
A Study of the Ska Sort Algorithm

Enda Healion

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master in Computer Science

Supervisor: Dr. David Gregg

April 2024

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Enda Healion

April 15, 2024

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Enda Healion

April 15, 2024

A Study of the Ska Sort Algorithm

Enda Healion, Master in Computer Science

University of Dublin, Trinity College, 2024

Supervisor: Dr. David Gregg

Sorting algorithms play a very important role in software engineering, especially in use in
databases where keys must be in sorted order so that search and merge functions are run
more efficiently. As a result, it is important to have efficient algorithms that can sort a
large number of inputs. Radix sorting algorithms are best suited to large input sizes due
to their non-comparative sorting technique. Because of their importance, radix sorting
algorithms are very well studied.

One of the main slow downs of in-place radix sorting algorithms, such as American
Flag Sort, is the read and write dependencies when swapping elements. The Ska Sort
algorithm shows significant performance improvements over American Flag Sort from its
change in element swapping strategy. Despite the performance improvements, there is a
gap in the literature about Ska Sort.

This paper studies the effects on the number of elements swapped with Ska Sort’s
new element swapping strategy. Due to the heavy usage of C++ templates and lambda
functions, the changes in algorithm from American Flag Sort to Ska Sort is difficult to
see. This paper takes the original implementation and extracts the algorithmic steps
of Ska Sort. The original implementation contains optimisations which have not been
proven to improve the runtime performance of the algorithms. This paper breaks down
and analyses different sections of the algorithm into chapters to see if the optimisations
provide runtime benefit or if there are any different optimisations that can be checked
for performance improvements. Finally, this paper takes the learnings from Ska Sort and
applies it to integer spreadsort to see if similar runtime improvements can be found.

Acknowledgments

I would like to thank my supervisor, Dr. David Gregg, for his guidance, expertise and

invaluable feedback throughout this dissertation.

Enda Healion

University of Dublin, Trinity College

April 2024

iv

Contents

Abstract iii

Acknowledgments iv

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions . 2

1.3 Research Objective . 2

1.4 Dissertation Outline . 2

Chapter 2 State of the Art 5

2.1 Background . 5

2.1.1 American Flag Sort . 5

2.1.2 Ska Sort . 6

2.1.3 Terminology . 8

2.2 Related Work . 8

Chapter 3 Unsorted Items Remaining After One Iteration Through All

Partitions 10

3.1 Terms and Lemmas . 10

3.1.1 Terms . 10

3.1.2 Lemmas . 10

3.2 Proof . 11

3.3 Results . 13

3.3.1 Comparison To Real-World Results 13

3.3.2 Proportions Approaching a Constant Value 14

3.3.3 Iterations Until Fully Sorted . 15

3.4 Conclusion . 16

3.4.1 Further Work . 16

v

Chapter 4 Faster Counting 18

4.1 Background . 18

4.2 Method . 20

4.3 Results . 20

4.4 Conclusion . 23

4.4.1 Further Work . 23

Chapter 5 Unsorted Partition Tracking 25

5.1 Background . 26

5.1.1 Custom std::partition . 26

5.1.2 No Partition Tracking . 26

5.1.3 Swap-to-end . 26

5.1.4 C++ bitset . 27

5.2 Method . 27

5.3 Results . 28

5.4 Conclusion . 31

Chapter 6 Iteration Strategy 32

6.1 Background . 32

6.1.1 CPU Pipelining . 32

6.1.2 Data Dependencies/Hazards in a Pipelined CPU 33

6.1.3 CPU Performance Counters . 33

6.2 Method . 34

6.3 Results . 34

6.4 Conclusion . 35

Chapter 7 Permute Stage For-Loop Unrolling 36

7.1 Background . 36

7.2 Method . 36

7.3 Results . 38

7.4 Conclusion . 40

Chapter 8 Key Size Effects 41

8.1 Background . 41

8.2 Method . 42

8.3 Results . 42

8.4 Conclusion . 47

vi

Chapter 9 Fallback Threshold 48

9.1 Method . 49

9.2 Results . 49

9.3 Conclusion . 53

9.3.1 Further Work . 53

Chapter 10 Improved Integer Sort 54

10.1 Background . 54

10.2 Implementation . 55

10.3 Method . 55

10.4 Results . 55

10.5 Conclusion . 61

10.5.1 Further Work . 61

Bibliography 62

Appendices 63

vii

List of Tables

3.1 Comparison of Predicted and Actual Unsorted Proportions - 2 Partitions . 13

3.2 Comparison of Estimated and Actual 1
e
. 15

3.3 Comparison of Predicted and Actual Number of Iterations 16

4.1 Percent of Time Counting - Uniform Random 22

4.2 Percent of Time Counting - Geometric Random 22

6.1 Comparison of American Flag Sort and Ska Sort CPU Performance Counters 35

7.1 CPU Performance Counter Comparison - Unrolled and Not Unrolled Per-

mute Stage Element Swapping . 39

8.1 Time To Sort Per Bit - Uniform Random 44

8.2 Time To Sort Per Bit - Geometric Random 45

8.3 Time To Sort Per Bit - Geometric Random - Partition Normalised 46

10.1 CPU Performance Counter Comparison - Spreadsort and Spreadsort + Ska

Iteration . 57

viii

List of Figures

2.1 Example Partition Array . 7

4.1 Compare Unrolling of Counting - Uniform Input 21

4.2 Compare Unrolling of Counting - Geometric Input 23

5.1 Example Partition Array . 25

5.2 Unsorted Partition Tracking - Swap To End 27

5.3 Partition Tracking Overhead - Uniform Random 29

5.4 Partition Tracking Overhead - Geometric Random 30

7.1 Permute Stage - For-Loop Unrolling and No Unrolling Comparison 39

9.1 std::sort Fallback Threshold . 50

9.2 American Flag Sort Fallback Threshold . 51

9.3 Comparison of Custom and Default Fallback Thresholds 52

10.1 Compare Sorting Iteration Method - Uniform Input - Single Pass 56

10.2 Compare Sorting Iteration Method - Uniform Input 57

10.3 Compare Sorting Iteration Method - Geometric Input - Single Pass 58

10.4 Compare Sorting Iteration Method - Geometric Input 59

10.5 Compare Sorting Iteration Method - Sorted Input 60

ix

Chapter 1

Introduction

1.1 Motivation

A blog was written claiming to have created a radix sorting algorithm that out performed

C++’s std::sort function (Skarupke (2016)). This new algorithm, called Ska Sort, is based

on an existing radix sort algorithm called American Flag Sort with some algorithmic im-

provements.

The implementation of this algorithm is written in C++ with heavy usage of tem-

plates and lambda functions. Because of this, the code that controls how elements are

swapped to their sorted position is split into different, separated functions, thus making

it difficult to see the algorithmic change that was made to American Flag Sort’s element

swapping stage to create Ska Sort. In addition to this, the Ska Sort implementation may

have some premature optimisations that further obfuscate the algorithm from being easily

understood from the implementation.

Despite having large performance improvements over American Flag Sort, a docu-

mented and researched sorting algorithm (McIlroy et al. (1993)), no papers have been

published discussing the Ska Sort algorithm and its properties. However, other papers

have used Ska Sort as a fallback algorithm in their own algorithms (Obeya et al. (2019)).

This dissertations aims to explain the algorithmic changes made to American Flag Sort

to create Ska Sort algorithm, and to explore Ska Sort’s properties compared to American

Flag Sort.

1

1.2 Research Questions

This dissertation explores the algorithmic changes that were made to American Flag

Sort to create Ska Sort, what optimisations of Ska Sort’s implementation improve the

runtime and what optimisations do not, and are there any new properties of Ska Sort

that American Flag Sort does not?

1.3 Research Objective

1. Determine the effects of the algorithmic change in the way partitions are iterated

over during the permute stage of Ska Sort, and investigate why there is a perfor-

mance improvement.

2. Determine the effects of unrolling the inner for-loop in the permute stage on the

runtime performance.

3. Determine what the overhead of keeping the newly added unsorted partition array

is, if there are other methods of keeping track of unsorted partitions, and if this

array improves overall runtime.

4. Study the properties of the changed partition iteration method in the permute stage

of Ska Sort. Answer how many unsorted elements are remaining after iterating

through each partition once.

5. Explore the effects of key size and input size on the runtime performance.

6. Explore existing implementations of the counting stage to see if there are any further

runtime improvements.

7. Explore if the Ska Sort fallback thresholds to std::sort and American Flag Sort can

be improved.

8. Apply Ska Sort’s permute stage partition iteration strategy to a similar radix sorting

algorithm, integer spreadsort, and study the runtime performance effects.

1.4 Dissertation Outline

Apart from being about the Ska Sort algorithm, each of the above research objectives are

not necessarily directly related to each other. Having all of the methods, implementations,

results, evaluations and conclusions grouped together for each separate research object

2

would make for a difficult read. As a result, the dissertation is split into multiple chap-

ters, each of which will discuss their own associated research objective and have their own

introduction, background, method, results and conclusion sections. However, background

information that relates to all of the chapters is found in Chapter 2.

The following is an overview of the dissertation structure:

1. Chapter 1 - Introduction, presents the motivations behind why the Ska Sort algo-

rithm is being studies in the dissertation, the research questions that will be an-

swered, and detailed breakdown of the research questions into research objectives.

2. Chapter 2 - State of the Art, gives a detailed explanation of the necessary back-

ground information required to understand this dissertation and its results. This

includes how American Flag Sort works, the algorithmic changes to American Flag

Sort to create Ska Sort, and an explanation of the optimisations found in the original

Ska Sort implementation.

3. Chapter 3 - Unsorted Items Remaining After One Iteration Through All Partitions,

gives a novel proof for the the proportion of input elements that remain unsorted

after a single iteration through each of the partitions in the permute stage, how

many iterations through all partitions are required until all elements are in the

correct position. The chapter also derives how the proportion of unsorted elements,

for sufficiently large key sizes, approaches 1
e
.

4. Chapter 4 - Faster Counting, explores to what degree unrolling the for-loop body

help to improve the runtime of the counting stage. The resulting performance effects

are documented and analysed.

5. Chapter 5 - Unsorted Partition Tracking, examines the effects of the additional

unsorted partition tracking on the runtime in the permute stage of Ska Sort. Four

alternative methods are tested, to see which provides the best runtime results with

different input value distributions.

6. Chapter 6 - Iteration Strategy, presents runtime and CPU performance counter

results of American Flag Sort and Ska Sort. These results are analysed to see why

this change in iteration method causes Ska Sort to have such a large increase in

performance over American Flag Sort.

7. Chapter 7 - Permute Stage For-Loop Unrolling, presents runtime results of the

permute stage unrolled for-loop, as found in the original implementation, and a

3

comparison to a version without for-loop unrolling. The effects of for-loop unrolling

are analysed.

8. Chapter 8 - Key Size Effects, presents the effects of changing the key size, on the

runtime of Ska Sort. An explanation is given for the reason different key sizes give

different runtimes.

9. Chapter 9 - Fallback Threshold, determines at what input size Ska Sort algorithm

should fallback to the American Flag Sort or std::sort depending on the input size.

An explanation of the effects of these fallback algorithms on the total number of

partitions sorted is given.

10. Chapter 10 - Improved Integer Sort, demonstrates that Ska Sort’s partition iteration

method found in the permute stage can be applied to integer spreadsort. Runtime

results comparing the effects of these algorithms is also provided.

4

Chapter 2

State of the Art

This chapter will go through the necessary background information required to understand

the contributions this paper provides about the Ska Sort algorithm. In order to fully

understand this paper’s finding, it is important to first understand the Ska Sort algorithm,

and the algorithm that it is based on, American Flag Sort. In published papers about

similar types of sorting algorithms, there are multiple terms that refer to the same or

similar concepts. Therefore a list of terminology is also provided at the end of this

chapter.

2.1 Background

2.1.1 American Flag Sort

The American Flag Sort algorithm is a most-significant-digit (MSD), non-comparative,

in-place sorting algorithm that is useful for sorting large sets of data such as strings or

integers in a number of passes McIlroy et al. (1993). The algorithm can be thought of in

three stages: The counting stage, the permute stage, and the recursion stage.

1. Counting & Offsets: In the counting stage and starting at the most MSD, the

algorithms begins by counting the number of distinct digit values in the input array.

For implementations that use a byte as a digit, these counts are allocated onto the

stack as a fixed 256 element array, where the ith index into this array gives the

number of i digits found in the input array.

This count array’s values are updated using a prefix sum starting at zero to create

the offset array. The values in this array represent where each of the digits should

be swaps to sort the input array by the digits. While generating the prefix sum on

the counts array, another array is created that stores the final offsets. Indexing into

5

the offset and final offset array using the ith digit gives the ith partition start and

end point.

2. Permute: Starting at the first element in the input array, this element’s digit is

extracted. Using the digit as an index into the offset array tells the algorithm where

to swap the element to. Because this swap location already has an element in that

position, it is swapped with the current element. After this swap the element the

value in the offset array for the current digit is incremented taking into account that

the partition now has a sorted element.

This continues until the element that was just swapped has a digit in the partition

the algorithm is currently on. The algorithm then moves on to the next element

in the partition. Once all elements are sorted, the input element’s digits are in

the correct position, however the array is still not fully sorted because the least

significant digits still have to be sorted. This is considered a single pass of American

Flag Sort.

3. Recursion: In the final stage, recursion is used to sort each partition on the next

least significant digit. For example, on a uint32 t using a uint8 t as a digit or key, the

most significant byte, bits 31 to 24, is sorted in a pass. Using these partitions, the

next byte, bits from 23 to 16, are sorted and so on until the final least-significant-

byte is sorted. If the partition size is less than the fallback threshold, sort the

partition using insertion sort instead.

The algorithm is MSD because it starts at the most significant digit on the first pass

and processes all digits until it gets to the Least-Significant-Digit the last pass. It is non-

comparative because no elements are not directly compared, instead they are swapped

into position using the offset array. Finally, the algorithm is in-place because the elements

are swapped around in-place in the input array rather than allocating and copying to the

output array.

2.1.2 Ska Sort

Ska Sort has the same stages as American Flag Sort, however there is a change in the

way elements are iterated and swapped in the permute stage. As a result of this permute

stage change, an additional array is created and maintained that keeps track of which

partitions are unsorted Skarupke (2016).

6

1. Counting & Offsets: The counting stage in Ska Sort is identical to the one found

in American Flag Sort. However, an additional array of indexes are stored. These

indices keep track of which partition are sorted and unsorted. This is done by

keeping the unsorted partitions on the left-hand side of this addition partition array.

Unsorted partition are maintained on the left-hand side of the array using a custom

implementation of std::partition as shown in 2.1. Partitions can be checked to see

if they are sorted by checking if the digit’s offset and final offset value are equal.

2. Permute: Using the additional partition array to find unsorted partitions, iterate

over each element in the unsorted partition. At each element, get the element’s digit,

lookup it’s sorted location and swap the elements. Move on to the next element

in the partition array. Keep iterating through all unsorted partitions and swap the

elements to the sorted position until all partitions are sorted.

3. Recursion: In the final stage, recursion is used to sort each of partition on the

next least significant digit. For example, on a uint32 t using a uint8 t as a digit

or key, the most significant byte, bits 31 to 24, is sorted in a pass. Using these

partitions, the next byte, bits from 23 to 16, are sorted and so on until the final

least-significant-byte is sorted. If the partition size is less than the American Flag

Sort fallback threshold sort the partition using American Flag Sort instead. Or if

the partition size is less than the std::sort fallback threshold, sort the partition using

std::sort.

Figure 2.1: The Partition Array stores the indexes of unsorted partitions
on the left-hand side of the array, marked in green, and sorted partition
that no longer need to iterated over on the right-hand side.

In summary, Ska Sort makes the following two algorithmic changes, the effects of which

will be studied in this dissertation:

7

1. In the permute stage, elements in a partition are now iterated from the partition

start to the partition end and move to the next element regardless if the swapped

element’s key is now in the correct partition.

2. Because the new permute stage iteration method no longer guarantees that elements

are sorted when all partitions have been iterated over, an additional array is needed

to keep track of which partitions are unsorted.

Additionally, the Ska Sort implementation, found in (Skarupke (2024)), has an un-

rolled for-loop in the permute stage where elements are swapped to their correct parti-

tion. This claim is also investigated. Other background information is explained on a

per-chapter bases, when they are needed.

2.1.3 Terminology

1. Key. A key, or digit, is the part of a data element that is used for sorting. For

example, it is common to use a uint8 t as a key for sorting integers. For a uint32 t

element, four passes of a uint8 t are required to fully sort the input.

2. Partition. A partition is a group of elements were all keys have the same value.

Depending on the paper these can also be called piles, bins or buckets.

3. Most Significant Digit (MSD). Processing keys of an element in passes starting

with the most significant digit and ending on the least significant digit.

4. Pass. A pass refers to a single complete processing of the input array using the

counting and offset creation stage and the permute stage. The recursive stage starts

sorting the partitions in a new pass on the next digit.

2.2 Related Work

There is a gap in the literature about different methods of iteration through elements in

the permute stage for non-parallel implementation. However, there exists a significant

amount of literature that discusses and compares changes in this permute stage for par-

allel implementations (Amato et al. (1998)).

According to (Maus (2015)), the reason there has been a greater focus on multi-core

sorting algorithms compared to single-core sorting algorithms in recent times is because

the single-core performance, more specifically the clock speed, is not what CPU manufac-

turers are focused on for performance gains. CPU manufacturers have been putting more

8

cores on chips and improving functionality for working with multiple cores. As a result, to

get the most performance out of modern CPU’s, and GPU’s, a multi-core sorting method

must be used.

Although, there are few papers discussing the permute stag iteration method, other

papers have discussed how the memory subsystems in modern CPU’s can affect the perfor-

mance of this stage. If the number of partitions is greater than the number of Translation

Lookaside Buffer (TLB) entries, then there will be performance hit from TLB misses

(Polychroniou and Ross (2014)). Memory is accessed using virtual addresses, however

these need to be translated to physical addresses for the CPU to use. This translation is

an expensive process, so the TLB caches a small number these translations. As a result, if

there are too many partitions, then virtual address will have to re-translated to physical

addresses.

Other related works are mentioned on a per-chapter bases, when they are needed.

9

Chapter 3

Unsorted Items Remaining After

One Iteration Through All Partitions

After a single iteration through all partitions in American Flag Sort’s permute stage, all

elements are sorted. This is because the algorithm only advances to the next element until

the current element is in the correct position. However, Ska Sort does not have property

since there is no guarantee that when the algorithm moves on to the next element, the

previous one is sorted. This raises a question: How many unsorted elements remain after a

single iteration through all of the partitions in the permute stage? This chapter presents a

novel proof of the proportion of unsorted elements after an iteration through all partitions

in the permute stage for a uniform random input and the number of iterations required

to sort all partitions.

3.1 Terms and Lemmas

3.1.1 Terms

1. Let N be the number of element in the input.

2. Let R be the size of the key in bits.

3. Let P be the number of partitions. P = 2R.

4. Let S be the average size of each partition. S = N
P
.

3.1.2 Lemmas

Lemma 1. S = N
P
.

Since the input is from a uniform random distribution, there is a 1
P
chance of each element

10

being in a given partition. This means that there are N × 1
P

chances that an element is

in a given partition, and so the expected size of the partition will be: N × 1
P
= N

P
.

Lemma 2. All elements in a partition are iterated over.

The algorithm iterates from the start of the partition to the end of the partition. There

are no control flow statements that would cause an element not to be iterated over.

Lemma 3. One element is sorted per element iterated over.

For each element iterated over, it is guaranteed to sort one element. This is because the

element is swapped into it’s correct partition using the offsets array which is then updated

to account for an element being swapped into the partition.

Lemma 4. A partition of size Q will sort Q new elements.

By combining Lemma 2 and Lemma 3, if all elements in a partition are iterated over,

and each of those elements is swapped into the correct position, then the number of newly

sorted elements is equal to the number of elements iterated over in the partition.

Lemma 5. After an iteration of a partition, all partitions will be P−1
P

of their

original size. From Lemma 4, if a partition is iterated over, that many elements will be

sorted. All of these sorted elements will be moved to one of P partitions. Since the input

values are uniformly random, there is a 1
P

chance that an element will be swapped into

any one of the P partitions. Considering a single partition, it means that 1
P

proportion

of the partition will be swapped into any one partition. As a result, the partition will be

1− 1
P
of it’s original size. 1− 1

P
= P

P
− 1

P
= P−1

P
.

3.2 Proof

Using the above terms and lemmas, the proof of the proportion of unsorted of elements

after a single iteration through all partitions can be found:

1. Each of the P partitions will start off being of size S according to Lemma 1.

2. The first partition will be of size S.

3. After iterating over the first partition, all partitions will be P−1
P

of their original size

according to Lemma 5.

4. The second partition will be of size S × P−1
P

.

5. After iterating over the second partition, all partitions will be P−1
P

of their original

size according to Lemma 5.

11

6. The third partition will be of size S × P−1
P

× P−1
P

= S × (P−1
P

)2.

7. This continues until the last partition where S ×
(
P−1
P

)P−1
elements are iterated

over.

8. The total number of sorted elements can be found by summing all of the elements

that were iterated over, which is the size of each partition per Lemma 4.

9. This gives the following sum: S+(S× P−1
P

)+ (S×
(
P−1
P

)2
)+ · · ·+(S×

(
P−1
P

)P−1
).

10. This is a finite geometric series, the sum of which can be found using the following

formula:
n∑

k=1

ark−1 =
a(1− rn)

1− r

, where a represents the starting value in the series,

r represents the common ratio between the elements and,

n represents the number of terms in the series.

11. Substituting a for S, r for P−1
P

, and n for P :

P∑
k=1

S

(
P − 1

P

)k−1

=
S(1−

(
P−1
P

)P
)

1− P−1
P

12. The following steps can be taken to simplified the equation further:

=
S(1−

(
P−1
P

)P
)

P
P
− P−1

P

=
S(1−

(
P−1
P

)P
)

P−(P−1)
P

=
S(1−

(
P−1
P

)P
)

1
P

= SP (1−
(
P − 1

P

)P

)

From Lemma 1 S = N/P . N = S × P

= N(1−
(
P − 1

P

)P

)

12

13. The proportion of unsorted elements will be one minus the proportion of sorted

elements:

= N(1− (1−
(
P − 1

P

)P

))

= N(1− 1 +

(
P − 1

P

)P

)

= N

(
P − 1

P

)P

The above equation gives a proportion of the elements that remain unsorted after a

single iteration through all the partitions. It was found that this value only depends on

the number of partitions, which is determined by the size of the key in bits.

3.3 Results

3.3.1 Comparison To Real-World Results

To see if this equation is accurate compared to real world results, the equation was tested

against real values using 230 uniformly random elements as inputs. As the algorithm ran,

information about how many elements were sorted and unsorted were kept track of. The

following is a comparison of the expected values compared to the actual values for a select

number of partition sizes:

Partition Count: 2
Metric Expected Actual
Sorted Proportion 0.750000 0.749994
Unsorted Proportion 0.250000 0.250006

Table 3.1: This and the following tables show how the expected results almost exactly
match the actual results for a range of partition counts

Partition Count: 64
Metric Expected Actual
Sorted Proportion 0.635013 0.635009
Unsorted Proportion 0.364987 0.364991

From the above tables, it is clear that the above equation does accurately reflect what

happens in the algorithm, since the actual results differ from the expected results by

13

Partition Count: 256
Metric Expected Actual
Sorted Proportion 0.632840 0.632833
Unsorted Proportion 0.367160 0.367167

approximately 0.001%. However, inputs with fewer elements will see a larger difference

between expected and actual results because the equation assumes that the partitions are

close or exactly equal in size. This relies on the Law of Large Numbers, where the larger

the input element count, the closer the partition sizes will be to the expected size. Once

the input is sufficiently small, the greater the variation in partition sizes.

3.3.2 Proportions Approaching a Constant Value

As the number of partitions increase, the expected sorted proportion converges on the

value: 0.632120559, which is close to 1− 1
e
. The reasons this happens can be seen when

the equation is rearranged:

1−
(
P − 1

P

)P

= 1−
(
P

P
− 1

P

)P

= 1−
(
1− 1

P

)P

From Bernoulli trials in probability theory (Dr Richard Gibbens (2016)), it is known

that:

lim
n→∞

(
1 +

x

n

)n

= ex

Let x = −1

lim
n→∞

(
1− 1

n

)n

= e−1

=
1

e

Therefore the proportion of sorted elements, when there are sufficiently enough parti-

tions 3.2, will approximately equal 1 − 1
e
, and the proportion of unsorted elements will

approximately equal 1
e
. For 8 bit keys, this means that the number of unsorted elements

remaining per iteration through all the partitions will approximately be N
e

14

n
(
1− 1

n

)n 1
e

Absolute Difference
10 0.348678 0.367879 0.019201
100 0.366032 0.367879 0.001847
1000 0.367695 0.367879 0.000184
10000 0.367861 0.367879 0.000018

Table 3.2: This table shows how the above equation approaches 1
e
as n increases.

3.3.3 Iterations Until Fully Sorted

Based on these results, it is clear that having a small key, and therefore fewer partitions,

sorts a greater proportion of elements per iteration of all the partitions compared to

having a larger key based on the tables 3.1. To determine the number of sorting iteration

required to fully sort an input with a given number of partitions the following equation

can be used: N ×Uk = 1, where U is the proportions of elements that are unsorted after

a single iteration over all partitions, and k is the number of iterations required to sort an

input of size N until there is only one element. This last element will be sorted since all

other elements will be in the correct position, thus leaving no incorrect positions for the

final element to be in. Rearranging the formula to find k:

N × Uk = 1

Uk =
1

N

k = logU(
1

N
)

k = − logU(N)

k = ⌈− logU(N)⌉

Using the above formula and the number of bits in a key, the number of iterations can

be found.

15

Comparison of Expected vs Real Iterations
N Key Size Expected Iterations Actual Iterations
224 1 12 12
224 2 15 16
224 3 16 16
224 4 17 17
224 5 17 16
224 6 17 17
224 7 17 17
224 8 17 17
224 9 17 17
224 10 17 17
224 11 17 17
224 12 17 17

Table 3.3: This table shows how many iterations are required to sort all keys of a range of
sizes into the correct partitions for 224. Apart from when the key size is two and five, the
expected iterations match the actual iterations, suggesting that the formula is accurate.

It is clear from table 3.3 that this equation can, to a reasonable degree of accuracy,

predict how many iterations over all the partitions are required until all keys are in the

correct position.

3.4 Conclusion

This chapter shows that, with a uniform random input, the proportion of sorted and

unsorted elements can be found after a single iteration over all the partitions using the

size of the key in bits. It was also found that as the size of the key increases, the proportion

of elements left unsorted also increases. However, this increase in unsorted elements only

goes to a maximum of 1
e
. Additionally, this chapter presents a method of calculating how

many iterations are required to sort all keys into their correct partition based on the size

of the input, and the proportion of unsorted elements.

3.4.1 Further Work

The number of unsorted elements after a single iteration through all of the partitions is

found only for uniform random inputs. Different input value distributions, such as geo-

metric random inputs, will have different properties than the ones mentioned in this paper.

The formula for the number of iterations to sort the partitions can be updated to

account for the fact that all but one partition needs to be sorted in order for all elements

16

to be in the correct partition. This is because if all but one partition are sorted, the last

remaining partition must also be sorted too because there are no more insertion points

in the offsets array outside of the last partition. As a result, it must be the case that

the last remaining partition is also sorted because there are no locations for the element

to be swapped to. Taking this into consideration could reduce the number of expected

iterations required to sort the partitions.

17

Chapter 4

Faster Counting

Depending on the input array type and how the key is extracted, the counting stage can

take anywhere from 30% to 50% of the total runtime as seen in tables 4.1 and 4.2.

As a result, it is important to see if there are any performance gains in this stage, since

it has a large impact on the overall runtime performance. The goal of this chapter is

to investigate other implementations of the counting stage that will decrease the total

runtime of Ska Sort. This chapter uses a previously known method of increasing count

performance using for-loop unrolling, and investigates what degree of for-loop unrolling

provides the best runtime results.

4.1 Background

While researching similar non-comparative sorting algorithms, I came across a paper (Rah-

man and Raman (2002)) which suggests methods for reducing Translation Lookaside

Buffer (TLB) misses. Although not directly related to this topic, the paper provides an

implementation of an LSD radix sort which contains a four-time unrolled for-loop in the

counting stage. To expand upon this finding, I experimented with unrolling the for-loop

body two, four, six and eight times to see the performance impact.

For-loop unrolling is an optimization technique used to increase a programs perfor-

mance by decreasing the number of loop condition checks and, depending on the specific

code, increases the CPU’s ability perform out-of-order executions if there are no a data

dependency between instructions (Allan et al. (1995)).

18

1 size_t counts [256] = { 0 };

2 for (size_t i = input_start; i < input_end; ++i) {

3 uint8_t byte = extract(input[i], byte_index);

4 ++ counts[byte];

5 }

Listing 4.1: This code goes through each element in the input, extracts a byte, and

increments the number of elements for each byte that is found. If the value of ’byte’ is

the same from the previous iteration, the CPU must stall until the incremented value of

in the counts array is propagated into memory before doing the next iteration.

1 constexpr size_t unroll_count = 4;

2 size_t counts0 [256] = { 0 };

3 size_t counts1 [256] = { 0 };

4 size_t counts2 [256] = { 0 };

5 size_t counts3 [256] = { 0 };

6 for (size_t i = input_start; i + unroll_count <= input_end; i += unroll_count) {

7 uint8_t byte0 = extract(input[i + 0], byte_index);

8 uint8_t byte1 = extract(input[i + 1], byte_index);

9 uint8_t byte2 = extract(input[i + 2], byte_index);

10 uint8_t byte3 = extract(input[i + 3], byte_index);

11 ++ counts0[byte0];

12 ++ counts1[byte1];

13 ++ counts2[byte2];

14 ++ counts3[byte3];

15 }

16 // Do remaining elements

17 // ...

18 for (size_t i = 0; i < 256; i++) {

19 counts0[i] += (counts1[i] + counts2[i] + counts3[i]);

20 }

Listing 4.2: The for-loop is unrolled four times with four unique counting arrays. If ’byte0’

and ’byte1’ are the same, the CPU does not have to stall before incrementing ’count0’ or

’count1’ because there is no data dependency between these instructions. This reduces

the amount of time the CPU stalls before doing work.

In the first code listing 4.1, the code must wait for the ++counts[byte] to finish exe-

cuting before moving on to the second iteration. While the incremented value propagates

back input counts[byte], the CPU does not have work to perform and so stalls. By un-

rolling the loop as shown in code listing 4.2, the CPU can schedule the instructions for

19

extracting byte0, byte1, byte2 and byte3 since there are no data dependencies between

these instructions. By the time byte0 has been extracted and propagated into a register,

it can schedule the ++counts0[byte0] and other increment instructions without stalling.

This reduction in stall leads to an increase in runtime performance.

4.2 Method

To compare the Ska Sort counting method against the four unrolled variants: unrolled

two, four, six, and eight times, each algorithm’s runtime was measured across a range of

input sizes, type sizes, and value distributions.

The runtime tests were run using the following input types: uint8 t, uint16 t, uint32 t,

and uint64 t. Each of the algorithms were tested using random input sizes from 212 to 229,

doubling each time. The values of these inputs used two distributions: uniform random,

and geometric random variables. C++’s uniform int distribution function (cppreference

(2024b)) and geometric distribution (cppreference (2024a)) function with a value of 0.8

for the distribution parameter, were used was used to generate the random values. To

remove random variations in the timings, each algorithm was run five-hundred times and

timed using C++’s chrono library nanosecond high resolution clock.

4.3 Results

The results for unrolling the loop a number of times against various input sizes for uni-

formly random inputs is found in figure 4.1. Unrolling the loop provides runtime im-

provements in the counting stage. However, the difference between unrolling the for-loop

four, six, or eight times is small. As a result, the four times unrolled counting stage would

be preferred because it has approximately the same speed benefits as six and eight times

unrolled while using less memory.

The results for unrolling the loop a number of times against various input sizes for

geometric random inputs is found in figure 4.2. With geometric random input, unrolling

the counting loop has a large effect compared to uniform random inputs. This is because

with a geometric random input, all values are in the range 0 to 5, most of which are

either 0, 1 or 2. This means that for a majority of loop iterations, the previous increment

of the count leads to a stall in order for the updated value to propagate into memory,

before incrementing the counts again using the same digit and therefore index in the

20

Figure 4.1: Graph of average nanoseconds taken to count a single el-
ement of a uniform random input, for a range of unrolling amounts.
The more unrolled the input, the faster the runtime with 4, 6, and 8
times unrolled being approximately the same speed. At approximately
250,000 input elements, all times get significantly slower due to the in-
put no longer fitting inside the CPU’s 1.25 MB L2 cache. As a result,
the values have to be loaded from main memory which is slower than
from cache.

next iteration. By having multiple count arrays, data dependencies can be avoided by

doing multiple increments across different arrays. This can be seen in the graph where

the time for the two-time unrolled implementation is approximately twice as fast as the

non-unrolled version. However, the four, six and eight timed unrolled implementations,

also an approximate four-time speed increase compared to the non-unolled version.

21

Percent of Time Counting - Uniform Random
Size Non-Unrolled 2x Unrolled 4x Unrolled 6x Unrolled 8x Unrolled
224 44.63% 33.90% 26.18% 24.16% 24.13%
225 45.76% 33.59% 25.27% 23.98% 24.40%
226 45.53% 33.23% 25.57% 23.73% 24.55%
227 45.66% 33.22% 25.35% 24.07% 24.39%
228 45.56% 33.23% 25.55% 24.03% 24.48%
229 45.63% 33.30% 25.52% 24.16% 24.48%

Table 4.1: This table shows the amount of time spent in the counting stage for a single
pass of Ska Sort on uniform random input. The implementations that have an unrolled
counting stage take up less time as a percentage of total runtime.

Percent of Time Counting - Geometric Random
Size Non-Unrolled 2x Unrolled 4x Unrolled 6x Unrolled 8x Unrolled
224 46.92% 33.35% 25.49% 24.65% 25.04%
225 46.89% 33.12% 25.29% 24.37% 25.22%
226 47.07% 33.22% 25.56% 24.19% 24.78%
227 46.83% 33.29% 25.49% 24.18% 24.91%
228 46.87% 33.19% 25.48% 24.14% 24.98%
229 46.99% 33.33% 25.54% 24.08% 25.07%

Table 4.2: This table shows the amount of time spent in the counting stage for a single
pass of Ska Sort on geometric random input. The implementations that have an unrolled
counting stage take up less time as a percentage of total runtime.

22

Figure 4.2: Graph of average nanoseconds taken to count a single el-
ement of a geometric random input, for a range of unrolling amounts.
The more unrolled the input, the faster the runtime with 4, 6, and
8 times unrolled being approximately the same speed. At more than
250,000 input elements, the time per element grows because the input
no longer fits inside the CPU’s 1.25 MB L2 cache. As a result, the
values have to be loaded from main memory which is slower than from
cache.

4.4 Conclusion

From the results, it is clear that unrolling, regardless of how many times and the input

distribution, decreases the time taken to count a single element, thus increasing the overall

runtime performance. The results suggest that unrolling four-times is the best overall

unrolling amount because of its similar runtime performance of the eight-timed unrolled

implementations, while having half of the memory usage. Using four-times unrolling, the

total amount of time spent counting can be reduced from approximately 45% to 27%

according to tables 4.1 and 4.2.

4.4.1 Further Work

For unsigned integer inputs, the use of SIMD instructions (Intel Corporation (2024a))

could be used to speed up the runtime further. Multiple elements can be loaded using a

single instruction and some considerations must be to extract the key from each SIMD

23

lane. In the case of uint64 t integers, and using a 256 bit wide register, 4 elements could

be processed at a time. However four independent arrays must still be used to remove

the loop data dependency.

24

Chapter 5

Unsorted Partition Tracking

The American Flag Sort algorithm only moves on to the next element in the input array

when the current value is in the correct location. As a result, after a single iteration

through all of the partitions in American Flag Sort, all elements are sorted. However,

Ska Sort does not have this property since there is no guarantee that when the algorithm

moves on to the next partition, the previous one is sorted. In order to keep track of

unsorted partitions, the original Ska Sort implementation has an additional array that

stores the unsorted partitions and keeps track of which have been sorted using a custom

implementation of std::partition. The custom std::partition keeps unsorted partitions on

the left of the array and sorted partitions on the right as shown in figure 5.1. The

objective of this chapter is to answer if this additional array and the overhead of the

custom std::partition is necessary and if there is a faster way of keeping track of unsorted

partitions.

Figure 5.1: The Partition Array stores the indexes of unsorted partitions
on the left-hand side of the array, marked in green, and sorted partition
that no longer need to iterated over on the right-hand side.

25

5.1 Background

This section will give an introduction to each of the unsorted partition tracking methods.

5.1.1 Custom std::partition

When the offsets and final offsets are created using the prefix sum, an additional array is

created that stores all of the partitions that contain more than one element. Partitions

that contain one element or less are already sorted. The unsorted partitions are appended

to the fix sized array from left to right, therefore keeping all unsorted partitions on the

left. The custom version of std::partition, which separates the array into two groups,

takes a lambda function to determine if a given partition is sorted or unsorted. When a

partition is determined to be sorted, the custom std::partition is called and the array is

split into unsorted and sorted groups. This is the algorithm used in the original Ska Sort

implementation (Skarupke (2024)).

5.1.2 No Partition Tracking

This implementation does not require an additional array to store unsorted partitions,

or any additional overhead by maintaining the unsorted arrays. Instead, the algorithm

keeps doing a single sort iteration through all of the partitions. If the partition is sorted,

the partition is skipped and the total number of sorted partition is increased. If after

all partitions have been iterated over, and the number of sorted partition is not equal to

the total number partitions, then the number of sorted partitions is reset to zero and the

algorithm does another sorting pass through all of the partitions. This keep happening

until all the number of sorted partitions equals the number of partitions.

5.1.3 Swap-to-end

This implementation is similar to the custom std::partition implementation where un-

sorted partitions are kept on the left-hand side of the additional unsorted partition array.

However, the method of keeping the unsorted partitions on the left-hand side is different.

After doing the sort iteration through a partition, the partition is checked to see if is is

sorted or not. If it is sorted, the now-sorted partition is swapped with the last element in

the unsorted elements and size the array containing unsorted elements decreases in size

by one.

26

Figure 5.2: The top line ”Before” shows the unsorted partitions marked
in green, all of which are on the left-hand side of the array, and the
sorted on the right-hand side. In the middle line ”Swap”, partition 2
was determined to be sorted. As a result, this partition is swapped with
the last unsorted element, and the unsorted array subsection shrinks as
shown in the bottom line ”After.”

5.1.4 C++ bitset

Another method of keeping track of the unsorted partitions is to have a bit either set

or unset depending on if the partition is sorted or unsorted. When the ith partition is

sorted, the ith bit of the bitset can be set to zero. The sorting is terminated when all bit

are set, meaning all partitions are sorted.

5.2 Method

The effects of each partition tracking strategy on runtime performance were determined by

running each of the strategies across a range of input sizes and input value distributions.

To determine the overhead of each method, the total time in nanoseconds was taken to

sort a single pass of the input. This time was then normalised with the input sizes, thus

giving the average amount of time to sort one item with each strategy.

The runtime tests were run using the following input types: uint8 t, uint16 t, uint32 t,

and uint64 t. Each of the algorithms were tested using input sizes from 212 to 228, doubling

each time. The values of these inputs used two distributions: uniform random, and

geometric random variables with a value of 0.8 for the distribution parameter. To remove

random variations in the timings, each algorithm was run thirty times and timed using

C++’s chrono library high resolution clock.

27

5.3 Results

It was found that the default implementation for tracking the unsorted partitions is con-

sistently the slowest method on uniform random inputs as found in figure 5.3. This is

because the entire additional partition array has to be re-partitioned each time a partition

is no longer unsorted. This re-partitioning step requires a scan over all partitions to deter-

mine if they should be placed on the left or right side of the array. For smaller input sizes,

this takes a significant amount of time relative to the total runtime. The Swap-To-End,

Break and C++ bitset methods have the fastest runtime performance across all ranges of

input size due to the minimal overhead to either update the additional partition array in

the case of Swap-To-End or the minimal time taken to determine if a partition is sorted

in the case of the Break and C++ bitset methods.

However, the Break and C++ bitset methods perform poorly on geometric random

inputs as found in figure 5.4. This is because the geometric values are only spread across

six different partitions. As a result, the Break method spends most of its time iterating

over partitions that are already sorted. This is time spent iterating over partitions, when

it could be spent swapping elements and so there is large overhead per element swapped

as shown in the graph by the data points being relatively high compared to the other

implementations. The C++ bitset method also has the same issue where already sorted

partitions are iterated over multiple times unnecessarily. Both the default and Swap-To-

End methods perform approximately as well as each other, with Swap-To-End having

slightly less overhead per element at large input sizes. In both the uniform random and

geometric random inputs across all ranges of input sizes, the Swap-To-End method of

tracking unsorted partitions has the least overhead cost per element sorted.

28

Figure 5.3: This figure shows the average time taken in nanoseconds to
sort one element for a single pass over on uniform random values. The
’normal’ data point is the one found in the default implementation of
Ska Sort. At most input sizes, except 228, this implementation is either
the slowest or the second slowest method of keeping track of unsorted
partitions. All elements see an increase in overhead because the input
element no longer fit in the CPU’s L2 cache, which results in longer load
times.

29

Figure 5.4: This figure shows the average time taken in nanoseconds
to sort one element for a single pass over on geometric random values.
The graph shows that the ’normal’ and the ’swap-to-end’ methods are
approximately equal for all input sizes.

30

5.4 Conclusion

In conclusion, this chapter has found that, for uniform random values, keeping track of

unsorted partitions does not degrade performance as measured as average time taken to

sort one element. However, for geometric random values, or any other distribution that

contains fewer than the maximum number of partitions, the additional unsorted partition

array does improve the runtime by reducing the number of already-sorted partitions that

are iterated over. It was found that the Swap-To-End method has less overhead com-

pared to the method found in the original Ska Sort implementation for both uniform and

geometric random input values.

31

Chapter 6

Iteration Strategy

In the Ska Sort blog post (Skarupke (2016)), the author suggests that the main perfor-

mance increase from American Flag Sort to Ska Sort is because of a change in the way

elements are iterated over when doing swaps in the permute stage. In American Flag

Sort’s permute stage, the algorithm keeps swapping elements to their final position until

an element with the same key as the current partition is swapped into the current parti-

tion. The algorithm then moves on to the next element. Ska Sort changes this iteration

strategy by swapping each element in a partition to their correct position and moving on

to the next element regardless of where the elements were swapped. The Ska Sort author

claims that this change in iteration strategy increases the Instructions Per Cycle (IPC)

by approximately 40% from 1.61 to 2.24, thus improving runtime performance. The ob-

jective of this chapter is study the change of iteration strategy from American Flag Sort

to Ska Sort, to see if the above performance claims are correct and to explain why there

is a change in performance.

6.1 Background

6.1.1 CPU Pipelining

Instruction pipelining is a technique used in modern CPU architectures to improve in-

struction throughput. This is done by dividing the execution process into different stages

each of which are performed by a dedicated piece of hardware on the CPU. A highly sim-

plified version of modern CPU pipelining is the following: Instruction Fetch, Instruction

Decode, Execute, Memory Access, Register Write Back.

For each CPU clock cycle each of the following stages can be executed once. This

means that as one instruction is being executed, another instruction can be decoded or

32

fetched, have a memory access or registers write back. As a result, CPU’s can execute

instructions that are overlapped. This is called instruction level parallelism (Hennessy

and Patterson (2011)), typically measured in Cycles Per Instruction (CPI) or Instructions

Per Cycle (IPC). IPC = 1
CPI

. The approximate CPI for a program can be found using

the equation: Pipeline CPI = Ideal pipeline CPI + Structural stalls + Data hazard stalls

+ Control stalls.

6.1.2 Data Dependencies/Hazards in a Pipelined CPU

Data dependencies between instructions occur when one instruction depends on the data

output of an executing instruction. Since the data has not yet been calculated, or has been

propagated back to memory, data read-after-write dependencies, or sometimes called true

dependencies, can lead to pipeline stalls where one pipeline stage has to wait for another

one to complete. As shown in 6.1.1, this increases the overall CPI, thus reducing the

IPC.

6.1.3 CPU Performance Counters

Execution ports in modern CPU’s are a part of the micro-architecture that handle specific

instruction types. There are different ports that can handle different operations such as

integer arithmetic operations, floating-point arithmetic operations, or memory access or

a combination of these operations.

• Core Bound Slots: This is the percentage of CPU execution slots that contain

an arithmetic operation such as an addition, or a bitwise operation like a shift in-

struction or an and instruction. It does not necessarily mean that these instructions

caused the stall, only that these instructions were being executed while the CPU

stalled.

• Memory Bound Slots: This is the percent of CPU execution slots that contain

a memory operation such as a load or a store instruction. It does not necessarily

mean that these instructions caused the stall, only that these instructions were being

executed while the CPU stalled.

• Total Stalls: This is the total number of stalls due to either structural stalls, data

dependency stalls, or control flow stalls.

33

6.2 Method

To study the change of iteration strategy from American Flag Sort to Ska Sort several

CPU performance counters were gathered using Intel VTune and the Perf program (IBM

(2024)). The second way of measuring the effects of change iteration strategy is to compare

Intel VTune and Perf CPU performance counters for Instructions Per Cycle (IPC), and

how memory bound the CPU backend is.

6.3 Results

The results found in table 6.1 use CPU performance counters gathered on an Intel 12th

generation CPU using Intel VTune. According to the Intel VTune release notes (Intel

Corporation (2024b)) for the version, the 12th generation CPUs are not yet supported.

However, the VTune IPC values for American Flag Sort and Ska Sort, 1.151 and 2.410 re-

spectively, approximately match the Perf results found in the Ska Sort blog post (Skarupke

(2016)) 1.61 and 2.24. As a result, this chapter’s results and analysis could potentially be

incorrect.

The American Flag Sort algorithm stays in the same location in the input array, swap-

ping this element element to where it should go with whatever element is in that position,

which likely causes a data dependency between the current swap and the next swap that

takes place. This is because in order for the second swap to take place, the two swapped

elements have to be fully propagated into memory, which may take some time because of

potential cache misses and potential TLB misses. The Ska Sort implementation reduces

this data dependency by moving on to the next element in the partition regardless of

the values that were swapped. As a result, Ska Sort can minimise this data dependency

because most of the time the current iteration is unlikely to use the same elements from

the last iteration.

From the table of CPU performance counters 6.1, American Flag Sort has a higher

percentage of memory bound execution slots when the CPU stalls compared to Ska Sort.

The main difference between these algorithms is the change in how elements are accessed.

This means that it seems likely that the reduction of Memory Bound Slots in Ska Sort is

actually from reducing memory dependency stalls.

The reduction in total stalls, likely due to a reduction of memory dependencies, in

Ska Sort explains the overall increase in IPC as shown in table 6.1. This performance

34

increase is seen in both the original article (Skarupke (2016)) and in the VTune IPC

figures. However, the Perf figures do not show this change in IPC despite the runtime

improvements.

Input Size: 268,435,456 uint64 t elements
CPU Metric American Flag Sort Ska Sort
Perf - IPC 1.455 1.456

VTune - IPC 1.151 2.410
VTune - Core Bound Slots 8.6% 29.6%

VTune - Memory Bound Slots 67.7% 25.4%
VTune - Total Stalls 16,824,050,472 3,048,009,144

Table 6.1: This table shows the performance counters of American Flag Sort and Ska
Sort. Ska Sort is shown to have a higher IPC value, and a reduced Memory Bound Slots
value.

6.4 Conclusion

In conclusion, this chapter presents CPU performance counter figures that suggest that the

reason why Ska Sort is faster than American Flag Sort is due to the 5.52 times reduction

of total stalls. Most of removed stalls were likely from a removal of data dependency stalls

due to the change of element iteration strategy. This higher IPC allows more work to be

done per cycle, thus increasing the runtime performance of the algorithm compared to

American Flag Sort.

35

Chapter 7

Permute Stage For-Loop Unrolling

In the original implementation of Ska Sort (Skarupke (2024)), the inner for-loop in the

permute stage that swaps elements from their current position to their sorted position

is unrolled four times. According to the author, the goal of unrolling the for-loop is to

decrease the amount of time it takes to sort all elements in a partition. This chapter

presents runtime results of the permute stage unrolled for-loop, as found in the original

implementation, and a comparison to a version without for-loop unrolling. The effects of

for-loop unrolling are analysed.

7.1 Background

The background section in Chapter 6 contains important information, particularly about

the CPU performance counters, which is also relevant to this chapter.

7.2 Method

An adjustment to the original algorithm, found in code listing 7.1, was made so instead

of doing four swaps per iteration, only swap is done per iteration. To make sure that the

only changes to the code are from the unrolling, the same function structure is kept. The

unrolled implementation is found in code listing 7.2.

The runtime results were found by running both the default unrolled and non-unrolled

versions of the permute stage for a range of uniform random uint64 t inputs of sizes from

28 to 228. Each input size was run twenty-five times to remove the effects of outliers on

the data. The average time in nanoseconds to sort one element in a single pass is found

by dividing the total runtime per input size by the number of runs and the input size.

36

Both of these versions were run using Intel VTune to gather CPU performance counters

for IPC, Core Bound Slots, Memory Bound Slot, and Total Stalls.

1 template <typename It, typename Func >

2 inline void unroll_loop_four_times(It begin , size_t iteration_count , Func &&

to_call)

3 {

4 size_t loop_count = iteration_count / 4;

5 size_t remainder_count = iteration_count - loop_count * 4;

6 for (; loop_count > 0; --loop_count) {

7 to_call(begin);

8 ++ begin;

9 to_call(begin);

10 ++ begin;

11 to_call(begin);

12 ++ begin;

13 to_call(begin);

14 ++ begin;

15 }

16 switch (remainder_count) {

17 case 3:

18 to_call(begin);

19 ++ begin;

20 case 2:

21 to_call(begin);

22 ++ begin;

23 case 1:

24 to_call(begin);

25 }

26 }

Listing 7.1: This is the unrolled for-loop implementation. It takes in a function, ’to call’,

that takes an iterator and swaps the value found in the iterator to its sorted partitions

with the element that is already in that position. This version does four loops of this

process per iteration, therefore the number of iterations is divided by four. There may

be some remaining elements that are not sorted in the unrolled loop, so are handled

separately with the switch statement.

1 template <typename It, typename Func >

2 inline void for_loop(It begin , size_t iteration_count , Func && to_call)

3 {

37

4 for (size_t i = 0; i < iteration_count; i++) {

5 to_call(begin);

6 ++ begin;

7 }

8 }

Listing 7.2: This is the non-unrolled for-loop implementation. It takes in a function,

’to call’, that takes an iterator and swaps the value found in the iterator to its sorted

partitions with the element that is already in that position. This version only does a single

swap per iteration and moves on to the next element in the partition. The iteration count

variable is the number of elements in the partition.

7.3 Results

It is important to note that the same potential data issues about the Intel VTune CPU

performance counter data from Chapter 6, section 6.3 applies to this chapter’s results as

well.

From the runtime results comparing the default unrolled against the non-unrolled

version, as shown in figure 7.1, there is little to no difference between the runtimes across

most input sizes. From input sizes from 262,144 to 1,048,576 the unrolled method is

slightly faster compared to the non-unrolled version. These results suggest that there

is no difference between the versions. The CPU performance counters, found in table

7.1, suggest a similar conclusion as well. Both the IPC and total stalls are very close

to each other 2.66 and 2.76 for unrolled and non-unrolled respectively. There is a larger

difference between the percent of core and memory bounds slots, however this value is

more variable because it depends on what instructions are being executed when VTune

samples the CPU counters.

38

Figure 7.1: This is a graph of the average of the nanoconds taken to sort
a single element of uniform random inputs for a range of input sizes.
There is little to no difference between having the swapping for-loop
unrolled or not unrolled.

Input Size: 268,435,456 uint64 t elements
CPU Metric Unrolling No Unrolling
VTune - IPC 2.66 2.76

VTune - Core Bound Slots 17.2% 10.4%
VTune - Memory Bound Slots 34.1% 39.7%

VTune - Total Stalls 2,157,840,000 2,149,280,000

Table 7.1: This table shows a comparison of the IPC, percent of core bound execution
slots, percent of memory bound execution slots, and the total number of stalls for each
algorithm. Each algorithm was run on 228 input uint64 t elements. There is only a slight
difference between the two version’s CPU performance counters. The percent of core and
memory bounds have a greater difference, but this is likely down to randomness in how
often the CPU takes performance measurements.

39

7.4 Conclusion

In conclusion, this chapter has found that the for-loop unrolling found in the permute

stage has little to no impact on runtime performance. Additionally, no benefit is found in

the CPU performance counter metrics because both versions have approximately the same

IPC. Unlike in Chapter 4, where unrolling the counting for-loop gives faster runtimes,

this version does not. Unrolling the for-loop in the counting stage provides faster runtimes

because a dependency between iteration loops is being broken by unrolling the loop and

having additional count arrays. However, this is not the case when unrolling the swapping

loop because no dependencies between loop iterations are broken because all elements are

being swapped to and from the same array.

40

Chapter 8

Key Size Effects

The object of this chapter is to evaluate the effect of key size on the performance of Ska

Sort. From Chapter 4, it is known that the permute stage of the algorithm takes the

majority of the runtime. It is therefore important to see if the runtime can be improved

by changing the size of the key. In addition to this, from Chapter 3, it is clear that the

size of the key determines the number of partitions, therefore the number of iterations

needed to sort all partitions in the permute stage. The question this chapter answers is:

What key size results in the best runtime performance and why?

8.1 Background

This chapter uses a model of the Translation Lookaside Buffer (TLB) found in the fol-

lowing paper (Rahman and Raman (2002)). Modern CPU’s use virtual memory which is

partitioned into 4Kb chunks called pages. Each virtual address has to be translated to

physical memory addresses before it can be used. To avoid constantly translating virtual

pages, a TLB keeps stored recently translated pages for later lookup. The number of en-

tries in the TLB is small, typically only containing 64 to 128 entries. The paper suggests

that in order to improve the runtime of the radix sort algorithm, the working set of the

algorithm must be reduced to minimise TLB misses. The working set of an algorithm is

how many memory pages it accesses at any one time. Applying this to Ska Sort, it means

that to improve the runtime of the algorithm by minimising TLB misses, fewer pages need

to be accessed. When the input is sufficiently large, each partition’s insertion point will

be on a different page, therefore needing its own TLB entry. As a result, decreasing the

key size, and therefore the number of partition insertion points, should help performance

for large input sizes.

41

8.2 Method

To test the relative performance of Ska Sort with different key sizes, the average nanosec-

onds taken to sort a single element in one single pass was gathered for different key sizes.

This measurement is taken across a range of input sizes using a uniform random and geo-

metric random input. These runtime values are then normalised by size of the key. This

is done to take into account the fact that in a full algorithm that does all the required

passes to fully sort the array, smaller sized keys will have a larger number of required

passes compared to larger sized keys. For example, a that is four bits will require 8 passes

to sort a uint32 t, while a sixteen bit key will only require two passes. The key sizes

ranged from four to sixteen bits.

Two different methods of extracting the key were used. The first method extracts

exactly a byte or a short using the storage types, uint8 t and uint16 t respectively. The

second method, which uses the more general bit range approach uses type uint16 t type

to store the key regardless of the size of the key. The effects of these approaches will be

explained in the Results section.

8.3 Results

The results for uniform random inputs, found in figure 8.1, indicate that decreasing the

key size does improve runtime performance for large input sizes. When the number of

elements is greater than 222, using a six bit key leads to greater performance compared

to all other key sizes. This fits with the TLB model presented in (Rahman and Raman

(2002)). Using a key with six bits results in 26 = 64 partition insertion points. For large

input sizes each of these insertion points will be on different memory pages, thus requiring

a separate TLB entry for each. In general, it is guaranteed that each partition insertion

point will be on a separate page of memory when the total partition size in bytes is greater

than the page size.

At the 222 input size, it is faster to use a seven bit key instead of a six or eight bit

key. It is important to note it is always faster to extract a key that is exactly a ’Byte’

compared to a ’8 bit’ key. Although the C++ code for extracting the key is the same,

the resulting optimised assembly output is not. This is because the compiler knows at

compile-time, for the ’Byte’ implementation, that a whole byte is being extracted and not

an arbitrary number of bits. The compiler makes the following optimisation to the code:

42

1 uint8_t byte = (input[i] >> (byte_index * 8)) & 0xFF;

Listing 8.1: This code loads a uint32 t input element, shifts out bits of information that

is not needed in the key. The bitwise-and zeroes all bits that are not in the ’byte’ key.

1 MOV eax , DWORD PTR [rdx]

2 SHR eax , cl

3 MOVZX eax , al

Listing 8.2: The above C++ code results in this assembly code when compiled with the

G++ compiler with the -O2 optimisation level. The first instruction loads a uint32 t value

from rdx into eax. The byte key is shifted into the lowest byte of eax. However, no AND

instruction is generated, instead the MOVZX instruction loads a value from a register

and zeroes out the remaining bits. In this case, it loads the lowest byte, referenced using

’al’, from the eax register and zeroes out the remaining bits. The compiler found that

a bitwise AND instruction using this byte value and 0xFF always results in the original

byte value. It is then safe for the compiler to remove this instruction because the output

of the operation does not change.

1 using KeyType = uint16_t;

2 KeyType key = (input[i] >> range.end) & key_mask;

Listing 8.3: This is the code segment for extracting the key from an input element. It

loads a uint32 t input element, shifts out bits of information that are not needed in the

key. The bitwise-and zeroes all bits that are not in the ’key’ value.

1 MOV eax , DWORD PTR [rdx]

2 SHR eax , cl

3 AND eax , esi

4 MOVZX eax , ax

Listing 8.4: The above C++ code results in this assembly code when compiled with the

G++ compiler with the -O2 optimisation level. The first instruction loads a uint32 t value

from rdx into eax. The key is shifted into the lowest short of eax. An AND instruction

is required to remove the potentially unnecessary bits of information from the short. For

example, if the key is twelve bits in size, the AND instruction must remove the remaining

four bits from the sixteen bit key. The MOVZX instruction loads the short, referenced

using ’ax’, and zeroes out all other bits.

43

When testing the time for extracting the key in the counting stage, the 8 bit imple-

mentation was approximately 1.076 times slower than the byte implementation. This

explains why the byte implementation is always used over the 8 bit approach.

The results for geometric random inputs, found in table 8.2, show different results.

For geometric inputs, the fastest method of sorting is by having a sixteen bit key, which

seems to go against the TLB model already presented. However, the geometric random

inputs only range in values from approximately 0 to 5. This means that there are only

going to be six partition insertion points regardless of key size. All implementations are

doing approximately the same amount of work in the same amount of time, however

larger key sizes are being discounted to a greater extent compared to smaller key sizes.

As a result, the fastest times are all large key sizes. To see the fastest key size to sort

a geometric random input, the run times can be normalised by the number of partitions

generated as shown in table 8.3. The table shows that the fastest key to sort the input

ranges is to use a byte key. This is likely due to the byte key resulting in more optimised

code generation.

Uniform Random Input - uint64 t
Size Byte Short 11 bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit
212 0.392 5.674 0.884 0.720 0.521 0.431 0.359 0.354 0.386 0.448
213 0.321 3.738 0.641 0.486 0.391 0.342 0.326 0.338 0.411 0.579
214 0.288 2.661 0.613 0.440 0.378 0.370 0.424 0.451 0.480 0.679
215 0.240 1.549 0.354 0.296 0.302 0.280 0.310 0.357 0.460 0.670
216 0.221 1.032 0.258 0.236 0.235 0.237 0.281 0.341 0.460 0.746
217 0.219 0.734 0.218 0.210 0.212 0.230 0.263 0.331 0.460 0.785
218 0.245 0.646 0.302 0.295 0.323 0.332 0.359 0.440 0.599 0.921
219 0.258 0.558 0.322 0.354 0.354 0.345 0.358 0.449 0.556 0.812
220 0.325 0.543 0.386 0.414 0.429 0.393 0.413 0.451 0.538 0.811
221 0.414 0.542 0.448 0.480 0.526 0.459 0.459 0.454 0.554 0.853
222 0.469 0.528 0.483 0.533 0.587 0.522 0.460 0.471 0.544 0.853
223 0.497 0.560 0.547 0.574 0.630 0.556 0.506 0.467 0.558 0.881
224 0.566 0.694 0.620 0.643 0.689 0.616 0.547 0.528 0.636 0.989
225 0.589 0.738 0.652 0.663 0.706 0.635 0.579 0.544 0.651 0.988
226 0.601 0.760 0.653 0.667 0.722 0.651 0.587 0.555 0.671 1.013
227 0.565 0.794 0.629 0.637 0.692 0.623 0.570 0.525 0.647 0.998
228 0.564 0.971 0.621 0.630 0.689 0.616 0.558 0.512 0.635 1.001
229 0.530 1.015 0.619 0.609 0.661 0.586 0.533 0.473 0.594 0.963

Table 8.1: The table shows the number of nanoseconds per bit it takes to sort a single
uniform random uint64 t element given a key of a specific size. The fastest times are
marked with a green background. For inputs larger than 221, reducing the size of the key,
and therefore the number of partition insertions points, increases the runtime performance.

44

Geometric Random Input - uint64 t
Size Byte Short 12 bit 11 bit 10 bit 9 bit 8 bit 7 bit 6 bit
212 0.531 5.569 0.977 0.741 0.533 0.605 0.678 0.598 0.495
213 0.455 2.010 0.562 0.393 0.377 0.364 0.483 0.400 0.558
214 0.388 1.116 0.409 0.353 0.335 0.342 0.646 0.417 0.532
215 0.397 0.780 0.340 0.361 0.345 0.353 0.455 0.390 0.466
216 0.402 0.583 0.335 0.338 0.366 0.362 0.458 0.519 0.529
217 0.429 0.414 0.342 0.359 0.347 0.392 0.423 0.476 0.692
218 0.424 0.354 0.367 0.454 0.376 0.479 0.534 0.554 0.666
219 0.456 0.275 0.385 0.426 0.471 0.472 0.566 0.657 0.753
220 0.458 0.301 0.399 0.421 0.486 0.518 0.587 0.668 0.673
221 0.441 0.280 0.401 0.444 0.472 0.495 0.604 0.653 0.755
222 0.463 0.278 0.385 0.433 0.459 0.522 0.591 0.664 0.757
223 0.432 0.279 0.386 0.427 0.487 0.522 0.544 0.621 0.775
224 0.446 0.283 0.392 0.432 0.460 0.517 0.567 0.655 0.728
225 0.450 0.283 0.397 0.423 0.469 0.512 0.572 0.646 0.733
226 0.437 0.289 0.392 0.425 0.466 0.516 0.577 0.637 0.732
227 0.439 0.279 0.397 0.429 0.465 0.509 0.571 0.641 0.732
228 0.445 0.281 0.394 0.420 0.464 0.512 0.570 0.637 0.729
229 0.443 0.282 0.395 0.428 0.468 0.513 0.572 0.645 0.734

Table 8.2: The table shows the number of nanoseconds per bit it takes to sort a single
geometric random uint64 t element given a key of a specific size. The fastest times are
marked with a green background. This table shows the opposite results of the uniform
random input 8.1. This is because for a geometric random distribution, most elements
will be in the range of 0 to 5. As a result, there will only be approximately six partition
insertion points. This means that all key sizes are doing the same amount of work, while
the larger key sizes are being normalised to a greater extent, leading to comparatively
lower times.

45

Geometric Random Input - uint64 t - Partition Normalised
Size Byte Short 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit
212 0.708 14.851 1.017 0.797 0.578 0.903 0.529 0.529
213 0.607 5.360 0.725 0.533 0.651 0.541 0.573 0.525
214 0.517 2.976 0.969 0.556 0.621 0.596 0.541 0.529
215 0.529 2.080 0.682 0.520 0.544 0.601 0.567 0.557
216 0.536 1.555 0.687 0.692 0.617 0.585 0.576 0.673
217 0.572 1.104 0.634 0.635 0.807 0.761 0.647 0.620
218 0.565 0.944 0.801 0.739 0.777 0.792 0.778 0.803
219 0.608 0.733 0.849 0.876 0.878 0.867 0.784 0.854
220 0.611 0.803 0.880 0.891 0.785 0.875 0.877 0.863
221 0.588 0.747 0.906 0.871 0.881 0.884 0.864 0.857
222 0.617 0.741 0.887 0.885 0.883 0.883 0.833 0.865
223 0.576 0.744 0.816 0.828 0.904 0.885 0.858 0.849
224 0.595 0.755 0.850 0.873 0.849 0.872 0.855 0.837
225 0.600 0.755 0.858 0.861 0.855 0.843 0.853 0.880
226 0.583 0.771 0.866 0.849 0.854 0.848 0.849 0.857
227 0.585 0.744 0.857 0.855 0.854 0.859 0.854 0.855
228 0.593 0.749 0.855 0.849 0.850 0.862 0.858 0.863
229 0.591 0.752 0.858 0.860 0.856 0.857 0.858 0.858

Table 8.3: The table shows the number of nanoseconds per partition it takes to sort a
single geometric random uint64 t element given a key of a specific size. It is clear from
the table that a key that is a byte is the fastest per partition than any other key size.

46

8.4 Conclusion

In conclusion, this chapter found that having a six bit key for inputs greater than 222

elements results in faster runtime performance compared to any other key size on uniform

random inputs 8.1. For uniform random inputs smaller than 222 elements or geometric

random inputs 8.3, the more optimised byte key size is preferred for runtime performance.

The effect of the key size can be explain by the additional cost of TLB misses per element

load and store. Additionally, the TLB model does seem to be useful for predicting the

size of key to use for Ska Sort and radix sort.

47

Chapter 9

Fallback Threshold

Radix sorting algorithms such as American Flag Sort and Ska Sort perform relatively

poorly on small input sizes in comparison to comparative sorting algorithms such as

std::sort (Knuth (1998)). This is because just under half of the runtime of these radix

sorting algorithms is counting the number of each digit in the input as found in Chap-

ter 4. This time spent counting, is time that could be spent swapping elements to their

sorted position. It is therefore common to see fallback algorithms found in radix sorting

algorithms. For example, American Flag Sort fallback to insertion sort below a certain

threshold (McIlroy et al. (1993)).

In addition to this, using a comparative sorting algorithm sorts elements into their

final sorted positions. This means that no further Ska Sort passes are required on the

input ranges that were sorted using std::sort. With Ska Sort, sorting uniform random

32-bit numbers with an 8-bit key takes four passes. The first pass generates 256 parti-

tions, each of which will be sorted in a second pass. In the second pass, each of these

256 partitions will create 256 more partitions. By the time the algorithm is on its last

pass, 2564 partitions will have to be sorted, most of which will contain a small number

of elements. By using a comparative sorting algorithm for small partitions, no additional

partitions will be created within that input range, therefore decreasing future work.

The objective of this chapter is to answer the following questions: At what input

size is it quicker to fully sort an array with std::sort compared to a partition using Ska

Sort? Additionally, American Flag Sort is used as a fallback to Ska Sort in the original

implementation. Is it faster to use American Flag Sort to sort a partition compared to

Ska Sort, and if so at what input sizes?

48

9.1 Method

To answer these two questions, two different tests were run. The first of which is to find

at what input size is std::sort quicker at sorting the entire input compared to Ska Sort

sorting a single pass. To do this the average time in nanoseconds to sort a single element

using std::sort and a single element using one pass of Ska Sort were compared for a range

of input sizes. By creating these runtimes, the crossover point can be determined and

thus the std::sort fallback threshold can be set.

To answer the second question, I ran a similar experiment to compare the average

time taken to sort a single element of one Ska Sort pass to a one American Flag Sort pass.

Using these runtimes, the crossover point can be used as the fallback threshold for one

pass of American Flag Sort.

9.2 Results

After generating the runtimes for the std::sort and one pass Ska Sort, as found in figure

9.2, it was found that the std::sort fallback threshold should be set at 88 or 96 elements.

However, it is likely that a higher threshold would result in better runtime performance.

This is because when one pass of Ska Sort is done, more partitions are created which have

to be sorted again. This does not happen with std::sort, where all sorted elements are in

their final position and do not have to be swapped around in another pass. As a result,

it is likely that a higher fallback threshold would improve performance since this method

of getting the fallback threshold does not account for std::sort’s removal of future passes.

The original Ska Sort (Skarupke (2024)) implementation uses 128 input size as a fallback

threshold for std::sort which is 33.33% higher fallback threshold.

The above std::sort fallback threshold reduces the total number of partitions sorted

from 277,065,198 to 16,843,006, a 16.45 times reduction, on 228 uint64 t uniform random

elements. In addition to this, the runtime is reduced by a factor of 3.59 times from 17.52

seconds with no fallback algorithms to 4.88 seconds using the 96 element std::sort fallback

threshold.

After generating the runtimes for one pass of American Flag Sort and one pass of Ska

Sort, as shown in figure 9.2, it was found that the American Flag Sort fallback threshold

should be set at 1500 or 1600 elements. Since both the counting stage and offset genera-

tion stage of these algorithms are both the same, this means that the sorting stage of the

49

Figure 9.1: This graph shows the average time to sort one element of
input across a range of input sizes for std::sort and one pass of Ska Sort.
The runtimes of both of these algorithms cross at approximately 88 to
96 elements, meaning std::sort is faster than a single pass of Ska Sort
for inputs smaller than 96.

American Flag Sort for values below this threshold is faster compared to Ska Sort.

Using these fallback thresholds, the runtime effects of the custom and default fallback

thresholds can be compared as shown in figure 9.3. The custom threshold shows a light

improvement over the current fallback thresholds.

50

Figure 9.2: This graph shows the average time in nanoseconds to sort
one element of input across a range of input sizes for one pass of Amer-
ican Flag Sort and one pass of Ska Sort. The runtimes of both of these
algorithms cross at approximately 1500 to 1600 elements.

51

Figure 9.3: This graph shows the average time in nanoseconds to sort
one element of input across a range of uniform random input sizes for Ska
Sort with a custom and default fallback threshold. The custom thresh-
olds are 96 elements for the std::sort fallback, and 1550 elements for the
American Flag fallback. The custom fallback threshold is marginally
faster than the default implementation across most input sizes.

52

9.3 Conclusion

In conclusion, this chapter has found that, at approximately 100 element sized inputs, it

is beneficial to fallback to std::sort for two reasons. The first reason is because std::sort is

faster at sorting the input array compared to doing one Ska Sort pass. And secondly, it

reduced the total number of partitions to sort by a factor of sixteen leading to an increase

in runtime performance. However, there is only a small difference between the runtimes

for the custom and default fallback thresholds.

9.3.1 Further Work

Due to time restraints, the reason why American Flag Sort is faster than Ska Sort for

inputs sizes less than approximately 1500 to 1600 has not been investigated. Additionally,

there could be another method of determining what fallback thresholds would give the

fastest runtime, that is not mentioned in this paper.

53

Chapter 10

Improved Integer Sort

The Boost (Boost (2024)) library contains a number of highly optimised sorting algo-

rithms. This library contains a specialised sorting algorithm for integers called integer

spreadsort which is the go-to algorithm for sorting integers because of its runtime perfor-

mance. Integer spreadsort’s permute swapping algorithm is fundamentally very similar to

the American Flag Sort strategy, where elements are swapped to their correct partition

and only move on to the next element when a key is moved to the current partition. This

paper creates and studies an updated algorithm that swaps integer spreadsort’s current

permute iteration strategy with the strategy found in Ska Sort to see if similar performance

gains can be found.

10.1 Background

Integer spreadsort is similar to the American Flag Sort algorithm in that the mains stages

are similar: Generate the histogram of the digits in the input array, creating the offsets

and final offsets using a prefix sum, swapping elements into the correct position based on

the offsets, and finally recursively sorting the partitions using the next digit or using a

fallback sorting algorithm. The main difference between these algorithms is that instead

of having a partition for each unique key value as in American Flag Sort, integer spread-

sort puts a range of values into the one partition. This is done using integer division. For

example, if all key values are divided by 100, then values from 0 to 99 will result in a

partition index of 0, values from 100 to 199 will result in a partition index of 1 and so on.

Using this method a range of values can be put into the one partition.

The background section in Chapter 6 contains important information, particularly

about the CPU performance counters, which is also relevant to this chapter.

54

10.2 Implementation

The code listing for the full implementation of this algorithm can be found in the appendix

entry 1.

10.3 Method

To test if this Ska’s sorting iteration method provides a runtime improvement, the two

algorithms were tested using three datasets: random uniform values, random geometric

values with a distribution parameter of 0.8, and sorted values. The algorithms were tested

using the following types: uint8 t, uint16 t, uint32 t, and uint64 t, using a range of input

sizes from 212 to 229. In addition to this, single pass versions of the algorithms were also

tested to show the per pass performance. The algorithms were run ten times and timed

using the C++ chrono library’s high resolution clock.

10.4 Results

It is important to note that the same potential data issues about the Intel VTune CPU

performance counter data from Chapter 6, section 6.3 applies to this chapter’s results as

well.

This section presents the results of the testing mentioned in the Method section. Both

the single pass 10.1 and the full sort 10.2 on uniform random values are graphed showing

the time taken to sort one element on the y-axis, and across a range sizes on the log-scaled

x-axis. These results show that the change of iteration method to the Ska Sort method

leads to a significant performance increase.

The runtime results for geometric random inputs, as shown in figure 10.3 and 10.4,

show that the Ska Sort permute stage partition iteration method performs better than

the original integer spreadsort implementation even when the elements are primarily in a

single partition. The already sorted results, as shown in figure 10.5, show no performance

difference. This is because there is a check to see if the input array is already sorted before

swapping the elements.

Table 10.1 shows a list of performance counters. The number of instructions the CPU

can execute per cycle for the original implementation is significantly 2.85 times lower than

the implementation with the Ska Sort permute iteration method as shown by the IPC

55

Figure 10.1: The average time to sort one element in a single pass on
uniform random uint64 t inputs against various input sizes is graphed.
On inputs greater than 10,000, the average time to sort one element
when doing a single pass is faster with the Ska Sort iteration method
compared to the original implementation. On inputs with multiple mil-
lion elements, the custom spreadsort is approximately three times faster.

values. According to the Memory Bound Slots metric, the original implementation also

has a significantly higher percentage of execution units stalled while there were mem-

ory instructions being executed compared to the implementation with the Ska iteration

method. This suggests that the original implementation stalls more because it is waiting

for swapped elements to fully propagate into their memory locations before reading the

current value again. This issue is reduced with the Ska iteration method because in most

cases the algorithm moves on to read a different element. Therefore, the current read

instruction does not have to wait for the previous store instruction value to be propa-

gated into memory, because they are loading and storing from different locations, thus

reducing the number of data dependency stalls. The original implementation reports 7.15

times more CPU stalls compared to the implementation with the Ska iteration method.

This suggests that stalls from data dependencies can be avoided using the Ska iteration

method, thus increasing runtime performance.

56

Figure 10.2: The average time to sort one element on uniform random
uint64 t inputs against various input sizes is graphed. The spreadsort
implementation that uses the Ska Sort iteration method is faster for all
the graphed input sizes.

Input Size: 268,435,456 uint64 t elements
CPU Metric Spreadsort Spreadsort + Ska Iteration
VTune - IPC 0.92 2.62

VTune - Core Bound Slots 11.3% 23.9%
VTune - Memory Bound Slots 74.8% 38.3%

VTune - Total Stalls 29,328,087,984 4,104,012,312

Table 10.1: This table shows a comparison of the IPC, percent of core bound execution
slots, percent of memory bound execution slots, and the total number of stalls for each
algorithm. Each algorithm was run on 228 input uint64 t elements. The spreadsort shows
worse performance in all measurements except for percent of core bound execution slots.

57

Figure 10.3: The average time to sort one element in a single pass on
geometric random uint64 t inputs against various input sizes is graphed.
The average time to sort one uint64 t element when doing a single pass
is consistently faster with the Ska sorting iteration method.

58

Figure 10.4: The average time to sort one element on geometric random
uint64 t inputs against various input sizes is graphed. The average time
to sort one uint64 t element when doing a single pass is consistently
faster with the Ska sorting iteration method.

59

Figure 10.5: The time taken to sort already sorted inputs for both
algorithms are approximately equal. This is because the spreadsort
algorithms checks to see if the input is already sorted before it starts
the sorting process. Therefore, no runtime improvements can be realised
with already sorted inputs.

60

10.5 Conclusion

It was found that, on a range of input sizes and distributions, replacing integer spreadsort’s

permute stage iteration method with Ska Sort method increases the runtime performance

by up to three times. This performance improvement can be seen in both the single pass

and full passes data and figures. Based on the CPU performance counters, it is likely

that the Ska iteration method is faster because it reduces the number of stalls from data

dependencies.

10.5.1 Further Work

From the results, it seems like the change in permute stage iteration is not an American

Flag Sort or Integer Spreadsort specific improvement. Other radix sorting algorithms

could potentially be improved by changing the iteration strategy to Ska Sort’s.

61

Bibliography

Allan, V. H., Jones, R. B., Lee, R. M., and Allan, S. J. (1995). Software pipelining. ACM

Comput. Surv., 27(3):367–432.

Amato, N., Iyer, R., Sundaresan, S., and Wu, Y. (1998). A comparison of parallel sorting

algorithms on different architectures. Technical report, Texas A & M University, USA.

Boost (2024). Boost.org: https://www.boost.org/.

cppreference (2024a). std::geometric distribution - cppreference.com.

cppreference (2024b). std::uniform int distribution - cppreference.com.

Dr Richard Gibbens (2016). University of cambridge teaching resources:

https://www.cl.cam.ac.uk/teaching/1516/compsysmod/expfn.pdf.

Hennessy, J. L. and Patterson, D. A. (2011). Computer Architecture, Fifth Edition: A

Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

5th edition.

IBM, I. (2024). Getting started with the perf command.

Intel Corporation (2024a). Intel intrinsics guide:

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html.

Intel Corporation (2024b). Intel vtune release notes:

https://www.intel.com/content/www/us/en/developer/articles/release-notes/vtune-

profiler-release-notes.html.

Knuth, D. E. (1998). The art of computer programming, volume 3: (2nd ed.) sorting and

searching. Addison Wesley Longman Publishing Co., Inc., USA.

Maus, A. (2015). A full parallel quicksort algorithm for multicore processors. In A full

parallel Quicksort algorithm for multicore processors.

62

McIlroy, P. M., Bostic, K., and McIlroy, D. (1993). Engineering radix sort. Comput. Syst.,

6:5–27.

Obeya, O., Kahssay, E., Fan, E., and Shun, J. (2019). Theoretically-efficient and practical

parallel in-place radix sorting. In The 31st ACM Symposium on Parallelism in Algo-

rithms and Architectures, SPAA ’19, page 213–224, New York, NY, USA. Association

for Computing Machinery.

Polychroniou, O. and Ross, K. A. (2014). A comprehensive study of main-memory parti-

tioning and its application to large-scale comparison- and radix-sort. In Proceedings of

the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD

’14, page 755–766, New York, NY, USA. Association for Computing Machinery.

Rahman, N. and Raman, R. (2002). Adapting radix sort to the memory hierarchy. ACM

J. Exp. Algorithmics, 6:7–es.

Skarupke, M. (2016). Ska sort article: https://probablydance.com/2016/12/27/i-wrote-

a-faster-sorting-algorithm.

Skarupke, M. (2024). Ska sort source code: https://github.com/skarupke/ska sort.

63

Appendix

1 template <typename T>

2 static void my_spreadsort_ex(T *input , size_t input_start , size_t input_end ,

size_t *offsets , std::vector <size_t > &final_offsets_cache , size_t

cache_offset)

3 {

4 // Find smallest and largest values

5 T *max , *min;

6 bool already_sorted = is_sorted_or_find_extremes <T *>(input + input_start ,

input + input_end , max , min);

7 if (already_sorted) {

8 return;

9 }

10

11 // Calcualte number of bins (partitions)

12 unsigned int log_divisor = get_log_divisor <int_log_mean_bin_size >(input_end -

input_start , rough_log_2_size (*max - *min));

13 size_t div_min = (*min) >> log_divisor;

14 size_t div_max = (*max) >> log_divisor;

15 unsigned int bin_count = (unsigned int)(div_max - div_min) + 1;

16

17 // Allocate partition final offsets

18 size_t cache_end = cache_offset + bin_count;

19 if (cache_end > final_offsets_cache.size()) {

20 final_offsets_cache.resize(cache_end);

21 }

22 size_t *final_offsets = final_offsets_cache.data() + cache_offset;

23

24 // Count number of elements in each partition

25 memset(offsets , 0, bin_count * sizeof (* offsets));

26 for (size_t i = input_start; i < input_end; i++) {

27 ++ offsets [(input[i] >> log_divisor) - div_min];

28 }

64

29

30 // Calculate offsets and final offsets using prefix sum

31 size_t total = 0;

32 for (int i = 0; i < bin_count; ++i) {

33 size_t count = offsets[i];

34 offsets[i] = total;

35 total += count;

36 final_offsets[i] = total;

37 }

38

39 // Sort elements into their partitions

40 while (true) {

41 int sorted_bin_count = 0;

42 for (unsigned int i = 0; i < bin_count; ++i) {

43 size_t local_bin_start = offsets[i];

44 size_t local_bin_end = final_offsets[i];

45 if (local_bin_start == local_bin_end) {

46 ++ sorted_bin_count;

47 continue;

48 }

49

50 for (size_t p = local_bin_start; p < local_bin_end; ++p) {

51 T current = input[input_start + p];

52 size_t bin_index = (current >> log_divisor) - div_min;

53 size_t swap_location = input_start + offsets[bin_index];

54 input[input_start + p] = input[swap_location];

55 input[swap_location] = current;

56 ++ offsets[bin_index];

57 }

58 }

59

60 if (sorted_bin_count >= bin_count - 1) {

61 break;

62 }

63 }

64

65 // Return if all digits have been sorted

66 if (! log_divisor) {

67 return;

68 }

69

65

70 // Recursively sort partitions

71 size_t max_count = get_min_count <int_log_mean_bin_size ,

int_log_min_split_count , int_log_finishing_count >(log_divisor);

72

73 size_t next_partition_start = input_start;

74 for (size_t i = 0; i < bin_count; ++i) {

75 size_t next_partition_end = input_start + final_offsets_cache[cache_offset +

i];

76 size_t next_partition_size = next_partition_end - next_partition_start;

77 if (next_partition_size <= 1) {

78 next_partition_start = next_partition_end;

79 continue;

80 }

81

82 if (next_partition_size < max_count) {

83 boost::sort:: pdqsort(input + next_partition_start , input +

next_partition_end);

84 } else {

85 my_spreadsort_ex <T>(input , next_partition_start , next_partition_end ,

offsets , final_offsets_cache , cache_end);

86 }

87

88 next_partition_start = next_partition_end;

89 }

90 }

91

92 template <typename T>

93 static void my_spreadsort(T *input , size_t count)

94 {

95 constexpr size_t offset_count = 4096;

96 size_t offsets[offset_count] = { 0 };

97 std::vector <size_t > final_offset_cache = {};

98 my_spreadsort_ex(input , 0, count , offsets , final_offset_cache , 0);

99 }

Listing 1: Full code listing for integer spreadsort with Ska Sort’s permute stage partition

iteration method. Function implementations that can be found in the Boost library such

as is sorted or find extremes, get log divisor, and boost::sort::pdqsort are not mentioned

in the code listing.

66

	Abstract
	Acknowledgments
	Chapter Introduction
	Motivation
	Research Questions
	Research Objective
	Dissertation Outline

	Chapter State of the Art
	Background
	American Flag Sort
	Ska Sort
	Terminology

	Related Work

	Chapter Unsorted Items Remaining After One Iteration Through All Partitions
	Terms and Lemmas
	Terms
	Lemmas

	Proof
	Results
	Comparison To Real-World Results
	Proportions Approaching a Constant Value
	Iterations Until Fully Sorted

	Conclusion
	Further Work

	Chapter Faster Counting
	Background
	Method
	Results
	Conclusion
	Further Work

	Chapter Unsorted Partition Tracking
	Background
	Custom std::partition
	No Partition Tracking
	Swap-to-end
	C++ bitset

	Method
	Results
	Conclusion

	Chapter Iteration Strategy
	Background
	CPU Pipelining
	Data Dependencies/Hazards in a Pipelined CPU
	CPU Performance Counters

	Method
	Results
	Conclusion

	Chapter Permute Stage For-Loop Unrolling
	Background
	Method
	Results
	Conclusion

	Chapter Key Size Effects
	Background
	Method
	Results
	Conclusion

	Chapter Fallback Threshold
	Method
	Results
	Conclusion
	Further Work

	Chapter Improved Integer Sort
	Background
	Implementation
	Method
	Results
	Conclusion
	Further Work

	Bibliography
	Appendices

