performance of the handshake over TLS 1.2 while reducing its overall

complexity. Highlighted in these changes is the integration of parameter negotiation into the

�rst client message, enabling encryption of much more of the handshake, as well as allowing

application data to be sent by the client after only one round trip.

Figure 2.1.2: Sequence diagram between a client and server describing a basic TLS 1.3
handshake with only server authentication.

Once a reliable transmission channel has been created between the client and server, a TLS

1.3 handshake can be performed as seen in Fig. 2.1.2. The core functionality of the

handshake can be achieved in as few as four message types:

ClientHello: The client initiates the handshake by sending a ClientHello message without

any encryption, containing information such as the supported TLS version number,

along with a list of available cipher suites and their parameters for the server to

choose from. Included in this is also an optimistic key share using the client's preferred

7

cipher suite key exchange method, namely Di�e-Hellman (DH) or Elliptic Curve

Di�e-Hellman (ECDH). Both of these generate ephemeral keys for each session,

ensuring forward secrecy is preserved in the event the server's private key is

compromised. Finally, the ClientHello message also contains a random value generated

by the client used to prevent replay attacks.

ServerHello: If the server supports the client's preferred cipher suite, it is able to continue

the key exchange immediately in the ServerHello message. Otherwise, the server must

send a HelloRetryRequest to restart the key share with a di�erent key exchange

method which requires an additional round trip. The ServerHello message is sent

without encryption and informs the client of what cipher suite and parameters were

selected, as well as includes its own random value generated by the server. As the

server has now completed its side of the key exchange, all subsequent communication

is now encrypted using the selected symmetric encryption algorithm, such as

AES-GCM or ChaCha20-Poly1305.

Certi�cate: The server then sends the client its certi�cate and proof of private key

possession by signing a cryptographic hash of the transcript of the handshake so far. It

may also choose to request authentication from the client using a Certi�cateRequest

message, which requires the client to respond with its own Certi�cate message and

proof of private key possession.

Finished: Finally, the server concludes its side of the handshake by initiating an exchange

of Finished messages with the client. This message consists of a Message

Authentication Code (MAC) over the cryptographic hash of the transcript of the

entire handshake. In this way, the client can con�rm success of the key exchange and

integrity of the transaction. Once the client has received the ServerHello with the

completed key exchange as well as decrypted and validated the Certi�cate and

Finished message, it produces its own Finished message for the server to perform the

same checks. Finally, with both peers in agreement on the security of the connection,

application data can begin to be securely exchanged.

There are many more complexities to this handshake which are not particularly relevant here

that have been omitted from this overview for the sake of brevity. However, one important

topic to mention is the inclusion of extensions.

2.1.3 Extensions

Within both the TLS 1.2 and TLS 1.3 handshakes, the ClientHello and ServerHello

messages may be extended with additional functionality, which allows the protocol to ful�l a

wider range of use cases and accommodate evolving requirements. The usage of extensions

has been signi�cantly expanded in TLS 1.3 and now includes the ability for previously

8

unencrypted ServerHello extensions to be placed within the new EncryptedExtensions

message sent after ServerHello. Furthermore, a number of new extensions have been de�ned

with several extensions now being mandatory to include in the TLS 1.3 handshake. Indeed,

the Key Share extension is the provided mechanism for performing key exchanges and the

Supported Versions extension is used to signify which versions of TLS is supported.

Nevertheless, the ClientHello message is not encrypted and all of its extensions are sent in

the clear. Some of the ClientHello extensions include potentially sensitive information, such

as the Server Name Indication (SNI) and Application Layer Protocol Negotiation (ALPN)

list. It is this privacy weakness that the purposed ECH extension is attempting to

remedy.

2.2 The Domain Name System

The Domain Name System (DNS) was designed by Mockapetris in 1984 as a replacement

for the manually maintained and shared HOSTS.TXT �le used in Internet Protocol (IP)

networks to map hostnames to IP addresses, which was becoming increasingly impractical as

networks grew in size and complexity [14, 15]. Instead, DNS o�ers a naming system that

associates hierarchical alphanumeric identi�ers, referred to as domain names, with various

resource records, like IP addresses. In this context, a zone is de�ned as the set containing a

domain and all of its subdomains.

Citing signi�cant scalability concerns due to the expected size of the service and the

frequency of resource record updates, Mockapetris listed the distributed storage and

management of domain name entries with local caching as a design goal for DNS. To

address this, the naming system information is distributed as zones amongst many name

servers such that each name server is capable of either directly operating on the requested

domain name resource records or referring to another name server which is hierarchically

closer to the requested domain name. The name server which manages a zone is considered

the authoritative name server for the zone. With this, DNS can be used to translate from

the more �exible and easily remembered domain names into the associated IP addresses and

other resources required to access network applications and services.

2.2.1 Name Resolution Process

A client attempting to resolve a domain name may invoke requests across several name

servers. Typically, the client operates as a stub resolver which delegates the task to a known

recursive resolver, such as through their network router or Internet service provider (ISP).

This is generally done to allow for the caching of DNS query results for use by a whole

network or organisation. This situation can be seen in Fig. 2.2.1, where the client has

9

requested the recursive resolver to retrieve resource records for `www.example.com'. To

execute the DNS query, the recursive resolver needs to locate the authoritative name server

for the requested domain name. Without prior knowledge or cached results, the resolver �rst

queries one of the well-known root name servers to begin navigation of the name hierarchy.

In accordance with the distributed nature of DNS, the root name server does not contain

the resource records for the requested domain name, but instead directs the resolver to the

top-level domain (TLD) name server for `.com'. The resolver reiterates its query to the TLD

name server and is again pointed further down the hierarchy, this time to the authoritative

name server for `example.com'. Finally, the resolver queries this name server and retrieves

the request resource records, which are then returns to the client. All of these results are

cached by the recursive resolver for a set amounts of time as speci�ed by the Time To Live

(TTL) contained within all responses to help reduce overall load on the system, especially

root name servers.

Figure 2.2.1: A stub resolver requests a recursive resolver to retrieve resource records for
`www.example.com'. Without previously cached query responses, the recursive resolver must
navigate the domain name hierarchy starting at a known root name server.

2.2.2 DNS over HTTPS

Notably, Mockapetris makes no mention of security nor privacy in the original DNS

speci�cation and such concerns have only begun to be addressed in recent years, as

summarised by Bortzmeyer in 2015 [16]. This has largely been due the naming system

information being perceived as public knowledge and not requiring security mechanisms. As

such, DNS query and response communication have historically been sent unencrypted using

the User Datagram Protocol (UDP). It has not been until the last decade with the

revelations of widespread global surveillance that issues such as these have started to see

much more attention. In 2013, Cooper et al. wrote extensively on the formulation of privacy

threats and mitigations for consideration during the design of Internet protocols, and lists

surveillance as being a prevalent privacy threat [17]. Following this, Farrell and Tschofenig

emphasised the danger of exposing protocol content and metadata to large scale surveillance

operations and recommend mitigation through security-conscience protocol

10

design [18].

In an e�ort to apply these learnings, both DNS over TLS (DoT) and DNS over HTTPS

(DoH) were conceived as methods for performing privacy-preserving DNS queries [19, 20].

Both protocols add con�dentiality and data integrity to DNS by encapsulating queries and

responses inside secure TLS channels. The most notable di�erence between the standards is

the port number used, as DoT tra�c goes to the non-standard port 853 while DoH is served

through the standard HTTPS port 443. This di�erence has led to some adoption problems

with DoT when compared to DoH, as it is not unusual for network �rewalls to prohibit

tra�c to non-standard ports. This also has the e�ect of making DoT usage being quite

conspicuous, while DoH disguises itself amongst other HTTPS tra�c. García et el. list these

as factors when measuring a wider adoption of DoH in 2021 [21].

2.2.3 The HTTPS Resource Record

Today, a number of DNS resource record types exist to ful�l more complex requirements and

introduce advanced capabilities. The HTTPS resource record and the more general Service

Binding (SVCB) resource record have recently been standardised to allow for speci�cation of

additional parameters related to service endpoint discovery and connection

establishment [22]. This enables more information to be provided to the client needed to

access a service while helping to avoid unnecessary round trips and DNS queries. This

information set can include items such as the preferable IP address, port number and ALPN

list used to connect to a service endpoint, which must otherwise be retrieved separately

through potentially suboptimal channels.

While ostensibly useful for reducing overall connection latency, the ability for these new

resource records to associate parameters with service endpoints facilitates much more

�exibility within DNS. In particular, the ECH extension delegates public key and metadata

dissemination to this mechanism though the speci�cation of an appropriate `ech` parameter

for each service endpoint.

2.3 Encrypted Client Hello

Encrypted Client Hello (ECH) is a proposed extension to TLS 1.3 which has begun to see

implementation and adoption on the Internet [1�3]. ECH seeks to allow encryption of the

ClientHello message, which can contain potentially sensitive information such as the SNI and

ALPN extensions. Exposure of the target domain name of the client's request through the

SNI was previously considered acceptable due this information being revealed through other

channels, but these leaks are becoming less exploitable: Cloud hosting providers, content

delivery networks (CDNs) and reverse proxies have diluted the mapping from IP addresses to

11

domain names, the use of encrypted DNS such as DoH is now concealing client DNS queries

and the TCP 1.3 handshake encrypts the server certi�cate. As we have seen in the previous

sections, the TLS and DNS ecosystems have adapted to new security and privacy

expectations in recent years and are now equipped to support ECH.

The functionality of ECH is based on clients using the public key of an ECH-service provider

to send an encrypted TLS 1.3 ClientHello message, which the provider decrypts and uses to

proxy the TLS 1.3 connection to the true origin server. This provider may be common to

many origin servers hosting many private domains that together form an anonymity set. The

provider must �rst generate an ECH encryption key pair and some associated metadata.

This public key and metadata, referred to as an ECH con�guration or ECHCon�g, may then

be shared out-of-band with ECH-enabled clients though a secure context like DoH using the

`ech' parameter in HTTPS resource records. A client may then use this public key and

metadata to construct a ClientHello message, named the ClientHelloOuter, holding

unremarkable values for the provider alongside the ECH extension containing an encrypted

ClientHello, named the ClientHelloInner, itself holding the real values for a private domain.

To establish a TLS connection to the origin server of this domain, the client initiates a TLS

connection using the ClientHelloOuter with the provider, which decrypts the ClientHelloInner

and relays the connection to the origin server, which itself completes the TLS handshake

with the client through the provider. Importantly, the provider is incapable of eavesdropping

on this secure channel, as the TLS connection is authenticated and end-to-end encrypted

between the client and origin server.

2.3.1 Hybrid Public Key Encryption

ECH uses the Hybrid Public Key Encryption (HPKE) speci�cation for performing public key

encryption [23]. HPKE de�nes a standard scheme for combining the bene�ts of asymmetric

and symmetric cryptographic algorithms, such that the performance of symmetric

cryptography can be gained where only the public key of the receiver is known. This is

achieved through using the public key of the receiver to generate a symmetric encryption key

as well as an encapsulated shared secret. This encapsulated shared secret can be sent to the

receiver, which can generate the symmetric encryption key using its private key. Any

ciphertext produced by the sender with the symmetric encryption key can now be decrypted

by the receiver.

HPKE de�nes several possible con�gurations of cryptographic parameters, namely selecting

the key encapsulation mechanism (KEM), key derivation function (KDF) and Authenticated

Encryption with Associated Data (AEAD) symmetric encryption algorithm. In ECH, these

are de�ned to be elliptic-curve Di�e�Hellman (ECDH) using Curve25519, hashed message

authentication code (HMAC) KDF (HKDF) and Advanced Encryption Standard (AES) in

12

Galois/Counter Mode with 128-bit key sizes (AES-128-GCM), respectively. The KEM and

KDF are able to produce the AES key and encapsulated shared secret from the contents of

an ECHCon�g generated by the ECH-service provider. AES encrypts the ClientHelloInner

and ensures the ClientHelloOuter can not be tampered using its additional authenticated

data (AAD) mechanism. Once the ClientHelloOuter containing the ECH extension is

received, the provider can derive the same AEAD key from the encapsulated shared secret

using the KDF with its private key and then decrypt the ClientHelloInner. Bhargavan,

Cheval, and Wood have been able to verify the security of HPKE in the context of ECH

through extensive formal analysis of the privacy properties of the TLS 1.3

handshake [24].

2.3.2 Split Mode Deployment

The ECH protocol is designed to operate within two types of network topologies, referred to

as Shared Mode and Split Mode. When in Shared Mode, the ECH-service provider and

private domain origin server are the same network entity. The TLS 1.3 connection initiated

by ECH-enabled clients with the provider is also completed by the provider, which can then

serve the client the covertly requested domain name service. Split Mode relaxes this

restriction to allow the physical separation of the provider and origin server. An example

execution of ECH in Split Mode is visualised in Fig. 2.3.1, where we see the client again

initiates a TLS 1.3 connection with the provider, but this connection is forwarded to the

appropriate origin server which completes the connection. In either case, the true ClientHello

message is still masked from network observers and the anonymity set consists of all possible

private domains served via the provider using ECH Shared Mode or Split Mode.

Figure 2.3.1: An example of how ECH can be used in Split Mode when the ECH-service
provider is not co-located with the requested private domain origin server. Steps 1 and 2 are
completed out-of-band. Steps 3 and 4 result in a TLS connection being established between
the client and origin server.

13

Split Mode is crucial for unbinding the provider from the origin server which is necessary for

being able to handle more diverse ECH deployment scenarios. This is generally required

when the provider does not have the resources to complete the TLS connection and must

proxy the connection to the requested origin server. This can be the case in cloud hosting

environments, where the private keys and certi�cates of hosted services belong to the

customer and cannot be accessed by the reverse proxies operated in front of the internal

cloud network infrastructure. However, if the client, provider and origin server are separated

by a public network such that tra�c on both the client to provider and provider to origin

server channels can be intercepted by a foreign network observer, it is not enough to encrypt

this tra�c with TLS 1.3 to prevent the observer from learning which origin server the client

is interacting with, which may eliminate any privacy o�ered to the client by the provider's

anonymity set. This is possible through an attack accomplished using tra�c analysis.

2.4 Tra�c Analysis

Tra�c analysis is the process of passively recording and inspecting possibly large amounts of

messages sent over a network in order to discern information not apparent when considering

each message in isolation. Tra�c analysis techniques can be used to infer sensitive

information from patterns in network activity regardless of channel encryption, as they

exploit fundamental aspects inherent to how a communication system is implemented. For

example, consider that the mere presence of network tra�c between a household and a

speci�c medical, educational or political institution's web server might tell us a great deal

about the lifestyle and a�liations of the occupants without needing to know anything about

the contents of the tra�c itself. Aside from analysing tra�c behaviour, other techniques

include inspecting network protocols being used, observing changes in round-trip latency and

comparing packet sizes and contents.

2.4.1 Tra�c Correlation Attacks

Tra�c correlation attacks describe a large subset of tra�c analysis techniques identi�ed by

their use of correlating patterns found in network channels to detect associations between

entities that were otherwise not evident. These can typically be used to unmask users and

their activities in anonymisation networks. Back, Möller, and Stiglic have reported on

correlation metrics such as packet counting and tra�c shaping employed against the

Freedom network while DeFabbia-Kane has additionally found packet timing and

inter-packet delay to be e�ective against Tor [25, 26]. Most signi�cantly for this paper,

Trevisan et al. have shown ECH operating over a public network is highly susceptible to

tra�c correlation attacks using a conventional machine learning algorithm trained on

information extracted from the IP, TCP and UDP protocol �elds, TLS SNI values, packet

14

sizes and inter-packet delays [27].

2.4.2 Countermeasures

The e�ectiveness of tra�c correlation attacks can be mitigated by disrupting the

recognisable patterns in communication through removing distinctive features and inserting

randomness into messages and tra�c �ow. Back, Möller, and Stiglic saw how PipeNet

introduces dummy packets into the network between correspondents as tra�c padding and

uses mixing and pacing with a packet scheduling algorithm at each node to hinder attack

vectors.

This is a particularly hard challenge for low-latency network systems such as web servers and

instant-messaging platforms because many mitigations require the introduction of

unacceptable delays or continuous high bandwidth usage. Levine et al. conducted a study

on using packet timing analysis to attack low-latency anonymisation networks and concluded

the e�ectiveness of tra�c padding can be improved by intentionally occasionally dropping

dummy packets [28]. Wright, Coull and Monrose have suggested morphing classes of

encrypted tra�c into indistinguishable distributions with a mathematical model for

minimising di�ering features over time [29].

2.5 Summary

TLS and DNS continue to evolve as their requirements shift in response to modern security

and privacy demands. From this movement, the ECH extension for TLS 1.3 has emerged to

enable the encryption of the ClientHello message and thereby addressing one of the last

points an attacker can learn of potentially sensitive information, such as the SNI and ALPN

list. The ECH standard de�nes Split Mode as a network topology which permits the

ECH-service provider to be physically separate from the origin server. However, such a

situation reveals a potential attack surface against the extension through tra�c correlation,

which must be disrupted using various practical countermeasures.

15

3 Design

This chapter de�nes the challenges associated with the research problem and presents a

re�ned solution. We then delve deeper into the individual components to explore the

reasoning and considerations that produced this design, and outline the bene�ts and

limitations of alternative approaches. The chapter aims to showcase this idea independent of

implementation, instead using generalised concepts that may be applied by the reader within

their own practice.

3.1 Problem Overview

As we saw in Chapter 1, a distributed deployment model for ECH exhibits some desirable

qualities but also constitutes quite a complicated problem to solve. There are many factors

at play, particularly around orchestrating TLS server co-operation, publishing ECHCon�g

values associated with speci�c servers, instructing TLS client behaviour and impeding tra�c

analysis attacks. Furthermore, these have to function within the con�nes of our imperfect

world where we must accept headaches of technological inertia and legacy systems. This has

only grown in prevalence on the Internet, with backbone technologies like IPv4, DNS and

HTTP requiring countless workarounds or extensions to meet our modern demands without

breaking backwards-compatibility.

The overall form of the solution appears somewhat similar to how conventional ECH in Split

Mode operates. In Section 2.3.2, it was highlighted how Split Mode provides a means to

separate ECH-service providers from private domain origin servers, but makes no attempt to

remain secure when deployed across a public network nor facilitate a multi-provider setup.

The approach taken here di�ers primarily in that the DNS resource records for a private

domain can point to any IP address in the co-operative network while all co-operating TLS

servers are linked together over public channels. We can see such a scenario depicted in

Fig. 3.1.1, where when examining Split Mode previously we saw three origin servers

accessible through a single provider, we can now envision a client capable of querying any of

the three origin servers for a private domain and having their connection transparently reach

through to the correct origin server.

16

Figure 3.1.1: An example distributed deployment of ECH using the proposed solution. Steps
1 and 2 are completed out-of-band while steps 3 and 4 result in a TLS connection being
established between the client and appropriate origin server through another TLS server.

This diagram hides some technical details and considerations that should be kept in mind.

This loose network of TLS servers somehow need to publish DNS resource records for all

private domains that can point at any one of them while referencing the corresponding

ECHCon�g value. Additionally, one design criteria is for load to be allocated across the

network in a reasonably fair manner, so it is expected that every server is continuously

operating as an ECH-service provider for other servers. As such, it is not enough to regularly

cycle through sets of DNS resource records pointing towards each server one at a time but

we must instead �nd a method to have the same DNS query uniformly spread clients

amongst participating servers. This is especially hard if we want all servers to have distinct

private keys and thus di�erent ECHCon�g values, as now we need to somehow associate this

value with an individual server rather than with the domain name, which is a historically

di�cult challenge in DNS.

As both the client-server and server-server channels are over public networks, this reveals a

perfect attack surface for any network observers to perform a correlation attack between

server ingress and egress tra�c. Even after an origin server completes the TLS handshake

and establishes end-to-end encrypted communication with a client, an eavesdropper can

deduce which origin server the client is interacting with by comparing ingress/egress times

and packet counts.

To address these challenges, the design has been split into two topics of interest: Identifying

17

mechanisms needed for enabling distributed deployment and disrupting correlation attacks

using tra�c obfuscation techniques.

3.2 Distribution Mechanisms

The previous section raised a number of criteria that must be ful�lled to allow for this

distributed deployment model, which can be summarised into two points. Firstly, the

solution requires a series of procedures that enables the use of DNS resource records to

direct ECH-enabled clients evenly between all co-operating TLS servers with correct

ECHCon�g values when resolving private domain names using encrypted DNS. Then, these

servers need to be able to forward client connections to each other over a public network

without exposing the decrypted ClientHelloInner.

3.2.1 DNS Publication Schema

We can take advantage of the commonly seen round-robin DNS technique to share load

throughout the co-operative network. Round-robin DNS works by responding to DNS queries

with multiple valid IP addresses in a random order from which the client selects one. This is

typically used to provide simplistic uniform load distribution without the need for dedicated

load balancing software or hardware. By installing the IP addresses of all co-operating TLS

servers into all private domain name DNS resource records, clients who resolve any of these

domains will be directed any one of the servers. This has the additional bene�t of allowing

clients to immediately retry a connection with the next IP if the connection fails, although

some clients might not implement this. However, a major �aw with this approach is

requiring all servers to share an ECH private key because there is no way to specify which

ECHCon�g value should be used by the client when it selects an IP address. As such, this

mechanism can only work if there is exactly one ECHCon�g value to choose from.

If we are not limited to static declaration of DNS resource records, a better method can be

employed here using a dynamic DNS service. We use software to regularly substitute private

domain name DNS resource records such that load is fairly balanced across servers. This

allows us to specify speci�c IP address and ECHCon�g value pairs for each domain name,

alleviating the need for sharing private keys. Such software can also make intelligent

decisions based on real-time information such as amount of DNS queries or even reported

TLS server tra�c �ow, which could greatly improve the fairness o�ered by the load

balancing system in cases of heterogeneous server capabilities. Unfortunately, using dynamic

DNS for load balancing is prone to sporadic inconsistency due to DNS response caching.

Not only can stale cache entries send tra�c to wrong locations, this can suddenly result in

more tra�c appearing on one IP address if a busy recursive resolver chooses to cache a

response for many stub resolvers to use. Lowering the Time-To-Live (TTL) of DNS resource

18

records may help, at the cost of more frequent polling.

It may also be worthwhile to investigate HTTPS resource records �alternative endpoint�

functionality, which may be able to associate ECHCon�g values with individual servers rather

than domain names. However, this project was not able to get consistent results across

di�erent platforms with these.

3.2.2 TLS Server Co-operation

Due to servers operating as both an own origin server for their own domains and as an

ECH-service provider for all other domains in the anonymity set, they need to accept both

regular ClientHello messages and ClientHello messages containing the ECH extension with

an encrypted ClientHelloInner. While a regular ClientHello message results in the usual TLS

handshake, after decryption a ClientHelloInner can lead to either ECH in Shared Mode or

Split Mode. In Shared Mode, the ClientHelloInner can now be processed as a regular

ClientHello message, but Split Mode requires the server proxy the TLS connection the

appropriate origin server.

When forwarding this connection to the origin server, the ClientHelloInner is now sent as a

regular ClientHello without any security, entirely defeating the purpose of ECH. To solve this

issue, server-server communication have some form on encryption to maintain the

con�dentiality of the ClientHelloInner. As widely shared secrets should be avoided and we

would like this co-operation network to remain adaptable to change, a KEM and KDF

backed by public key cryptography should be considered to establish ephemeral shared

secrets between servers for conducting symmetric encryption.

3.3 Tra�c Obfuscation

In addition to protecting the ClientHelloInner from exposure, this design also seeks to

prevent revelation of which origin server a client is communicating with, as such knowledge

could signi�cantly reduce or eliminate the anonymity set cloaking the target domain name.

We have already seen in Section 2.4.1 that ECH is susceptible to tra�c correlation attacks

through machine learning classi�er models and that there exists many metrics useful for

tra�c pattern recognition. Then in the following section, it was noted that low-latency

network systems are especially vulnerable to timing analysis attacks. Together, these present

a di�cult challenge for ensuring the security of ECH when using distributed

deployment.

In an attempt to mitigate these attacks, this design introduces obfuscation on top of

encryption into all server-server channel tra�c. These techniques are based on the goal of

minimising features and interrupting patterns that occur in communication systems that can

19

Figure 3.3.1: A network observer with view a of client-server and server-server channels has
the opportunity to launch correlation attacks.

be used to �nd associations between channels. As seen in Fig. 3.3.1, if an eavesdropper can

record both the ingress and egress tra�c of a co-operating server, they may be able to track

the movement of packets from one channel to another due to these conspicuous traits. Such

a situation is not improbable, as in reality both channels are likely to pass through the same

physical infrastructure or organisation at some point.

3.3.1 Normalisation

Normalisation is the process of morphing arbitrary tra�c network such that a given metric

remains a �xed value over time. For example, instantaneous throughput could be considered

an aspect of tra�c that can be correlated with another the activity in another channel.

Normalisation can apply tra�c shaping rules and inject noise to ensure their is a constant

amount of throughout at any one time. Normalisation for masking the absence of tra�c can

be somewhat impractical for use in civilian-settings as bandwidth can be both limited and

variable, so it might not be an economic viable approach.

3.3.2 Pacing and Mixing

While not perfect, many practical techniques exist to mask tra�c with minimal impact to

overall network performance. For instance, the lengths of packets may be rounded to the

next multiple of 32 or such that it blends in with surrounding activity [30]. To disrupt

timing-based correlation attacks, delays and packet slotting can be used to pace the rate of

tra�c. Tra�c mixing, where dummy tra�c is introduced into the stream, has also proven to

be e�ective when used in conjunction with variable inter-arrival times [31, 32].

3.4 Summary

Every co-operating TLS server operates both as ECH-service provider for all other members

and as an origin server for any domains it serves. Round-robin static DNS and dynamic DNS

20

can be used with the HTTPS resource record to fairly distribute ECH-enabled client tra�c

amongst these servers, but the round-robin technique requires all servers to shared a private

key. Without intervention, passive observers would be able to read ClientHelloInner values

from server-server channels and undermine anonymity sets through tra�c correlation. To

solve this, server-server communication is encrypted and further obfuscated using tra�c

pacing and dummy packet mixing.

21

4 Implementation

In order to evaluate the e�ectiveness of the solution presented in Chapter 3, an

implementation is developed using commonplace software and tools. This chapter outlines

the steps taken to simulate a working prototype of the design in a virtual environment where

metrics can be recorded inside reproducible scenarios. The project work produced as a result

of this e�ort has been shared for your convenience and can be found in Appendix A1.

In this chapter, the process for establishing a deterministic, con�gurable and measurable

network evaluation environment using DebVM and QEMU is demonstrated. This is followed

by an explanation and discussion of how BIND9 and NGINX are con�gured to realise the

distributed deployment of ECH. Additionally, various tra�c obfuscation techniques are

instated using a combination of wireguard, tc and tcpdump. Finally, curl, Mozilla Firefox

and Google Chrome are con�gured with ECH-support and shown to work with distributed

ECH deployment.

4.1 Simulation

The initial time investment placed into a script for quick and con�gurable virtual testing

environments was paramount for saving signi�cant time and stress during the later iterative

development process used to re�ne the design of the solution. The ability to teardown and

setup a fresh virtual environment containing the exact same con�guration in under a minute

was vital during periods of investigation and debugging as well as evaluation and data

collection. These virtual environments consist of many virtual machines connected together

using a bridge network device.

4.1.1 Virtualisation

The virtual machines are created using a tool called DebVM, which is a composition of

QEMU and mmdebstrap. QEMU is an application and hardware emulator that manage the

execution of virtual machines while mmdebstrap is a tool to create Debian Linux operating

systems [33]. DebVM is a thin abstraction to these and o�ers a user-friendly interface to

create and run new instances of Debian Linux.

22

This project requires building OpenSSL, curl and NGINX from source patched with ECH

support as well as the con�guration of several virtual machines. This can be a very lengthy

process, so e�ort was made to separate these steps into composable QEMU images that

together form the complete virtual machine. An excerpt of this process has been included in

Listing. 4.1.1. The con�guration of these images are automated using non-interactive SSH

commands. Seen here is the assembly of a QEMU image called build.img that contains the

output of the build process. Primarily due to storage restrictions, it was decided to isolate

the virtual machine which contains all the necessary build tools from the composed virtual

machines.

1 ssh-keygen -N "" -t ed25519 -f ssh.key

2 debvm-create -h builder -o builder.img -r unstable -z 2GB -k ssh.key.pub -- \

3 --include ca-certificates,build-essential,dh-autoreconf,git,e2fsprogs \

4 --include libpsl-dev,libpcre3-dev,libz-dev,libnghttp2-dev

5

6 qemu-img create build.img 2G

7 debvm-run --image builder.img --sshport 2222 --graphical -- \

8 -display none -drive file=build.img,format=raw,if=virtio,readonly=off &

9 debvm-waitssh 2222

10

11 ssh -o NoHostAuthenticationForLocalhost=yes -i ssh.key -p 2222 root@127.0.0.1 "

12 mkfs.ext4 -L build /dev/vdb

13 mount /dev/vdb /mnt

14

15 git clone -b ECH-draft-13c https://github.com/sftcd/openssl.git /mnt/src/openssl

16 cd /mnt/src/openssl

17 ./config --prefix=/mnt/openssl --openssldir=/mnt/openssl

18 make -j8

19 make -j8 install

20

21 cd / && umount /mnt

22 shutdown now"

23 wait

Listing 4.1.1: Building OpenSSL from source inside build.img with DebVM.

In a similar procedure, the software and con�guration common to all virtual machines are

built into a base image. New virtual machines are initialised as a snapshot of the base image

with further con�guration applied on top. To boot up these virtual machines, QEMU

instances of them are spawned into the background in parallel. Each virtual machine exposes

one SSH port bound to a unique port of the host machine to allow for interactive control

and customisation.

4.1.2 Networking

A bridge network device is created and managed on the host machine to allow packets to

travel between virtual machines. DebVM allows for specifying additional arguments that are

23

passed to QEMU, and can be seen used to connect a virtual machine to a bridge network in

Listing 4.1.2.

1 sudo ip link add name br0 type bridge

2 sudo ip addr add 172.0.0.1/24 dev br0

3 sudo ip link set dev br0 up

4

5 debvm-run --image host.img -- \

6 -device virtio-net-pci,netdev=net1,mac=00:00:00:00:00:01 \

7 -netdev bridge,id=net1,br=br0

Listing 4.1.2: Connecting QEMU virtual machines together using a network bridge.

Each virtual machine has a static network con�guration with a unique IP and MAC address

that is installed to /etc/systemd/network/00-br0.network during initialisation, which is

automatically applied by systemd early after boot up. An example con�guration �le is

provided in Listing 4.1.3.

1 [Match]

2 MACAddress=00:00:00:00:00:01

3

4 [Network]

5 DNS=172.0.0.254

6 Address=172.0.0.5/24

7

8 [Route]

9 Gateway=0.0.0.0

10 Destination=0.0.0.0/0

11 Metric=9999

Listing 4.1.3: Static bridge network con�guration using systemd.

As previously described in Section 2.1.1, digital certi�cates provide an authentication service

through a chain of trust model. Well-behaved TLS entities on the network will only interact

with other TLS entities that possess a certi�cates that have been signed by a trusted CA.

To shortcut the process of applying for an o�cial certi�cate trusted CA, we can instead

create our own root CA with a self-signed certi�cate using OpenSSL. Listing 4.1.4 uses the

patched version of OpenSSL that was built in the previous section.

1 LD_LIBRARY_PATH=/mnt/openssl/lib64 /mnt/openssl/bin/openssl req -x509 \

2 -newkey ec -pkeyopt ec_paramgen_curve:secp384r1 -days 3650 -nodes \

3 -keyout /keys/root.key -out /keys/root.crt -subj '/CN=example.com'

Listing 4.1.4: Generating a new self-signed root CA X.509 certi�cate using OpenSSL.

New certi�cates can now be issued by the root CA as seen in Listing 4.1.5. However, no

TLS entity will be able to establish trust with these certi�cates as it has not been signed by

24

a trusted CA. We will see in Section 4.4 how applications can be con�gured to trust new

root CAs and thus trust these signed certi�cates.

1 LD_LIBRARY_PATH=/mnt/openssl/lib64 /mnt/openssl/bin/openssl req \

2 -newkey ec -pkeyopt ec_paramgen_curve:secp384r1 -nodes \

3 -keyout /keys/dns.key -out /keys/dns.csr -subj '/CN=ns.example.com'

4

5 LD_LIBRARY_PATH=/mnt/openssl/lib64 /mnt/openssl/bin/openssl x509 -req \

6 -CA /keys/root.crt -CAkey /keys/root.key -days 3650 -CAcreateserial \

7 -extfile <(printf 'subjectAltName=DNS:ns.example.com') \

8 -in /keys/dns.csr -out /keys/dns.crt

Listing 4.1.5: Signing a new X.509 certi�cate for ns.example.com using OpenSSL.

With these steps, we have the foundations for building a virtual environment on top of. The

rest of this chapter is comprised of the steps taken to implement the di�erent servers, clients

and applications that make up the virtual environment.

4.2 DNS Server

One of the virtual machines operates as the DNS server for clients to query. The Berkeley

Internet Name Domain version 9 (BIND9) software provides all the functionality needed for

this prototype [34]. Currently, all practical ECH-enabled clients require DoH to be used

when resolving the private domain name for ECH to be performed. To enable this in BIND9,

we provide a private key and signed certi�cate for use by TLS and then begin listening on

port 443 as seen in Listing 4.2.1.

1 tls tlspair {

2 key-file "/keys/dns.key";

3 cert-file "/keys/dns.crt";

4 };

5

6 options {

7 directory "/var/cache/bind";

8 recursion no;

9 dnssec-validation auto;

10 allow-transfer { none; };

11 listen-on { any; };

12 listen-on port 443 tls tlspair http default { any; };

13 };

14

15 zone "example.com" {

16 type master;

17 update-policy local;

18 file "/var/lib/bind/db.example.com";

19 };

Listing 4.2.1: DNS over HTTPS con�guration using BIND9.

25

BIND9 uses zone �les to specify naming system information. The round-robin static DNS

technique has been implemented Listing 4.2.2. Note that <Shared_ECHConfig> would be

replaced with the base64-encoded ECHCon�g value that would be common between all

co-operating TLS servers.

1 $ORIGIN example.com.

2 $TTL 3600

3

4 @ IN SOA dns root.dns 2024040100 3600 600 86400 600

5 @ IN NS dns

6

7 dcu IN A 172.0.0.2

8 dcu IN A 172.0.0.5

9 dcu IN A 172.0.0.8

10 dcu IN HTTPS 1 . ech=<Shared_ECHConfig>

11

12 tcd IN A 172.0.0.2

13 tcd IN A 172.0.0.5

14 tcd IN A 172.0.0.8

15 tcd IN HTTPS 1 . ech=<Shared_ECHConfig>

16

17 ucd IN A 172.0.0.2

18 ucd IN A 172.0.0.5

19 ucd IN A 172.0.0.8

20 ucd IN HTTPS 1 . ech=<Shared_ECHConfig>

Listing 4.2.2: example.com zone �le for distributed ECH using a shared ECH key.

As discussed in Chapter 3, this requires all servers to share a private key. In order to avoid

such widely shared secrets, the dynamic DNS approach can be employed to regularly update

the DNS resource records. The Listing 4.2.3 uses the nsupdate tool to send DNS zone

updates using the DNS UPDATE speci�cation [35]. Notice we must also enable dynamic

DNS in BIND9 as seen in Listing 4.2.1 Line 17.

1 pairs="172.0.0.2,<DCU_ECHConfig> 172.0.0.5,<TCD_ECHConfig> 172.0.0.8,<UCD_ECHConfig>"

2 while true; do

3 dcu=$(shuf -e $pairs); tcd=$(shuf -e $pairs); ucd=$(shuf -e $pairs); echo "

4 update delete dcu.example.com

5 update add dcu.example.com 60 A ${dcu%%,*}

6 update add dcu.example.com 60 HTTPS 1 . ech=${dcu#*,}

7 update delete tcd.example.com

8 update add tcd.example.com 60 A ${tcd%%,*}

9 update add tcd.example.com 60 HTTPS 1 . ech=${tcd#*,}

10 update delete ucd.example.com

11 update add ucd.example.com 60 A ${ucd%%,*}

12 update add ucd.example.com 60 HTTPS 1 . ech=${ucd#*,}

13 send" | nsupdate -l

14 sleep 1

15 done

Listing 4.2.3: Rudimentary script to implement a dynamic DNS service.

26

This script selects a random server IP and ECHCon�g pair to assign to each private domain

name DNS resource records. Note that <DCU_ECHConfig>, <TCD_ECHConfig> and

<UCD_ECHConfig> would be replaced with the base64-encoded ECHCon�g value belonging

to the appropriate TLS server.

4.3 TLS Server

The remaining virtual machines in the environment function as the co-operating TLS

servers. Similar to the DNS server in Listing 4.1.5, TLS server are issued signed certi�cates.

However, they receive one certi�cate for every domain they serve. Additionally, if using the

dynamic DNS service method, each server needs its own ECH key pair, which can be

generated using the command in Listing 4.3.1. It is from this key pair that the values for

<xxx_ECHConfig> can be found.

1 LD_LIBRARY_PATH=/mnt/openssl/lib64 /mnt/openssl/bin/openssl ech \

2 -public_name tcd.example.com -pemout /keys/tcd/key.ech

Listing 4.3.1: Generating a new ECH key pair for tcd.example.com using OpenSSL.

The patched version of NGINX built earlier is used as the web server. Listing 4.3.2 provides

a con�guration which implements the previously described design.

1 stream {

2 ssl_preread on;

3 ssl_echkeydir /keys/tcd;

4 server { listen 172.0.0.5:443; proxy_pass $origin; }

5 map $ssl_preread_server_name $origin {

6 dcu.example.com 172.0.1.2:443;

7 tcd.example.com 172.0.1.5:443;

8 ucd.example.com 172.0.1.8:443;

9 }

10 }

11

12 http {

13 server {

14 root /site/tcd;

15 server_name tcd.example.com;

16 listen 172.0.1.5:443 ssl;

17 http2 on;

18 ssl_certificate /keys/tcd/tcd.crt;

19 ssl_certificate_key /keys/tcd/tcd.key;

20 ssl_protocols TLSv1.3;

21 location / { ssi on; index index.html; }

22 }

23 }

Listing 4.3.2: Distributed ECH NGINX con�guration for tcd.example.com.

27

It functions by listening on two interfaces: All connections towards 172.0.1.5:443, the

server-server interface, are processed as regular ClientHello messages while connections

towards 172.0.0.5:443, the public interface, are processed as ClientHelloOuter messages.

Once decrypted, the ClientHelloInner is forwarded towards the appropriate origin server

through the server-server interface. This interface is a virtual private network (VPN) created

by WireGuard that operates over the public interface [36]. WireGuard uses a public and

private key for its KEM, which are generated as shown in Listing 4.3.3. This key is then

used to provide peer-to-peer symmetric encryption.

1 wg genkey | tee /keys/tcd/wg.key | wg pubkey > /keys/tcd/wg.key.pub

Listing 4.3.3: Generating a new WireGuard key pair for tcd.example.com.

Listing 4.3.4 is a simple tra�c obfuscation script that uses the tc tool to install a packet

slotting rule into the Linux networking stack [37, 38]. This forces all packets to accrue for

up to a maximum time before all being sent together. Additionally, tcpdump is used to

detect network activity going to a server, which results in duplicate packets being sent to all

other servers. It has been noticed that tra�c padding appears a short delay after real tra�c.

Trials have been made using socat and iptables to improve functioning. but no signi�cant

changes in e�ectiveness were noted. The implementation script provided in Appendix A1

continues to use socat and iptables for reference.

1 tc qdisc replace dev enp0s6 root netem slot 10ms 20ms

2

3 tcpdump -i wg0 -nnqlt udp and src 172.0.1.5 and not dst port 1234 \

4 | while read _ _ _ dst _ len; do

5 ["172.0.1.2" != "${dst%.*}"] &&

6 dd if=/dev/urandom bs=$len count=1 >/dev/udp/172.0.1.2/1234 &

7 ["172.0.1.8" != "${dst%.*}"] &&

8 dd if=/dev/urandom bs=$len count=1 >/dev/udp/172.0.1.8/1234 &

9 done

Listing 4.3.4: Rudimentary script to shroud legitimate WireGuard communication.

4.4 TLS Client

This project uses three TLS clients for testing ECH functionality. These clients need to be

con�gured to use ECH by enabling use of DoH with ns.example.com as the selected resolver

and installing the root CA certi�cate generated in Listing 4.1.4.

28

4.4.1 curl

curl is a command-line client for accessing network resources. It has recently received

support for ECH through the DEfO project. The project has used curl for simulating random

client requests, as in Listing 4.4.1. This script selects a random private domain name and

then uses curl to execute a TLS connection using ECH after resolving the domain name

using DoH. A copy of this output produced by curl when querying https://tcd.example.com

has in Appendix A2.

1 while true; do

2 sleep 0.$(($RANDOM % 999))

3 LD_LIBRARY_PATH=/mnt/openssl/lib64 /mnt/curl/bin/curl \

4 --verbose --cacert /keys/root.crt --ech hard \

5 --doh-url https://dns.example.com/dns-query \

6 https://$(shuf -n 1 -e dcu.example.com tcd.example.com ucd.example.com)

7 done

Listing 4.4.1: Command to use ECH-enabled curl on QEMU virtual machines.

4.4.2 Mozilla Firefox

Mozilla Firefox is a web browser that received support for ECH in version 118, September

2023. There were no issues encountered when con�guring the browser to enable ECH

support and point DoH to ns.example.com. Fig. 4.4.1 showcases the browser successfully

accessing tcd.exmaple.com through 172.0.1.8, which belongs to the UCD TLS server.

Figure 4.4.1: Screenshot of Mozilla Firefox when accessing tcd.example.com.

29

4.4.3 Google Chrome

Google Chrome is another web browser that received support for ECH in v118, October

2023. The browser was not able to use ns.example.com when set using the custom

encrypted DNS option, but it was possible to work around this by setting the device's DNS

resolver to ns.example.com and telling the browser to use the system resolver. Fig. 4.4.2

showcases the browser successfully accessing tcd.exmaple.com through 172.0.1.2, which

belongs to the DCU TLS server.

Figure 4.4.2: Screenshot of Google Chrome when accessing tcd.example.com.

4.5 Summary

Virtual environments comprise of many virtual machines generated using DebVM and

connected together over a bridge network. BIND9 provides authoritative name server

functionality and NGINX is used as the web server on all co-operating TLS servers.

WireGuard operates a VPN service to encrypt all server-server communication, while tc and

tcpdump o�er a proof-of-concept implementation of tra�c obfuscation. Finally, curl, Mozilla

Firefox and Google Chrome have been used as ECH-enabled clients to validate functioning

of the ECH deployment model.

30

5 Results and Discussion

After completing an implementation of the design in Chapter 4, an evaluation of its

e�ectiveness is conducted based on the goals of the project. In this chapter, a method for

data collection using the implementation is presented, the results of the data collection are

analysed, and a discussion on the overall strengths and weaknesses of the design and

implementation is given. In particularly, the solutions ability to fairly balance load between

co-operating TLS servers, minimising impact to overall network performance and

demonstrating protection of user privacy are considered.

5.1 Data Collection

Wireshark is a tool for capturing and analysing network tra�c. In this project, it is used to

record all tra�c passing through the bridge network. This includes tra�c entering and

leaving the virtual environment as well as tra�c passed through the WireGuard VPN.

Fig.5.1.1 displays a few capabilities of the software, including presentation of all captured

packets, �ltering packets by content and recognition of the ECH extension in a ClientHello

message.

Figure 5.1.1: Screenshot of Wireshark after capturing a Client Hello message using ECH.

31

5.2 Evaluation

In this section we use the data captured using WireShark to consider and criticise various

parts of the system in operation. The collected data PCAP �les have been included in the

additional data ZIP archive submitted alongside this report.

5.2.1 Load Distribution

The design appears to have achieved its objective of delivering load fairly across members of

the co-operative network. Fig. 5.2.1 shows a very stable load persisting for 25 minutes. In

this scenario, 60% of tra�c was destined to the blue origin server, while the other two

servers shared the remaining 40%. Due to the functionality of the dynamic DNS service, this

di�erence in popularity is not noticeable. While this implementation is extremely simple and

does not attempt to make intelligent decisions based on live tra�c �ow recordings, it does

provide preliminary evidence that a dynamic DNS service can be used as a distribution

mechanism for the distributed deployment of ECH.

Figure 5.2.1: Load experienced by three co-operative TLS servers from clients over a period
of 25 minutes. The black line represents the total load bared across the whole network.

5.2.2 Performance

Data was also collected regarding the performance of scenarios where clients ignore ECH

support and go straight to the origin and conventional ECH using a single centralised

provider. We can see in Fig. 5.2.2 and Table 5.1 that the distributed deployment model

faired just as well as the centralised deployment model. When compared against no ECH

usage, clearly the addition of tra�c padding and a intermediate node signi�cantly impacts

performance. However, this is to be expected as ECH necessitates a intermediate node when

using Split Mode. Overall, this result is a great success for the deployment model.

32

Figure 5.2.2: Total time taken to fetch a resource within di�erent scenarios. Blue is using
distributed ECH, red is using centralised ECH and green is disregarding ECH and going straight
to the origin server.

Statistic Distributed ECH Centralised ECH Without ECH

streams (packets) 1054 (11092) 1046 (11017) 1128 (11864)
Minimum lifetime 13.7682 ms 40.6940 ms 4.6399 ms
Maximum lifetime 255.2350 ms 254.2059 ms 23.5630 ms

Mean lifetime 147.4227 ms 146.3109 ms 8.8034 ms
Standard deviation 40.6287 ms 38.6486 ms 5.1609s ms

Table 5.1: Table of performance characteristics

5.2.3 Security

As mentioned previously, the tra�c obfuscation aspect of this project was not able to �nalise

an implementation in time. However, we can still see its attempt at preventing an obvious

correlation between the red and blue server transmissions in Fig. 5.2.3. Unfortunately, the

current implementation of tra�c obfuscation does not mesh well with WireGuard, as a key

exchange occurs before tcpdump has time to notice channel activity. Thus, there is always a

clear relationship between the two communicators. Another method not implemented but

researched is the constant injection of noise that adapts in volume with activity on the

channel.

5.3 Summary

The results from this study appear to be promising. The mechanism used for load balancing

has archived its objective and distributed deployment does not appear to be negatively

e�ecting network performance. While WireGuard has successfully concealed the

ClientHelloInner when being forwarded, it still remains to be seen if the protocol can be

operated in such a scenario without being compromised through tra�c correlation.

33

Figure 5.2.3: Impact of tra�c obfuscation

34

6 Conclusion

This research has been a �rst e�ort on de�ning a distributed deployment model for ECH.

We have covered an overview of the background technology and concepts needed to

appreciate the scope of the work. A study of the design of the deployment model with

respect to the challenges surmounted was presented, which was followed by a dive into how

the design can be implemented within a virtual testing environment. Lastly, an analysis of

the results produced by the testing environment is provided, in which the quality of the

design and implementation is evaluated and discussed.

In this �nal chapter, a summary of what was learnt from this project is included, as well as

where this research could bene�t from future work. I complete with a short re�ection on the

project as a whole.

6.1 Learnings

This paper con�rms that ECH using Split Mode topology allows for a distributed

deployment amongst co-operating TLS servers. We saw that ECH-service load can be

distributed evenly across servers using a static DNS con�guration with a shared ECHCon�g

or balanced fairly when using a dynamic DNS service with separate ECHCon�gs. There was

minimal performance impact observed when compared to a centralised ECH deployment

model, but higher latencies and bandwidth usage should be expected when using stricter

tra�c pacing and mixing parameters. While normalising of co-operating server tra�c would

ensure perfect masking of client activity, it is generally impractical to achieve this in civilian

settings. However, there is evidence that tra�c pacing and mixing exhibits su�cient

anonymity properties but may be susceptible to statistical pattern detection using a

well-trained machine learning model.

6.2 Future Work

The research completed on the security properties of pacing and mixing co-operating server

tra�c to disrupt correlation attacks is not considered conclusive and requires a follow-up

35

study. It is likely information theory could be employed here to help identify an optimal

obfuscation method that minimises tra�c impedance and bandwidth usage for a given set of

channel throughputs.

Additionally, further work is necessary to determine a shared DNS publication strategy which

permits each server to perform regular ECH key rotation. The current design lacks any

mechanism for co-operating servers to be able to publish a new set of resource records. In a

similar vein, it would be bene�cial for the dynamic DNS service to be noti�ed of tra�c �ow

experienced by each server for fairer load balancing. It seems likely both of these tasks

would be suitable to be addressed in the same body of work.

In any case, future development of this deployment model should be subjected to more

realistic testing environments. This would be expected to include tra�c �ows and network

topologies representative of real-world scenarios. This project has only demonstrated

deployment using a single suite of software, namely NGINX and BIND within a QEMU

virtual environment, so it may also be reasonable to trial its operation across di�erent

con�gurations of software and hardware.

6.3 Re�ection

I am grateful to have been granted considerable freedom within the scope of the project to

investigate a number of relevant �elds and technologies. I had not previously had the

opportunity to work with QEMU or DebVM, so I am very pleased with the reproducible

virtual build and testing environments I was able to orchestrate.

However, I must also acknowledge that in covering this additional material within the limited

time available, I feel I was only able to explore some areas super�cially. Had I more time, I

would have liked to continue my research into tra�c analysis, correlation attacks and

practical countermeasures.

Overall, I found this project to be enjoyable to work on and served as a compelling

dissertation topic.

36

Bibliography

[1] Eric Rescorla et al. TLS Encrypted Client Hello. Internet-Draft draft-ietf-tls-esni-18.

Work in Progress. Internet Engineering Task Force, Mar. 2024. 51 pp. url:

https://datatracker.ietf.org/doc/draft-ietf-tls-esni/18/.

[2] Zisis Tsiatsikas, Georgios Karopoulos, and Georgios Kambourakis. �Measuring the

adoption of TLS encrypted client hello extension and its forebear in the wild�. In:

European Symposium on Research in Computer Security. Springer. 2022,

pp. 177�190. doi: 10.1007/978-3-031-25460-4_10.

[3] Christopher Wood Achiel van der Mandele Alessandro Ghedini and Rushil Mehra.

Encrypted Client Hello - the last puzzle piece to privacy. Sept. 2023. url:

https://blog.cloudflare.com/announcing-encrypted-client-hello (visited on

03/24/2024).

[4] Mark Nottingham. Centralization, Decentralization, and Internet Standards. RFC

9518. Dec. 2023. doi: 10.17487/RFC9518. url:

https://www.rfc-editor.org/info/rfc9518.

[5] Chia-ling Chan et al. �Monitoring TLS adoption using backbone and edge tra�c�. In:

IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS). IEEE. 2018, pp. 208�213. doi:

10.1109/INFCOMW.2018.8406957.

[6] Let's Encrypt Stats. Percentage of Web Pages Loaded by Firefox Using HTTPS. url:

https://letsencrypt.org/stats/#percent-pageloads (visited on 04/01/2024).

[7] Christopher Allen and Tim Dierks. The TLS Protocol Version 1.0. RFC 2246. Jan.

1999. doi: 10.17487/RFC2246. url: https://www.rfc-editor.org/info/rfc2246.

[8] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446.

Aug. 2018. doi: 10.17487/RFC8446. url: https://www.rfc-editor.org/info/rfc8446.

[9] Kathleen Moriarty and Stephen Farrell. Deprecating TLS 1.0 and TLS 1.1. RFC 8996.

Mar. 2021. doi: 10.17487/RFC8996. url: https://www.rfc-editor.org/info/rfc8996.

[10] Ralph Holz et al. �The era of TLS 1.3: Measuring deployment and use with active and

passive methods�. In: ACM SIGCOMM Computer Communication Review 50 (3 Aug.

2019), pp. 3�15. doi: 10.48550/arXiv.1907.12762.

37

https://datatracker.ietf.org/doc/draft-ietf-tls-esni/18/
https://doi.org/10.1007/978-3-031-25460-4_10
https://blog.cloudflare.com/announcing-encrypted-client-hello
https://doi.org/10.17487/RFC9518
https://www.rfc-editor.org/info/rfc9518
https://doi.org/10.1109/INFCOMW.2018.8406957
https://letsencrypt.org/stats/#percent-pageloads
https://doi.org/10.17487/RFC2246
https://www.rfc-editor.org/info/rfc2246
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
https://doi.org/10.17487/RFC8996
https://www.rfc-editor.org/info/rfc8996
https://doi.org/10.48550/arXiv.1907.12762

[11] Hyunwoo Lee, Doowon Kim, and Yonghwi Kwon. �TLS 1.3 in practice: How TLS 1.3

contributes to the internet�. In: Proceedings of the Web Conference 2021. 2021,

pp. 70�79. doi: 10.1145/3442381.3450057.

[12] Peter Hesse et al. Internet X.509 Public Key Infrastructure: Certi�cation Path

Building. RFC 4158. Sept. 2005. doi: 10.17487/RFC4158. url:

https://www.rfc-editor.org/info/rfc4158.

[13] Richard Barnes et al. Automatic Certi�cate Management Environment (ACME). RFC

8555. Mar. 2019. doi: 10.17487/RFC8555. url:

https://www.rfc-editor.org/info/rfc8555.

[14] Paul Mockapetris. Domain names - concepts and facilities. RFC 1034. Nov. 1987.

doi: 10.17487/RFC1034. url: https://www.rfc-editor.org/info/rfc1034.

[15] Paul Mockapetris. Domain names - implementation and speci�cation. RFC 1035. Nov.

1987. doi: 10.17487/RFC1035. url: https://www.rfc-editor.org/info/rfc1035.

[16] Stéphane Bortzmeyer. DNS Privacy Considerations. RFC 7626. Aug. 2015. doi:

10.17487/RFC7626. url: https://www.rfc-editor.org/info/rfc7626.

[17] Alissa Cooper et al. Privacy Considerations for Internet Protocols. RFC 6973. July

2013. doi: 10.17487/RFC6973. url: https://www.rfc-editor.org/info/rfc6973.

[18] Stephen Farrell and Hannes Tschofenig. Pervasive Monitoring Is an Attack. RFC 7258.

May 2014. doi: 10.17487/RFC7258. url: https://www.rfc-editor.org/info/rfc7258.

[19] Zi Hu et al. Speci�cation for DNS over Transport Layer Security (TLS). RFC 7858.

May 2016. doi: 10.17487/RFC7858. url: https://www.rfc-editor.org/info/rfc7858.

[20] Paul E. Ho�man and Patrick McManus. DNS Queries over HTTPS (DoH). RFC 8484.

Oct. 2018. doi: 10.17487/RFC8484. url: https://www.rfc-editor.org/info/rfc8484.

[21] Sebastián García et al. �Large scale measurement on the adoption of encrypted DNS�.

In: arXiv e-prints (July 2021). doi: 10.48550/arXiv.2107.04436.

[22] Benjamin M. Schwartz, Mike Bishop, and Erik Nygren. Service Binding and Parameter

Speci�cation via the DNS (SVCB and HTTPS Resource Records). RFC 9460. Nov.

2023. doi: 10.17487/RFC9460. url: https://www.rfc-editor.org/info/rfc9460.

[23] Richard Barnes et al. Hybrid Public Key Encryption. RFC 9180. Feb. 2022. doi:

10.17487/RFC9180. url: https://www.rfc-editor.org/info/rfc9180.

[24] Karthikeyan Bhargavan, Vincent Cheval, and Christopher Wood. �A symbolic analysis

of privacy for TLS 1.3 with Encrypted Client Hello�. In: Proceedings of the 2022 ACM

SIGSAC Conference on Computer and Communications Security. 2022, pp. 365�379.

doi: 10.1145/3548606.3559360.

[25] Adam Back, Ulf Möller, and Anton Stiglic. �Tra�c analysis attacks and trade-o�s in

anonymity providing systems�. In: International Workshop on Information Hiding.

Springer. 2001, pp. 245�257. doi: 10.1007/3-540-45496-9_18.

[26] Samuel Padraic DeFabbia-Kane. �Analyzing the e�ectiveness of passive correlation

attacks on the tor anonymity network�. In: (2011). doi: 10.14418/wes01.1.1636.

38

https://doi.org/10.1145/3442381.3450057
https://doi.org/10.17487/RFC4158
https://www.rfc-editor.org/info/rfc4158
https://doi.org/10.17487/RFC8555
https://www.rfc-editor.org/info/rfc8555
https://doi.org/10.17487/RFC1034
https://www.rfc-editor.org/info/rfc1034
https://doi.org/10.17487/RFC1035
https://www.rfc-editor.org/info/rfc1035
https://doi.org/10.17487/RFC7626
https://www.rfc-editor.org/info/rfc7626
https://doi.org/10.17487/RFC6973
https://www.rfc-editor.org/info/rfc6973
https://doi.org/10.17487/RFC7258
https://www.rfc-editor.org/info/rfc7258
https://doi.org/10.17487/RFC7858
https://www.rfc-editor.org/info/rfc7858
https://doi.org/10.17487/RFC8484
https://www.rfc-editor.org/info/rfc8484
https://doi.org/10.48550/arXiv.2107.04436
https://doi.org/10.17487/RFC9460
https://www.rfc-editor.org/info/rfc9460
https://doi.org/10.17487/RFC9180
https://www.rfc-editor.org/info/rfc9180
https://doi.org/10.1145/3548606.3559360
https://doi.org/10.1007/3-540-45496-9_18
https://doi.org/10.14418/wes01.1.1636

[27] Martino Trevisan et al. �Attacking DoH and ECH: Does Server Name Encryption

Protect Users' Privacy?� In: ACM Transactions on Internet Technology 23.1 (2023),

pp. 1�22. doi: 10.1145/3570726.

[28] Brian N Levine et al. �Timing attacks in low-latency mix systems�. In: Financial

Cryptography: 8th International Conference, FC 2004, Key West, FL, USA, February

9-12, 2004. Revised Papers 8. Springer. 2004, pp. 251�265. doi:

10.1007/978-3-540-27809-2_25.

[29] Charles V Wright, Scott E Coull, and Fabian Monrose. �Tra�c Morphing: An E�cient

Defense Against Statistical Tra�c Analysis.� In: NDSS. Vol. 9. 2009.

[30] Shui Yu et al. �Predicted packet padding for anonymous web browsing against tra�c

analysis attacks�. In: IEEE Transactions on Information Forensics and Security 7.4

(2012), pp. 1381�1393. doi: 10.1109/TIFS.2012.2197392.

[31] Xinwen Fu et al. �Analytical and empirical analysis of countermeasures to tra�c

analysis attacks�. In: 2003 International Conference on Parallel Processing, 2003.

Proceedings. IEEE. 2003, pp. 483�492. doi: 10.1109/ICPP.2003.1240613.

[32] Xinwen Fu et al. �On e�ectiveness of link padding for statistical tra�c analysis

attacks�. In: 23rd International Conference on Distributed Computing Systems, 2003.

Proceedings. IEEE. 2003, pp. 340�347. doi: 10.1109/ICDCS.2003.1203483.

[33] Fabrice Bellard. �QEMU, a fast and portable dynamic translator.� In: USENIX annual

technical conference, FREENIX Track. Vol. 41. 46. 2005.

[34] Shelena Soosay Nathan et al. �BERKELEY INTERNET NAME DOMAIN (BIND)�. In:

International Journal on Cybernetics & Informatics 1 (Feb. 2012), pp. 1�10.

[35] Paul A. Vixie et al. Dynamic Updates in the Domain Name System (DNS UPDATE).

RFC 2136. Apr. 1997. doi: 10.17487/RFC2136. url:

https://www.rfc-editor.org/info/rfc2136.

[36] Jason A Donenfeld. �WireGuard: Next Generation Kernel Network Tunnel.� In: NDSS.

2017, pp. 1�12. doi: 10.14722/ndss.2017.23160.

[37] Werner Almesberger. Linux Network Tra�c Control - Implementation Overview. Apr.

1999.

[38] Stephen Hemminger. �Network emulation with NetEm�. In: Linux conf au. Vol. 5. Apr.

2005.

39

https://doi.org/10.1145/3570726
https://doi.org/10.1007/978-3-540-27809-2_25
https://doi.org/10.1109/TIFS.2012.2197392
https://doi.org/10.1109/ICPP.2003.1240613
https://doi.org/10.1109/ICDCS.2003.1203483
https://doi.org/10.17487/RFC2136
https://www.rfc-editor.org/info/rfc2136
https://doi.org/10.14722/ndss.2017.23160

A1 Project Files

For the sake of experimental reproducibility, a ZIP archive of the project code, three

scenarios and packet capture �les have been provided alongside this report. Additionally, a

copy can be found online: https://github.com/tedski999/distributed-ech.

The source code consists of a single Bash script, run.sh , which contains all the necessary

logic to setup and run any virtual testing environment described using two scenario

con�guration �les, network.csv and server.csv . The script is dependent on DebVM,

and by extension QEMU and mmdebstrap. A path sandbox must also be speci�ed as the

directory to store QEMU images and other ephemeral data.

Given two scenario con�guration �les, the environment can be generated and started by

executing ./run.sh sandbox network.csv servers.csv . Initial setup times can be

lengthy, as OpenSSL, curl and NGINX must be built before all QEMU virtual machine

images are con�gured and booted. These builds and con�gurations are preserved, so later

environment boot up times are far quicker.

Once running, a virtual machine can be accessed using the corresponding SSH command

printed to the terminal: ssh -i 'sandbox/ssh.key' -p 2222 root@127.0.0.1 . See

Chapter 4 for more information on how to use this environment.

40

https://github.com/tedski999/distributed-ech

A2 Verbose curl Output

1 root@tls-client:~# curl --verbose --cacert /keys/root.crt --ech hard --doh-url

https://dns.example.com/dns-query https://tcd.example.com↪→

2 * Some HTTPS RR to process

3 * Host tcd.example.com:443 was resolved.

4 * IPv6: (none)

5 * IPv4: 172.0.0.2

6 * Trying 172.0.0.2:443...

7 * Connected to tcd.example.com (172.0.0.2) port 443

8 * ECH: ECHConfig from DoH HTTPS RR

9 * ECH: imported ECHConfigList of length 68

10 * ALPN: curl offers h2,http/1.1

11 * TLSv1.3 (OUT), TLS handshake, Client hello (1):

12 * CAfile: /keys/root.crt

13 * CApath: /etc/ssl/certs

14 * TLSv1.3 (IN), TLS handshake, Server hello (2):

15 * TLSv1.3 (IN), TLS handshake, Encrypted Extensions (8):

16 * TLSv1.3 (IN), TLS handshake, Certificate (11):

17 * TLSv1.3 (IN), TLS handshake, CERT verify (15):

18 * TLSv1.3 (IN), TLS handshake, Finished (20):

19 * TLSv1.3 (OUT), TLS change cipher, Change cipher spec (1):

20 * TLSv1.3 (OUT), TLS handshake, Finished (20):

21 * SSL connection using TLSv1.3 / TLS_AES_256_GCM_SHA384 / x25519 / id-ecPublicKey

22 * ECH: result: status is succeeded, inner is tcd.example.com, outer is

dcu.example.com↪→

23 * ALPN: server accepted h2

24 * Server certificate:

25 * subject: CN=tcd.example.com

26 * start date: Apr 10 18:05:25 2024 GMT

27 * expire date: Apr 8 18:05:25 2034 GMT

28 * subjectAltName: host "tcd.example.com" matched cert's "tcd.example.com"

29 * issuer: CN=root.example.com

30 * SSL certificate verify ok.

31 * Certificate level 0: Public key type EC/secp384r1 (384/192 Bits/secBits), signed

using ecdsa-with-SHA256↪→

32 * Certificate level 1: Public key type EC/secp384r1 (384/192 Bits/secBits), signed

using ecdsa-with-SHA256↪→

41

33 * using HTTP/2

34 * [HTTP/2] [1] OPENED stream for https://tcd.example.com/

35 * [HTTP/2] [1] [:method: GET]

36 * [HTTP/2] [1] [:scheme: https]

37 * [HTTP/2] [1] [:authority: tcd.example.com]

38 * [HTTP/2] [1] [:path: /]

39 * [HTTP/2] [1] [user-agent: curl/8.7.2-DEV]

40 * [HTTP/2] [1] [accept: */*]

41 > GET / HTTP/2

42 > Host: tcd.example.com

43 > User-Agent: curl/8.7.2-DEV

44 > Accept: */*

45 >

46 * Request completely sent off

47 * TLSv1.3 (IN), TLS handshake, Newsession Ticket (4):

48 * TLSv1.3 (IN), TLS handshake, Newsession Ticket (4):

49 * old SSL session ID is stale, removing

50 < HTTP/2 200

51 < server: nginx/1.25.4

52 < date: Wed, 10 Apr 2024 19:12:44 GMT

53 < content-type: text/html

54 <

55 <!doctype html>

56 <html lang=en>

57 <head>

58 <meta charset=utf-8>

59 <title>tcd.example.com</title>

60 </head>

61 <body>

62

63 <p>

64 Welcome to tcd.example.com

65 Got here via <i>172.0.1.2</i>

66 </p>

67

68 SNI: tcd.example.com

69 HTTP host: tcd.example.com

70 ALPN protocol: h2

71

72 <form action="/pkglist">

73 <input type="submit" value="Download pkglist" />

74 </form>

75 <p>

76 Sites on dcu (172.0.0.2):

77 dcu.example.com

78 </p>

42

79 <p>

80 Sites on tcd (172.0.0.5):

81 tcd.example.com *

82 </p>

83 <p>

84 Sites on ucd (172.0.0.8):

85 ucd.example.com

86 </p>

87 </body>

88 </html>

89 * Connection #0 to host tcd.example.com left intact

43

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Project Objectives
	Research Contributions

	Background
	Transport Layer Security
	Digital Certificates
	TLS 1.3 Handshake
	Extensions

	The Domain Name System
	Name Resolution Process
	DNS over HTTPS
	The HTTPS Resource Record

	Encrypted Client Hello
	Hybrid Public Key Encryption
	Split Mode Deployment

	Traffic Analysis
	Traffic Correlation Attacks
	Countermeasures

	Summary

	Design
	Problem Overview
	Distribution Mechanisms
	DNS Publication Schema
	TLS Server Co-operation

	Traffic Obfuscation
	Normalisation
	Pacing and Mixing

	Summary

	Implementation
	Simulation
	Virtualisation
	Networking

	DNS Server
	TLS Server
	TLS Client
	curl
	Mozilla Firefox
	Google Chrome

	Summary

	Results and Discussion
	Data Collection
	Evaluation
	Load Distribution
	Performance
	Security

	Summary

	Conclusion
	Learnings
	Future Work
	Reflection

	Bibliography
	Project Files
	Verbose curl Output

