
School of Computer Science and Statistics

Visual Pi-Calculus

Design and Implementation of a Block-based
Language for Modelling Pi-Calculus Systems

Dominik Guzowski

Supervisor: Dr. Vasileios Koutavas

A dissertation

submitted to Trinity College Dublin, the University of Dublin in partial fulfilment

of the requirements for the degree of

Master in Computer Science

April 2024

Declaration

I hereby declare that the following dissertation, except where otherwise

stated, is entirely my own work, and is not work generated through the use

of any GenAI tools; that it has not previously been submitted as an exercise

for a degree, either in Trinity College Dublin, or in any other University; and

that the library may lend or copy it or any part thereof on request.

Dominik Guzowski

29 April, 2024

Acknowledgements

I would like to express my sincere thanks and gratitude to my supervisor,

Dr. Vasileios Koutavas, for his support, discussions, explanations and advice

throughout the course of this dissertation. My meetings with Dr. Vasileios

Koutavas have helped shape the design of the language presented in this

paper and inspired many design choices taken throughout the language

design process. Without his guidance and mentorship, the completion of this

dissertation would not have been possible.

Abstract

Complex concurrent systems are often modelled using formal mathematical

frameworks called process calculi, such as pi-calculus, to facilitate a deeper

understanding of their complexities. These frameworks enable the analysis

and reasoning of concurrent systems. Representations of the system

interactions can be depicted through directed graphs, such as labelled

transition systems, which aid in visualising and exploring the possible states

and transitions within the system. PIFRA, a tool utilising a modified syntax

of pi-calculus, generates intricate labelled transition system graphs based on

provided models through said syntax.

This dissertation proposes and implements a visual language utilising blocks

as an alternative means of constructing pi-calculus models for PIFRA. The

language aims to be user-friendly, catering to novices, while retaining the

ability to represent any pi-calculus construct. Additionally, it assists in

crafting accurate models by ensuring well-defined name scoping and

intentional name usage, thereby reducing the likelihood of errors such as

typos.

Contents

1 Introduction ... 9

1.1 Motivation .. 9

1.2 Objectives ... 10

2 Background .. 11

2.1 Related Work ... 11

2.1.1 Uppaal .. 11

2.1.2 NetsBlox and Snap! ... 12

2.1.3 Other Parallel Visual Languages 12

2.2 Creating Block Languages with Blockly 13

2.3 The Pi-Calculus ... 13

2.3.1 Syntax and Notation ... 14

2.3.2 The Extended Pi-Calculus .. 18

2.4 PIFRA.. 20

3 Design ... 21

3.1 Choice of Visual Representation ... 21

3.2 Language Design Principles .. 21

3.2.1 Target Audience .. 21

3.2.2 Set of Blocks ... 22

3.2.3 Language in Blocks Labels ... 22

3.2.4 Consistency .. 22

3.2.5 Good Defaults .. 22

3.2.6 Additional Design Considerations 23

3.3 Encoding Non-Sequential Execution ... 25

3.3.1 Blockly List Value Input ... 26

3.3.2 Separator Blocks .. 27

3.3.3 The List Pattern ... 27

4 Implementation .. 29

4.1 Transpilation .. 29

4.1.1 Code Scrubbing ... 29

4.1.2 Code Style Enforcement ... 30

4.2 Block Implementations .. 31

4.2.1 Connection Restrictions ... 32

4.2.2 Global Name Block ... 33

4.2.3 Name Accessor Block ... 34

4.2.4 Send Blocks .. 37

4.2.5 Receive Blocks ... 42

4.2.6 Restrict Blocks .. 46

4.2.7 Termination Block ... 49

4.2.8 Parallel Blocks .. 49

4.2.9 Choice Blocks ... 52

4.2.10 Guard Block ... 53

4.2.11 Process Blocks .. 55

4.2.12 Main Program Block ... 61

4.3 Name Scope Management ... 62

4.3.1 Scope Management System ... 62

4.3.2 Scope State Management ... 65

4.4 Syntax Highlighting and Error Management 67

4.4.1 Displaying Warnings and Errors in Blocks 67

4.4.2 Regular Expression-based Error Detection 69

4.4.3 Regular Expression-based Syntax Highlighting 72

4.5 Serialization ... 75

4.6 Web Application ... 77

4.6.1 Navigation Bar .. 78

4.6.2 Editor Layout ... 79

5 Evaluation .. 81

5.1 Code Generation Correctness ... 81

6 Conclusion ... 86

6.1 Achievements .. 86

6.2 Challenges .. 87

6.3 Future Work .. 89

7 Bibliography .. 90

8 List of Figures .. 92

9 Listings ... 95

10 List of Examples.. 99

Nomenclature

AST Abstract Syntax Tree

Hierarchical data structure used to represent the structure of source code of

a programming language according to its grammar.

UI User Interface

The means by which a user interacts with a computer program using a

graphical interface.

FRA Fresh-Register Automata

A formal model in automata theory used to describe the behaviour of

register automata with the concept of freshness – ensuring values are unique.

PIFRA Pi-Calculus Fresh-Register Automata

A tool used to generate labelled transition system graphs of pi-calculus

systems.

LTS Labelled Transition System

Description of a system and its behaviour through a labelled directed graph

where states are represented by nodes and transition by edges.

CSS Cascading Style Sheets

Computer language used to define styles for laying out web pages.

IDE Integrated Development Environment

A software application for software development typically including a code

editor and other tools integrated into a single interface.

VisPi Visual Pi-Calculus

Block-based language for pi-calculus implemented in this paper, and the

name of the web application which hosts it.

Introduction 9

1 Introduction

Concurrent and parallel systems are a fundamental paradigm in computer

science that is essential to the development and operation of modern systems

and infrastructures. These involve the simultaneous execution of multiple

tasks or processes, which may communicate with each other to form

complex systems whose behaviour may be non-deterministic and hard to

fully predict. Despite their prevalence, concurrent and parallel systems are

often difficult to fully understand, primarily due to their inherent complexity

and the non-intuitive nature of concurrent behaviour. In addressing this

challenge, process calculi, notably the pi-calculus [1], are invaluable tools

facilitating the modelling and analysis of concurrent and parallel systems.

By providing formal frameworks for reasoning about concurrent processes

and their interactions, process calculi offer insights into the behaviour of

complex systems, thereby enhancing our comprehension and enabling the

development of robust and scalable computational solutions.

1.1 Motivation

The pi-calculus, while offering promise in enhancing our ability to reason

about concurrent systems, presents a formidable learning curve due to its

inherent complexity. Consequently, this complexity often acts as a barrier,

deterring individuals from delving deeper into the field.

In addressing this challenge, the development of tools such as PIFRA [2] has

proven invaluable. PIFRA enables the generation of labelled transition state

graphs from pi-calculus systems, providing a visual representation of the

states and transitions within the modelled system. However, while PIFRA

facilitates visualisation, it remains reliant on the intricate syntax of the pi-

calculus, thereby limiting its accessibility to novices in the field.

Recognizing the need for a more approachable entry point into concurrent

computing, this project aims to bridge this gap by introducing a novice-

Introduction 10

friendly block-based language. This language will serve as an intermediary,

allowing individuals to model systems without the prerequisite

understanding of the intricate pi-calculus syntax. By transpiling down to

PIFRA, this solution seeks to empower novices to engage with parallel and

concurrent computing concepts with greater ease and confidence.

Through the development of a block-based language, the goal is to provide

an easier access to concurrent computing modelling and analysis, creating a

more approachable introduction to process calculi.

1.2 Objectives

Goal of this dissertation project is to design and provide a working

implementation of a visual language whose output will be a valid PIFRA

program. The language is to be implemented in a user-friendly web

application that is easily accessible.

The overall objectives are:

1. Design and implement a block-based language for pi-calculus.

2. Transpile from blocks to valid PIFRA code.

3. Implement a user friendly web application IDE.

4. Add error checking and meaningful error messages.

5. Implement a name-scope safety system.

6. Test the language with existing examples using PIFRA.

In addition to the main objectives, some other stretch goals are:

1. Implement syntax highlighting for the output code to match blocks.

2. Add serialization to save and load programs.

Background 11

2 Background

This section will cover the visual paradigms used previously for encoding

parallel and concurrent programs or distributed systems, a brief overview of

the Blockly [3] library and covering the basic concepts of pi-calculus [1] as

well as PIFRA [2].

2.1 Related Work

Modelling concurrent systems is a challenging task due to the necessity to

represent every behaviour and interaction of many communicating

processes. Modelling of such systems through graphical interfaces is equally

challenging, especially if we aim to use them to ease our understanding of

the complex and dynamic behvaiours of the modelled systems.

Multiple visual approaches have been used for the task, including the use of

custom visual languages, visual programming idioms such as blocks or

nodes and links or connected-icon-based languages or Unified Modeling

Language (UML) diagrams.

The visual representations can be categorised into two main types: variations

of node graph architectures and block-based languages. Node graphs use nodes

connected by edges or links to represent connections between processes, and

often provide an explicit visual representation of the system topology where

each process is connected to other processes it communicates with. Block-

based languages use predefined blocks which are dragged around the

screen, such as Scratch [4]. Block-based languages in the context of parallel

system modelling generally focus on the behaviour of a single process and

do not visually connect communicating processes together. They also use

event-based blocks to describe communications between processes [5] which

are blocks following the pattern when <event> do.

2.1.1 Uppaal

Uppaal [6], developed collaboratively by Aalborg University in Denmark

and Uppsala University in Sweden, is a tool for modelling, simulating and

Background 12

verifying real-time distributed systems. It is used for modelling non-

deterministic processes with finite control structures and real-valued clocks,

which communicate through the use of channels or shared variables.

The tool consists of a description language, a simulator and model-checker.

The description language allows modelling of the system behaviour through

the use of extended automata with clock and data variables. The simulator

is used for validation of the system’s behaviour and the model-checker

verifies the properties of the system by exploring the system’s state-space.

The visual representation used in Uppaal is a timed automata graph, with

nodes representing the states with the transitions between states being

encoded through directed edges.

2.1.2 NetsBlox and Snap!

NetsBlox [5] is a visual programming language designed to facilitate the

creation of distributed applications. The visual idiom employed is blocks, an

extension of the open source Snap! [7] which itself is an extended

reimplementation of the Scratch [4] visual programming language.

NetsBlox abstracts away much of the complexity involved in distributed

systems programming, such as networking and communications protocols.

However, it serves as a relevant example of how block-based languages can

be effective at representing complex non-linear programming patterns and

concurrent, distributed system communications.

2.1.3 Other Parallel Visual Languages

Parallel visual languages have been used for many domains involving

distributed applications and systems. Kaira [8] is a visual modelling tool

which uses a variant of Coloured Petri Nets (CPNs) to model, simulate and

generate parallel applications. CPNs visually resemble activity diagrams in

UML and for the purposes of visual categorisation, are a variation of a node

graph. Some other examples of visual, graph-oriented languages include

VisualGop [9] and VPPE [10]. VisualGop is a programming environment

aiming to provide high-level abstractions for configuring and programming

parallel processes through the use of graphs representing communication

and synchronisation between programs. VPPE is a cloud environment

Background 13

incorporating icons to encode operations such as input-output, workflow,

communication and processing.

2.2 Creating Block Languages with Blockly

Blockly [3] is an open source library developed by Google, which allows for

incorporating a block-based editor in a web application. Blockly does not

provide a runtime directly and only provides code generation to a target

language, leaving the developer to decide whether and how to run the code.

By default, Blockly provides block vocabularies and generators for a variety

of commonly used programming languages, such as JavaScript and Python,

which can be used directly without any additional setup within a web

application. Blockly also provides a way for creating custom languages, the

blocks for those languages, and a code generation API for defining how

blocks translate to code.

E. Pasternak et al. [11] provide many important tips for designing languages

with Blockly. Some of the main tips include the audience, scope and

language used. The audience is the age and experience of the intended user

base. These could include young children learning to code, college students

using the language for learning or even IT professionals using block-based

languages for their day-to-day work. The scope refers to limiting the amount

and complexity of the blocks which are available to the user. Too many

blocks may impede usability and make it harder for the user to find what

they need. Finally, the language used in the blocks. This could be natural

language, making the text in the blocks read as sentences, or computer

language is closer to the true output language. These considerations aim to

remove common barriers to entry such as the discoverability of language

features of the target language [12] [13].

2.3 The Pi-Calculus

The pi-calculus is a process calculus developed by Milner and is an extension

to the Calculus of Communicating Systems [14], which has also been

Background 14

developed by Milner, with the aim to address the shortcoming in relation to

modelling dynamic systems and their communications.

A process calculus or algebra, is a formal language used for modelling,

checking and verifying the models of concurrent systems through a set of

rules, with the aim of reasoning about the behaviour and relationships

between concurrent processes. The pi-calculus has many variations,

however the examples in this paper follow the formalisations based on

Milner’s book ‘Communicating and Mobile Systems: The Pi-Calculus’ [1].

2.3.1 Syntax and Notation

At the core of pi-calculus are names, which are generally lowercase identifiers

𝑎, 𝑢𝑣, 𝑥𝑦𝑧 … ∈ 𝑁. Names serve multiple purposes, such as indicating data or

communication channels. We will often use names or channels

interchangeably depending on context.

Names can often be thought of as variables in programming languages,

which are just identifiers and do not necessarily indicate what data is stored

within them. In addition to names, pi-calculus uses processes, usually

indicated through uppercase identifiers, with their own defined behaviour.

For the purposes of this paper, only the basics of the pi-calculus will be

explored to the extent they are relevant to the design and implementation

sections of the paper. Additional theory which is not immediately relevant

shall be mentioned briefly or omitted.

𝑃, 𝑄 ∷= process definition

 𝑎(𝑏). 𝑃 input

 𝑎̅⟨𝑏⟩. 𝑃 output

 𝜈𝑎 𝑃 restriction

 𝑃 + 𝑄 summation

 𝑃 | 𝑄 composition

 𝑃! replication

 0 inaction

Table 2.1: Pi-Calculus syntax constructs

Background 15

2.3.1.1 Replication

𝑃! is the indefinite creation of copies of the same process 𝑃. This provides a

way to encode persistence of the process 𝑃.

2.3.1.2 Inaction

Inaction or termination of a process is denoted by 0, or the nil process. It

marks the end of the process.

2.3.1.3 Input – Receiving names

𝑎(𝑥). 0 is the notation used to encode the name 𝑥 being received on channel

𝑎, followed by the inaction marker 0. Receiving introduces a name to the

scope in which it is received, and binds it to the name 𝑥.

Example A: Input

Consider the pi-calculus expression 𝑎(𝑏). 𝑏(𝑥). 0. Now suppose a channel 𝑐

was sent on channel 𝑎, then received on channel 𝑎 in our expression,

resulting in the substitution for 𝑐 in all occurrences of 𝑏 such that the

remaining part of the expression becomes 𝑐(𝑥). 0.

2.3.1.4 Output – Sending names

𝑎̅⟨𝑥⟩. 0 is the notation used for encoding a name 𝑥 being sent across channel

𝑎 followed by the inaction marker 0. A 𝑙𝑜𝑐𝑎𝑙𝑙𝑦 bound name in a process can

be sent across known channels and be received by a different process waiting

to receive a name on some known channel, establishing a way for encoding

communication between processes.

2.3.1.5 Composition – Parallel execution

𝑃 | 𝑄 denotes a parallel composition of two processes 𝑃 and 𝑄. Both

processes will run simultaneously.

Example B: Composition

Consider the expression 𝑎̅〈𝑥⟩. 𝑥(𝑏). 0 | 𝑎̅⟨𝑦⟩. 𝑦(𝑐). 0 | 𝑎(𝑧). 𝑧̅⟨𝑤⟩. 0. Here we

have described three processes (call them 𝑋 | 𝑌 | 𝑍) running in parallel with

a race condition where two processes are sending on the same channel 𝑎,

while a third process is waiting to receive on the channel 𝑎. Depending on

whether 𝑥 or 𝑦 is received on the channel 𝑎 as the name 𝑧, the process whose

name was not received will stall indefinitely until its name is received. This

expression can collapse into two different outcomes:

Background 16

Outcome 1: 𝑤(𝑏). 0 | 𝑎̅⟨𝑦⟩. 𝑦(𝑐). 0

Process 𝑋 won the race condition and received the 𝑤 on channel 𝑥, and is

ready to receive 𝑏 on channel 𝑤.

Process 𝑌 lost the race condition and remains waiting for its message to be

received.

Process 𝑍 has completed its execution by receiving 𝑥 on channel 𝑎 and then

sending 𝑤 across 𝑥.

Outcome 2: 𝑎̅〈𝑥⟩. 𝑥(𝑏). 0 | 𝑤(𝑐). 0

Process 𝑋 lost the race condition and remains waiting for its message to be

received.

Process 𝑌 won the race condition and received the 𝑤 on channel 𝑦, and is

ready to receive 𝑐 on channel 𝑤.

Process 𝑍 has completed its execution by receiving 𝑦 on channel 𝑎 and then

sending 𝑤 across 𝑦.

2.3.1.6 Summation – Non-deterministic choice

𝑃 + 𝑄 + 𝑅 represents a choice that is non-deterministic in nature, meaning

that out of the processes 𝑃, 𝑄 and 𝑅, only one will ever execute and never

more than one.

Example C: Summation

Consider the expression 𝑎̅⟨𝑥⟩. 0 + 𝑎(𝑦). 0. Here we have two processes, both

of which are attempting to act on channel 𝑎. If the summation was a parallel

composition, we would have both processes communicate with each other

by sending 𝑥 across 𝑎 and then receiving it as 𝑦, since only one process in a

summation can execute, these processes will never communicate as only one

can execute, but never both.

2.3.1.7 Restriction – Introducing a locally bound name

𝜈𝑥 or 𝑛𝑒𝑤 𝑥 introduces a new bound name to some current process scope 𝑃

which is denoted by 𝑥. In some other process 𝑄, 𝑥 does not exist and

references to 𝑥 is 𝑄 refer to some free name 𝑥.

A free name is a globally known name which different processes can reference

and interact with, while a bound name is privately scoped to the process to

Background 17

which it is restricted to. Understanding the difference can be done through

an analogy with the C programming language.

Example D: Free names vs. Bound names

int x = 0;

void Foo() { int x = 0; x = 2; }
void Bar() { x = 5; }

Listing 2.3-1: Free name vs. Bound name analogy using C.

We defined a global variable x and two functions, Foo and Bar. In this

example, the function Foo introduces a local variable x with the value 0 and

proceeds to assign it immediately with the value 2. Neither action done by

Foo has interacted with the global x.

The function Bar simply assigns the variable x with a value of 5, however it

never introduced a local variable, therefore bar has interacted with the global

variable x. In this example, Foo acts on a bound name 𝑥, which shadows the

free name 𝑥 whereas Bar acts on a free name 𝑥.

Example E: Restriction

Consider the following expression:

𝜈𝑥 𝑎̅⟨𝑥⟩. 𝑥(𝑦). 0 | 𝑎̅⟨𝑥⟩. 𝑥(𝑧). 0 | 𝑎(𝑏). 𝜈𝑐 𝑏̅⟨𝑐⟩. 0 | 𝑥(𝑤). 0

Here we have four processes running in parallel, let’s call them in order

𝐴 | 𝐵 | 𝐶 | 𝐷.

Process 𝐴 restricts a new bound name 𝑥 in its scope, then proceeds to send it

across the free channel 𝑎 and finally waits to receive some data on the private

channel 𝑥 as the name 𝑦.

Process 𝐵 sends a free name 𝑥 on the free channel 𝑎, then proceeds to wait to

receive data on the free channel 𝑥 as the name 𝑧.

Process 𝐶 waits to receive a message as the name 𝑏 on channel 𝑎. Once

received, proceeds to restrict a new name 𝑐 and send it across the received

channel 𝑏.

Process 𝐷 simply waits to receive a message on the free channel 𝑥.

Here we have an evident race condition between processes 𝐴 and 𝐵 for which

can send their message across 𝑎 first. If 𝐴 wins, processes 𝐵 and 𝐷 stall

indefinitely in a deadlock, as process 𝐶 is able to send the message across the

private channel created by process 𝐴.

Background 18

However, if process 𝐵 wins the race condition, process 𝐴 immediately stalls,

but another non-deterministic scenario arises between processes 𝐵 and 𝐷.

Since 𝐵 sent a free 𝑥 across 𝑎 and then proceeded to listen on that same 𝑥, it

has no guarantee that if it managed to communicate with 𝐶, that it will

receive a response on the channel it sent. This is because we have process 𝐷

which is constantly waiting to receive a message on the free channel 𝑥 and

can intercept the message sent by 𝐶. Therefore, either process 𝐵 or 𝐷 will

stall, depending on which manages to receive the message from 𝐶. This

example can be viewed as a secure connection communication (𝐴

communicating with 𝐶) and a non-secure connection communication (𝐵

communicating with 𝐶) since 𝐷 can intercept the response from 𝐶 due to it

having knowledge of the free channel 𝑥.

2.3.2 The Extended Pi-Calculus

The extended pi-calculus [15] is an extension to the pi-calculus syntax to

support its representation through fresh-register automata. For the

purposes of this paper, we shall only discuss the relevant additions made to

the supported constructions of the pi-calculus.

Tzevelekos introduced the equality construct, and in addition to the equality

construct, the inequality construct was introduced [2] along with minor

changes to the base pi-calculus syntax.

𝑃, 𝑄 ∷= process definition

 𝑎(𝑏). 𝑃 input

 𝑎̅⟨𝑏⟩. 𝑃 output

 [𝑎 = 𝑏] 𝑃 equality

 [𝑎 ≠ 𝑏] 𝑃 inequality

 𝜈𝑎. 𝑃 restriction

 𝑃 + 𝑄 summation

 𝑃 | 𝑄 composition

 𝑃(𝑎⃗) process call

 0 inaction

Table 2.2: Extended Pi-Calculus constructs, with the inclusion of the dot post a restriction

[2].

Background 19

Note the addition of the dot in the restriction construct. The process call 𝑃(𝑎⃗)

replaces replication 𝑃! as it provides the same ability for a process to persist.

2.3.2.1 Process Call

𝑃 or 𝑃(𝑎⃗) invokes a defined process, which can be thought of as a function

call in standard programming languages. 𝑃(𝑎⃗) is the invocation of a process

with a vector of names as arguments to the process.

Example F: Process Call

Consider the following:

𝑃(𝑥) ∷= 𝑎̅⟨𝑥⟩. 𝜈𝑦. 𝑃(𝑦)

𝜈𝑧. 𝑃(𝑧)

Here we have defined a process 𝑃 which is parameterised with the name 𝑥.

𝑃 is recursive on itself, and with each invocation it broadcasts the name

across channel 𝑎. It then generates a fresh name and calls itself with the fresh

name, continuously broadcasting unique names across channel 𝑎. The first

name broadcasted will be the bound name 𝑧 followed by an infinite stream

of unique names thereafter.

2.3.2.2 Equality and Inequality

[𝑎 = 𝑏] 𝑃 and [𝑎 ≠ 𝑏] 𝑃 are the constructs for equality and inequality

respectively. These are equivalent to if conditions in standard programming

languages. The conditions are evaluated after the name substitution step and

the process 𝑃 will only execute if the condition evaluated as true, that is the

names after the substitution are either equal or not equal.

Example G: Equality and Inequality

Consider the following system:

𝑃(𝑏) ∷= 𝜈𝑥. 𝑎̅⟨𝑥⟩. 𝑏(𝑦). [𝑥 = 𝑦] 𝑃(𝑏)

𝑄(𝑏) ∷= 𝑎(𝑧). 𝑏̅⟨𝑧⟩. 𝑄(𝑏)

𝜈𝑐. (𝑃(𝑐) | 𝑄(𝑐))

In the system we have two recursive processes, 𝑃 and 𝑄, both

communicating on a public channel 𝑎 and and a private shared channel 𝑐.

Process 𝑃 continuously creates new names 𝑥, broadcasts them on channel 𝑎

and the proceeds to receive a message on channel 𝑏 (channel 𝑐 after

substitution). It then verifies that the received name 𝑦 is the same as the

broadcasted 𝑥, if so, 𝑃 invokes itself again, otherwise it terminates.

Background 20

Process 𝑄 simply continuously receives names on 𝑎 and forwards them on

𝑏. In this example 𝑃 and 𝑄 are in constant communication with each other,

however in the instance that some other process sent a message across

channel 𝑎, process 𝑄 would forward an unknown name to 𝑃 resulting in the

termination of 𝑃, followed by the stalling of 𝑄 thereafter due to channel 𝑏 no

longer having a process waiting to receive messages.

2.4 PIFRA

PIFRA [2] is a command-line tool which uses fresh-register automata [15] to

generate labelled transition systems based on pi-calculus models, for model

checking and verification whether certain states in the system are reachable.

The language used to write the models is an ASCII representation of the

extended pi-calculus. Given that the syntax is very close to pi-calculus

syntax, which is quite abstract in nature, it can be relatively difficult to start

using without a proper introduction into process calculi and the pi-calculus

syntax. PIFRA as a tool does not have a dedicated environment, syntax

highlighting or detailed error reporting.

Extended Pi-Calculus PIFRA ASCII

𝑃 ∷= process definition P =

𝑄(𝑎, 𝑏) ∷= parameterised process def. Q(a, b) =

 𝑎(𝑏). 𝑃 input a(b). P

 𝑎̅⟨𝑏⟩. 𝑃 output a'. P

 [𝑎 = 𝑏] 𝑃 equality [a=b] P

 [𝑎 ≠ 𝑏] 𝑃 inequality [a!=b] P

 𝜈𝑎. 𝑃 restriction $a. P

 𝑃 + 𝑄 summation P + Q

 𝑃 | 𝑄 composition P | Q

 𝑃 process call P

 𝑄(𝑎, 𝑏, 𝑐) parameterised process call Q(a, b, c)

 0 inaction 0

Table 2.3: The PIFRA ASCII equivalents of the extended pi-calculus constructs.

Design 21

3 Design

The design section will cover the decisions and rationale behind certain

choices made in the actual design process of the VisPi visual language and

the web app IDE, and serves as an introduction to the implementation

section that follows.

3.1 Choice of Visual Representation

VisPi first and foremost is intended to be an introductory visual language to

pi-calculus and modelling concurrent systems, and a tool used for general

concurrent system modelling second. That being said, the language must be

simple and easy to learn and use, and for that reason the visual paradigm

employed in VisPi is block-based due to its simplicity, approachability and

discoverability of blocks for novices to the language [12], minimising the

barriers of entry into pi-calculus.

3.2 Language Design Principles

When designing blocks with Blockly [3], the principles outlined by

Pasternak et al. [11] were considered to ensure the design of the language is

appropriate for the target audience, is appropriately scoped in terms of

number of blocks, uses appropriate and familiar language and most

importantly is consistent.

3.2.1 Target Audience

The primary target audience is computer science and engineering-oriented

students in third level education and novices to concurrent system

modelling, analysis and process calculi in general. The secondary audience

is professionals working with concurrent system modelling for whom VisPi

would serve as an alternative environment for writing models. Given the

audience is individuals who are expected to have basic computer science

knowledge and some notion of parallelism and concurrent programming,

Design 22

the language design does not need to cater to younger audiences and can be

more abstract and high-level as a result.

3.2.2 Set of Blocks

Given the main aim of the language is to be an introduction to pi-calculus,

the scope in terms of number of blocks should remain relatively low, to

ensure that it does not become cumbersome to find the required blocks the

user may need as to not impede on the workflow.

For that reason, the blocks shall be limited to the bare minimum required to

capture the entirety of pi-calculus, with the exception of block variants which

would allow users to write programs more concisely and reduce duplication.

3.2.3 Language in Blocks Labels

There are two main approaches to the language that should be included in

each block, those being natural language or computer language [11]. Natural

language refers to using sentence-like labels on blocks, which read like

English and express more complex notions than icons or symbols or the

literal language syntax. Computer language on the other hand is just that,

the literal use of the target transpiled language syntax on the blocks

themselves. Given the concise nature of pi-calculus syntax, the use of

computer language is not feasible but also does not address the issue of

learning pi-calculus’ abstract syntax.

3.2.4 Consistency

To ensure that using the language is intuitive, we shall use the same colour

and language for blocks which serve the same purpose, or are closely related,

as well as ensuring the shape of the blocks is also consistent depending on

the block’s usage.

3.2.5 Good Defaults

Blocks which require the use of names, or often or always are paired

together, should be by default populated appropriately. This serves two

purposes, improving the usability of the language and the agility at which it

Design 23

can be used, but also provides examples of the language patterns from the

get-go and teaches the user how blocks should be connected.

3.2.6 Additional Design Considerations

Since one of the goals for VisPi is introduction to pi-calculus, it is important

that we try to eliminate as many possible points of error as we can and

provide implicit hints to the user about the syntax and semantic meaning of

the programs they model to avoid ambiguous scenarios.

3.2.6.1 Free Names

One of the strengths of pi-calculus is the unrestricted use of names, without

the need to pre-define them [1]. While providing flexibility and

expressiveness while modelling concurrent systems and their

communications, this aspect of pi-calculus may pose two problems in a

visual environment:

1. What is ‘𝑥’?

To someone who is unfamiliar with the syntax of pi-calculus, a random

identifier thrown into a model may be confusing initially. Additionally,

in a visual interface where we are required to somehow provide textual

input, avoiding unnecessary typing may reduce the possibility of typo

errors.

2. What was the name I used in that process?

In a visual setting it is expected that we will not fit as much information

onto the screen as we would otherwise with pure text. This introduces

the need to move around in the block editor to potentially find instances

where a certain free name was introduced for a common communication

channel between processes, and this problem grows the larger the system

we are modelling.

To address this issue, we propose the language to include a block which does

not produce code directly, but is used to define free names by the user. In

addition to that, in order to reduce the chance of user making a hard-to-spot

typo, using names in programs shall be done through a dynamic dropdown.

This dropdown would include the available names which have been defined

by the user.

Design 24

3.2.6.2 Name Scoping

Parentheses are, in some cases, optional in pi-calculus, and sometimes are

used intentionally to define explicit scopes. This can lead to hard-to-spot

errors especially in the textual format such as the following:

$x. a'<x>. 0 | b'<x>. 0
$x. (a'<x>. 0 | b'<x>. 0)

Listing 3.2-1: Using parentheses to change the scoping of a name.

The difference between the two systems is the scope of 𝑥. The first system

defines 𝑥 only in the left-hand side process, whereas the the right-hand side

uses a free name 𝑥, which is semantically different from the latter system

where 𝑥 is a bound name in both parallel processes. In fact, to better illustrate

the difference, the first system can be written as

($x. a'<x>. 0) | b'<x>. 0

Listing 3.2-2: Alternative representation of the first system in Listing 3.2-1.

To prevent the possibility of such errors occurring unintentionally, we shall

enforce that all blocks which introduce bound names into the system to wrap

around the subsequent blocks. This would visually encode the fact that the

newly introduced name is bound within the confines of the block which

introduced it.

Additionally, we shall enforce that the aforementioned name dropdown to

only contain the names which are in-scope at any given point in the program,

preventing the possibility of selecting an incorrect name which is introduced

elsewhere in the system as a bound name.

Design 25

Figure 3.1: VisPi Blocks representing the processes in Listing 3.2-1.

3.2.6.3 Use of Colour

Aside from ensuring blocks serving a similar purpose or being related

having matching colour, the same colours shall be used in the PIFRA code

output. This will serve the purpose of implicitly teaching the syntax through

visual cues, for example all send or output actions being coloured blue, both

in blocks and in the output code.

3.3 Encoding Non-Sequential Execution

Representing parallelism in blocks is not an easy task unlike with nodes and

links where we can use many links from a single node to encode parallelism.

There are three main ways of assembling blocks with Blockly [3], those being

next statement, value input and statement input.

Next statement refers to blocks that snap onto the bottom of another block

vertically in a sequence.

Value input refers to blocks which attach horizontally, in a puzzle-piece-like

manner. These can also be inserted inside the actual structure of a block

instead of always being attached to the side of the block. This can be used as

a way to insert variables or expressions into other blocks, such as if statement

conditions.

Statement input refers to a block which accepts an entire sequence of blocks

inside of itself, and is a form of nesting. Just like value input can be used as

Design 26

the if statement condition expression, statement input is used for the body of

the if statement.

We shall discuss how we could use each of the three assembling methods to

represent non-sequential execution, as well as the advantages and

disadvantages each method brings.

3.3.1 Blockly List Value Input

Blockly [3] provides a way for

constructing dynamic list blocks,

which allow other blocks to attach as

value inputs, that is, blocks which

attach to the side, rather than as the

next block vertically, or a nested

block.

Figure 3.2: Blockly list block and the configuring of the number of accepted items in the

block.

Additional slots can be added to the list block by adding additional item

blocks to the list blocks in the configuration. We can imagine the create list

with block being replaced with a parallel block and each item attached being

run in parallel with one another. However, we run into the issue that a

parallel process can be arbitrarily large and be made up of many blocks,

which must be contained within a scope statement input block. Due to the size

of the statement input blocks, which would contain each process, being large

and the setup to add additional processes being relatively convoluted, this

approach is not ideal.

Design 27

3.3.2 Separator Blocks

Another approach is to use standard block sequencing and introduce

separator blocks which alter the implicit sequentiality of pi-calculus. In other

words, the separator block would replace the standard dot sequence

character to a corresponding separator, either composition or summation.

While conceptually straightforward, this approach introduces scope

ambiguity such that explicit parentheses would have to be added to group

parallel processes together, at which point we are writing pi-calculus syntax

in as a 1:1 translation but in block form, and is something we aim to avoid.

Figure 3.3: The parallel separator block and the explicit parenthesis (right) to avoid

ambiguity with which send operations are in parallel with one another.

3.3.3 The List Pattern

The final approach that was considered fully leveraged the statement input of

blocks to define scopes which alter the default sequencing behaviour. With

this we can define two blocks, run in parallel and choose from for composition

and summation respectively. Run in parallel runs all of the children blocks

nested within it in parallel, while choose from makes each child block a choice.

However, similarly to separator blocks, we need to define groups of blocks

which should be part of a single parallel task or choice.

Therefore, we define two pairs of blocks which shall always be used

together, run in parallel with task and choose from with choice, where task blocks

may only ever exist within run in parallel blocks, while choice can only ever

exist in choose from. We call this pattern of a specific parent block and child

block the list pattern, which allows us to sequentially append the children

Design 28

blocks within a parent indefinitely, where the child cannot exist outside its

defined parent block, while a parent block may not accept any other blocks

but the defined child block.

Figure 3.4: Parallel composition of two send actions.

This pattern of listing items within a parent introduced a way to reduce

duplication, repetition and excessive nesting in the language. The problem

of excessive nesting becomes evident when we are trying to restrict or

receive many names in sequence within the same scope such as the

following:

$a. $b. $c. $d. a(x). a(y). a(z). 0

Listing 3.3-1: Multiple name restricted or received in succession creating multiple scopes.

Figure 3.5: The list pattern used for restriction of multiple names at once (left) and receiving

multiple names on the same channel at once (right). Corresponds to Listing 3.3-1.

Implementation 29

4 Implementation

This section will cover the technical details of the implementation of the

language and the web application features, including relevant code snippets.

4.1 Transpilation

Transpilation is the conversion from one programming language to another.

In this case it is the conversion from blocks to PIFRA pi-calculus syntax.

4.1.1 Code Scrubbing

Code scrubbing refers to a function available in the Blockly API which is a

function that runs in between the code generator functions of consecutive. In

standard programming languages, this function can handle indentation and

new lines, whereas for our purposes, we shall use it to determine the

appropriate separator character depending on the blocks being evaluated.

const nextBlock = block.nextConnection?.targetBlock() || null;

const next = this.blockToCode(nextBlock);

const hasCode =
 typeof next === "object"
 ? next[0].replace(/\s/g, "").length > 0
 : next.replace(/\s/g, "").length > 0 && code.length > 0;

if (hasCode) {
 if (ChoiceScopes(block, nextBlock)) return code + " + " + next;
 if (ParallelScopes(block, nextBlock)) return code + " | " + next;
 if (ShouldSeparate(block) && nextBlock) return code + ". " + next;
}

return code + next;

Listing 4.1-1: Code Scrubbing function, determining the type of separator.

The function checks whether the next block of code has produced actual

code, and if so it determines the separator to use based on the current and

next block pair, with the default being no separator if all checks failed.

Implementation 30

const ChoiceScopes = (a, b) => {
 return a?.type === "ChoiceScopeBlock" &&
 b?.type === "ChoiceScopeBlock";
};

Listing 4.1-2: Code scrubber predicate determining if two blocks are both Choice Blocks.

const ParallelScopes = (a, b) => {
 return a?.type === "ParallelScopeBlock" &&
 b?.type === "ParallelScopeBlock";
};

Listing 4.1-3: Code scrubber predicate determining if two blocks are both Task Blocks.

const ShouldSeparate = (block: Blockly.Block | null) => {
 switch (block?.type) {
 case "SendBlock":
 case "SyncBlock":
 case "MultiSendBlock":
 case "ReceiveScopeBlock":
 case "TerminationBlock":
 return true;
 default:
 return false;
 }
};

Listing 4.1-4: Code scrubber predicate determining if a dot sequence character should be

inserted.

4.1.2 Code Style Enforcement

While PIFRA does not explicitly require that names or processes begin with

an upper or lowercase letter or underscore specifically, the convention in pi-

calculus is to keep names lowercase and process names uppercase. We shall

enforce this convention as it makes it immediately obvious what the name is

referring to.

To enforce this style we shall define two functions which verify that the user

input conforms with the required convention, and if not it should correct the

input to the best closest match.

const ToLowerleadingAlphaNumeric = (str: string) => {
 str = str.replace(/[^a-zA-Z0-9_]/g, "");
 str = str.replace(/^[0-9]+/, "");
 str = str.charAt(0).toLowerCase() + str.slice(1);
 return str;
};

Listing 4.1-5: Function enforcing a lowercase or underscore leading identifier.

Implementation 31

const ToUpperleadingAlphaNumeric = (str: string) => {
 str = str.replace(/[^a-zA-Z0-9_]/g, "");
 str = str.replace(/^[0-9_]+/, "");
 str = str.charAt(0).toUpperCase() + str.slice(1);
 return str;
};

Listing 4.1-6: Function enforcing an uppercase leading identifier.

ToLowerleadingAlphaNumeric first removes all characters which are not valid

for identifiers in PIFRA, then removes all leading numbers, as identifiers

may not begin with a number, and finally sets the first character to lowercase.

We can use this function to force names in the language to always be well-

formed and begin with lowercase.

ToUpperleadingAlphaNumeric first removes all characters which are not valid

for identifiers just like ToLowerleadingAlphaNumeric, it then removes all leading

numbers and underscores and finally sets the first character of the remaining

string to uppercase. This function can be used to force process names in the

language to be well-formed identifiers which must begin with a capital letter.

4.2 Block Implementations

Each block is made up of 3 main components: toolbox entry, block definition

and code generation. The toolbox entry is a declaration of the block and how

it should appear in the toolbox of the block editor. It can contain defaults for

the block for convenience. The block definition is the code used to determine

the shape, colour and connections a block has. Finally, the code generation

is a function which determines how each block generates code.

In addition to these components, some blocks contain additional unique

behaviours which will be discussed where relevant.

A block is also assigned to one of 3 categories, Scopes, Processes and Other.

The Scopes category includes all blocks which create scopes in the language

or take other blocks as statement inputs. The Processes category contains all

blocks used for the definition and the use of processes. Finally, the Other

category includes all other blocks which do not warrant their own unique

category.

Implementation 32

Toolbox entries are written in JSON, but only the actual components related

to each block will be shown, likewise, the instantiation, on-change and code

generation functions will also be given as the bodies of the functions only for

brevity.

4.2.1 Connection Restrictions

Certain blocks in the language have strict rules regarding which blocks they

can connect to or which blocks can connect to them. If a block violates a rule

it gets detached.

const MustBeInExactScope = (block: any, parent: string, scope: string) =>
{
 const surroundingParent = block.getSurroundParent();
 if (!surroundingParent) {
 if (block.getParent()?.type === parent) {
 block.unplug(false);
 return true;
 }
 return false;
 }

 if (surroundingParent.type !== parent ||
GetDirectChildren(surroundingParent, scope).indexOf(block) === -1) {
 block.unplug(false);
 return true;
 }
 return false;
};

Listing 4.2-1: Function forcing a block to be only ever attached to a specific scope of a

specific parent block.

const CanOnlyContain = (block: any, scope: string, types: string[]) => {
 const children = GetDirectChildren(block, scope);
 const first = children.filter((c) => !types.includes(c.type))[0];
 if (first) {
 first.unplug(false);
 return true;
 }
 return false;
};

Listing 4.2-2: Function restricting the types of blocks are accepted within a specific scope of

the current block.

Implementation 33

const CanOnlyBeAttachedTo = (block: any, types: string[]) => {
 const prev = block.getParent();
 const next = block.getNextBlock();

 if (prev && !types.includes(prev.type)) {
 block.unplug(false);
 return true;
 }

 if (next && !types.includes(next.type)) {
 block.unplug(false);
 return true;
 }
 return false;
};

Listing 4.2-3: Function restricting what blocks the current block can attach to.

These functions will be referenced in the block definitions where applicable.

4.2.2 Global Name Block

The global name block is used to define the free names in the program. The

purpose of this block is to inform the Name Scope Manager, which shall be

discussed later, of the free names which we intend to have in the program.

Figure 4.1: The global name block. Used to explicitly define free names.

4.2.2.1 Toolbox Entry

kind: 'block',
type: 'GlobalNameBlock'

Listing 4.2-4: Toolbox entry of the Global Name Block.

The entry of this block is empty and only contains the type of the block as

there are no defaults we can provide for this block, as it is up to the user to

input a free name of their choosing.

Implementation 34

4.2.2.2 Block Definition

this.appendDummyInput()
 .appendField("global")
 .appendField(
 new Blockly.FieldTextInput("", ToLowerleadingAlphaNumeric), "NEW"
);
this.setColour("#FFC310");
this.setNextStatement(true, null);
this.setPreviousStatement(true, null);

Listing 4.2-5: Global Name Block instantiation function.

The global name block is defined as a single text input. The text input makes

use of the ToLowerleadingAlphaNumeric function which enforces that the name

given begins with a lowercase letter or an underscore, and may include any

letter, underscore or number thereafter. Note the “NEW” field name used in

the text input field. This convention of the “NEW” field name is used across

all blocks which introduce names into the program.

The block allows for a previous and next statement connection, meaning it

can both attach to a block, and have other blocks being attached to it.

Finally, in its onchange function, it contains the guarding function

CanOnlyBeAttachedTo(this, ["GlobalNameBlock"]) which only allows it to be

attached to other global name blocks, as we do not want this block to be

inserted inside actual program code, but want to allow the block to be able

to join together for cleanliness and organisation of blocks.

4.2.2.3 Code Generation

This block does not generate any code as free names are not explicitly

indicated by the syntax of pi-calculus, and during the code generation pass

only informs the name scope manager of the value it contains.

4.2.3 Name Accessor Block

The name accessor block is the only block in the language which is a value

input block. The purpose of the block is for the user to select a valid name

which is in scope at any given point in the program. The block determines

the list of valid names by inspecting its position in the program and

requesting the list of available names from the name scope manager. We

Implementation 35

define a single name accessing block to prevent unnecessary code

duplication given that the logic to retrieve names is always the same.

Figure 4.2: Two name accessor blocks attached to the send block.

4.2.3.1 Toolbox Entry

kind: "block",
type: "NameAccessBlock"

Listing 4.2-6: Toolbox entry of the Name Access Block.

This toolbox entry does not contain any defaults as this block is entirely

dynamic in nature and the values it offers are dependent on the position of

the block and the available names in the program in that position.

4.2.3.2 Block Definition

this.appendDummyInput().appendField(
 new Blockly.FieldDropdown([
 ["?", VISPI_INVALID_NAME], ...NameAccessStates
]),
 "NAME"
);
this.setColour("#FFC310");
this.setOutput(true, null);

Listing 4.2-7: Name Access Block instantiation function.

Upon initialisation, the block is a dropdown list containing the default

invalid name. In the case of loading the program from a file, we require that

the loaded program’s selected names persist, therefore we add the additional

NameAccessStates which is a global constant which contains the loaded

names. This is required as otherwise loading the dropdown without those

additional names would cause data loss as all names would default back to

the invalid name.

This is usually not an issue with other Blockly languages as dropdowns are

often hard-coded, but given we can dynamically add and remove names, we

must carefully manage the state so as to not accidentally remove the blocks

data.

Implementation 36

The update function of this block, which like other update functions, runs

with every single change in the editor canvas, therefore if a name was added

at some point and it became available to block, the dropdown must now

reflect that therefore we must update the dropdown contents with each

change.

const names = ScopeManager.GetLastScope()?
 .GetNames(GetAncestry(this.getParent())) ?? [];

Listing 4.2-8: Accessing names in-scope from the scope manager.

First we collect the names from the previous state of the program, before it

was refreshed to know which names we had available right before the

Blockly state refreshed. The exact reasons as to why we must use the

previous state is discussed later in Name Scope Manager.

To determine which names we should provide, we are required to get the

block’s ancestry, which is a list of IDs of the blocks which preceded the

current block. This allows us to determine within which scopes we are

positioned in the program, and can provide the appropriate names.

this.getField("NAME").menuGenerator_ = [
 ["?", VISPI_INVALID_NAME], ...names.map((n) => [n, n])
];

Listing 4.2-9: Updating the available names of the Name Access Block.

We then update the dropdown menu by appending the names to the invalid

name, which is always the first element in the list. We map over the names

to produce tuples as Blockly requires the dropdown item to be in a format

where the tuple is [visiblevalue, internalvalue].

We must also consider a scenario where a name accessor block has been

moved to a different scope where its name no longer exists. This is necessary

to ensure that the intended correctness of the program is maintained. Instead

of setting the value of the block to be the default invalid value, we instead

display a warning to the user informing them of the fact that the name is not

available in the current scope. Doing so we inform the user of the mistake,

and by not changing the block’s value, we prevent accidental actions of the

user from being destructive.

Implementation 37

if (!names.includes(value)) {
 this.setWarningText("Name is not in scope.");
} else {
 this.setWarningText(null);
}

Listing 4.2-10: Setting a warning message on the Name Access Block when the selected

name is not in-scope.

4.2.3.3 Code Generation

During the code generation step, the block verifies if the name provided is

the invalid default, if so, no code should be generated, otherwise we just

return the name.

const name = block.getFieldValue("NAME");
if (name === VISPI_INVALID_NAME) return ["", 0];
return [name, 0];

Listing 4.2-11: Name Access Block code generation function.

4.2.4 Send Blocks

Send blocks refer to all blocks which compile down to the pi-calculus send

syntax. There are three variations of the send block: send, send all and sync.

Send is the standard send block which sends a single name on some other

named channel. The send all block sends all specified names, through the

use of the list pattern, on some named channel. Finally, the sync block sends

a name across itself, which acts like a synchronisation or signalling that some

action occurred, but no data was necessarily being sent.

All send blocks are part of the Other category.

Figure 4.3: All send block variants, the standard send block (top left), the send all block

(right) and the sync block (bottom left).

The code output from the blocks shown in Figure 4.3 would be as follows:

Send: y'<x>

Send all: y'<x>. y'<z>

Sync: x'<x>

Implementation 38

The send all and sync blocks were included for convenience due to

commonly recurring patterns in pi-calculus which involve sending multiple

names on the same channel or sending the channel on itself.

4.2.4.1 Toolbox Entry

Since all send blocks use defined names, and do not introduce any new

names to the scope, they all by default have the name access block already

attached to both the name that is being sent and the channel on which the

message is being sent.

kind: "block",
type: "SendBlock",
inputs: {
 ON: {
 block: {
 type: "NameAccessBlock",
 fields: {
 NAME: VISPI_INVALID_NAME,
 },
 },
 },
 MESSAGE: {
 block: {
 type: "NameAccessBlock",
 fields: {
 NAME: VISPI_INVALID_NAME,
 },
 },
 },
}

Listing 4.2-12: Toolbox entry of the Send Block.

The default send block has both the message and the channel value inputs

set to the name access blocks with the invalid name default value.

kind: "block",
type: "SyncBlock",
inputs: {
 ON: {
 block: {
 type: "NameAccessBlock",
 fields: {
 NAME: VISPI_INVALID_NAME,
 },
 },
 },
}

Listing 4.2-13: Toolbox entry of the Sync Block.

Implementation 39

The sync block is identical to the default send block apart from the fact that

the message and channel are the same, hence we only require one field to be

set with the default name access block value. The send all block is different

to the previous two blocks given it uses the list pattern, in which it is the

parent block. Therefore we require the child block to be defined which will

be used to list an unlimited amount of names to be sent.

kind: "block",
type: "SendNameBlock",
inputs: {
 MESSAGE: {
 block: {
 type: "NameAccessBlock",
 fields: {
 NAME: VISPI_INVALID_NAME,
 },
 },
 },
}

Listing 4.2-14: Toolbox entry of the Send Name Block. (Child block of Send All Block)

This block simply holds onto a name access block and is a child block of the

send all block.

kind: "block",
type: "MultiSendBlock",
inputs: {
 ON: {
 block: {
 type: "NameAccessBlock",
 fields: {
 NAME: VISPI_INVALID_NAME,
 },
 },
 },
 MESSAGES: {
 block: {
 type: "SendNameBlock",
 inputs: {
 MESSAGE: {
 block: {
 type: "NameAccessBlock",
 fields: {
 NAME: VISPI_INVALID_NAME,
 },
 },
 },
 },
 },
 },
}

Listing 4.2-15: Toolbox entry of the Send All Block.

Implementation 40

The send all block comes with a default name access block for the channel

name on which the messages are being sent, and a single send name child

block, as at least one name must be provided.

4.2.4.2 Block Definitions

The default send block does not require any updates as it itself does not

access the name data from the scope manager, and the block is allowed to be

attached anywhere in the program, unless the parent block it is attaching to

disallows it.

this.appendValueInput("MESSAGE").appendField("send");
this.appendValueInput("ON").appendField("on");
this.setPreviousStatement(true, null);
this.setNextStatement(true, null);
this.setColour("#3366FF");

Listing 4.2-16: Send Block instantiation function.

We simply append two value input fields, for the channel and message

names. We also allow for the block to attach to other blocks, and other blocks

to attach to itself by allowing the previous and next statements.

The sync block follows suit in a similar manner, and is in fact simpler since

it requires just one name.

this.appendValueInput("ON").appendField("sync");
this.setPreviousStatement(true, null);
this.setNextStatement(true, null);
this.setColour("#3366FF");

Listing 4.2-17: Sync Block instantiation function.

The initialisation definition for the send all child block is identical to that of

the sync block, however we restrict the block’s attachment so that it can only

exist within its parent block.

if (CanOnlyBeAttachedTo(this, ["MultiSendBlock","SendNameBlock"])) return;
MustBeInExactScope(this, "MultiSendBlock", "MESSAGES");

Listing 4.2-18: Send Name Block onchange function, restricting allowed block connections.

If the CanOnlyBeAttachedTo function finds that the block is attached to

something other than specified, it will detach the block and exit early. If the

block was not detached, meaning it is attached to the allowed blocks, we

Implementation 41

must check that it is within the valid scope inside the send all block, and is

not attached to the bottom of the block in a sequence.

Finally, the send block itself contains a statement input for the children

blocks, and the value input for the channel name.

this.appendDummyInput().appendField("send all")
 .setAlign(Blockly.inputs.Align.RIGHT);
this.appendStatementInput("MESSAGES");
this.appendValueInput("ON").appendField("on")
 .setAlign(Blockly.inputs.Align.RIGHT);
this.setPreviousStatement(true, null);
this.setNextStatement(true, null);
this.setColour("#3366FF");

Listing 4.2-19: Send All Block instantiation function.

The final requirement for this block is to disallow blocks other than the

specific child block from being attached within its statement input, we do

this by detaching blocks which do not match the list of allowed blocks.

CanOnlyContain(this, "MESSAGES", ["SendNameBlock"]);

Listing 4.2-20: Send All Block restriction on allowed children blocks in its scope.

4.2.4.3 Code Generation

To generate the code for send blocks, we first retrieve the values generated

by the name accessor blocks, after which we verify that all the values are

valid.

const name = generator.valueToCode(block, "ON", 0);
const value = generator.valueToCode(block, "MESSAGE", 0);

if (name.length > 0 && value.length > 0) {
 return `${name}'<${value}>`;
}

return ``;

Listing 4.2-21: Send Block code generation function.

For send name blocks, the children blocks of send all blocks, we do not

generate any code, instead we delegate the generation of the code to the send

all block.

Implementation 42

const on = generator.valueToCode(block, "ON", 0);
const messages = GetDirectChildren(block, "MESSAGES")
 .map((message) => generator.valueToCode(message, "MESSAGE", 0))
 .filter((m) => m.length > 0);

if (on.length > 0 && messages.length > 0) {
 return messages.map((m) => `${on}'<${m}>`).join(". ");
}
return ``;

Listing 4.2-22: Send All Block code generation function.

We map over all the children blocks and generate their values, after which

we filter out any empty names. Then, if we have a valid name used as the

channel and at least one name to be sent, we map over the names and join

them with the sequence dot delimiter. We must join the send actions

manually since this code does not go through the code scrubber.

4.2.5 Receive Blocks

Receive blocks are scoping blocks since they introduce names to a scope, and

as such are part of the Scopes category.

Figure 4.4: Two variants of the receive block. The standard receive block allows for

receiving a single name (left) and the receive all block (right) allowing for receiving multiple

names at a time. Left and right representations are equivalent.

Implementation 43

4.2.5.1 Toolbox Entry

The standard receive block is defined with a default name accessor block for

the channel on which a name would be received.

kind: "block",
type: "ReceiveScopeBlock",
inputs: {
 ON: {
 block: {
 type: "NameAccessBlock",
 fields: {
 NAME: VISPI_INVALID_NAME,
 },
 },
 },
}

Listing 4.2-23: Toolbox entry of the Receive Block.

For the receive all block we follow the exact same pattern as in the send all

block, where we include a default receive name child block.

kind: "block",
type: "ReceiveNameBlock"

Listing 4.2-24: Toolbox entry of the Receive Name Block. (Child block of Receive All Block)

The receive name block does not contain any defaults itself as it is a text input

block, and the user is required to enter a name they wish to use.

kind: "block",
type: "MultiReceiveScopeBlock",
inputs: {
 NAMES: {
 block: {
 type: "ReceiveNameBlock",
 },
 },
 ON: {
 block: {
 type: "NameAccessBlock",
 fields: {
 NAME: VISPI_INVALID_NAME,
 },
 },
 },
}

Listing 4.2-25: Toolbox entry of the Receive All Block.

Implementation 44

The receive all block is defined exactly in the same way we defined the send

all block, providing a default empty receive name block and a default name

accessor block.

4.2.5.2 Block Definitions

The receive block contains a single text input field and a statement input

field. It is the first block to not allow any other blocks from being attached to

it as once a name is defined, it is available for the remainder of the scope,

hence all consecutive blocks must be inserted into the body of the block.

this.appendDummyInput()
 .appendField("receive")
 .appendField(
 new Blockly.FieldTextInput("", ToLowerleadingAlphaNumeric), "NEW"
);

this.appendValueInput("ON")
 .appendField("on").setAlign(Blockly.inputs.Align.RIGHT);

this.appendStatementInput("SCOPE");
this.setColour("#208932");
this.setPreviousStatement(true, null);
this.setNextStatement(false, null);

Listing 4.2-26: Receive Block instantiation function.

Similarly to the send all block, the receive all block requires a child block

defined for itself, given it uses the list pattern.

this.appendDummyInput()
 .appendField("name")
 .appendField(
 new Blockly.FieldTextInput("", ToLowerleadingAlphaNumeric), "NEW"
);
this.setColour("#208932");
this.setPreviousStatement(true, null);
this.setNextStatement(true, null);

Listing 4.2-27: Receive Name Block instantiation function. (Child block of Receive All Block)

if (CanOnlyBeAttachedTo(this,
 ["MultiReceiveScopeBlock","ReceiveNameBlock"])
) return;
MustBeInExactScope(this, "MultiReceiveScopeBlock", "NAMES");

Listing 4.2-28: Receive Name Block onchange function, restricting allowed block

connections.

The receive all block adds an additional scope for listing names to receive,

just like the send all block adds a scope for listing the names to send.

Implementation 45

Additionally, it also follows the same pattern in restricting the allowed

blocks which may be inserted into the name scope.

this.appendDummyInput()
 .appendField("receive all")
 .setAlign(Blockly.inputs.Align.RIGHT);

this.appendStatementInput("NAMES");
this.appendValueInput("ON")
 .appendField("on")
 .setAlign(Blockly.inputs.Align.RIGHT);

this.appendStatementInput("SCOPE");
this.setColour("#208932");
this.setPreviousStatement(true, null);
this.setNextStatement(false, null);

Listing 4.2-29: Receive All Block instantiation function.

CanOnlyContain(this, "NAMES", ["ReceiveNameBlock"]);

Listing 4.2-30: Receive All Block restriction on allowed children blocks in its scope.

4.2.5.3 Code Generation

const name = block.getFieldValue("NEW");
const on = generator.valueToCode(block, "ON", 0);
ScopeManager.RegisterBlockScope(block);
ScopeManager.InsertName(name);
const scope = generator.statementToCode(block, "SCOPE");
ScopeManager.PopScope();

if (name.length > 0 && on.length > 0) {
 if (scope.length > 0) return `${on}(${name}). ${scope}`;
 else return `${on}(${name})`;
}

return ``;

Listing 4.2-31: Receive Block code generation function.

The receive block retrieves both the received name and channel name values

and proceeds to invoke the RegisterBlockScope function with the Scope

Manager. This is the first time we define a scope and from this point onwards,

any InsertName function call will insert a name into the active scope, until a

new scope is registered or the current scope is popped off the scope stack.

The generator.statementToCode call traverses the Blockly AST to generate the

code for that statement, which will have the currently registered scope being

active. Finally, if all the values are present we generate the code, else we do

Implementation 46

not generate any code until the receive block is completely well-formed by

the user.

const name = block.getFieldValue("NEW");

if (name.length > 0) {
 ScopeManager.InsertName(name);
}
return "";

Listing 4.2-32: Receive Name Block code generation function.

Unlike the send name block, the receive name block does have an

implementation which is solely responsible for inserting the names into the

current scope, but does not on its own generate any code.

ScopeManager.RegisterBlockScope(block);
const names = GetDirectChildren(block, "NAMES")
 .map((name) => name.getFieldValue("NEW"))
 .filter((n) => n.length > 0);

const on = generator.valueToCode(block, "ON", 0);
generator.statementToCode(block, "NAMES");

const scope = generator.statementToCode(block, "SCOPE");
ScopeManager.PopScope();

if (scope.length > 0) {
 return `${names.map((n) => `${on}(${n})`).join(". ")}. ${scope}`;
}

return `${names.map((n) => `${on}(${n})`).join(". ")}`;

Listing 4.2-33: Receive All Block code generation function.

Given that the receive name blocks insert the names, we begin the receive all

block by registering the scope. We gather the names and the channel on

which we will be receiving them, then proceed to invoke the

generator.statementToCode to insert the names into the scope.

4.2.6 Restrict Blocks

The restrict blocks act in a very similar manner to the receive blocks with the

main difference being that they do not require a name accessor block at all.

These blocks are also part of the Scopes category.

Implementation 47

Figure 4.5: Standard Restrict Blocks (left) and the Restrict All Block (right). Left and right

representations are equivalent.

4.2.6.1 Toolbox Entry

Given that the restrict blocks are mainly text inputs for which we cannot

provide default values, the toolbox entries are straightforward.

kind: "block",
type: "RestrictScopeBlock"

Listing 4.2-34: Toolbox entry of the Restrict Block.

kind: "block",
type: "RestrictNameBlock"

Listing 4.2-35: Toolbox entry of the Restrict Name Block. (Child block of the Restrict All

Block)

kind: "block",
type: "MultiRestrictScopeBlock",
inputs: {
 NAMES: {
 block: {
 type: "RestrictNameBlock",
 },
 },
}

Listing 4.2-36: Toolbox entry of the Restrict All Block.

The restrict all block is the only restrict block variation which has a default

block defined which is an empty restrict name block, as we always need at

least one for the block to be well-formed.

4.2.6.2 Block Definitions

The block definitions of restrict blocks are nearly identical to the receive

blocks, with the main differences being style, labelling and the lack of the

name access block value input.

Implementation 48

The restrict block is defined exactly as the receive block in Listing 4.2-26 with

the only difference being the lack of the value input field.

The restrict name block is defined exactly as the receive name block in Listing

4.2-27 and its connection restrictions are defined in the same manner as seen

in Listing 4.2-28 with all mentions of the receive block types being replaced

by restrict block type equivalents.

The restrict all block is also defined exactly as seen for the receive all block in

Listing 4.2-29 and its connection restriction is done as seen in Listing 4.2-30

with the difference being the use of the restrict name block instead of the

receive name block.

4.2.6.3 Code Generation

const name = block.getFieldValue("NEW");
if (name === VISPI_INVALID_NAME || name.length === 0) return "";

ScopeManager.RegisterBlockScope(block);
ScopeManager.InsertName(name);
const scope = generator.statementToCode(block, "SCOPE");
ScopeManager.PopScope();

if (scope.length > 0) {
 return `$${name}. ${scope}`;
}

return `$${name}`;

Listing 4.2-37: Restrict Block code generation function.

The restrict block’s code generation function follows the pattern seen in

Listing 4.2-31 with the difference being the PIFRA code output and the lack

of the value input from the name accessor block which does not exist on

restrict blocks.

The code generation for the restrict name and restrict all blocks follows the

pattern seen Listing 4.2-32 and Listing 4.2-33 respectively, with the

differences being the same as mentioned above.

Implementation 49

4.2.7 Termination Block

The termination block is the simplest block in the entire language as it has

no user input and always generates the same code, that being the termination

character 0. In addition to that, the block is allowed to be attached to any

viable blocks, but it itself does not allow any other blocks to follow.

Figure 4.6: The termination block used to define the termination of the program.

4.2.8 Parallel Blocks

The parallel blocks are a list pattern pair of child-parent blocks, the run in

parallel parent block and the task child block.

Figure 4.7: The Parallel Block and two Task Blocks.

4.2.8.1 Toolbox Entry

kind: "block",
type: "ParallelParentBlock",
inputs: {
 PARALLEL: {
 block: {
 type: "ParallelScopeBlock",
 },
 },
}

Listing 4.2-38: Toolbox entry for the Parallel Block.

Implementation 50

The parallel block is defined to always have a single task block attached to it

as it cannot ever hold any other blocks directly within its scope, as those must

be placed in a task block instead.

kind: "block",
type: "ParallelScopeBlock"

Listing 4.2-39: Toolbox entry for the Task Block. (Child block of the Parallel Block)

The task block itself does not use any defaults as its main purpose is to divide

sections of processes into units which run in parallel within the context of its

parallel block parent.

4.2.8.2 Block Definition

this.appendDummyInput().appendField("run in parallel");
this.appendStatementInput("PARALLEL").setCheck("ParallelScopeBlock");
this.setPreviousStatement(true, null);
this.setNextStatement(false, null);
this.setColour("#55A0F4");

Listing 4.2-40: Parallel Block instantiation function.

The parallel block is a simple block made up of only a single statement input

which is only allowed to hold task blocks. The block does not allow any other

blocks to be attached to the end of it as all parallel processes must terminate

to indicate the termination of the entire parallel composition.

Similarly to prior list pattern parent blocks, the parallel block will only allow

a specific child block to be accepted within its scope.

CanOnlyContain(this, "PARALLEL", ["ParallelScopeBlock"]);

Listing 4.2-41: Parallel block restriction on allowed children blocks.

The task block is also a simple block, just like the parallel block with the only

difference is that other blocks can be attached to it, specifically only other

task blocks.

this.appendDummyInput().appendField("task");
this.appendStatementInput("SCOPE");
this.setPreviousStatement(true, null);
this.setNextStatement(true, "ParallelScopeBlock");
this.setColour("#55A0F4");

Listing 4.2-42: Task Block instantiation function.

Implementation 51

Similarly to other list pattern child blocks, the task block restricts itself to

only be attachable within the scope of its parent.

MustBeInExactScope(this, "ParallelParentBlock", "PARALLEL");

Listing 4.2-43: Task block connection restriction to the scope of its parent block.

4.2.8.3 Code Generation

const parallelCount = GetDirectChildren(block, "PARALLEL")
 .filter(
 (b) => generator.statementToCode(b, "SCOPE")
 .replace(/\s/g, "").length > 0
).length;
ScopeManager.RegisterBlockScope(block);
const scopes = generator.statementToCode(block, "PARALLEL");
ScopeManager.PopScope();
if (parallelCount > 1) {
 if (["MainBlock","ProcessBlock"]
 .includes(ScopeManager.GetCurrentScopeType()))
 return scopes;
 return `(${scopes})`;
} else if (parallelCount === 1) return scopes;
else return "";

Listing 4.2-44: Parallel Block code generation function.

The parallel block code generation function acts similar to other scoping

blocks in that it registers a scope and proceeds to evaluate and generate the

code for the contents of its scope. We also check for whether at least two task

blocks are found within the parallel block, as this indicates that we may need

to place parentheses around the generated code if the parallel block does not

lie directly within a main block or process block scope.

ScopeManager.RegisterBlockScope(block);
const scope = generator.statementToCode(block, "SCOPE");
ScopeManager.PopScope();
if (scope.replace(/\s/g, "").length === 0) return "";
return scope;

Listing 4.2-45: Task Block code generation function.

The task block simply registers a scope, evaluates its contents and if the

contents are not empty or only whitespace, it returns the generated code.

Implementation 52

4.2.9 Choice Blocks

The choice blocks, just like parallel blocks, are a pair of blocks which form a

list pattern with the choose block and choice block being the parent and child

blocks respectively.

Figure 4.8: The Choose Block and two Choice Blocks.

The purpose of the choice blocks is to create separate processes from which

only one is to execute, just like the task blocks separate processes into parallel

tasks.

4.2.9.1 Toolbox Entry

The choose block follows the same structure and defaults as the parallel

block as seen in Listing 4.2-38, while the choice block follows the same

structure as the task block in Listing 4.2-39.

4.2.9.2 Block Definitions

Just like with the toolbox entries, the block definitions and connection

restrictions for the choose and choice blocks follow the same patterns as the

parallel and task blocks as seen in Listing 4.2-40, Listing 4.2-41, Listing

4.2-42 and Listing 4.2-43.

4.2.9.3 Code Generation

Given the choose and choice blocks follow the exact same patterns as the

parallel and task blocks, their code generation functions are identical to

Listing 4.2-44 and Listing 4.2-45 respectively, as the separator of choices is

handled by the code scrubber function.

Implementation 53

4.2.10 Guard Block

Guard blocks are akin to if statements in other block-based programming

languages with the difference being they can only be an equality or

inequality and cannot have an else statement following them.

Figure 4.9: An equality Guard Block (top) and an inequality Guard Block (bottom).

4.2.10.1 Toolbox Entry

kind: "block",
type: "GuardScopeBlock",
inputs: {
 FIRST: {
 block: {
 type: "NameAccessBlock",
 fields: {
 NAME: VISPI_INVALID_NAME,
 },
 },
 },
 SECOND: {
 block: {
 type: "NameAccessBlock",
 fields: {
 NAME: VISPI_INVALID_NAME,
 },
 },
 },
}

Listing 4.2-46: Toolbox entry for the Guard Block.

The guard block is defined to by default contain two name accessor blocks

which are used in the equality and inequality checks.

Implementation 54

4.2.10.2 Block Definition

const GuardOperators: Blockly.MenuGenerator = [
 ["is the same as", "="],
 ["is different from", "!="],
];

this.appendValueInput("FIRST").appendField("if");
this.appendDummyInput().appendField(
 new Blockly.FieldDropdown(GuardOperators),
 "OPERATION"
);
this.appendValueInput("SECOND");
this.appendStatementInput("SCOPE").appendField("then");
this.setColour("#FFA0A4");
this.setPreviousStatement(true, null);
this.setNextStatement(false, null);

Listing 4.2-47: Guard Block instantiation function.

The guard block is set to contain two value inputs for the name accessor

blocks as well a dropdown which allows the block to flips between equality

and inequality. Since nothing can be placed behind a guard block which is

not bound by the guard check, the next statement input is disabled, making

attaching other blocks to the end of this block impossible.

4.2.10.3 Code Generation

const first = generator.valueToCode(block, "FIRST", 0);
const operation = block.getFieldValue("OPERATION");
const second = generator.valueToCode(block, "SECOND", 0);

ScopeManager.RegisterBlockScope(block);
const scope = generator.statementToCode(block, "SCOPE");
ScopeManager.PopScope();

if (first.length > 0 && second.length > 0) {
 return `[${first}${operation}${second}] ${scope}`;
}

return ``;

Listing 4.2-48: Guard Block code generation function.

The guard block code generation function simply reads the values passed in

as value inputs for the names and the comparison operation, registers its

scope, and evaluates the scope.

Implementation 55

4.2.11 Process Blocks

The process blocks refer to all blocks which are used for the definition of

processes and their invocation, and are all part of the Process category.

The blocks used for processes are process definition, process call, parameter and

argument blocks.

These four blocks form list pattern child-parent pairs, where the parameter

block is the child of the process definition block and the argument block is

the child of the process call block.

Figure 4.10: Process definition and parameter blocks (left) and the process call and argument

blocks (right).

4.2.11.1 Toolbox Entries

kind: "block",
type: "ProcessBlock"

Listing 4.2-49: Toolbox entry for the Process Definition Block.

kind: "block",
type: "ProcessParamBlock"

Listing 4.2-50: Toolbox entry for the Process Parameter Block.

kind: "block",
type: "ProcessCallBlock"

Listing 4.2-51: Toolbox entry for the Process Call Block.

Implementation 56

kind: "block",
type: "ProcessArgBlock",
inputs: {
 ARG: {
 block: {
 type: "NameAccessBlock",
 fields: {
 NAME: VISPI_INVALID_NAME,
 },
 },
 },
}

Listing 4.2-52: Toolbox entry for the Process Argument Block.

The process definition, parameter and call blocks do not have any defaults

as a process may not require any parameters, and a process call may not

require any arguments. Since the only valid input into a process call is a

name, the argument block comes with a default name accessor block

attached.

4.2.11.2 Block Definitions

const input = new Blockly.FieldTextInput(
 "UnnamedProcess",
 ToValidProcessName(this.id)
);
this.appendDummyInput()
 .appendField("Process").appendField(input, "PROCESS");
this.appendDummyInput()
 .appendField("with parameters").setAlign(Blockly.inputs.Align.RIGHT);
this.appendStatementInput("PARAMS");
this.appendDummyInput()
 .appendField("is defined as").setAlign(Blockly.inputs.Align.RIGHT);
this.appendStatementInput("BODY");
this.setColour("#7722DD");
this.setPreviousStatement(false, null);
this.setNextStatement(false, null);

Listing 4.2-53: Process Definition Block instantiation function.

The shape of the process definition block is a text input field for the process

name, a scope for defining parameters using the list pattern and finally a

scope for the body of the process. The default name a process has is an

UnnamedProcess.

Since processes cannot be shadowed like names, we must carefully handle

the names which are given to processes to ensure they do not clash, for which

we use the ToValidProcessName function.

Implementation 57

const ToValidProcessName = (blockid: string) => (str: string) => {
 str = ToUpperleadingAlphaNumeric(str);
 let scope = ScopeManager.GetLastScope();

 if (scope) {
 const id = scope.GetRawProcessId(str);
 if (id === undefined) return str;
 if (id !== blockid) {
 let i = 0;
 while (scope.GetRawProcessId(str + i) !== undefined) {
 i++;
 }
 str = str + i;
 }
 }

 return str;
}

Listing 4.2-54: Function enforcing valid process names.

The user provided name is first converted to a valid, uppercase process

name, as per the style enforcement in VisPi.

Then we are required to verify whether a process of the given name already

exists, if not, we can return the name as is, otherwise we verify that the

process ID is not the same as the current block. This is required for

deserialization so that if the block ID matches the process name, it should be

retained, as we want to retain the exact naming which was used before the

serialization. If the block ID does not match the block ID for the process

name, it means that the block was either copied and pasted or a new process

block was given the same name as an existing block. If this is detected, we

append the name with an enumeration until a name which is free is found.

Since the process definition block uses the list pattern in which it is the parent

block, it restricts the allowed children types within its parameter scope to be

the parameter block only.

CanOnlyContain(this, "PARAMS", ["ProcessParamBlock"]);

Listing 4.2-55: Process Definition Block restriction on allowed children blocks in its params

scope.

The process parameter block follows the exact same pattern established by

receive and restrict name blocks (child blocks) for its instantiation function

and connection restrictions, as seen in Listing 4.2-27 and Listing 4.2-28.

Implementation 58

this.appendDummyInput()
 .appendField("call")
 .appendField(new Blockly.FieldDropdown(ProcessNames), "PROCESS_NAME");
this.appendStatementInput("ARGS").appendField("with");
this.setColour("#7722DD");
this.setPreviousStatement(true, null);
this.setNextStatement(false, null);

Listing 4.2-56: Process Call Block instantiation function.

The process call block acts in a similar fashion to the name accessor block, as

it requires a dynamic list of process names from which we are allowed to

select from. The variable ProcessNames is a global variable instantiated during

deserialization of a VisPi program, to ensure that the process names are

recovered correctly.

CanOnlyContain(this, "ARGS", ["ProcessArgBlock"]);

let names = ScopeManager.GetLastScope()?.GetProcessNames();
const menu = names?.map((n) => [n, n]) ?? [["?", VISPI_INVALID_NAME]];

this.getField("PROCESS_NAME").menuGenerator_ = menu;

const paramCount = ScopeManager.GetLastScope()?
 .GetParams(this.getFieldValue("PROCESS_NAME")).length ?? 0;
const argCount = GetDirectChildren(this, "ARGS").length;

if (paramCount !== argCount) {
 this.setWarningText(
 `Expected ${paramCount} argument${paramCount === 1 ? "" : "s"},
 but got ${argCount}.`
);
} else {
 this.setWarningText(null);
}

Listing 4.2-57: Process Call onchange function.

The function enforces that only process argument blocks are allowed to be

inserted within the scope of the process call block.

Every time the program updates and potentially a new process was

introduced into the program, we must update the dropdown menu of the

process call block to ensure that all processes are available. Finally, the

function verifies that the number of arguments provided to the block

matches the defined number of parameters, otherwise we set a warning.

Implementation 59

The process argument block instantiation function follows the same pattern

as defined by the sync block and the send name block as seen in Listing

4.2-17.

const parentName = this.getSurroundParent()?
 .getFieldValue("PROCESS_NAME");
if (parentName) {
 const scope = ScopeManager.GetLastScope();
 let scopeNames = scope?.GetParams(parentName) ?? [];

 // When loading for the first time from JSON
 if (scopeNames.length === 0)
 scopeNames = ScopeManager.GetParams(parentName);

 const thisIndex = GetDirectChildren(this.getSurroundParent(), "ARGS")
 .indexOf(this);
 if (thisIndex < scopeNames.length && thisIndex !== -1) {
 this.setFieldValue(scopeNames[thisIndex] + " =", "LABEL");
 this.setWarningText(null);
 } else if (thisIndex >= scopeNames.length) {
 this.setWarningText(
 `Unexpected argument. Process '${parentName}' expects
 {scopeNames.length} arguments.`
);
 this.setFieldValue("argument");
 }
}

if (CanOnlyBeAttachedTo(this, ["ProcessCallBlock", "ProcessArgBlock"]))
 return;
MustBeInExactScope(this, "ProcessCallBlock", "ARGS");

Listing 4.2-58: Process Argument Block onchange function.

The argument is a special block in that it changes its label inside the onchange

function to match the parameter it is binding to. This allows the user to

immediately see which value is being assigned to when the process is being

invoked.

Similarly to the process call block, the argument block also displays a

warning message if it exceeds the parameter count.

Finally, since it’s a child block of the process call block, it restricts its

connections to other instances of itself and the process call block.

Figure 4.11: An argument block indicating the corresponding parameter it is binding to (left)

and a default, unbound argument block (right).

Implementation 60

4.2.11.3 Code Generation

ScopeManager.SetGeneration(true);

const process = block.getFieldValue("PROCESS");
const params = GetDirectChildren(block, "PARAMS");
let paramNames = [];
for (const param of params) {
 const name = param.getFieldValue("NEW");
 if (name) paramNames.push(name);
}

ScopeManager.RegisterProcess(block.id, process, paramNames);
const scope = generator.statementToCode(block, "BODY");
ScopeManager.PopScope();

let paramString = paramNames.join(", ");
if (paramString.length > 0) {
 paramString = `(${paramString})`;
}

ScopeManager.SetGeneration(false);
if (scope.replace(/\s/g, "").length === 0) return "";
return `${process}${paramString} = ${scope}`;

Listing 4.2-59: Process Definition Block code generation function.

The process block is the first of two blocks which make use of the Scope

Manager’s SetGeneration function. This tells VisPi that when the code

generation is set to true it is allowed to generate code, otherwise it simply

returns empty strings from all blocks. This prevents random floating blocks

which are not scoped within a process from generating code in the output,

which would result in syntactically invalid PIFRA code.

The function proceeds to gather the defined parameters and registers the

process, which tells the scope manager about the existence of the process, its

name and its parameters, and at the same time it defines a scope for the

process and inserts the parameter names into the scope. We then proceed to

generate the code for the entire process definition.

When generating the process parameter list, we check whether any

parameters were provided, as we must enclose the parameter list with

parentheses as per the syntax.

When the process block completes its code generation, it again disables any

extra code from being generated until enabled again.

Implementation 61

The process parameter and argument blocks do not produce any code, as

their values are directly extracted and used by their parent blocks instead,

just like the send name child block.

const process = block.getFieldValue("PROCESS_NAME");

if (process === VISPI_INVALID_NAME) return "";

const args = GetDirectChildren(block, "ARGS");
let argNames = [];
for (const arg of args) {
 const name = generator.valueToCode(arg, "ARG", 0);
 if (name) argNames.push(name);
}

let argString = argNames.join(", ");
if (argString.length > 0) {
 argString = `(${argString})`;
}

return `${process}${argString}`;

Listing 4.2-60: Process Call Block code generation function.

The process call block code generation is similar to the actual code generation

component of the process definition block, where we simply collect and

evaluate the arguments, verify whether there is at least one argument and if

so wrap the arguments in parentheses, and output the process name with

the arguments. However, if a valid process is not selected, no code will be

generated.

4.2.12 Main Program Block

The main program block is a simple scope block, of which only one can ever

exist in a VisPi program. Its purpose is to contain the system definition the

user is modelling. This is the second block which enables code generation

and its code generation function is simply evaluating the code of the blocks

stored within its statement input.

Figure 4.12: The main Program Block.

Implementation 62

4.3 Name Scope Management

In Blockly [3], variable scoping is not provided by default, and languages

generally set all variables as global. However, for the purposes of making

learning pi-calculus more approachable with VisPi, we aim to help the user

know which names they’re allowed to use, which is what the scope manager

was designed to do.

The scope management system aims to reduce the possibility of errors in

VisPi programs to a minimum, by ensuring that the user can only ever access

names which are in-scope at any given point in their program. By doing so,

we can ensure that bound names declared out of a scope are not treated as

free names in that scope by accident, which is a possibility when writing

programs without any static analysis on the availability of names as well as

the additional possibility of typo induced errors.

4.3.1 Scope Management System

When we generate code from blocks using the Blockly API, we traverse the

AST created by Blockly from the blocks. This process follows that of any

parser for any programming language, where we can perform certain

processing by entering certain AST nodes. We use this to our advantage to

read any name definitions defined in the nodes by the blocks, and use blocks

which are scoping in nature to push their scope onto the stack of scopes. This

system allows us to confidently gather the names which are in-scope by

traversing up the stack, and also introduce the concept of name shadowing,

which is the act of reusing the same identifier for a different purpose in a

more deeply nested scope.

The scope manager is responsible for the following aspects of the program:

name scopes, process definitions, storing whether a block is allowed to

generate code, and whether the main program block has been declared

already.

Implementation 63

Example H: Name Scoping

Figure 4.13: Example VisPi program with multiple scopes.

Figure 4.14: Graph of scopes and available names of the program in Figure 4.13.

In Figure 4.14 we can see scopes defined with circle nodes, the list of

available names denoted by brackets, name accesses denoted by diamonds

and newly added names highlighted in bold italics.

From the graph we can see how VisPi handles name accesses by looking at

the Receive Access nodes, which are the name access blocks attached to the

receive blocks. These access nodes do not yet possess knowledge of the

newly received names c and d. In the final access nodes in both paths we see

the list of names that are available for selection. These names can be obtained

by traversing the stack backwards towards the global scope and collecting

the names defined along the way. This way each access block can create a

path which leads to itself starting at the global scope. This creates a unique

identifier which can be used to retrieve all names that should be available at

the block.

Implementation 64

Example I: Name Shadowing

Figure 4.15: Example VisPi program with the shadowing of a free name by a bound name.

Figure 4.16: Graph of scopes and available names of the program in Figure 4.15.

In Figure 4.16 we can see that the free name a defined in the global scope is

being shadowed by a new bound name a which is received in the top parallel

task’s receive block. When a name is shadowing a previously defined name,

the order in which names appear in the list of available names changes. We

can see this as the list no longer begins with a, as the shadowing name was

the last introduced name, hence a is now at the end of the list.

It is important to note that in Figure 4.15 the first receive block accesses a

name a. At this point, the name a is still a free name, and not the bound name

a introduced by the receive block.

Implementation 65

4.3.2 Scope State Management

One major challenge with the scope manager is the fact that it requires new

data to be added as the user defines new names and processes, while making

sure we do not accidentally duplicate data. This was especially tricky due to

the fact that Blockly’s workspace refreshes with any interaction the user

makes with the canvas, therefore we cannot simply add new data as it is

given by the user.

Due to the nature of the name accessor and process blocks being dynamic

based on user defined data, we must be able to refer back to this data during

the block generation step, which is when Blockly updates the state of the entire

canvas, however the data is only collected in the code generation step, which

follows block generation.

The approach used is a dual-state solution where the scope manager

maintains two copies of the state, current and previous. The current state is

the fresh state that is being updated as the code generation progresses and

the scope manager collects the name, scope and process information. Once

the code generation step is finished, and the Blockly canvas is idle until

another user interaction occurs, the current state is moved to the previous

state and the current state is cleared. This means that once an interaction

occurs, the block generation step will have access to the previous state, and

will be able to maintain valid dropdown names as the dropdown lists will

remain properly populated.

One issue with this approach however, is the fact that we always lag 1 cycle

behind the changes made by the user, meaning that if the user defined a

name, and immediately clicked on a dropdown, more often than not the

name would not yet be there. This however, is not a big issue due to the fact

that absolutely any interaction with the canvas will update the state

appropriately, and the name will then be available.

Implementation 66

Figure 4.17: State lifecycle of the Scope Manager.

In Figure 4.17 any states and arrows are either idle states or user-induced

actions, and anything that uses a dashed line is a non-interruptible sequence

which will go until completion without any way in which the user can

prevent it. Dotted lines indicate accessing the data in the scope manager by

the block generation step, which requires the previous cycle’s data to

maintain the correct information in dynamic blocks.

The system has two possible states in which it can initiate, starting with a

fresh file, which will perform a single run of block generation and code

generation where both states of the scope manager were definitely empty at

the beginning. The other option is loading a saved program from file, which

will load data directly into the previous state of the scope manager, after

which the system proceeds as normal.

Implementation 67

4.4 Syntax Highlighting and Error Management

As mentioned earlier, VisPi enforces certain code style choices in terms of

naming of names and processes, namely the required capitalisation of the

first character of process identifiers and the lack of capitalisation or an

underscore for names. This distinction makes it immediately obvious what

each identifier corresponds to, making it possible to perform syntax analysis

without the requirement of generating an abstract syntax tree or re-writing

a lexer for PIFRA. This provides an opportunity to create a syntax highlighter

and a syntax error detection system through a small collection of regular

expressions and simple look-aheads or look-behinds.

Block syntax on the other hand, is implicitly controlled by the shape of the

blocks and their connections. This leaves only a small subset of blocks which

may in fact contain errors, which can be analysed during the block

generation step performed by Blockly, as mentioned in the block

implementations.

4.4.1 Displaying Warnings and Errors in Blocks

Generally, warnings and errors displayed in the block editor are not critical

to the generation of the code output, as any erroneous value can be either

omitted or accepted without stopping the code generation process. This

decision was made purely on the basis of usability and reducing nuisance as

some block editor errors and warnings can be temporary, and making the

code generation disappear may be confusing to the end user. Therefore, since

the only errors are only semantic, these are displayed to the user as warnings

which encourage them to fix any mistakes, while the blocks will still produce

the necessary code, even if the names or parameters are invalid.

Implementation 68

Figure 4.18: Unscoped name warning. This occurs if a name was not chosen (?) or if the

name-accessing block was copied and pasted into a scope which does not contain the name,

or the name was renamed.

Figure 4.19: Invalid argument count warning. This is displayed when the number of

provided arguments does not match the process definition.

Figure 4.20: Unexpected argument warning. This occurs when too many arguments are

provided to a process. This warning always appears in conjunction with the warning in Fig.

2.

Implementation 69

4.4.2 Regular Expression-based Error Detection

As mentioned previously, due to the enforced style in terms of naming

processes and names, it is possible to statically analyse the code output

without the need to generate an abstract syntax tree and in fact separate the

two systems completely.

Before we explore the regular expressions we will take some time to recap

on what is syntactically invalid in PIFRA.

In pi-calculus, and by extension PIFRA, all processes must be terminated

explicitly. This means that the last action in any scope or process must be

terminal, that being either the termination operator 0 or a call to a defined

process or a composition or summation where the substituent parts all

terminate at some point. The detection of this requirement is straight-

forward in that we simply verify using regular expressions that any possible

operation other then the aforementioned two, are not final in their scope.

The actions we must consider are the send, receive, restrict and guard. These

are all syntax components which require another statement to follow. In fact,

all but guard follow the same pattern as all require the sequencing dot

operator to follow. Therefore, we can simply define regular expressions and

use them with negative-lookaheads to verify that a sequencing operator

follows. The regular expressions provided will be given in the form as they

are found in JavaScript/TypeScript.

 [a-z_][a-zA-Z0-9_]*’\<[a-z_][a-zA-Z0-9_]*\>

Listing 4.4-1: The Send regular expression.

Please note that the backslash \ is used to escape characters which function

as more than simply tokens in the regular expression. The send regular

expression is simply the identifier regular expression [a-z_][a-zA-Z0-9_]*

along with the send syntax elements ‘< and >.

[a-z_][a-zA-Z0-9_]*\([a-z_][a-zA-Z0-9_]*\)

Listing 4.4-2: The Receive regular expression.

Implementation 70

Similarly to the prior expression, the receive pattern is simply the identifier

regular expressions with the parentheses, as dictated by the PIFRA syntax.

\$[a-z_][a-zA-Z0-9_]*

Listing 4.4-3: The Restrict regular expression.

The restrict expression is simply the restriction operator followed by an

identifier. It is escaped as the dollar sign symbol is an end-of-sequence

marker in regular expressions.

In order to use these expressions for error detection, we must append the

negative lookahead verifying that the sequence operator does not follow.

(?!\.)

Listing 4.4-4: The Negative Look-ahead Sequencing Operator regular expression.

The final error-detection regular expressions are as follows:

[a-z_][a-zA-Z0-9_]*’\<[a-z_][a-zA-Z0-9_]*\>(?!\.)

Listing 4.4-5: The Send Error regular expression.

Figure 4.21: Example of an error detected by not following up a send operation.

[a-z_][a-zA-Z0-9_]*\([a-z_][a-zA-Z0-9_]*\)(?!\.)

Listing 4.4-6: The Receive Error regular expression.

Figure 4.22: Example of an error detected by not following up a `receive` operation.

\$[a-z_][a-zA-Z0-9_]*(?!\.)

Listing 4.4-7: The Restrict Error regular expression.

Implementation 71

Figure 4.23: Example of errors being detected by `restrict` statements not being followed up

by another statement.

\[[^\]]+\](?!\s[a-zA-Z_0-9($[])

Listing 4.4-8: The Guard Error regular expression.

Figure 4.24: Example of a `guard` statement without a body.

The Guard Error regular expression differs from the prior three due to it not

being identifier based nor it requiring the sequence operator to follow. This

expression can be split into two parts: the guard clause and the guard body.

Recalling the syntax of a guard clause, it can take two forms, the equality

variant [x=y] or the inequality variant [a!=b]. However, for the purposes of

the regular expression, and the fact we know that identifiers cannot include

brackets, the guard clause can be described as open bracket, at least one

character that is not a closing bracket, and the closing bracket.

Now the error we are trying to detect is an empty body of the guard clause.

To do this we use a negative lookahead which checks whether the guard

clause is not followed by a space and a character which would indicate a

body being present. The set of characters { 𝑎, … , 𝑧, 𝐴, … , 𝑍, 0, … , 9, _ } checks

for a send, receive, process call or termination operations, given their naming

requirements. The dollar sign checks for the restrict operation, the

parenthesis checks for a parallel or choice composition of multiple processes

and the bracket checks for another guard clause.

Finally, an error can be defined as a disjunctive regular expression

composition of all errors described above, with the additional use of the

named group feature of regular expressions whose use will become apparent

in the following section.

Implementation 72

(?<Error>(SendError|ReceiveError|RestrictError|GuardError))

Listing 4.4-9: Combined Error regular expression.

Note: Italicised names used instead of full regular expressions for brevity.

Figure 4.25: Example of hovering over a syntax error in the output window.

4.4.3 Regular Expression-based Syntax Highlighting

Now that we have defined how errors can be detected in the output, we must

now detect the correct components of the output. This step, while similar, is

more involved than error detection due to the fact we want to highlight

individual components rather than whole invalid statements.

(?<Symbols>[(),|.+[\]=!'<>\s]+)

Listing 4.4-10: The Symbols regular expression.

We want to collect all symbols in the output and apply a consistent colour to

them for readability and consistency. The space is included for simplicity.

(?<Name>(?<!\$)[a-z_][a-zA-Z0-9_]*(?!['(]))

Listing 4.4-11: The Name regular expression.

The name regular expression is used to highlight the usage of names in

PIFRA as parameters to processes or arguments to processes, send

operations and receive operations. We want to exclusively isolate these

instances of names as we otherwise want to use a different highlight. To do

this we ensure that the name identifier sequence was not preceded by the

Implementation 73

restriction operator, and that it is not followed by the send operation’s

apostrophe or the receive operation’s parenthesis.

(?<Process>[A-Z][a-zA-Z_0-9]*)

Listing 4.4-12: The Process regular expression.

A process is simply an identifier that is capitalised. Since processes cannot

be used as arguments, we do not require any further checks.

(?<Terminate>\b0)

Listing 4.4-13: The Termination regular expression.

The termination or inaction operation is simply defined by the zero character

preceded by any word-break, to avoid accidental highlighting of identifiers

which include the zero character.

(?<Restrict>\$[a-z_][a-zA-Z0-9_]*(?=\.))

Listing 4.4-14: The Restrict regular expression.

The restrict regular expression is exactly as described previously. We include

the look-ahead for the sequence operator to avoid any possibility of

ambiguity with the restrict error regular expression.

(?<Send>[a-z_][a-zA-Z0-9_]*(?='))

Listing 4.4-15: The Send regular expression

The send regular expression is only targeting the name on which is used as

the sending channel, as that is the name which is performing the action, so

to speak.

(?<Receive>[a-z_][a-zA-Z0-9_]*(?=\()

Listing 4.4-16: The Receive regular expression.

Likewise, the receive regular expression is only targeting the name on which

another name is being received.

Implementation 74

We have now defined all permissible tokens in PIFRA as regular expressions.

Again, using the disjunctive composition, we can create a regular expression

which will essentially tokenize a line of code into individual tokens.

Restrict|Symbols|Terminate|Send|Receive|Name|Process|Error

Listing 4.4-17: Tokenization regular expression through disjunctive composition.

Through the use of named groups we can also extract the matched value

with the type of token we have matched and apply highlighting accordingly.

4.4.3.1 Tokenization

To tokenize and apply the colours for syntax highlighting we process each

line of code individually. Each line is exactly one entire process definition or

the system definition.

type Token = { type: string; value: string };

const Tokenize = (codeLine: string): Token[] =>
 [...codeLine.matchAll(regex)]
 .map((m) => m.groups)
 .flatMap((g) => Object.entries(g!))
 .filter(([_, value]) => value !== undefined)
 .map(([type, value]) => ({ type, value }));

Listing 4.4-18: Tokenization function.

First we match the entire line against our regular expression, and map over

all of the detected groups. Since a group is an object of all named groups in

our regular expression, calling Object.entries returns an array of tuples of

key-value pairs, where the key is the group name, or the token type, and the

value is the actual string value we will be displaying on the screen. We

flatMap over those arrays to merge all groups into a single array containing

all tokens in order. We then have to filter each token based on whether it

contains a value, since each group will still contain all group names but the

values for the unmatched groups will be undefined. As the final step we

construct each token.

Having the entire list of tokens for a line of code, we can convert each one

into HTML and assign the appropriate colour for each token.

Implementation 75

switch (type) {
 case "Process":
 return "#cc88ff";
 case "Name":
 return "#fff5a9";
 case "Send":
 return "#33bbff";
 case "Receive":
 return "#33cc66";
 case "Restrict":
 return "#ff9512";
 case "Terminate":
 return "#ff7777";
 default:
 return "#ffffff";
}

Listing 4.4-19: Syntax colouring function.

4.5 Serialization

Given that VisPi is intended as a tool for learning but also as an alternative

workflow tool, the ability to save work and share it is critical. Blockly does

support serializing the state of the canvas into a JSON format, however for

our purposes we must also store the topology of the program with all the

scopes and names within them. Luckily we can simply serialize the state of

the Scope Manager along with the canvas state.

const Serialize = (workspace: Blockly.WorkspaceSvg, scope:
VispiScopeManager) => {
 const blocks = Blockly.serialization.workspaces.save(workspace);
 const serializationJSON = {
 workspace: blocks,
 state: scope.GetLastScope(),
 };
 return JSON.stringify(serializationJSON);
};

Listing 4.5-1: VisPi serialization function, storing both the workspace and the scope

information.

When deserializing we simply store the workspace information and state

information in local storage under the appropriate keys and reload the

window. The default behaviour of the IDE is to load the last state in which

the editor was left, meaning that by updating the local storage and reload,

we simulate the initial opening of the editor as if the file that was loaded was

the last state in which the tool was left in.

Implementation 76

const Deserialize = (json: string) => {
 const data = JSON.parse(json);
 localStorage.setItem(VISPI_WORKSPACE, JSON.stringify(data.workspace));
 localStorage.setItem(VISPI_STATE, JSON.stringify(data.state));
 window.location.reload();
};

Listing 4.5-2: VisPi deserialization function, loading the contents of the file into local storage

and reloading the window.

Upon loading the data, important information is extracted and stored within

the scope manager which is used for the first instantiation of blocks.

const Load = (key: string, scope?: VispiScopeManager): object => {
 const json = localStorage.getItem(key) || "{}";
 if (json.length > 0) {
 ExtractData(json);
 }
 const data = JSON.parse(json);
 const scopeData = localStorage.getItem(key + ":scope");
 if (scopeData && scopeData !== "undefined") {
 scope?.Load(JSON.parse(scopeData));
 }
 return data;
}

Listing 4.5-3: The load function. It loads the last saved state from local storage.

const ExtractData = (jsonStr: string) => {
 NameAccessStates.length = 1;
 ProcessNames.length = 1;
 const rgx = /"NEW":\s*"(?<NEW>([^"]*))"/g;
 const processRgx = /"PROCESS":\s*"(?<PROCESS>([^"]*))"/g;
 const allMatches = [...jsonStr.matchAll(rgx)];
 const allProcessMatches = [...jsonStr.matchAll(processRgx)];
 for (const match of allMatches) {
 const name = match.groups?.NEW;
 if (name) NameAccessStates.push([name, name]);
 }
 for (const match of allProcessMatches) {
 const process = match.groups?.PROCESS;
 if (process) ProcessNames.push([process, process]);
 }
};

Listing 4.5-4: Extraction function, restoring the names and processes for initial block

instantiation to prevent data loss.

In Listing 4.5-4 we see the reference to the NameAccessStates and ProcessNames

variables. These are the global variables used by the name access blocks and

process call blocks as seen in Listing 4.2-7 and Listing 4.2-56 respectively.

Implementation 77

To prevent data loss through accidental closing of the editor or through other

measures, the state of the program is saved 500ms after every time there is a

change made by the user, this way there is no way the user will lose their

work unless they intentionally remove the data. The timeout for saving is

debounced such that rapid edits do not cause any noticeable lag, and only

the most recent update is saved.

const Save = (
 workspace: Blockly.WorkspaceSvg,
 key: string,
 scope?: VispiScopeManager) =>
{
 if (scope) {
 const scopeJson = JSON.stringify(scope?.GetLastScope());
 localStorage.setItem(key + ":scope", scopeJson);
 }
 const ws = Blockly.serialization.workspaces.save(workspace) || {};
 const json = JSON.stringify(ws);
 if (json !== "{}") localStorage.setItem(key, json);
};

Listing 4.5-5: VisPi save function which stores the workspace and scope information into

local storage.

4.6 Web Application

The web application was implemented using the React Framework [16] with

TypeScript. The styling for the application was done using CSS.

The application is a single page website with a static, non-scrollable layout

to prevent the elements from moving around on the screen as the user

interacts with it.

The application is made up of three main components, the navigation bar,

the block editor panel and the output panel.

When designing the application, usability and accessibility were considered,

ensuring that the application can support various form factors in terms of

screens as well as ensuring that the interactable components on the page are

clearly highlighted when navigating with a mouse or keyboard.

Additionally, all file options in the navigation bar can also be used through

keyboard shortcuts, which can be viewed by hovering over the

corresponding button.

Implementation 78

4.6.1 Navigation Bar

The navigation bar is the hub for all file related actions in the editor. It offers

the user to create new VisPi files and name them, open saved files or save

the current program as a file. Additionally, it offers the option to

automatically export the current output as a PIFRA file.

The bar also offers some examples of premade VisPi programs and links to

useful information such as a How-to Guide for using the tool or the PIFRA

GitHub page.

Figure 4.26: VisPi navigation bar.

Figure 4.27: Navigation bar file name input box. Current program name is called 'Password'.

Figure 4.28: Navigation bar file options.

Figure 4.29: Navigation bar help section.

Figure 4.30: Layout button, allows for changing the arrangement of the block editor and the

output panel to facilitate both vertical and horizontal screens.

Figure 4.31: File and help sections collapsed to dropdowns on smaller screens.

Implementation 79

4.6.2 Editor Layout

The layout of the editor is simply a two-panel UI as is standard for block-

based languages. The editor was made to be flexible to the user’s needs so

that it can be arranged according to the screen size by rotating the layout

from the default horizontal to vertical, and also allowing the user to define

how much space they wish to allocate to the block editor and the output

panel by using the draggable splitter between the panels.

The size of the monitor matters only in the horizontal axis, as the editor will

always take up the entirety of the vertical space it has been given, meaning

that vertically aligned monitors can make full use of the extra space in the

vertical layout.

Figure 4.32: Default horizontal editor layout.

Implementation 80

Figure 4.33: Vertical editor layout.

Figure 4.34: Editor with the output panel collapsed providing more space for blocks.

Evaluation 81

5 Evaluation

This section will cover some of the examples used to verify the correctness

of the language, its ability to encode any pi-calculus construct and a brief

discussion on the final implementation of the system and language.

The testing of the system was done manually for the most part given the

nature of the software and the complexity of setting up examples

programmatically for testing the language, as well as time constraints when

developing the software.

5.1 Code Generation Correctness

Overall, the language is able to generate code that is capable of representing

all possible constructs accepted by PIFRA without any code ever being

generated which contains syntactic errors which are not indicated by the

IDE. The code generated is always minimised to only include the required

number of parentheses and never any excess, even though PIFRA would

accept such code.

Example J: Tzevelekos Model

This example covers the Tzevelekos model used in Listing 8.1 in the PIFRA [2]

paper, based on the example from FRA paper [15].

P(a,b) = a'.$c.P(b,c)
$b.P(a,b)

Listing 5.1-1: PIFRA implementation of the Tzevelekos model (ground truth).

Evaluation 82

Figure 5.1: VisPi implementation of the Tzevelekos model.

P(a, b) = a'. $c. P(b, c)

$b. P(a, b)

Listing 5.1-2: PIFRA output from the VisPi implementation in Figure 5.1.

P(a,_b) = a'._$c. P(b, c)
_
$b. P(a, b)

Listing 5.1-3: Difference between the ground truth and VisPi output of the Tzevelekos

model.

The Tzevelekos model is easily encoded in VisPi and we can see in the output

that it matches the ground truth perfectly with the additions of spaces and a

new line dividing the process definition and system definition. The

differences are indicated by turquoise, which are additions made in the VisPi

output.

Evaluation 83

Example K: Password System

This example covers the Password system model presented in the PIFRA

paper [2], Listing 8.16.

GenPass(requestNewPass) = requestNewPass(x). $pass. x'<pass>.0

KeepSecret(requestNewPass) = $p. requestNewPass'<p>. p(pass). (
StoreSecret(pass) | TestSecret(pass))

StoreSecret(pass) = $secret. pass'<secret>. StoreSecret(pass)

TestSecret(pass) = pub(x). pass(secret). (TestSecret(pass) + [x=secret]
_BAD'<_BAD>.0)

$requestNewPass. (GenPass(requestNewPass) | KeepSecret(requestNewPass))

Listing 5.1-4: Password model from PIFRA (ground truth).

Figure 5.2: VisPi implementation of Listing 5.1-4.

GenPass(requestNewPass) = requestNewPass(x). $pass. x'<pass>. 0

KeepSecret(requestNewPass) = $p. requestNewPass'<p>. p(pass).
(StoreSecret(pass) | TestSecret(pass))

StoreSecret(pass) = $secret. pass'<secret>. StoreSecret(pass)

TestSecret(pass) = pub(x). pass(secret). (TestSecret(pass) + [x=secret]
_BAD'<_BAD>. 0)

$requestNewPass. (GenPass(requestNewPass) | KeepSecret(requestNewPass))

Listing 5.1-5: PIFRA output from Figure 5.2.

Evaluation 84

GenPass(requestNewPass) = requestNewPass(x). $pass. x'<pass>._0

KeepSecret(requestNewPass) = $p. requestNewPass'<p>. p(pass).
(_StoreSecret(pass) | TestSecret(pass)_)

StoreSecret(pass) = $secret. pass'<secret>. StoreSecret(pass)

TestSecret(pass) = pub(x). pass(secret). (TestSecret(pass) + [x=secret]
_BAD'<_BAD>._0_)

$requestNewPass. (GenPass(requestNewPass)_ | _KeepSecret(requestNewPass))

Listing 5.1-6: Difference between ground truth and output.

By closely inspecting the difference between the ground truth and the output

from VisPi, we can see that the output is the same with the only differences

being spaces, which were inconsistent in the ground truth. The red highlight

indicates a character being in the ground truth, but not in the VisPi output,

and vice versa for the turquoise highlights.

Example L: Boolean Binary Buffer

This example will cover the simple Binary Buffer model given as an example

in the original Pi-Calculus book [1].

The system is defined as follows as seven process identifiers Buff where

S = { 𝜖, 0, 1, 00, 01, 10, 11 }

Processes = { Buffi | i ∈ S }

Each value in s describes the sequence stored in the buffer, for example Buff01

is the buffer where 1 was stored followed by a 0.

Buff = ∑ 𝑖∈{0,1} ini. Buffi

Buffi = outi. Buff + ∑ 𝑗∈{0,1} inj. Buffji

Buffij = outj. Buffi

The summation (∑) follows the summation operator + in pi-calculus.

Evaluation 85

Figure 5.3: The Boolean Binary Buffer model in VisPi.

Buffer = in0'<in0>. Buffer0 + in1'<in1>. Buffer1

Buffer0 = out0'<out0>. Buffer + in0'<in0>. Buffer00 + in1'<in1>. Buffer10

Buffer1 = out1'<out1>. Buffer + in0'<in0>. Buffer01 + in1'<in1>. Buffer11

Buffer00 = out0'<out0>. Buffer0

Buffer10 = out1'<out1>. Buffer0

Buffer01 = out0'<out0>. Buffer1

Buffer11 = out1'<out1>. Buffer1

Buffer

Listing 5.1-7: PIFRA output from VisPi of the Boolean Binary Buffer.

Figure 5.4: LTS output from PIFRA using the output from Listing 5.1-7. Relabelled to be

more human readable.

Conclusion 86

6 Conclusion

The main objective of this dissertation was the design and implementation

of a visual language capable of transpiling down to PIFRA pi-calculus

notation. This objective was fully achieved in combination with the entire

implementation of a web application IDE, syntax highlighting for the output

code which matches the colour of the corresponding blocks, serialization to

files for saving and loading models and a name scoping system ensuring

better name safety and program correctness.

6.1 Achievements

With the help of the Blockly library, we were able to design and implement

simple blocks which together are capable of expressing any construct in

extended pi-calculus. The blocks naturally compose in a way which makes

scoping apparent visually, providing visual cues on where names are being

restricted.

The code transpilation has been tested thoroughly, and the language only

every produces syntactically correct PIFRA code, allowing syntactic errors

only through incomplete statements, hopefully improving the learning

aspect of using the application by learners easier and more efficient, and also

providing the assurance that the output is definitely adhering to the the

syntax rules without having to think about making everything is correct or

waiting for PIFRA to return an error.

The overall application is relatively simple in the positive sense of the word,

as it contains the basic required features necessary for most use cases for

writing models with VisPi, saving and loading them, not only allowing for

persistence of work, but allowing the block-code to be shared.

The output code, along with blocks themselves, provide enough meaningful

error messages to guide learners through the process of creating valid pi-

calculus models. Warnings in blocks provide an instant indication that a

Conclusion 87

copy-paste error could’ve occurred or too many arguments being provided

to a process call, while the warnings in the output not only inform the user

of incomplete statements, but also inform the user of what the issue is,

helping novices understand and learn the syntax of pi-calculus through

exploration of the tool.

The name-scope system is a great achievement in the project as it is a major

contribution to ensuring the intended behaviour is correctly represented in

the models. Not only does the system provide the user only with names

which are in-scope, it ensures that typo errors, or unintended declaration of

free names by mistake.

The addition of syntax highlighting which matches the colours of blocks

which produced each piece of code helps with relating the blocks with the

output code, facilitating a transition from blocks to text over time.

The application and language is easily accessible through any browser,

making it platform independent and easy for use and collaboration, and

hopefully proves itself useful to learners of pi-calculus, researchers

preferring to create models more visually and in general help facilitate the

teaching of concurrent and parallel process reasoning and design.

6.2 Challenges

One of the main challenges faced in this project was the actual design of each

block in an intuitive way. The design of many blocks was an iterative process

and each block underwent many changes, often inspired by discussions with

Dr. Koutavas. The shapes of the blocks underwent many changes before

finally arriving at the main design of blocks which focused on highlighting

the scoping properties of certain actions. Another challenge involved

deciding whether the blocks should be relatively close to actual pi-calculus

or be more higher-level abstractions. Due to time constraints, there wasn’t

enough time to come up with useful abstractions over common groupings of

blocks, however it did lead to block variations and patterns which proved

useful in the final implementation of the language.

Conclusion 88

Many challenges also were encountered due to working with Blockly

without prior experience with it. Many features of the library were

insufficiently documented or had outdated documentation, requiring

alternative approaches to be taken instead.

Designing the scope management system was one of the greatest challenges

for multiple reasons. Firstly the process and representation of scopes and

ensuring that each scope is uniquely represented with the ability to replicate

the scopes, which was required for deserialization, such that the scopes

could be restored to their correct state as before the serialization. In addition

to that, the major difficulty was implementing the system within the

constantly refreshing Blockly environment, which created issues with re-

instantiation of blocks dropdowns which had values selected already, but

with re-instantiation, the dropdowns wouldn’t contain the value required,

and would result in an error. Additionally, the refreshing caused duplication

of data, which led to the double-state solution.

Along the way, many bugs were encountered with the program, both with

the custom systems like the scope manager system, as well as with the

Blockly library itself. Problems with custom systems were usually easily

resolved due to the clean coding approach and making sure things focused

on their given task, making them easily testable. In terms of Blockly bugs,

many involved blocks in the canvas moving in undesirable ways when

dragging blocks over each other due to the custom detachment functions.

These problems were solved through extensive research into the Blockly API

to find solutions which help prevent such events from occurring.

Finally, one of the initial challenges was the process of learning pi-calculus

concepts in a relatively short amount of time without any prior experience

with it or parallel system modelling and analysis. This was a requirement

that stalled initial progress on the implementation given that the majority of

the system required some understanding of pi-calculus and its constructs

and how they interact.

Conclusion 89

6.3 Future Work

VisPi is currently a standalone tool, however future work could entail

integration with PIFRA and other systems to create a unified pi-calculus

exploration tool that is suitable for beginners and professionals alike.

The tool could explore the possibility of back-transpilation from PIFRA to

VisPi, either as an alternative serialization method and a way to easily

convert between the two representations for convenience.

On top of that, the language itself could see additional improvements, such

as adding abstractions over current blocks, making the language more

approachable to learners already familiar with generic programming

languages.

The PIFRA tool could itself see a revision to its graph generation, making the

output more user friendly as currently the labels on the graphs are

complicated and not approachable to anyone who isn’t an expert in the

system already.

Finally, given the time limitations of this project being a two semester

endeavour, it was expected that the research and study components of the

project will not be the primary areas of focus. That being said, a study on the

effectiveness of the visual approach to writing pi-calculus programs versus

the textual counterpart could provide meaningful insight into what could be

improved and whether the visual language provides the necessary aid in

learning pi-calculus as opposed to standard textual approaches.

Bibliography 90

7 Bibliography

[1] R. Milner, Communicating and Mobile Systems: The Pi-Calculus,

USA: Cambridge University Press, 1999.

[2] S. Leung, “Modelling Concurrent Systems: Generation of Labelled

Transition Systems of Pi-Calculus Models through the Use of Fresh-

Register Automata,” 2020.

[3] N. Fraser, Q. Neutron, E. Spertus and M. Friedman, “Blockly - Visual

Programming Editor,” Google, [Online]. Available:

https://developers.google.com/blockly.

[4] Scratch Foundation, “Scratch,” [Online]. Available:

https://scratch.mit.edu/.

[5] B. Broll, A. Lédeczi, P. Volgyesi, J. Salli, M. Maroti, A. Carrillo, S. L.

Weeden-Wright, C. Vanags, J. D. Swartz and M. Lu, “A Visual

Programming Environment for Learning Distributed Programming,”

in SIGCSE '17: Proceedings of the 2017 ACM SIGCSE Technical

Symposium on Computer Science Education, 2017.

[6] K. G. Larsen, P. Pettersson and W. Yi, “UPPAAL,” Department of

Information Technology, Uppsala University, Sweden; Department of

Computer Sciene, Aalborg University, Denmark, [Online]. Available:

https://uppaal.org/.

[7] J. Mönig and B. Harvey, “Snap! Build Your Own Blocks,” University

of California, Berkley, [Online]. Available:

https://snap.berkeley.edu/.

[8] S. Böhm and M. Běhálek, “Kaira: Modelling and Generation Tool

Based on Petri Nets for Parallel Applications,” in UKSim 13th

International Conference on Modelling and Simulation, 2011.

[9] F. Chan, J. Cao, A. T. S. Chan and K. Zhang, “Visual programming

support for graph-oriented parallel/distributed processing,” 2005.

[10] J. L. Quiroz-Fabián, G. Román-Alonso, M. A. Castro-García, J.

Buenabad-Chávez, A. Boukerche and M. Aguilar-Cornejo, “VPPE: A

Bibliography 91

Novel Visual Parallel Programming Environment,” International

Journal of Parallel Programming, 2019.

[11] E. Pasternak, R. Fenichel and A. N. Marshall, “Tips for Creating a

Block Language with Blockly,” 2017 IEEE Blocks and Beyond Workshop,

pp. 21-23, 2017.

[12] A. J. Ko, B. Myers and H. Aung, “Six Learning Barriers in End-User

Programming Systems,” IEEE Symposium on Visual Languages, 2004.

[13] M. C. Jadud, “A First Look at Novice Compilation Behaviour Using

BlueJ,” Computer Science Education vol. 15, no 1., 2005.

[14] R. Milner, A Calculus of Communicating Systems, Berlin, Heidelberg:

Springer-Verlag, 1982.

[15] N. Tzevelekos, “Fresh-Register Automata,” SIGPLAN Not. 46.1, pp.

295-306, 2011.

[16] Meta Open Source, “React - Using TypeScript,” 2024. [Online].

Available: https://react.dev/learn/typescript.

List of Figures 92

8 List of Figures

Figure 3.1: VisPi Blocks representing the processes in Listing 3.2-1. 25

Figure 3.2: Blockly list block and the configuring of the number of accepted

items in the block. .. 26

Figure 3.3: The parallel separator block and the explicit parenthesis (right)

to avoid ambiguity with which send operations are in parallel with one

another. .. 27

Figure 3.4: Parallel composition of two send actions...................................... 28

Figure 3.5: The list pattern used for restriction of multiple names at once

(left) and receiving multiple names on the same channel at once (right).

Corresponds to Listing 3.3-1. ... 28

Figure 4.1: The global name block. Used to explicitly define free names. ... 33

Figure 4.2: Two name accessor blocks attached to the send block. 35

Figure 4.3: All send block variants, the standard send block (top left), the

send all block (right) and the sync block (bottom left). 37

Figure 4.4: Two variants of the receive block. The standard receive block

allows for receiving a single name (left) and the receive all block (right)

allowing for receiving multiple names at a time. Left and right

representations are equivalent. .. 42

Figure 4.5: Standard Restrict Blocks (left) and the Restrict All Block (right).

Left and right representations are equivalent. ... 47

Figure 4.6: The termination block used to define the termination of the

program. .. 49

Figure 4.7: The Parallel Block and two Task Blocks. 49

Figure 4.8: The Choose Block and two Choice Blocks. 52

Figure 4.9: An equality Guard Block (top) and an inequality Guard Block

(bottom). .. 53

Figure 4.10: Process definition and parameter blocks (left) and the process

call and argument blocks (right). ... 55

Figure 4.11: An argument block indicating the corresponding parameter it

is binding to (left) and a default, unbound argument block (right). 59

Figure 4.12: The main Program Block. .. 61

List of Figures 93

Figure 4.13: Example VisPi program with multiple scopes. 63

Figure 4.14: Graph of scopes and available names of the program in Figure

4.13. .. 63

Figure 4.15: Example VisPi program with the shadowing of a free name by

a bound name. .. 64

Figure 4.16: Graph of scopes and available names of the program in Figure

4.15. .. 64

Figure 4.17: State lifecycle of the Scope Manager. ... 66

Figure 4.18: Unscoped name warning. This occurs if a name was not chosen

(?) or if the name-accessing block was copied and pasted into a scope which

does not contain the name, or the name was renamed. 68

Figure 4.19: Invalid argument count warning. This is displayed when the

number of provided arguments does not match the process definition. 68

Figure 4.20: Unexpected argument warning. This occurs when too many

arguments are provided to a process. This warning always appears in

conjunction with the warning in Fig. 2. .. 68

Figure 4.21: Example of an error detected by not following up a send

operation. .. 70

Figure 4.22: Example of an error detected by not following up a `receive`

operation. .. 70

Figure 4.23: Example of errors being detected by `restrict` statements not

being followed up by another statement. ... 71

Figure 4.24: Example of a `guard` statement without a body. 71

Figure 4.25: Example of hovering over a syntax error in the output

window. ... 72

Figure 4.26: VisPi navigation bar. .. 78

Figure 4.27: Navigation bar file name input box. Current program name is

called 'Password'. ... 78

Figure 4.28: Navigation bar file options. .. 78

Figure 4.29: Navigation bar help section. ... 78

Figure 4.30: Layout button, allows for changing the arrangement of the

block editor and the output panel to facilitate both vertical and horizontal

screens. ... 78

Figure 4.31: File and help sections collapsed to dropdowns on smaller

screens. ... 78

List of Figures 94

Figure 4.32: Default horizontal editor layout. .. 79

Figure 4.33: Vertical editor layout. .. 80

Figure 4.34: Editor with the output panel collapsed providing more space

for blocks. .. 80

Figure 5.1: VisPi implementation of the Tzevelekos model. 82

Figure 5.2: VisPi implementation of Listing 5.1-4. .. 83

Figure 5.3: The Boolean Binary Buffer model in VisPi. 85

Figure 5.4: LTS output from PIFRA using the output from Listing 5.1-7.

Relabelled to be more human readable. ... 85

Listings 95

9 Listings

Listing 2.3-1: Free name vs. Bound name analogy using C. 17

Listing 3.2-1: Using parentheses to change the scoping of a name. 24

Listing 3.2-2: Alternative representation of the first system in Listing 3.2-1.

 .. 24

Listing 3.3-1: Multiple name restricted or received in succession creating

multiple scopes. .. 28

Listing 4.1-1: Code Scrubbing function, determining the type of separator.

 .. 29

Listing 4.1-2: Code scrubber predicate determining if two blocks are both

Choice Blocks. ... 30

Listing 4.1-3: Code scrubber predicate determining if two blocks are both

Task Blocks. ... 30

Listing 4.1-4: Code scrubber predicate determining if a dot sequence

character should be inserted. .. 30

Listing 4.1-5: Function enforcing a lowercase or underscore leading

identifier. ... 30

Listing 4.1-6: Function enforcing an uppercase leading identifier. 31

Listing 4.2-1: Function forcing a block to be only ever attached to a specific

scope of a specific parent block. ... 32

Listing 4.2-2: Function restricting the types of blocks are accepted within a

specific scope of the current block. .. 32

Listing 4.2-3: Function restricting what blocks the current block can attach

to. .. 33

Listing 4.2-4: Toolbox entry of the Global Name Block. 33

Listing 4.2-5: Global Name Block instantiation function. 34

Listing 4.2-6: Toolbox entry of the Name Access Block. 35

Listing 4.2-7: Name Access Block instantiation function. 35

Listing 4.2-8: Accessing names in-scope from the scope manager. 36

Listing 4.2-9: Updating the available names of the Name Access Block. 36

Listing 4.2-10: Setting a warning message on the Name Access Block when

the selected name is not in-scope. .. 37

Listings 96

Listing 4.2-11: Name Access Block code generation function. 37

Listing 4.2-12: Toolbox entry of the Send Block. ... 38

Listing 4.2-13: Toolbox entry of the Sync Block. ... 38

Listing 4.2-14: Toolbox entry of the Send Name Block. (Child block of Send

All Block) ... 39

Listing 4.2-15: Toolbox entry of the Send All Block. 39

Listing 4.2-16: Send Block instantiation function. ... 40

Listing 4.2-17: Sync Block instantiation function. ... 40

Listing 4.2-18: Send Name Block onchange function, restricting allowed

block connections. .. 40

Listing 4.2-19: Send All Block instantiation function. 41

Listing 4.2-20: Send All Block restriction on allowed children blocks in its

scope. ... 41

Listing 4.2-21: Send Block code generation function. 41

Listing 4.2-22: Send All Block code generation function. 42

Listing 4.2-23: Toolbox entry of the Receive Block. .. 43

Listing 4.2-24: Toolbox entry of the Receive Name Block. (Child block of

Receive All Block) .. 43

Listing 4.2-25: Toolbox entry of the Receive All Block. 43

Listing 4.2-26: Receive Block instantiation function. 44

Listing 4.2-27: Receive Name Block instantiation function. (Child block of

Receive All Block) .. 44

Listing 4.2-28: Receive Name Block onchange function, restricting allowed

block connections. .. 44

Listing 4.2-29: Receive All Block instantiation function. 45

Listing 4.2-30: Receive All Block restriction on allowed children blocks in

its scope. .. 45

Listing 4.2-31: Receive Block code generation function. 45

Listing 4.2-32: Receive Name Block code generation function. 46

Listing 4.2-33: Receive All Block code generation function. 46

Listing 4.2-34: Toolbox entry of the Restrict Block. .. 47

Listing 4.2-35: Toolbox entry of the Restrict Name Block. (Child block of the

Restrict All Block) ... 47

Listing 4.2-36: Toolbox entry of the Restrict All Block. 47

Listing 4.2-37: Restrict Block code generation function. 48

Listings 97

Listing 4.2-38: Toolbox entry for the Parallel Block. 49

Listing 4.2-39: Toolbox entry for the Task Block. (Child block of the Parallel

Block) ... 50

Listing 4.2-40: Parallel Block instantiation function. 50

Listing 4.2-41: Parallel block restriction on allowed children blocks. 50

Listing 4.2-42: Task Block instantiation function. ... 50

Listing 4.2-43: Task block connection restriction to the scope of its parent

block. .. 51

Listing 4.2-44: Parallel Block code generation function. 51

Listing 4.2-45: Task Block code generation function. 51

Listing 4.2-46: Toolbox entry for the Guard Block. ... 53

Listing 4.2-47: Guard Block instantiation function. .. 54

Listing 4.2-48: Guard Block code generation function. 54

Listing 4.2-49: Toolbox entry for the Process Definition Block. 55

Listing 4.2-50: Toolbox entry for the Process Parameter Block. 55

Listing 4.2-51: Toolbox entry for the Process Call Block. 55

Listing 4.2-52: Toolbox entry for the Process Argument Block. 56

Listing 4.2-53: Process Definition Block instantiation function. 56

Listing 4.2-54: Function enforcing valid process names. 57

Listing 4.2-55: Process Definition Block restriction on allowed children

blocks in its params scope. ... 57

Listing 4.2-56: Process Call Block instantiation function. 58

Listing 4.2-57: Process Call onchange function. .. 58

Listing 4.2-58: Process Argument Block onchange function. 59

Listing 4.2-59: Process Definition Block code generation function. 60

Listing 4.2-60: Process Call Block code generation function. 61

Listing 4.4-1: The Send regular expression. ... 69

Listing 4.4-2: The Receive regular expression. .. 69

Listing 4.4-3: The Restrict regular expression. ... 70

Listing 4.4-4: The Negative Look-ahead Sequencing Operator regular

expression. ... 70

Listing 4.4-5: The Send Error regular expression. ... 70

Listing 4.4-6: The Receive Error regular expression. 70

Listing 4.4-7: The Restrict Error regular expression. 70

Listing 4.4-8: The Guard Error regular expression. .. 71

Listings 98

Listing 4.4-9: Combined Error regular expression. ... 72

Listing 4.4-10: The Symbols regular expression. ... 72

Listing 4.4-11: The Name regular expression. ... 72

Listing 4.4-12: The Process regular expression. ... 73

Listing 4.4-13: The Termination regular expression. 73

Listing 4.4-14: The Restrict regular expression. ... 73

Listing 4.4-15: The Send regular expression .. 73

Listing 4.4-16: The Receive regular expression. .. 73

Listing 4.4-17: Tokenization regular expression through disjunctive

composition. .. 74

Listing 4.4-18: Tokenization function. .. 74

Listing 4.4-19: Syntax colouring function. .. 75

Listing 4.5-1: VisPi serialization function, storing both the workspace and

the scope information. ... 75

Listing 4.5-2: VisPi deserialization function, loading the contents of the file

into local storage and reloading the window. ... 76

Listing 4.5-3: The load function. It loads the last saved state from local

storage. ... 76

Listing 4.5-4: Extraction function, restoring the names and processes for

initial block instantiation to prevent data loss. .. 76

Listing 4.5-5: VisPi save function which stores the workspace and scope

information into local storage. ... 77

Listing 5.1-1: PIFRA implementation of the Tzevelekos model (ground

truth). ... 81

Listing 5.1-2: PIFRA output from the VisPi implementation in Figure 5.1. 82

Listing 5.1-3: Difference between the ground truth and VisPi output of the

Tzevelekos model. .. 82

Listing 5.1-4: Password model from PIFRA (ground truth). 83

Listing 5.1-5: PIFRA output from Figure 5.2. .. 83

Listing 5.1-6: Difference between ground truth and output. 84

Listing 5.1-7: PIFRA output from VisPi of the Boolean Binary Buffer. 85

List of Examples 99

10 List of Examples

Example A: Input ... 15

Example B: Composition .. 15

Example C: Summation .. 16

Example D: Free names vs. Bound names 17

Example E: Restriction .. 17

Example F: Process Call ... 19

Example G: Equality and Inequality 19

Example H: Name Scoping ... 63

Example I: Name Shadowing ... 64

Example J: Tzevelekos Model .. 81

Example K: Password System ... 83

Example L: Boolean Binary Buffer 84

List of Examples 100

Source Code

The source code for VisPi, additional examples and documentation can be

found at https://github.com/DominikGuzowski/vispi.

https://github.com/DominikGuzowski/vispi

	Visual Pi-Calculus
	1 Introduction
	1.1 Motivation
	1.2 Objectives

	2 Background
	2.1 Related Work
	2.1.1 Uppaal
	2.1.2 NetsBlox and Snap!
	2.1.3 Other Parallel Visual Languages

	2.2 Creating Block Languages with Blockly
	2.3 The Pi-Calculus
	2.3.1 Syntax and Notation
	2.3.1.1 Replication
	2.3.1.2 Inaction
	2.3.1.3 Input – Receiving names
	2.3.1.4 Output – Sending names
	2.3.1.5 Composition – Parallel execution
	2.3.1.6 Summation – Non-deterministic choice
	2.3.1.7 Restriction – Introducing a locally bound name

	2.3.2 The Extended Pi-Calculus
	2.3.2.1 Process Call
	2.3.2.2 Equality and Inequality

	2.4 PIFRA

	3 Design
	3.1 Choice of Visual Representation
	3.2 Language Design Principles
	3.2.1 Target Audience
	3.2.2 Set of Blocks
	3.2.3 Language in Blocks Labels
	3.2.4 Consistency
	3.2.5 Good Defaults
	3.2.6 Additional Design Considerations
	3.2.6.1 Free Names
	3.2.6.2 Name Scoping
	3.2.6.3 Use of Colour

	3.3 Encoding Non-Sequential Execution
	3.3.1 Blockly List Value Input
	3.3.2 Separator Blocks
	3.3.3 The List Pattern

	4 Implementation
	4.1 Transpilation
	4.1.1 Code Scrubbing
	4.1.2 Code Style Enforcement

	4.2 Block Implementations
	4.2.1 Connection Restrictions
	4.2.2 Global Name Block
	4.2.2.1 Toolbox Entry
	4.2.2.2 Block Definition
	4.2.2.3 Code Generation

	4.2.3 Name Accessor Block
	4.2.3.1 Toolbox Entry
	4.2.3.2 Block Definition
	4.2.3.3 Code Generation

	4.2.4 Send Blocks
	4.2.4.1 Toolbox Entry
	4.2.4.2 Block Definitions
	4.2.4.3 Code Generation

	4.2.5 Receive Blocks
	4.2.5.1 Toolbox Entry
	4.2.5.2 Block Definitions
	4.2.5.3 Code Generation

	4.2.6 Restrict Blocks
	4.2.6.1 Toolbox Entry
	4.2.6.2 Block Definitions
	4.2.6.3 Code Generation

	4.2.7 Termination Block
	4.2.8 Parallel Blocks
	4.2.8.1 Toolbox Entry
	4.2.8.2 Block Definition
	4.2.8.3 Code Generation

	4.2.9 Choice Blocks
	4.2.9.1 Toolbox Entry
	4.2.9.2 Block Definitions
	4.2.9.3 Code Generation

	4.2.10 Guard Block
	4.2.10.1 Toolbox Entry
	4.2.10.2 Block Definition
	4.2.10.3 Code Generation

	4.2.11 Process Blocks
	4.2.11.1 Toolbox Entries
	4.2.11.2 Block Definitions
	4.2.11.3 Code Generation

	4.2.12 Main Program Block

	4.3 Name Scope Management
	4.3.1 Scope Management System
	4.3.2 Scope State Management

	4.4 Syntax Highlighting and Error Management
	4.4.1 Displaying Warnings and Errors in Blocks
	4.4.2 Regular Expression-based Error Detection
	4.4.3 Regular Expression-based Syntax Highlighting
	4.4.3.1 Tokenization

	4.5 Serialization
	4.6 Web Application
	4.6.1 Navigation Bar
	4.6.2 Editor Layout

	5 Evaluation
	5.1 Code Generation Correctness

	6 Conclusion
	6.1 Achievements
	6.2 Challenges
	6.3 Future Work

	7 Bibliography
	8 List of Figures
	9 Listings
	10 List of Examples

