

 School of Computer Science and Statistics

Zebra Variations and ChatGPT

Utkarsh Gupta

 April 2024

 A Dissertation

Presented to the University of Dublin, Trinity College

In partial fulfillment of the requirement for the degree of

Master in Computer Science

Supervisor: Tim Fernando

 2

DECLARATION

I, the undersigned, declare that this work has not previously been submitted as an exercise

for a degree at this, or any other University, and that unless otherwise stated, is my own

work.

Utkarsh Gupta

April 15, 2024

 3

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Tim Fernando, for

his considerate guidance in this dissertation. Professor Tim was always willing to assist in

any way he could, and provided insightful feedback throughout this project. His readiness to

help, coupled with his profound expertise, significantly enriched this work.

Utkarsh Gupta

University of Dublin, Trinity College

April 2024

 4

Abstract

Despite extensive research in the field of Generative Artificial Intelligence(AI), little is known

about the reasoning abilities of AI models with respect to solving Constraint Satisfaction

Problems(CSP) such as zebra puzzles. This dissertation aims to investigate the competency

of ChatGPT in reasoning out zebra puzzles and how prompt engineering techniques such as

Chain Of Thought and One Shot prompting can be used to improve its performance. We

measure the accuracy of GPT-4 on sixteen variations of the classic zebra puzzle using two

different approaches: interactive communication in natural language and generation of

constraint models in a programming language. Preliminary results indicate that GPT- 4

exhibits promising proficiency in the creation of constraint models using programming

languages such as Prolog.

 5

CONTENTS

Acknowledgements .. 3

Abstract ... 4

List of Tables .. 7

List of Figures ... 8

List of Abbreviations .. 9

Introduction ... 10

1.1 Motivation ..10

1.2 Problem Statement ...10

1.3 Dissertation Outline ..11

Related Work ... 12

2.1 Constraint Satisfaction and Artificial Intelligence ...12

2.2 The Zebra Puzzle ...13

2.3 OpenAI & ChatGPT ..15

2.4 Prompt Engineering ..16

2.4.1 Zero Shot Prompting (ZS) ...17

2.4.2 One Shot Prompting (OS) ...17

2.4.3 Zero Shot Chain of Thought Prompting (ZS CoT) ...18

2.4.4 Plan and Solve Prompting (PS) ...19

2.4.5 Tree of Thoughts (ToT) ...20

2.5 ChainForge ..22

2.6 Persona Pattern ..23

Design & Implementation ... 24

3.1 Creation and Verification of Puzzles ...25

3.2 OpenAI Playground Environment ...27

3.3 Approach 1: NL to NL ..29

3.3.1 Zero Shot (ZS) ...29

3.3.2 Zero Shot Chain of Thought (ZS CoT) ...29

 6

3.3.3 Tree of Thought (ToT) ..30

3.4 Approach 2: NL to Prolog ..32

3.4.1 Zero Shot Chain of Thought (ZS CoT) ...32

3.4.2 One Shot Plan and Solve Prompting (OS PS) ..33

3.5 Solution Extraction - Prolog to NL ...37

Evaluation ... 39

4.1 Evaluation Method ...39

4.1.1 NL to NL ..39

4.1.2 NL to Prolog ...39

4.2 Results ...41

4.2.1 NL to NL ..41

4.2.2 NL to Prolog ...44

 4.3 Comparing NL to NL and NL to Prolog ..47

Conclusion ... 49

Further Work ..49

Bibliography .. 50

Appendix ... 53

Section 1: Zebra Puzzles ..53

Section 2: Prompt Engineering Formats ...74

 7

List of Tables

1. Solution to the 2 x 3 Puzzle ... 26

2. Solution to the 2 x 4 Puzzle .. 26

3. Accuracy of GPT (NL to NL) .. 41

4. Average Number of Tokens used in NL to NL Prompting Techniques 42

5. Average Number of Backtracks by GPT in Tree of Thought .. 43

6. Accuracy of GPT (NL to Prolog) ... 44

7. Average Number of Tokens used in NL to Prolog Prompting Techniques 47

 8

List of Figures

1. Solution to the Classic Zebra Puzzle... 14

2. Tree of Thoughts as described in Yao, S. et al. [13] .. 20

3. ChainForge Environment ... 22

4. Dataset Structure Comprising of 16 Puzzles ... 25

5. Verification of the 3 x 2 puzzle in SWI-Prolog .. 27

6. OpenAI Playground .. 27

7. Zero Shot Prompting with 2x3 Puzzle .. 29

8. Zero Shot Chain of Thought Prompting with 2 x 3 Puzzle .. 30

9. Tree of Thought Prompting with 2 x 3 Puzzle ... 30

10. Tree of Thought DFS and Backtracking .. 31

11. Zero Shot Chain of Thought Prompting with 2 x 3 Puzzle .. 32

12. One Shot Plan and Solve Prompting with 2 x 3 Puzzle .. 34

13 . Accuracy of GPT-4 for NL to NL Approach ... 42

14 . Accuracy of GPT-4 for NL to Prolog Approach ... 45

15. Number of Correct Arrangements With and Without Corrections 45

16. Code Fix Request Classification.. 46

17. Comparing ToT from NL to NL & OS PS from NL to Prolog Approach 48

 9

List of Abbreviations

AI - Artificial Intelligence

AGI - Artificial General Intelligence

CSP - Constraint Satisfaction Problem

CoT - Chain of Thought

GPT - Generative Pre-Trained Transformer

LLM - Large Language Model

NL - Natural Language

NPE - No Prompt Engineering

OS - One Shot

OS PS - One Shot Plan and Solve

PS - Plan and Solve

ToT - Tree of Thought

ZS - Zero Shot

ZS CoT - Zero Shot Chain of Thought

 10

1

Introduction

1.1 Motivation

Generative Artificial Intelligence is a burgeoning field that has seen tremendous growth over

the past five years. The boom of content generation via AI models has initiated a shift in the

way that content is created and consumed. While techniques for content generation have

been around for decades [31], newer AI models demonstrate an ability to apply common

sense and logic [32]. This is crucial because reasoning capabilities in AI models represent a

significant stride towards achieving Artificial General Intelligence (AGI).

A constraint satisfaction problem (CSP) such as the Zebra Puzzle presents a compelling

benchmark for assessing the capabilities of AI. CSPs often exhibit high complexity, requiring

a combination of heuristics and combinatorial search methods to be solved in a reasonable

time. Currently, CSPs have industry-wide applications such as forest treatment scheduling

[28] and aircraft scheduling [29], and rely on modelling tools (such as CPMpy [30]) that

require user expertise.

With the recent advancements in AI models, an interesting question arises: Could a user

provide the problem to the AI model in natural language and the AI solves it? Another idea

that can be explored is: could the AI model extract a formal model that the user can use to

generate the solution?

Such a mechanism could make the process more streamlined without the need for a

dedicated expert handler or modelling tools.

1.2 Problem Statement

The research in generative AI models has focused on testing the efficacy of AI on various

types of problems such as mathematics and common sense [4],[6]. Problems like zebra

puzzles are a combination of problems where multiple abilities like mathematical reasoning,

and common sense are necessary to reach a deduction. Such problem domain is still largely

unexplored.

 11

Prior studies related to the topic have concentrated on refining the reasoning capabilities of

AI systems through various methods, among which prompt engineering emerges as one of

the most prominent [4], [7], [13].

This dissertation investigates two possible approaches to utilize ChatGPT (specifically GPT-4)

to solve zebra puzzles. Firstly, we investigate the approach to interact with the model in

natural language to evaluate and understand its limitations. Secondly, we investigate the

efficacy of ChatGPT on a prior suggested technique, where we use GPT to extract a formal

model of the problem that we can plug into a programming environment to obtain the

solution.

1.3 Dissertation Outline

There are 4 chapters following this: Related Work, Design and Implementation, Evaluation,

and Conclusion. The next section highlights the background and related work in the field of

generative AI. Various topics related to our investigation such as prompt engineering and

the Chain of Thoughts technique are introduced and discussed. Chapter 3 presents the

design and implementation of the techniques used in this investigation. In Chapter 4, we

take a look at the results of the investigation and discussions about them. Finally, Chapter 5

concludes the dissertation by summarizing the findings and discussing the open research

problems for eliciting reasoning in AI models.

 12

2

Related Work

The following subsections introduce some relevant topics and methods related to our

dissertation.

2.1 Constraint Satisfaction and Artificial Intelligence

Constraint Satisfaction Problems (CSP) have been a long-standing interest in the AI

community. This is because constraint-based software is used in various important activities

such as forest treatment scheduling [28] and scheduling of aircraft [29].

A CSP can be defined as a set of variables X = {𝑥1, 𝑥2, 𝑥3…… . . 𝑥𝑛} where each variable 𝑥𝑖 has

a finite set of possible values in domain 𝐷𝑖. A set of constraints restrict the values that 𝑥𝑖

can take. The solution of a CSP is defined when all the values in X have an assigned value

from their domain. A solution can be one unique set of values or multiple sets of values.

There are multiple ways to solve a CSP. Kumar, V. [33] describes some methods of solving

finite domain CSPs. These include backtracking and constraint propagation. However, these

techniques have their limitations. As discussed by Barták, R. [3], even a small change in the

program can lead to a huge change in performance. Additionally, it is a difficult task to

choose the right technique for a specific problem.

With the advent of AI models such as ChatGPT [18], Gemini [19], and Copilot [20], it has

become much easier to use natural language as a way to communicate problems to an AI

model and obtain solutions. Various AI models have been tested on mathematical, logical,

and common sense questions [12] [13]. These approaches have focused purely on obtaining

a solution in terms of natural language i.e. the final output is in natural language. It should

be noted that most of these problems were small and required only a few steps for the AI to

compute the answer. Complex problems like zebra puzzles require working with multiple

constraints and backtracking (if using natural language). Current AI models do not possess

the ability to self-verify their output [9] and have a high degree of hallucinations [11].

Tsouros, D. et al. [15] proposed using natural language with Large Language Models to

automatically extract a model required to solve the problem. They suggested leveraging

 13

prompt engineering to tackle the task of converting the natural language to an optimization

problem. A model can be obtained directly from a natural language by extracting the

relevant parameters(or elements), constraints, and objective function, and then using those

to formulate the code.

Further, models like ChatGPT have shown high efficacy in finding and fixing bugs in

programs which can be used in combination with the above technique. Sobania, D. et al.

[16] evaluated the automatic-bug fixing performance of ChatGPT and evaluated that it fixed

19 out of 40 bugs in a benchmark set.

2.2 The Zebra Puzzle

The Zebra Puzzle [1] (also referred to as Einstein’s Riddle) is a constraint satisfaction

problem. It consists of 5 houses with different colours, each containing a pet, a beverage, a

brand of cigarette, and an inhabitant of different nationalities. There are multiple versions

of the zebra puzzle but we consider the classic puzzle that is given in [1].

1. There are five houses.

2. The Englishman lives in the red house.

3. The Spaniard owns the dog.

4. Coffee is drunk in the green house.

5. The Ukrainian drinks tea.

6. The green house is immediately to the right of the ivory house.

7. The Old Gold smoker owns snails.

8. Kools are smoked in the yellow house.

9. Milk is drunk in the middle house.

10. The Norwegian lives in the first house.

11. The man who smokes Chesterfields lives in the house next to the man with the fox.

12. Kools are smoked in a house next to the house where the horse is kept.

13. The Lucky Strike smoker drinks orange juice.

14. The Japanese smokes Parliaments.

 14

15. The Norwegian lives next to the blue house.

Who drinks water? Who owns the zebra?

The following additional information is also provided to help us solve the puzzle:

House Colors: Red, Blue, Yellow, Green, Ivory

Nationalities: Englishman, Spaniard, Japanese, Ukrainian, Norwegian

Pets: Dog, Horse, Snails, Fox, Zebra

Drinks: Water, Tea, Orange Juice, Milk, Coffee

Brand of Cigarettes: Kools, Old Gold, Parliament, Lucky Strike, Chesterfield

Norwegian Ukrainian Englishman Spaniard Japanese

water tea milk orange juice coffee

Kools chesterfield Old gold Lucky strike Parliaments

fox horse snail dog zebra

Fig 1. Solution to the Classic Zebra Puzzle

There are various ways to solve this puzzle. For this dissertation, we will be using SWI-

Prolog [2]. SWI-Prolog is a high-level programming language that offers a way to specify a

set of constraints about a problem domain and infer the solution from those constraints. It

uses backtracking [33] as a part of its approach to solve CPSs.

Because this version of the puzzle is widely available on the web, it is already present in the

training data for ChatGPT. Hence, a fresh set of puzzles was used that ChatGPT has not seen

before.

New puzzles with different complexities based on the original puzzle were created. More

about this is discussed in the methods section.

 15

2.3 OpenAI & ChatGPT

OpenAI [38] is an AI research and deployment company. ChatGPT [18] (GPT short for

Generative Pre-Trained Transformer) is a large language model (LLM) developed by OpenAI.

It is one of the most widely used LLMs worldwide and acquired one million users in only five

days. Currently, OpenAI offers two versions of their LLM to the public. These are ChatGPT

3.5 and GPT-4 [35], with the former being the latest model. GPT-4 is only available to

ChatGPT Plus subscribers.

ChatGPT was trained on a vast dataset from various sources on the internet. This dataset

allows the model to create a deep neural network that helps it to recognize and learn from

the patterns in the training data. When a prompt is given to the model, ChatGPT predicts

which words should be used next.

If we compare the two available versions, GPT-4 has a higher number of parameters in

contrast to its predecessor’s 175 billion and achieved a 9.7% higher accuracy with few shot

prompting on HellaSwag [34] commonsense reasoning questions [35]. It has also shown

signs of AGI by answering difficult reasoning questions such as creating a stack to balance a

book, 9 eggs, a laptop, a bottle, and a nail [10], or answering questions that require general

knowledge and common sense [12].

OpenAI claims that GPT 4 is better at understanding instructions :

“The difference comes out when the complexity of the task reaches a sufficient

threshold—GPT-4 is more reliable, creative, and able to handle much more nuanced

instructions than GPT-3.5”- OpenAI [35]

For these specific reasons, this dissertation was carried out with the help of OpenAI’s latest

model GPT-4. We investigate if GPT-4 can tackle the complexity of a zebra puzzle. For the

rest of this dissertation, GPT-4 is referred to as GPT to make the text more readable.

 16

2.4 Prompt Engineering

It is important to formulate the input in a way that the AI model can comprehend. For

example, specifying how it should solve a problem and what should be the final output.

Prompt engineering [7] is the process of creating and optimizing inputs to get the desired

output. Even though AI chatbots are designed to understand human-like text, their

performance can be enhanced by adding more details to the prompt. For example, Chen, B.

et al. [12] present a brief overview of the benefits of prompt engineering in enhancing the

performance of LLMs by using a few prompt engineering techniques.

Some examples of prompt engineering include Few Shot Prompting [21], Zero Shot

Prompting [22], and Chain of Thought Prompting [4] . Few shot prompting requires that the

input contains some example questions and answers. The AI finds patterns in the examples

provided in the input and learns from them. In Zero Shot prompting, no such examples are

provided and the AI answers solely based on the question. Another type of prompting called

Chain of Thought prompting requires the use of an additional instruction such as “Let’s think

step by step” so that the AI can apply reasoning to its answers.

Additionally, these techniques can be combined to get better outputs. For example, Chain of

Thought can be either a Zero Shot Chain of Thought or Few Shot Chain of Thought [4].

Wei, J. et al. [4] show that a simple addition of the line such as “Let’s think step by step”

can elicit the AI to return better outputs. Similarly, Wang, L. et al. [6] investigated the use of

another instruction to elicit reasoning and proposed Plan and Solve prompting that returned

even better results than Zero Shot Chain of Thought.

The techniques relevant to our thesis are discussed in this section.

 17

2.4.1 Zero Shot Prompting (ZS)

Zero shot prompting is the most basic kind of prompting. The AI is provided with the input

with no additional instructions.

Here is an example of Zero Shot prompting:

Input:

Classify the text into neutral, negative or positive.

Text: I think the vacation is okay.

Sentiment:

Output:

Neutral

2.4.2 One Shot Prompting (OS)

One Shot Prompting is a part of Few Shot Prompting [24] and uses one example to guide AI

in the task that it is required to perform. This includes communicating the formatting that

the user wants and the way of approaching the problem.

Here is an example of One Shot Prompting.

Input:

Q: What is (3 + 3) X 2?

A:
3 + 3 = 6

6 X 2 = 12
The answer is 12.

Q: What is (2 + 2) X 3?

A:

Output:

 18

2 + 2 = 4

4 X 3 = 12

The answer is 12.

As we can see, the AI learned from the pattern in the example output provided by the user

and applied that learning to its output. It even applied the same format that was used in the

example.

2.4.3 Zero Shot Chain of Thought Prompting (ZS CoT)

Chain of thought prompting (CoT) was introduced by a Google research team Wei, J. et al.

[4]. It enables the AI to apply better reasoning strategies by thinking step by step. There are

multiple types of Chain-of-Thought prompting such as Few Shot [26], Zero Shot [6] and Auto

Shot [27]. Few shot and auto shot prompting require the use of multiple questions and

answers type of examples to be included in the prompt. For complex puzzles such as the

zebra puzzles, it is not feasible to use these techniques because

• Their solutions can often expand to a large number of words.

• There can be multiple ways to solve a puzzle.

• They require hand-crafted Few Shot examples that are difficult to create

Here is an example of a Zero Shot prompt without Chain of Thought:

Input

I went to the market and bought 10 apples. I gave 2 apples to the neighbor and 2 to the

repairman. I then went and bought 5 more apples and ate 1. How many apples did I remain

with?

Output

11 apples

 19

As we can see, the output returned by the AI is incorrect. Let us try this again with Zero Shot

CoT:

Input

I went to the market and bought 10 apples. I gave 2 apples to the neighbor and 2 to the

repairman. I then went and bought 5 more apples and ate 1. How many apples did I remain

with? Let's think step by step.

Output:

First, you started with 10 apples. You gave away 2 apples to the neighbor and 2 to the

repairman, so you had 6 apples left. Then you bought 5 more apples, so now you had 11

apples. Finally, you ate 1 apple, so you would remain with 10 apples.

As we can see, adding a single line to the input prompt has resulted in the correct output.

The AI has strategically taken steps to reach the final output. This can be further modified to

use different one-line commands to increase the accuracy of the output.

2.4.4 Plan and Solve Prompting (PS)

Wang, L. et al. [6] tested Zero Shot CoT using a more detailed instruction and proposed Plan

and Solve prompting (PS) that uses a different instruction to “Let’s think step by step”.

Plan and Solve prompting uses a structure similar to the one shown below:

Prompt

“Let’s first understand the problem, extract relevant variables and their corresponding

numerals, and devise a plan. Then, let’s carry out the plan, calculate intermediate results(

pay attention to calculation and common sense). Solve the problem step by step, and show

the answer.”- Wang, L. et al. [6]

As discussed in Wang, L. et al. [6], while the “Let’s think step by step “ instructions produced

an accuracy of 65.2 and 63.8 on the CSQA and StrategyQA commonsense datasets, Plan and

Solve prompting produced better results with the accuracy of 71.9 and 65.4 respectively.

 20

Similarly, for the last letter and Coin Flip symbolic reasoning datasets the plan and solve

prompting had a higher accuracy by 10.4 and 2.8 %.

The benefit of Plan and Solve prompting is that the user can define how the AI model should

solve a problem. For example, in the example Plan and Solve prompt, the user has stated

that the AI model should extract relevant variables and their corresponding numerals. This

approach would allow the user to provide the AI models with a detailed plan of how to

approach the problem. For example, GPT could be instructed to extract all the elements of

the puzzle such as the elements and the constraints.

2.4.5 Tree of Thoughts (ToT)

Tree of thoughts(ToT) prompting proposed by Yao, S. et al. [13] encourage the use of

multiple prompts to explore “thoughts” generated by the model in intermediate steps. ToT

resembles a tree that maintains different “nodes” of thoughts that could potentially reach

the desired output. ToT prompting offers a way for the AI to self-evaluate and correct its

responses, in contrast to CoT wherein AI is unable to evaluate its response once printed. ToT

therefore allows the AI to backtrack, something it cannot do on its own. This is especially

helpful for tasks like solving a zebra puzzle because elements that may have been positioned

in the puzzle in earlier attempts might not always be the correct elements for that position.

Tree of Thoughts combines algorithms like breadth-first search and depth-first search to

explore the thoughts that are generated.

Fig 2. Tree of Thoughts as described in Yao, S. et al. [13]

 21

As specified by Yao, S. et al. [13], 4 key steps that are required in ToT prompting. These

include:

1. Thought decomposition: A thought is an individual element of the problem that the AI

should solve. For example, suggested words for a crossword or an equation to solve a

mathematical problem. The thought should be simple so that the AI model returns a variety

of promising thoughts that leads towards a possible solution.

2. Thought Generator: To reach a solution multiple thoughts need to be generated. There

are two ways to generate a thought. One of the ways is to sample the prompts. For

example, generate plans and choose the best plan. This is useful when the thoughts are rich

and diverse. The second way is to use a propose prompt. This is useful when the thoughts

are more constrained i.e. each thought is a line.

3. State Evaluator: The next step is to add a heuristic to the technique and judge how close

the AI model is to the desired output. There are two ways to achieve this:

A. Value: By adding a value prompt the AI model can judge if the specific thought will

lead to a desired value. The AI model is prompted to generate a scalar value for each

thought that specifies its probability of reaching the solution. For example, in a game

of 24, the authors use a value prompt by prompting

“Evaluate if the given numbers can reach 24 (sure/likely/impossible)”. By doing this

the AI can evaluate if the thought generated above leads to a possible solution.”

B. Vote: For thoughts where obtaining a value as a heuristic is not possible (such as

creative writing), a vote prompt allows the AI to vote its best choice for a set of

thoughts. In the Creative writing task, where there are no arithmetic values, a vote

prompt is useful to analyze 5 choices of thoughts.

4. Search Algorithm: To explore the cumulative thoughts and reach a solution, two search

algorithms can be used:

A. BFS search: For BFS, N nodes are maintained at each level. This is suitable for

cases where there are a finite number of steps such as a game of 24.

B. DFS Search: This is suitable for cases the where most promising states need to be

explored first and there is no way for evaluator to assess if it can solve the problem

from the current node.

Yao, S. et al. describe that ToT’s performance hugely improved the performance of ChatGPT

in solving 5x5 mini-crosswords. ToT prompting had a word-level success rate of 60%, in

contrast to CoT’s success rate of less than 16%.

 22

This makes ToT prompting an ideal candidate to try as an approach to solving a zebra puzzle

as it allows the AI to self-evaluate and backtrack decisions, something that even humans do

while solving a puzzle. A careful consideration is needed to decide what a thought

constitutes, how to generate it, how to evaluate it, and further explore the thoughts.

2.5 ChainForge

ChainForge [17] is a prompt engineering tool that can be used to evaluate the robustness of

prompts and text generation models. With ChainForge, a user can create multiple prompts

with minimum engineering and evaluate the responses from a multitude of AI models such

as ChatGPT, Claude [14], and PaLM [23]. The outputs can be arranged in user-friendly

formats that help in making the evaluation of outputs easier. ChainForge was not used for

this dissertation because it cannot hold conversations with a model, and only sends single

API requests for some prompts. However, it is worth mentioning that such software would

be beneficial in research projects like this.

Fig 3. ChainForge Environnent

From Fig. 3 we can observe that ChainForge provides an easy way to create combination of

commands and inputs via individual prompt nodes. The Command and Prompt Injection

nodes help to create multiple prompts with every possible combination in the Prompt Node.

Additionally, a user can create custom coded programs to evaluate the responses by the AI

models. In Fig. 3, the user creates a custom-program that checks whether the text “LOL” is

contained in any of the responses. This returns a numeric value that is visualized in

ChainForge via a bar plot.

 23

2.6 Persona Pattern

For all the prompt techniques applied in this dissertation, a prompt was added to the

system window where GPT was instructed to play the role of personas like a helpful

assistant or a constraint optimization expert. White, J. et al. [36] described the uses of a

Persona pattern (a role to play) and how they can help in generating outputs. They enable

the AI models to follow a particular point of view with more discipline. For example, in the

NL to Prolog approach (discussed in the next section), GPT is utilized to solve constraint

satisfaction problems, hence it is asked to act like a constraint optimization expert.

 24

3

Design & Implementation

Prompt engineering techniques were implemented with two different approaches. In the

first approach, an attempt was made to converse with GPT in natural language and evaluate

how well it can solve the puzzles in English. This approach was labelled ‘Natural Language to

Natural Language’ (NL to NL).

In the second approach, GPT was instructed to extract the elements, constraints, and

objective of the puzzle and write a code in Prolog to solve the puzzle. This approach was

labelled ‘NL to Prolog’.

Various prompt engineering techniques were tested with the two approaches:

• Natural Language to Natural Language (NL to NL)

o Zero Shot

o Zero Shot Chain of Thought

o Tree of Thought

• Natural Language to Prolog (NL to Prolog)

o Zero Shot Chain of Thought

o One Shot Plan and Solve

The dataset consisted of sixteen manually created zebra puzzles that were based on the

original puzzle. To understand the limitations of GPT, these puzzles had different levels of

complexity. The simplest puzzle consisted of two subjects and each subject had two

categories. For example 2 houses and 2 pets. Similarly, other puzzles had a maximum of 5

subjects and 5 categories. Every puzzle had a different number of subjects and categories.

To distinguish the puzzles from each other, a format M x N was used, where the first

number M described the number of subjects (houses or people) (M>=2 and M<=5) and the

second number N described the number of categories (Nationality, Pets, Drinks, House

color, Cigarette brand) (N>=2 and N <=5). Hence, the 3 x 5 puzzle had 3 subjects and 5

categories. All the puzzles can be viewed in the Appendix section of this dissertation.

 25

Fig 4 . Dataset Structure Comprising of 16 Puzzles

All zebra puzzles were programmed in Prolog and verified to have one unique solution.

OpenAI playground and prompt engineering were used to implement the two approaches.

In the case of NL to Prolog, the output was tested using SWI-Prolog and marked correct if it

produced the right arrangement.

The subsections below detail the process of creating and verifying the puzzles as well as the

various approaches taken.

3.1 Creation and Verification of Puzzles

To test the efficacy of GPT with different complexities of puzzles, sixteen new puzzles were

created. These puzzles had the same categories as the original zebra puzzle, such as

nationalities, pets, drinks, colors, and brands of cigarettes. However, some of the elements

and combinations were changed. Additionally, instead of houses, queues were used in the

arrangement. This meant that instead of relations left and right, the puzzle had relations in

front and behind. This was done to remove any chance of GPT having seen such puzzles in

its training data.

The process behind creating these puzzles is given below. One basic puzzle was created first.

Then, using the elements of this puzzle, hints for the next puzzle were created.

For example, in the 2X3 puzzle, the constraints are:

1.) The first house belongs to the Ukrainian.

2.) The Norwegian owns the cat.

3.) The owner of the zebra drinks coffee.

 26

The solution for the puzzle would be the following:

Table 1. Solution to the 2 x 3 Puzzle

 House 1 House 2

Nationality Ukrainian Norwegian

Pet Zebra Cat

Drink Coffee Milk

One additional constraint was added to the next puzzle (2x4) to increase the number of

categories :

4.) The owner of the red house drinks milk.

Which further assigned the Red house to the Norwegian.

Table 2. Solution to the 2 x 4 Puzzle

 House 1 House 2

Nationality Ukrainian Norwegian

Pet Zebra Cat

Drink Coffee Milk

House Color Blue Red

A total of sixteen puzzles were created using this method and were designed such that they

gave one unique solution. All the constraints were tested using SWI-Prolog. The programs to

verify these puzzles are given in the Appendix section.

 27

An example program and it’s solution for the 3x3 puzzle can be seen below:

 Fig 5. Verification of the 3 x 2 Puzzle in SWI-Prolog

As we can see, a predicate houses(Hs) is defined in the Program window that consists of a

representation of the queue and the constraints. On the right, the solution is obtained by

running the program. Each h() represents a house in ascending order. The ‘false’ text at the

end indicates that there are no more solutions to the program.

3.2 OpenAI Playground Environment

OpenAI Playground [25] is an application that OpenAI has made available for developers. It

has more features than the web interface of ChatGPT and provides options to fine-tune a

number of AI models provided by OpenAI. The “Chat” feature of Playground can be used to

talk to several models of ChatGPT.

Fig 6. OpenAI Playground

 28

The interface provides a window on the left for any system instructions. Here, the user can

specify how they want GPT to work. In this investigation, the system window was used to

provide GPT important instructions related to the prompt engineering technique. More of

this is described in the prompt engineering implementations below.

On the right of the conversation column, several parameters have been provided to select

an AI model and fine-tune it. For carrying out this dissertation, the value used for these

parameters were:

Model: GPT-4

Temperature: 1

Maximum Length: 5000

Top P: 1

Frequency Penalty: 0

Presence Penalty : 0

Note: The value of the Maximum Length parameter was only changed for the extraction

prompt (Prompt 3) in NL to Prolog approach. More about this is explained in the ‘Design and

Implementation’ section.

The temperature is a parameter that influences the randomness in the generated text. A

higher temperature means that the model will select words that are less probable to be

next. A low temperature will lead the model to select words that have a high probability of

being next.

The maximum length parameter controls the number of generated tokens. A higher token

number increases the cost of using the model. This was maintained at 5000 because this

was an appropriate length that could balance the length of the output and the budget.

The last three parameters Top P, Frequency Penalty, and Presence Penalty were not

changed as this would increase the complexity of the evaluation. For a value X, the Top P

parameter will only choose the top X*100% possible tokens. Hence, a Top P value of 0.3

means that only the tokens comprising of cumulative probability above 30% will be

sampled.

Finally, the user window in the middle is used to converse with the model. The prompt-

engineered questions are used in this window to get the output.

 29

3.3 Approach 1: NL to NL

3.3.1 Zero Shot (ZS)

For the first technique, GPT was given a puzzle as a prompt and asked to return the correct

arrangement that satisfied the puzzle constraints. No additional instructions were provided.

 Fig 7. Zero Shot Prompting with 2 x 3 Puzzle

In the system window, the following message was added :

“You are a helpful assistant”

Figure 7 shows the Zero Shot technique. As we can see, the output returned by the model is

incorrect. Let us observe how the Zero Shot Chain of Thought Prompting tackles this

problem.

3.3.2 Zero Shot Chain of Thought (ZS CoT)

The Chain of Thought prompting was utilized in this technique. As seen in Fig. 8, the text “A:

Let’s think step by step” was appended to the input prompt”.

 30

Fig 8. Zero Shot Chain of Thought Prompting with 2 x 3 Puzzle

CoT enabled GPT to use its reasoning abilities and provide more detailed answers. Fig. 8

shows the output returned by GPT. This time the output is correct. The model explains its

reasoning well to reach a correct solution.

In the system window, the following message was added :

“You are a helpful assistant”

3.3.3 Tree of Thought (ToT)

Out implementation of the Tree of Thought (ToT) made use of multiple prompts to solve

each constraint individually. The aim was to investigate if solving constraints individually will

lead GPT to have better reasoning. Additionally, GPT was given the freedom to choose

which constraints to solve in turns using a custom prompt.

Fig 9. Tree of Thought Prompting with 2 x 3 Puzzle

 31

Fig. 9 shows the process of Tree of Thought. In the first prompt presented to GPT, the text

“Let’s only look at the first constraint” was appended to the prompt, to initialize the

process and generate a thought based on the first constraint. Note that this technique

requires a direct constraint (one that places an element directly to a position) to be first. For

example, in Fig. 9, constraint 1, directly places the Ukrainian in the first house.

Similar to Yao, S. et al. [13], a thought generator and an evaluator were added to this

technique. The second prompt acts as a thought generator. This prompt enables GPT to

select a suitable constraint to solve next. The direct constraints often contain words such as

“first” and “second” and therefore GPT was instructed to prioritize those constraints first.

Finally, to evaluate the end of the process, GPT was instructed to print the arrangement

with a specific format.

At each level, a maximum of 3 thoughts were allowed to be generated. At the end of each

though, GPT was asked to check the deduced arrangement with the constraints (see system

instructions). This acted as a value evaluator of the thoughts. If any constraints were broken

in the intermediate steps, another thought at that level was generated. If three thoughts

had been generated at one level, a backtrack was performed and more thoughts were

generated on the previous level.

 Fig 10. Tree of Thought DFS and Backtracking

The thoughts were generated in a depth-first search manner, hence if the first generated

thought did not break any constraint, the thought for the next constraint was generated.

This process continued until GPT answered with the final prompt.

 32

In the system window, the following instructions were added:

“You are a helpful assistant. Only solve one constraint at a time. Print the deduced

arrangement at the beginning of every answer and then evaluate against every constraint

if the newly deduced arrangement breaks any constraints. If it breaks any constraints

print a line "Constraints broken", else do nothing. ”

This instruction provided a way to know which elements had already been deduced in the

arrangement. At the start of every output, GPT printed the arrangement that was already

deduced from the solved constraints. Additionally, the constraint check instruction acted as

an evaluator to each thought.

This mechanism allowed GPT to solve a constraint and detect if any constraints had been

broken. If this was the case either new thoughts were generated if all the thoughts had not

been exhausted (max 3) or backtracking was applied to create a new branch.

3.4 Approach 2: NL to Prolog

3.4.1 Zero Shot Chain of Thought (ZS CoT)

The Zero Shot Chain of Thought (ZS CoT) utilizes the Chain of Thought prompting, similar to

the NL to NL approach. The final question in each of the puzzles was changed so that the

output was a Prolog code. This approach attempted to test if GPT was able to create code

from scratch without any additional help.

Fig 11. Zero Shot Chain of Thought Prompting with 2 x 3 Puzzle

 33

In the instruction window, GPT was instructed to play the role of a constraint optimization

expert.

“Assume you are a constraint optimization expert and you need to model a constraint

satisfaction problem in Prolog.”

This technique was implemented in two steps:

Step 1: Apply Zero Shot Chain of Thought Prompting

Figure 11 shows the structure of the prompt (Prompt 1) used in this step. The output

returned by GPT for this prompt was a Prolog code. Oftentimes the answers needed to be

manually created from the outputs because they contained natural language.

Step 2: Solving Bugs

As discussed in the Related Work section, GPT has shown high efficiency in solving bugs in

codes. Similar to the approach taken by Sobania, D. et al. [16], the second prompt aimed to

offer GPT a chance to correct any bugs in the code that it produces. Note that this step was

optional and only applied if the code in Step 1 did not solve the puzzle. A prompt with the

following words “Does this contain any bug? How to solve it?” was used to enable GPT to

find and fix bugs in its earlier output.

3.4.2 One Shot Plan and Solve Prompting (OS PS)

Zero Shot Prompting did not allow the user to specify the formatting or the structural

formulation of the program. This enabled GPT to use a diverse set of ways to write the code

for model optimization which increased the randomness of the output.

In One Shot Plan and Solve (OS PS) prompting, a solved example (as a Plan and Solve

prompt) of a puzzle is appended to the prompt. This should decrease the randomness of the

programs as well as allow it to learn and structure the output similar to the example.

 34

Fig 12. One Shot Plan and Solve Prompting with 2 x 3 Puzzle

Two steps were carried out to obtain the final code:

Step 1: Apply One Shot Plan and Solve Prompting

The 3x2 puzzle was used as an example. This puzzle is not too easy (such that GPT would not

have all the information to approach more complex puzzles) and not too complex (such that

GPT is provided with more information than it should be).

Similar to Wang, L. et al. [6], the following text was utilized as a part of the Plan and Solve

prompt:

“Let's first understand the problem, extract relevant elements, constraints and objective

function and then devise a plan to use the extracted information to solve the problem

using Prolog . Then, let’s carry out the plan , find the arrangement (make sure to represent

an initial arrangement, include all the elements in the code and use the member function

in Prolog) step-by-step. Finally, let's print the Prolog code.”

A solution was manually created for the example. A preferred format was used for GPT to

imitate.

“Q: There are three people standing in a queue. Each person owns a different pet and is

an inhabitant of different nationality. The possible pets are a snail, a jaguar and a zebra.

The possible nationalities are Japanese, Spaniard and English. No three people own the

 35

same pets or are an inhabitant of a the same nationality. The following facts are true

about this queue:

1. The first person in the queue owns the snail.

2. The Spaniard is in the middle.

3. The English is not the last person in the queue.

4. The last person in the queue does not own the jaguar.

5. The Japanese is immediately behind the jaguar owner.

What is the arrangement of the queue?

A: Let's first understand the problem, extract relevant elements, constraints and objective

function and then devise a plan to use the extracted information to solve the problem

using Prolog . Then, let’s carry out the plan , find the arrangement (make sure to represent

an initial arrangement, include all the elements in the code and use the member function

in Prolog) step-by-step. Finally, let's print the Prolog code.

ELEMENTS:

Nationalities:(English, Spaniard, Japanese)

Pets:(snail, jaguar, zebra)

CONSTRAINTS:

a. The first person in the queue owns the snail.

b. The Spaniard is in the middle.

c. The English is not the last person in the queue.

d. The last person in the queue does not own the jaguar.

e. The Japanese is immediately behind the jaguar owner.

OBJECTIVE FUNCTION:

In this problem our objective is not to minimize or maximize any quantity, rather it is to

find an arrangement that satisfies all the constraints.

PLAN:

1. We'll use Prolog's "member" predicate to map each person with their nationality and

pet.

 36

2. Prolog’s "member" predicate can also be used to structure the constraints of the

problem, to fulfills the facts mentioned above.

3. Base case is to declare a rule that represents the queue with three people having

different nationalities & different pets.

4. We will represent all the elements using the "member" predicate.

Let's convert this plan to Prolog code.


```prolog 

solution(People) :- 

 

% Arrangement 

People = [person(1, _, _), person(2, _, _), person(3, _, _)], 

 

% Ensure each property appears exactly once 

member(person(1, _, _), People), 

member(person(2, _, _), People), 

member(person(3, _, _ ), People), 

member(person(_ , english, _), People), 

member(person(_ , spaniard, _), People), 

member(person(_ , japanese, _), People), 

member(person(_, _, zebra), People), 

member(person(_, _, jaguar), People), 

member(person(_, _, snail), People), 

 

% Enforce the constraints 

member(person(1, _, snail), People), 

member(person(2, spaniard, _), People), 

member(person(PositionE, english, _), People), PositionE \= 3, 

member(person(PositionJ, _, jaguar), People), PositionJ \= 3, 

member(person(PositionJP, japanese, _), People), 

PositionJplus1 is PositionJ + 1, PositionJP =:= PositionJplus1. 

``` 

This code models all conditions of the problem.

Please run the Prolog command `?- solution(List).` to solve the problem.”

 37

This format took inspiration from Tsouros, D. et al. [15] and instructed GPT to extract all the

relevant information such as the elements, constraints, and objective as the first step. Then,

a plan explained how the puzzle is solved using the ‘member’ predicate from Prolog. Finally,

the code was presented in a preferred format that is easy to understand.

Note that an additional Prolog predicate to define relationships between elements was not

used. This was done to keep the example simple and allow GPT to learn quickly. A simpler

method was provided by using numbers to define relative positions in the arrangement.

Step 2: Solving Bugs

The second step allowed GPT to correct any bugs in its output. In the system instruction

window, the following instructions were added:

“Assume you are a constraint optimization expert and you need to model a constraint

satisfaction problem in Prolog. If printing the elements, constraints, objective function and

plan use the format:

"ELEMENTS:

CONSTRAINTS:

OBJECTIVE FUNCTION:

PLAN:”

Do not use the write function from Prolog when you are coding in Prolog.”

The first part of the system instruction is similar to the previous technique. In this prompt,

instructions were added for GPT to format the output in a specific way so that it clearly

stated its output in the format of the example. GPT was also instructed to not use the write

function because it did not work on the system used to verify the code.

3.5 Solution Extraction - Prolog to NL

As a last step in the above two prompting techniques (Step 3), a prompt is used to extract

the arrangement given by the Prolog programs in natural language.

For the extraction prompt, the following format was used :

“The output given by this program is:

<output>

Hence the correct arrangement is:

Note: If the output is false, print False.”

 38

As a response to this prompt, GPT printed the arrangement given by the Prolog code. Note

that SWI-Prolog does not always give a valid arrangement. The response can also be false.

For this case, a note was provided to GPT that instructed it to print false in case the output

of the program was false.

For example, if the output for the 3x3 puzzle is used in the extraction prompt:

“The output given by this program is:

[h(english,snail,orangeJuice), h(spaniard,jaguar,milk), h(japanese,zebra,coffee)]

Hence the correct arrangement is:

Note: If the output is false, print False.”

The response returned by GPT is :

“Based on the output of the program, the correct arrangement of the queue is as follows:

1. First in the queue is the English individual who owns a snail and drinks Orange Juice.

2. In the middle of the queue is the Spaniard who owns a Jaguar and drinks Milk.

3. Lastly, the Japanese individual who owns a Zebra and drinks Coffee.

If the result is False, it indicates that no arrangement of the nationalities, pets, and drinks

satisfies all the given constraints.

Note: The ‘Maximum Length’ parameter was maintained at 256 for Prompt 3. This is

because if the length was fixed to a high value like 5000, GPT would not print False and

instead print a reason why the solution could be False. Hence to increase discipline, the

value was maintained at 256.

 39

4

Evaluation

4.1 Evaluation Method

4.1.1 NL to NL

All the puzzles were evaluated ten times using each technique – Zero Shot, Zero Shot Chain

of Thought, and Tree of Thought. The puzzle arrangements in GPT’s outputs were evaluated

on two main factors:

• Accuracy (The number of correct answers): The arrangement was marked as correct

if all the elements of the puzzle were present in their correct positions and the

explanation for the arrangement was logically correct.

• The number of tokens used: The number of words used in the promptings was

calculated and an estimate of the number of tokens was calculated. OpenAI

describes that ¾ words are equal to 1 token [37]. This estimate was used to calculate

the tokens in the output.

For Tree of Thought Prompting, additional evaluation was carried based on the average

number of backtracks. This would help in evaluating the efficiency of constraint checks as an

evaluator.

The average number of backtracks was calculated as:

Backtracks in 10 attempts of a puzzle / 10

4.1.2 NL to Prolog

All the puzzles were evaluated ten times for each technique. The following metrics were

calculated:

• Accuracy (The number of correct answers): The output(Prolog code) was marked as

correct if it produced the right arrangement without any changes to the Prolog code.

 40

• The number of correct answers for Prompt 1: This number was incremented if the

first output returned by the AI model contained correct code.

Note that for easy puzzles such as 2x2 and 2x3, the model often directly made

arrangements with the elements already in the correct positions. This was marked as

correct because the end solution was correct.

• The number of correct answers for Prompt 2: This number was incremented if the

second output (returned after Prompt 2 : “Does this program have any bugs? How

to solve them?”) produced a code that gave the correct arrangement.

• Classification of code fix requests: GPT gave different types of responses when it

was asked to debug the code. Similar to Sobania, D. et al. [16], new classes were

created that represented the benchmark for the evaluation of the code fix request:

o No bug found: Does not find any bug in the code.

o Correct Fix Provided: Provides a code that gives the correct arrangement.

o Tries to Fix something else: Does not find the bug and tries to solve

something else unnecessarily.

o Provides a fix but introduces new bug: Provides a fix for the code but the

new code contains another bug.

o Alternative implementation: Does not fix the bug, but gives a second

implementation of the code to use instead.

 41

4.2 Results

4.2.1 NL to NL

Table 3 shows the accuracy of GPT for NL to NL approach.

Table 3. Accuracy of GPT (Out of 16 X 10 = 160 attempts)

 Accuracy
(Total:160)

ZS 20.6%

ZS CoT 45%

ToT 50%

As we can observe from Table 3, both Zero Shot Chain of Thought and Tree of Thought

improved the performance of GPT. Zero Shot Chain of Thought improved the performance

by 24.4% whereas Tree of Thought improved it by a staggering 30.4%. Hence prompt

engineering has elicited some degree of reasoning in GPT.

One thing to note here is that even though ToT prompting showed a 5% improvement from

ZS CoT prompting, this is true only for easy (subjects <=2) & medium-complexity (subjects

<=4) puzzles. A full breakdown of how these techniques scaled with different complexities

can be seen in Fig. 13. Both ZS CoT and ToT prompting did not return even a single correct

arrangement in ten attempts for complexities 4x5, 5x3, 5x4, and 5x5. This might be due to

the high number of elements (>=15) that need to be positioned in the arrangement. More

elements require a higher number of words and reasoning which increases the chances of

logical error and hallucinations.

 42

Fig 13 . Accuracy of GPT-4 for NL to NL Approach

Out of all the techniques, ToT prompting performed the best, however the linguistic cost of

ToT was higher than other techniques as shown in Table 4. ZS CoT prompting performed

slightly poorly but was not as expensive as Tree of Thought, which indicates Chain of

Thought is a better option. Below, Table 4 shows the average number of tokens used in the

prompt techniques. As we can see, ToT is a very expensive process, mainly because a large

number of words are needed to reason about every single constraint.

Table 4. Average Number of Tokens used in NL to NL Prompting Techniques

Subjects Categories

 2 3 4 5

2

17 (ZS)

133(ZS CoT)

154(ToT)

27

302

382

53

362

587

145

405

761

3 72.1

353

678

80

410

979

778

549

1887

140

684

2564

4 200

558

828

231

567

1694

242

703

2228

298

723

4337

5 117

517

2174

186

674

2843

17

833

5361

117

665

5410

 43

At the time of writing this dissertation, the cost of 1000 output tokens in GPT-4 is $0.06 [37].

This indicates that the average cost to carry out a single Tree of Thought prompting with the

5X5 complexity puzzle was $0.32 or $3.2 for the ten attempts. If we observe Fig. 13 and

Table 4, we can see that for the 4 x 3 complexity puzzle, ZS CoT prompting gave almost the

same accuracy as ToT (3 vs 2), but ToT used as much as 3 times the number of tokes (567 vs

1694) in ZS CoT. For puzzles more complex than this, ToT was only able to display a greater

accuracy for 4 x 2 puzzle, which indicates that ToT prompting is not a viable option.

Additionally, Tree of Thought was linguistically expensive due to the backtracking

mechanism. Table 5 shows the average number of backtracks performed in ToT.

Table 5. Average Number of Backtracks by GPT in Tree of Thought

Subjects Characteristics

 2 3 4 5

2 0(0)
avg(max)

0(0) 0(0) 0(0)

3 0(0) 0(0) 0(0) 0(2)

4 0(0) 0(0) 0(0) 0(2)

5 0(3) 0(3) 0(2) 0(2)

As we can observe, the average number of backtracks remained at zero for all the puzzles.

This, coupled with the accuracy of ToT prompting in Fig. 13 indicates that GPT did not

perform well in catching instances of broken constraints. Such an evaluator was

untrustworthy, which was one of the main reasons that GPT continued to explore the wrong

branches in a tree. In most of the attempts, even if a constraint was broken, GPT

hallucinated and printed that all the constraints passed.

One of the common weaknesses of GPT among all the techniques was that it did not

consider elements in a position on a case-by-case basis. For example, let us take a look at a

scenario in the 4x2 puzzle:

Let us say that GPT deduced an arrangement:

Position 1 : _, snail ,
Position 2 : Spaniard, _

Position 3: _, _
Position 4: _, _

 44

Next it solves the constraint:

“The Japanese is standing behind the Jaguar owner”

GPT deduces this with :

“According to the fourth fact, the person standing immediately in front of the Japanese

owns the Jaguar, so the Jaguar owner cannot be in the fourth place because if the Jaguar

owner was in the fourth place, the Japanese who stands after the Jaguar owner would

have to be in the fifth place which is not possible since there are only four people.

Therefore, the fourth person has to be the Japanese.”

Here GPT does not consider all the possible positions for the jaguar owner. It assigns the

jaguar owner to the fourth position and deems it to be true and continues.

4.2.2 NL to Prolog

Note that the 3x2 puzzle has been left out of the evaluation for this approach as it was used

as an example in One Shot Plan and Solve prompting. Hence the results have been

evaluated on a total of 15 puzzles.

Table 6 displays the overall accuracy of GPT in generating the correct Prolog program to

resolve the puzzle.

Table 6. Accuracy of GPT (Out of 15 X 10 = 150 attempts)

 Accuracy
(Total:150)

ZS CoT 23.3%

OS PS 51.3%

As we can see, One Shot Plan and Solve prompting had a 28% higher accuracy than Zero

Shot Chain of Thought prompting. This performance can be attributed to the fact that the

example provided to GPT helped it structure and create better programs. This indicates that

GPT can learn from the provided example and provide better outputs.

 45

Fig. 14 shows the full breakdown of how these two prompting techniques perform with

different complexities:

 Fig 14 . Accuracy of GPT-4 for NL to Prolog Approach

From Fig. 14 we can observe that OS PS prompting performed better than ZS CoT. Even for

complex puzzles like 5x2 and 5x3, GPT was able to write the correct code 3 times with OS

PS.

A large performance boost can be seen in the puzzles with 3 subjects where GPT had a high

accuracy with the second approach. This shows that training GPT with one example alone

can enhance its performance.

Out of all the correct attempts, not all were produced correctly with the first prompt. With

the second prompt “Does this code have a bug? How to solve it”, GPT corrected its incorrect

programs 20 times for each technique. Fig. 15 shows the number of responses GPT got

correct in the first attempt (Prompt 1) and the second attempt (Prompt 2).

Fig 15. Number of Correct Arrangements With and Without Corrections

 46

As we can see from Fig. 15, GPT was able to find and fix 20 bugs in each prompt technique.

However, there was a huge increase (+ 42) in the number of correct arrangements it

returned correct in its first attempt in One Shot Plan and Solve prompting.

The incorrect responses returned by GPT were due to various reasons which are classified in

the figure below.

Fig 16 . Code Fix Request Classification

From Fig. 16 we can observe that there is a high number of classifications with “Provides a

bug but introduces another bug’ and ‘Tries to fix something else’. This is particularly high in

Zero Shot Chain of Thought where GPT had to come up with a program from scratch.

Because there was no fixed format provided, GPT struggled to find bugs and therefore made

more mistakes in fixing them (61 vs 25). Whereas in the case of One Shot Plan and Solve, the

classification is spread equally amongst all the classes. Note that for OS PS prompting, the

number of “No bug Found” classification is higher than ZS CoT prompting (11 vs 1). This was

because the example used in OS PS prompting was not scalable. The format of the example

listed all the domain constraints before the puzzle constraints. This created an enormous

search space which did not bode well with the backtracking mechanism of Prolog.

The scalability of the example provided in the example prompt of One Shot Plan and Solve

played a huge factor in GPT solving high-complexity puzzles. There were instances where

the code produced was correct, but due to the non-scalability of the solution formed by the

format of the example, the solution did not execute in time.

The number of tokens used in these techniques was comparable to the NL to NL approach

but not as high as Tree of Thought.

 47

Table 7 shows the average number of tokens used by the two techniques:

Table 7. Average Number of Tokens used in NL to Prolog Prompting Techniques

Subjects Characteristics

 2 3 4 5

2

338 (ZS CoT)

324 (OS PS)

479

322

589

569

605

593

3

N/A

595

467

765

625

915

1212

4 624

595

672

886

800

1127

955

1271

5 740

685

737

855

1541

1142

1205

1217

As we can observe, the cost of both the promptings is similar, however, the tokens used

here are significantly less than the ones used in the Tree of Though prompting in NL to NL.

4.3 Comparing NL to NL and NL to Prolog

One Shot Plan and Solve prompting gave the highest accuracy for NL to Prolog approach and

Tree of Thought prompting was the best approach for NL to NL. OS PS prompting gave a

higher accuracy and used a significantly smaller number of tokens (see Fig. 17).

This is because writing a constraint optimization program does not require abilities like

interrelated deductions and backtracking, both of which GPT struggled with. Further,

conversing in natural language was financially expensive in techniques like Tree of Thoughts.

 48

Fig 17. Comparing ToT from NL to NL & OS PS from NL to Prolog Approach

From Fig. 17 we can observe that OS PS prompting in NL to Prolog achieved a higher

accuracy in 2, 4, and 5 subject puzzles and comparable accuracy in 3 subject puzzles than NL

to NL’s ToT approach. More importantly, OS PS prompting enabled GPT to create programs

for 4 x 5 and 5X 3 puzzles where all other techniques failed.

Hence NL to Prolog when combined with One Shot Plan and Solve was the best out of all the

tested approaches. GPT was able to learn from the provided example and write satisfactory

constraint satisfaction programs. Further, this performance was increased using a second

prompt that allowed it to find and fix the bugs in the output.

GPT performed well in writing code by learning from an example as well as in finding and

fixing bugs. Additionally, with this approach, it was able to solve more complex puzzles such

as 4x5 and 5x3.

 49

5

Conclusion

In this dissertation, we investigated the limitations of GPT-4 in solving zebra puzzles and

applied two different approaches combined with multiple prompt engineering techniques to

enhance its performance.

For the NL to NL approach, GPT showed an accuracy of 45% with ZS CoT prompting and 50%

for ToT prompting. This accuracy was higher for puzzles with 2 and 3 subjects. Its reasoning

abilities were hindered in more complex puzzles due to hallucinations and illogical

deductions. In the NL to Prolog approach, GPT showed an accuracy of 23.3% with ZS CoT

prompting and 51.3% for OS PS prompting. With OS PS prompting, it was able to create

correct programs for 4x5 and 5x3 puzzles.

Tree of Thought achieved the best accuracy in the NL to NL approach. However, due to the

high number of tokens required in the process and the absence of a satisfactory evaluator of

thoughts, this technique was not deemed to be the best.

The NL to Prolog approach when combined with One Shot Plan and Solve prompting was

the best out of all the tested approaches. GPT was able to learn from the provided example

and write satisfactory programs. Further, GPT’s performance was enhanced using a second

prompt that allowed it to find and fix the bugs in the output.

Further Work

As a future work, more techniques like the Tree of Thought can be explored with the second

approach. Another interesting aspect would be to investigate the efficiency of Few Shot

prompting with more examples. New tools such as GPT builders that can be fine-tuned and

trained for specific purposes may provide even better performance than using prompt

engineering alone.

 50

Bibliography

[1] Zebra puzzle (2023) Wikipedia. Available at: https://en.wikipedia.org/wiki/Zebra_Puzzle

[2] Prolog SWI. Available at: https://www.swi-prolog.org/

[3] Barták, R. Constraint Programming: In pursuit of the holy grail. Available at:

https://ktiml.mff.cuni.cz/~bartak/downloads/WDS99.pdf

[4] Wei, J. et al.Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.

Available at: arxiv.org/pdf/2201.11903.pdf

[5] Dhuliawala, S. et al. (2023) Chain-of-verification reduces hallucination in large language

models, arXiv.org. Available at: https://arxiv.org/abs/2309.11495

[6] Wang, L. et al. (2023) Plan-and-solve prompting: Improving Zero-shot chain-of-thought

reasoning by large language models, arXiv.org. Available at:

https://arxiv.org/abs/2305.04091

[7] Reynolds, L. and McDonell, K. (2021) Prompt programming for large language models:

Beyond the few-shot paradigm, arXiv.org. Available at: https://arxiv.org/abs/2102.07350

[8] Weng, Y. et al. (2023) Large language models are better reasoners with self-verification,

arXiv.org. Available at: https://arxiv.org/abs/2212.09561

[9] Tyen, G. et al. (2024) LLMS cannot find reasoning errors, but can correct them!,

arXiv.org. Available at: https://arxiv.org/abs/2311.08516

[10] Bubeck, S. et al. (2023) Sparks of artificial general intelligence: Early experiments with

GPT-4, arXiv.org. Available at: https://arxiv.org/abs/2303.12712

[11] Huang, L. et al. (2023) A survey on hallucination in large language models: Principles,

taxonomy, Challenges, and open questions, arXiv.org. Available at:

https://arxiv.org/abs/2311.05232

[12] Chen, B. et al. (2023) Unleashing the potential of prompt engineering in large language

models: A comprehensive review, arXiv.org. Available at: https://arxiv.org/abs/2310.14735

 51

[13] Yao, S. et al. (2023) Tree of thoughts: Deliberate problem solving with large language

models, arXiv.org. Available at: https://arxiv.org/abs/2305.10601

[14] Claude. Available at: https://claude.ai/

[15] Tsouros, D. et al. (2023) Holy grail 2.0: From natural language to constraint models,

arXiv.org. Available at: https://arxiv.org/abs/2308.01589

[16] Sobania, D. et al. (2023) An analysis of the automatic bug fixing performance of chatgpt,

arXiv.org. Available at: https://arxiv.org/abs/2301.08653

[17] ChainForge: A visual programming environment for prompt engineering. Available at:

https://chainforge.ai/

[18] Introducing ChatGPT. Available at: https://openai.com/blog/chatgpt

[19] Google Gemini. Available at: https://gemini.google.com/

[20] Microsoft Copilot: Your everyday AI companion. Available at:

https://copilot.microsoft.com/

[21] Brown, T.B. et al. (2020) Language models are few-shot learners, arXiv.org. Available at:

https://arxiv.org/abs/2005.14165

[22] Wei, J. et al. (2022) Finetuned language models are zero-shot learners, arXiv.org.

Available at: https://arxiv.org/abs/2109.01652

[23] Google ai palm 2 (no date) Google AI. Available at: https://ai.google/discover/palm2/

[24] Brown, T.B. et al. (2020) Language models are few-shot learners, arXiv.org. Available at:

https://arxiv.org/abs/2005.14165

[25] OpenAI platform. Available at: https://platform.openai.com/playground

[26] Gramopadhye, O. et al. (2024) Few shot chain-of-thought driven reasoning to prompt

LLMS for open ended medical question answering, arXiv.org. Available at:

https://arxiv.org/abs/2403.04890

 52

[27] Zhang, Z. et al. (2022) Automatic chain of thought prompting in large language models,

arXiv.org. Available at: https://arxiv.org/abs/2210.03493

[28] Adhikary, J., Hasle, G., Misund, G. Constraint

Technology Applied to Forest Treatment Scheduling. Available at:

https://www.researchgate.net/publication/2348034_Constraint_Technology_Applied_to_F

orest_Treatment_Scheduling

[29] Leeuwen, P. van, Hesselink, H. and Rohling, J.H.T.(PDF) scheduling aircraft using

constraint satisfaction. Available at:

https://www.researchgate.net/publication/222650882_Scheduling_Aircraft_Using_Constrai

nt_Satisfaction

[30] Constraint programming and modeling in python CPMpy. Available at:

https://cpmpy.readthedocs.io/en/latest/ (Accessed: 14 April 2024).

[31] Vaswani, A. et al. Attention is all you need, arXiv.org. Available at:

https://arxiv.org/abs/1706.03762

[32] Madaan, A. et al. (2022) Language models of code are few-shot commonsense learners,

arXiv.org. Available at: https://arxiv.org/abs/2210.07128

[33] Kumar, V. (PDF) algorithms for Constraint Satisfaction Problems: A survey. Available at:

https://www.researchgate.net/publication/2513379_Algorithms_for_Constraint_Satisfactio

n_Problems_A_Survey

[34] Zellers, R. et al. Can a machine really finish your sentence? (ACL 2019), HellaSwag.

Available at: https://rowanzellers.com/hellaswag/

[35] GPT-4. Available at: https://openai.com/research/gpt-4

[36] White, J. et al. (2023) A prompt pattern catalog to enhance prompt engineering with

chatgpt, arXiv.org. Available at: https://arxiv.org/abs/2302.11382

[37] Pricing. Available at: https://openai.com/pricing

[38] About. Available at: https://openai.com/about

 53

Appendix

Section 1: Zebra Puzzles

The following section lists the sixteen zebra puzzles used in this dissertation, their solutions

and the Prolog program to verify them.

2 X 2 :

Two different houses each contain a different pet. The possible pets are a dog and a cat. The
following facts are true about these houses:

1.) One house is blue, and the other is red.

2.) The owner of the red house owns the dog.

Give the correct pairing of the house colors and the pets in those houses.

Solution:

House Color Blue Red

Pet Cat Dog

Prolog Program:

% h(Color,Pet)

solution(Hs) :-

length(Hs, 2),

member(h(red,_), Hs),

member(h(blue,_), Hs),

member(h(_,cat), Hs),

% constraints

member(h(red,dog), Hs). % 1

 54

2 X 3 :

Two different houses each contain a different pet, a different drink, and an inhabitant of a
different nationality. The possible pets are a cat and a zebra. The possible drinks are milk

and coffee. The following three facts are true about these houses:

1.) The first house belongs to the Ukrainian.

2.) The Norwegian owns the cat.

3.) The owner of the zebra drinks coffee.

Give the correct arrangement of the nationalities, the pets and the drinks.

Solution:

 House 1 House 2

Nationality Ukrainian Norwegian

Pet Zebra Cat

Drink Coffee Milk

Prolog Program:

% h(Nationality, Pet, Drink)

solution(Hs) :-

length(Hs, 2),

member(h(_,_,milk), Hs),

% constraints

Hs = [h(ukrainian,_,_),_], %1

member(h(norwegian,cat,_), Hs), %2

member(h(_,zebra,coffee), Hs). %3

 55

2 X 4 :

Two houses of different colors each contain a different pet, a different drink, and an
inhabitant of a different nationality. The possible pets are a cat and a zebra. The possible

drinks are milk and coffee. The possible house colors are red and blue. The possible
nationalities are Ukrainian and Norwegian. The following four facts are true about these

houses:

1.) The first house belongs to the Ukrainian.

2.) The Norwegian owns the cat.

3.) The owner of the zebra drinks coffee.

4.) The owner of the red house drinks milk.

Give the correct arrangement of the nationalities, pets, house colors, and drinks.

Solution:

 House 1 House 2

Nationality Ukrainian Norwegian

Pet Zebra Cat

Drink Coffee Milk

House Color Blue Red

Prolog Program:

% h(Nationality, Pet, Drink, Color)

solution(Hs) :-

length(Hs, 2),

member(h(_,_,_,blue), Hs),

% constraints

Hs = [h(ukrainian,_,_,_),_], %1

member(h(norwegian,cat,_,_), Hs), %2

member(h(_,zebra,coffee,_), Hs), %3

member(h(_,_,milk,red), Hs). %4

 56

2 X 5 :

Two different houses, each with different colors, contain a different pet, a different drink, a
different brand of cigarette and an inhabitant of a different nationality. The possible pets
are a cat and a zebra. The possible drinks are milk and coffee. The possible house colors are
red and blue. The possible brands of cigarettes are Kools and Parliaments. The possible
nationalities are Ukrainian and Norwegian. The following five facts are true about these
houses:

1.) The first house belongs to the Ukrainian.

2.) The Norwegian owns the cat.

3.) The owner of the zebra drinks coffee.

4.) The owner of the red house drinks milk.

5.) The owner of the blue house smokes Kools.

Give the correct arrangement of the nationalities, pets, house colors, cigarettes and drinks.

 Solution:

 House 1 House 2

Nationality Ukrainian Norwegian

Pet Zebra Cat

Drink Coffee Milk

House Color Blue Red

Cigarette Brand Kools Parliaments

Prolog Program:

% h(Nationality, Pet, Drink, Color, Cigarette)

solution(Hs) :-

length(Hs, 2),

member(h(_,_,_,_,parliaments), Hs),

% constraints

Hs = [h(ukrainian,_,_,_,_),_], %1

member(h(norwegian,cat,_,_,_), Hs), %2

member(h(_,zebra,coffee,_,_), Hs), %3

member(h(_,_,milk,red,_), Hs), %4

member(h(_,_,_,blue,kools), Hs). %5

 57

3 X 2 :

There are three people standing in a queue. Each person owns a different pet and is an
inhabitant of different nationality. The possible pets are a snail, a jaguar and a zebra. The
possible nationalities are Japanese, Spaniard and English. No three people own the same
pets or are an inhabitant of the same nationality. The following facts are true about this

queue:

1. The first person in the queue owns the snail.

2. The Spaniard is in the middle.

3. The English is not the last person in the queue.

4. The last person in the queue does not own the jaguar.

5. The Japanese is immediately behind the jaguar owner.

Give the correct arrangement of the nationalities and their the pets in the queue.

Solution:

 Person 1 Person 2 Person 3

Nationality English Spaniard Japanese

Pet Snail Jaguar Zebra

Prolog Program:

% h(Nationality, Pet)

solution(Hs) :-

length(Hs, 3),

member(h(english,_),Hs),

member(h(_,zebra),Hs),

% constraints

Hs = [h(_,snail),_,_], %1

Hs = [_,h(spaniard,_),_], %2

behind(h(_,jaguar),h(japanese,_),Hs), %5

Hs \= [_,_,h(english,_)], %3

Hs \= [_,_,h(_,jaguar)]. %4

behind(A, B, Ls) :- append(_, [A,B|_], Ls).

 58

3 X 3 :

There are three people standing in a queue. Each person owns a different pet, drinks a
different beverage and is an inhabitant of different nationality. The possible pets are a snail,
a jaguar and a zebra. The possible beverages are Orange juice, milk and coffee.The possible

nationalities are Spaniard, English and Japanese. The following facts are true about this
queue:

1. The first person in the queue owns the snail.

2. The Spaniard is standing in the middle

3. The English is not the last person in the queue.

4. The last person in the queue drinks coffee.

5. The Spaniard does not drink orange juice.

6. The last person in the queue does not own the jaguar.

Give the correct arrangement of the nationalities, the pets and the drinks.

Solution:

 Person 1 Person 2 Person 3

Nationality English Spaniard Japanese

Pet Snail Jaguar Zebra

Drink Orange Juice Milk Coffee

Prolog Program:

% h(Nationality, Pet, Drink)

solution(Hs) :-

length(Hs, 3),

member(h(english,_,_),Hs),

member(h(japanese,_,_),Hs),

member(h(_,_,orangeJuice),Hs),

member(h(_,_,milk),Hs),

member(h(_,zebra,_),Hs),

member(h(_,jaguar,_),Hs),

% constraints

Hs = [h(_,snail,_),_,_], %1

 59

Hs = [_,h(spaniard,_,_),_], %2

Hs = [_,_,h(_,_,coffee)], %4

Hs \= [_,_,h(english,_,_)], %3

\+ member(h(spaniard,_,orangeJuice),Hs),%5

Hs \= [_,_,h(_,jaguar,_)]. %6

behind(A, B, Ls) :- append(_, [A,B|_], Ls).

3 X 4 :

There are three people standing in a queue. Each person owns a different pet, drinks a
different beverage, lives in a different colored house and is an inhabitant of different

nationality. The possible pets are a snail, a jaguar and a zebra. The possible nationalities are
Japanese, Spaniard and English. The possible beverages are Orange juice, milk and coffee.

The possible house colors are red, green and ivory. No two people own the same pet, drink
the same beverage, live in the same house or are an inhabitant of a the same nationality.

The following facts are true about the queue:

1. The first person in the queue owns the snail.

2. The Spaniard is standing in the middle.

3. The English is not the last person in the queue.

4. The last person in the queue drinks coffee.

5. The Spaniard does not drink orange juice.

6. The orange juice drinker lives in the red house.

7. The person who lives in the ivory house is standing immediately in-front of the person
who lives in the green house.

8. The last person in the queue does not own the jaguar.

Give the correct arrangement of the nationalities, pets, house colors, and drinks.

Solution:

 Person 1 Person 2 Person 3

Nationality English Spaniard Japanese

Pet Snail Jaguar Zebra

Drink Orange Juice Milk Coffee

House Color Red Ivory Green

 60

Prolog Program:

% h(Nationality, Pet, Drink,Color)

solution(Hs) :-

length(Hs, 3),

member(h(english,_,_,_),Hs),

member(h(japanese,_,_,_),Hs),

member(h(_,_,milk,_),Hs),

member(h(_,zebra,_,_),Hs),

member(h(_,jaguar,_,_),Hs),

% constraints

Hs = [h(_,snail,_,_),_,_], %1

Hs = [_,h(spaniard,_,_,_),_], %2

Hs = [_,_,h(_,_,coffee,_)], %4

member(h(_,_,orangeJuice,red),Hs),%6

behind(h(_,_,_,ivory), h(_,_,_,green),Hs), %7

Hs \= [_,_,h(english,_,_,_)], %3

\+ member(h(spaniard,_,orangeJuice,_),Hs), %5

Hs \= [_,_,h(_,jaguar,_,_)]. %8

behind(A, B, Ls) :- append(_, [A,B|_], Ls).

3 X 5 :

There are three people standing in a queue. Each person owns a different pet, drinks a
different beverage, smokes a different brand of cigarette, lives in a different colored house

and is an inhabitant of different nationality. The possible pets are a snail, a jaguar and a
zebra. The possible beverages are Orange juice, milk and coffee. The possible house colors
are red, ivory and green. The possible cigarette brands are Lucky Strike, Parliament and Old
Gold. The possible nationalities are Spaniard, English and Japanese. The following facts are

true about this queue:

1. The first person in the queue owns the snail.

2. The Spaniard is standing in the middle.

3. The English is not the last person in the queue.

4. The last person in the queue drinks coffee.

5. The Spaniard does not drink orange juice.

 61

6. The orange juice drinker lives in the red house.

7. The person who lives in the ivory house is standing immediately in-front of the person
who lives in the green house.

8. The person immediately behind the milk drinker smokes old gold.

9. The snail owner does not smoke Parliaments.

10. The last person in the queue does not own the jaguar.

What is a possible arrangement of the queue that follows all the constraints?

Solution:

 Person 1 Person 2 Person 3

Nationality English Spaniard Japanese

Pet Snail Jaguar Zebra

Drink Orange Juice Milk Coffee

House Color Red Ivory Green

Cigarette Brand Lucky Strike Parliaments Old Gold

Prolog Program:

% h(Nationality, Pet, Drink,Color,Cigarette)

solution(Hs) :-

length(Hs, 3),

member(h(english,_,_,_,_),Hs),

member(h(japanese,_,_,_,_),Hs),

member(h(_,zebra,_,_,_),Hs),

member(h(_,jaguar,_,_,_),Hs),

member(h(_,_,_,_,luckyStrike),Hs),

member(h(_,_,_,_,parliaments),Hs),

% constraints

Hs = [h(_,snail,_,_,_),_,_], %1

Hs = [_,h(spaniard,_,_,_,_),_], %2

Hs = [_,_,h(_,_,coffee,_,_)], %4

member(h(_,_,orangeJuice,red,_),Hs),%6

behind(h(_,_,_,ivory,_), h(_,_,_,green,_),Hs), %7

 62

behind(h(_,_,milk,_,_),h(_,_,_,_,oldGold),Hs), %8

\+ member(h(_,snail,_,_,parliaments),Hs), %9

Hs \= [_,_,h(english,_,_,_,_)], %3

\+ member(h(spaniard,_,orangeJuice,_,_),Hs), %5

Hs \= [_,_,h(_,jaguar,_,_,_)]. %10

behind(A, B, Ls) :- append(_, [A,B|_], Ls).

4 X 2 :

There are four people standing in a queue. Each person owns a different pet and is an
inhabitant of different nationality. The possible pets are a snail, a jaguar, a parrot and a

zebra. The possible nationalities are Spaniard, Indian, English and Japanese. The following
facts are true about this queue:

1. The first person in the queue owns the snail.

2. The snail owner is standing immediately in-front of the Spaniard.

3. The Indian owns the parrot.

4. The person standing immediately in-front of the Japanese owns the Jaguar.

5. The Japanese is not at the end.

6. The Japanese does not own the snail.

Give the correct arrangement of the nationalities and their the pets in the queue.

Solution:

 Person 1 Person 2 Person 3 Person 4

Nationality English Spaniard Japanese Indian

Pet Snail Jaguar Zebra Parrot

Prolog Program:

% h(Nationality, Pet)

solution(Hs) :-

length(Hs, 4),

member(h(english,_), Hs),

member(h(japanese,_), Hs),

member(h(_,zebra), Hs),

 63

Hs = [h(_,snail),_,_,_], %1

behind(h(_,snail),h(spaniard,_), Hs), %2

member(h(indian,parrot), Hs), %3

behind(h(_,jaguar),h(japanese,_), Hs), %4

Hs \= [_,_,_,h(japanese,_)], %5

\+ member(h(japanese,snail), Hs). %6

behind(A, B, Ls) :- append(_, [A,B|_], Ls).

4 X 3 :

There are four people standing in a queue. Each person owns a different pet, drinks a
different beverage and is an inhabitant of different nationality. The possible pets are a snail,

a jaguar, a parrot, and a zebra. The possible beverages are orange juice, milk, bubble tea
and coffee. The possible nationalities are Spaniard, Indian, English and Japanese. The

following facts are true about this queue:

1. The first person in the queue owns the snail.

2. The snail owner is standing immediately in-front of the Spaniard.

3. The Indian owns the parrot.

4. The person behind the snail owner drinks milk.

5. The last person in the queue drinks bubble tea.

6. The orange juice drinker is standing immediately in-front of the milk drinker.

7. The person standing immediately in-front of the Japanese owns the jaguar.

8. The Japanese is not at the end.

9. The Japanese does not own the snail.

Give the correct arrangement of the nationalities, the pets and the drinks.

Solution:

 Person 1 Person 2 Person 3 Person 4

Nationality English Spaniard Japanese Indian

Pet Snail Jaguar Zebra Parrot

Drink Orange Juice Milk Coffee Bubble tea

 64

Prolog Program:

% h(Nationality, Pet, Drink)

solution(Hs) :-

length(Hs, 4),

member(h(english,_,_), Hs),

member(h(japanese,_,_), Hs),

member(h(_,zebra,_), Hs),

member(h(_,_,coffee), Hs),

Hs = [h(_,snail,_),_,_,_], %1

behind(h(_,snail,_),h(spaniard,_,_), Hs), %2

member(h(indian,parrot,_), Hs), %3

behind(h(_,snail,_),h(_,_,milk), Hs),%4

Hs = [_,_,_,h(_,_,bubbleTea)],%5

behind(h(_,_,orangeJuice),h(_,_,milk), Hs),%6

behind(h(_,jaguar,_),h(japanese,_,_), Hs), %7

Hs \= [_,_,_,h(japanese,_,_)], %8

\+ member(h(japanese,snail,_), Hs). %9

behind(A, B, Ls) :- append(_, [A,B|_], Ls).

4 X 4 :

There are four people standing in a queue. Each person owns a different pet, drinks a
different beverage, lives in a different house and is an inhabitant of different nationality.
The possible pets are a snail, a jaguar, a parrot, and a zebra. The possible beverages are

Orange juice, milk, bubble tea and coffee. The possible house colors are red, ivory, blue and
green. The possible nationalities are Spaniard, Indian, English and Japanese. The following

facts are true about this queue:

1. The first person in the queue owns the snail.

2. The snail owner is immediately in-front of the Spaniard.

3. The Indian owns the parrot.

4. The person standing immediately behind the snail owner drinks milk.

5. The last person in the queue drinks bubble tea.

6. The orange juice drinker is standing immediately in-front of the milk drinker.

7. The third person in the queue lives in the green house.

 65

8. The milk drinker is standing immediately behind the owner of the red house.

9. The person standing immediately in-front of the Japanese owns the jaguar .

10. The Japanese is not at the end.

11. The owner of the parrot does not live in the ivory house.

12. The Japanese does not own the snail.

Give the correct arrangement of the nationalities, pets, house colors, and drinks.

Solution:

 Person 1 Person 2 Person 3 Person 4

Nationality English Spaniard Japanese Indian

Pet Snail Jaguar Zebra Parrot

Drink Orange Juice Milk Coffee Bubble tea

House Color Red Ivory Green Blue

Prolog Program:

% h(Nationality, Pet, Drink)

solution(Hs) :-

length(Hs, 4),

member(h(english,_,_,_), Hs),

member(h(japanese,_,_,_), Hs),

member(h(_,zebra,_,_), Hs),

member(h(_,_,coffee,_), Hs),

member(h(_,_,_,blue), Hs),

member(h(_,_,_,ivory), Hs),

Hs = [h(_,snail,_,_),_,_,_], % 1

behind(h(_,snail,_,_),h(spaniard,_,_,_), Hs), %2

member(h(indian,parrot,_,_), Hs), %3

behind(h(_,snail,_,_),h(_,_,milk,_), Hs),%4

Hs = [_,_,_,h(_,_,bubbleTea,_)],%5

behind(h(_,_,orangeJuice,_),h(_,_,milk,_), Hs),%6

Hs = [_,_,h(_,_,_,green),_], %7

behind(h(_,_,_,red),h(_,_,milk,_), Hs), %8

behind(h(_,jaguar,_,_),h(japanese,_,_,_), Hs), %9

 66

Hs \= [_,_,_,h(japanese,_,_,_)], %10

\+ member(h(_,parrot,_,ivory), Hs),%11

\+ member(h(japanese,snail,_,_), Hs). %12

behind(A, B, Ls) :- append(_, [A,B|_], Ls).

4 X 5:

There are four people standing in a queue. Each person owns a different pet, drinks a
different beverage, smokes a different brand of cigarette, lives in a different colored house

and is an inhabitant of a different nationality. The possible pets are a snail, a jaguar, a parrot
and a zebra. The possible beverages are orange juice, milk, bubble tea and coffee. The

possible house colors are red, ivory, blue and green. The possible cigarette brands are Lucky
Strike, Chesterfield, Parliament and Old Gold. The possible nationalities are Spaniard, Indian,

English and Japanese. The following facts are true about this queue:

1. The first person in the queue owns the snail.

2. The snail owner is standing immediately in-front of the Spaniard.

3. The Indian owns the parrot.

4. The person standing behind the snail owner drinks milk.

5. The last person in the queue drinks bubble tea.

6. The orange juice drinker is standing immediately in-front of the milk drinker.

7. The third person in the queue lives in the green house.

8. The owner of the parrot does not live in the ivory house.

9. The milk drinker is standing immediately behind the owner of the red house.

10. The person behind the owner of the red house smokes Chesterfield.

11. The bubble tea drinker smokes Parliaments.

12 The English does not smoke old Gold.

13. The person standing immediately in-front of the Japanese owns the Jaguar.

14. The Japanese is not at the end.

15. The Japanese does not own the snail.

What is a possible arrangement of the queue that follows all the constraints?

 67

Solution:

 Person 1 Person 2 Person 3 Person 4

Nationality English Spaniard Japanese Indian

Pet Snail Jaguar Zebra Parrot

Drink Orange Juice Milk Coffee Bubble tea

House Color Red Ivory Green Blue

Cigarette
Brand

Lucky Strike Chesterfield Old Gold Parliaments

Prolog Program:

solution(Hs) :-

length(Hs, 4),

member(h(english,_,_,_,_), Hs),

member(h(japanese,_,_,_,_), Hs),

member(h(_,zebra,_,_,_), Hs),

member(h(_,_,coffee,_,_), Hs),

member(h(_,_,_,blue,_), Hs),

member(h(_,_,_,ivory,_), Hs),

member(h(_,_,_,_,oldGold), Hs),

member(h(_,_,_,_,luckyStrike), Hs),

Hs = [h(_,snail,_,_,_),_,_,_], % 1

behind(h(_,snail,_,_,_),h(spaniard,_,_,_,_), Hs), %2

member(h(indian,parrot,_,_,_), Hs), %3

behind(h(_,snail,_,_,_),h(_,_,milk,_,_), Hs),%4

Hs = [_,_,_,h(_,_,bubbleTea,_,_)],%5

behind(h(_,_,orangeJuice,_,_),h(_,_,milk,_,_), Hs),%6

Hs = [_,_,h(_,_,_,green,_),_], %7

behind(h(_,_,_,red,_),h(_,_,milk,_,_), Hs), %9

behind(h(_,_,_,red,_),h(_,_,_,_,chesterfield), Hs), %10

member(h(_,_,bubbleTea,_,parliament), Hs), %11

behind(h(_,jaguar,_,_,_),h(japanese,_,_,_,_), Hs), %13

Hs \= [_,_,_,h(japanese,_,_,_,_)], %14

\+ member(h(english,_,_,_,oldGold), Hs),%12

\+ member(h(_,parrot,_,ivory,_), Hs),%8

\+ member(h(japanese,snail,_,_,_), Hs). %15

behind(A, B, Ls) :- append(_, [A,B|_], Ls).

 68

5 X 2 :

There are five people standing in a queue. Each person owns a different pet and is an
inhabitant of different nationality. The possible pets are a snail, a jaguar, a parrot, a cat and

a zebra. The possible nationalities are Spaniard, Indian, English, Irish and Japanese. The
following facts are true about this queue:

1. The first person in the queue owns the snail.

2. The snail owner is standing immediately in-front of the Spaniard.

3. The Indian owns the parrot.

4. The person directly in front of the Japanese owns the jaguar.

5. The Irish is the last person in the queue.

6. The Japanese does not own the snail.

7. The Japanese is not at the end.

8. The Japanese does not own the cat.

Give the correct arrangement of the nationalities and their the pets in the queue.

Solution:

 Person 1 Person 2 Person 3 Person 4 Person 5

Nationality English Spaniard Japanese Indian Irish

Pet Snail Jaguar Zebra Parrot Cat

Prolog Program:

solution(Hs) :-

length(Hs, 5),

member(h(english,_), Hs),

member(h(japanese,_), Hs),

member(h(_,zebra), Hs),

member(h(_,cat), Hs),

Hs = [h(_,snail),_,_,_,_], %1

behind(h(_,snail),h(spaniard,_), Hs),%2

 69

member(h(indian,parrot), Hs), %3

behind(h(_,jaguar),h(japanese,_), Hs), %4

Hs = [_,_,_,_,h(irish,_)], %5

\+ member(h(japanese,cat), Hs), %8

Hs \= [_,_,_,_,h(japanese,_)], %7

\+ member(h(japanese,snail), Hs). %6

behind(A, B, Ls) :- append(_, [A,B|_], Ls).

5 X 3 :

There are five people standing in a queue. Each person owns a different pet, drinks a
different beverage and is an inhabitant of different nationality. The possible pets are a snail,
a jaguar, a cat, a parrot, and a zebra. The possible beverages are Orange juice, milk, bubble
tea, lemonade and coffee. The possible nationalities are Spaniard, Indian, English, Irish and

Japanese. The following facts are true about this queue:

1. The first person in the queue owns the snail.

2. The snail owner is standing immediately in-front of the Spaniard.

3. The Indian owns the parrot.

4. The person standing immediately in-front of the Japanese owns the jaguar.

5. The Irish is the last person in the queue.

6.The Jaguar owner drinks milk.

7. The lemonade drinker is behind the Indian.

8. The person standing immediately in-front of the parrot owner drinks coffee.

9. The Japanese does not own the snail.

10. The Japanese does not own the cat.

11. The English does not drink bubble tea.

Give the correct arrangement of the nationalities, the pets and the drinks.

 70

Solution:

 Person 1 Person 2 Person 3 Person 4 Person 5

Nationality English Spaniard Japanese Indian Irish

Pet Snail Jaguar Zebra Parrot Cat

Drink Orange
Juice

Milk Coffee Bubble tea Lemonade

Prolog Program:

solution(Hs) :-

length(Hs, 5),

member(h(english,_,_), Hs),

member(h(japanese,_,_), Hs),

member(h(_,zebra,_), Hs),

member(h(_,cat,_), Hs),

member(h(_,_,bubbletea), Hs),

member(h(_,_,orangeJuice), Hs),

Hs = [h(_,snail,_),_,_,_,_], %1

behind(h(_,snail,_),h(spaniard,_,_), Hs), %2

member(h(indian,parrot,_), Hs), %3

behind(h(_,jaguar,_),h(japanese,_,_), Hs), %4

Hs = [_,_,_,_,h(irish,_,_)], %5

member(h(_,jaguar,milk), Hs), %6

behind(h(indian,_,_),h(_,_,lemonade), Hs), %7

behind(h(_,_,coffee),h(_,parrot,_), Hs), %8

\+ member(h(japanese,cat,_), Hs), %10

\+ member(h(japanese,snail,_), Hs), %9

\+ member(h(english,_,bubbletea), Hs). %11

behind(A, B, Ls) :- append(_, [A,B|_], Ls).

5 X 4 :

There are five people standing in a queue. Each person owns a different pet, drinks a
different beverage, lives in a different colored house and is an inhabitant of different

nationality. The possible pets are a snail, a jaguar, a cat, a parrot, and a zebra. The possible
beverages are orange juice, milk, bubble tea, lemonade and coffee. The possible

nationalities are Spaniard, Indian, English, Irish and Japanese. The possible house colors are
red, blue, green, ivory and yellow. The following facts are true about this queue:

 71

1. The first person in the queue owns the snail.

2. The snail owner is standing immediately in-front of the Spaniard.

3. The Indian owns the parrot.

4. The person standing immediately in-front of the Japanese owns the jaguar.

5. The Irish is the last person in the queue.

6. The Jaguar owner drinks milk.

7. The lemonade drinker is standing immediately behind the Indian.

8. The coffee drinker lives in the green house.

9. The blue house owner is standing immediately in-front of the yellow house owner.

10. The person standing immediately behind the snail owner lives in the ivory house.

11. The person standing immediately in-front of the parrot owner drinks coffee.

12. The Japanese does not own the snail.

13. The Japanese does not own the cat.

14. The English does not drink bubble tea.

Give the correct arrangement of the nationalities, pets, house colors, and drinks.

Solution:

 Person 1 Person 2 Person 3 Person 4 Person 5

Nationality English Spaniard Japanese Indian Irish

Pet Snail Jaguar Zebra Parrot Cat

Drink Orange Juice Milk Coffee Bubble tea Lemonade

House Color Red Ivory Green Blue Yellow

Prolog Program:

solution(Hs) :-

length(Hs, 5),

member(h(english,_,_,_), Hs),

member(h(japanese,_,_,_), Hs),

 72

member(h(_,zebra,_,_), Hs),

member(h(_,_,_,red), Hs),

member(h(_,cat,_,_), Hs),

member(h(_,_,bubbletea,_), Hs),

member(h(_,_,orangeJuice,_), Hs),

Hs = [h(_,snail,_,_),_,_,_,_], %1

behind(h(_,snail,_,_),h(spaniard,_,_,_), Hs), %2

member(h(indian,parrot,_,_), Hs), %3

behind(h(_,jaguar,_,_),h(japanese,_,_,_), Hs), %4

Hs = [_,_,_,_,h(irish,_,_,_)], %5

member(h(_,jaguar,milk,_), Hs), %6

behind(h(indian,_,_,_),h(_,_,lemonade,_), Hs), %7

member(h(_,_,coffee,green), Hs), %8

behind(h(_,_,_,blue),h(_,_,_,yellow), Hs), %9

behind(h(_,snail,_,_),h(_,_,_,ivory), Hs), %10

behind(h(_,_,coffee,_),h(_,parrot,_,_), Hs), %11

\+ member(h(japanese,cat,_,_), Hs), %13

\+ member(h(japanese,snail,_,_), Hs), %12

\+ member(h(english,_,bubbletea,_), Hs). %14

behind(A, B, Ls) :- append(_, [A,B|_], Ls).

5 X 5 :

There are five people standing in a queue. Each person owns a different pet, drinks a
different beverage, smokes a different brand of cigarette, lives in a different colored house

and is an inhabitant of a different nationality. The possible pets are a snail, a jaguar, a
parrot, a cat and a zebra. The possible beverages are orange juice, milk, bubble tea,

lemonade and coffee. The possible house colors are red, ivory, blue, yellow and green. The
possible cigarette brands are Lucky Strike, Chesterfield, Parliament, Kools and Old Gold. The

possible nationalities are Spaniard, Irish, Indian, English and Japanese. The following facts
are true about this queue:

1. The English is the first person in the queue.

2. The Indian owns the parrot.

3. The lemonade drinker lives in the yellow house.

4. The Spaniard drinks milk.

5. The yellow house owner is immediately behind of the owner of the blue house.

6. The Old Gold smoker owns the Zebra.

 73

7. The Lucky Strike smoker is the owner of the red house.

8. The person in the middle drinks coffee.

9. The Japanese owns the green house.

10. The man who smokes Chesterfields is standing immediately behind the man with the
snail.

11. The Lucky Strike smoker is standing immediately in-front of the jaguar owner.

12. The Parliaments smoker drinks bubble-tea.

13. The Irish smokes Kools.

14.The English is standing immediately in-front of the owner of the ivory house.

What is a possible arrangement of the queue that follows all the constraints?

Solution:

 Person 1 Person 2 Person 3 Person 4 Person 5

Nationality English Spaniard Japanese Indian Irish

Pet Snail Jaguar Zebra Parrot Cat

Drink Orange Juice Milk Coffee Bubble tea Lemonade

House Color Red Ivory Green Blue Yellow

Cigarette
Brand

Lucky Strike Chesterfield Old Gold Parliaments Kools

Prolog Program:

solution(Hs) :-

length(Hs, 5),

member(h(_,_,orangeJuice,_,_), Hs),

member(h(_,cat,_,_,_), Hs),

Hs = [h(english,_,_,_,_),_,_,_,_], %1

member(h(indian,parrot,_,_,_), Hs), %2

member(h(_,_,lemonade,yellow,_), Hs), %3

member(h(spaniard,_,milk,_,_), Hs), %4

behind(h(_,_,_,blue,_),h(_,_,_,yellow,_), Hs), %5

member(h(_,zebra,_,_,oldGold), Hs), %6

 74

member(h(_,_,_,red,luckyStrike), Hs), %7

Hs = [_,_,h(_,_,coffee,_,_),_,_], %8

member(h(japanese,_,_,green,_), Hs), %9

behind(h(_,snail,_,_,_),h(_,_,_,_,chesterfields), Hs), %10

behind(h(_,_,_,_,luckyStrike),h(_,jaguar,_,_,_), Hs), %11

member(h(_,_,bubbleTea,_,parliaments), Hs), %12

member(h(irish,_,_,_,kools), Hs), %13

behind(h(english,_,_,_,_),h(_,_,_,ivory,_), Hs).

behind(A, B, Ls) :- append(_, [A,B|_], Ls).

Section 2: Prompt Engineering Formats

The sections below describes the format of all the prompts engineering techniques used in

this dissertation. To make the format easier to read, the puzzles have been represented by

{puzzle}. A link to the conversation that demonstrate these techniques in OpenAI

Playground environment has also been provided.

Note: The playground examples will open with default parameters. Please change the model

parameters to below:

 Model : GPT – 4 (ChatGPT Plus Subscription needed)

 Temperature: 1

 Maximum Length: 5000 or 256 (as specified in implementation)

1. NL to NL

1.1 Zero-Shot

User Prompt

Q: {puzzle}

A:

System Instructions:

You are a helpful assistant.

 75

OpenAI Playground Example:

https://platform.openai.com/playground/p/wYOnYrwXV2FwtCz7bIduZXfZ?model=gpt-4&mode=chat

1.2 Zero-Shot Chain-of-thought

User Prompt

Q: {puzzle}

A: Let’s think step by step

System Instructions:

You are a helpful assistant.

OpenAI Playground Example:

https://platform.openai.com/playground/p/g2HxFpqsaPGSGoojIrkvdvGW?model=gpt-4&mode=chat

1.3 Tree of Thought

User Prompt (Prompt 1)

Q: {puzzle: 3 x2 }

A: Let’s only look at the first constraint

Prompt 2 :

Out of the remaining constraints, which one should be solved next? Solve it. Do not change

any elements in the positions but only the ones related to this constraint. Prioritize

constraints that consist of the words like "first", "second", "third", "last" or "middle" if they

have not been exhausted. If no more constraints are remaining, print the final arrangement

with the heading "THE FINAL ARRANGEMENT IS:".

https://platform.openai.com/playground/p/wYOnYrwXV2FwtCz7bIduZXfZ?model=gpt-4&mode=chat
https://platform.openai.com/playground/p/g2HxFpqsaPGSGoojIrkvdvGW?model=gpt-4&mode=chat

 76

System Instructions :

You are a helpful assistant. Only solve one constraint at a time. Print the deduced

arrangement at the beginning of every answer and then evaluate against every constraint if

the newly deduced arrangement breaks any constraints. If it breaks any constraints print a

line "Constraints broken", else do nothing.

OpenAI Playground Example:

https://platform.openai.com/playground/p/1AFjvUustb0SwmZ0krjmWpKp?model=gpt-4&mode=chat

2. NL to Prolog

Note: The final question in the puzzles in this approach were modified to obtain a Prolog

program instead of the correct arrangement. For example, for the 5x5 puzzle the question

“What is a possible arrangement of the queue that follows all the constraints?” was

changed to “Write a Prolog program to find the correct arrangement of the queue that

follows all the constraints.”.

2.1 Zero-Shot Chain-of-thought

User Prompt (Prompt 1)

Q: {puzzle}

A: Let’s think step by step

Prompt 2

Does this program have a bug? How to fix it?

Prompt 3 (Extraction Prompt)

The output given by this program is:

<output>

Hence the correct arrangement is:

Note: If the output is false, print False.

https://platform.openai.com/playground/p/1AFjvUustb0SwmZ0krjmWpKp?model=gpt-4&mode=chat

 77

System Instructions:

Assume you are a constraint optimization expert and you need to model a constraint

satisfaction problem in Prolog.

OpenAI Playground Example:

https://platform.openai.com/playground/p/LwwkRkt8ASV4rtaKqjBPmxHs?model=gpt-4&mode=chat

One-Shot Plan and Solve

Prompt 1

Q:{Puzzle: 3x2}

A: Let's first understand the problem, extract relevant elements, constraints and objective

function and then devise a plan to use the extracted information to solve the problem using

Prolog . Then, let’s carry out the plan , find the arrangement (make sure to represent an

initial arrangement, include all the elements in the code and use the member function in

Prolog) step-by-step. Finally let's print the Prolog code.

ELEMENTS:

Nationalities:(English, Spaniard, Japanese)

Pets:(snail, jaguar, zebra)

CONSTRAINTS:

a. The first person in the queue owns the snail.

b. The Spaniard is in the middle.

c. The English is not the last person in the queue.

d. The last person in the queue does not own the jaguar.

e. The Japanese is immediately behind the jaguar owner.

OBJECTIVE FUNCTION:

In this problem our objective is not to minimize or maximize any quantity, rather it is to find

an arrangement that satisfies all the constraints.

PLAN:

1. We'll use Prolog's "member" predicate to map each person with their nationality and pet.

2. Prolog’s "member" predicate can also be used to structure the constraints of the

problem, to fulfills the facts mentioned above.

https://platform.openai.com/playground/p/LwwkRkt8ASV4rtaKqjBPmxHs?model=gpt-4&mode=chat

 78

3. Base case is to declare a rule that represents the queue with three people having

different nationalities & different pets.

4. We will represent all the elements using the "member" predicate.

Let's convert this plan to Prolog code.

```prolog 

solution(People) :- 

 

% Arrangement 

People = [person(1, _, _), person(2, _, _), person(3, _, _)], 

 

% Ensure each property appears exactly once 

member(person(1, _, _), People), 

member(person(2, _, _), People), 

member(person(3, _, _ ), People), 

member(person(_ , english, _), People), 

member(person(_ , spaniard, _), People), 

member(person(_ , japanese, _), People), 

member(person(_, _, zebra), People), 

member(person(_, _, jaguar), People), 

member(person(_, _, snail), People), 

 

% Enforce the constraints 

member(person(1, _, snail), People), 

member(person(2, spaniard, _), People), 

member(person(PositionE, english, _), People), PositionE \= 3, 

member(person(PositionJ, _, jaguar), People), PositionJ \= 3, 

member(person(PositionJP, japanese, _), People), 

PositionJplus1 is PositionJ + 1, PositionJP =:= PositionJplus1. 

``` 

This code models all conditions of the problem. Please run the Prolog command `?-

solution(List).` to solve the problem.”

 79

Q: {puzzle}

A: Let's first understand the problem, extract relevant elements, constraints and objective

function and then devise a plan to use the extracted information to solve the problem using

Prolog . Then, let’s carry out the plan , find the arrangement (make sure to represent an

initial arrangement, include all the elements in the code and use the member function in

Prolog) step-by-step. Finally let's print the Prolog code.

Prompt 2

Does this program have a bug? How to fix it?

Prompt 3 (Extraction Prompt)

The output given by this program is:

<output>

Hence the correct arrangement is:

Note: If the output is false, print False.

System Instructions:

Assume you are a constraint optimization expert and you need to model a constraint

satisfaction problem in Prolog.

If printing the elements, constraints, objective function and plan use the format:

"ELEMENTS:

CONSTRAINTS:

OBJECTIVE FUNCTION:

PLAN:"

Do not use the write function from Prolog when you are coding in Prolog.

OpenAI Playground Example:

https://platform.openai.com/playground/p/0C76QEKY0Vl9f8uraA6BArQu?model=gpt-
4&mode=chat

https://platform.openai.com/playground/p/0C76QEKY0Vl9f8uraA6BArQu?model=gpt-4&mode=chat
https://platform.openai.com/playground/p/0C76QEKY0Vl9f8uraA6BArQu?model=gpt-4&mode=chat

