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Abstract 
 

Despite extensive research in the field of Generative Artificial Intelligence(AI), little is known 

about the reasoning abilities of AI models with respect to solving Constraint Satisfaction 

Problems(CSP) such as zebra puzzles. This dissertation aims to investigate the competency 

of ChatGPT in reasoning out zebra puzzles and how prompt engineering techniques such as 

Chain Of Thought and One Shot prompting can be used to improve its performance. We 

measure the accuracy of GPT-4  on sixteen variations of the classic zebra puzzle using two 

different approaches: interactive communication in natural language and generation of 

constraint models in a programming language. Preliminary results indicate that GPT- 4 

exhibits promising proficiency in the creation of constraint models using programming 

languages such as Prolog. 
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1 

Introduction 
 

1.1 Motivation 

Generative Artificial Intelligence is a burgeoning field that has seen tremendous growth over 

the past five years. The boom of content generation via AI models has initiated a shift in the 

way that content is created and consumed. While techniques for content generation have 

been around for decades [31], newer AI models demonstrate an ability to apply common 

sense and logic [32]. This is crucial because reasoning capabilities in AI models represent a 

significant stride towards achieving Artificial General Intelligence (AGI). 

A constraint satisfaction problem (CSP) such as the Zebra Puzzle presents a compelling 

benchmark for assessing the capabilities of AI. CSPs often exhibit high complexity, requiring 

a combination of heuristics and combinatorial search methods to be solved in a reasonable 

time. Currently, CSPs have industry-wide applications such as forest treatment scheduling 

[28] and aircraft scheduling [29], and rely on modelling tools (such as CPMpy [30]) that 

require user expertise.  

With the recent advancements in AI models, an interesting question arises: Could a user 

provide the problem to the AI model in natural language and the AI solves it? Another idea 

that can be explored is: could the AI model extract a formal model that the user can use to 

generate the solution? 

Such a mechanism could make the process more streamlined without the need for a 

dedicated expert handler or modelling tools.  

 

1.2 Problem Statement 

The research in generative AI models has focused on testing the efficacy of AI on various 

types of problems such as mathematics and common sense [4],[6]. Problems like zebra 

puzzles are a combination of problems where multiple abilities like mathematical reasoning, 

and common sense are necessary to reach a deduction. Such problem domain is still largely 

unexplored. 
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Prior studies related to the topic have concentrated on refining the reasoning capabilities of 

AI systems through various methods, among which prompt engineering emerges as one of 

the most prominent [4], [7], [13]. 

This dissertation investigates two possible approaches to utilize ChatGPT (specifically GPT-4) 

to solve zebra puzzles. Firstly, we investigate the approach to interact with the model in 

natural language to evaluate and understand its limitations. Secondly, we investigate the 

efficacy of ChatGPT on a prior suggested technique, where we use GPT to extract a formal 

model of the problem that we can plug into a programming environment to obtain the 

solution. 

 

1.3 Dissertation Outline 

There are 4 chapters following this: Related Work, Design and Implementation, Evaluation, 

and Conclusion. The next section highlights the background and related work in the field of 

generative AI. Various topics related to our investigation such as prompt engineering and 

the Chain of Thoughts technique are introduced and discussed. Chapter 3 presents the 

design and implementation of the techniques used in this investigation. In Chapter 4, we 

take a look at the results of the investigation and discussions about them. Finally, Chapter 5 

concludes the dissertation by summarizing the findings and discussing the open research 

problems for eliciting reasoning in AI models. 
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2 

Related Work 
 

The following subsections introduce some relevant topics and methods related to our 

dissertation.  

 

2.1 Constraint Satisfaction and Artificial Intelligence 

Constraint Satisfaction Problems (CSP) have been a long-standing interest in the AI 

community. This is because constraint-based software is used in various important activities 

such as forest treatment scheduling [28] and scheduling of aircraft [29].  

A CSP can be defined as a set of variables X = {𝑥1, 𝑥2, 𝑥3…… . . 𝑥𝑛} where each variable 𝑥𝑖  has 

a finite set of possible values in domain 𝐷𝑖. A set of constraints restrict the values that 𝑥𝑖   

can take. The solution of a CSP is defined when all the values in X have an assigned value 

from their domain. A solution can be one unique set of values or multiple sets of values. 

There are multiple ways to solve a CSP. Kumar, V. [33] describes some methods of solving 

finite domain CSPs. These include backtracking and constraint propagation. However, these 

techniques have their limitations. As discussed by Barták, R. [3], even a small change in the 

program can lead to a huge change in performance. Additionally, it is a difficult task to 

choose the right technique for a specific problem. 

With the advent of AI models such as ChatGPT [18], Gemini [19], and Copilot [20], it has 

become much easier to use natural language as a way to communicate problems to an AI 

model and obtain solutions. Various AI models have been tested on mathematical, logical, 

and common sense questions [12] [13]. These approaches have focused purely on obtaining 

a solution in terms of natural language i.e. the final output is in natural language. It should 

be noted that most of these problems were small and required only a few steps for the AI to 

compute the answer. Complex problems like zebra puzzles require working with multiple 

constraints and backtracking (if using natural language). Current AI models do not possess 

the ability to self-verify their output [9] and have a high degree of hallucinations [11].  

Tsouros, D. et al. [15] proposed using natural language with Large Language Models to 

automatically extract a model required to solve the problem. They suggested leveraging 
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prompt engineering to tackle the task of converting the natural language to an optimization 

problem. A model can be obtained directly from a natural language by extracting the 

relevant parameters(or elements), constraints, and objective function, and then using those 

to formulate the code.  

Further, models like ChatGPT have shown high efficacy in finding and fixing bugs in 

programs which can be used in combination with the above technique. Sobania, D. et al. 

[16] evaluated the automatic-bug fixing performance of ChatGPT and evaluated that it fixed 

19 out of 40 bugs in a benchmark set.  

 

2.2 The Zebra Puzzle 

The Zebra Puzzle [1] (also referred to as Einstein’s Riddle) is a constraint satisfaction 

problem. It consists of 5 houses with different colours, each containing a pet, a beverage, a 

brand of cigarette, and an inhabitant of different nationalities. There are multiple versions 

of the zebra puzzle but we consider the classic puzzle that is given in [1]. 

 

1. There are five houses. 

2. The Englishman lives in the red house. 

3. The Spaniard owns the dog. 

4. Coffee is drunk in the green house. 

5. The Ukrainian drinks tea. 

6. The green house is immediately to the right of the ivory house. 

7. The Old Gold smoker owns snails. 

8. Kools are smoked in the yellow house. 

9. Milk is drunk in the middle house. 

10. The Norwegian lives in the first house. 

11. The man who smokes Chesterfields lives in the house next to the man with the fox. 

12. Kools are smoked in a house next to the house where the horse is kept. 

13. The Lucky Strike smoker drinks orange juice. 

14. The Japanese smokes Parliaments. 
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15. The Norwegian lives next to the blue house. 

 

Who drinks water? Who owns the zebra? 

 

The following additional information is also provided to help us solve the puzzle: 

House Colors: Red, Blue, Yellow, Green, Ivory 

Nationalities: Englishman, Spaniard, Japanese, Ukrainian, Norwegian 

Pets: Dog, Horse, Snails, Fox, Zebra 

Drinks: Water, Tea, Orange Juice, Milk, Coffee 

Brand of Cigarettes: Kools, Old Gold, Parliament, Lucky Strike, Chesterfield 

  

 

     

Norwegian Ukrainian Englishman Spaniard Japanese 

water tea milk orange juice coffee 

Kools chesterfield Old gold Lucky strike Parliaments 

fox horse snail dog zebra 

 

Fig 1. Solution to the Classic Zebra Puzzle 

There are various ways to solve this puzzle.  For this dissertation, we will be using SWI-

Prolog [2]. SWI-Prolog is a high-level programming language that offers a way to specify a 

set of constraints about a problem domain and infer the solution from those constraints. It 

uses backtracking [33] as a part of its approach to solve CPSs.  

Because this version of the puzzle is widely available on the web, it is already present in the 

training data for ChatGPT. Hence, a fresh set of puzzles was used that ChatGPT has not seen 

before. 

New puzzles with different complexities based on the original puzzle were created. More 

about this is discussed in the methods section.  
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2.3 OpenAI & ChatGPT 

OpenAI [38] is an AI research and deployment company. ChatGPT [18] (GPT short for 

Generative Pre-Trained Transformer) is a large language model (LLM) developed by OpenAI. 

It is one of the most widely used LLMs worldwide and acquired one million users in only five 

days. Currently, OpenAI offers two versions of their LLM to the public. These are ChatGPT 

3.5 and GPT-4 [35], with the former being the latest model. GPT-4 is only available to 

ChatGPT Plus subscribers. 

ChatGPT was trained on a vast dataset from various sources on the internet. This dataset 

allows the model to create a deep neural network that helps it to recognize and learn from 

the patterns in the training data. When a prompt is given to the model, ChatGPT predicts 

which words should be used next.  

If we compare the two available versions, GPT-4 has a higher number of parameters in 

contrast to its predecessor’s 175 billion and achieved a 9.7% higher accuracy with few shot 

prompting on HellaSwag [34] commonsense reasoning questions [35]. It has also shown 

signs of AGI by answering difficult reasoning questions such as creating a stack to balance a 

book, 9 eggs, a laptop, a bottle, and a nail [10], or answering questions that require general 

knowledge and common sense [12]. 

OpenAI claims that GPT 4 is better at understanding instructions : 

“The difference comes out when the complexity of the task reaches a sufficient 

threshold—GPT-4 is more reliable, creative, and able to handle much more nuanced 

instructions than GPT-3.5”- OpenAI [35] 

 

For these specific reasons, this dissertation was carried out with the help of OpenAI’s latest 

model GPT-4. We investigate if GPT-4 can tackle the complexity of a zebra puzzle. For the 

rest of this dissertation, GPT-4 is referred to as GPT to make the text more readable. 
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2.4 Prompt Engineering 

It is important to formulate the input in a way that the AI model can comprehend. For 

example, specifying how it should solve a problem and what should be the final output. 

Prompt engineering [7] is the process of creating and optimizing inputs to get the desired 

output. Even though AI chatbots are designed to understand human-like text, their 

performance can be enhanced by adding more details to the prompt. For example, Chen, B. 

et al. [12] present a brief overview of the benefits of prompt engineering in enhancing the 

performance of LLMs by using a few prompt engineering techniques.  

Some examples of prompt engineering include Few Shot Prompting [21], Zero Shot 

Prompting [22], and Chain of Thought Prompting [4] . Few shot prompting requires that the 

input contains some example questions and answers. The AI finds patterns in the examples 

provided in the input and learns from them. In Zero Shot prompting, no such examples are 

provided and the AI answers solely based on the question. Another type of prompting called 

Chain of Thought prompting requires the use of an additional instruction such as “Let’s think 

step by step” so that the AI can apply reasoning to its answers. 

Additionally, these techniques can be combined to get better outputs. For example, Chain of 

Thought can be either a Zero Shot Chain of Thought or Few Shot Chain of Thought [4].  

Wei, J. et al.  [4] show that a simple addition of the line such as “Let’s think step by step” 

can elicit the AI to return better outputs. Similarly, Wang, L. et al. [6] investigated the use of 

another instruction to elicit reasoning and proposed Plan and Solve prompting that returned 

even better results than Zero Shot Chain of Thought. 

The techniques relevant to our thesis are discussed in this section. 
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2.4.1 Zero Shot Prompting (ZS) 

Zero shot prompting is the most basic kind of prompting. The AI is provided with the input 

with no additional instructions. 

Here is an example of Zero Shot prompting: 

 

Input: 

Classify the text into neutral, negative or positive. 

Text: I think the vacation is okay. 

Sentiment: 

 

Output: 

Neutral 

 

2.4.2 One Shot Prompting (OS) 

One Shot Prompting is a part of Few Shot Prompting [24] and uses one example to guide AI 

in the task that it is required to perform. This includes communicating the formatting that 

the user wants and the way of approaching the problem.  

Here is an example of One Shot Prompting. 

Input: 

Q: What is (3 + 3) X 2? 
 

A: 
3 + 3 = 6 

6 X 2 = 12 
The answer is 12. 

 

Q: What is (2 + 2) X 3? 

A: 

 

Output: 
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2 + 2 = 4 

4 X 3 = 12 

The answer is 12. 

 

As we can see, the AI learned from the pattern in the example output provided by the user 

and applied that learning to its output. It even applied the same format that was used in the 

example. 

 

2.4.3 Zero Shot Chain of Thought Prompting (ZS CoT) 

Chain of thought prompting (CoT) was introduced by a Google research team Wei, J. et al. 

[4]. It enables the AI to apply better reasoning strategies by thinking step by step. There are 

multiple types of Chain-of-Thought prompting such as Few Shot [26], Zero Shot [6] and Auto 

Shot [27]. Few shot and auto shot prompting require the use of multiple questions and 

answers type of examples to be included in the prompt. For complex puzzles such as the 

zebra puzzles, it is not feasible to use these techniques because  

• Their solutions can often expand to a large number of words. 

• There can be multiple ways to solve a puzzle. 

• They require hand-crafted Few Shot examples that are difficult to create 

Here is an example of a Zero Shot prompt without Chain of Thought: 

 

Input 

I went to the market and bought 10 apples. I gave 2 apples to the neighbor and 2 to the 

repairman. I then went and bought 5 more apples and ate 1. How many apples did I remain 

with? 

 

Output 

11 apples 
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As we can see, the output returned by the AI is incorrect. Let us try this again with Zero Shot 

CoT: 

 

Input 

I went to the market and bought 10 apples. I gave 2 apples to the neighbor and 2 to the 

repairman. I then went and bought 5 more apples and ate 1. How many apples did I remain 

with? Let's think step by step. 

 

Output: 

First, you started with 10 apples. You gave away 2 apples to the neighbor and 2 to the 

repairman, so you had 6 apples left. Then you bought 5 more apples, so now you had 11 

apples. Finally, you ate 1 apple, so you would remain with 10 apples. 

 

As we can see, adding a single line to the input prompt has resulted in the correct output. 

The AI has strategically taken steps to reach the final output. This can be further modified to 

use different one-line commands to increase the accuracy of the output.  

 

2.4.4 Plan and Solve Prompting (PS) 

Wang, L. et al. [6] tested Zero Shot CoT using a more detailed instruction and proposed Plan 

and Solve prompting (PS) that uses a different instruction to “Let’s think step by step”.  

Plan and Solve prompting uses a structure similar to the one shown below: 

Prompt 

“Let’s first understand the problem, extract relevant variables and their corresponding 

numerals, and devise a plan. Then, let’s carry out the plan, calculate intermediate results( 

pay attention to calculation and common sense). Solve the problem step by step, and show 

the answer.”- Wang, L. et al. [6] 

 

As discussed in Wang, L. et al. [6], while the “Let’s think step by step “ instructions produced 

an accuracy of 65.2 and 63.8 on the CSQA and StrategyQA commonsense datasets, Plan and 

Solve prompting produced better results with the accuracy of 71.9 and 65.4 respectively. 
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Similarly, for the last letter and Coin Flip symbolic reasoning datasets the plan and solve 

prompting had a higher accuracy by 10.4 and 2.8 %. 

The benefit of Plan and Solve prompting is that the user can define how the AI model should 

solve a problem. For example, in the example Plan and Solve prompt, the user has stated 

that the AI model should extract relevant variables and their corresponding numerals. This 

approach would allow the user to provide the AI models with a detailed plan of how to 

approach the problem. For example, GPT could be instructed to extract all the elements of 

the puzzle such as the elements and the constraints. 

 

2.4.5 Tree of Thoughts (ToT) 

Tree of thoughts(ToT) prompting proposed by Yao, S. et al. [13] encourage the use of 

multiple prompts to explore “thoughts” generated by the model in intermediate steps. ToT 

resembles a tree that maintains different “nodes” of thoughts that could potentially reach 

the desired output. ToT prompting offers a way for the AI to self-evaluate and correct its 

responses, in contrast to CoT wherein AI is unable to evaluate its response once printed. ToT 

therefore allows the AI to backtrack, something it cannot do on its own. This is especially 

helpful for tasks like solving a zebra puzzle because elements that may have been positioned 

in the puzzle in earlier attempts might not always be the correct elements for that position. 

Tree of Thoughts combines algorithms like breadth-first search and depth-first search to 

explore the thoughts that are generated. 

 

 

Fig 2. Tree of Thoughts as described in Yao, S. et al. [13] 
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As specified by Yao, S. et al. [13], 4 key steps that are required in ToT prompting. These 

include: 

1. Thought decomposition: A thought is an individual element of the problem that the AI 

should solve. For example, suggested words for a crossword or an equation to solve a 

mathematical problem. The thought should be simple so that the AI model returns a variety 

of promising thoughts that leads towards a possible solution. 

2. Thought Generator: To reach a solution multiple thoughts need to be generated. There 

are two ways to generate a thought. One of the ways is to sample the prompts. For 

example, generate plans and choose the best plan. This is useful when the thoughts are rich 

and diverse. The second way is to use a propose prompt. This is useful when the thoughts 

are more constrained i.e. each thought is a line. 

3. State Evaluator: The next step is to add a heuristic to the technique and judge how close 

the AI model is to the desired output. There are two ways to achieve this: 

A. Value: By adding a value prompt the AI model can judge if the specific thought will 

lead to a desired value. The AI model is prompted to generate a scalar value for each 

thought that specifies its probability of reaching the solution. For example, in a game 

of 24, the authors use a value prompt by prompting  

“Evaluate if the given numbers can reach 24 (sure/likely/impossible)”. By doing this 

the AI can evaluate if the thought generated above leads to a possible solution.” 

B. Vote: For thoughts where obtaining a value as a heuristic is not possible (such as 

creative writing), a vote prompt allows the AI to vote its best choice for a set of 

thoughts. In the Creative writing task, where there are no arithmetic values, a vote 

prompt is useful to analyze 5 choices of thoughts. 

4. Search Algorithm: To explore the cumulative thoughts and reach a solution, two search 

algorithms can be used: 

A. BFS search: For BFS, N nodes are maintained at each level. This is suitable for 

cases where there are a finite number of steps such as a game of 24. 

B. DFS Search: This is suitable for cases the where most promising states need to be 

explored first and there is no way for evaluator to assess if it can solve the problem 

from the current node.  

Yao, S. et al. describe that ToT’s performance hugely improved the performance of ChatGPT 

in solving 5x5 mini-crosswords.  ToT prompting had a word-level success rate of 60%, in 

contrast to CoT’s success rate of less than 16%. 
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This makes ToT prompting an ideal candidate to try as an approach to solving a zebra puzzle 

as it allows the AI to self-evaluate and backtrack decisions, something that even humans do 

while solving a puzzle. A careful consideration is needed to decide what a thought 

constitutes, how to generate it, how to evaluate it, and further explore the thoughts.  

 

2.5 ChainForge  

ChainForge [17] is a prompt engineering tool that can be used to evaluate the robustness of 

prompts and text generation models. With ChainForge, a user can create multiple prompts 

with minimum engineering and evaluate the responses from a multitude of AI models such 

as ChatGPT, Claude [14], and PaLM [23]. The outputs can be arranged in user-friendly 

formats that help in making the evaluation of outputs easier. ChainForge was not used for 

this dissertation because it cannot hold conversations with a model, and only sends single 

API requests for some prompts. However, it is worth mentioning that such software would 

be beneficial in research projects like this. 

 

            

Fig 3. ChainForge Environnent 

 

From Fig. 3 we can observe that ChainForge provides an easy way to create combination of 

commands and inputs via individual prompt nodes. The Command and Prompt Injection 

nodes help to create multiple prompts with every possible combination in the Prompt Node. 

Additionally, a user can create custom coded programs to evaluate the responses by the AI 

models. In Fig. 3, the user creates a custom-program that checks whether the text “LOL” is 

contained in any of the responses. This returns a numeric value that is visualized in 

ChainForge via a bar plot. 
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2.6 Persona Pattern 

For all the prompt techniques applied in this dissertation, a prompt was added to the 

system window where GPT was instructed to play the role of personas like a helpful 

assistant or a constraint optimization expert. White, J. et al. [36]  described the uses of a 

Persona pattern (a role to play) and how they can help in generating outputs. They enable 

the AI models to follow a particular point of view with more discipline. For example, in the 

NL to Prolog approach (discussed in the next section), GPT is utilized to solve constraint 

satisfaction problems, hence it is asked to act like a constraint optimization expert.  
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3 

Design & Implementation  
 

Prompt engineering techniques were implemented with two different approaches. In the 

first approach, an attempt was made to converse with GPT in natural language and evaluate 

how well it can solve the puzzles in English. This approach was labelled ‘Natural Language to 

Natural Language’ (NL to NL). 

In the second approach, GPT was instructed to extract the elements, constraints, and 

objective of the puzzle and write a code in Prolog to solve the puzzle. This approach was 

labelled ‘NL to Prolog’.  

Various prompt engineering techniques were tested with the two approaches: 

• Natural Language to Natural Language (NL to NL) 

o Zero Shot 

o Zero Shot Chain of Thought 

o Tree of Thought 

 

• Natural Language to Prolog (NL to Prolog) 

o Zero Shot Chain of Thought 

o One Shot Plan and Solve 

 

The dataset consisted of sixteen manually created zebra puzzles that were based on the 

original puzzle. To understand the limitations of GPT, these puzzles had different levels of 

complexity. The simplest puzzle consisted of two subjects and each subject had two 

categories. For example 2 houses and 2 pets. Similarly, other puzzles had a maximum of 5 

subjects and  5 categories. Every puzzle had a different number of subjects and categories. 

To distinguish the puzzles from each other, a format M x N was used, where the first 

number M described the number of subjects (houses or people ) (M>=2 and M<=5)  and the 

second number N described the number of categories (Nationality, Pets, Drinks, House 

color, Cigarette brand) (N>=2 and N <=5). Hence, the 3 x 5 puzzle had 3 subjects and 5 

categories. All the puzzles can be viewed in the Appendix section of this dissertation. 
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Fig 4 . Dataset Structure Comprising of 16 Puzzles 

All zebra puzzles were programmed in Prolog and verified to have one unique solution. 

OpenAI playground and prompt engineering were used to implement the two approaches. 

In the case of NL to Prolog, the output was tested using SWI-Prolog and marked correct if it 

produced the right arrangement. 

The subsections below detail the process of creating and verifying the puzzles as well as the 

various approaches taken.  

 

3.1 Creation and Verification of Puzzles 

To test the efficacy of GPT with different complexities of puzzles, sixteen new puzzles were 

created. These puzzles had the same categories as the original zebra puzzle, such as 

nationalities, pets, drinks, colors, and brands of cigarettes. However, some of the elements 

and combinations were changed. Additionally, instead of houses, queues were used in the 

arrangement. This meant that instead of relations left and right, the puzzle had relations in 

front and behind. This was done to remove any chance of GPT having seen such puzzles in 

its training data. 

The process behind creating these puzzles is given below. One basic puzzle was created first. 

Then, using the elements of this puzzle, hints for the next puzzle were created. 

For example, in the 2X3 puzzle, the constraints are: 

1.) The first house belongs to the Ukrainian. 

2.) The Norwegian owns the cat. 

3.) The owner of the zebra drinks coffee. 
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The solution for the puzzle would be the following: 

 

Table 1. Solution to the 2 x 3 Puzzle 

 House 1 House 2 

Nationality Ukrainian Norwegian 

Pet Zebra Cat 

Drink Coffee Milk 

     

One additional constraint was added to the next puzzle (2x4) to increase the number of 

categories : 

4.) The owner of the red house drinks milk. 

Which further assigned the Red house to the Norwegian. 

 

Table 2. Solution to the 2 x 4 Puzzle 

 House 1 House 2 

Nationality Ukrainian Norwegian 

Pet Zebra Cat 

Drink Coffee Milk 

House Color Blue Red 

 

 

A total of sixteen puzzles were created using this method and were designed such that they 

gave one unique solution. All the constraints were tested using SWI-Prolog. The programs to 

verify these puzzles are given in the Appendix section. 
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An example program and it’s solution for the 3x3 puzzle can be seen below: 

 

 

   Fig 5. Verification of the 3 x 2 Puzzle in SWI-Prolog 

As we can see, a predicate houses(Hs) is defined in the Program window that consists of a 

representation of the queue and the constraints. On the right, the solution is obtained by 

running the program. Each h() represents a house in ascending order. The ‘false’ text at the 

end indicates that there are no more solutions to the program. 

 

3.2 OpenAI Playground Environment 

OpenAI Playground [25] is an application that OpenAI has made available for developers. It 

has more features than the web interface of ChatGPT and provides options to fine-tune a 

number of AI models provided by OpenAI. The “Chat” feature of Playground can be used to 

talk to several models of ChatGPT.  

 

Fig 6. OpenAI Playground  
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The interface provides a window on the left for any system instructions. Here, the user can 

specify how they want GPT to work. In this investigation, the system window was used to 

provide GPT important instructions related to the prompt engineering technique. More of 

this is described in the prompt engineering implementations below. 

On the right of the conversation column, several parameters have been provided to select 

an AI model and fine-tune it. For carrying out this dissertation, the value used for these 

parameters were: 

 

Model:   GPT-4 

Temperature:  1 

Maximum Length:  5000 

Top P:    1 

Frequency Penalty: 0 

Presence Penalty : 0 

 

Note: The value of the Maximum Length parameter was only changed for the extraction 

prompt (Prompt 3) in NL to Prolog approach. More about this is explained in the ‘Design and 

Implementation’ section. 

The temperature is a parameter that influences the randomness in the generated text. A 

higher temperature means that the model will select words that are less probable to be 

next. A low temperature will lead the model to select words that have a high probability of 

being next.  

The maximum length parameter controls the number of generated tokens. A higher token 

number increases the cost of using the model. This was maintained at 5000 because this 

was an appropriate length that could balance the length of the output and the budget.  

The last three parameters Top P, Frequency Penalty, and Presence Penalty were not 

changed as this would increase the complexity of the evaluation. For a value X, the Top P 

parameter will only choose the top X*100% possible tokens. Hence, a Top P value of 0.3 

means that only the tokens comprising of cumulative probability above 30% will be 

sampled. 

Finally, the user window in the middle is used to converse with the model. The prompt-

engineered questions are used in this window to get the output. 
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3.3 Approach 1: NL to NL 

3.3.1 Zero Shot (ZS) 

For the first technique, GPT was given a puzzle as a prompt and asked to return the correct 

arrangement that satisfied the puzzle constraints. No additional instructions were provided. 

                    

 

      Fig 7. Zero Shot Prompting with 2 x 3 Puzzle 

 

In the system window, the following message was added : 

“You are a helpful assistant” 

 

Figure 7 shows the Zero Shot technique. As we can see, the output returned by the model is 

incorrect. Let us observe how the Zero Shot Chain of Thought Prompting tackles this 

problem. 

 

3.3.2 Zero Shot Chain of Thought (ZS CoT) 

The Chain of Thought prompting was utilized in this technique. As seen in Fig. 8, the text “A: 

Let’s think step by step” was appended to the input prompt”.  
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Fig 8. Zero Shot Chain of Thought Prompting with 2 x 3 Puzzle 

CoT enabled GPT to use its reasoning abilities and provide more detailed answers. Fig. 8 

shows the output returned by GPT.  This time the output is correct. The model explains its 

reasoning well to reach a correct solution. 

In the system window, the following message was added : 

“You are a helpful assistant” 

 

3.3.3 Tree of Thought (ToT) 

Out implementation of the Tree of Thought (ToT) made use of multiple prompts to solve 

each constraint individually. The aim was to investigate if solving constraints individually will 

lead GPT to have better reasoning. Additionally, GPT was given the freedom to choose 

which constraints to solve in turns using a custom prompt. 

 

Fig 9. Tree of Thought Prompting with 2 x 3 Puzzle 
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Fig. 9 shows the process of Tree of Thought. In the first prompt presented to GPT, the text 

“Let’s only look at the first constraint” was appended to the prompt, to initialize the 

process and generate a thought based on the first constraint. Note that this technique 

requires a direct constraint (one that places an element directly to a position) to be first. For 

example, in Fig. 9, constraint 1, directly places the Ukrainian in the first house. 

Similar to Yao, S. et al. [13], a thought generator and an evaluator were added to this 

technique. The second prompt acts as a thought generator. This prompt enables GPT to 

select a suitable constraint to solve next. The direct constraints often contain words such as 

“first” and “second” and therefore GPT was instructed to prioritize those constraints first. 

Finally, to evaluate the end of the process, GPT was instructed to print the arrangement 

with a specific format. 

At each level, a maximum of 3 thoughts were allowed to be generated. At the end of each 

though, GPT was asked to check the deduced arrangement with the constraints (see system 

instructions). This acted as a value evaluator of the thoughts. If any constraints were broken 

in the intermediate steps, another thought at that level was generated. If three thoughts 

had been generated at one level, a backtrack was performed and more thoughts were 

generated on the previous level. 

 

 

   Fig 10. Tree of Thought DFS and Backtracking 

The thoughts were generated in a depth-first search manner, hence if the first generated 

thought did not break any constraint, the thought for the next constraint was generated. 

This process continued until GPT answered with the final prompt.  

 

 



   32 
 

In the system window, the following instructions were added: 

“You are a helpful assistant. Only solve one constraint at a time. Print the deduced 

arrangement at the beginning of every answer and then evaluate against every constraint 

if the newly deduced arrangement breaks any constraints. If it breaks any constraints 

print a line "Constraints broken", else do nothing. ” 

This instruction provided a way to know which elements had already been deduced in the 

arrangement. At the start of every output, GPT printed the arrangement that was already 

deduced from the solved constraints. Additionally, the constraint check instruction acted as 

an evaluator to each thought. 

This mechanism allowed GPT to solve a constraint and detect if any constraints had been 

broken. If this was the case either new thoughts were generated if all the thoughts had not 

been exhausted (max 3) or backtracking was applied to create a new branch. 

 

3.4 Approach 2: NL to Prolog 

3.4.1 Zero Shot Chain of Thought (ZS CoT) 

The Zero Shot Chain of Thought (ZS CoT) utilizes the Chain of Thought prompting, similar to 

the NL to NL approach. The final question in each of the puzzles was changed so that the 

output was a Prolog code.  This approach attempted to test if GPT was able to create code 

from scratch without any additional help. 

 

Fig 11. Zero Shot Chain of Thought  Prompting with 2 x 3 Puzzle 
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In the instruction window, GPT was instructed to play the role of a constraint optimization 

expert.  

“Assume you are a constraint optimization expert and you need to model a constraint 

satisfaction problem in Prolog.” 

 

This technique was implemented in two steps: 

Step 1:  Apply Zero Shot Chain of Thought Prompting 

Figure 11 shows the structure of the prompt (Prompt 1) used in this step. The output 

returned by GPT for this prompt was a Prolog code. Oftentimes the answers needed to be 

manually created from the outputs because they contained natural language. 

Step 2: Solving Bugs 

As discussed in the Related Work section, GPT has shown high efficiency in solving bugs in 

codes. Similar to the approach taken by Sobania, D. et al. [16], the second prompt aimed to 

offer GPT a chance to correct any bugs in the code that it produces. Note that this step was 

optional and only applied if the code in Step 1 did not solve the puzzle. A prompt with the 

following words “Does this contain any bug? How to solve it?” was used to enable GPT to 

find and fix bugs in its earlier output. 

 

3.4.2 One Shot Plan and Solve Prompting (OS PS) 

Zero Shot Prompting did not allow the user to specify the formatting or the structural 

formulation of the program. This enabled GPT to use a diverse set of ways to write the code 

for model optimization which increased the randomness of the output. 

In One Shot Plan and Solve (OS PS) prompting, a solved example (as a Plan and Solve 

prompt) of a puzzle is appended to the prompt. This should decrease the randomness of the 

programs as well as allow it to learn and structure the output similar to the example. 
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Fig 12. One Shot Plan and Solve Prompting with 2 x 3 Puzzle 

 

Two steps were carried out to obtain the final code: 

Step 1: Apply One Shot Plan and Solve Prompting 

The 3x2 puzzle was used as an example. This puzzle is not too easy (such that GPT would not 

have all the information to approach more complex puzzles) and not too complex (such that 

GPT is provided with more information than it should be).  

Similar to Wang, L. et al. [6], the following text was utilized as a part of the Plan and Solve 

prompt: 

 

“Let's first understand the problem, extract relevant elements, constraints and objective 

function and  then devise a plan to use the extracted information to solve the problem 

using Prolog . Then, let’s carry out the plan , find the arrangement (make sure to represent 

an initial arrangement, include all the elements in the code and use the member function 

in Prolog ) step-by-step. Finally, let's print the Prolog code.” 

 

A solution was manually created for the example. A preferred format was used for GPT to 

imitate.  

“Q: There are three people standing in a queue. Each person owns a different pet and  is 

an inhabitant of different nationality. The possible pets are  a snail, a jaguar and a zebra. 

The possible nationalities are Japanese, Spaniard and English. No three people own the 
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same pets or are an inhabitant of a the same nationality. The following facts are true 

about this queue: 

1. The first person in the queue owns the snail. 

2. The Spaniard is in the middle. 

3. The English is not the last person in the queue. 

4. The last person in the queue does not own the jaguar. 

5. The Japanese is immediately behind the jaguar owner. 

 

What is the arrangement of the queue? 

A: Let's first understand the problem, extract relevant elements, constraints and objective 

function and  then devise a plan to use the extracted information to solve the problem 

using Prolog . Then, let’s carry out the plan , find the arrangement (make sure to represent 

an initial arrangement, include all the elements in the code and use the member function 

in Prolog ) step-by-step. Finally, let's print the Prolog code. 

 

ELEMENTS: 

Nationalities:(English, Spaniard, Japanese) 

Pets:(snail, jaguar, zebra) 

 

CONSTRAINTS: 

a. The first person in the queue owns the snail. 

b. The Spaniard is in the middle. 

c. The English is not the last person in the queue. 

d. The last person in the queue does not own the jaguar. 

e. The Japanese is immediately behind the jaguar owner. 

 

OBJECTIVE FUNCTION: 

In this problem our objective is not to minimize or maximize any quantity, rather it is to 

find an arrangement that satisfies all the constraints. 

 

PLAN: 

1. We'll use Prolog's "member" predicate to map each person with their nationality and 

pet. 
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2. Prolog’s "member" predicate can also be used to structure the constraints of the 

problem, to fulfills the facts mentioned above. 

3. Base case is to declare a rule that represents the queue with three people having 

different nationalities & different pets. 

4. We will represent all the elements using the "member" predicate. 

 

Let's convert this plan to Prolog code. 

 

```prolog 

solution(People) :- 

 

% Arrangement 

People = [person(1, _, _), person(2, _, _), person(3, _, _)], 

 

% Ensure each property appears exactly once 

member(person(1, _, _), People), 

member(person(2, _, _), People), 

member(person(3, _, _ ), People), 

member(person(_ , english, _), People), 

member(person(_ , spaniard, _), People), 

member(person(_ , japanese, _), People), 

member(person(_, _, zebra), People), 

member(person(_, _, jaguar), People), 

member(person(_, _, snail), People), 

 

% Enforce the constraints 

member(person(1, _, snail), People), 

member(person(2, spaniard, _), People), 

member(person(PositionE, english, _), People), PositionE \= 3, 

member(person(PositionJ, _, jaguar), People), PositionJ \= 3, 

member(person(PositionJP, japanese, _), People), 

PositionJplus1 is PositionJ + 1, PositionJP =:= PositionJplus1. 

``` 

This code models all conditions of the problem. 

Please run the Prolog command `?- solution(List).` to solve the problem.” 
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This format took inspiration from Tsouros, D. et al. [15] and instructed GPT to extract all the 

relevant information such as the elements, constraints, and objective as the first step. Then, 

a plan explained how the puzzle is solved using the ‘member’ predicate from Prolog. Finally, 

the code was presented in a preferred format that is easy to understand. 

Note that an additional Prolog predicate to define relationships between elements was not 

used. This was done to keep the example simple and allow GPT to learn quickly. A simpler 

method was provided by using numbers to define relative positions in the arrangement. 

Step 2: Solving Bugs 

The second step allowed GPT to correct any bugs in its output. In the system instruction 

window, the following instructions were added: 

“Assume you are a constraint optimization expert and you need to model a constraint 

satisfaction problem in Prolog. If printing the elements, constraints, objective function and 

plan use the format: 

"ELEMENTS: 

CONSTRAINTS: 

OBJECTIVE FUNCTION: 

PLAN:” 

Do not use the write function from Prolog when you are coding in Prolog.” 

The first part of the system instruction is similar to the previous technique. In this prompt, 

instructions were added for GPT to format the output in a specific way so that it clearly 

stated its output in the format of the example. GPT was also instructed to not use the write 

function because it did not work on the system used to verify the code.  

 

3.5 Solution Extraction - Prolog to NL 

As a last step in the above two prompting techniques (Step 3), a prompt is used to extract 

the arrangement given by the Prolog programs in natural language.  

For the extraction prompt, the following format was used : 

“The output given by this program is: 

<output> 

Hence the correct arrangement is: 

Note: If the output is false, print False.” 
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As a response to this prompt, GPT printed the arrangement given by the Prolog code. Note 

that SWI-Prolog does not always give a valid arrangement. The response can also be false. 

For this case, a note was provided to GPT that instructed it to print false in case the output 

of the program was false.  

 

For example, if the output for the 3x3 puzzle is used in the extraction prompt: 

“The output given by this program is: 

[h(english,snail,orangeJuice), h(spaniard,jaguar,milk), h(japanese,zebra,coffee)] 

Hence the correct arrangement is: 

Note: If the output is false, print False.” 

 

The response returned by GPT is : 

“Based on the output of the program, the correct arrangement of the queue is as follows: 

1. First in the queue is the English individual who owns a snail and drinks Orange Juice. 

2. In the middle of the queue is the Spaniard who owns a Jaguar and drinks Milk. 

3. Lastly, the Japanese individual who owns a Zebra and drinks Coffee. 

If the result is False, it indicates that no arrangement of the nationalities, pets, and drinks 

satisfies all the given constraints. 

 

Note: The ‘Maximum Length’ parameter was maintained at 256 for Prompt 3. This is 

because if the length was fixed to a high value like 5000, GPT would not print False and 

instead print a reason why the solution could be False. Hence to increase discipline, the 

value was maintained at 256. 
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4 

Evaluation   
 

4.1 Evaluation Method 

4.1.1 NL to NL 

All the puzzles were evaluated ten times using each technique – Zero Shot, Zero Shot Chain 

of Thought, and Tree of Thought. The puzzle arrangements in GPT’s outputs were evaluated 

on two main factors: 

• Accuracy (The number of correct answers): The arrangement was marked as correct 

if all the elements of the puzzle were present in their correct positions and the 

explanation for the arrangement was logically correct. 

• The number of tokens used: The number of words used in the promptings was 

calculated and an estimate of the number of tokens was calculated. OpenAI 

describes that ¾ words are equal to 1 token [37]. This estimate was used to calculate 

the tokens in the output. 

For Tree of Thought Prompting, additional evaluation was carried based on the average 

number of backtracks. This would help in evaluating the efficiency of constraint checks as an 

evaluator.  

The average number of backtracks was calculated as: 

Backtracks in 10 attempts of a puzzle  / 10 

 

4.1.2 NL to Prolog  

All the puzzles were evaluated ten times for each technique. The following metrics were 

calculated: 

• Accuracy (The number of correct answers): The output( Prolog code) was marked as 

correct if it produced the right arrangement without any changes to the Prolog code.   
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• The number of correct answers for Prompt 1: This number was incremented if the 

first output returned by the AI model contained correct code.   

Note that for easy puzzles such as 2x2 and 2x3, the model often directly made 

arrangements with the elements already in the correct positions. This was marked as 

correct because the end solution was correct. 

 

• The number of correct answers for Prompt 2: This number was incremented if the 

second output ( returned after Prompt 2 : “Does this program have any bugs? How 

to solve them?”) produced a code that gave the correct arrangement. 

 

• Classification of code fix requests: GPT gave different types of responses when it 

was asked to debug the code. Similar to Sobania, D. et al. [16], new classes were 

created that represented the benchmark for the evaluation of the code fix request: 

 

o No bug found: Does not find any bug in the code. 

o Correct Fix Provided: Provides a code that gives the correct arrangement. 

o Tries to Fix something else: Does not find the bug and tries to solve 

something else unnecessarily.  

o Provides a fix but introduces new bug: Provides a fix for the code but the 

new code contains another bug. 

o Alternative implementation: Does not fix the bug, but gives a second 

implementation of the code to use instead. 
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4.2 Results 

4.2.1 NL to NL  

Table 3 shows the accuracy of GPT for NL to NL approach.  

 

Table 3. Accuracy of GPT (Out of 16 X 10 = 160 attempts) 

 Accuracy 
(Total:160) 

ZS 20.6% 

ZS CoT 45% 

ToT 50% 

 

As we can observe from Table 3, both Zero Shot Chain of Thought and Tree of Thought 

improved the performance of GPT. Zero Shot Chain of Thought improved the performance 

by 24.4% whereas Tree of Thought improved it by a staggering 30.4%. Hence prompt 

engineering has elicited some degree of reasoning in GPT. 

One thing to note here is that even though ToT prompting showed a 5% improvement from 

ZS CoT prompting, this is true only for easy (subjects <=2) & medium-complexity (subjects 

<=4)  puzzles. A full breakdown of how these techniques scaled with different complexities 

can be seen in Fig. 13. Both ZS CoT and ToT prompting did not return even a single correct 

arrangement in ten attempts for complexities 4x5, 5x3, 5x4, and 5x5. This might be due to 

the high number of elements (>=15) that need to be positioned in the arrangement. More 

elements require a higher number of words and reasoning which increases the chances of 

logical error and hallucinations. 
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Fig 13 . Accuracy of GPT-4 for NL to NL Approach 

Out of all the techniques, ToT prompting performed the best, however the linguistic cost of 

ToT was higher than other techniques as shown in Table 4. ZS CoT prompting performed 

slightly poorly but was not as expensive as Tree of Thought, which indicates Chain of 

Thought is a better option. Below, Table 4 shows the average number of tokens used in the 

prompt techniques. As we can see, ToT is a very expensive process, mainly because a large 

number of words are needed to reason about every single constraint. 

Table 4. Average Number of Tokens used in NL to NL Prompting Techniques 

Subjects Categories 

 2 3 4 5 

2        
 
 

17 (ZS) 

133(ZS CoT) 

154(ToT) 

 

27 

302 

382 

53 

362 

587 

145 

405 

761 

3 72.1 

353 

678 

 

80 

410 

979 

778 

549 

1887 

140 

684 

2564 

4 200 

558 

828 

 

231 

567 

1694 

242 

703 

2228 

298 

723 

4337 

5 117 

517 

2174 

 

186 

674 

2843 

17 

833 

5361 

117 

665 

5410 
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At the time of writing this dissertation, the cost of 1000 output tokens in GPT-4 is $0.06 [37]. 

This indicates that the average cost to carry out a single Tree of Thought prompting with the 

5X5 complexity puzzle was $0.32 or $3.2 for the ten attempts. If we observe Fig. 13 and 

Table 4, we can see that for the 4 x 3 complexity puzzle, ZS CoT prompting gave almost the 

same accuracy as ToT ( 3 vs 2), but ToT used as much as 3 times the number of tokes (567 vs 

1694) in ZS CoT. For puzzles more complex than this, ToT was only able to display a greater 

accuracy for 4 x 2 puzzle, which indicates that ToT prompting is not a viable option. 

Additionally, Tree of Thought was linguistically expensive due to the backtracking 

mechanism. Table 5 shows the average number of backtracks performed in ToT. 

 

Table 5. Average Number of Backtracks by GPT in Tree of Thought 

Subjects Characteristics 

 2 3 4 5 

2 0(0) 
avg(max) 

0(0) 0(0) 0(0) 

3 0(0) 0(0) 0(0) 0(2) 

4 0(0) 0(0) 0(0) 0(2) 

5 0(3) 0(3) 0(2) 0(2) 

 

As we can observe, the average number of backtracks remained at zero for all the puzzles. 

This, coupled with the accuracy of ToT prompting in Fig. 13 indicates that GPT did not 

perform well in catching instances of broken constraints. Such an evaluator was 

untrustworthy, which was one of the main reasons that GPT continued to explore the wrong 

branches in a tree. In most of the attempts, even if a constraint was broken, GPT 

hallucinated and printed that all the constraints passed.  

One of the common weaknesses of GPT among all the techniques was that it did not 

consider elements in a position on a case-by-case basis. For example, let us take a look at a 

scenario in the 4x2 puzzle: 

Let us say that GPT deduced an arrangement: 

Position 1 : _, snail , 
Position 2 : Spaniard, _ 

Position 3: _, _ 
Position 4: _, _ 
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Next it solves the constraint: 

“The Japanese is standing behind the Jaguar owner” 

 

GPT deduces this with : 

“According to the fourth fact, the person standing immediately in front of the Japanese 

owns the Jaguar, so the Jaguar owner cannot be in the fourth place because if the Jaguar 

owner was in the fourth place, the Japanese who stands after the Jaguar owner would 

have to be in the fifth place which is not possible since there are only four people. 

Therefore, the fourth person has to be the Japanese.” 

Here GPT does not consider all the possible positions for the jaguar owner. It assigns the 

jaguar owner to the fourth position and deems it to be true and continues. 

 

4.2.2 NL to Prolog 

Note that the 3x2 puzzle has been left out of the evaluation for this approach as it was used 

as an example in One Shot Plan and Solve prompting. Hence the results have been 

evaluated on a total of 15 puzzles. 

Table 6 displays the overall accuracy of GPT in generating the correct Prolog program to 

resolve the puzzle. 

Table 6. Accuracy of GPT (Out of 15 X 10 = 150 attempts) 

 Accuracy  
(Total:150) 

ZS CoT 23.3% 

OS PS 51.3% 

 

As we can see,  One Shot Plan and Solve prompting had a 28% higher accuracy than Zero 

Shot Chain of Thought prompting. This performance can be attributed to the fact that the 

example provided to GPT helped it structure and create better programs. This indicates that 

GPT can learn from the provided example and provide better outputs. 
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Fig. 14 shows the full breakdown of how these two prompting techniques perform with 

different complexities: 

 

         Fig 14 . Accuracy of GPT-4 for NL to Prolog Approach 

From Fig. 14 we can observe that OS PS prompting performed better than ZS CoT. Even for 

complex puzzles like 5x2 and 5x3, GPT was able to write the correct code 3 times with OS 

PS. 

A large performance boost can be seen in the puzzles with 3 subjects where GPT had a high 

accuracy with the second approach. This shows that training GPT with one example alone 

can enhance its performance.  

Out of all the correct attempts, not all were produced correctly with the first prompt. With 

the second prompt “Does this code have a bug? How to solve it”, GPT corrected its incorrect 

programs 20 times for each technique. Fig. 15 shows the number of responses GPT got 

correct in the first attempt (Prompt 1) and the second attempt (Prompt 2). 

 

Fig 15. Number of Correct Arrangements With and Without Corrections 
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As we can see from Fig. 15, GPT was able to find and fix 20 bugs in each prompt technique. 

However, there was a huge increase (+ 42) in the number of correct arrangements it 

returned correct in its first attempt in One Shot Plan and Solve prompting. 

The incorrect responses returned by GPT were due to various reasons which are classified in 

the figure below. 

 

Fig 16 . Code Fix Request Classification 

From Fig. 16 we can observe that there is a high number of classifications with “Provides a 

bug but introduces another bug’ and ‘Tries to fix something else’. This is particularly high in 

Zero Shot Chain of Thought where GPT had to come up with a program from scratch. 

Because there was no fixed format provided, GPT struggled to find bugs and therefore made 

more mistakes in fixing them (61 vs 25). Whereas in the case of One Shot Plan and Solve, the 

classification is spread equally amongst all the classes. Note that for OS PS prompting, the 

number of “No bug Found” classification is higher than ZS CoT prompting ( 11 vs 1). This was 

because the example used in OS PS prompting was not scalable. The format of the example 

listed all the domain constraints before the puzzle constraints. This created an enormous 

search space which did not bode well with the backtracking mechanism of Prolog.  

The scalability of the example provided in the example prompt of One Shot Plan and Solve 

played a huge factor in GPT solving high-complexity puzzles. There were instances where 

the code produced was correct, but due to the non-scalability of the solution formed by the 

format of the example, the solution did not execute in time.  

The number of tokens used in these techniques was comparable to the NL to NL approach 

but not as high as Tree of Thought.  
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Table 7 shows the average number of tokens used by the two techniques: 

 

Table 7. Average Number of Tokens used in NL to Prolog Prompting Techniques 

Subjects Characteristics 

 2 3 4 5 

2 
 

338 (ZS CoT) 

324 (OS PS) 

479 

322 

 

589 

569 

 

605 

593 

3  

N/A 

 

595 

467 

 

765 

625 

 

915 

1212 

 

4 624 

595 

 

672 

886 

 

800 

1127 

 

955 

1271 

 

5 740 

685 

 

737 

855 

 

1541 

1142 

 

1205 

1217 

 

                          

As we can observe, the cost of both the promptings is similar, however, the tokens used 

here are significantly less than the ones used in the Tree of Though prompting in NL to NL. 

 

4.3 Comparing NL to NL and NL to Prolog 

One Shot Plan and Solve prompting gave the highest accuracy for NL to Prolog approach and 

Tree of Thought prompting was the best approach for NL to NL. OS PS prompting gave a 

higher accuracy and used a significantly smaller number of tokens (see Fig. 17).  

This is because writing a constraint optimization program does not require abilities like 

interrelated deductions and backtracking, both of which GPT struggled with. Further, 

conversing in natural language was financially expensive in techniques like Tree of Thoughts. 
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Fig 17. Comparing ToT from NL to NL & OS PS from NL to Prolog Approach 

From Fig. 17 we can observe that OS PS prompting in NL to Prolog achieved a higher 

accuracy in 2, 4, and 5 subject puzzles and comparable accuracy in 3 subject puzzles than NL 

to NL’s ToT approach. More importantly, OS PS prompting enabled GPT to create programs 

for 4 x 5 and 5X 3 puzzles where all other techniques failed. 

Hence NL to Prolog when combined with One Shot Plan and Solve was the best out of all the 

tested approaches. GPT was able to learn from the provided example and write satisfactory 

constraint satisfaction programs. Further, this performance was increased using a second 

prompt that allowed it to find and fix the bugs in the output. 

GPT performed well in writing code by learning from an example as well as in finding and 

fixing bugs. Additionally, with this approach, it was able to solve more complex puzzles such 

as 4x5 and 5x3. 
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5 

Conclusion 
 

In this dissertation, we investigated the limitations of GPT-4 in solving zebra puzzles and 

applied two different approaches combined with multiple prompt engineering techniques to 

enhance its performance.  

For the NL to NL approach, GPT showed an accuracy of 45% with ZS CoT prompting and 50% 

for ToT prompting. This accuracy was higher for puzzles with 2 and 3 subjects. Its reasoning 

abilities were hindered in more complex puzzles due to hallucinations and illogical 

deductions. In the NL to Prolog approach, GPT showed an accuracy of  23.3% with ZS CoT 

prompting and  51.3% for OS PS prompting. With OS PS prompting, it was able to create 

correct programs for 4x5 and 5x3 puzzles. 

Tree of Thought achieved the best accuracy in the NL to NL approach. However, due to the 

high number of tokens required in the process and the absence of a satisfactory evaluator of 

thoughts, this technique was not deemed to be the best. 

The NL to Prolog approach when combined with One Shot Plan and Solve prompting was 

the best out of all the tested approaches. GPT was able to learn from the provided example 

and write satisfactory programs. Further, GPT’s performance was enhanced using a second 

prompt that allowed it to find and fix the bugs in the output. 

 

Further Work  

As a future work, more techniques like the Tree of Thought can be explored with the second 

approach. Another interesting aspect would be to investigate the efficiency of Few Shot 

prompting with more examples. New tools such as GPT builders that can be fine-tuned and 

trained for specific purposes may provide even better performance than using prompt 

engineering alone. 
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Appendix 

 

Section 1: Zebra Puzzles 

The following section lists the sixteen zebra puzzles used in this dissertation, their solutions 

and the Prolog program to verify them. 

 

2 X 2 :  

 

Two different houses each contain a different pet. The possible pets are a dog and a cat. The 
following facts are true about these houses: 

1.) One house is blue, and the other is red. 

2.) The owner of the red house owns the dog. 

Give the correct pairing of the house colors and the pets in those houses. 

 

Solution: 

House Color Blue Red 

Pet Cat Dog 

 

 

Prolog Program:  

% h(Color,Pet) 

solution(Hs) :- 

 

length(Hs, 2), 

member(h(red,_), Hs), 

member(h(blue,_), Hs), 

member(h(_,cat), Hs), 

 

% constraints 

member(h(red,dog), Hs). % 1 
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2 X 3 :  

 

Two different houses each contain a different pet, a different drink, and an inhabitant of a 
different nationality. The possible pets are a cat and a zebra. The possible drinks are milk 

and coffee. The following three facts are true about these houses: 

1.) The first house belongs to the Ukrainian. 

2.) The Norwegian owns the cat. 

3.) The owner of the zebra drinks coffee. 

Give the correct arrangement of the nationalities, the pets and the drinks. 

 

Solution: 

 House 1 House 2 

Nationality Ukrainian Norwegian 

Pet Zebra Cat 

Drink Coffee Milk 

 

Prolog Program:  

% h(Nationality, Pet, Drink) 

solution(Hs) :- 

length(Hs, 2), 

 

member(h(_,_,milk), Hs), 

 

% constraints 

Hs = [h(ukrainian,_,_),_], %1 

member(h(norwegian,cat,_), Hs), %2 

member(h(_,zebra,coffee), Hs). %3 
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2 X 4 :  

 

Two houses of different colors each contain a different pet, a different drink, and an 
inhabitant of a different nationality. The possible pets are a cat and a zebra. The possible 

drinks are milk and coffee. The possible house colors are red and blue. The possible 
nationalities are Ukrainian and Norwegian. The following four facts are true about these 

houses: 

1.) The first house belongs to the Ukrainian. 

2.) The Norwegian owns the cat. 

3.) The owner of the zebra drinks coffee. 

4.) The owner of the red house drinks milk. 

Give the correct arrangement of the nationalities, pets, house colors, and drinks. 

Solution: 

 House 1 House 2 

Nationality Ukrainian Norwegian 

Pet Zebra Cat 

Drink Coffee Milk 

House Color Blue Red 

 

 

Prolog Program:  

% h(Nationality, Pet, Drink, Color) 

solution(Hs) :- 

length(Hs, 2), 

 

member(h(_,_,_,blue), Hs), 

 

% constraints 

Hs = [h(ukrainian,_,_,_),_], %1 

member(h(norwegian,cat,_,_), Hs), %2 

member(h(_,zebra,coffee,_), Hs), %3 

member(h(_,_,milk,red), Hs). %4 

 



   56 
 

2 X 5 : 

Two different houses, each with different colors, contain a different pet, a different drink, a 
different brand of cigarette and an inhabitant of a different nationality. The possible pets 
are a cat and a zebra. The possible drinks are milk and coffee. The possible house colors are 
red and blue. The possible brands of cigarettes are Kools and Parliaments. The possible 
nationalities are Ukrainian and Norwegian. The following five facts are true about these 
houses: 

1.) The first house belongs to the Ukrainian. 

2.) The Norwegian owns the cat. 

3.) The owner of the zebra drinks coffee. 

4.) The owner of the red house drinks milk. 

5.) The owner of the blue house smokes Kools. 

Give the correct arrangement of the nationalities, pets, house colors, cigarettes and drinks. 

 Solution: 

 House 1 House 2 

Nationality Ukrainian Norwegian 

Pet Zebra Cat 

Drink Coffee Milk 

House Color Blue Red 

Cigarette Brand Kools Parliaments 

 

Prolog Program:  

% h(Nationality, Pet, Drink, Color, Cigarette) 

solution(Hs) :- 

length(Hs, 2), 

 

member(h(_,_,_,_,parliaments), Hs), 

 

% constraints 

Hs = [h(ukrainian,_,_,_,_),_], %1 

member(h(norwegian,cat,_,_,_), Hs), %2 

member(h(_,zebra,coffee,_,_), Hs), %3 

member(h(_,_,milk,red,_), Hs), %4 

member(h(_,_,_,blue,kools), Hs). %5 
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3 X 2 :  

There are three people standing in a queue. Each person owns a different pet and is an 
inhabitant of different nationality. The possible pets are a snail, a jaguar and a zebra. The 
possible nationalities are Japanese, Spaniard and English. No three people own the same 
pets or are an inhabitant of the same nationality. The following facts are true about this 

queue: 

1. The first person in the queue owns the snail. 

2. The Spaniard is in the middle. 

3. The English is not the last person in the queue. 

4. The last person in the queue does not own the jaguar. 

5. The Japanese is immediately behind the jaguar owner. 

Give the correct arrangement of the nationalities and their the pets in the queue. 

Solution: 

 Person 1 Person 2 Person 3 

Nationality English Spaniard Japanese 

Pet Snail Jaguar Zebra 

 

Prolog Program:  

% h(Nationality, Pet) 

solution(Hs) :- 

length(Hs, 3), 

 

member(h(english,_),Hs), 

member(h(_,zebra),Hs), 

 

% constraints 

Hs = [h(_,snail),_,_], %1 

Hs = [_,h(spaniard,_),_], %2 

behind(h(_,jaguar),h(japanese,_),Hs), %5 

Hs \= [_,_,h(english,_)], %3 

Hs \= [_,_,h(_,jaguar)]. %4 

 

behind(A, B, Ls) :- append(_, [A,B|_], Ls). 
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3 X 3 :  

There are three people standing in a queue. Each person owns a different pet, drinks a 
different beverage and is an inhabitant of different nationality. The possible pets are a snail, 
a jaguar and a zebra. The possible beverages are Orange juice, milk and coffee.The possible 

nationalities are Spaniard, English and Japanese. The following facts are true about this 
queue: 

1. The first person in the queue owns the snail. 

2. The Spaniard is standing in the middle 

3. The English is not the last person in the queue. 

4. The last person in the queue drinks coffee. 

5. The Spaniard does not drink orange juice. 

6. The last person in the queue does not own the jaguar. 

Give the correct arrangement of the nationalities, the pets and the drinks. 

Solution: 

 Person 1 Person 2 Person 3 

Nationality English Spaniard Japanese 

Pet Snail Jaguar Zebra 

Drink Orange Juice Milk Coffee 

 

Prolog Program:  

% h(Nationality, Pet, Drink) 

solution(Hs) :- 

length(Hs, 3), 

 

member(h(english,_,_),Hs), 

member(h(japanese,_,_),Hs), 

member(h(_,_,orangeJuice),Hs), 

member(h(_,_,milk),Hs), 

member(h(_,zebra,_),Hs), 

member(h(_,jaguar,_),Hs), 

 

% constraints 

Hs = [h(_,snail,_),_,_], %1 
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Hs = [_,h(spaniard,_,_),_], %2 

Hs = [_,_,h(_,_,coffee)], %4 

Hs \= [_,_,h(english,_,_)], %3 

\+ member(h(spaniard,_,orangeJuice),Hs),%5 

Hs \= [_,_,h(_,jaguar,_)]. %6 

 

behind(A, B, Ls) :- append(_, [A,B|_], Ls). 

 

3 X 4 :  

There are three people standing in a queue. Each person owns a different pet, drinks a 
different beverage, lives in a different colored house and is an inhabitant of different 

nationality. The possible pets are a snail, a jaguar and a zebra. The possible nationalities are 
Japanese, Spaniard and English. The possible beverages are Orange juice, milk and coffee. 

The possible house colors are red, green and ivory. No two people own the same pet, drink 
the same beverage, live in the same house or are an inhabitant of a the same nationality. 

The following facts are true about the queue: 

1. The first person in the queue owns the snail. 

2. The Spaniard is standing in the middle. 

3. The English is not the last person in the queue. 

4. The last person in the queue drinks coffee. 

5. The Spaniard does not drink orange juice. 

6. The orange juice drinker lives in the red house. 

7. The person who lives in the ivory house is standing immediately in-front of the person 
who lives in the green house. 

8. The last person in the queue does not own the jaguar. 

Give the correct arrangement of the nationalities, pets, house colors, and drinks. 

Solution: 

 Person 1 Person 2 Person 3 

Nationality English Spaniard Japanese 

Pet Snail Jaguar Zebra 

Drink Orange Juice Milk Coffee 

House Color Red Ivory Green 
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Prolog Program:  

% h(Nationality, Pet, Drink,Color) 

solution(Hs) :- 

length(Hs, 3), 

 

member(h(english,_,_,_),Hs), 

member(h(japanese,_,_,_),Hs), 

member(h(_,_,milk,_),Hs), 

member(h(_,zebra,_,_),Hs), 

member(h(_,jaguar,_,_),Hs), 

 

% constraints 

Hs = [h(_,snail,_,_),_,_], %1 

Hs = [_,h(spaniard,_,_,_),_], %2 

Hs = [_,_,h(_,_,coffee,_)], %4 

member(h(_,_,orangeJuice,red),Hs),%6 

behind(h(_,_,_,ivory), h(_,_,_,green),Hs), %7 

Hs \= [_,_,h(english,_,_,_)], %3 

\+ member(h(spaniard,_,orangeJuice,_),Hs), %5 

Hs \= [_,_,h(_,jaguar,_,_)]. %8 

 

behind(A, B, Ls) :- append(_, [A,B|_], Ls). 

 

3 X 5 :  

There are three people standing in a queue. Each person owns a different pet, drinks a 
different beverage, smokes a different brand of cigarette, lives in a different colored house 

and is an inhabitant of different nationality. The possible pets are a snail, a jaguar and a 
zebra. The possible beverages are Orange juice, milk and coffee. The possible house colors 
are red, ivory and green. The possible cigarette brands are Lucky Strike, Parliament and Old 
Gold. The possible nationalities are Spaniard, English and Japanese. The following facts are 

true about this queue: 

1. The first person in the queue owns the snail. 

2. The Spaniard is standing in the middle. 

3. The English is not the last person in the queue. 

4. The last person in the queue drinks coffee. 

5. The Spaniard does not drink orange juice. 



   61 
 

6. The orange juice drinker lives in the red house. 

7. The person who lives in the ivory house is standing immediately in-front of the person 
who lives in the green house. 

8. The person immediately behind the milk drinker smokes old gold. 

9. The snail owner does not smoke Parliaments. 

10. The last person in the queue does not own the jaguar. 

What is a possible arrangement of the queue that follows all the constraints? 

 

Solution: 

 Person 1 Person 2 Person 3 

Nationality English Spaniard Japanese 

Pet Snail Jaguar Zebra 

Drink Orange Juice Milk Coffee 

House Color Red Ivory Green 

Cigarette Brand Lucky Strike Parliaments Old Gold 

 

Prolog Program:  

% h(Nationality, Pet, Drink,Color,Cigarette) 

solution(Hs) :- 

length(Hs, 3), 

 

member(h(english,_,_,_,_),Hs), 

member(h(japanese,_,_,_,_),Hs), 

member(h(_,zebra,_,_,_),Hs), 

member(h(_,jaguar,_,_,_),Hs), 

member(h(_,_,_,_,luckyStrike),Hs), 

member(h(_,_,_,_,parliaments),Hs), 

 

% constraints 

Hs = [h(_,snail,_,_,_),_,_], %1 

Hs = [_,h(spaniard,_,_,_,_),_], %2 

Hs = [_,_,h(_,_,coffee,_,_)], %4 

member(h(_,_,orangeJuice,red,_),Hs),%6 

behind(h(_,_,_,ivory,_), h(_,_,_,green,_),Hs), %7 
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behind(h(_,_,milk,_,_),h(_,_,_,_,oldGold),Hs), %8 

\+ member(h(_,snail,_,_,parliaments),Hs), %9 

Hs \= [_,_,h(english,_,_,_,_)], %3 

\+ member(h(spaniard,_,orangeJuice,_,_),Hs), %5 

Hs \= [_,_,h(_,jaguar,_,_,_)]. %10 

 

behind(A, B, Ls) :- append(_, [A,B|_], Ls). 

 

4 X 2 :  

There are four people standing in a queue. Each person owns a different pet and is an 
inhabitant of different nationality. The possible pets are a snail, a jaguar, a parrot and a 

zebra. The possible nationalities are Spaniard, Indian, English and Japanese. The following 
facts are true about this queue: 

1. The first person in the queue owns the snail. 

2. The snail owner is standing immediately in-front of the Spaniard. 

3. The Indian owns the parrot. 

4. The person standing immediately in-front of the Japanese owns the Jaguar. 

5. The Japanese is not at the end. 

6. The Japanese does not own the snail. 

Give the correct arrangement of the nationalities and their the pets in the queue. 

Solution: 

 Person 1 Person 2 Person 3 Person 4 

Nationality English Spaniard Japanese Indian 

Pet Snail Jaguar Zebra Parrot 

 

Prolog Program:  

% h(Nationality, Pet) 

solution(Hs) :- 

length(Hs, 4), 

 

member(h(english,_), Hs), 

member(h(japanese,_), Hs), 

member(h(_,zebra), Hs), 
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Hs = [h(_,snail),_,_,_], %1 

behind(h(_,snail),h(spaniard,_), Hs), %2 

member(h(indian,parrot), Hs), %3 

behind(h(_,jaguar),h(japanese,_), Hs), %4 

Hs \= [_,_,_,h(japanese,_)], %5 

\+ member(h(japanese,snail), Hs). %6 

 

behind(A, B, Ls) :- append(_, [A,B|_], Ls). 

 

4 X 3 :  

There are four people standing in a queue. Each person owns a different pet, drinks a 
different beverage and is an inhabitant of different nationality. The possible pets are a snail, 

a jaguar, a parrot, and a zebra. The possible beverages are orange juice, milk, bubble tea 
and coffee. The possible nationalities are Spaniard, Indian, English and Japanese. The 

following facts are true about this queue: 

1. The first person in the queue owns the snail. 

2. The snail owner is standing immediately in-front of the Spaniard. 

3. The Indian owns the parrot. 

4. The person behind the snail owner drinks milk. 

5. The last person in the queue drinks bubble tea. 

6. The orange juice drinker is standing immediately in-front of the milk drinker. 

7. The person standing immediately in-front of the Japanese owns the jaguar. 

8. The Japanese is not at the end. 

9. The Japanese does not own the snail. 

Give the correct arrangement of the nationalities, the pets and the drinks. 

Solution: 

 Person 1 Person 2 Person 3 Person 4 

Nationality English Spaniard Japanese Indian 

Pet Snail Jaguar Zebra Parrot 

Drink Orange Juice Milk Coffee Bubble tea 
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Prolog Program:  

% h(Nationality, Pet, Drink) 

solution(Hs) :- 

length(Hs, 4), 

 

member(h(english,_,_), Hs), 

member(h(japanese,_,_), Hs), 

member(h(_,zebra,_), Hs), 

member(h(_,_,coffee), Hs), 

 

Hs = [h(_,snail,_),_,_,_], %1 

behind(h(_,snail,_),h(spaniard,_,_), Hs), %2 

member(h(indian,parrot,_), Hs), %3 

behind(h(_,snail,_),h(_,_,milk), Hs),%4 

Hs = [_,_,_,h(_,_,bubbleTea)],%5 

behind(h(_,_,orangeJuice),h(_,_,milk), Hs),%6 

behind(h(_,jaguar,_),h(japanese,_,_), Hs), %7 

Hs \= [_,_,_,h(japanese,_,_)], %8 

\+ member(h(japanese,snail,_), Hs). %9 

 

behind(A, B, Ls) :- append(_, [A,B|_], Ls). 

 

4 X 4 :  

There are four people standing in a queue. Each person owns a different pet, drinks a 
different beverage, lives in a different house and is an inhabitant of different nationality. 
The possible pets are a snail, a jaguar, a parrot, and a zebra. The possible beverages are 

Orange juice, milk, bubble tea and coffee. The possible house colors are red, ivory, blue and 
green. The possible nationalities are Spaniard, Indian, English and Japanese. The following 

facts are true about this queue: 

1. The first person in the queue owns the snail. 

2. The snail owner is immediately in-front of the Spaniard. 

3. The Indian owns the parrot. 

4. The person standing immediately behind the snail owner drinks milk. 

5. The last person in the queue drinks bubble tea. 

6. The orange juice drinker is standing immediately in-front of the milk drinker. 

7. The third person in the queue lives in the green house. 
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8. The milk drinker is standing immediately behind the owner of the red house. 

9. The person standing immediately in-front of the Japanese owns the jaguar . 

10. The Japanese is not at the end. 

11. The owner of the parrot does not live in the ivory house. 

12. The Japanese does not own the snail. 

Give the correct arrangement of the nationalities, pets, house colors, and drinks. 

Solution: 

 Person 1 Person 2 Person 3 Person 4 

Nationality English Spaniard Japanese Indian 

Pet Snail Jaguar Zebra Parrot 

Drink Orange Juice Milk Coffee Bubble tea 

House Color Red Ivory Green Blue 

 

 

Prolog Program:  

% h(Nationality, Pet, Drink) 

solution(Hs) :- 

length(Hs, 4), 

 

member(h(english,_,_,_), Hs), 

member(h(japanese,_,_,_), Hs), 

member(h(_,zebra,_,_), Hs), 

member(h(_,_,coffee,_), Hs), 

member(h(_,_,_,blue), Hs), 

member(h(_,_,_,ivory), Hs), 

 

Hs = [h(_,snail,_,_),_,_,_], % 1 

behind(h(_,snail,_,_),h(spaniard,_,_,_), Hs), %2 

member(h(indian,parrot,_,_), Hs), %3 

behind(h(_,snail,_,_),h(_,_,milk,_), Hs),%4 

Hs = [_,_,_,h(_,_,bubbleTea,_)],%5 

behind(h(_,_,orangeJuice,_),h(_,_,milk,_), Hs),%6 

Hs = [_,_,h(_,_,_,green),_], %7 

behind(h(_,_,_,red),h(_,_,milk,_), Hs), %8 

behind(h(_,jaguar,_,_),h(japanese,_,_,_), Hs), %9 
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Hs \= [_,_,_,h(japanese,_,_,_)], %10 

\+ member(h(_,parrot,_,ivory), Hs),%11 

\+ member(h(japanese,snail,_,_), Hs). %12 

 

behind(A, B, Ls) :- append(_, [A,B|_], Ls). 

4 X 5:  

There are four people standing in a queue. Each person owns a different pet, drinks a 
different beverage, smokes a different brand of cigarette, lives in a different colored house 

and is an inhabitant of a different nationality. The possible pets are a snail, a jaguar, a parrot 
and a zebra. The possible beverages are orange juice, milk, bubble tea and coffee. The 

possible house colors are red, ivory, blue and green. The possible cigarette brands are Lucky 
Strike, Chesterfield, Parliament and Old Gold. The possible nationalities are Spaniard, Indian, 

English and Japanese. The following facts are true about this queue: 

1. The first person in the queue owns the snail. 

2. The snail owner is standing immediately in-front of the Spaniard. 

3. The Indian owns the parrot. 

4. The person standing behind the snail owner drinks milk. 

5. The last person in the queue drinks bubble tea. 

6. The orange juice drinker is standing immediately in-front of the milk drinker. 

7. The third person in the queue lives in the green house. 

8. The owner of the parrot does not live in the ivory house. 

9. The milk drinker is standing immediately behind the owner of the red house. 

10. The person behind the owner of the red house smokes Chesterfield. 

11. The bubble tea drinker smokes Parliaments. 

12 The English does not smoke old Gold. 

13. The person standing immediately in-front of the Japanese owns the Jaguar. 

14. The Japanese is not at the end. 

15. The Japanese does not own the snail. 

What is a possible arrangement of the queue that follows all the constraints? 
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Solution: 

 Person 1 Person 2 Person 3 Person 4 

Nationality English Spaniard Japanese Indian 

Pet Snail Jaguar Zebra Parrot 

Drink Orange Juice Milk Coffee Bubble tea 

House Color Red Ivory Green Blue 

Cigarette 
Brand 

Lucky Strike Chesterfield Old Gold Parliaments 

 

 

Prolog Program:  

solution(Hs) :- 

length(Hs, 4), 

 

member(h(english,_,_,_,_), Hs), 

member(h(japanese,_,_,_,_), Hs), 

member(h(_,zebra,_,_,_), Hs), 

member(h(_,_,coffee,_,_), Hs), 

member(h(_,_,_,blue,_), Hs), 

member(h(_,_,_,ivory,_), Hs), 

member(h(_,_,_,_,oldGold), Hs), 

member(h(_,_,_,_,luckyStrike), Hs), 

 

Hs = [h(_,snail,_,_,_),_,_,_], % 1 

behind(h(_,snail,_,_,_),h(spaniard,_,_,_,_), Hs), %2 

member(h(indian,parrot,_,_,_), Hs), %3 

behind(h(_,snail,_,_,_),h(_,_,milk,_,_), Hs),%4 

Hs = [_,_,_,h(_,_,bubbleTea,_,_)],%5 

behind(h(_,_,orangeJuice,_,_),h(_,_,milk,_,_), Hs),%6 

Hs = [_,_,h(_,_,_,green,_),_], %7 

behind(h(_,_,_,red,_),h(_,_,milk,_,_), Hs), %9 

behind(h(_,_,_,red,_),h(_,_,_,_,chesterfield), Hs), %10 

member(h(_,_,bubbleTea,_,parliament), Hs), %11 

behind(h(_,jaguar,_,_,_),h(japanese,_,_,_,_), Hs), %13 

Hs \= [_,_,_,h(japanese,_,_,_,_)], %14 

\+ member(h(english,_,_,_,oldGold), Hs),%12 

\+ member(h(_,parrot,_,ivory,_), Hs),%8 

\+ member(h(japanese,snail,_,_,_), Hs). %15 

 

behind(A, B, Ls) :- append(_, [A,B|_], Ls). 
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5 X 2 :  

There are five people standing in a queue. Each person owns a different pet and is an 
inhabitant of different nationality. The possible pets are a snail, a jaguar, a parrot, a cat and 

a zebra. The possible nationalities are Spaniard, Indian, English, Irish and Japanese. The 
following facts are true about this queue: 

1. The first person in the queue owns the snail. 

2. The snail owner is standing immediately in-front of the Spaniard. 

3. The Indian owns the parrot. 

4. The person directly in front of the Japanese owns the jaguar. 

5. The Irish is the last person in the queue. 

6. The Japanese does not own the snail. 

7. The Japanese is not at the end. 

8. The Japanese does not own the cat. 

Give the correct arrangement of the nationalities and their the pets in the queue. 

Solution: 

 Person 1 Person 2 Person 3 Person 4 Person 5 

Nationality English Spaniard Japanese Indian Irish 

Pet Snail Jaguar Zebra Parrot Cat 

 

 

Prolog Program:  

solution(Hs) :- 

length(Hs, 5), 

 

member(h(english,_), Hs), 

member(h(japanese,_), Hs), 

member(h(_,zebra), Hs), 

member(h(_,cat), Hs), 

 

Hs = [h(_,snail),_,_,_,_], %1 

behind(h(_,snail),h(spaniard,_), Hs),%2 
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member(h(indian,parrot), Hs), %3 

behind(h(_,jaguar),h(japanese,_), Hs), %4 

Hs = [_,_,_,_,h(irish,_)], %5 

\+ member(h(japanese,cat), Hs), %8 

Hs \= [_,_,_,_,h(japanese,_)], %7 

\+ member(h(japanese,snail), Hs). %6 

 

behind(A, B, Ls) :- append(_, [A,B|_], Ls). 

 

5 X 3 : 

There are five people standing in a queue. Each person owns a different pet, drinks a 
different beverage and is an inhabitant of different nationality. The possible pets are a snail, 
a jaguar, a cat, a parrot, and a zebra. The possible beverages are Orange juice, milk, bubble 
tea, lemonade and coffee. The possible nationalities are Spaniard, Indian, English, Irish and 

Japanese. The following facts are true about this queue: 

1. The first person in the queue owns the snail. 

2. The snail owner is standing immediately in-front of the Spaniard. 

3. The Indian owns the parrot. 

4. The person standing immediately in-front of the Japanese owns the jaguar. 

5. The Irish is the last person in the queue. 

6.The Jaguar owner drinks milk. 

7. The lemonade drinker is behind the Indian. 

8. The person standing immediately in-front of the parrot owner drinks coffee. 

9. The Japanese does not own the snail. 

10. The Japanese does not own the cat. 

11. The English does not drink bubble tea. 

Give the correct arrangement of the nationalities, the pets and the drinks. 
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Solution: 

 Person 1 Person 2 Person 3 Person 4 Person 5 

Nationality English Spaniard Japanese Indian Irish 

Pet Snail Jaguar Zebra Parrot Cat 

Drink Orange 
Juice 

Milk Coffee Bubble tea Lemonade 

 

Prolog Program:  

solution(Hs) :- 

length(Hs, 5), 

 

member(h(english,_,_), Hs), 

member(h(japanese,_,_), Hs), 

member(h(_,zebra,_), Hs), 

member(h(_,cat,_), Hs), 

member(h(_,_,bubbletea), Hs), 

member(h(_,_,orangeJuice), Hs), 

 

Hs = [h(_,snail,_),_,_,_,_], %1 

behind(h(_,snail,_),h(spaniard,_,_), Hs), %2 

member(h(indian,parrot,_), Hs), %3 

behind(h(_,jaguar,_),h(japanese,_,_), Hs), %4 

Hs = [_,_,_,_,h(irish,_,_)], %5 

member(h(_,jaguar,milk), Hs), %6 

behind(h(indian,_,_),h(_,_,lemonade), Hs), %7 

behind(h(_,_,coffee),h(_,parrot,_), Hs), %8 

\+ member(h(japanese,cat,_), Hs), %10 

\+ member(h(japanese,snail,_), Hs), %9 

\+ member(h(english,_,bubbletea), Hs). %11 

 

behind(A, B, Ls) :- append(_, [A,B|_], Ls). 

 

5 X 4 :  

There are five people standing in a queue. Each person owns a different pet, drinks a 
different beverage, lives in a different colored house and is an inhabitant of different 

nationality. The possible pets are a snail, a jaguar, a cat, a parrot, and a zebra. The possible 
beverages are orange juice, milk, bubble tea, lemonade and coffee. The possible 

nationalities are Spaniard, Indian, English, Irish and Japanese. The possible house colors are 
red, blue, green, ivory and yellow. The following facts are true about this queue: 
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1. The first person in the queue owns the snail. 

2. The snail owner is standing immediately in-front of the Spaniard. 

3. The Indian owns the parrot. 

4. The person standing immediately in-front of the Japanese owns the jaguar. 

5. The Irish is the last person in the queue. 

6. The Jaguar owner drinks milk. 

7. The lemonade drinker is standing immediately behind the Indian. 

8. The coffee drinker lives in the green house. 

9. The blue house owner is standing immediately in-front of the yellow house owner. 

10. The person standing immediately behind the snail owner lives in the ivory house. 

11. The person standing immediately in-front of the parrot owner drinks coffee. 

12. The Japanese does not own the snail. 

13. The Japanese does not own the cat. 

14. The English does not drink bubble tea. 

Give the correct arrangement of the nationalities, pets, house colors, and drinks. 

Solution: 

 Person 1 Person 2 Person 3 Person 4 Person 5 

Nationality English Spaniard Japanese Indian Irish 

Pet Snail Jaguar Zebra Parrot Cat 

Drink Orange Juice Milk Coffee Bubble tea Lemonade 

House Color Red Ivory Green Blue Yellow 

 

Prolog Program:  

solution(Hs) :- 

length(Hs, 5), 

 

member(h(english,_,_,_), Hs), 

member(h(japanese,_,_,_), Hs), 
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member(h(_,zebra,_,_), Hs), 

member(h(_,_,_,red), Hs), 

member(h(_,cat,_,_), Hs), 

member(h(_,_,bubbletea,_), Hs), 

member(h(_,_,orangeJuice,_), Hs), 

 

Hs = [h(_,snail,_,_),_,_,_,_], %1 

behind(h(_,snail,_,_),h(spaniard,_,_,_), Hs), %2 

member(h(indian,parrot,_,_), Hs), %3 

behind(h(_,jaguar,_,_),h(japanese,_,_,_), Hs), %4 

Hs = [_,_,_,_,h(irish,_,_,_)], %5 

member(h(_,jaguar,milk,_), Hs), %6 

behind(h(indian,_,_,_),h(_,_,lemonade,_), Hs), %7 

member(h(_,_,coffee,green), Hs), %8 

behind(h(_,_,_,blue),h(_,_,_,yellow), Hs), %9 

behind(h(_,snail,_,_),h(_,_,_,ivory), Hs), %10 

behind(h(_,_,coffee,_),h(_,parrot,_,_), Hs), %11 

\+ member(h(japanese,cat,_,_), Hs), %13 

\+ member(h(japanese,snail,_,_), Hs), %12 

\+ member(h(english,_,bubbletea,_), Hs). %14 

 

behind(A, B, Ls) :- append(_, [A,B|_], Ls). 

5 X 5 :  

There are five people standing in a queue. Each person owns a different pet, drinks a 
different beverage, smokes a different brand of cigarette, lives in a different colored house 

and is an inhabitant of a different nationality. The possible pets are a snail, a jaguar, a 
parrot, a cat and a zebra. The possible beverages are orange juice, milk, bubble tea, 

lemonade and coffee. The possible house colors are red, ivory, blue, yellow and green. The 
possible cigarette brands are Lucky Strike, Chesterfield, Parliament, Kools and Old Gold. The 

possible nationalities are Spaniard, Irish, Indian, English and Japanese. The following facts 
are true about this queue: 

1. The English is the first person in the queue. 

2. The Indian owns the parrot. 

3. The lemonade drinker lives in the yellow house. 

4. The Spaniard drinks milk. 

5. The yellow house owner is immediately behind of the owner of the blue house. 

6. The Old Gold smoker owns the Zebra. 
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7. The Lucky Strike smoker is the owner of the red house. 

8. The person in the middle drinks coffee. 

9. The Japanese owns the green house. 

10. The man who smokes Chesterfields is standing immediately behind the man with the 
snail. 

11. The Lucky Strike smoker is standing immediately in-front of the jaguar owner. 

12. The Parliaments smoker drinks bubble-tea. 

13. The Irish smokes Kools. 

14.The English is standing immediately in-front of the owner of the ivory house. 

What is a possible arrangement of the queue that follows all the constraints? 

Solution: 

 Person 1 Person 2 Person 3 Person 4 Person 5 

Nationality English Spaniard Japanese Indian Irish 

Pet Snail Jaguar Zebra Parrot Cat 

Drink Orange Juice Milk Coffee Bubble tea Lemonade 

House Color Red Ivory Green Blue Yellow 

Cigarette 
Brand 

Lucky Strike Chesterfield Old Gold Parliaments Kools 

 

 

Prolog Program:  

solution(Hs) :- 

length(Hs, 5), 

 

member(h(_,_,orangeJuice,_,_), Hs), 

member(h(_,cat,_,_,_), Hs), 

 

Hs = [h(english,_,_,_,_),_,_,_,_], %1 

member(h(indian,parrot,_,_,_), Hs), %2 

member(h(_,_,lemonade,yellow,_), Hs), %3 

member(h(spaniard,_,milk,_,_), Hs), %4 

behind(h(_,_,_,blue,_),h(_,_,_,yellow,_), Hs), %5 

member(h(_,zebra,_,_,oldGold), Hs), %6 
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member(h(_,_,_,red,luckyStrike), Hs), %7 

Hs = [_,_,h(_,_,coffee,_,_),_,_], %8 

member(h(japanese,_,_,green,_), Hs), %9 

behind(h(_,snail,_,_,_),h(_,_,_,_,chesterfields), Hs), %10 

behind(h(_,_,_,_,luckyStrike),h(_,jaguar,_,_,_), Hs), %11 

member(h(_,_,bubbleTea,_,parliaments), Hs), %12 

member(h(irish,_,_,_,kools), Hs), %13 

behind(h(english,_,_,_,_),h(_,_,_,ivory,_), Hs). 

 

behind(A, B, Ls) :- append(_, [A,B|_], Ls). 

 

Section 2: Prompt Engineering Formats 

The sections below describes the format of all the prompts engineering techniques used in 

this dissertation. To make the format easier to read, the puzzles have been represented by 

{puzzle}. A link to the conversation that demonstrate these techniques in OpenAI 

Playground environment has also been provided. 

Note: The playground examples will open with default parameters. Please change the model 

parameters to below: 

 

    Model : GPT – 4 (ChatGPT Plus Subscription needed) 

    Temperature: 1 

    Maximum Length: 5000 or 256 (as specified in implementation) 

 

1. NL to NL  

1.1 Zero-Shot  

User Prompt  

Q: {puzzle} 

A:  

 

System Instructions: 

You are a helpful assistant. 
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OpenAI Playground Example:  

https://platform.openai.com/playground/p/wYOnYrwXV2FwtCz7bIduZXfZ?model=gpt-4&mode=chat 

 

 

1.2 Zero-Shot Chain-of-thought 

User Prompt  

Q: {puzzle} 

A: Let’s think step by step 

 

System Instructions: 

You are a helpful assistant. 

 

OpenAI Playground Example:  

https://platform.openai.com/playground/p/g2HxFpqsaPGSGoojIrkvdvGW?model=gpt-4&mode=chat 

 

1.3 Tree of Thought 

User Prompt (Prompt 1) 

Q: {puzzle: 3 x2 } 

A: Let’s only look at the first constraint 

 

Prompt 2 :  

Out of the remaining constraints, which one should be solved next? Solve it. Do not change 

any elements in the positions but only the ones related to this constraint. Prioritize 

constraints that consist of the words like "first", "second", "third", "last" or "middle" if they 

have not been exhausted. If no more constraints are remaining, print the final arrangement 

with the heading "THE FINAL ARRANGEMENT IS:". 

 

https://platform.openai.com/playground/p/wYOnYrwXV2FwtCz7bIduZXfZ?model=gpt-4&mode=chat
https://platform.openai.com/playground/p/g2HxFpqsaPGSGoojIrkvdvGW?model=gpt-4&mode=chat
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System Instructions :  

You are a helpful assistant. Only solve one constraint at a time. Print the deduced 

arrangement at the beginning of every answer and then evaluate against every constraint if 

the newly deduced arrangement breaks any constraints. If it breaks any constraints print a 

line "Constraints broken", else do nothing. 

OpenAI Playground Example: 

https://platform.openai.com/playground/p/1AFjvUustb0SwmZ0krjmWpKp?model=gpt-4&mode=chat 

 

2. NL to Prolog  

Note: The final question in the  puzzles in this approach were modified to obtain a Prolog 

program instead of the correct arrangement. For example, for the 5x5 puzzle the question 

“What is a possible arrangement of the queue that follows all the constraints?” was 

changed to “Write a Prolog program to find the correct arrangement of the queue that 

follows all the constraints.”. 

 

2.1 Zero-Shot Chain-of-thought 

User Prompt (Prompt 1) 

Q: {puzzle} 

A: Let’s think step by step 

 

Prompt 2 

Does this program have a bug? How to fix it? 

 

Prompt 3 (Extraction Prompt) 

The output given by this program is: 

<output> 

Hence the correct arrangement is: 

Note: If the output is false, print False. 

 

https://platform.openai.com/playground/p/1AFjvUustb0SwmZ0krjmWpKp?model=gpt-4&mode=chat


   77 
 

System Instructions: 

Assume you are a constraint optimization expert and you need to model a constraint 

satisfaction problem in Prolog. 

OpenAI Playground Example: 

https://platform.openai.com/playground/p/LwwkRkt8ASV4rtaKqjBPmxHs?model=gpt-4&mode=chat 

One-Shot Plan and Solve 

Prompt 1 

Q:{Puzzle: 3x2} 

A: Let's first understand the problem, extract relevant elements, constraints and objective 

function and  then devise a plan to use the extracted information to solve the problem using 

Prolog . Then, let’s carry out the plan , find the arrangement (make sure to represent an 

initial arrangement, include all the elements in the code and use the member function in 

Prolog ) step-by-step. Finally let's print the Prolog code. 

ELEMENTS: 

Nationalities:(English, Spaniard, Japanese) 

Pets:(snail, jaguar, zebra) 

 

CONSTRAINTS: 

a. The first person in the queue owns the snail. 

b. The Spaniard is in the middle. 

c. The English is not the last person in the queue. 

d. The last person in the queue does not own the jaguar. 

e. The Japanese is immediately behind the jaguar owner. 

 

OBJECTIVE FUNCTION: 

In this problem our objective is not to minimize or maximize any quantity, rather it is to find 

an arrangement that satisfies all the constraints. 

PLAN: 

1. We'll use Prolog's "member" predicate to map each person with their nationality and pet. 

2. Prolog’s "member" predicate can also be used to structure the constraints of the 

problem, to fulfills the facts mentioned above. 

https://platform.openai.com/playground/p/LwwkRkt8ASV4rtaKqjBPmxHs?model=gpt-4&mode=chat
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3. Base case is to declare a rule that represents the queue with three people having 

different nationalities & different pets. 

4. We will represent all the elements using the "member" predicate. 

 

Let's convert this plan to Prolog code. 

```prolog 

solution(People) :- 

 

% Arrangement 

People = [person(1, _, _), person(2, _, _), person(3, _, _)], 

 

% Ensure each property appears exactly once 

member(person(1, _, _), People), 

member(person(2, _, _), People), 

member(person(3, _, _ ), People), 

member(person(_ , english, _), People), 

member(person(_ , spaniard, _), People), 

member(person(_ , japanese, _), People), 

member(person(_, _, zebra), People), 

member(person(_, _, jaguar), People), 

member(person(_, _, snail), People), 

 

% Enforce the constraints 

member(person(1, _, snail), People), 

member(person(2, spaniard, _), People), 

member(person(PositionE, english, _), People), PositionE \= 3, 

member(person(PositionJ, _, jaguar), People), PositionJ \= 3, 

member(person(PositionJP, japanese, _), People), 

PositionJplus1 is PositionJ + 1, PositionJP =:= PositionJplus1. 

``` 

This code models all conditions of the problem. Please run the Prolog command `?- 

solution(List).` to solve the problem.” 
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Q: {puzzle} 

A: Let's first understand the problem, extract relevant elements, constraints and objective 

function and  then devise a plan to use the extracted information to solve the problem using 

Prolog . Then, let’s carry out the plan , find the arrangement (make sure to represent an 

initial arrangement, include all the elements in the code and use the member function in 

Prolog ) step-by-step. Finally let's print the Prolog code. 

Prompt 2 

Does this program have a bug? How to fix it? 

 

Prompt 3 ( Extraction Prompt) 

The output given by this program is: 

<output> 

Hence the correct arrangement is: 

Note: If the output is false, print False. 

 

System Instructions: 

Assume you are a constraint optimization expert and you need to model a constraint 

satisfaction problem in Prolog. 

If printing the elements, constraints, objective function and plan use the format: 

"ELEMENTS: 

CONSTRAINTS: 

OBJECTIVE FUNCTION: 

PLAN:" 

Do not use the write function from Prolog when you are coding in Prolog. 

 

OpenAI Playground Example: 

https://platform.openai.com/playground/p/0C76QEKY0Vl9f8uraA6BArQu?model=gpt-
4&mode=chat 

https://platform.openai.com/playground/p/0C76QEKY0Vl9f8uraA6BArQu?model=gpt-4&mode=chat
https://platform.openai.com/playground/p/0C76QEKY0Vl9f8uraA6BArQu?model=gpt-4&mode=chat

