
Accurate Scaled Summation:

Identifying a method that reduces Floating Point

Error

Emmet McDonald

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master in Computer Science

Supervisor: David Gregg

April 2024

Accurate Scaled Summation:

Identifying a method that reduces Floating Point

Error

Emmet McDonald, Master in Computer Science

University of Dublin, Trinity College, 2024

Supervisor: David Gregg

In any summation problem, Floating Point Error can occur, which reduces the accuracy
of the final output. This is obviously undesirable as these outputs are usually used, and
their accuracy would lead to better results. This project specifically deals with Scaled
Summation problems, where the inputs being summed are weighted by known weights.
Such a project is important in regards to the topic of Computer Science as many neural
networks can be seen as a series of interconnected Scaled Summation problems, and
reducing the Floating Point Error present in them will only lead to more accurate models
being produced. In this paper I discuss several summation methods and their effect on the
final output’s Floating Point Error, and I introduce two key ideas with an aim to reduce
this Floating Point Error further. While the first idea, which relies on the Expected
Mean of the outcome, generally introduces ∼12-20% more absolute error and ∼30% more
relative error, the second idea, which creates a ”Hyper”-Sorted permutation of weights
for Pairwise Summation, generates only ∼66% of the absolute error and only ∼38% of
the relative error that would be generated with an unsorted set of weights..

Acknowledgments

Thank you to my supervisor, Dr. David Gregg, for his guidance and advice throughout

the year.

Thank you to my family for their support and care for the past 5 years, (not to mention

the previous 19 years!).

And thank you to my fellow students and to the staff of the School of Computer Science

and Statistics for providing me with this education.

Emmet McDonald

University of Dublin, Trinity College

April 2024

ii

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Emmet McDonald

April 17, 2024

Contents

Abstract i

Acknowledgments ii

Chapter 1 Motivation 1

1.1 Explanation of Terms . 1

1.1.1 Floating Point Error . 1

1.1.2 Scaled Summation . 2

1.2 Reducing Floating Point Error . 2

1.2.1 Maximum Rounding Error . 2

1.2.2 Catastrophic Cancellation . 3

1.2.3 Partial Sums . 4

1.3 Other Information & Assumptions . 5

1.3.1 Distributions . 5

1.3.2 Scale of Inputs . 6

Chapter 2 Methods of Summation 7

2.1 Weights . 7

2.2 Simple . 8

2.3 Huffman . 13

2.4 Pairwise . 18

2.5 Interval . 25

2.6 Summary . 33

Chapter 3 Design & Implementation 34

3.1 Using the Expected Mean . 34

3.1.1 Design . 34

3.1.2 Implementation . 35

3.2 ”Hyper”-Sorted Pairwise . 42

3.2.1 Design . 42

iii

3.2.2 Implementation . 42

3.3 Summary . 46

Chapter 4 Evaluation 47

4.1 Experiments . 47

4.1.1 Batch 1 (Normal Distribution, µ = 0.5, σ = 1
6
) 49

4.1.2 Batch 2 (Uniform Distribution) . 55

4.1.3 Batches 1 & 2 Combined . 61

4.2 Results . 62

4.3 Summary . 66

Chapter 5 Conclusions & Future Work 67

5.1 Future Work . 68

Bibliography 69

iv

List of Tables

4.1 Batch 11 Results table . 49

4.2 Batch 12 Results table . 49

4.3 Batch 13 Results table . 50

4.4 Batch 14 Results table . 50

4.5 Batch 15 Results table . 51

4.6 Batch 16 Results table . 51

4.7 Batch 17 Results table . 52

4.8 Batch 18 Results table . 52

4.9 Batch 19 Results table . 53

4.10 Batch 110 Results table . 53

4.11 Batch 1 Accumulated Results table . 54

4.12 Batch 1 Adjusted Accumulated Results table 54

4.13 Batch 21 Results table . 55

4.14 Batch 22 Results table . 55

4.15 Batch 23 Results table . 56

4.16 Batch 24 Results table . 56

4.17 Batch 25 Results table . 57

4.18 Batch 26 Results table . 57

4.19 Batch 27 Results table . 58

4.20 Batch 28 Results table . 58

4.21 Batch 29 Results table . 59

4.22 Batch 210 Results table . 59

4.23 Batch 2 Accumulated Results table . 60

4.24 Batches 1 & 2 Accumulated Results table 61

4.25 Batches 1 & 2 Adjusted Accumulated Results table 61

4.26 Table 4.11 Percentage Comparison . 62

4.27 Table 4.12 Percentage Comparison . 62

4.28 Table 4.23 Percentage Comparison . 63

4.29 Table 4.24 Percentage Comparison . 64

v

4.30 Table 4.25 Percentage Comparison . 64

4.31 Expected Mean Evaluation . 65

4.32 Pairwise Percentage Comparison . 65

vi

List of Figures

1.1 Scaled Summation Diagram . 2

1.2 Simple Summation Visualisation . 4

1.3 Pairwise Summation Visualisation . 5

2.1 Simple Summation Visualisation . 9

2.2 Simple Example (Negative Output) . 10

2.3 Simple Example (Positive Output) . 11

2.4 Simple Example (Output Close to Zero) 12

2.5 Huffman Summation Visualisation . 13

2.6 Huffman Example (Negative Output) . 15

2.7 Huffman Example (Positive Output) . 16

2.8 Huffman Example (Output Close to Zero) 17

2.9 Pairwise Summation Visualisation (Random Order) 18

2.10 Pairwise Summation Visualisation (Worst Case Scenario) 19

2.11 Pairwise Summation Visualisation (Sorted) 20

2.12 Pairwise Example w/ Default Permutation (Negative Output) 21

2.13 Pairwise Example w/ ”Simple”-Sorted Permutation (Negative Output) . . 22

2.14 Pairwise Example w/ Default Permutation (Positive Output) 22

2.15 Pairwise Example w/ ”Simple”-Sorted Permutation (Positive Output) . . . 23

2.16 Pairwise Example w/ Default Permutation (Output Close to Zero) 23

2.17 Pairwise Example w/ ”Simple”-Sorted Permutation (Output Close to Zero) 24

2.18 IntervalLT Summation Visualisation . 25

2.19 IntervalGT Summation Visualisation . 26

2.20 IntervalLT Example (Negative Output) . 27

2.21 IntervalGT Example (Negative Output) . 28

2.22 IntervalLT Example (Positive Output) . 29

2.23 IntervalGT Example (Positive Output) . 30

2.24 IntervalLT Example (Output Close to Zero) 31

2.25 IntervalGT Example (Output Close to Zero) 32

vii

3.1 Output distributions for a Scaled Summation 35

3.2 Simple Example w/ Expected Mean . 38

3.3 Huffman Example w/ Expected Mean . 39

3.4 Pairwise Example w/ Expected Mean (Default Permutation) 40

3.5 Pairwise Example w/ Expected Mean (”Simple”-sorted Permutation) . . . 40

3.6 IntervalLT Example w/ Expected Mean . 41

3.7 IntervalGT Example w/ Expected Mean . 41

3.8 Pairwise Summation Visualisation (”Hyper”-Sorted) 42

3.9 Pairwise Example w/ ”Hyper”-Sorted Permutation (Negative Output) . . . 44

3.10 Pairwise Example w/ ”Hyper”-Sorted Permutation (Positive Output) . . . 45

3.11 Pairwise Example w/ ”Hyper”-Sorted Permutation (Output Close to Zero) 45

viii

Chapter 1

Motivation

Introduction to the material covered in the dissertation, wherein I explain the terms in

my Dissertation title, and discuss the ways Floating Point Error can be reduced, as well

as any assumptions I made in the pursuance of this project.

1.1 Explanation of Terms

Two key elements of this project, Floating Point Error and Scaled Summation, require a

level of explanation before one can dive into understanding the project (and this disser-

tation) properly.

1.1.1 Floating Point Error

Consider the value 1
3
, which can be written in binary notation as 0.012. Limitations of

physics mean that a computer cannot store the infinite bits required to accurately depict
1
3
, and so, attempting to store such a number would result in a round-off, or rounding

error of 0.012 ∗ 2x, where x would depend on the finite amount of bits used for fidelity.

While the loss of fidelity may seem inconsequential, as the value lost is a tiny fraction

of the output, these small errors can lead to major problems, as seen in Lorenz (1963);

Parker (2019). Of course, the rational nature of 1
3
means that it could simply be stored as

a numerator, 1, and a denominator, 3, and any operations upon it involving other rational

numbers could use similar number representation. However, this standard of representing

numbers falls apart when dealing with irrational numbers like π or e, and it is known that

there are more irrational numbers than rational numbers (Cantor, 1879, 1891). Because

of this it is standard to use the IEEE 754 Standard for Floating Point Arithmetic.(IEEE

754-2019, 2019)

1

Draft of 6:04 pm, Wednesday, April 17, 2024 2

According to IEEE 754-2019 (2019), single-precision floating point numbers are rep-

resented as a 32-bit value, where bit 0 refers to the sign, bits 1-8 refer to the exponent

(x from the prior example), and the remaining 23 bits refer to the mantissa, where any

fidelity of the number is expressed.

Floating Point Error (FPE) encompasses rounding error, but can be greater as the

FPE in a value a, where a = b+ c and (a, b, c) are floating point numbers, is equal to the

rounding error of a plus the rounding errors of b and c.

1.1.2 Scaled Summation

Figure 1.1: A visual aid to understand how Scaled Summation works;
values i0 - i7 represent inputs, which are multiplied by weights w0-w7
and then summed together, to produce an output

Often referred to as a ’Weighted Sum Model’, a Scaled Summation is a summation of

multiple inputs, which are multiplied by associated weights before being added together

to produce an output (Fishburn, 1967). This process is depicted in Figure 1.1.

Scaled Summation problems may be recognisable to the reader as the basis of most

Neural Networks, where outputs of nodes are multiplied by weights and added together in

order to produce either values for nodes in different layers, or the ultimate output value(s)

of the network (Zell, 1994).

1.2 Reducing Floating Point Error

1.2.1 Maximum Rounding Error

There are several key pieces of information with regards to Floating Point Error that

we must consider, which will help give the reader insight into why different methods of

Draft of 6:04 pm, Wednesday, April 17, 2024 3

summation can produce different amounts of Floating Point Error.

The first such piece of information is that the maximum rounding error of any given

value is known. That is to say, assuming we are attempting to store a known floating

point value in a limited number of bits, we know the maximum possible rounding error

is 1
2
the value of the Unit of Least Precision (ULP) (Goldberg, 1991).

The Unit of Least Precision refers to the ’lowest value’ bit of the floating point value

which, in our examples, would be the rightmost bit in the mantissa, the value of which is

influenced by the exponent. Specifically, the maximum rounding error of a given floating

point value is 1 ∗ 2x−24, where x is the exponent of said value.

What this ultimately means is that, the closer a floating point value is to 0, the lower

its maximum rounding error is. This immediately presents a target for any methods

created to solve this problem - if we keep our partial sums as close to 0 as possible, FPE

should be reduced.

It is important to note that our value of 1 ∗ 2x−1 is only the maximum rounding error

of a floating point value. When we are considering the total FPE, then the maximum

FPE would be 1 ∗ 2x−1 + FPE1 + FPE2, where FPE1 is the existing FPE of one value,

and FPE2 is the existing FPE of the other.

1.2.2 Catastrophic Cancellation

A key phenomenon to avoid in floating point arithmetic in order to reduce FPE is Catas-

trophic Cancellation (Goldberg, 1991). This cancellation occurs when two floating point

numbers of similar value and opposite sign are added together. For example consider a

partial sum 0.6−0.600000001, the answer is −0.000000001 but, the IEEE representations

of 0.6 and 0.600000001 are both 0.60000002384185791015625, meaning the value of the

answer is completely lost, even though −0.000000001 can be approximated in the IEEE

754 standard. Of course, not every case of Catastrophic Cancellation completely elimi-

nates the answer but knowing that the lower value bits of the mantissa are most affected

by FPE, and assuming the higher value bits are cancelling each other out, we can see the

relative error of the answer rising quickly.

It is important to note that some amount of ’Benign’ Cancellation is still ideal in

reducing overall FPE (Goldberg, 1991), as the summation of a positive and negative

number does always generate an output with a lower absolute value than either initial

number, which will reduce rounding error, as discussed in Section 1.2.1. Catastrophic

Cancellation should still be avoided if possible but, in practice, a balance of ’Benign’ and

Catastrophic Cancellation will probably occur in most summations.

Draft of 6:04 pm, Wednesday, April 17, 2024 4

1.2.3 Partial Sums

The previous subsections make mention of ’partial sums’, this term refers to the addition

of two values that must be completed as part of the overall scaled summation. Different

methods of summation for the same base values can lead to different partial sums being

added, which can reduce the accumulation of FPEs.

Figure 1.2: Visualisation of ’simple’ summation of the numbers 0-7,
inputs are highlighted in blue and the output (28) is highlighted in
orange

To better understand this, we will consider two summation methods, ’simple’ summa-

tion, which can be written as (((((((x0+x1)+x2)+x3)+x4)+x5)+x6)+x7), and pairwise

summation, which can be written as (((x0 + x1) + (x2 + x3)) + ((x4 + x5) + (x6 + x7))).

These two methods are visualised in Figures 2.1 and 1.3, respectively, where the values

x0 − x7 = 0− 7.

Based on our knowledge that the maximum FPE of a node is ULP
2

+ FPE1 + FPE2,

we can see that the pairwise summation method reduces the possible values of FPE1

and FPE2, by not letting those values accumulate as much as in the simple summation

Draft of 6:04 pm, Wednesday, April 17, 2024 5

Figure 1.3: Visualisation of ’pairwise’ summation of the numbers 0-
7, inputs are highlighted in blue and the output (28) is highlighted in
orange

method. The depth of the pairwise tree is 3 (or log2(n), where n = number of inputs),

while the depth of the simple tree is 7 (or n− 1, where n = number of inputs).

1.3 Other Information & Assumptions

We have already established that different methods of summation can reduce the ’max-

imum’ FPE of the output of our scaled summation, but there is other information that

can be gleaned about the values to add (the inputs multiplied by their relevant weights),

that can be used when attempting to derive new summation methods.

1.3.1 Distributions

When working on this project, I decided that the random inputs should be considered to

be normally distributed. The reasoning for this is as follows:

Firstly, assuming that our scaled summation is occurring within a neural network,

where the inputs are simply the outputs of other scaled summation problems, we know

that, if that scaled summation’s inputs are normally random, its output is also normal

as the sum of independent normally distributed random variables is itself normally dis-

tributed (Weisstein, 2024).

Similarly, if that scaled summation’s inputs were somehow uniformly distributed, the

output can be treated as being normally distributed. This output actually follows the

Draft of 6:04 pm, Wednesday, April 17, 2024 6

Irwin-Hall distribution (Irwin, 1927; Hall, 1927) but, by the Central Limit Theorem, as

the number of inputs n increases, this distribution approaches the normal distribution.

With this knowledge that any Scaled Summation problems ’inside’ a neural network

will have random inputs that are normally distributed, we will give more weight to results

of tests run on different summation methods wherein the inputs are generated from a

normal distribution as opposed to a uniform one. Tests where the inputs are generated

from a uniform distribution will still be run, as the initial layers of a neural network

would receive their inputs from the ’outside’, and so it is worthwhile to see how different

summation methods would work with an approximation of those such values.

1.3.2 Scale of Inputs

Other information about the inputs (after multiplication by their respective weights), is

incredibly sparse but we can make some semi-confident assumptions in regards to their

sizes.

Since the inputs themselves are normally distributed in the range (0,1), we know that,

in a general sense, the inputs are likely to be 0.5, or relatively close to 0.5. Obviously

we’re working in a very fuzzy area here, but using this assumption that all the inputs

(before multiplication) are roughly the same we can just look at the known weights when

attempting to create a summation method that reduces FPE. After all, we can’t ’see’

the inputs themselves until the summation method is being tested, so we need to assume

something about them.

This idea that the relationships between weights stay roughly the same before and

after they are multiplied by the inputs can allow us to create summation methods that

rely on ordering these weights by size, for example.

Chapter 2

Methods of Summation

I began this project by exploring different existing methods of summation, such as ’Sim-

ple’, Huffman, and Pairwise Summation. I was also provided a codebase as worked on by

Professor David Gregg, wherein he had explored another summation method; Interval.

Throughout this chapter I will describe each individual method using a simple, integer

graph, and then analyse those methods when used on real floating point weights generated

when testing the methods.

2.1 Weights

It is important to note that the ’outputs’ named here are only the output of a scaled

summation with these weights, if all inputs are equal to 1. We will be following this

assumption when examining all graphs in this chapter, as the values of the inputs for these

analyses is arbitrary, as long as they are relatively similar, according to the assumption

made in Section 1.3.2. In practice, the actual output of Scaled Summations roughly follow

a normal distribution with µ = Output
2

(This is discussed further in Section 3.1.1).

Negative: (-0.992312, -0.858598, -0.827232, -0.762807, -0.693924, -0.628675, -0.594080,

-0.556399, -0.408592, -0.379897, -0.336798, -0.047263, 0.506048, 0.747933, 0.769607,

0.969195). Output = -0.4093795

Positive: (-0.911727, -0.778005, -0.637901, -0.253816, -0.062501, 0.105751, 0.167028,

0.193899, 0.210779, 0.244602, 0.514353, 0.584487, 0.710941, 0.804684, 0.915598,

0.987290). Output = 2.795462

Close to Zero: (-0.920034, -0.804572, -0.526475, -0.332712, -0.326809, -0.303425, -0.225544,

0.011541, 0.019537, 0.081116, 0.292802, 0.322470, 0.340642, 0.648018, 0.846174,

0.912863). Output = 0.035592

7

Draft of 6:04 pm, Wednesday, April 17, 2024 8

These three weight sets were curated based on their outputs, so that the reader can see

how a ’standard’ negative or positive output would be found, as well as an scenario where

most of the weights cancel each other out, bringing the output close to zero.

While these graphs will generally follow to the logic derived and discussed when ex-

amining the visualisation figures, the greater number of initial weights (16 versus the

visualisations’ 8), as well as the randomly generated nature of those weights, has pro-

vided some features that are worth noting, and thus have been noted in their respective

sections.

Across all of the weight set graphs, the ’positive’ and ’negative’ weight sets are both

treated similarly, which is to be fully expected as all methods barring the initial sorting

of values for the ”simple”-sorted pairwise summation ignore the sign of the weights in

favour of their absolute values.

2.2 Simple

This Simple Summation method is the ’default’ summation method many programmers

employ, as it can be implemented using very little code (As seen in Listing 2.1), and is

very intuitive.

f loat output = 0

for (int i = 0 ; i < len (weights) ; i++){
output = output + weight [i]

}

Listing 2.1: Pseudocode implementation of Simple Summation

However, it is also the least effective summation method with regards to FPE reduc-

tion. The depth of the Simple Summation tree is n − 1, where n = number of inputs,

and the tree is arranged in such a way that the FPE of each partial sum is that sum’s

rounding error plus the FPE of every previously calculated partial sum.

The simple summation graphs in all three weight sets (Figures 2.2, 2.3, and 2.4) are

consistently the worst performing graphs for that weight set, based on maximum absolute

partial sum value and tree depth, and their presence here is mostly as a ’worst case

scenario’ when comparing to the other example graphs in this chapter.

Draft of 6:04 pm, Wednesday, April 17, 2024 9

Figure 2.1: Visualisation of ’Simple’ summation of the numbers 0-7,
inputs are highlighted in blue and the output (28) is highlighted in
orange.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

10Figure 2.2: Real example of the Simple summation method, using the ’Negative’ weights from Sec-
tion 2.1, inputs are highlighted in blue and the output is highlighted in orange.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

11

Figure 2.3: Real example of the Simple summation method, using the ’Positive’ weights from Section 2.1,
inputs are highlighted in blue and the output is highlighted in orange.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

12Figure 2.4: Real example of the Simple summation method, using the ’Close to Zero’ weights from
Section 2.1, inputs are highlighted in blue and the output is highlighted in orange.

Draft of 6:04 pm, Wednesday, April 17, 2024 13

2.3 Huffman

Figure 2.5: Visualisation of ’Huffman’ summation of the numbers 0-
7, inputs are highlighted in blue and the output (28) is highlighted in
orange. Each partial sum is annotated to convey the order with which
they were identified

The Huffman Summation method, is based on the idea of Huffman trees, as initially

described in Huffman (1952). The idea to use Huffman trees for summation stems from

Barabasz et al. (2020), a paper that looked at FPE in the Convolution of Deep Neural

Networks. Specifically, this method attempts to build a summation tree using the weight

values the same way that Huffman’s trees use symbol frequency; by pairing the two ’lowest’

values together. It is important to note that, while ’lowest’ refers to the smallest value in

a standard Huffman tree, the Huffman summation method used defines ’smallest’ based

on the weight’s absolute value, as this was what was used in Barabasz et al. (2020). A

pseudocode example of this method is can be seen in Listing 2.2

Draft of 6:04 pm, Wednesday, April 17, 2024 14

f loat [] summableOptions = weights

while (len (summableOptions) > 1) {
va l1 = findLowestAbsValue (summableOptions)

va l2 = findLowestAbsValue (summableOptions)

part ia lSum = val1 + val2

addToTree (val1 , val2 , part ia lSum)

removeFromList (summableOptions , va l1)

removeFromList (summableOptions , va l2)

addToList (summableOptions , part ia lSum)

}

Listing 2.2: Pseudocode example for building a Huffman Summation

Tree

A sample of the Huffman summation tree, for the weights 0-7 is shown in Figure 2.5.

The partial sums are marked in the order they were identified as the ’lowest’.

Examining the Huffman Summation method’s performance with the weight sets (as-

suming, as in all graphs in this chapter, that all inputs are 1), we can see that the depths of

the generated graphs (Figures 2.6, 2.7, and 2.8), are very close to the depth of the sample

tree, which is curious as the sample tree has half the initial values of the weight sets. This

seems to indicate that the Huffman Method has a better performance when dealing with

weights generated from a uniform distribution, which is backed up when examining how

the weights have been grouped at the top of the graphs. Similar values (like −0.556399

and −0.594080 in Figure 2.6 or 0.193899 and 0.210779 in Figure 2.7) are added together

earlier in the tree. It is worth noting that the approach of adding weights and nodes based

on their absolute similarity does increase the risk of Catastrophic Cancellation (discussed

in Section 1.2.2), this is most clearly shown in Figure 2.8, where 0.444392 and −0.40800

are summed together to produce the output 0.035592.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

15

Figure 2.6: Real example of the Huffman summation method, using the ’Negative’ weights from Sec-
tion 2.1, inputs are highlighted in blue and the output is highlighted in orange.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

16

Figure 2.7: Real example of the Huffman summation method, using the ’Positive’ weights from Sec-
tion 2.1, inputs are highlighted in blue and the output is highlighted in orange.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

17

Figure 2.8: Real example of the Huffman summation method, using the ’Close to Zero’ weights from
Section 2.1, inputs are highlighted in blue and the output is highlighted in orange.

Draft of 6:04 pm, Wednesday, April 17, 2024 18

2.4 Pairwise

A basic example of the pairwise summation method was shown in Section 1.2.3 with

Figure 1.3, alongside a brief explanation of why its lower depth makes it a preferable

method for reducing FPE. However a different set of weights [−13,−8,−4, 0, 1, 9, 15, 16]

will be used for the figures in this section.

Figure 2.9: Visualisation of ’pairwise’ summation of the weights
[−13,−8,−4, 0, 1, 9, 15, 16] in a random order, inputs are highlighted
in blue and the output (16) is highlighted in orange.

Pairwise summation (McCracken and Dorn, 1964) works by building a ’pyramid’ of

partial sums, where each layer is made up of pairs from the previous layer. This is clear

from Figures 2.9, 2.10, and 2.11. Something else clear from the aforementioned figures is

that, although the sum of partial sums remains the same (32) no matter the initial order

of weights, that initial order still matters somewhat.

Figure 2.9 shows an expected permutation of the weights, one that is random. This

permutation leads to a mix of absolutely large and small values in the partial sums,

ranging from 32 to -4. The larger absolute values here are, as previously discussed, more

likely to have large amount of FPE and should ideally be avoided if possible.

Figure 2.10 shows a different permutation of weights, where they are ordered from

lowest value (-13) to highest value (16). This permutation is actually the worst case

scenario in terms of absolute partial sum value, as it pairs the largest absolute values

together in such a way that a positive number doesn’t ’cancel out’ a negative number

until the final summation of the tree, where the absolutely large values 41 and -25 are

summed together. While the likelihood of a set of random ’real’ weights presenting in

order like this is very low, it is worthwhile to realize that the default, random permutation

Draft of 6:04 pm, Wednesday, April 17, 2024 19

Figure 2.10: Visualisation of ’pairwise’ summation of the weights
[−13,−8,−4, 0, 1, 9, 15, 16] ordered by the weights’ values, inputs are
highlighted in blue and the output (16) is highlighted in orange.

of weights could present this way, and so we must consider that a pairwise summation

tree based on a random set of weights could be this bad.

Figure 2.11 shows a third permutation of weights, which I will define as ”simple”-

sorted, where they are sorted in an attempt to reduce these absolute partial values. Here,

the initial permutation of weights is such that the greatest weight is paired with the

least weight, the second-greatest weight is paired with the second-least weight, and so on.

This produces relatively low absolute values for the partial sums, meaning that any FPE

present would likely be lower than in Figures 2.9 or 2.10. It is also notable that all partial

sums are of the same sign (in this case, positive), throughout the summation tree.

In the graphs on the following pages, you can see the performance of randomly per-

muted weights (Figures 2.12, 2.14, and 2.16) and the ”simple”-sorted permutation of

weights (Figures 3.9, 3.10, and 3.11) against the weight sets (in all 6 figures we are as-

suming that all inputs are 1). Across all three, the pairwise graphs have significantly

less depth than the Huffman summation trees, although the maximum absolute values

of most of the pairwise graphs are higher than in their Huffman counterparts. The lone

exception is the ”simple”-sorted pairwise summation tree for the Close to Zero weight set

(Figure 2.17), which has a maximum partial sum value of 0.163904, versus the unsorted

pairwise’s maximum partial sum of 1.677937 and Huffman’s maximum partial sum of

0.727030. It is also worth noting that, with the ’close to zero’ weight set, the values in

the second ’layer’ of the ”simple”-sorted graph (Figure 2.17 do not all hold the same sign,

as the weights in this set don’t all cancel each other out as cleanly as in the other sets.

Draft of 6:04 pm, Wednesday, April 17, 2024 20

Figure 2.11: Visualisation of ’pairwise’ summation of the weights
[−13,−8,−4, 0, 1, 9, 15, 16] sorted such that the high and low values are
paired together, inputs are highlighted in blue and the output (16) is
highlighted in orange.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

21

Figure 2.12: Real example of the Pairwise summation method, using the default permutation of the
’Negative’ weights from Section 2.1, inputs are highlighted in blue and the output is highlighted in
orange.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

22

Figure 2.13: Real example of the Pairwise summation method, using the ”simple”-sorted permutation of
the ’Negative’ weights from Section 2.1, inputs are highlighted in blue and the output is highlighted in
orange.

Figure 2.14: Real example of the Pairwise summation method, using the default permutation of the
’Positive’ weights from Section 2.1, inputs are highlighted in blue and the output is highlighted in
orange.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

23

Figure 2.15: Real example of the Pairwise summation method, using the ”simple”-sorted permutation of
the ’Positive’ weights from Section 2.1, inputs are highlighted in blue and the output is highlighted in
orange.

Figure 2.16: Real example of the Pairwise summation method, using the default permutation of the
’Close to Zero’ weights from Section 2.1, inputs are highlighted in blue and the output is highlighted
in orange.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

24

Figure 2.17: Real example of the Pairwise summation method, using the ”simple”-sorted permutation of
the ’Close to Zero’ weights from Section 2.1, inputs are highlighted in blue and the output is highlighted
in orange.

Draft of 6:04 pm, Wednesday, April 17, 2024 25

2.5 Interval

Figure 2.18: Visualisation of ’IntervalLT’ summation of the numbers -3-
4, inputs are highlighted in blue and the output (-6,10) is highlighted in
orange. Each partial sum is annotated to convey the order with which
they were identified

The ’interval’ methods of summation aim to avoid the assumption made in Sec-

tion 1.3.2, and treats the initial weights and partial sums as intervals instead of values.

This method then applies similar logic to the Huffman method, attempting to create par-

tial intervals with minimal range as each node in the tree is added together. Notably, there

are several situations in which more than one interval could produce ’minimal range’ and

so, in the interest of experimentation, two ’interval’ methods were coded and tested for

this project; IntervalLT and IntervalGT, which favour the interval with lesser and greater

bounds respectively.

While the creation of two separate summation methods like this seems arbitrary, look-

ing at the differences between the summation trees does show that there can be a signif-

icant difference between the partial sums created. This will be observed in more detail

later in the report, with ’real’ summation examples but, even in the basic examples shown,

The IntervalGT method can be seen to pair up the two greatest (3 and 4) and smallest

weights (-3 and -2) together, while the IntervalLT method only uses the maximum and

Draft of 6:04 pm, Wednesday, April 17, 2024 26

Figure 2.19: Visualisation of ’IntervalGT’ summation of the numbers
-3-4, colorisation and labelling is the same as in Figure 2.18

minimum weights near the end of building the summation tree.

Comparing the IntervalLT and IntervalGT graphs with both the negative (Figures 2.20

and 2.21) and positive (Figures 2.22 and 2.23) weight sets (assuming all inputs are 1) shows

us that IntervalLT has less depth and smaller maximum partial sums than IntervalGT. The

Huffman graphs for these weight sets (Figures 2.6 and 2.7) seems to be less reliable, as

they share IntervalGT’s high depth, but the maximum partial sums are lower than either

Interval method in the negative weight set, and greater than both Interval method in the

positive weight set.

Using the ’close to zero’ weight set, the depths of Huffman (Figure 2.8), IntervalLT

(Figure 2.24), and IntervalGT (Figure 2.25) are equal, although Huffman’s maximum

partial sums are notably much higher than either Interval method’s. Most notably with

this weight set, however, is the fact that both Interval methods produce the exact same

summation tree. Since the weight set that led to this is a single, random data point, there

is likely not much worthwhile information to be garnered here, but the identical graphs

deserved pointing out as a possibility across both Interval methods.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

27

Figure 2.20: Real example of the IntervalLT summation method, using the ’Negative’ weights from
Section 2.1, inputs are highlighted in blue and the output is highlighted in orange.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

28

Figure 2.21: Real example of the IntervalGT summation method, using the ’Negative’ weights from
Section 2.1, inputs are highlighted in blue and the output is highlighted in orange.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

29

Figure 2.22: Real example of the IntervalLT summation method, using the ’Positive’ weights from
Section 2.1, inputs are highlighted in blue and the output is highlighted in orange.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

30

Figure 2.23: Real example of the IntervalGT summation method, using the ’Positive’ weights from
Section 2.1, inputs are highlighted in blue and the output is highlighted in orange.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

31

Figure 2.24: Real example of the IntervalLT summation method, using the ’Close to Zero’ weights from
Section 2.1, inputs are highlighted in blue and the output is highlighted in orange.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

32

Figure 2.25: Real example of the IntervalGT summation method, using the ’Close to Zero’ weights from
Section 2.1, inputs are highlighted in blue and the output is highlighted in orange.

Draft of 6:04 pm, Wednesday, April 17, 2024 33

2.6 Summary

I have established several well-established and newer approaches to summation prob-

lems, namely Simple Summation, Huffman Summation, Pairwise Summation (including

an analysis of how different permutations of the initial weights may affect the output’s

FPE), and Interval Summation, where the nodes in a summation tree aren’t treated as

the results of partial sums, but as ranges of potential values.

When presenting these methods, I analysed how their tree depths, the largest absolute

values of their partial sums, and areas where the tree’s layout put the summation at risk

of Catastrophic Cancellation. Graphs of summation trees were provided throughout,

including ’real examples’, where randomly generated floating point values were used as

initial weights. The Pairwise method was shown to have the lowest depth in its trees,

while the Interval methods appeared to have some of the lowest maximum absolute partial

sum values.

Chapter 3

Design & Implementation

Having analysed the summation methods discussed in Chapter 2, I came up with two

key ideas surrounding ways to reduce FPE based on the factors that influence said FPE.

These two ideas focused on reducing maximum absolute partial sum value, and improved

sorting permutations of weights, respectively.

3.1 Using the Expected Mean

3.1.1 Design

As discussed in Section 1.3.1, we know that the output of any Scaled Summation prob-

lem, regardless of if the inputs’ distributions are Normal or Uniform, is Normal. More

specifically, the distribution is Normal with a mean of
∑

w
2
, where w is the set of all weights

(Lemons, 2002; Irwin, 1927; Hall, 1927). meaning, based on the initial weights and the

knowledge that the inputs are within the range (0,1), we can derive the distribution of

the output.

For example, using the values of the Positive weight set from Section 2.1, we can

identify the mean as 2.795462
2

= 1.397731 we can find the minimum (assume all negative

weights have input 1, assume all positive weights have input 0) and maximum (assume

all positive weights have input 1, assume all negative weights have input 0) bounds as

(−0.911727(1)− 0.778005(1)− 0.637901(1)− 0.253816(1)− 0.062501(1) + 0.105751(0) +

0.167028(0) + 0.193899(0) + 0.210779(0) + 0.244602(0) + 0.514353(0) + 0.584487(0) +

0.710941(0) + 0.804684(0) + 0.915598(0) + 0.987290(0)) = −2.64395

and

(−0.911727(0)− 0.778005(0)− 0.637901(0)− 0.253816(0)− 0.062501(0) + 0.105751(1) +

0.167028(1) + 0.193899(1) + 0.210779(1) + 0.244602(1) + 0.514353(1) + 0.584487(1) +

0.710941(1) + 0.804684(1) + 0.915598(1) + 0.987290(1)) = 5.439412

34

Draft of 6:04 pm, Wednesday, April 17, 2024 35

Which allows us to create distributions in Figure 3.1. As the standard deviation of the

potentially normally distributed inputs is unknown, we can only know that the output is

a Normal distribution with mean
∑

w
2
, and an unknown standard deviation.

Figure 3.1: Distributions of outputs for a Scaled Summation using the
’Positive’ weights from Section 2.1. Different distributions of the initial
inputs are used (as marked in the legend)

Using this known fact about the final distribution, and the knowledge that keeping

the values of the partial sums in a scaled summation problem close to zero can help

reduce FPE by reducing potential rounding error, I began working on a potential method

adjustment that surrounded adjusting the mean of the output distribution.

3.1.2 Implementation

The basic idea of how to adjust the mean was as follows: if I can subtract the Scaled

Summation’s most likely output (the mean value of the output’s distribution) from the

summation before it begins, then every partial sum should be much closer to 0 as the

mean of this ’new’ Scaled Summation is 0. The original mean could then be added to the

Draft of 6:04 pm, Wednesday, April 17, 2024 36

output of the ’new’ Scaled Summation in order to get the summation’s ’true’ output.

In practice, I now had to figure out how to ’subtract’ the mean in the first place. There

were two possible approaches to use here; I could subtract the weighted inputs’ means

from them individually, or I could treat the additive inverse mean as its own mean in an

adjusted summation.

While subtracting inputs’ means may seem preferable, as it is a more even-handed

approach to reduce the output by the value of the expected mean, one does need to

remember that the weights can be positive and negative. This means that the absolute

value of everything being subtracted this way will be greater than the difference in value

between the ’reduced’ and ’true’ outputs.

Using the Positive weight set as a worked example again, the absolute value of all

subtracted means will be

(0.911727(0.5)+0.778005(0.5)+0.637901(0.5)+0.253816(0.5)+0.062501(0.5)+0.105751(0.5)+

0.167028(0.5)+0.193899(0.5)+0.210779(0.5)+0.244602(0.5)+0.514353(0.5)+0.584487(0.5)+

0.710941(0.5) + 0.804684(0.5) + 0.915598(0.5) + 0.987290(0.5)) = 4.041681

which is significantly larger than the actual mean of 1.397731. This disparity between

subtracted value and the expected mean of the output implies that a not insignificant

amount of fidelity will be lost in the ’reduced’ Scaled Summation, and that this ’reduced’

summation method will introduce a large amount of FPE that outweighs any potential

benefit gained by reducing the partial sums.

Now it seems apparent that reducing the output by the expected mean via the intro-

duction of the expected mean’s additive inverse is the better way to go about implement-

ing this idea. Figures 3.2 through 3.7 are examples of Summation trees for the methods

covered in Chapter 2 with 17 (as opposed to 16) weights, where the 17th weight is the

additive inverse of the summation’s expected mean.

Analysing these Figures, the first thing a reader might note is that the outputs are not

0, but the expected mean. This is because, in implementing this mean system, I either

had to build the test graphs with double the mean (to reflect the fact that every weight

is left as is, not multiplied by 0.5), which would make it the absolutely largest value,

leading to it not being incorporated properly into the summation trees, or I could leave

the expected mean as is and build a tree that ’folds’ it into the tree fluidly, allowing more

partial sums to be brought closer to 0 in practice.

Direct comparisons of these Figures to the Figures that use the positive weight set

without adjusting for the expected mean show generally negative changes, with only

IntervalLT (Figure 2.22 vs. Figure 3.6), IntervalGT (Figure 2.23 vs. Figure 3.7), and

”simple”-sorted pairwise (Figure 2.15 vs. Figure 3.5) showing lower maximum absolute

partial sum values. Simple (Figure 2.3 vs. Figure 3.2), Huffman (Figure 2.7 vs. Figure 3.3)

Draft of 6:04 pm, Wednesday, April 17, 2024 37

and the unsorted Pairwise (Figure 2.14 vs 3.4) trees show greater maximum absolute

partial sum values, and all trees have higher depths, as a result of the new weight.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

38

Figure 3.2: Real example of the Simple summation method, using the ’Positive’ weights from Section 2.1,
including the expected mean of the output as a weight, inputs are highlighted in blue (with the expected
mean weight highlighted in green) and the output is highlighted in orange.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

39

Figure 3.3: Real example of the Huffman summation method, using the ’Positive’ weights from Sec-
tion 2.1, including the expected mean of the output as a weight, inputs are highlighted in blue (with the
expected mean weight highlighted in green) and the output is highlighted in orange.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

40

Figure 3.4: Real example of the Pairwise summation method, using the default permutation of the
’Positive’ weights from Section 2.1, including the expected mean of the output as a weight, inputs are
highlighted in blue (with the expected mean weight highlighted in green) and the output is highlighted
in orange.

Figure 3.5: Real example of the Pairwise summation method, using the ”simple”-sorted permutation of
the ’Positive’ weights from Section 2.1, including the expected mean of the output as a weight, inputs
are highlighted in blue (with the expected mean weight highlighted in green) and the output is highlighted
in orange.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

41

Figure 3.6: Real example of the IntervalLT summation method, using the ’Positive’ weights from Sec-
tion 2.1, including the expected mean of the output as a weight, inputs are highlighted in blue (with the
expected mean weight highlighted in green) and the output is highlighted in orange.

Figure 3.7: Real example of the IntervalGT summation method, using the ’Positive’ weights from Sec-
tion 2.1, including the expected mean of the output as a weight, inputs are highlighted in blue (with the
expected mean weight highlighted in green) and the output is highlighted in orange.

Draft of 6:04 pm, Wednesday, April 17, 2024 42

3.2 ”Hyper”-Sorted Pairwise

3.2.1 Design

While examining the pairwise summation method (As described in Section 2.4), I tried

to consider any ways to potentially improve it, possibly by employing a more involved

sorting method. I was reminded of the concept Gaussian sums, whereby the sum of a

series of n equidistant numbers (x1, x2, ...xn) is equal to
(x1+xn)n

2
(+xn

2
if n is odd) (Bernt

et al., 1998).

Of course, the nature of this problem does not lead itself towards equidistant values,

but I was determined to examine how a similar pairing system ((x1+xn), (x2+xn−1), (x3+

xn−2), etc.) could effect our Scaled Summation problem if rigorously applied to every

’layer’ of a pairwise summation tree. Throughout the rest of this report, I will refer to

this method as ”Hyper”-Sorting.

Figure 3.8: Visualisation of ’pairwise’ summation of the weights
[−13,−8,−4, 0, 1, 9, 15, 16] sorted such that the high and low values in
every layer are paired together, inputs are highlighted in blue and the
output (16) is highlighted in orange.

3.2.2 Implementation

In an effort to examine how this system could affect Scaled Summation accuracy, I began

by manually creating summation trees similar to 3.8 and noticed that, in each layer, all

the partial sum values approach r
n
, where r = the overall result, and n = the number of

partial sums in that layer. In order to understand why this quirk is very beneficial for

Draft of 6:04 pm, Wednesday, April 17, 2024 43

reducing FPE, we need to consider the smallest possible absolute maximum partial sum

in a summation tree.

Since we know the output o is the absolute largest value that any summation tree

must sill have, the values of the partial sums that create o, p1 and p2, must be x and

o−x. In order to minimise x without allowing ((o−x) > x), x must equal o−x, meaning

x = o
2
. Similarly, if we want to minimise the absolute values of p11 and p12 , they must

both equal p1
2
, and so on for every px.

The ”Hyper”-Sorted Pairwise tree achieves this partial sum minimisation as well as it

can with the initial weights provided, marking it as seemingly the ideal summation method

in terms of partial sum reduction, assuming that the assumptions made in this report that

the inputs are all normally distributed about a mean of 0.5, and that the relative sizes of

the initial weights (w1...wn) and the weighted inputs (w1i1...wnin) are roughly the same.

In terms of summation tree depth, this is a pairwise summation method, and so it ties

for lowest possible summation tree depth with the other pairwise summation methods

discussed in Section 2.4.

Figures 3.9, 3.10, and 3.11 on the following pages show this ”hyper”-sorted pairwise

summation method applied to the ’Positive’, ’Negative’, and ’Close to Zero’ weight sets

from Section 2.1. It is important to note that there is no use of the expected mean with

this ”hyper”-sorted pairwise method, as the functions written for the method only work

for sets of 2x weights, where x ∈ N+. Analysing these Figures, one can see that the

”hyper”-sorted pairwise summation method consistently has the lowest maximum partial

sums. It is worth noting that, with the ’close to zero’ dataset, the values in the second

’layer’ of the ”hyper”-sorted graph do not all hold the same sign and are still relatively

different to each other in the deeper layers of the tree, this is due to the large relative

differences between the initial weight values and it is important to note that the values

still approach r
n
, where r = the overall result, and n = the number of partial sums in that

layer.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

44

Figure 3.9: Real example of the Pairwise summation method, using the ”hyper”-sorted permutation of
the ’Negative’ weights from Section 2.1, inputs are highlighted in blue and the output is highlighted in
orange.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

45

Figure 3.10: Real example of the Pairwise summation method, using the ”hyper”-sorted permutation of
the ’Positive’ weights from Section 2.1, inputs are highlighted in blue and the output is highlighted in
orange.

Figure 3.11: Real example of the Pairwise summation method, using the ”hyper”-sorted permutation of
the ’Close to Zero’ weights from Section 2.1, inputs are highlighted in blue and the output is highlighted
in orange.

Draft of 6:04 pm, Wednesday, April 17, 2024 46

3.3 Summary

In this chapter, I discussed two major areas I explored in order to reduce FPE in Scaled

Summation problems, Expected Mean and ”Hyper”-Sorted Pairwise.

Regarding Expected Mean, I discussed how using the predictable expected mean of the

summation could be used to reduce the values of all partial sums in the summation, and

I then analysed how this adjustment performed when applied to the previously discussed

Summation Methods.

Regarding ”Hyper”-Sorted Pairwise, I described my design of the concept, where I

found that sorting the weights such that each ’layer’ of the pairwise summation tree

paired the highest value with the lowest value, the second-highest value with the second-

lowest value, and so on, may be the best method in terms of reducing absolute maximum

partial sum value. ’Real example’ graphs were also generated for this method, as was

done in the previous chapter.

Chapter 4

Evaluation

The way to evaluate the performance of all methods discussed, as well as the new tactics

discussed in Chapter 3, is quite simple in theory, although the randomness involved does

make general evaluation difficult.

4.1 Experiments

The testing worked as follows:

m different ’weight sets’ of size 16 would be generated from a uniform distribution with

range (-1,1).

For each of these ’weight sets’, n of ’input sets’ of size 16 would be generated from a

normal distribution with µ = 0.5 and σ = 1
6
.

For each weight set, summation trees would be created according to each method, and

tested against the ’input sets’, with results collated.

After iterating through each ’input set’ for each ’weight set’, all results would then be

collated.

The C++ std::normal distribution and std::uniform real distribution functions were

used for distribution generation. (C++Reference, 2023, 2024)

The µ was chosen to be 0.5, and the σ was chosen to be 1
6
as 99.73% of generated

values lie within ±3σ of µ (OEIS Sequence A270712, 2024), meaning those values will

be in the range (0,1). Any values generated outside that range are ’reflected’ back to

maintain the range (i.e. if a value x is generated such that x > 1, the ’produced’ value

will be 1− x).

47

Draft of 6:04 pm, Wednesday, April 17, 2024 48

Due to the limitations of my own personal machine, upon which these tests were

run, m = 500, and n = 10, 000, although the test was run 10 times using a normal

distribution for the input sets (Tables 4.1 through 4.10; Tables 4.11 and 4.12 show

accumulated results), and an additional 10 times using a uniform distribution for the

input sets (Tables 4.13 through 4.22; Table 4.23 shows accumulated results). The

results will be presented for each ’batch’ where m = 500, with a additional ’accumulated

batch’ results for m = 5, 000. Accumulated results for a combination of Batch 1 and

Batch 2 are seen in Tables 4.24 and 4.25.

Results are measured in three metrics; Absolute Error (EAbs), Relative (Output) Error

(ERelO), and Relative (Absolute) Error (ERelA). These metrics are calculated as follows:

AnsTrue (Output of a ’Simple’ summation of the sum, using Long Double representations

of the weighted inputs instead of Float representations).

AnsFound (Output of the tested summation tree).

AnsAbs (Output of a ’Simple’ summation of the absolute values of Long Double repre-

sentations of the weighted inputs).

EAbs =

∑m
x=0

∑n
y=0(AnsTrue − AnsFound)weightx;inputy

nm

ERelO =

∑m
x=0

∑n
y=0

(AnsTrue−AnsFound)weightx;inputy

AnsTrue

nm

ERelA =

∑m
x=0

∑n
y=0

(AnsTrue−AnsFound)weightx;inputy

AnsAbs

nm

Each Table also notates the minimum possible value for EAbs, which is calculated as

the sum of the differences between the Long Double and Float representations of AnsTrue,

divided by nm, providing the value of EAbs if the only FPE was Rounding Error at the

output.

Draft of 6:04 pm, Wednesday, April 17, 2024 49

4.1.1 Batch 1 (Normal Distribution, µ = 0.5, σ = 1
6)

2.249345e-8 EAbs ERelO ERelA

Huffman 5.409261e-8 3.295536e-7 1.365433e-8
Huffman (w/ Mean) 5.905140e-8 2.108810e-7 1.528294e-8
IntervalLT 3.520181e-8 6.347914e-8 8.759012e-9
IntervalLT (w/ Mean) 3.751121e-8 8.927169e-8 9.673598e-9
IntervalGT 3.549606e-8 7.609370e-8 8.913731e-9
IntervalGT (w/ Mean) 3.707240e-8 1.099127e-7 9.635634e-9
Pairwise (Unsorted) 4.997511e-8 2.000069e-7 1.239349e-8
Pairwise (Unsorted; Mean) 6.105339e-8 3.377505e-7 1.544651e-8
Pairwise (”Simple”-Sorted) 4.055107e-8 7.521054e-8 1.031649e-8
Pairwise (”Simple” Sorted; Mean) 3.989174e-8 8.005150e-8 1.012383e-8
Pairwise (”Hyper”-Sorted) 3.736997e-8 6.081339e-8 9.509740e-9
Simple 6.772147e-8 2.656558e-7 1.712278e-8
Simple (w/ Mean) 6.919548e-8 2.859874e-7 1.758247e-8

Table 4.1: Table showing the results table for Batch 11, the value in the
top-left corner shows the minimum possible value for Absolute Error.
Best Absolute Error: IntervalLT. Best Relative (Output) Error: Pair-
wise (”Hyper”-Sorted). Best Relative (Absolute) Error: IntervalLT

2.204402e-8 EAbs ERelO ERelA

Huffman 4.692221e-8 1.203497e-7 1.198135e-8
Huffman (w/ Mean) 5.355429e-8 2.464934e-7 1.386145e-8
IntervalLT 3.419582e-8 7.086863e-8 8.742886e-9
IntervalLT (w/ Mean) 4.042118e-8 9.534927e-8 1.046794e-8
IntervalGT 3.225722e-8 7.075500e-8 8.170248e-9
IntervalGT (w/ Mean) 3.707949e-8 7.207672e-8 9.549196e-9
Pairwise (Unsorted) 5.110779e-8 1.945716e-7 1.308351e-8
Pairwise (Unsorted; Mean) 5.535999e-8 2.079956e-7 1.408271e-8
Pairwise (”Simple”-Sorted) 3.586866e-8 7.855952e-8 9.198639e-9
Pairwise (”Simple” Sorted; Mean) 4.553561e-8 7.874653e-8 1.163705e-8
Pairwise (”Hyper”-Sorted) 3.620932e-8 6.523812e-8 9.318236e-9
Simple 6.739224e-8 1.558018e-7 1.729348e-8
Simple (w/ Mean) 6.915114e-8 1.654431e-7 1.776907e-8

Table 4.2: Table showing the results table for Batch 12 the value in the
top-left corner shows the minimum possible value for Absolute Error.
Best Absolute Error: IntervalGT. Best Relative (Output) Error: Pair-
wise (”Hyper”-Sorted). Best Relative (Absolute) Error: IntervalGT.

Draft of 6:04 pm, Wednesday, April 17, 2024 50

2.307638e-8 EAbs ERelO ERelA

Huffman 4.918035e-8 1.086093e-7 1.248398e-8
Huffman (w/ Mean) 4.805286e-8 9.613027e-8 1.214340e-8
IntervalLT 3.511208e-8 4.381183e-8 8.876155e-9
IntervalLT (w/ Mean) 3.982502e-8 5.706683e-8 1.007316e-8
IntervalGT 3.339759e-8 4.208800e-8 8.463623e-9
IntervalGT (w/ Mean) 3.849582e-8 5.118478e-8 9.752421e-9
Pairwise (Unsorted) 4.717506e-8 9.324152e-8 1.209029e-8
Pairwise (Unsorted; Mean) 5.900274e-8 1.062411e-7 1.495346e-8
Pairwise (”Simple”-Sorted) 4.016616e-8 5.177071e-8 1.032063e-8
Pairwise (”Simple” Sorted; Mean) 4.137474e-8 5.855352e-8 1.053798e-8
Pairwise (”Hyper”-Sorted) 3.572809e-8 4.117078e-8 9.040280e-9
Simple 7.237737e-8 1.501058e-7 1.861875e-8
Simple (w/ Mean) 7.366731e-8 1.526109e-7 1.887841e-8

Table 4.3: Table showing the results table for Batch 13 the value in the
top-left corner shows the minimum possible value for Absolute Error.
Best Absolute Error: IntervalGT. Best Relative (Output) Error: Pair-
wise (”Hyper”-Sorted). Best Relative (Absolute) Error: IntervalGT.

1.825732e-8 EAbs ERelO ERelA

Huffman 4.669606e-8 1.013604e-7 1.204043e-8
Huffman (w/ Mean) 5.400047e-8 1.297195e-7 1.395192e-8
IntervalLT 3.049922e-8 4.888818e-8 7.890898e-9
IntervalLT (w/ Mean) 3.671443e-8 6.519742e-8 9.668664e-9
IntervalGT 3.144746e-8 5.189259e-8 7.914329e-9
IntervalGT (w/ Mean) 3.646536e-8 7.834338e-8 9.420208e-9
Pairwise (Unsorted) 4.757960e-8 1.156512e-7 1.221907e-8
Pairwise (Unsorted; Mean) 5.181571e-8 1.143203e-7 1.357638e-8
Pairwise (”Simple”-Sorted) 2.966724e-8 5.910765e-8 7.634214e-9
Pairwise (”Simple” Sorted; Mean) 3.950283e-8 7.254150e-8 1.017523e-8
Pairwise (”Hyper”-Sorted) 3.150007e-8 5.245807e-8 8.120627e-9
Simple 5.985596e-8 1.323142e-7 1.526789e-8
Simple (w/ Mean) 6.046378e-8 1.390130e-7 1.531055e-8

Table 4.4: Table showing the results table for Batch 14 the value in
the top-left corner shows the minimum possible value for Absolute Er-
ror. Best Absolute Error: Pairwise (”Simple”-Sorted). Best Relative
(Output) Error: IntervalLT. Best Relative (Absolute) Error: Pairwise
(”Simple”-Sorted).

Draft of 6:04 pm, Wednesday, April 17, 2024 51

1.962339e-8 EAbs ERelO ERelA

Huffman 5.009451e-8 1.970144e-7 1.244933e-8
Huffman (w/ Mean) 5.202579e-8 1.988334e-7 1.319346e-8
IntervalLT 3.016938e-8 1.065644e-7 7.472399e-9
IntervalLT (w/ Mean) 3.536815e-8 1.436729e-7 8.976427e-9
IntervalGT 3.069416e-8 9.223564e-8 7.780822e-9
IntervalGT (w/ Mean) 3.639092e-8 1.477947e-7 9.271558e-9
Pairwise (Unsorted) 5.219597e-8 4.131743e-7 1.339673e-8
Pairwise (Unsorted; Mean) 4.910780e-8 3.075329e-7 1.246150e-8
Pairwise (”Simple”-Sorted) 3.328850e-8 9.458991e-8 8.494787e-9
Pairwise (”Simple” Sorted; Mean) 3.801160e-8 1.298526e-7 9.723266e-9
Pairwise (”Hyper”-Sorted) 2.870339e-8 7.731410e-8 7.138636e-9
Simple 5.643341e-8 2.275333e-7 1.444949e-8
Simple (w/ Mean) 5.763484e-8 2.302732e-7 1.476136e-8

Table 4.5: Table showing the results table for Batch 15 the value in the
top-left corner shows the minimum possible value for Absolute Error.
Best Absolute Error: Pairwise (”Hyper”-Sorted). Best Relative (Out-
put) Error: Pairwise (”Hyper”-Sorted). Best Relative (Absolute) Error:
Pairwise (”Hyper”-Sorted).

1.925276e-8 EAbs ERelO ERelA

Huffman 4.334840e-8 9.497444e-8 1.126118e-8
Huffman (w/ Mean) 4.952355e-8 2.642950e-7 1.259113e-8
IntervalLT 3.113697e-8 5.153977e-8 8.170761e-9
IntervalLT (w/ Mean) 3.672628e-8 8.468611e-8 9.670448e-9
IntervalGT 2.906558e-8 5.070416e-8 7.641851e-9
IntervalGT (w/ Mean) 3.657611e-8 6.880395e-8 9.594240e-9
Pairwise (Unsorted) 4.644328e-8 2.189701e-7 1.186397e-8
Pairwise (Unsorted; Mean) 5.378048e-8 1.385613e-7 1.412684e-8
Pairwise (”Simple”-Sorted) 3.048941e-8 5.460829e-8 7.925432e-9
Pairwise (”Simple” Sorted; Mean) 4.058294e-8 9.660827e-8 1.069856e-8
Pairwise (”Hyper”-Sorted) 2.973561e-8 5.683752e-8 7.797939e-9
Simple 6.156445e-8 2.022647e-7 1.583173e-8
Simple (w/ Mean) 6.480105e-8 2.043716e-7 1.664740e-8

Table 4.6: Table showing the results table for Batch 16 the value in
the top-left corner shows the minimum possible value for Absolute Er-
ror. Best Absolute Error: IntervalGT. Best Relative (Output) Error:
IntervalGT. Best Relative (Absolute) Error: IntervalGT.

Draft of 6:04 pm, Wednesday, April 17, 2024 52

2.189654e-8 EAbs ERelO ERelA

Huffman 4.730817e-8 2.868465e-6 1.202645e-8
Huffman (w/ Mean) 5.812302e-8 1.513822e-6 1.506597e-8
IntervalLT 3.297371e-8 2.834622e-6 8.512770e-9
IntervalLT (w/ Mean) 4.085917e-8 1.327260e-6 1.058816e-8
IntervalGT 3.560853e-8 2.837534e-6 9.073737e-9
IntervalGT (w/ Mean) 3.938882e-8 1.335583e-6 1.025537e-8
Pairwise (Unsorted) 4.626072e-8 2.860015e-6 1.154062e-8
Pairwise (Unsorted; Mean) 5.660058e-8 5.344703e-6 1.460692e-8
Pairwise (”Simple”-Sorted) 3.573854e-8 1.262033e-6 9.084437e-9
Pairwise (”Simple” Sorted; Mean) 4.215944e-8 2.035169e-6 1.096337e-8
Pairwise (”Hyper”-Sorted) 3.299626e-8 1.381354e-6 8.486502e-9
Simple 7.360036e-8 6.594341e-6 1.892073e-8
Simple (w/ Mean) 7.495017e-8 6.651956e-6 1.932335e-8

Table 4.7: Table showing the results table for Batch 17 the value in
the top-left corner shows the minimum possible value for Absolute Er-
ror. Best Absolute Error: IntervalLT. Best Relative (Output) Error:
Pairwise (”Simple”-Sorted). Best Relative (Absolute) Error: Pairwise
(”Hyper”-Sorted).

1.977565 EAbs ERelO ERelA

Huffman 4.756835e-8 1.476566e-7 1.242648e-8
Huffman (w/ Mean) 5.252529e-8 1.420260e-7 1.336123e-8
IntervalLT 2.725958e-8 5.033720e-8 6.933760e-9
IntervalLT (w/ Mean) 3.757630e-8 7.595508e-8 9.626054e-9
IntervalGT 2.917087e-8 5.673110e-8 7.326854e-9
IntervalGT (w/ Mean) 3.691950e-8 7.735656e-8 9.351581e-9
Pairwise (Unsorted) 4.847831e-8 1.271641e-7 1.240603e-8
Pairwise (Unsorted; Mean) 4.806350e-8 1.275622e-7 1.222107e-8
Pairwise (”Simple”-Sorted) 3.216117e-8 5.095291e-8 8.301404e-9
Pairwise (”Simple” Sorted; Mean) 4.771760e-8 7.678476e-8 1.211450e-8
Pairwise (”Hyper”-Sorted) 3.118773e-8 5.512532e-8 7.993578e-9
Simple 7.231582e-8 1.653432e-7 1.829186e-8
Simple (w/ Mean) 7.409693e-8 1.633328e-7 1.881856e-8

Table 4.8: Table showing the results table for Batch 18 the value in
the top-left corner shows the minimum possible value for Absolute Er-
ror. Best Absolute Error: IntervalLT. Best Relative (Output) Error:
IntervalLT. Best Relative (Absolute) Error: IntervalLT.

Draft of 6:04 pm, Wednesday, April 17, 2024 53

1.904174e-8 EAbs ERelO ERelA

Huffman 4.491766e-8 1.869697e-7 1.158478e-8
Huffman (w/ Mean) 5.105752e-8 6.583497e-7 1.335508e-8
IntervalLT 3.169437e-8 1.088651e-7 8.256049e-9
IntervalLT (w/ Mean) 3.695368e-8 8.344419e-8 1.955777e-8
IntervalGT 3.322718e-8 1.101896e-7 8.652884e-9
IntervalGT (w/ Mean) 3.393069e-8 8.185780e-8 8.865112e-9
Pairwise (Unsorted) 5.155568e-8 4.545142e-7 1.308052e-8
Pairwise (Unsorted; Mean) 6.018110e-8 1.769006e-7 1.601469e-8
Pairwise (”Simple”-Sorted) 3.196488e-8 1.263966e-7 8.330024e-9
Pairwise (”Simple” Sorted; Mean) 3.703338e-8 8.271749e-8 9.764800e-9
Pairwise (”Hyper”-Sorted) 3.148704e-8 1.909493e-7 8.155085e-9
Simple 6.698558e-8 1.967685e-7 1.725405e-8
Simple (w/ Mean) 6.904174e-8 2.024269e-7 1.787794e-8

Table 4.9: Table showing the results table for Batch 19 the value in
the top-left corner shows the minimum possible value for Absolute Er-
ror. Best Absolute Error: Pairwise (”Hyper”-Sorted). Best Relative
(Output) Error: IntervalLT. Best Relative (Absolute) Error: Pairwise
(”Hyper”-Sorted).

1.914768e-8 EAbs ERelO ERelA

Huffman 4.009203e-8 2.218862e-7 1.021340e-8
Huffman (w/ Mean) 5.260051e-8 2.179721e-7 1.326955e-8
IntervalLT 3.005516e-8 9.686224e-8 7.576803e-9
IntervalLT (w/ Mean) 3.841408e-8 1.357043e-7 9.643548e-9
IntervalGT 3.131326e-8 7.178765e-8 7.991699e-9
IntervalGT (w/ Mean) 3.936418e-8 8.844185e-8 1.005341e-8
Pairwise (Unsorted) 4.694815e-8 1.932262e-7 1.205037e-8
Pairwise (Unsorted; Mean) 5.504286e-8 1.844746e-7 1.398064e-8
Pairwise (”Simple”-Sorted) 3.216328e-8 8.606718e-8 8.089677e-9
Pairwise (”Simple” Sorted; Mean) 4.178372e-8 8.636799e-8 1.065593e-8
Pairwise (”Hyper”-Sorted) 3.000279e-8 7.970068e-8 7.589770e-9
Simple 6.781868e-8 1.990101e-7 1.690477e-8
Simple (w/ Mean) 6.915006e-8 2.116480e-7 1.722443e-8

Table 4.10: Table showing the results table for Batch 110 the value
in the top-left corner shows the minimum possible value for Absolute
Error. Best Absolute Error: Pairwise (”Hyper”-Sorted). Best Relative
(Output) Error: IntervalGT. Best Relative (Absolute) Error: IntervalLT.

Draft of 6:04 pm, Wednesday, April 17, 2024 54

2.046089e-8 EAbs ERelO ERelA

Huffman 4.702204e-8 4.376839e-7 1.201217e-8
Huffman (w/ Mean) 5.299199e-8 3.678522e-7 1.360760e-8
IntervalLT 3.182981e-8 3.475838e-7 8.119149e-9
IntervalLT (w/ Mean) 3.803695e-8 2.157608e-7 1.079458e-8
IntervalGT 3.216779e-8 3.460011e-7 8.192978e-9
IntervalGT (w/ Mean) 3.716833e-8 2.111355e-7 9.574873e-9
Pairwise (Unsorted) 4.877200e-8 4.863473e-7 1.241246e-8
Pairwise (Unsorted; Mean) 5.500082e-8 7.046042e-7 1.414707e-8
Pairwise (”Simple”-Sorted) 3.421058e-8 1.938133e-7 8.769573e-9
Pairwise (”Simple” Sorted; Mean) 4.135937e-8 2.797393e-7 1.063945e-8
Pairwise (”Hyper”-Sorted) 3.249203e-8 2.060962e-7 8.315039e-9
Simple 6.659660e-8 8.259138e-7 1.699555e-8
Simple (w/ Mean) 6.821525e-8 8.407063e-7 1.741935e-8

Table 4.11: Table showing the accumulated results table for Batch 1,
the value in the top-left corner shows the minimum possible value for
Absolute Error. Best Absolute Error: IntervalLT. Best Relative (Out-
put) Error: Pairwise (”Hyper”-Sorted). Best Relative (Absolute) Error:
IntervalLT.

2.030138e-8 EAbs ERelO ERelA

Huffman 4.699024e-8 1.675971e-7 1.201058e-8
Huffman (w/ Mean) 5.242188e-8 2.405223e-7 1.344556e-8
IntervalLT 3.170271e-8 7.124628e-8 8.075414e-9
IntervalLT (w/ Mean) 3.772337e-8 9.226087e-8 1.081751e-8
IntervalGT 3.178549e-8 6.916416e-8 8.095116e-9
IntervalGT (w/ Mean) 3.692161e-8 8.619694e-8 9.499262e-9
Pairwise (Unsorted) 4.905103e-8 2.226064e-7 1.250933e-8
Pairwise (Unsorted; Mean) 5.482306e-8 1.890377e-7 1.409598e-8
Pairwise (”Simple”-Sorted) 3.403560e-8 7.531148e-8 8.734589e-9
Pairwise (”Simple” Sorted; Mean) 4.127047e-8 8.469157e-8 1.060346e-8
Pairwise (”Hyper”-Sorted) 3.243600e-8 7.551203e-8 8.295988e-9
Simple 6.581841e-8 1.883108e-7 1.678164e-8
Simple (w/ Mean) 6.746693e-8 1.950119e-7 1.720779e-8

Table 4.12: Table showing the accumulated results table for Batch 1,
without the contents of Batch 17, which had abnormally high values
for Relative Error, the value in the top-left corner shows the minimum
possible value for Absolute Error. Best Absolute Error: IntervalLT. Best
Relative (Output) Error: IntervalGT. Best Relative (Absolute) Error:
IntervalLT.

Draft of 6:04 pm, Wednesday, April 17, 2024 55

4.1.2 Batch 2 (Uniform Distribution)

2.011001e-8 EAbs ERelO ERelA

Huffman 4.715032e-8 9.812719e-8 1.242568e-8
Huffman (w/ Mean) 5.292509e-8 1.144586-7 1.405700e-8
IntervalLT 3.491029e-8 5.600884e-8 8.975786e-9
IntervalLT (w/ Mean) 3.915155e-8 8.440368e-7 1.045315e-8
IntervalGT 3.725583e-8 5.905715e-8 9.589161e-9
IntervalGT (w/ Mean) 4.002959e-8 7.454126e-8 1.039810e-8
Pairwise (Unsorted) 5.829681e-8 1.661159e-7 1.590148e-8
Pairwise (Unsorted; Mean) 5.951292e-8 1.661159e-7 1.590148e-8
Pairwise (”Simple”-Sorted) 3.718513e-8 5.473788e-8 9.609681e-9
Pairwise (”Simple” Sorted; Mean) 4.225435e-8 8.094460e-8 1.144051e-8
Pairwise (”Hyper”-Sorted) 4.059149e-8 7.491670e-8 1.040038e-8
Simple 6.318056e-8 1.372386e-7 1.646303e-8
Simple (w/ Mean) 6.640000e-8 1.417189e-7 1.742660e-8

Table 4.13: Table showing the results table for Batch 21 the value in the
top-left corner shows the minimum possible value for Absolute Error.
Best Absolute Error: IntervalLT. Best Relative (Output) Error: Pair-
wise (”Simple”-Sorted). Best Relative (Absolute) Error: IntervalLT.

1.838973e-8 EAbs ERelO ERelA

Huffman 5.121812e-8 3.155639e-7 1.296047e-8
Huffman (w/ Mean) 5.696976e-8 3.003036-7 1.430626e-8
IntervalLT 3.461391e-8 1.083331e-7 8.929786e-9
IntervalLT (w/ Mean) 3.766985-8 2.549320e-7 9.974837e-9
IntervalGT 3.517095e-8 1.178548e-7 9.154255e-9
IntervalGT (w/ Mean) 4.021100e-8 2.595222e-7 1.049081e-8
Pairwise (Unsorted) 5.504365e-8 6.461107e-7 1.419061e-8
Pairwise (Unsorted; Mean) 6.252546e-8 3.212052e-7 1.577843e-8
Pairwise (”Simple”-Sorted) 3.818059e-8 2.217686e-7 9.732455e-9
Pairwise (”Simple” Sorted; Mean) 4.002859e-8 6.755604e-7 1.069265e-8
Pairwise (”Hyper”-Sorted) 3.900113e-8 1.283902e-7 9.970050e-9
Simple 6.923834e-8 5.463165e-7 1.798882e-8
Simple (w/ Mean) 7.333934e-8 3.090572e-7 1.893815e-8

Table 4.14: Table showing the results table for Batch 22 the value in
the top-left corner shows the minimum possible value for Absolute Er-
ror. Best Absolute Error: IntervalLT. Best Relative (Output) Error:
IntervalLT. Best Relative (Absolute) Error: IntervalLT.

Draft of 6:04 pm, Wednesday, April 17, 2024 56

2.202268e-8 EAbs ERelO ERelA

Huffman 4.731128e-8 1.230821e-7 1.246990e-8
Huffman (w/ Mean) 6.170804e-8 1.298777e-7 1.595343e-8
IntervalLT 3.530796e-8 6.423777e-8 9.268753e-9
IntervalLT (w/ Mean) 4.368264e-8 7.742022e-8 1.147758e-8
IntervalGT 3.647972e-8 5.261279e-8 9.646541e-9
IntervalGT (w/ Mean) 4.307973e-8 7.132836e-8 1.143645e-8
Pairwise (Unsorted) 5.433637e-8 1.196686e-7 1.424595e-8
Pairwise (Unsorted; Mean) 6.085960e-8 1.379707e-7 1.641728e-8
Pairwise (”Simple”-Sorted) 4.171411e-8 7.066261e-8 1.110792e-8
Pairwise (”Simple” Sorted; Mean) 4.596172e-8 1.161101e-7 1.212218e-8
Pairwise (”Hyper”-Sorted) 4.029475e-8 6.560656e-8 1.058722e-8
Simple 6.814198e-8 1.238927e-7 1.819500e-8
Simple (w/ Mean) 7.087300e-8 1.315608e-7 1.905550e-8

Table 4.15: Table showing the results table for Batch 23 the value in
the top-left corner shows the minimum possible value for Absolute Er-
ror. Best Absolute Error: IntervalLT. Best Relative (Output) Error:
IntervalGT. Best Relative (Absolute) Error: IntervalLT.

1.957327e-8 EAbs ERelO ERelA

Huffman 4.926273e-8 1.436896e-7 1.301848e-8
Huffman (w/ Mean) 5.655163e-8 5.119512e-7 1.542553e-8
IntervalLT 3.833894e-8 1.049358e-7 1.049191e-8
IntervalLT (w/ Mean) 4.272031e-8 1.794884e-7 1.193685e-8
IntervalGT 3.887634e-8 1.164309e-7 1.037049e-8
IntervalGT (w/ Mean) 4.788721e-8 1.510773e-7 1.311043e-8
Pairwise (Unsorted) 5.722334e-8 1.589659e-7 1.511767e-8
Pairwise (Unsorted; Mean) 5.669353e-8 3.099868e-7 1.493866e-8
Pairwise (”Simple”-Sorted) 3.870129e-8 1.066505e-7 1.037959e-8
Pairwise (”Simple” Sorted; Mean) 4.820356e-8 2.770519e-7 1.325296e-8
Pairwise (”Hyper”-Sorted) 3.567467e-8 1.075106e-7 9.313592e-9
Simple 6.754413e-8 3.622421e-7 1.809204e-8
Simple (w/ Mean) 7.219733e-8 3.665802e-7 1.951078e-8

Table 4.16: Table showing the results table for Batch 24 the value in
the top-left corner shows the minimum possible value for Absolute Er-
ror. Best Absolute Error: Pairwise (”Hyper”-Sorted). Best Relative
(Output) Error: IntervalLT. Best Relative (Absolute) Error: Pairwise
(”Hyper”-Sorted).

Draft of 6:04 pm, Wednesday, April 17, 2024 57

2.153483e-8 EAbs ERelO ERelA

Huffman 4.713184e-8 2.630115e-7 1.174995e-8
Huffman (w/ Mean) 5.386704e-8 5.850820e-7 1.339766e-8
IntervalLT 4.028308e-8 1.341529e-7 1.003653e-8
IntervalLT (w/ Mean) 4.490494e-8 2.305152e-7 1.157453e-8
IntervalGT 3.635415e-8 1.304742e-7 9.211187e-9
IntervalGT (w/ Mean) 3.799476e-8 2.120647e-7 9.663951e-9
Pairwise (Unsorted) 5.603298e-8 4.704042e-7 1.420936e-8
Pairwise (Unsorted; Mean) 5.726252e-8 2.386007e-7 1.440505e-8
Pairwise (”Simple”-Sorted) 3.788221e-8 2.229834e-7 9.537449e-9
Pairwise (”Simple” Sorted; Mean) 4.203579e-8 1.306120e-7 1.066147e-8
Pairwise (”Hyper”-Sorted) 3.736412e-8 1.091534e-7 9.498991e-9
Simple 7.458798e-8 2.996539e-7 1.872627e-8
Simple (w/ Mean) 7.566135e-8 2.739839e-7 1.894580e-8

Table 4.17: Table showing the results table for Batch 25 the value in the
top-left corner shows the minimum possible value for Absolute Error.
Best Absolute Error: IntervalGT. Best Relative (Output) Error: Pair-
wise (”Hyper”-Sorted). Best Relative (Absolute) Error: IntervalGT.

2.501862e-8 EAbs ERelO ERelA

Huffman 5.093950e-8 1.320459e-7 1.253154e-8
Huffman (w/ Mean) 5.648534e-8 2.449166e-7 1.373064e-8
IntervalLT 3.933726e-8 1.981635e-7 9.628812e-9
IntervalLT (w/ Mean) 4.600235e-8 2.456755e-7 1.108097e-8
IntervalGT 4.230894e-8 3.216946e-7 1.038244e-8
IntervalGT (w/ Mean) 4.251964e-8 3.510784e-7 1.035900e-8
Pairwise (Unsorted) 5.667158e-8 2.666116e-7 1.384702e-8
Pairwise (Unsorted; Mean) 6.097858e-8 3.731555e-7 1.503437e-8
Pairwise (”Simple”-Sorted) 4.730253e-8 1.202007e-7 1.136863e-8
Pairwise (”Simple” Sorted; Mean) 4.811910e-8 1.125042e-7 1.187956e-8
Pairwise (”Hyper”-Sorted) 4.124872e-8 1.277012e-7 1.004950e-8
Simple 7.918880e-8 2.829803e-7 1.898653e-8
Simple (w/ Mean) 7.919735e-8 3.052116e-7 1.894719e-8

Table 4.18: Table showing the results table for Batch 26 the value in
the top-left corner shows the minimum possible value for Absolute Er-
ror. Best Absolute Error: IntervalLT. Best Relative (Output) Error:
Pairwise (”Simple”-Sorted; Mean). Best Relative (Absolute) Error:
IntervalLT.

Draft of 6:04 pm, Wednesday, April 17, 2024 58

2.290734e-8 EAbs ERelO ERelA

Huffman 5.320172e-8 2.918606e-7 1.288029e-8
Huffman (w/ Mean) 5.457027e-8 2.319552e-7 1.370737e-8
IntervalLT 4.278168e-8 9.167611e-8 1.037054e-8
IntervalLT (w/ Mean) 4.693428e-8 1.103890e-7 1.152091e-8
IntervalGT 3.764073e-8 1.021557e-7 9.163300e-9
IntervalGT (w/ Mean) 4.587085e-8 1.912947e-7 1.122340e-8
Pairwise (Unsorted) 5.309301e-8 4.864846e-7 1.285185e-8
Pairwise (Unsorted; Mean) 6.623300e-8 3.001636e-7 1.664800e-8
Pairwise (”Simple”-Sorted) 4.207821e-8 1.113955e-7 1.022097e-8
Pairwise (”Simple” Sorted; Mean) 7.898803e-8 1.731172e-7 1.215792e-8
Pairwise (”Hyper”-Sorted) 4.120575e-8 1.230607e-7 1.025962e-8
Simple 7.608570e-8 3.923291e-7 1.850527e-8
Simple (w/ Mean) 7.645104e-8 4.130112e-7 1.871051e-8

Table 4.19: Table showing the results table for Batch 27 the value in
the top-left corner shows the minimum possible value for Absolute Er-
ror. Best Absolute Error: IntervalGT. Best Relative (Output) Error:
IntervalLT. Best Relative (Absolute) Error: IntervalGT.

2.520818e-8 EAbs ERelO ERelA

Huffman 5.177657e-8 1.063045e-7 1.261949e-8
Huffman (w/ Mean) 5.996210e-8 1.392924e-7 1.474323e-8
IntervalLT 4.352335e-8 7.098574e-8 1.096010e-8
IntervalLT (w/ Mean) 4.508241e-8 8.935776e-8 1.135426e-8
IntervalGT 4.119476e-8 6.926378e-8 1.026904e-8
IntervalGT (w/ Mean) 4.886028e-8 9.634435e-8 1.203221e-8
Pairwise (Unsorted) 6.056656e-8 1.487168e-7 1.489688e-8
Pairwise (Unsorted; Mean) 6.513386e-8 1.500698e-7 1.599374e-8
Pairwise (”Simple”-Sorted) 4.502098e-8 7.401243e-8 1.104753e-8
Pairwise (”Simple” Sorted; Mean) 4.765271e-8 9.626535e-8 1.182766e-8
Pairwise (”Hyper”-Sorted) 4.181050e-8 7.554463e-8 1.033975e-8
Simple 7.818812e-8 1.266864e-7 1.920192e-8
Simple (w/ Mean) 8.143603e-8 1.347995e-7 1.995567e-8

Table 4.20: Table showing the results table for Batch 28 the value in
the top-left corner shows the minimum possible value for Absolute Er-
ror. Best Absolute Error: IntervalGT. Best Relative (Output) Error:
IntervalGT. Best Relative (Absolute) Error: IntervalGT.

Draft of 6:04 pm, Wednesday, April 17, 2024 59

2.439102e-8 EAbs ERelO ERelA

Huffman 5.393042e-8 2.207738e-7 1.305158e-8
Huffman (w/ Mean) 5.785348e-8 3.016069e-7 1.386462e-8
IntervalLT 3.951483e-8 1.156768e-7 9.442704e-9
IntervalLT (w/ Mean) 4.829463e-8 1.759338e-7 1.175700e-8
IntervalGT 4.784798e-8 1.203872e-7 1.153812e-8
IntervalGT (w/ Mean) 4.582515e-8 1.511356e-7 1.112792e-8
Pairwise (Unsorted) 5.333454e-8 2.406627e-7 1.281596e-8
Pairwise (Unsorted; Mean) 6.115954e-8 2.119581e-7 1.430669e-8
Pairwise (”Simple”-Sorted) 4.740522e-8 1.234070e-7 1.107463e-8
Pairwise (”Simple” Sorted; Mean) 5.092851e-8 1.081987e-7 1.244773e-8
Pairwise (”Hyper”-Sorted) 3.906803e-8 1.370294e-7 9.408711e-9
Simple 7.724305e-8 2.530843e-7 1.832907e-8
Simple (w/ Mean) 7.989170e-8 2.677738e-7 1.903345e-8

Table 4.21: Table showing the results table for Batch 29 the value in
the top-left corner shows the minimum possible value for Absolute Er-
ror. Best Absolute Error: Pairwise (”Hyper”-Sorted). Best Relative
(Output) Error: Pairwise (”Simple”-Sorted; Mean). Best Relative (Ab-
solute) Error: Pairwise (”Hyper”-Sorted).

2.017318e-8 EAbs ERelO ERelA

Huffman 4.890735e-8 1.086322e-7 1.189779e-8
Huffman (w/ Mean) 5.330262e-8 2.085921e-7 1.315278e-8
IntervalLT 4.111782e-8 8.444039e-8 1.061900e-8
IntervalLT (w/ Mean) 4.018828e-8 1.277069e-7 1.008075e-8
IntervalGT 4.231459e-8 1.407350e-7 1.040799e-8
IntervalGT (w/ Mean) 4.613727e-8 8.988846e-8 1.163809e-8
Pairwise (Unsorted) 5.533991e-8 1.286670e-7 1.345283e-8
Pairwise (Unsorted; Mean) 6.522069e-8 1.763179e-7 1.628922e-8
Pairwise (”Simple”-Sorted) 4.074724e-8 1.257651e-7 1.013360e-8
Pairwise (”Simple” Sorted; Mean) 4.231549e-8 1.738880e-7 1.089201e-8
Pairwise (”Hyper”-Sorted) 3.732448e-8 1.319565e-7 9.407388e-9
Simple 6.783079e-8 1.300976e-7 1.713253e-8
Simple (w/ Mean) 7.145665e-8 1.378049e-7 1.822276e-8

Table 4.22: Table showing the results table for Batch 210 the value
in the top-left corner shows the minimum possible value for Absolute
Error. Best Absolute Error: Pairwise (”Hyper”-Sorted). Best Relative
(Output) Error: IntervalLT. Best Relative (Absolute) Error: Pairwise
(”Hyper”-Sorted).

Draft of 6:04 pm, Wednesday, April 17, 2024 60

2.193289e-8 EAbs ERelO ERelA

Huffman 5.008299e-8 1.803091e-7 1.256052e-8
Huffman (w/ Mean) 5.641954e-8 2.768036e-7 1.423385e-8
IntervalLT 3.897291e-8 1.028610e-7 9.881077e-9
IntervalLT (w/ Mean) 4.347312e-8 2.335456e-7 1.112135e-8
IntervalGT 3.954440e-8 1.240181e-7 9.973252e-9
IntervalGT (w/ Mean) 4.484155e-8 1.295283e-7 1.114804e-8
Pairwise (Unsorted) 5.599496e-8 2.842808e-7 1.415295e-8
Pairwise (Unsorted; Mean) 6.155797e-8 2.393167e-7 1.557131e-8
Pairwise (”Simple”-Sorted) 4.162175e-8 1.231584e-7 1.042125e-8
Pairwise (”Simple” Sorted; Mean) 4.964879e-8 1.944252e-7 1.173747e-8
Pairwise (”Hyper”-Sorted) 3.935836e-8 1.080870e-7 9.923520e-9
Simple 7.212295e-8 2.654522e-7 1.806205e-8
Simple (w/ Mean) 7.469038e-8 2.481502e-7 1.887464e-8

Table 4.23: Table showing the accumulated results table for Batch 2,
the value in the top-left corner shows the minimum possible value for
Absolute Error. Best Absolute Error: IntervalLT. Best Relative (Out-
put) Error: IntervalLT. Best Relative (Absolute) Error: IntervalLT.

Draft of 6:04 pm, Wednesday, April 17, 2024 61

4.1.3 Batches 1 & 2 Combined

2.119689e-8 EAbs ERelO ERelA

Huffman 4.855251e-8 3.089965e-7 1.228634e-8
Huffman (w/ Mean) 5.470577e-8 3.223279e-7 1.392073e-8
IntervalLT 3.540136e-8 2.252224e-7 9.000113e-9
IntervalLT (w/ Mean) 4.075504e-8 2.246532e-7 1.095797e-8
IntervalGT 3.585610e-8 2.350096e-7 9.083115e-9
IntervalGT (w/ Mean) 4.100494e-8 1.703319e-7 1.036146e-8
Pairwise (Unsorted) 5.238348e-8 3.853140e-7 1.328271e-8
Pairwise (Unsorted; Mean) 5.827939e-8 4.719605e-7 1.485919e-8
Pairwise (”Simple”-Sorted) 3.791616e-8 1.584859e-7 9.595409e-9
Pairwise (”Simple” Sorted; Mean) 4.550408e-8 2.370823e-7 1.118846e-8
Pairwise (”Hyper”-Sorted) 3.592520e-8 1.570916e-7 9.119280e-9
Simple 6.935977e-8 5.456830e-7 1.752880e-8
Simple (w/ Mean) 7.145281e-8 5.444282e-7 1.814699e-8

Table 4.24: Table showing the combined results for Table 4.11 and Table
4.23, the value in the top-left corner shows the minimum possible value
for Absolute Error. Best Absolute Error: IntervalLT. Best Relative
(Output) Error: Pairwise (”Hyper”-Sorted). Best Relative (Absolute)
Error: IntervalLT.

2.222856e-8 EAbs ERelO ERelA

Huffman 5.109117e-8 1.831086e-7 1.293216e-8
Huffman (w/ Mean) 5.728496e-8 2.722768e-7 1.456811e-8
IntervalLT 3.719770e-8 9.163541e-8 9.450785e-9
IntervalLT (w/ Mean) 4.273500e-8 1.714771e-7 1.154677e-8
IntervalGT 3.754205e-8 1.016749e-7 9.509667e-9
IntervalGT (w/ Mean) 4.303324e-8 1.135396e-7 1.086700e-8
Pairwise (Unsorted) 5.528736e-8 2.667827e-7 1.403278e-8
Pairwise (Unsorted; Mean) 6.125318e-8 2.254497e-7 1.561436e-8
Pairwise (”Simple”-Sorted) 3.981966e-8 1.044578e-7 1.008202e-8
Pairwise (”Simple” Sorted; Mean) 4.785224e-8 1.469036e-7 1.175839e-8
Pairwise (”Hyper”-Sorted) 3.778651e-8 9.663106e-8 9.589215e-9
Simple 7.260071e-8 2.388226e-7 1.833879e-8
Simple (w/ Mean) 7.481963e-8 2.332432e-7 1.899075e-8

Table 4.25: Table showing the combined results for Table 4.12 and Table
4.23, the value in the top-left corner shows the minimum possible value
for Absolute Error. Best Absolute Error: IntervalLT. Best Relative
(Output) Error: IntervalLT. Best Relative (Absolute) Error: IntervalLT.

Draft of 6:04 pm, Wednesday, April 17, 2024 62

4.2 Results

As a brief discussion of which error metrics are more ’important’, I have to note that

this decision is very dependent on whatever use case this problem presents in but, as

a general rule; ERelO will be greater when the true answer is lower, as the ’minimum’

amount of Absolute Error has shown to be relatively consistent across tables, while EAbs

(and ERelA , which has proven itself to remain close to EAbs across all tables. The method

which generates the lowest EAbs also generates the lowest ERelA in the majority of cases)

will be greater when the true answer is higher, as any bits which contain error would be

affected by the output’s higher exponent.

In analysing the tables, I am going to focus on the Accumulated Tables, as they

represent a greater number of weight sets tested and, in theory, would cancel out the

values of any outliers.

Table 4.11 Percentage Comparison EAbs ERelO ERelA

IntervalLT 47.795% 47.795% 47.772%
IntervalGT 48.302% 41.893% 48.207%
Pairwise (”Hyper”-Sorted) 48.789% 24.954% 48.925%

Table 4.26: Table showing the percentage FPE of the top three meth-
ods in Table 4.11 (disregarding methods adjusted by Expected Mean),
where the FPE in all three metrics generated by the ’Simple’ Summa-
tion Method are considered 100%

Table 4.12 Percentage Comparison EAbs ERelO ERelA

IntervalLT 48.167% 37.834% 48.121%
IntervalGT 48.293% 36.729% 48.238%
Pairwise (”Hyper”-Sorted) 49.281% 40.100% 48.211%

Table 4.27: Table showing the percentage FPE of the top three meth-
ods in Table 4.12 (disregarding methods adjusted by Expected Mean),
where the FPE in all three metrics generated by the ’Simple’ Summa-
tion Method are considered 100%

First, let us examine Batch 1, where inputs are generated from a normal distribution

with µ = 0.5 and σ = 1
6
.

There is a very notable outlier seen in Table 4.7, where the Relative (Output) Errors

are all roughly 10−6, as opposed to roughly 10−7 in all other Tables. Due to this outlier,

two Accumulated tables were created for Batch 1: Table 4.11, which includes Table 4.7’s

Draft of 6:04 pm, Wednesday, April 17, 2024 63

results, and Table 4.12, which does not. Percentage Comparison Tables for both Ta-

bles 4.11 and 4.12 can be seen in Tables 4.26 and 4.27, since the ’Simple’ Summation

Method is present in these tables as a ’worst case scenario’, we will treat it as ”100%

FPE”.

In both Tables, IntervalLT has the lowest values for EAbs and ERelA , with IntervalGT

following closely behind. Disregarding the methods adjusted by the Expected Mean as,

in the vast majority of cases throughout every table generated, such adjustment increases

all metrics, Pairwise (”Hyper”-Sorted) shows the third-lowest values for EAbs and ERelA .

Regarding ERelO , Pairwise (”Hyper”-Sorted) has the lowest values in the plurality

of Tables 4.1 through 4.10, but in the adjusted Table 4.12, IntervalGT has the lowest

value, reflecting a consistency across the constituent tables. Surprisingly, in Tables 4.11

and 4.12, Pairwise (”Hyper”-Sorted) only has the fourth-lowest value for ERelO , ranking

below both Interval methods and Pairwise (”Simple”-Sorted).

Based on these results, one would have to accept that the Interval Summation methods

are best for this problem, when the inputs are Normally distributed, although deciding

whether IntervalLT or IntervalGT is more promising is still difficult as one would need

to decide which metric is most important. It is worth noting that the computationally

simpler Pairwise (”Hyper”-Sorted) summation method scores very closely to these other

values, and this may position it as a viable summation candidate.

Table 4.23 Percentage Comparison EAbs ERelO ERelA

IntervalLT 54.037% 38.749% 54.706%
IntervalGT 54.829% 46.720% 55.217%
Pairwise (”Hyper”-Sorted) 54.571% 40.718% 54.941%

Table 4.28: Table showing the percentage FPE of the top three meth-
ods in Table 4.23 (disregarding methods adjusted by Expected Mean),
where the FPE in all three metrics generated by the ’Simple’ Summa-
tion Method are considered 100%

Let us now examine Batch 2, where inputs were generated from a uniform distribution.

A Percentage Comparison Table is presented in Table 4.28.

This batch featured no major outliers that I identified, and so we only have the one

accumulated results Table, Table 4.23. This table’s results show that IntervalLT has the

lowest values for all 3 metrics, with Pairwise (”Hyper”-Sorted) and IntervalGT following

closely behind, in that order.

Based on these results, IntervalLT, is the best summation method, but the closeness of

Pairwise (”Hyper”-Sorted) to its scores implies that it too could be a valid method, as it

is a simpler summation method computationally and still scores better than IntervalLT’s

Draft of 6:04 pm, Wednesday, April 17, 2024 64

counterpart, IntervalGT.

Table 4.24 Percentage Comparison EAbs ERelO ERelA

IntervalLT 51.040% 41.273% 51.345%
IntervalGT 51.696% 43.067% 51.818%
Pairwise (”Hyper”-Sorted) 51.795% 28.788% 52.025%

Table 4.29: Table showing the percentage FPE of the top three meth-
ods in Table 4.24 (disregarding methods adjusted by Expected Mean),
where the FPE in all three metrics generated by the ’Simple’ Summa-
tion Method are considered 100%

Table 4.25 Percentage Comparison EAbs ERelO ERelA

IntervalLT 51.236% 38.370% 51.534%
IntervalGT 51.710% 42.573% 51.855%
Pairwise (”Hyper”-Sorted) 52.047% 40.461% 52.289%

Table 4.30: Table showing the percentage FPE of the top three meth-
ods in Table 4.25 (disregarding methods adjusted by Expected Mean),
where the FPE in all three metrics generated by the ’Simple’ Summa-
tion Method are considered 100%

Since all the data was already generated, Accumulated results were gathered for both

batches, creating a combined batch with 10,000 weight sets and 10,000 input sets for every

weight set. Since half of the inputs here are Normally distributed, while the other half

were Uniformly distributed, these accumulated results may be based on more realistic

scenarios for this problem. As before, I have created two combined batch accumulated

tables: Table 4.24, which includes the outlier Table 4.7’s results, and Table 4.25, which

does not. Once again, Percentage Comparison tables are presented in Tables 4.29 and 4.30.

In these tables, IntervalLT has the lowest results in every metric, barring the ERelO

metric in Table 4.24, in which Pairwise (”Hyper”-Sorted) has the lowest value. IntervalGT

is a close second place to IntervalLT in every metric where it is higher, barring the ERelO

metric in Table 4.25, where Pairwise (”Hyper”-Sorted) takes second place. In all other

metrics, Pairwise (”Hyper”-Sorted) takes third place.

Based on these results, one would likely still concede that IntervalLt is still the best

Summation Method, although Pairwise (”Hyper”-Sorted)’s lower complexity in imple-

mentation may still make it preferable in some cases.

D
raft

of
6:04

p
m
,
W
ed
n
esd

ay,
A
p
ril

17,
2024

65

Expected Mean EAbs Table 4.11 Table 4.12 Table 4.23 Table 4.24 Table 4.25
Huffman 112.696% 111.559% 112.652% 112.673% 112.123%
IntervalLT 119.501% 118.991% 111.547% 115.123% 114.886%
IntervalGT 115.545% 116.159% 113.395% 114.360% 114.627%
Pairwise (Unsorted) 112.771% 111.767% 109.935% 111.255% 110.791%
Pairwise (”Simple”-Sorted) 120.896% 121.257% 119.286% 120.012% 120.172%
Simple 102.431% 102.505% 103.560% 103.018% 103.056%

Table 4.31: Table showing the percentage of EAbs when the Expected
Mean is used on different Summation Methods. All ’Accumulated’
Batch Tables were used to gather these results

Pairwise Percentage Comparison Table 4.11 Table 4.12 Table 4.23 Table 4.24 Table 4.25
”Hyper”-Sorted (EAbs) 66.620% 66.127% 70.289% 68.581% 68.346%
”Hyper”-Sorted (ERelO) 42.376% 33.922% 38.021% 40.770% 36.221%
”Hyper”-Sorted (ERelA) 66.989% 66.318% 70.116% 68.655% 68.334%
”Simple”-Sorted (EAbs) 70.144% 69.388% 74.331% 72.382% 72.023%
”Simple”-Sorted (ERelO) 39.851% 33.832% 43.323% 41.132% 39.155%
”Simple”-Sorted (ERelA) 70.651% 69.825% 73.633% 72.240% 71.846%

Table 4.32: Table showing the percentage difference in all three FPE
metrics between the different permutations of Pairwise Summation. In
each cell of the table 100% is the amount of FPE in a given metric in a
given table as generated by Unsorted Pairwise Summation.

Draft of 6:04 pm, Wednesday, April 17, 2024 66

Table 4.31 shows the relative FPE (Using the EAbs metric) of the summation methods

adjusted by the Expected Mean. In each cell of the table 100% represents the EAbs FPE of

that methods performance in a given table, without Expected Mean Adjustment. As can

be seen, adjusting twitch the Expected Mean increases FPE by roughly 12-20%, barring

the outlier case with Simple summation, where the Expected Mean Adjustment only adds

approximately 3% more FPE.

Table 4.32 shows the relative FPE (In all three metrics) of the different Pairwise

Summation methods used in this report. In each cell of the table 100% represents the

FPE of Unsorted Pairwise’s performance in the given metric in the given table. As can be

seen, the new ”Hyper”-Sorted Pairwise generally only creates roughly 66% of Unsorted

Pairwise’s EAbs or ERelA , and roughly 38% of Unsorted Pairwise’s ERelO . These are close

to the improvements brought about by ”Simple”-Sorted Pairwise, but ”Hyper”-Sported

Pairwise is consistently more efficient with regards to FPE.

4.3 Summary

Ultimately, based on all tables generated, the IntervalLT Summation Method produces

the best results in the majority of error metrics across the three input distributions seen

(Normal, Uniform, and a combination of the two). IntervalGT often trails close behind,

with Pairwise (”Hyper”-Sorted) consistently producing the third best results. In an ideal

world, this means that the IntervalLT method would be used in the majority of cases, but

it is more computationally complex than Pairwise (”Hyper”-Sorted), meaning that this

permuted pairwise summation method may be preferable in some situations.

Chapter 5

Conclusions & Future Work

Before diving into any conclusions, we shall first recount the contents of the Dissertation

as a whole.

We began in Chapter 1, discussing the key terms of the dissertation title, namely

’Scaled Summation’, and ’Floating Point Error’, before describing several ways to reduce

Floating Error, by trying to reduce Rounding Error, trying to avoid Catastrophic Cancel-

lation, and trying to minimise the depth and values of any partial sums in the Summation.

It was in this chapter that I also discussed the assumptions I was making regarding both

the distributions of the inputs and the relative scale of the weighted inputs.

In the next chapter, Chapter 2, I discussed several existing Summation Methods with

these factors that influence FPE in mind. These discussions included simple visualisations

of summation trees, some basic pseudo-code samples, and ’real’ examples, which used

randomly generated floating point weights in order to allow the reader to see how the

methods worked in practice.

With all of the information thus far, I used Chapter 3 to present to the reader two

key ideas that I had designed and implemented for testing, one less-successful idea that

adjusted the sum using the known Expected Mean of the summation (which proved to

add more FPE than it cancelled out, adding between ∼12% and ∼20% more absolute

error), and one much more promising idea that created a ”Hyper”-Sorted permutation of

weights for pairwise summation (which was found to generate only ∼66% of the absolute

error generated by Unsorted Pairwise, and only ∼38% of Unsorted Pairwise’s relative

error).

Finally, as seen in Chapter 4, numerous tables were created, showing the results of

many tests of all aforementioned methods, using three error metrics, EAbs, ERelO , and

ERelA , and three different types of input distribution, Normal, Uniform, and a Combi-

nation. The complex IntervalLT Summation Method provided what were generally the

lowest values for the three error metrics, (∼51.2%, ∼38.4%, and ∼51.5% of the error

67

Draft of 6:04 pm, Wednesday, April 17, 2024 68

generated by Simple Summation for the metrics EAbs, ERelO , and ERelA) with its coun-

terpart, IntervalGT (generating ∼51.7%, ∼42.6%, and ∼51.9% of the error generated

by Simple Summation), and the much simpler Pairwise (”Hyper”-Sorted) (generating

∼52.0%, ∼40.5%, and ∼52.3% of the error generated by Simple Summation) often taking

up second and third place, respectively.

Understanding the ’best’ method based on this information, requires an understanding

of the complexities of the methods. The two Interval methods IntervalLT and IntervalGT do

provide the best results, but the ”Hyper”-Sorted Pairwise method is markedly less complex

to implement and has the further benefit that Unsorted Pairwise is already known to be

a very efficient summation method when dealing with non-scaled summation (Higham,

1993). This means that in the short term, even though IntervalLT appears to be the

method that most reduces FPE, any programmers updating their code to be more efficient

may just add a ”Hyper”-Sorted permutation to existing pairwise code.

Of course, it may be the case that neither Interval nor ”Hyper”-Sorted Pairwise are the

most efficient generally. The tests undertaken in this dissertation use randomly generated

numbers and it is always possible that not enough tests were run to reflect the ’truth’ of

the mathematics involved.

Regardless of these doubts, I maintain that this paper is, in the least, a good start

towards investigating this problem in greater depth. It may be found that there is a pure

mathematical way to derive the optimal scaled summation method based on the weights

alone, but the work done here should have provided enough information to point a future

researcher in the correct direction.

5.1 Future Work

There are many potential areas of Future Work that one could explore after this paper.

Several examples are listed below.

’Adaptive’ Summation Methods: Where methods are chosen on a ’case-by-case’

basis based on initial weights.

Mathematical Derivation: Where the ideal method is derived using pure mathemat-

ics, as opposed to using thousands of randomly generated variables.

Further Tests: Computational and temporal limitations effected the number of tests I

could run.

Other Methods: Analysis of other existing summation methods, or the development

of novel summation methods.

Bibliography

Barabasz, B., Anderson, A., Soodhalter, K. M., and Gregg, D. (2020). Error analysis

and improving the accuracy of winograd convolution for deep neural networks. ACM

Transactions on Mathematical Software, 46(4):1–33.

Bernt, B. C., Evans, R. J., and Williams, K. S. (1998). Gauss and Jacobi Sums. Wiley.

Cantor, G. (1879). Ueber unendliche, lineare punktmannichfaltigkeiten. 1. [on infinite,

linear point manifolds. 1.]. Mathematische Annalen, 15:1–7.

Cantor, G. (1891). Ueber eine elementare frage der mannigfaltigkeitslehre [on an elemen-

tary question of the theory of diversity]. Jahresbericht der Deutschen Mathematiker-

Vereinigung, 1:75–78.

C++Reference (2023). std:normal distribution. From cppreference.com.

https://en.cppreference.com/w/cpp/numeric/random/normaldistribution.

C++Reference (2024). std:uniform real distribution. From cppreference.com.

https://en.cppreference.com/w/cpp/numeric/random/uniformrealdistribution.

Fishburn, P. C. (1967). Letter to the editor—additive utilities with incomplete product sets:

Application to priorities and assignments. Operations Research, 15(3):537–542.

Goldberg, D. (1991). What every computer scientist should know about floating-point

arithmetic. ACM Computing Surveys, 23(1):5–48.

Hall, P. (1927). The distribution of means for samples of size n drawn from a population

in which the variate takes values between 0 and 1, all such values being equally probable.

Biometrika, 19(3/4):240–245.

Higham, N. J. (1993). The accuracy of floating point summation. SIAM Journal on Scientific

Computing, 14(4):783–799.

Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes.

Proceedings of the IRE, 40(9):1098–1101.

69

Draft of 6:04 pm, Wednesday, April 17, 2024 70

IEEE 754-2019 (2019). Standard for floating-point arithmetic. Standard, Institute of Elec-

trical and Electronics Engineers, New York City, U.S.A.

Irwin, J. (1927). On the frequency distribution of the means of samples from a population

having any law of frequency with finite moments, with special reference to pearson’s type

ii. Biometrika, 19(3/4):225–239.

Lemons, D. S. (2002). An Introduction to Stochastic Processes in Physics. The Johns

Hopkins University Press.

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences,

20(2):140–141.

McCracken, D. D. and Dorn, W. S. (1964). Numerical Methods and Fortran Programming:

With Applications in Science and Engineering. Wiley.

OEIS Sequence A270712 (2024). From The On-Line Encyclopedia of Integer Sequences.

https://oeis.org/A270712.

Parker, M. (2019). Humble Pi: A Comedy of Maths Errors. Allen Lane.

Weisstein, E. W. (2024). Normal sum distribution. From MathWorld–A Wolfram Web

Resource. https://mathworld.wolfram.com/NormalSumDistribution.html.

Zell, A. (1994). Simulation Neuronaler Netze [Simulation of Neural Networks]. Addison-

Wesley.

	a574155657760f016dd0f075f9cbf5e1b553fdb92de6eacf0d274908a287c1f6.pdf
	Abstract
	Acknowledgments

	2231fa921d1611e5dc97d691b37fa1cf98d4a73b515488dc0f40f910a4048920.pdf
	a574155657760f016dd0f075f9cbf5e1b553fdb92de6eacf0d274908a287c1f6.pdf
	Chapter Motivation
	Explanation of Terms
	Floating Point Error
	Scaled Summation

	Reducing Floating Point Error
	Maximum Rounding Error
	Catastrophic Cancellation
	Partial Sums

	Other Information & Assumptions
	Distributions
	Scale of Inputs

	Chapter Methods of Summation
	Weights
	Simple
	Huffman
	Pairwise
	Interval
	Summary

	Chapter Design & Implementation
	Using the Expected Mean
	Design
	Implementation

	"Hyper"-Sorted Pairwise
	Design
	Implementation

	Summary

	Chapter Evaluation
	Experiments
	Batch 1 (Normal Distribution, = 0.5, = 16)
	Batch 2 (Uniform Distribution)
	Batches 1 & 2 Combined

	Results
	Summary

	Chapter Conclusions & Future Work
	Future Work

	Bibliography

