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Abstract 
 
In the domain of software engineering, detecting the use of open source code in obfuscated Android 
applications holds significant importance across various disciplines. The ability to identify 
syntactically or semantically similar code fragments, commonly referred to as clones, is essential in 
tasks such as code versioning, plagiarism detection and ethical considerations surrounding open 
source code usage. 
 
This dissertation presents the concepts, artefacts and processes involved in the development of an 
APK Code Matching (ACM) application, designed to identify and match similar methods between 
open source and obfuscated variants of Java Android applications. The ACM employs a three-way 
approach, leveraging static code analysis, program call hierarchy, and the k-Nearest Neighbours (k-
NN) algorithm for match detection of class methods. 
 
The extensive evaluation carried out as part of the development process underscores the 
effectiveness and efficiency of the ACM application in terms of its ability to accurately map methods 
between APKs, even in scenarios involving complex and dense obfuscation. 
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1 Introduction 
 
In a digital age characterised by the proliferation of smartphone applications, analysing the integrity 
and security posture of these digital assets has become increasingly important. The goal of this 
dissertation is to present an effective method for comparing two Java-based Android applications, 
packaged in the standard Android Package (APK) format. Specifically, the aim is to analyse the 
similarities between two versions of APKs - one that includes obfuscated code and the other 
containing the target open source code. By parsing the decompiled bytecode included in these apps, 
the project attempts to identify and match class methods between the two APKs, providing 
important insights to those involved in software development, cyber security, and ethical oversight. 
 

1.1  Motivation 
 
The project is motivated by several compelling factors. Firstly, in the fast-paced realm of software 
development, where new iterations of applications are released frequently, the ability to swiftly and 
accurately compare different versions of an application is invaluable. For software maintenance and 
version control, identifying bugs that persist across multiple versions of an application is of 
significant importance; enabling developers to quickly resolve duplicated bugs. This dissertation aims 
to provide a tool to aid in the efficient and accurate comparison between different versions of an 
application by identifying similarities between the codebases. 
 
Furthermore, the work carried out in the dissertation holds significant implications in the domain of 
corporate due diligence, facilitating thorough code reviews during mergers and acquisitions. By 
comparing the acquired codebase to open source code projects, companies can mitigate the risk of 
unintended commercial use of open source code without the proper permissions. 
 
Additionally, the project addresses concerns regarding plagiarism in machine learning-generated 
code. By detecting similarities between code produced by machine learning models, such as 
GitHub's and OpenAI's Copilot [1] and existing open source repositories, the project aims to enhance 
the integrity of AI-generated code and highlight instances of inadvertent plagiarism from open 
source repositories. 
 
Moreover, this work aims to identify instances of intentional code copying within software projects, 
even in cases of deliberate attempts to conceal such practices. Given two applications as input, the 
project can detect code snippets that are identical or similar to each other, known as code clones 
[2], thereby contributing to intellectual property protection. 
 
Furthermore, as some developers incorporate malicious code into software packages, the project 
can be used to detect known malicious code snippets within software applications, contributing to 
cyber security efforts and aiding in the mitigation of malware threats. 
 
With regards to the last two fields of application, it is important to acknowledge the limitations of 
the project. The techniques employed to conceal code plagiarism and malware within applications 
are often adversarial and can easily bypass the methods used in the project approach. 
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1.2   Research Objectives 
 
In order to attain the goals of this dissertation, that is to map similar class methods between APKs, it 
was necessary to define the following project objectives: 
 
(i) Acquire a set of APKs for development and testing purposes 
 
(ii) Design a methodology to match open source code to its obfuscated counterpart 
 
(iii) Determine suitable criteria to evaluate the matching confidence 
 
(iv) Evaluate the performance of the resultant matches 
 

1.3   Dissertation Overview 
 
The structure of the dissertation is as follows: 
 
Section 2 provides an overview of obfuscation and its various types, a literature review of prior 

research in the field of code similarity, a description of the various tools and 
environments utilised, and background information on the k-Nearest Neighbours 
algorithm. 

 
Section 3 focuses on the design and implementation of the ACM application. 
 
Section 4 presents the findings of the several tests carried out to assess the application’s 

performance. 
 
Section 5 discusses the limitations of the ACM application and the potential avenues for future 

work. 
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2  Background 
 

2.1   Obfuscation & Code similarity 
 
Obfuscation is a technique commonly employed to enhance software security, protect intellectual 
property and is an inherent aspect of code release management across different iterations of a 
codebase. However, obfuscation poses a challenge to code similarity analysis. So while two code 
segments, in this particular case two Java-based class methods, might be functionally identical, they 
might be dissimilar in their appearance due to obfuscation. The degree of variation between the two 
can differ, with code segments becoming increasingly more obfuscated when more aggressive 
techniques are employed. These levels of obfuscation can be classified on how closely they preserve 
the original code, essentially categorising them based on how similar the obfuscated code is to the 
original. 
 
In literature related to code similarity, two code fragments form a code pair if they are sufficiently 
similar, according to a given definition of similarity [3]. Therefore, the concept of clone pairs can be 
leveraged to establish a framework for categorising different levels of obfuscation based on how 
closely the obfuscated code resembles the original. This approach draws upon widely-accepted 
definitions of clone types outlined in existing research [3, 4, 5]. 
 
While there are several types of clones, the following table lists only those types that are specific to 
this project: 
 

Table 1: Clone types 

Type Description 

I 

 
Code remains largely identical, except for changes in whitespaces and comments. Such 
scenarios often arise when developers selectively choose not to obfuscate certain 
classes or methods. 
 

II 

 
Similar to Type I, differences in whitespaces and comments may occur, but there are 
also changes in identifiers. This form of obfuscation, often employed for code 
optimisation purposes, involves renaming classes, methods, and fields to shorter, 
meaningless names. The dual purpose of this is to conserve space by utilising shorter 
names and to safeguard intellectual property by complicating the comprehension of 
the code. 
 

III 

 
This type involves more substantial changes, including modifications to code structure. 
Portions of code may be deleted, updated, or supplemented with new segments. Such 
modifications are central to code shrinking, a process aimed at identifying and 
removing unused code segments to reduce application size and enhance performance. 
This can also be caused by method inlining, which involves the replacement of 
frequently called method invocations with their bodies, enhancing application speed 
by eliminating the overhead associated with function calls. 
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In addition, the following diagram illustrates examples of these clone types, written in Java. 
 
 

 

Figure 1: Examples of Clone Types  
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2.2   Code Similarity Measures 
 
This section explores the methodologies employed in previous research for measuring the similarity 
between code snippets. The techniques used in the field relating to measuring code similarity can be 
broadly categorised as static code analysis and dynamic code analysis. Since this project deals only 
with static code analysis, much of the ensuing discussion will focus on this particular analysis 
technique as a field of research. 

Static Code Analysis 

 
Methods based on static code analysis do not rely on the execution of the programs to measure 
similarity. Rather, they are data-centric, relying on information extracted from parsing the code and 
finding patterns within the source code. The many techniques that have been proposed in literature 
to identify similarities between code fragments will be discussed next. 
 

2.2.1 Token-based 

 
In token-based algorithms, code is processed into a sequence of tokens and then these sequences 
are compared to find common subsequences. Token-based approaches are widely used and are also 
very efficient when scaling to large source line counts. Still, as they capture only an abstracted 
representation, they do not consider the order of the code, and ignore structural information [6]. 
 

JPlag 

 
JPlag, developed by Prechelt et al. [7], stands out as one of the most popular and well-known code 
plagiarism detection tools, boasting a powerful user interface. JPlag tokenises code programmes into 
a sequence of token strings and employs the Greedy String Tiling algorithm [8] to identify the largest 
set of contiguous substrings. 
 
The tool has shown promising results in detecting plagiarisms among student submissions of Java 
exercises. In tests involving small sets of student submissions, typically around 28 programs, JPlag 
achieved remarkable precision and recall rates of 100%. However, its efficacy on large code 
repositories or applications remains uncertain, as it has primarily been tested on coding exercises 
from informatics courses and modules introducing Java and AWT to experienced students. While 
support for C, C++ and Scheme is also available, its performance across programming languages 
other than Java has not yet been evaluated. 
 

CP-Miner 

 
CP-Miner [9], another token-based tool, was developed to identify copy-and-paste bugs in large 
software suites. CP-Miner is based on frequent subsequence mining, which is an association analysis 
technique to discover frequent subsequences in a sequence database [10]. The tool employs 
CloSpan (Closed Sequetial Pattern Mining), a proposed frequent subsequence mining algorithm, 
which uses depth-first search and pruning to obtain a set of subsequences [11]. 
 
Despite its success in detecting bugs in large codebases, it has been reported to yield a high rate of 
false positives in some cases. For instance, when identifying copy-and-paste code segments in the 
Free-BSD operating system [12], 85% of the 443 bugs reported by CP-Miner were false positives. The 
authors suggest that to reduce the number of false positives, it is necessary to extract of more 
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semantic information from the source code. The prevalence of false positives could pose a 
significant challenge if CP-Miner were to be deployed in a production environment. Not only could it 
impede productivity, but it could also lead to frustration for engineers who must sift through 
numerous reported bugs, only to discover that the majority are false alarms. 

Deimos 

 
Deimos [13], a source code plagiarism detector with main purpose of detecting plagiarism in 
academic settings, operates in two steps: 
 
(a) Parsing source code and transforming it into tokens 
 
(b) Comparing each pair of token strings using Running Karp-Rabin algorithm [14] 
 
As Deimos is tailored for detecting similarity in coding assignments and provides users with a 
similarity value distribution chart and a matrix of pairwise similarity scores, its application beyond 
academic purposes, such as detecting plagiarism in large codebases or applications, is currently 
limited. 
  

2.2.2 Text-based 

 
Text-based algorithms are one of the simplest methods of code similarity measure, where source 
code is treated as plain text in order to find the longest common sequence of strings. 
 

CDSW 

 
Hiroaki Murakami et al. [15] employ the Smith-Waterman algorithm within their tool called CDSW to 
identify code clones in large code repositories. By treating text as sequence of strings and using the 
Smith-Waterman algorithm, the tool aims to identify similar code. The Smith-Waterman algorithm is 
an approximate string matching technique for identifying similar alignments between two sequences 
even if they contain gaps. 
 
The evaluation was conducted on freely available code clone data, which comprised large code 
repositories of eight software systems, including NetBeans and PostgreSQL. Despite being an 
efficient algorithm, with execution time for detecting code clones across all target software systems 
taking a maximum of 30 seconds, the median precision and recall reveal shortcomings. A median 
precision of 0.2 indicates that a significant proportion of clones detected where in fact false 
positives, undermining the algorithm’s ability to accurately identify code clones. Moreover, the 
median recall of 0.46, suggests that the tool misses a considerable amount of clones within the 
repositories. These limitations underscore the need for further refinement of the CDSW tool before 
its deployment in production environments. 
  

PlaGate 

 
PlaGate, a tool developed by Georgina Cosma and Mike Joy [16], integrates with existing plagiarism 
detection tools to enhance performance. PlaGate employs an information retrieval approach called 
Latent Semantic Analysis [17] on pre-processed source code files, represented as a numeric matrix. 
Similar files are identified through pairwise comparisons using cosine similarity.  
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When combined with tools such as JPlag, an increase recall and decrease in precision were observed 
compared to using JPlag alone. In one of the datasets tested, when JPlag was used alone, a recall of 
0.5 and precision of 0.75 was achieved. However, when integrated with PlaGate, recall increased to 
0.67 and precision dropped to 0.67. The rise in recall is attributed to the fact that PlaGate and 
external tools complement each other by detecting different kinds of plagiarism attacks. However, 
the decrease in precision indicates that PlaGate may introduce more false positives. 
 
Therefore, the decision to integrate PlaGate would depend on the specific requirements of the use-
case. In situations where the primary goal is to identify as many clones as possible, and false 
positives are tolerable, PlaGate proves beneficial. However, in contexts where precision is important 
to minimise false alarms, the integration of PlaGate may not be the best option. 
 

2.2.3 Tree-based 

 
Utilising tree-based algorithms for static code analysis necessitates the conversion of the source 
code into either a parse tree or an Abstract Syntax Tree (AST), using a programming language parser. 
 
A parse tree is a graphical representation of the derivation or parse that corresponds to the input 
program. It represents the complete derivation with a node for each grammar symbol in the 
derivation. In contrast, the AST is a contraction of the parse tree that omits most nodes for non-
terminal symbols while preserving the fundamental structure [18]. 
 
By comparing subtrees within the generated parse tree or AST, or employing various metrics to 
fingerprint them, exact or similar code segments can be identified. 
 

FAMIX Tree Representations 

 
Sager et al. [19], present an approach to discern similarities between Java classes by leveraging ASTs. 
Firstly, they obtain the AST representation of each class using Eclipse’s ASTParser [20]. Subsequently, 
the AST is converted into an intermediate model known as FAMIX (FAMOOS Information Exchange 
Model), a programming language-independent model for representing object-oriented source code 
[21]. Subsequently, by comparing the FAMIX tree representations of two classes using tree 
comparison algorithms, the similarity between two classes is discerned. 
 
Their study evaluated three distinct methodologies for calculating similarity between trees: 
 
(a)  Bottom-up maximum common subtree isomorphism 
 
(b) Top-down maximum common subtree isomorphism 
 
(c) Tree edit distance 
 
To assess the effectiveness of the proposed approach and the implemented similarity measures, the 
authors selected the widely-used Java plug-in, org.eclipse.compare, as their dataset. They measured 
the similarity of the classes within the same version as well as between different versions of the 
plug-in using each of the three similarity measures. 
 
The findings indicated that the tree edit distance produced the best results. It successfully identified 
structural similarities between classes within the same version and different versions of the project. 
However, it is important to note that the approach is only capable of matching classes, not the 
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methods in classes. This leaves the comparison of methods within the classes to the user. 
Additionally, it is worth mentioning that the algorithm employing the best performing similarity 
measure, tree edit distance, required over an hour to analyse the 114 classes of the 
org.eclipse.compare plug-in, indicating considerable processing time. 
 

DECKARD 

 
Jiang et al. [22] have developed a clone detection tool called DECKARD using a novel tree similarity 
algorithm. The main idea of the algorithm is to capture structural information of ASTs as vectors and 
utilise an adaptation of Locality Sensitive Hashing [23] to cluster similar vectors. This clustering 
process effectively groups together similar code fragments, thereby identifying code clones. 
 
DECKARD’s effectiveness has been evaluated on large code bases written in Java and C, including JDK 
and the Linux Kernel. The evaluation encompassed various metrics such as the number of detected 
clones and the number of false positives. When evaluated on the JDK, DECKARD's performance was 
compared against CloneDR [24], a well-known AST-based clone detection tool for Java. Similarly, in 
the evaluation on the Linux Kernel, DECKARD's performance was compared against CP-Miner [9], a 
token-based tool for the C programming language. Evaluation revealed that DECKARD significantly 
outperformed both CloneDR and CP-Miner. 
 
However, the performance of DECKARD is highly sensitive to the threshold used to determine 
similarity. Thus, parameter tuning is essential from the user's perspective to achieve optimal results. 
 

2.2.4 Graph-based 

 
Graph-based methods typically utilise the Program Dependence Graph (PDG) to analyse code 
fragments and identify similarities [25]. The PDG contains both data and control dependencies 
between program statements, and hence conveys both the semantics of the program in addition to 
syntax. Program statements are represented as nodes, while data and control dependencies are 
depicted as edges. 
 

PDG Subgraphs 

 
Krinke [26] has developed an approach to detect semantically similar code fragments within a 
program by using specialised PDGs. To detect duplicated code, similar subgraphs within the PDGs 
are identified. The detected similar subgraphs can then be directly mapped back onto the program 
code and presented to the user. 
 
In the implementation, a specialised version of PDGs is employed. Krinke uses specialised edges for 
control and data dependencies, along with special nodes for variable and procedure definitions. This 
augmentation enhances the verbosity of the graphs, aiding the identification of similar or identical 
nodes and edges. 
 
However, the time complexity of the proposed algorithm is O(|N|2), where N denotes the number of 
PDG nodes. Therefore, for code fragments with a large PDG, the algorithm is inefficient. Evaluation 
revealed prolonged execution times, with some runs taking over an hour to complete. For instance, 
in the case of the agrep project, the execution time exceeded 10 hours. 
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2.2.5 Metric-based 

 
Metric-based methods represent code segments as vectors of various code metrics. This allows the 
use of vector similarity to assess the degree of similarity between code segments based on their 
metric values. By measuring the similarity using these metrics, metric-based methods effectively 
identify code segments with similar characteristics. 
 

Metric-Axes Clustering 

 
Kontogiannis et al. [27] proposed a metric-based algorithm for detecting instances of code cloning in 
moderately-sized production systems. To facilitate the analysis and numerical comparison of code 
segments, the authors utilised modifications of five metrics, specifically chosen for their low 
correlation, as determined by the Spearman-Pierson correlation test. These metrics were employed 
to characterise and classify code segments. 
 
For a given code segment 𝑠, the following metrics were used for the analysis: 
 
(a) 𝑆_𝐶𝑂𝑀𝑃𝐿𝐸𝑋𝐼𝑇𝑌 𝑠 =  𝐹𝐴𝑁_𝑂𝑈𝑇 𝑠 2, where 𝐹𝐴𝑁_𝑂𝑈𝑇(𝑠) is the number of individual 

function calls made within 𝑠. 
 
(b) 𝐷_𝐶𝑂𝑀𝑃𝐿𝐸𝑋𝐼𝑇𝑌(𝑠)  =  𝐺𝐿𝑂𝐵𝐴𝐿𝑆(𝑠) / (𝐹𝐴𝑁_𝑂𝑈𝑇(𝑠)  +  1) ,where 𝐺𝐿𝑂𝐵𝐴𝐿𝑆(𝑠) is the 

number of global variable used within 𝑠. 
 

(c)  𝑀𝐶𝐶𝐴𝐵𝐸(𝑠)  =  𝑒 –  𝑛 + 2 ,where 𝑒 is the number of edges in the control flow graph, 𝑛 
denotes the number of nodes in the graph. 

 
Essentially, it is a quantitative measure of independent paths in the source code. 
Alternatively, the McCabe metric can be calculated as 1 +  𝑑 ,where 𝑑 is the number of 
control decision predicates in the code segment 𝑠. 

 
(d) 𝐴𝐿𝐵𝑅𝐸𝐶𝐻𝑇(𝑠)  =  𝑝1  ∗  𝑣 +  𝑝2  ∗  𝑔 +  𝑝3  ∗  𝑢 + 𝑝4  ∗  𝑓, where 𝑣 represents the 

number of data elements set and used, 𝑔 denotes the number of global data elements set, 𝑢 
is the number of read operations, 𝑓 stands for the number of files accessed for reading. The 
𝑝1 , … , 𝑝4 values are weight factors, with 𝑝1 = 5, 𝑝2 = 4, 𝑝3 = 4 and, 𝑝4 = 7 

 

(e) 𝐾𝐴𝐹𝑈𝑅𝐴(𝑠)  =   𝐾𝐴𝐹𝑈𝑅𝐴_𝐼𝑁 𝑠 ∗  𝐾𝐴𝐹𝑈𝑅𝐴_𝑂𝑈𝑇 𝑠  
2
 , where 𝐾𝐴𝐹𝑈𝑅𝐴_𝐼𝑁 𝑠  is the 

sum of local and global incoming dataflow, and 𝐾𝐴𝐹𝑈𝑅𝐴_𝑂𝑈𝑇 𝑠  represents the sum of 
local and global outgoing dataflow 

 
Once the metrics are computed for each code segment, the comparison process begins. The 
technique starts by creating clusters of potential clones for every metric axis 𝑀𝑖 𝑖 =  1 . . 5  based 
on a user-defined Euclidean distance threshold, 𝑑𝑖 . Intersections of clusters across different axes 
yield intermediate results, and once all metric axes have been considered, the final clusters contain 
potential code clone fragments. 
 
The metric-based clone detection analysis was applied to several C programs, including tsch, bash, 
and CLIPS. For the CLIPS system, consisting of 30,000 lines of code, and with approximately 500,000 
pairs of functions for clone candidate selection, the clone detection system exhibited exceptional 
speed, taking less than 90 seconds to run. 
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However, the study revealed varying levels of false positives across different programs. Notably, 
Euclidean distance thresholds close to 0.0 yielding more accurate results. On average, across the 
three systems, 39% of the reported matches were false positives. The authors observed that 
integrating dynamic code analysis into the detection system significantly reduced the false positive 
rate to 10%, albeit at the expense of increased runtime, which increased to 3.9 minutes. 
Additionally, it is suggested that addressing this issue may involve the incorporation of new metrics 
such as Halstead’s metric. 
 
However, even 10% false positives rate remains an issue, particularly given the large size of the 
systems under analysis. The manual effort required to filter through these false matches could be 
substantial, potentially outweighing the benefits of the approach's speed. 
 

2.2.6 Machine Learning-based 

 
Machine learning-based algorithms have emerged as powerful tools in the domain of code similarity 
detection. These approaches leverage patterns and characteristics inherent in source code, learning 
from labelled datasets of known similar and dissimilar codes. From traditional classifiers to 
sophisticated deep learning architectures, a diverse array of learning-based approaches are 
employed to effectively measure code similarities and identify code clones. 
 

Clonewise 

 
Cesare et al. [28] utilised conventional classification models to detect package clones. The authors 
define a package clone as the duplication of one package’s code within another package. Their 
system, Clonewise, serves as a tool for security teams to conduct audits and maintain operating 
system distributions. It takes two packages as input and extracts features from them based on 
filenames and file content. Among the 26 features used are: 
 
(a) Number of filenames 
 
(b) Number of common filenames between the packages 
 
(c) Number of similar filenames between the packages (calculated using a fuzzy string similarity 

function based on the filenames’ edit distance) 
 
(d) Number of files with identical content, identified by hashing the file content to identify 

matching files 
 
The authors experimented with various classifiers, including Naïve Bayes [29], Multilayer Perceptron, 
C4.5 [30], and Random Forest [31]. Evaluation was conducted on Fedora and Debian Linux 
distributions, focusing on identifying shared code among packages such as lib3ds, PostgreSQL, and 
libwmf. 
 
The Random Forest classification algorithm yielded the best results, achieving a true positive rate of 
70.04% and a false positive rate of 0.11%. In an attempt to reduce false positives, the decision 
threshold of the Random Forest algorithm was adjusted to 0.8, prioritising false positives over false 
negatives. This adjustment lowered the false positive rate to 0.03%, but also decreased the true 
positive rate to 58.61%. 
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Given that the purpose of Clonewise is to conduct security audits, the relatively low true positive 
rate raises concerns about its effectiveness in accurately identifying potential threats. Having to sift 
through a significant number of false alarms (41.39%) can consume valuable time and resources for 
security teams. Therefore, further work may be required to improve this. 
 
Despite its limitations, Clonewise's package-level approach provides security teams with a 
convenient way of identifying potential security threats. However, if this approach were to be 
applied to other applications like plagiarism detection, a more granular identification of duplicated 
code segments, such as identifying exact replicated methods across packages, may be necessary. 
 

Siamese Neural Network 

 
Patel and Sinha [32] used a Siamese Neural Network (SNN) [33] to address code clone detection. 
Firstly, they extracted ASTs and CFGs for each method in the source code. To use these as input to 
the network, these structures were converted into vectors using Word2vec with skip-o-gram [34] 
and Graph2vec [35] techniques, respectively. The resulting vectors were combined to generate an 
embedding to be fed into the network. 
 
The chosen architecture was an intermediate-merge SNN, where two embeddings are fed separately 
into identical arms of the SNN. Each arm of the SNN shares the same architectures and weights, and 
consists of two linked networks: ConvNet and Dense. Each arm computes the features of one input 
independently. Subsequently, the similarity between the computed features is calculated using their 
difference, which is then passed to the final output layer. The output layer performs a binary 
classification, where an output of 1 denotes clones and 0 denotes non-clones. Because of the binary 
nature of the classification, cross-entropy loss was used for training. Upon comparing Leaky-ReLU, 
ReLU and Tanh activation functions, the authors found that ReLU produced the best results. 
 
The solution was evaluated on the OJClone dataset, containing C++ solutions to programming 
problems from various students. The set of answers to a problem were considered clones of each 
other as they were expected to exhibit the same logic. The model performed well on this dataset, 
demonstrating high performance with precision, recall, and F1-score values of 0.902, 0.933, and 
0.917 respectively. However, evaluation was limited to 15 problem sets, each containing 100 C++ 
source code files, without extension to other programming languages or real-world applications. 
 

Dynamic Code Analysis 

 
In contrast to static code analysis, dynamic code analysis involves examining data collected from a 
process, i.e. a running program. While static code analysis focuses on deriving properties from a 
program’s text and is effective at detecting lexically similar codes; dynamic code analysis is better 
suited for detecting semantic code clones, which are similar in functionality but different in 
implementation. 
 
This type of analysis typically involves analysing a system’s execution under test [36], requiring an 
execution environment like the Java Virtual Machine (JVM) or a more sophisticated setup such as a 
program analysis framework like JNuke [37]. Through this analysis, a comprehensive understanding 
of a software system's behaviour is gained, revealing its actual execution paths and interactions with 
its environment. The data collected from these executions serves as basis for evaluating code 
similarity, offering insights that range from detailed class-level information to broader, high-level 
architectural views [38]. 
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2.3 Tools 
 

2.3.1 Android APK 

 
The Android Package (APK), also known as Android Package Kit or Android Application Package, 
serves as the standard file format for distributing and installing apps on Android devices. When an 
Android developer is ready to distribute their app, they compile the code to Dalvik bytecode. The 
resulting .dex files, along with other resources, are bundled together into a single APK container that 
is organised as follows:  
 
classes.dex The Dalvik Executable file containing the code executed by Android Runtime. 
 
lib/. Folder that contains platform-dependent compiled code and native libraries 

for device-specific architectures, such as x86 or x86_64. 
 
resources.arsc Pre-compiled resources used by the application, such as Binary XML files. 
 
res/. Folder containing resources such as images, that were not compiled into the 

resources.arsc. 
 
AndroidManifest.xml Information about the application, including its name, version number and 

permission rights. 
 
META-INF/. Folder containing resources like the manifest file, app certificate and list of 

all resources within the APK. 
 
assets/. Contains assets and resources for the application, such as code and data 

files. 
 
 

2.3.2 JADX 

 
JADX [39] is a decompiler for Java code that provides a user-friendly graphical interface for 
decompiling Dalvik bytecode to Java classes from various file formats including APK, DEX, AAR, AAB 
and ZIP files. It includes a powerful search tool to locate code segments, method names and classes 
across the entire code base. Additionally, JADX offers syntax highlighting and tabbed views, along 
with a ‘jump to declaration’ feature for easy code navigation. 
 

2.3.3 F-Droid 

 
F-Droid [40] is an app store specialising in free and open source software for Android devices, with a 
strong emphasis on promoting privacy, security and transparency for end-users. It fosters a culture 
of user freedom by allowing individuals to inspect and modify the code of the apps they use, 
empowering them to tailor their experience to their preferences. 
 
The platform provides a diverse range of applications, covering categories such as security utilities, 
games, and messaging tools. Similar to other mainstream app stores, F-Droid allows users to easily 
install, update and review applications. Notably, as the applications featured on F-Droid are open 
source, their source code is publicly available on code repository platforms such as GitHub. 
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2.3.4 Androguard 

 
Androguard [41] is a powerful Python tool for reverse engineering Android applications. It allows 
users to decompile APK and DEX files into their original source code. With its extensive APIs, 
Androguard enables thorough analysis of source code, allowing users to examine the logic, flow and 
implementation details of applications. Additionally, it offers functionality to generate graphical 
representations such as control flow graphs and call graphs. 
 

2.4 k-Nearest Neighbours 
 
The aim of the k-Nearest Neighbours (k-NN) classification problem is to find the k nearest data 
points in a dataset to a given query data point [42]. Let the query dataset be denoted as Q and the 
training dataset as T. The dataset T comprises of data that has already been classified, in the context 
of this project, T represents the set of open source class methods. Whilst Q denotes the dataset 
containing the obfuscated class methods that are awaiting classification based on the classification 
of the training dataset T. Each method in both datasets represents an n-dimensional object, where n 
is the number of features used for classification. A detailed discussion of the specific features used 
by the k-NN implementation in this project can be found in the Section 3.3.2. 
 
The fundamental principle of k-NN is to classify these objects (i.e. the class methods) based on their 
proximity to other objects in the n-dimensional feature space. Objects that are similar to each other 
tend to be closer to one another in the feature space, whilst dissimilar objects are farther apart. 
Consequently, the distance between two objects is a measure of their dissimilarity. When presented 
with a new object from the query dataset Q, the k-NN algorithm identifies the k objects from the 
training dataset T that are nearest to the query object. Subsequently, it assigns the most common 
label among these k training objects to the query object. In this way, a method is classified by a 
majority vote of its neighbours. 
 
In this project, k is set to 1, and thus each obfuscated class method in Q is simply assigned to the 
label of its nearest neighbour in T. In the context of the project, what this essentially means is that 
each obfuscated class method in Q is matched to the open source class method most similar to it in 
T.  
 
Below is a simplified visual representation of the k-NN algorithm as implemented in this project. The 
data points, representing class methods, are plotted in two-dimensional space. The dimensions of 
the space represent the number of features utilised for classification. So in this case, the two axes 
labelled X1 and X2 correspond to the two features used to characterise the class methods. The three 
red data points denote the training dataset T, comprising of the open source class methods, while 
the blue data point represents the obfuscated class method awaiting classification. 
 
As the value of k is set to one, the algorithm only considers the nearest neighbour from the training 
dataset closest to the obfuscated class method. In the plot, the nearest neighbour is identified by 
the connection point between the red data point and the blue data point. Consequently, the 
obfuscated class method is classified as or matched with this open source class method. 
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Figure 2: k-NN in two dimensional space 

 
To conclude, k-NN is an intuitive, non-parametric classification algorithm that operates by 
calculating the most similar objects in an n-dimensional feature space. Within the context of this 
project, k-NN is used to effectively match class methods between open source and obfuscated APKs. 
As will be discussed shortly in the Design section, its efficacy is further improved with the support of 
other features incorporated in the design of the ACM application. All these factors have played a 
crucial role in the implementation of a code mapping infrastructure based on efficient and accurate 
match detection techniques. 
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3 Design 
 
The following process flow architecture diagram provides a visual representation of the internal 
structure of the ACM application in terms of its subsystems, inputs, outputs and workflows. 
Designed to meet the requirements of the second research objective, the end-to-end process 
consists of a four-stage pipeline that receives two artefacts as input and delivers the results as a 
single output file. As will be discussed shortly, each subsystem is an independent unit, designed to 
carry out a discrete set of tasks and to prepare the input required by the next subsystem in the 
workflow. 
 
 

 

Figure 3: Process Flow Architecture Diagram 
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3.1 Preliminary Stage 
 

3.1.1 Overview 

 
Besides meeting the requirements of the first research objective, namely ‘to acquire a set of APKs for 
development and testing purposes’, the overall aim of the Preliminary Stage is to ensure that all 
prerequisites are in place before the mapping process can commence. As will be discussed further 
on in this section, this is the stage where the required artefacts are downloaded, assembled, and 
verified before they can be used by the data preparation functions included in Stage One. In effect, 
the Preliminary Stage is not a component of the ACM application but a series of actions that are 
more or less relevant only to the development and testing process. This is because when the 
application is used ‘live’ in the field, the APKs are typically precompiled and packaged, ready to be 
used by the application without the need for any preprocessing.   
 

3.1.2 Environment Setup 

 
Once the toolchain covered earlier in Section 2.3 is installed, it is time to initialise the environment 
so the required artefacts can be prepared for use by the ACM application. As a first step, it is 
necessary to obtain the F-Droid APK from the official site [40] and load it in Android Studio as a 
newly configured project, complete with an Android Virtual Device (AVD) and an Android Emulator, 
to simulate a virtual phone, this being Google Pixel 3A for this specific project.  
 
With the F-Droid utility app running on the virtual phone, a Java-based Android application is 
downloaded from the F-Droid app store, installed locally in the virtual environment and locating the 
app’s base.APK [43] file within the data folder of the emulated device. This application package 
represents the Obfuscated APK depicted in the process flow diagram as one of the Preliminary Stage 
inputs. 
 
The item App Codebase, the second input to the Preliminary Stage, is a reference to the open source 
version of the obfuscated app, which is sourced from GitHub by locating the project repository. 
Interestingly, most developers do not provide pre-built APKs on GitHub or else, when these are 
made available, they are often built using obfuscated code, rendering them unsuitable for 
recovering the open source APK. This means that it is necessary to manually build the APK by cloning 
the GitHub source code repository locally and setting up the project in Android Studio in accordance 
with the developer’s instructions. 
 

3.1.3 Obfuscation Removal 

 
It is important that the open source App Codebase is checked for obfuscation settings which are 
normally found in the build.gradle file or its equivalent as it is common for developers to enable 
obfuscation using tools such as ProGuard [44]. Some common types of code optimisation techniques 
that lead to code obfuscation include: 
 
(a) Code Shrinking This process entails identifying and removing unused code 

segments, reducing the application’s size and improving its 
performance. 
 

(b) Identifier Name Obfuscation A technique that involves the renaming of classes, methods 
and fields to shorter, meaningless names. The dual purpose 
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of this is to conserve space by utilising shorter names and to 
safeguard intellectual property by complicating the 
comprehension of the code. 
 

(c) Method Inlining By replacing invocations of frequently called methods with 
their bodies, method inlining improves the application’s 
speed by eliminating the overhead associated with function 
calls. 

 
If the APK build configuration is found to have settings that would directly or indirectly lead to 
obfuscation, it is important that they are disabled before re-building the package to ensure that the 
Open Source APK is free of obfuscated code. 
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3.2 Stage One 
 
The first task of the application is to import two APKs, analyse the code and extract the data 
required for the matching process. Shown in the process flow diagram as Stage One, the ACM 
application is launched with two complete APK archives as input that would include all the compiled 
code, resources and assets. The diagram depicts this with an instance of an APK that has been 
compiled without obfuscation and packaged directly from the open source app codebase (Open 
Source APK) and an obfuscated Android app downloaded as an APK from an Android app repository 
(Obfuscated APK). The two archives are processed separately and in exactly the same way, with each 
APK going through a multi-stage pipeline that includes filtering, code analysis, fingerprinting and 
encoding.  
 
The output from Stage One, which consists of several data sets for each APK, is extensive and 
conveys enough information about the organisation, structure and features of the code that the 
ACM application can perform the mapping between the Obfuscated APK and the Open Source APK 
without further need to access the APK archives. 
 
A detailed discussion of the key aspects of Stage One, their implementation in the ACM application 
and the concepts behind the design will now follow. 
 

3.2.1 Code Filtering 

 

Classes 

 
One particularly important component of Stage One is Androguard’s AnalyzeAPK() module that 
returns an object of type Analysis, configured with the required features to explore the .dex files 
within the APK. One of the first tasks using the Analysis object is to distinguish between the classes 
that are native to the application and those which belong to 3rd party libraries that have been 
bundled with the .dex files. 
 
This is achieved with the find_classes() module from the Analysis object which retrieves all classes 
contained in the .dex files. Importantly, these classes are listed using their fully qualified names, i.e. 
the package name combined with the class name, using a dot delimiter. The format streamlines the 
process of distinguishing between classes that belong to the ACM application and those of its 
dependencies, by simply using a regex rule to filter out unwanted classes. For instance, if the 
package name of one of the tested applications is eu.faircode.email, a regex expression of 
"eu.faircode.email*" would effectively capture only those classes contained in the package 
eu.faircode.email. 
 

Methods 

 
Once the applicable classes are shortlisted, the next step involves static code analysis where each 
class method is examined for its attributes, features and string literals. This is accomplished with 
Androguard’s find_methods() routine which facilitates an iterative process that allows access to 
method properties within the boundaries of a class object identified by its class name. 
 
However, before running the static code analysis, it is first necessary to filter out those methods that 
are not in scope for this process. Synthetic methods are automatically inserted by the Java compiler, 
meaning that they are not authored by the developers and as such are not included with the app 
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codebase. For this reason, synthetic methods are not eligible for the matching process and will 
therefore need to be removed from further analysis. All such methods have their names prefixed 
with the token “access$”, which makes it easy to identify and hence exclude. 
 

Identifiers 

 
It was necessary to devise a standard naming system for class methods that could be used to 
uniquely identify code artefacts throughout the analysis and matching process. The naming 
convention derives the Method ID from features and attributes that describe the class method under 
consideration which include the name of the class and method as well as the method’s parameter 
types, return type and access flags. All this information is obtained using the Androguard 
get_method() routine, which very much simplifies the process of determining the Method ID. 
 

3.2.2 Unique Composite Strings 

 

Rationale 

 
The first output artefact of Stage One is essentially a collection of encoded strings. The source of 
these strings and the encoding method are discussed in the Implementation section below but it will 
suffice to say here that each string is a concatenated form of all the string literals defined within the 
boundaries of a class method. Furthermore, a concatenated string is only considered suitable for 
further processing if it can uniquely identify the class method within the scope of the APK. In other 
words, if it results that an APK has more than one copy of the same concatenated string; all 
instances of that string will be discarded. For this reason, and as illustrated in the process flow 
diagram, these string formations are referred to as Unique Composite Strings. 
 
The significance of the composite strings and why they need to be unique becomes more evident 
when in Stage Two, these strings are used to match class methods across the two APK archives 
supplied as input to Stage One. Underlining this concept is the suggestion that if a unique composite 
string in the first APK is an exact match to a unique composite string in the second APK, then the 
corresponding methods must be logically identical. The idea has been successfully tested with the 
FairEmail application [45] and ground truth data, gathering enough evidence to support the 
hypothesis. The test case involved using unique composite strings to map class methods between 
FairEmail’s open source and obfuscated APKs and then comparing the outcome against the ground 
truth dataset. The outcome reported a total of 1,578 matches, all of which were confirmed to be 
correct, with zero false positives. Section 4 provides more details on the FairEmail application and 
how ground truth was established. 
 

Implementation 

 
Individual strings are identified in class methods with the use of Androguard’s get_instructions() 
function, that provides access to the disassembled bytecode. Since in Dalvik bytecode, strings are 
declared using the “const-string” opcode, the strings contained in a method can be extracted simply 
by searching the opcode in the list of instructions obtained with get_instructions(). 
 
The method strings are then sorted alphabetically to ensure that they are ordered, regardless of the 
sequence they have been declared. This measure is necessary before the strings can be 
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concatenated so that class methods which declare the same set of strings but in a different order 
would not yield a different unique composite string.   
 
The idea of concatenating all the strings contained in a method to form a composite string rests on 
the premise that a composite string can be used as a fingerprint to uniquely identify a class method. 
Although individual strings can also make for good fingerprints, it is often the combination of 
multiple unique characteristics that provides a more reliable means of identification. This aspect is 
supported with empirical evidence gathered during the development of the ACM application, using 
both the open source and obfuscated variants of the FairEmail application. For instance, analysis of 
the open source APK found that class methods declared a total of 1,089 individual unique strings. In 
contrast, the same study reported 1,578 instances when the same APK analysis involved unique 
composite strings. This 45% increase in unique “fingerprints” is significant, not just because it 
confirms the direct correlation between the length and complexity of a string with its distinguishing 
unique qualities, but also because of the potential increase in class methods matched between the 
two APKs on the basis of unique composite strings. 
 
Once the individual strings are ordered and concatenated, the composite form of the method strings 
are used to obtain a UTF-8 encoded cryptographic hash based on the SHA-256 one-way function. 
The reason for the transformation is not related to any security requirement but merely to enforce a 
standard length on all unique composite strings with the intent of facilitating easier handling of the 
string data at a later stage. From this point onwards, since the original strings are no longer used, 
any mention of unique composite strings is a reference to the encoded hash version of the cleartext 
concatenated strings.  
 
With a complete list of unique composite strings paired with the Method IDs that identify the 
corresponding class methods, the final step is to remove any string entries that appear multiple 
times. This will ensure that only composite strings that are truly unique across the entire APK will be 
considered for Stage Two. 
 
 

3.2.3 Code Signatures 

 

Rationale 

 
Once the matching methods across the two APKs are identified, Stage Two also contends that if a 
class method in the Open Source APK is logically identical to another class method in the Obfuscated 
APK, then the similarities are likely to extend to other members of the classes to which the two 
matching methods belong. The premise here is that once two class objects produce at least one pair 
of matching methods across the two APKs using unique composite strings, it is highly probable that 
the same class objects bear other similarities that cannot be identified using unique composite 
strings. Although efficient and highly accurate, the limitations inherent to using only unique 
composite strings are self-evident. For instance, it has already been mentioned that the ACM 
application was designed to drop multiple occurrences of the same composite string when present 
in a single APK. What this means is that all methods associated with these strings will not qualify for 
the matching procedure involving unique composite strings. Other shortcomings include the fact 
that it is not uncommon for class methods not to have any string literals or that there is always the 
possibility that a class method with a unique composite string does not produce a match.  
 
It is clear therefore that in order to overcome these limitations, further drill down into the APKs will 
necessitate a different kind of match detection technique that does not rely on composite strings. 
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The key requirement here is that, except for class methods which have already been matched using 
unique composite strings, all methods pertaining to class objects that yielded at least one positive 
match using composite strings will need to be assessed. And this is where another type of input, 
derived from the static code analysis, comes into play. Identified in the process flow diagram as Code 
Signatures, these data sets describe the class methods in terms of their features and attributes such 
as dependencies, parameters and return types. 
 
Code signatures are used by the k-NN analysis performed in Stage Two and Stage Three of the ACM 
application and are essentially the union of features serving as input to k-NN. It is important to note 
that the selection of these features was not arbitrary but rather, they were chosen based on their 
ability to enhance the matching performance of the ACM application. The process of how features 
were assessed is covered in Section 3.2.4 so for now the discussion will limit itself to the six code 
features that made it to the final selection.  
 

Parameters, Returns, and Access Flags 

 
The first three features selected for inclusion in the code signature of a class method are the 
method’s parameter types, return type and access flags. Their relevance in terms of a method’s 
distinguishing attributes is mainly based on the fact that these features are always explicitly or 
implicitly defined in a class method. 
 
The procedure to read the values assigned to these features from a method object is very much the 
same for all three and relies exclusively on the functionality provided by the Androguard API. In 
essence, when a class method is queried with the get_descriptor() function, the list of parameters 
types and the return type associated with the method are returned. Similarly, a call to Androguard’s 
get_access_flags_string() function returns the method’s access control flags such as public, private 
and protected.  
 
There is also a fourth element included in the method’s code signature. This is the parameter count, 
which unlike the other features, does not directly involve the Androguard API but is derived from the 
list of parameter types returned by the the get_descriptor() function. 
 
Once obtained, the value of each feature is stored in a list together with the corresponding 
Method_ID. This procedure is carried out for each method object that has been shortlisted for 
mapping analysis which will commence in Stage Two (refer to Code Filtering in Section 3.2.1). This is 
then followed by transforming the list into binary representation using class MultiLabelBinarizer 
from sklearn [46]. The following example demonstrates how MultiLabelBinarizer transforms such a 
list into a Machine Learning (ML) readable format: 
 
 

 
Figure 4: MultiLabelBinarizer 
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Method Invocations 

 
Outbound method invocations represent the number of methods called by the method being 
analysed. This metric is derived by tallying the count of methods returned by the Androguard 
get_xref_to() function. 
 
Conversely, inbound method invocations represent the number of times the method under analysis 
is invoked by other methods. This is calculated by counting the number of methods returned by the 
Androguard get_xref_from() function. 
 

Code Signature 

 
The code signature that describes a class method and which serves as the input for the k-NN analysis 
is effectively a construct made up of these six features as illustrated by the following example that 
shows the code signature for a single class method: 
 

Table 2: Code Signature 

 Parameter Types Return Types Access Flags Miscellaneous 

Method ID int boolean double void String public private Inbound Outbound # Parameters 

method_1 1 1 0 1 0 1 0 2 1 2 

 
 

3.2.4 Feature Selection 

 
The various code features considered for input to k-NN and the reasons behind the selection of the 
feature set that actually made it to production will now be discussed. 
 
Central to the evaluation process is a performance baseline, representing the sum of all features 
under consideration. Using this baseline, it was possible to benchmark all the features by 
systematically disabling each feature and observing the deviations from the baseline and therefore 
the impact registered on the performance of the ACM application. 
 
Besides the six features that were ultimately selected for implementation (refer to Code Signature in 
Section 3.2.3), the following is a list of code features that were also examined but which did not 
make the grade: 
 
(a) McCabe Complexity 
 

McCabe Complexity, drawn from the work of Kontogiannis et al. [27] as discussed in Section 
2.2.5 Metric-Axes Clustering, quantifies the number of independent paths in a method. It 
can be calculated as 1 + d, where d is the number of control decision predicates in the 
method. 

 
(b) Number of Variables Declared 
 

This metric measures the number of variables declared within a method. Variable 
declarations are identified using the disassembled Dalvik bytecode, with opcodes such as 
"const/4" and "const/16." 
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The evaluation of all features under consideration was carried out on the FairEmail application using 
the open source and the obfuscated APKs and utilising the same ground truth as in Section 4.3. The 
final results from the benchmarking exercise, that also include the set of implemented features, 
(marked with *) are as follows: 
 

Table 3: Feature Selection 

Features Individually Removed 
Metrics 

Precision Recall F-measure 

Baseline 0.996874 0.844992 0. 914671 

McCabe Complexity 0.996874 0.844992 0. 914671 

Number of Variables Declared 0.996874 0.844992 0. 914671 

Outbound Method Invocations* 0.989365 0.814324 0.893351 

Inbound Method Invocations* 0.993758 0.843220 0.912321 

Number of Parameters* 0.996243 0.843361 0.913449 

Parameter Types* 0.996787 0.821940 0.900958 

Return Type* 0.996068 0.805938 0.890973 

Access Flags* 0.996550 0.842036 0.912800 

 
One can observe that the precision, recall and F-measure did not change with the removal of the 
McCabe Complexity and the Number of Variables Declared features. This is a clear indication that 
these two features do not provide the ACM application with any performance improvements. 
Consequently, it can be inferred that these features are non-informative and redundant for the k-NN 
analysis, as they do not contribute to the ACM application’s ability to accurately match methods. 
 
On the other hand, the removal of any other feature had a negative effect on the evaluation metrics, 
which suggests that the ACM application benefits from the use of these features, both in terms of 
better accuracy and improved matching capabilities. 
 

3.2.5 List of Callees 

 

Rationale 

 
Recall that in Stage Two, all match detections are confined to classes that yield at least one positive 
match using the unique composite string method, even when the mapping involves code signatures 
and k-NN analysis. Although this approach is sufficient to cover the entire scope of this category of 
class objects, the method does not extend the entire footprint of the code contained in the APK. In 
fact, all those classes that for some reason do not register a single match in one of their methods 
when examined for unique composite strings would be completely ignored. 
 
Stage Three builds on the logical deductions drawn from the evidence presented earlier for Stage 
Two (see Section 3.2.3) which suggest that if two different APKs contain the same unique composite 
string, then the corresponding class methods are logically identical and the class objects to which 
they belong are likely to contain other methods that would also yield a match. What Stage Three 
does differently is that instead of relying on unique composite strings, it uses the methods (the 
callees) invoked from within the class methods (the callers) that have already been matched in Stage 
Two to determine which methods, and hence classes, are in-scope for the k-NN analysis. The basic 
premise here is that if two caller methods were found to be logically identical in Stage Two, their 
respective callees should also exhibit close similarities. Furthermore, Stage Three asserts that once 
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two callees from different APKs are found to be logically identical, the other methods included in the 
class objects to which they belong should also demonstrate similar properties. 
 

Implementation 

 
Obtaining the list of callees defined in a class method requires the use of Androguard’s get_xref_to() 
function, which returns a dictionary of all classes and their methods used by the caller, i.e. the 
method under review. Also, as per procedure highlighted in Section 3.2.1, any synthetic callee 
methods identified during this process are excluded from the list. 
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3.3 Stage Two 
 
Once Stage One has prepared all the material required by the matching algorithms, the two APK 
archives are set aside and the mapping process can begin. In terms of output from Stage One, and as 
illustrated by the process flow diagram, the artefacts that are of interest to Stage Two are the 
collection of Unique Composite Strings and the Code Signatures. 
 
The first task of the mapping process is to use the unique composite strings to locate class methods 
that are common to both the Open Source APK and the Obfuscated APK. The class objects which 
contain the methods that yielded a positive match using this form of mapping detection are then 
selected for k-NN analysis. The idea here is to inspect these classes in more detail in an attempt to 
match methods that, when using unique composite strings, either failed to qualify or did not yield a 
positive match. 
 
For this part of the mapping process, the code signatures derived from the Open Source APK are 
used as the training data for the k-NN algorithm whereas the code signatures from the Obfuscated 
APK serve as the query dataset. The specifics of the k-NN model and the rationale behind certain 
decisions such as why the Euclidean distance was the metric of choice or the basis for setting the k 
value to 1, are all covered in Section 3.3.2. However, it will suffice to say here that the results from 
the unique composite strings and the k-NN analysis are merged and the data refined by removing 
low confidence matches, using one of the filtering techniques, also discussed separately in Section 
3.3.3.  
   

3.3.1 String Matching 

 
Recall from Section 3.2.2 that a unique composite string consists of a series of string literals that 
have been ordered, concatenated and transformed into a fixed-size 32-byte SHA-256 hash. Also, 
each hash is UTF-8 encoded to ensure safe handling of the hash value during the mapping process, 
especially in those instances when the hashed data might contain special characters or non-ASCII 
characters. 
 
The actual comparison of two unique composite strings relies on Python’s equality operator ‘==’ 
which internally is implemented as a C language memcmp() function that tests if two string objects 
contain the same data.   
 

3.3.2 k-NN Analysis 

 
Section 2.4 has already covered the basic concepts of k-NN and its application in a general context. It 
is now time to take a closer look at this algorithm and examine the specifics within the scope of the 
match detection techniques implemented in the ACM application. 
 

Implementation 

 
The application code responsible for all aspects of the k-NN algorithm is based on the scikit-learn 
machine learning library. Specifically, it relies on class sklearn.neighbors.KNeighborsClassifier [47] to 
perform the k-NN functions, with NumPy, another Python library, providing the required support for 
large array operations.   
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k Neighbours 

 
The choice of k, the number of neighbours in the k-NN algorithm, plays an important role in 
determining the accuracy of classification for a query point. In order to choose the most appropriate 
value for k, the performance of the ACM application was assessed across a number of values for k, 
using the open source and obfuscated variants of the FairEmail APK as input. 
 

 
Figure 5: k Neighbours Selection 

 
As can be observed from the graph, the analysis reveals that setting the value of k to 1 yields 
exceedingly better outcomes in terms of precision, which reflects the proportion of correctly 
identified matches among all predicted matches. Similarly, the recall metric, representing the 
proportion of correctly identified matches out of all possible matches, also demonstrates optimal 
performance when k is set to this value. As expected, the improved performance also has an 
influence on the F-measure, which takes into account both the precision and the recall values. A 
more detailed insight into these metrics is included in the Evaluation Section. 
 

Weighting of Neighbour Points 

 
In k-NN models, it is a requirement to specify the weighting of training data points. One approach 
that is frequently used is Gaussian weighting, which assigns less weight to training points that are 
farther away from the query point. Another method that is also commonly used is uniform weighting 
where each training point is treated equally, assigning the same weight to all points within the 
neighbourhood of the query point. 
 
However, in scenarios like the one presented in this project, where k is set to 1, weightings schemes 
like the Gaussian and the uniform would essentially exhibit the same behaviour simply because only 
the nearest neighbour is considered, and there is no aggregation of multiple neighbours’ outputs. 
Applying different weights to training points only becomes meaningful when there are multiple 
nearest neighbours (i.e. k > 1), whose outputs need to be aggregated. But since this is not the case 
with the k-NN model as implemented in Stage Two and Stage Three of the ACM application, the 
uniform weighting is applied. 
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Distance Metric 

 
An appropriate distance metric for measuring the similarity between data points is also required. 
Three measures i.e. the Euclidean, Manhattan, and Cosine were considered [48]. Below are their 
mathematical definitions to measure the closeness between two vectors x and y, where: 
 
𝑥  =    𝑥1 ,𝑥2 ,… , 𝑥𝑛  and 𝑦  =   (𝑦1 , 𝑦2 , … , 𝑦𝑛) 
 
(a) Euclidean Distance (ED) 
 

A special case of the Minkowski distance [49], with p = 2. It is an extension of the 
Pythagorean Theorem. This distance represents the root of the sum of the square of 
differences between the opposite values in vectors. 

 

𝐸𝐷 𝑥, 𝑦 =     𝑥𝑖 −  𝑦𝑖  
2

𝑛

𝑖=1

 

 
(b) Manhattan Distance (MD) 
 

Also known as City block distance, it is another case of the Minkowski distance with p = 1. 
This distance represents the sum of the absolute differences between the opposite values in 
vectors. 
 

𝑀𝐷 𝑥, 𝑦 =   |𝑥𝑖 −  𝑦𝑖 |

𝑛

𝑖=1

  

 
(c) Cosine Distance (CD) 
 

The Cosine distance, also called angular distance, is derived from the cosine similarity that 
measures the angle between two vectors. The Cosine distance is obtained by subtracting the 
cosine similarity from 1. 

 

𝐶𝐷 𝑥, 𝑦 = 1 −  
 𝑥𝑖𝑦𝑖

𝑛
𝑖=1

  𝑥𝑖
2𝑛

𝑖=1   𝑦𝑖
2𝑛

𝑖=1  

 

 
To assess the performance of each distance metric, the ACM application was run using the open 
source and obfuscated versions of the FairEmail APKs, producing the following outcome: 
 

Table 4: Distance Metric Selection 

Distance 
Metrics 

Precision Recall F-measure 

Euclidean 0.996874 0.844992 0. 914671 

Manhattan 0.996585 0.842230 0.912930 

Cosine 0.997173 0.841282 0.912619 
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As is evident from the table, the Euclidean distance achieved the best recall and F-measure, with 
precision only slightly less than that of Cosine. Hence, Euclidean distance was selected for use in the 
k-NN model in this project. 

Training & Query Data 

 
The training and query datasets for the k-NN are the code signatures derived from the static code 
analysis performed in Stage One on the Open Source APK and the Obfuscated APK respectively. This 
means that the k-NN algorithm will predict the class method in the Open Source APK that the query 
data point i.e. the class method in the Obfuscated APK, is most similar to; in which case the two class 
methods will be considered a match. 
 
As can be observed from the following table, analysis shows that recall goes up when using code 
signatures derived from the Obfuscated APK to fit the model. Unfortunately, these gains in the recall 
metric are cancelled out by a simultaneous drop in the precision metric. What this means for the 
matching algorithm is that while using data from the Obfuscated APK to fit the model increases the 
number of true positives, it also introduces more false positives. As will be discussed further in the 
Evaluation section, minimising false positives is key to the success of the algorithm, which is the 
reason behind the decision to fit the k-NN model with the code signatures derived from the Open 
Source APK. 
 

Table 5: Training Data Selection 

Training Dataset 
Metrics 

Precision Recall F-measure 

Open Source APK Code Signatures 0.996874 0.844992 0. 914671 

Obfuscated APK Code Signatures 0.903031 0.926197 0.914467 

 
 

Ablation Study 

 
To validate the concept behind the implementation of k-NN in Stage Two, where it was performed 
on the class object rather than the entire APK, an ablation study was carried out to determine the 
effectiveness of this approach when compared to applying k-NN to map all methods between the 
two APKs, without the class boundaries. The results of this study are presented in the table below: 
 

Table 6: k-NN Scope Performance 

k-NN Scope 
Metrics 

Precision Recall F-measure 

Class 0.996874 0.844992 0. 914671 

APK 0. 581253 0. 610814 0. 595667 

 
The data leaves no doubt as to the benefits of using class-level k-NN in Stage Two of the ACM 
application. The improved outcomes across all metrics can be attributed to the fact that, since the 
data domain used for training and query in the k-NN algorithm is limited in scope, the mapping 
process is more focused, leading to better accuracy in match detection. In other words, given that 
the k-NN algorithm is only concerned with measuring the similarities of code signatures between 
two classes as opposed to involving the entire class inventory of the APKs, there is less opportunity 
for false positives due to the reduced number of data points. 
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3.3.3 Filtering 

 
With the match detection out of the way, the outcomes from the unique composite strings and the 
k-NN analysis are merged together, in preparation for the next task aimed at ensuring the integrity 
of the results in terms of quality, accuracy, and reliability. The process, which satisfies the 
requirements of the third research objective, features the following filtering algorithms:  
 

Table 7: Filtering Types 

Filter Type Algorithm Description 

 
I 

 
Discard matches where the k-NN 
distance is greater than 0 

 
This criterion is based on the rationale that 
a k-NN distance greater than 0 indicates 
dissimilarities between the matched 
methods, suggesting that the match may 
not be authentic. 
 

 
II 

 
Matches are removed where an 
open source method is matched to 
more than one obfuscated method 

 
This filtering criterion was devised on the 
basis that if an open source method is 
matched to multiple obfuscated methods; it 
suggests that the methods lack 
distinguishing properties that may 
negatively impact match detections. 
 

 
To measure the effectiveness of the two filtering algorithms, they were applied directly to the 
matching outputs from Stage Two and Stage Three, using various combinations in order to observe 
the effect that different filtering arrangements have on the final outcome of the ACM application. 
The test results are summarised in the table below: 
 

Table 8: Filtering Performance 

Filter Type Metrics 

Stage Two Stage Three Precision Recall F-measure 

None None 0.886651 0.874901 0.880736 

I I 0.942331 0.839735 0.888080 

II II 0.999369 0.839958 0.912756 

I II 0.944198 0.847152 0.893047 

II I 0.996874 0.844992 0.914671 

I & II I & II 1.0 0.807203 0.893318 

 
One of the most interesting aspects of the test results is that it is possible to obtain a reasonably 
good outcome without filtering any of the outputs. However, the fact that just close to 89% of the 
final matches were correct indicates that there is room for improvement. And yet, when filtering is 
applied, precision goes up while recall reports a somewhat downward trend, suggesting that while 
unreliable matches are removed, some valid entries are also discarded along with the incorrect ones. 
The last entry in the table is a perfect example of this behaviour, with both filters applied to each 
stage, culminating in a perfect precision score (i.e. all final matches are correct) and an extremely 
poor recall performance (i.e. highest amount of discarded valid matches).  
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It is clear from the test data that the use of filters is always going to be a balancing act and hence 
trade-offs must be made. While filtering increases the likelihood of the remaining matches being 
correct, the risk of discarding valid matches cannot be fully eliminated. Ultimately, the decision was 
made to apply filtering to both Stage Two and Stage Three as it was deemed that the associated 
benefits far outweigh the risks. 
 
Using F-measure as a guiding criterion, one can conclude that the most ideal filtering configuration 
should be based on Type II for Stage Two and Type I for Stage Three. As the data suggests, this 
option strikes a balance between achieving accurate predictions and retaining the highest number of 
correct matches. However, this does not mean that other combinations cannot be considered as 
viable options. For instance, using Type II in both stages yields a very high precision score while still 
maintaining an acceptable recall. In fact, one could argue that this would have made a better 
filtering option due to its higher precision score. On those grounds alone, the argument could make 
sense. However, the option chosen for the ACM application exhibits a better balance between 
precision and recall while still managing to score high on both counts. Which is precisely why it made 
it a more suitable option for a utility application such as the ACM, where the effectiveness of its 
outcome is determined by the volume of match detections and the accuracy of those matches. 
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3.4 Stage Three 
 
Building on the outcome from Stage Two, Stage Three widens the scope of the k-NN analysis by 
including methods that were up to this point, inaccessible for reasons that will be explained shortly. 
Recall that in Stage Two, all methods matched on the basis of unique composite strings or k-NN had 
one thing in common – the scope of the mapping was limited to the class objects that yielded at 
least one positive match using unique composite strings. This means that any class which for some 
reason or other was not successful when the APKs were first scanned for matching composite strings 
were simply regarded as unsuitable for further analysis. Considering that this took place right after 
the first attempt at finding matches, it would appear that dropping these classes so early in the 
process would be an illogical thing to do. After all, as has already been discussed in Section 3.2.3, the 
limitations inherent to using unique composite strings cannot be simply overlooked if the ACM 
application is expected to cover as much footprint of the APK code as possible.  
 
The approach used in Stage Three uses callees as the main driver to drill further into the code 
structure of the APK. In other words, methods (the callers) that have been matched in Stage Two are 
re-examined and their call tree inspected for methods (the callees) that belong to classes which have 
not yet been considered in the match analysis. Hence, on the basis of following the call hierarchy of 
the methods matched in Stage Two, it is possible to branch out and reach other class objects that 
would have otherwise remained inaccessible. 
 
Also included as a supplementary task in Stage Three is the final merge of the results from both 
Stage Two and Stage Three, referred to as Merge Output, the final step in the process flow diagram. 
Basically, on completion of Stage Three, k-NN results are combined with the k-NN output from Stage 
Two, and once the data is cleaned of any duplicate entries, the final outcome from the ACM 
application is delivered as a single CSV file, consisting of several fields that would include the names 
of the matched methods, their location in the APKs as well as their k-NN distance. 
 

3.4.1 Ablation Study 

 
To determine the effectiveness of including Stage Three as an additional and final step in the match 
detection pipeline of the ACM application, an ablation study was carried out to determine the extent 
of its contribution, if any, to the overall matching process. The investigation involved running two 
instances of the ACM application, with the first instance configured to execute all the three stages 
and the second instance configured to run only the first two, i.e. Stage One and Stage Two. 
 
As with all studies included in the Design section, the evaluation was carried out using both the open 
source and the obfuscated versions of the FairEmail application. The final results of the ablation 
exercise are summarised in the table below:  
 

Table 9: Efficacy of Stage Three 

ACM Configuration 
Metrics 

Precision Recall F-measure 

With Stage Three 0.996874 0.844992 0. 914671 

Without Stage Three 0.999362 0.830419 0.907091 

 
Looking at the results, several important observations emerge. For instance, the inclusion of Stage 
Three led to an increase in false positives, and hence a drop in precision. However, Stage Three also 
improves recall, an indication that more correct matches are detected at the expense of the increase 
in false positives. Therefore, there is a trade off between matching more methods as opposed to 
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maintaining a very slightly higher level of accuracy. Given that the drop in precision is minimal 
compared to the increase in recall and that the score for F-measure is higher when Stage Three is 
present, the decision was made to incorporate Stage Three as part of the ACM application. 
 

3.4.2 Implementation 

 
Bar for the fact that in Stage Three, the mapping process is driven by callees as opposed to unique 
composite strings as in Stage Two, there is a lot in common in the way the two stages implement 
match detection between the Obfuscated APK and the Open Source APK. Suffice to say that they 
share exactly the same k-NN model, based on the configuration covered already for Stage Two in 
Section 3.3.2. The similarities also extend to the filtering procedure of the k-NN results and the 
dependency of the Stage Three k-NN analysis on the outcome from Stage Two, as illustrated in the 
process flow diagram. In essence, the core of the matching algorithm in Stage Three is implemented 
as follows:  
 
(a) The callees of each method matched in Stage Two are identified and checked if they belong 

to class objects that have already been mapped, using k-NN analysis in Stage Two. If it is the 
case, the callee methods and their corresponding classes will not be considered for further 
analysis. Otherwise, each pair of matching class methods from Stage Two could give rise to 
one of two possible scenarios: 

 
(a-i) In scenarios where each method in a matched pair from Stage Two consists of only a 

single callee, the algorithm proceeds to match these callees without using k-NN. This 
approach follows the same line as the one used earlier where two class methods 
from different APKs are matched on the basis of two identical unique composite 
strings. Once again, as was indeed the case with unique composite strings, the 
algorithm employs k-NN analysis to match the remaining methods in the callee 
classes across the two APKs. This is shown as k-NN Analysis II in the process flow 
diagram. 

 
(a-ii) In the event that a pair of matching methods from Stage Two include multiple 

callees in their code, the algorithm performs two cycles of k-NN analysis, also 
illustrated as k-NN Analysis II in the process flow diagram. The first k-NN involves the 
callees themselves, matching the open source callees with the obfuscated callees. 
The second instance of k-NN is carried out on the remaining methods within the 
classes of the callees.  

 
(b) Similar to the data filtering procedure used in Stage Two and as explained in more detail in 

Section 3.3.3, the Stage Three results are finalised with the inspection of the k-NN outcome 
and the removal any low confidence and unreliable entries. 
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4 Evaluation 
 
In line with the fourth research objective, this section undertakes the task of evaluating the 
performance and efficiency of the ACM application. To ensure a comprehensive assessment, several 
key areas will be considered: 
 
(a) Accuracy 
 

The focus here is to determine the application’s accuracy in matching open source class 
methods to their obfuscated counterparts. The purpose of this is to ascertain the reliability 
of the application by evaluating that validity of the matches. 

 
(b) Coverage 
 

Assessing the number of class methods that have been matched successfully provides an 
insight into the thoroughness of the ACM application. This aspect of the evaluation helps 
understand the extent to which the ACM application covers the code footprint. 

 
(c) Speed 
 

Another important factor to consider is performance as in the time it takes for the 
application to complete a full run. In essence, this provides a measure of the application’s 
utility and its applicability to real-world scenarios. 

 
To summarise therefore, the evaluation aims to provide a 360-degree view of the ACM application 
by thoroughly examining each of these key performance indicators that, in more ways than one, 
determine the quality and completeness of the project deliverable. 
 

4.1 Setup 
 
The evaluation setup was installed with four different Android applications, provisioned in both 
open source and obfuscated version, as per procedure outlined in Section 3.1. A basic profile for 
each of these applications is provided by the table below:  
 

Table 10: Test Applications 

App Name Version 
Lines of 

Code 
# Class 

Methods 
Use Case 

FairEmail [39] 1.2143 88,203 3,776 

 
Fully-featured, privacy oriented email 
application for Android. 
 

OpenKeyChain [52] 6.0.2 52,822 3,324 

 
Stores and manages encryption keys, 
facilitates key exchange, and 
encrypts/decrypts messages for 
secure communication. 
 

PCAPdroid [53] 1.7.0 18,144 1,162 
 
Privacy-friendly app for tracking, 
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analysing, and controlling app 
connections, with features for 
exporting and inspecting traffic. 
 

TrackerControl [54] 2024.01.03 2,282 128 

 
Allows monitoring and control of 
data collection by mobile apps, 
promoting user privacy and data 
transparency. 
 

 

4.2 Evaluation Metrics 
 
The following three widely adopted metrics [50, 28, 51] are used to assess the performance of the 
ACM application: 
 

Table 11: Evaluation Metrics 

Metric Formula Explanation 

Precision 
TP

TP+ FP
 

 
Evaluates the fraction of correct matches out 
of all matches made. 
 

Recall 
TP

TP+FN
 

 
Quantifies the number of correct matches 
made out of all possible matches that could 
have been made. 
 

F-measure 
2 × Precision × Recall

Precision + Recall
 

 
A combined metric that takes both precision 
and recall into account using a single score. It is 
calculated as the harmonic mean of precision 
and recall, providing a balanced measure of 
the algorithm's performance. 
 

 
In the context of this project, true positives (TP) refer to the number open source methods correctly 
matched to obfuscated class methods. On the other hand, false positives (FP) are Type I errors and 
represent the number of open source class methods incorrectly matched to class methods in the 
obfuscated code. Additionally, false negatives (FN), known as Type II errors, represent the number of 
class methods in the open source code that were not matched to any class method in the obfuscated 
code. 
 
In assessing the performance of the ACM application, the priority is to ensure the accuracy of the 
matches rather than attempting to match every class method between the two APKs, which 
underscores the importance of prioritising precision over recall.  The reason behind this is because 
the primary goal of the ACM application is to accurately determine the extent of similarity between 
the two APKs, which is best achieved by obtaining a reasonable number of highly confident matches 
rather than a high volume of matches that are deemed unreliable. In essence, quality takes 
precedence over quantity. 
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However, it is important to not disregard recall entirely. The metric remains relevant because 
determining if equivalence between APKs exists also depends on having a sufficient number of 
matches. In other words, relying solely on a small percentage of high confidence matches may lead 
to erroneous conclusions. The key here is the need to strike a balance between reliability and 
volume as both are crucial to achieve results that are dependable. 

4.3 Determining the Ground Truth 
 
In order to calculate the precision, recall, and F-measure metrics, it is essential to first establish a 
ground truth for each application. The process involved inspecting the build.gradle file of the 
obfuscated APK, which specifies the obfuscation rules set by the developer. The inspection revealed 
that the method and class names remained unchanged between the open source and obfuscated 
APKs, a characteristic that made it possible to establish a reliable ground truth. 
 
The process of creating the application’s ground truth involves obtaining the Method IDs of the class 
methods in the open source and obfuscated APKs. Because the method and class names were not 
affected by the obfuscation, they remained the same in both APKs, which made it easy to build the 
ground truth by simply matching their Method IDs. Subsequently, a CSV file was generated, 
containing the Method ID of each open source class method alongside the Method ID of its 
obfuscated equivalent. 
 
It is important to clarify that the absence of obfuscation in method and class names does not 
undermine the efficacy and validity of the proposed approach. As is clearly demonstrated in Section 
3, method and class names play no role in the analysis or matching of class methods. Therefore, 
whether the open source and obfuscated APKs have identical or different method and class names 
does not bias or influence the results presented in this section. It merely simplifies the creation of a 
ground truth for evaluation purposes. 
 
Furthermore, in line with the code filtering procedures discussed in Section 3.2.1, synthetic methods 
are not considered for the matching process by the ACM application, meaning that they are also 
excluded from the ground truth. By doing so, the evaluation provides a more accurate 
representation of the application’s performance, focusing solely on code written by the developers. 
 

4.4 Accuracy & Coverage 
 
Once the ground truth for each application is established, the assessment of the ACM application’s 
ability to map methods between the open source and obfuscated APKs can begin. The results of this 
assessment are presented in the table below: 
 

Table 12: ACM Performance 

Applications 
Metrics 

# Matches Made Precision Recall F-measure 

FairEmail 3199 0.996874 0.844992 0. 914671 

OpenKeyChain 1945 0.992288 0.881325 0.933521 

PCAPdroid 934 0.994647 0.800172 0.886874 

TrackerControl 121 1.0 0.945312 0.971888 
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4.4.1 Precision 

 
Analysing the precision across all four applications reveals strong performance, with over 99% 
correct matches. Such high precision highlights the effectiveness of the ACM application in 
accurately mapping methods between the open source and obfuscated APKs. 
 
Upon closer inspection of the false positives, two distinct scenarios that lead to errors emerge. One 
scenario takes place during k-NN Analysis I, while the other arises in k-NN Analysis II. The errors that 
originate from k-NN Analysis I account for 60% of all observed errors, while the remaining 40% stem 
from k-NN Analysis II. 
 

k-NN Analysis I Errors 

 
As k-NN Analysis I matches one class from the open source APK to precisely one class in the 
obfuscated APK, any errors encountered involve discrepancies when matching methods within the 
scope of a single class. An instance of such an error was identified during the evaluation of the 
FairEmail application. 
 
In this case, the class method onDateAfter() from the open source APK was incorrectly matched with 
onDateBefore() in the obfuscated APK. The two methods belong to FragmentRule, a class that is 
shared by both APKs. A manual inspection of the source code revealed that the two methods are 
syntactically and semantically equivalent, bar for two lines of code where the methods are 
referencing different class objects, as can be verified from the following code excerpts 
(this.tvDateAfter vs this.tvDateBefore): 
 

onDateAfter() 
 

 
 

onDateBefore() 
 

 
Figure 6: Example of k-NN Analysis I Error 
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However, due to the features employed in the k-NN analysis, this discrepancy was not captured. 
Consequently, the features extracted from both methods were identical, leading to the algorithm 
erroneously matching the two methods during k-NN Analysis I. 
 
One way of addressing the shortcoming would necessitate the inclusion of additional features in the 
k-NN analysis to help it narrow down differences between class methods. For instance, incorporating 
the method names of the callees as a feature can possibly mitigate this type of error. 
 

k-NN Analysis II Error 

 
In k-NN Analysis II, there can be instances when multiple classes from both APKs are involved in the 
matching process. Consequently, methods originating from different classes may be matched 
incorrectly because they contain identical source code and hence, share the same code signatures. 
An example of this type of error was encountered during the evaluation of the FairEmail application. 
 
In this case, class method getList() from class SimpleTask was incorrectly matched to getList() in class 
TwoStateOwner. Upon examining these methods, it was revealed that every line of code was the 
same, resulting in identical features being extracted. As a result, the algorithm erroneously matched 
these methods during k-NN Analysis II, despite them originating from different classes. 
 
In contrast to the errors encountered in k-NN Analysis I, adding additional features to better 
compare and distinguish class methods would not have any effect in this particular case because the 
mismatched methods in k-NN Analysis II have identical source code. Instead, it might be more 
beneficial to include features that characterise the class to which the method belongs. While this 
concept remains untested in this project, such features could include metrics like the total number 
of methods in a class. By incorporating class-related features, it could be possible to mitigate errors 
like those observed here. 
 

4.4.2 Recall 

 
The recall metric also showed strong performance, with each application correctly predicting over 
80% of all possible matches. An analysis of the false negatives, which represent the open source 
class methods that could have been matched to their obfuscated equivalent but failed, reveals 
additional insights. Taking the evaluation of the FairEmail application as an example, it had 18% of 
the open source class methods not matched at all. An inspection of these false negatives revealed 
that they were caused by one of these three conditions - 46% of the time it was due to the way the 
k-NN analysis was implemented, and the other 54% of the time was because matches were removed 
during filtering, or because the classes to which the false negative methods belong were never 
considered in the matching process. 
 

k-NN Implementation 

 
In the context of the k-NN model, the open source class methods serve as the training dataset, while 
the obfuscated class methods act as the query dataset. Hence, for an open source class method to 
be matched with an obfuscated class method, it needs to be the nearest neighbour to at least one 
method in the query dataset. This requires its code signature to be the most similar to that of at 
least one obfuscated method. However, in practice, there are instances where an open source 
method is not the nearest neighbour to any obfuscated method and thus the open source method is 
not matched at all. 
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These instances of missed matches stem from discrepancies in the code signatures, which are 
attributable to the obfuscation techniques employed. Specifically, the culprit is method inlining, 
which negatively impacts the number of identified outbound method invocations. With method 
inlining, method invocations are incorporated directly into the body of the method, thereby 
decreasing the number of outbound method invocations that can be detected. Consequently, the 
dissimilarity between the code signatures of the open source and the obfuscated code results in the 
open source method failing to be matched to any method, leading to the false negatives observed 
here. 
 

Filtering 

 
As discussed in Section 3, low-confidence, duplicate and incorrect matches are filtered out in both 
instances that involve k-NN analysis, the main aim being the mitigation of Type I errors. However, 
while the filtering successfully accomplishes this, it also inadvertently removes some correct 
matches too, contributing to some of the Type II errors being observed. 
 

Matching Scope 

 
The open source classes considered during k-NN Analysis I and k-NN Analysis II in Stage Two and 
Stage Three respectively were: 
 
(a) k-NN Analysis I 
 

Classes containing a method with a unique composite string that has an identical match in 
the obfuscated APK. 

 
(b) k-NN Analysis II 
 

Classes that contain the methods defined as callees in class methods matched during k-NN 
Analysis I. 

 
Consequently, a class that does not fall into one of these two categories will not be included in 
either stage of the matching process. As a result, all member methods of these classes will remain 
inaccessible, giving rise to false negatives. 
 

4.4.3 F-Measure 

 
The F-measure serves as a summary metric, providing a consolidated assessment of the ACM 
application. Across all four test applications, the F-measure is consistently high, with even the lowest 
score exceeding 0.8. These scores affirm the ACM application’s ability to maintain both false 
positives and false negatives to a minimum. In effect, this demonstrates that the ACM is capable of 
accurately matching a substantial number of methods between the APKs. Overall, the strong F-
measure scores validate the algorithm’s efficacy and its suitability for practical applications such as 
code versioning, cyber security and ethical oversight concerning the use of open source code. 
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4.5 Runtime Efficiency 
 
The following graph illustrates the relationship between the processing time and the number of lines 
of code in each of the four test applications. The ACM application was benchmarked on a 12th Gen 
Intel Core i7 1.70GHz workstation, installed with 16GB of RAM. 
 

 
Figure 2: Processing Speed 

 
The plot demonstrates a linear relationship between runtime and the number of lines of code in the 
APK. As a result, the runtimes remain relatively small, with the ACM application taking less than 5 
minutes to process FairEmail, the largest test Android application. These efficient runtimes highlight 
the suitability of the ACM application for real-world scenarios. 
 
A breakdown of the runtime performance is provided in Table 13, detailing the time spent in each 
stage of the ACM application. The breakdown reveals that the majority of time is dedicated to 
analysing the APKs in Stage One. In the case of FairEmail, Stage One constitutes 58% of the total 
processing time. This is to be expected, given that nearly 180,000 lines of code across both APKs had 
to be analysed. 
 

Table 13: Processing Time 

Applications 
Time (s) 

Stage One Stage Two Stage three Total 

FairEmail 155 72 41 268 

OpenKeyChain 54 70 18 142 

PCAPdroid 46 7 3 56 

TrackerControl 33 1 1 35 
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4.6 Additional Testing 
 
In addition to testing the performance of the ACM using the open source APK and its obfuscated 
variant for the four applications presented in Section 4.1, two additional tests were carried out to 
further evaluate the ACM application. 
 

4.6.1 Test Case 1 

 
This section introduces a more challenging scenario to evaluate the ACM application's performance 
in a real-world context. Unlike the previous test of Section 4.4, where the APKs supplied as input to 
the ACM application were practically identical except for the obfuscation; this test incorporates 
additional code embedded in the open source APK. The purpose of this is to determine whether the 
ACM application would mistakenly match these additional call methods to methods in the 
obfuscated variant. 
 
The test was carried out in a similar manner to the test in Section 4.4, with the exception that the 
open source code was modified to include additional classes, in effect increasing the application’s 
size. The inclusion of the extra code resulted in a 15% increase in the total number of methods. 
 
The results were the identical to those registered in Table 12, indicating that the ACM did not match 
any of the additional methods. This demonstrates that augmenting the application with additional 
code did not affect the ACM’s ability to accurately identify matches. 
 

4.6.2 Test Case 2 

 
The final assessment conducted a form of negative testing to confirm that the ACM would not 
identify any matches when provided with two entirely different APKs. To carry out this test, the ACM 
was supplied with two APKs - one from an application, such as the open source FairEmail APK, and 
the other from a different application, for example, the obfuscated variant of the PCAPdroid APK. 
 
This process was repeated four times with the following combinations of APKs: 
 
(a) FairEmail Open source & OpenKeyChain Obfuscated 
 
(b) OpenKeyChain Open source & PCAPdroid Obfuscated 
 
(c) PCAPdroid Open source & TrackerControl Obfuscated 
 
(d) TrackerControl Open source & FairEmail Obfuscated 
 
In all instances, the ACM application did not identify any matches. This result can be attributed to 
the methodology employed in k-NN Analysis I in that, when there are no unique composite strings 
that are common between the APKs, the matching process is not initiated. These results confirm 
that the ACM accurately distinguishes between APKs that are not similar in any way. 
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5 Conclusion 
 
The development and testing of the ACM application have successfully met all four project 
objectives set out at the beginning of this dissertation. 
 
To address the first objective, four applications, along with their obfuscated and open source APKs 
were acquired for development and testing purposes. As outlined in the Preliminary Stage, this 
involved obtaining the obfuscated APKs from F-Droid and building the open source APKs using the 
applications’ respective GitHub code repositories. 
 
The Design section provides a detailed discussion regarding the implementation of the ACM 
application, thus achieving the second objective. 
 
Furthermore, within the Design section, experiments were conducted to test various combinations 
of filtering techniques, with the purpose of finding the most effective approach for identifying and 
eliminating low-confidence matches, thereby fulfilling the third objective. 
 
Finally, the fourth objective pertained to the assessment of the final matches generated by the ACM 
application. This was realised by establishing a ground truth and evaluating the accuracy, coverage, 
and processing time of the ACM application across the four applications. 
 

5.1 Limitations 
 
Recognising the limitations of the ACM is important for understanding its applicability and its 
potential constraints. These limitations can be broadly classified into scope limitations, which define 
the boundaries of what was explored, and design limitations, which concern the constraints inherent 
in the methodology adopted for the ACM application. 
 

5.1.1 Scope Limitations 

 

Obfuscation 

 
The project considers types of obfuscation categorised by code clones Type I, II and III, as outlined in 
the Background section. However, another clone type, Type IV, characterised by differing code texts 
but identical functionality, was not addressed. Consequently, the ACM’s effectiveness in identifying 
matches which employ this form of obfuscation remains unknown. 
 

5.1.2 Design Limitations 

 

Identifying Strings 

 
As detailed in the Design Section, the ACM initiates its matching process by identifying unique 
composite strings within the APKs. While empirical evidence suggests that this approach is 
successful, the absence of initialised strings in an application would lead to failure in the matching 
process. In such cases, the ACM would be unable to initiate the matching process. 
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Matching Strings 

 
The successful identification and matching of unique composite strings between APKs is crucial for 
the ACM's operation. However, the assumption that identical unique composite strings imply 
method correspondence, while supported by empirical evidence, carries a risk of failure. Although 
the likelihood of unrelated methods sharing the same unique composite string is low, acknowledging 
this possibility is important. 
 

Class Membership 

 
Following the unique composite string matching, the ACM employs k-NN analysis within the class 
boundaries. This is based on the assumption that class membership is not affected by obfuscation. 
While evaluation revealed no issues with this assumption, the potential for obfuscation to alter 
method class memberships cannot be discounted. Although, this phenomenon was not observed 
during evaluation, it is still worth acknowledging the possibility of it happening. 
 

5.2 Future Work 
 
The work undertaken in this dissertation can be extended in order to broaden its scope and utility.  

5.2.1 Support for Multiple Programming Languages 

 
As the development and testing of the project was carried out solely on Java applications, extending 
the project to support other programming languages commonly used in Android app development, 
such as Kotlin, could enhance its versatility and applicability in diverse development environments. 
 

5.2.2 Comparison of Multiple APKs 

 
Currently, the system allows for pairwise analysis and matching of two APKs. To enhance scalability, 
it would be beneficial to accommodate for the comparison of multiple APKs simultaneously. This 
feature would be particularly valuable in scenarios where it is necessary to compare one APK to 
several candidate APKs such as in areas of plagiarism detection, the identification of open source 
code and malware analysis. 
 

5.2.3 Expand Input File Support 

 
Presently, the ACM application exclusively supports APK archives as input. Expanding its capabilities 
to handle additional file types, such as iOs AppStore Package (IPA) files, equivalent to APKs for iOS 
applications, would broaden its utility and cater to a wider range of application development 
ecosystems. 
 

5.2.4 Improvement of User Interface 

 
The current implementation lacks a user-friendly interface, which could prove challenging for non-
technical users. Investing resources into designing and implementing a more intuitive and accessible 
user interface would improve user-experience, making the project more widely accessible to users 
with varying levels of technical expertise. 
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5.3 Closing Remarks 
 
This paper presents a novel approach for identifying similar methods between open source and 
obfuscated Java Android applications. Based on the review of existing literature, it becomes clear 
that employing unique strings for class method matching and using class boundaries and program 
call hierarchy to define the scope of the k-NN analysis constitutes an innovative approach. 
 
The ACM application was successful in correctly matching class methods and covering a large 
footprint of the APKs. However, like any research endeavour, there are areas for improvement and 
inherent limitations. Nevertheless, the dissertation has demonstrated the ACM application’s 
capability in identifying and matching class methods between APKs - a task that can be applied to 
code versioning, plagiarism detection, and addressing ethical considerations pertaining to open 
source code usage. 
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