
Scalability of existing MARL Frameworks for

Multi-Lane On-Ramp Merging of CAVs in Mixed

Traffic Scenarios

Sai Bala Subrahmanya Lakshmi Kanth Rayanapati, MCS

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Masters in Computer Science

Supervisor: Dr. Melanie Bouroche

April 2024



Scalability of existing MARL Frameworks for

Multi-Lane On-Ramp Merging of CAVs in Mixed

Traffic Scenarios

Sai Bala Subrahmanya Lakshmi Kanth Rayanapati, Masters in Computer Science

University of Dublin, Trinity College, 2024

Supervisor: Dr. Melanie Bouroche

Recent improvements in autonomous driving have the potential to revolutionise trans-
portation systems by improving traffic safety and efficiency and reducing traffic conges-
tion. However, even with the current advancements, the seamless integration of Connected
Autonomous Vehicles (CAVs) into complex mixed traffic scenarios like highway on-ramp
merging still remains a substantial challenge.

Existing approaches to highway on-ramp merging are predominantly focused on single-
lane highway on-ramp merging scenarios and often overlook the scenarios where multi-lane
on-ramps exist, leaving the behaviour of the CAVs highly unknown in such scenarios. So,
to address this crucial gap, this dissertation explores the scalability of existing Multi-
Agent Reinforcement Learning (MARL) frameworks to a multi-lane highway on-ramp
merging scenario of CAVs in mixed traffic. This dissertation extends the “highway-env”
merge simulation environment to include an additional lane on the on-ramp and tests the
scalability of the MAPPO, MADQN, and MAACKTR algorithms.

The results show that the MAPPO algorithm is highly efficient and scalable to the
modified (multi-lane on-ramp) environment. In contrast, MAACKTR and MADQN al-
gorithms show inconsistent performance and are not scalable to the multi-lane on-ramp
environment.
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Chapter 1

Introduction

This chapter introduces the work by �rst discussing the background (Section 1.1), then

highlights the motivation behind the work (Section 1.2) before presenting the research

question addressed (Section 1.3). It then summarises the contributions of this work (Sec-

tion 1.4) before concluding with the report roadmap (Section 1.5).

1.1 Background

Over the past few years, there has been a surge of enthusiasm surrounding self-driving

Autonomous Vehicles (AVs), particularly Connected Autonomous Vehicles (CAVs) and

their integration into the current world. Rapid advancements in the �elds of Arti�cial

Intelligence (AI), electronics, information and communication technologies have played a

signi�cant role in the growth of autonomous driving technologies Rosique et al. [2023].

This enthusiasm is led by the potential of AVs to revolutionise transportation systems by

increasing safety and e�ciency Pendleton et al. [2017]. The autonomous vehicle market is

estimated to grow with an average annual growth rate of approximately 20.75% Statista

[2023], and by 2030, AVs are estimated to be 76% less likely to be involved in tra�c

accidents than human-driven vehicles (HDVs) Statista [2024].

Over the years, many automotive companies have heavily invested in autonomous driv-

ing technologies to capture the growing demand for AVs Rauniyar et al. [2018]. Waymo

(formerly the Google self-driving car project) Waymo LLC [2024], Tesla Tesla, Inc. [2024],

and General Motors (GM) General Motors [2024] are the industry leaders in developing

and deploying autonomous driving technologies Nikitas et al. [2017]. Other major compa-

nies, such as Volvo, Toyota, and Ford, are actively researching and have announced plans

to launch fully AVs in the near future, indicating a signi�cant shift in the automotive

industry towards autonomous driving Rauniyar et al. [2018].
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Recognising the potential of AVs in enhancing safety and e�ciency, governments

worldwide are actively supporting the development of autonomous driving technologies.

Recently, the government of UK has funded£150 million to boost the development of au-

tonomous driving technologies Centre for Connected and Autonomous Vehicles [2023]. In

November 2016, the European Commission adopted a Cooperative Intelligent Transport

Systems (C-ITS) strategy to converge the investments and regulatory frameworks across

the EU to develop and deploy mature C-ITS European Commission [2024]. Further,

there is an ongoing e�ort to establish a standardised framework following international

standards for ensuring the reliability and safety of AV systems Tak�acs et al. [2018].

Although AV technologies o�er various bene�ts, in their current stage of development,

there are numerous safety and ethical challenges in integrating AVs and CAVs into public

tra�c networks Martens and van den Beukel [2013]. While companies are actively re-

searching into these safety and cybersecurity concerns, accidents involving AVs cannot be

eliminated entirelyAndreia Martinho and Chorus [2021]. Studies show that the number of

accidents caused by AVs has increased with the increase in AVs on public road networks

Wong et al. [2022]. Notable incidents involving AVs include the 2016 Tesla accident Shep-

ardson [2017] and the 2018 Uber accident CNN [2023]Mayer et al. [2023]. These incidents

highlight the challenges that AVs and CAVs face in adapting to the conventional tra�c

infrastructure and navigating complex tra�c situations, such as lane changing, tra�c

congestion, and on-ramp merging Lengyel et al. [2020].

The automotive industry is actively exploring the potential of multiple-vehicle coop-

eration to enhance the safety and e�ciency of AVs Muzahid et al. [2023]. While AVs

operate independently using internal sensors, CAVs communicate with their surrounding

vehicles, infrastructure, and other entities to reduce accidents Tang and He [2020]. CAVs

improve their decision-making strategies by facilitating real-time information exchange

between the vehicles and their environment Susilawati et al. [2023]. They have the poten-

tial to address various complex tra�c challenges like lane changing, tra�c congestion, and

on-ramp merging safely and e�ciently. However, this integration is not straightforward

as the CAVs must not only act as individual vehicles but also have to interact with the

surrounding vehicles and the environment to perform safe and e�cient actions.

In conclusion, CAVs represent a signi�cant advancement in the automotive industry,

potentially enhancing safety and e�ciency. While they o�er numerous bene�ts, a few

challenges must be addressed to ensure their successful integration into the public tra�c

network. This sets the stage for exploring multi-lane merging strategies to enable safe

and e�ective on-ramp merging of CAVs in mixed tra�c conditions.
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1.2 Motivation

The rapid advancements in the �eld of Connected Autonomous vehicles (CAVs) have

got the potential to revolutionise the transportation system by improving tra�c safety,

e�ciency, and reducing tra�c congestion.

In ideal scenarios where CAVs operate in a CAV-only environment, implementing

CAV technologies can signi�cantly improve tra�c safety and overall tra�c management

as the behaviours of CAVs are predictable and uniform. However, with current CAV

technologies, this transition from a world with Human Driven Vehicles (HDVs) to a world

of CAVs will not happen in a day, and HDVs will continue to share the roads with CAVs

for the foreseeable future. So, CAVs must adapt to these scenarios and learn to co-exist

with HDVs that exhibit a wide variety of unpredictable driving styles.

Despite the extensive research in this area, seamless integration of CAVs into complex

mixed tra�c scenarios remains a substantial challenge as the CAVs should not only react

to any potential hazards on the road but also have to factor in the behaviours of the

HDVs sharing the road. CAVs must be able to communicate and adapt to the diverse

behaviours exhibited by both CAVs and HDVs. This diversity in driving behaviours

introduces signi�cant uncertainties that CAVs must navigate to execute safe and e�cient

actions. Even with vast amounts of research being done on various aspects of the CAVs,

these solutions need to be optimised for various scenarios.

One such scenario that requires more research and optimised solutions is the highway

on-ramp merging of CAVs in mixed tra�c. In such complex scenarios, the CAVs must not

only consider the immediate actions of the adjacent vehicles (including both CAVs and

HDVs) but also react according to the overall tra�c ow and behaviour patterns across

multiple lanes to ensure safe and e�cient actions.

Most existing approaches to highway on-ramp merging of CAVs are mainly focused on

scenarios with a single-lane on-ramp (Figure 1.1). While e�ective to a certain degree in

such settings, these approaches are not proven to scale e�ectively to tackle the complexities

posed by multi-lane on-ramps scenarios (Figure 1.2). Multi-lane on-ramps are increasingly

common in urban and suburban highway systems. They are designed to reduce congestion

and improve overall tra�c ow. However, the presence of multiple lanes for merging

further complicates the merging process for the CAVs due to the presence of additional

variables and interactions between the CAVs and HDVs.
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Figure 1.1: Single-lane highway on-ramp Chen et al. [2022].

Figure 1.2: Multi-lane highway on-ramp

Therefore, in this paper, I aim to address the gap in the scalability of the existing

MARL frameworks in accommodating the increased complexity of multi-lane merging

scenarios. In doing so, I seek to extend the existing state-of-the-art frameworks for on-

ramp merging to include multi-lane on-ramp scenarios. Then, I plan to explore the

adaptability and scalability of these existing frameworks in multi-lane merging scenarios.

This research is motivated by the need to develop scalable, e�cient, and safe on-ramp

merging strategies for CAVs in mixed tra�c conditions, with a particular focus on the

primarily underexplored area of multi-lane highway merge ramps. By focusing on multi-

lane merging scenarios, I aim to make a signi�cant contribution to this �eld. Proving the

successful scalability of these existing frameworks to multi-lane merging scenarios would

be a pivotal step towards the integration of CAVs that promote safe and e�cient actions.

1.3 Research Question

The aim of this research is to answer the question :

"Can the existing MARL frameworks for on-ramp merging of Connected Au-

tonomous Vehicles (CAVs) in mixed tra�c conditions be adapted e�ectively

to handle multi-lane merging scenarios?"

1.4 Contributions

The main contribution of my work are as follows:
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ˆ Investigating multiple state-of-the-art MARL frameworks for highway on-ramp merg-

ing.

ˆ Designing and implementing a simulation platform by extending the merge envi-

ronment from "highway-env", to support the evaluation of MARL algorithms over

multi-lane merging scenarios.

ˆ Evaluating the existing frameworks' scalability and performance in multi-lane merg-

ing scenarios.

1.5 Structure of the Report

This section discusses the structure of my dissertation.

1. Chapter 1 begins with a background on Connected Autonomous Vehicles (CAVs),

with a focus on the current landscape. Then, we delve into the motivation for the

dissertation before presenting the research question.

2. Chapter 2 introduces the essential concepts used in this dissertation and further

discusses the related work in this domain.

3. Chapter 3 highlights the simulation environment choice and provides a detailed

analysis of the changes made to the simulation environment to make it suited to

answer our research question. Further, it highlights the challenges and solutions

developed.

4. Chapter 4 o�ers a detailed evaluation of the results of the simulations conducted.

It explains the evaluation metrics, design, and environmental parameters used in

detail. It provides a thorough discussion of the results.

5. Chapter 5 summarises the dissertation by presenting the key �ndings and drawing

conclusions about the study. Finally, it proposes directions for possible future work.
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Chapter 2

Literature Review

This chapter initially discusses the background of Autonomous Vehicles (Section 2.1.1),

Connected Autonomous Vehicles (Section 2.1.2), Reinforcement Learning (Section 2.1.3),

Multi-Agent Reinforcement Learning (Section 2.1.4), highway-env simulator (Section 2.1.5),

and OpenAI Gym (Section 2.1.6). Further it discusses the relevant work done in this do-

main (Section 2.2). Finally, identi�es the gap in the research and indicates the direction

for this research (Section 2.3)

2.1 Background

2.1.1 Autonomous Vehicles (AVs)

Autonomous vehicles (AVs), or self-driving cars, are a signi�cant innovation in transporta-

tion technology, allowing vehicles to operate without human intervention. The primary

functions of an autonomous vehicle revolve around the ability to perceive the environment,

make informed decisions, and execute control without human input Zanchin et al. [2017].

According to their current classi�cations, notable from SAE International, autonomous

driving is described into �ve levels based on the extent of human driver necessity and the

sophistication of automated systems. Level 0 implies no automation, while level 5 repre-

sents full automation, where no Human intervention is required under any circumstances

Ribbens [2017].

AVs are equipped with various sensors like cameras, RADAR, and LIDAR, which work

with Arti�cial Intelligence (AI) and aid in navigating and understanding complex tra�c

scenarios. The transition from human-operated to fully autonomous vehicles involves

integrating these technologies to handle all types of driving traditionally managed by

humans Zanchin et al. [2017].

A true autonomous system operates independently without the need for external in-
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puts or communications; however, when vehicles rely on external communications with

infrastructure or other vehicles for information gathering or navigating, they are part of a

\cooperative" system rather than being fully \autonomous" Connelly et al. [2006]. Despite

their potential, AVs must be capable of understanding and predicting human behaviour

accurately to safely co-exist with human-operated vehicles and pedestrians Rendong Bai

and Liu [2019].

2.1.2 Connected Autonomous Vehicles (CAVs)

Connected Autonomous vehicles represent a transformative progression within the au-

tonomous sector by combining autonomous driving technologies with advanced commu-

nication systems Umberto Montanaro and Mouzakitis [2019]. These vehicles can operate

autonomously for extended periods of time without the need for human involvement,

signi�cantly enhancing vehicle functionality and transportation e�ciency Talebpour and

Mahmassani [2016a]Umberto Montanaro and Mouzakitis [2019]. The capability of CAVs

to revolutionise highway tra�c stabilisation and performance, along with safety, due to

their potential to completely transform modes of transportation, has sparked enormous

recognition.

CAVs encompass the concepts of autonomous vehicles (AVs) and Vehicle to Vehicle

(V2V) Communication. AVs are vehicles where human decision-making is either supple-

mented or entirely replaced by autonomous systems. On the other hand, V2V commu-

nication facilitates wireless connectivity between autonomous vehicles and tower vehicles

within a wireless communication range Ali Alheeti and McDonald-Maier [2017]. Unlike

traditional vehicles, CAVs utilise cooperative capabilities such as a combination of sensors,

Arti�cial Intelligence, and Machine Learning Algorithms. These advanced technologies,

facilitated by the networked communication between the vehicles and the surrounding

infrastructure, enables CAVs to perceive the environment, make decisions and navigate

safely Talebpour and Mahmassani [2016a].

The core technology of CAVs includes complex systems for path planning, vehicle

management, and environment identi�cation. An open platform strategy that makes use

of traditional vehicles and sensors to speed up the development and testing of these in-

novations is considered essential for improving the algorithms that allow CAVs to carry

out challenging autonomous navigating operations Kato et al. [2015].The advancements

of CAVs have inspired a wide array of research, focussing on their interaction with pedes-

trians and cyclists, policy implications, and enhancements in tra�c management Stanciu

et al. [2018]He et al. [2022b]Fagnant and Kockelman [2015].

A primary bene�t of CAVs is their ability to improve tra�c ow and tra�c capacity
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on highways while lowering fuel consumption and environmental impacts by employing

safe and e�cient driving practices Luettel et al. [2012]. These vehicles might not only sig-

ni�cantly lower human error rates that result in collisions but also investigations into the

safety impacts of CAVs on highways and areas prone to accidents reveal that they would

decrease the likelihood of collisions and improve driver awareness of their surroundings

Luettel et al. [2012]Papadoulis et al. [2019a]Zhang et al. [2021]. The concept of CAVs

is built upon ultra-reliable, low-latency communication theories, empowering vehicles to

interact with their environment, transfer crucial data and make data-driven decisions in

real time Yamazato [2017]Khan et al. [2021]. CAVs can constantly change their behaviour

according to the kind of vehicle initiating the communication Martin-Gasulla et al. [2019].

Furthermore, employing game theory to model lane-changing behaviours in connected en-

vironments highlights the crucial overlap between human decision-making processes and

telecommunications in the concepts of CAVs Talebpour et al. [2015].

The rise of CAVs calls for substantial changes to existing road infrastructure to sup-

port the mixed tra�c environments of autonomous and manual-operated vehicles He

et al. [2022b]. While acknowledging the potential limitations in CAVs' ability to per-

ceive information about roads and nearby vehicles, it is essential to recognise that their

decision-making processes may not always be perfect Yao et al. [2021].

The communication framework essential for CAVs involves a range of communica-

tion modes, including vehicle-to-vehicle (V2V), vehicle-to-roadside unit (V2R), vehicle-to-

infrastructure (V2I), vehicle-to-personal device (V2P), and vehicle-to-sensor (V2S) com-

munication. This wide array of communication types underscores the convoluted network

architecture that underpins the seamless operation of CAVs Wang [2023].

2.1.3 Reinforcement Learning (RL)

Reinforcement learning (RL) is a machine learning method that trains agents to make

decisions that maximize the numerical rewardAWS [2023]Sutton and Barto [2020]. Unlike

supervised learning, where the systems are trained on labelled examples, and unsuper-

vised learning, which tries to �nd the hidden structures in unlabeled data, the agent in

Reinforcement learning is not guided through the actions to be done. Instead, it learns

the optimal decision-making strategies through \trial-and-error" exploration of the en-

vironment. Reinforcement learning also considers a \delayed-reward" as the cumulative

reward attained for the learner's actions not only depends on the current reward but also

on all subsequent rewards in the sequence Sutton and Barto [2020]. For example, in a

backgammon game, a reward of 1 might be linked to a state of having moved all one's

pieces o� the board, representing a winning state. While a reward of 0 can be associated
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with all the states leading up to a win. So, the agent's objective would be to maximize

the long-term reward instead of just focusing on the immediate gains Sutton and Barto

[2020].

In reinforcement learning, the agent actively learns through its own experience by

interacting with its environment and receiving rewards for its actions. These rewards can

be both favourable and unfavourable based on the outcomes of the actions taken by the

agent. A positive reward can encourage the agent to repeat its actions, which gradually

leads to the achievement of the goal, and a negative reward discourages the agent from

entering certain undesirable or dangerous situations. Negative rewards act as penalties

that promote the agent to learn and avoid harmful actions Fuchida et al. [2010]. Learning

from these rewards and penalties, the agent gains insights into the actions to take in the

environment to achieve the maximum reward.

Figure 2.1: Basic Reinforcement Learning (RL) Framework Wang et al. [2023]

One of the critical challenges in reinforcement learning is �nding the optimal exploration-

exploitation trade-o�. On the one hand, the reinforcement learning agent needs to select

actions it has not selected before to learn and explore the environment to discover actions

that yield the maximum reward. On the other hand, to obtain a high reward, the agent

must also choose actions that have been successful in the past to acquire the maximum

reward. This balance between exploration and exploitation is necessary for yielding the

highest reward. So, a reinforcement learning agent must try a variety of actions, contin-

uously learning and adapting from strategies that give the maximum cumulative reward
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Sutton and Barto [2020].

In Reinforcement Learning (RL), at each time stept, the transition of the agent from

the current state st 2 S � Rn to the next state st+1 2 S � Rn by taking the action

at 2 A � Rm will result in a reward r t 2 R based on the reward functionR. The

transition of the agent from statest to st+1 is called an iteration, and the sequence of

states that lead to a terminal state is called an episode Doe and Smith [2018] Chen et al.

[2022].

Markov Decision Processes (MDPs)

Most Reinforcement Learning (RL) problems are modelled as Markov Decision Processes

(MDPs) because this framework allows for structured representation and solution of se-

quential decision-making problems with limited feedback. MDPs are mathematical formu-

lations that de�ne the interactions between an agent and its environment through states,

actions, and rewards, helping RL algorithms learn optimal behaviours van Otterlo and

Wiering [2012] Doe and Smith [2018] Hu et al. [2018].

In Partially Observable Markov Decision Processes (POMDPs), where the agent can

only observe part of the state, the MDP is de�ned by a tuple (S; A; R; P;  ) Doe and

Smith [2018] Hu et al. [2018]. Here:

ˆ S is a �nite set of states, i.e., the state space.

ˆ A is a �nite set of actions, i.e., the action space.

ˆ R : S � A � S ! R is the reward function.

ˆ P : S � A � S ! [0; 1] is the state transition probability matrix.

ˆ  2 [0; 1] is the discount factor.

Policy

A policy � in reinforcement learning (RL) is a strategy or a distribution over actions given

the current state Cai et al. [2021] OpenAI [2018]. It is expressed as:

� (a j s) = P(at = a j st = s):

Policies can be of two types:

ˆ Deterministic policies: The actions are determined solely by the current state

Cai et al. [2021] OpenAI [2018].
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ˆ Stochastic policies: A random noise is added to the action chosen by the policy

Cai et al. [2021] OpenAI [2018].

Return

Reinforcement Learning (RL) aims to choose actions that maximise the expected return

value over time Tangkaratt et al. [2018]. The return,Gt , is the total discounted reward

from time step t that guides the agent to make optimal decisions Nguyen et al. [2020]:

Gt = Rt+1 + R t+2 + � � � =
1X

k=0

 kRt+ k+1

Discounted future rewards help interpret the current value of future rewards. The discount

factor  inuences the agent's behaviour by valuing either immediate or delayed rewards;

a  value close to 0 leads to short-sighted evaluations, and a value close to 1 leads to

far-sighted evaluations Xie et al. [2020].

Value Function

In Reinforcement Learning (RL), value functions evaluate the desirability of states or

state-action pairs based on the expected return. These functions are central to determin-

ing the best policies an agent can follow. There are two primary types of value functions:

State Value Function The state value function, denoted asV(s), takes a states as

input and calculates the agent's expected return, or cumulative reward, from following

policy � Winder.AI [N.d.] Karunakaran [2021] Li et al. [2004]. The mathematical expres-

sion is:

V � (s) := E� [G j s] = E�

"
TX

k=0

 kr k j s

#

where:

ˆ G is the return,

ˆ s is the state,

ˆ  is the discount factor,

ˆ r is the reward.
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State-Action Value Function Commonly denoted byQ(s; a), the state-action value

function takes a states and an action a as inputs. It calculates the expected return of

taking action a in state s, under policy � Karunakaran [2021] Xie et al. [2020]:

Q� (s; a) = E�

"
1X

k=0

 kr t+ k+1 j st = s; at = a

#

where:

ˆ G is the return,

ˆ s is the state,

ˆ a is the action,

ˆ  is the discount factor,

ˆ r is the reward.

Bellman Equation

The idea behind the Bellman equation is that the value of the current state is the sum of

the expected value of the immediate reward and the discounted value of the next state.

For a given policy� , the state value functionV � (s) can be expressed by the Bellman

equation as OpenAI [2018] Grosse et al. [2020] face [N.d.]:

V � (s) = E� [Rt+1 + V � (St+1 ) j St = s]

where:

ˆ E� denotes the expected value under policy� ,

ˆ Rt+1 is the reward at the next time step,

ˆ  is the discount factor,

ˆ St+1 is the state at the next time step.

Similarly, the Bellman equation for the state-action value functionQ� (s; a) is given

by OpenAI [2018] Grosse et al. [2020] face [N.d.]:

Q� (s; a) = E� [Rt+1 + Q � (St+1 ; A t+1 ) j St = s; At = a]

The Bellman equation helps in iteratively updating the value functions.
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Optimal Value Functions

The optimal state value function V � (s) is de�ned as the maximum state value function

over all policies:

V � (s) = max
�

V � (s)

whereV � (s) represents the value function under policy� for state s OpenAI [2018].

Similarly, the optimal state-action value function Q� (s; a) is the maximum state-

action value function over all policies:

Q� (s; a) = max
�

Q� (s; a)

where Q� (s; a) represents the state-action value function under policy� for state s and

action a OpenAI [2018].

Optimal Policy

The optimal policy � � is de�ned as being better than or equal to all other policies

OpenAI [2018]. This is expressed as:

� � � �; for all �

This means that for the optimal policy � � , the following statements hold for all statess

and actionsa:

V � � (s) � V � (s) and Q� � (s; a) � Q� (s; a)

A Reinforcement Learning (RL) agent aims to learn the optimal policy

� � : S ! A

that maximises the reward

Rt =
1X

k=0

 kr t+ k

Chen et al. [2022] where:

ˆ r t+ k is the reward at time stept + k,

ˆ  , the discount factor,  2 (0; 1].
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Advantage Function

In Reinforcement Learning, we sometimes do not describe an action as being better in

terms of absolute values. Instead, we can de�ne it as, on average, how much better it

is than the others (relative advantage of the action). This advantage function can be

mathematically represented by OpenAI [2018]:

A � (s; a) = Q� (s; a) � V � (s)

where:

ˆ A � (s; a) denotes the advantage of taking actiona in state s under policy � ,

ˆ Q� (s; a) is the state-action value function,

ˆ V� (s) is the state value function.

Policy Gradient

Policy gradient methods in Reinforcement Learning (RL) focus on directly optimising

the policy by estimating the gradient of the agent's policy with respect to its parameters

Li et al. [2021]. They use gradient ascent to �nd weights and iteratively improve the

expected returns. The policy is updated using the following equation,

r J (� ) = E[r log� � (s; a)A � � (s; a)]

Miller [2023] where:

ˆ r J (� ): The gradient of the objective function with parameters� ,

ˆ r log� � (s; a): The gradient of the logarithm of the policy� ,

ˆ A � � (s; a): The advantage function of taking actiona from state s.

2.1.4 Multi-Agent Reinforcement Learning (MARL)

Multi-Agent reinforcement learning (MARL) is a �eld of study that is an extension of

Reinforcement Learning (RL), where multiple autonomous agents interact within a shared

environment, working towards a common goal to maximise the sum of received rewards.

Each agent receives rewards based on the actions chosen. In contrast to single-agent

reinforcement learning, where the learner interacts with the environment to maximise

their own reward, MARL agents must learn and coordinate their actions with other agents
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in the same environment to achieve common goals or compete against each other MAR

Busoniu et al. [2008].

Similar to Reinforcement Learning (RL), MARL algorithms learn optimal policies

via trial-and-error to maximise the agents' cumulative rewards and returns. A set of

\n" individual agent actions, referred to as joint action, can change the dynamics of the

environment based on the individual rewards of the agents obtained as a result of this

change in the environment.

MARL is a rapidly growing �eld that showcases its adaptability across a broad spec-

trum of �elds, including robotics, game theory, complex systems, distributed control, and

resource management. Multiple agents must interact and coordinate in these �elds to

adapt to the environment and yield maximum rewards. MARL techniques are versatile

and can be applied to various real-world scenarios like autonomous driving that involve

cooperative, competitive, or mixed behaviours of multiple agents. In autonomous driving,

MARL can be utilised to model intelligent agents that exhibit cooperative behaviours to

make collective decisions in complex scenarios like highway on-ramp merging Zhu et al.

[2024].

MARL techniques provide a robust and adaptable framework for tackling various

complex real-world scenarios involving multiple agents.

2.1.5 Highway-env

Highway-env is an open-source, lightweight simulation platform that includes various en-

vironments, such as Highway, Merge, Roundabout, Parking, Intersection, and many more.

It has been developed and maintained by Eduard Leurent Leurent [2018b] since 2018 and

is used for simulating decision-making scenarios in autonomous driving tasks Leurent

[2018c]. Highway-env is lightweight and highly computationally e�cient compared to

other open-source simulators like CARLA and SUMO Sun et al. [2021].

Some Key features of highway-env are:

Realistic Simulation: Highway-env models dynamic vehicle behaviors such as accel-

eration, deceleration, and steering, providing realistic simulations.

Multiple Agents: Supports simulations with multiple vehicles, including Controlled

Autonomous Vehicles (CAVs) and Human Driven Vehicles (HDVs), enabling train-

ing in diverse scenarios.

Customizable: O�ers extensive customization options, allowing adjustments to envi-

ronment features like the number of lanes, vehicle densities, and presence of obsta-
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cles.

Collision Detection and Rewards: Implements collision tracking and assigns rewards

or penalties, aiding in the development of safe and e�cient driving behaviors.

2.1.6 OpenAI Gym

Highway-env is implemented using the OpenAI Gym framework Dinneweth et al. [2022b]

Brockman et al. [2016], a popular open-source library for developing and comparing Rein-

forcement Learning (RL) algorithms Towers et al. [2023]. It was created by OpenAI, but

now it is renamed to \Gymnasium" and is being actively maintained by Farama Foun-

dation. OpenAI Gym provides a wide variety of \gym" environments that can be used

to train and test Reinforcement Learning (RL) agents. These environments can range

from simple 2D environments to control problems like the inverted pendulum, to ad-

vanced environments like Atari video games to complex three-dimensional environments

like simulated robotics Foundation [2023a]Foundation [2023b].

2.2 Related Work

2.2.1 CAVs in Mixed Tra�c Scenarios

Connected and autonomous vehicles (CAVs) perceive their environment using a variety

of sensors, including lidar, cameras, and radar Guanetti et al. [2018]. Considering the

existing shortcomings in the perception process, He et al. [2022a] highlight the need to

prepare road infrastructure for mixed tra�c ow conditions, emphasizing the importance

of addressing the imminent emergence of CAVs He et al. [2022a]. Without this, the

envisioned future of CAVs to Improve tra�c congestion and decrease the accidents caused

by human error may remain unattainable.

Incorporating CAVs into mixed tra�c conditions with human-driven vehicles (HDVs)

can improve tra�c ow stability and throughput and enhance safety Talebpour and Mah-

massani [2016b]. Introducing CAVs into mixed tra�c systems is associated with eco-

driving, emphasizing their importance in signi�cantly reducing energy consumption and

pollutant emissions Wang et al. [2020]. Another critical bene�t of CAVs in mixed tra�c

is the improvement in road safety. Research shows that CAVs signi�cantly reduce acci-

dents, providing compelling safety bene�ts even at low penetration rates Papadoulis et al.

[2019b]. Moreover, dedicated lanes (DL) for CAVs on freeways have proven to enhance

tra�c e�ciency and reduce tra�c conicts in mixed-tra�c scenarios Kim et al. [2023]He

et al. [2022a].
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Despite the potential advantages of CAVs, they also present various security and

privacy concerns Nanda et al. [2019]. The growing levels of automation and connectivity

contribute to intensifying the security threat. This was demonstrated by Charlie Miller

and Chris Valasek in 2015 by successfully hacking into a Jeep Cherokee via the Internet,

exploiting a vulnerability in the vehicle's infotainment system Crede. Additionally, Song

and Ding [2023] highlighted the safety risks associated with the transition of a CAV into

an automated vehicle (AV) in mixed tra�c due to communication failure, indicating a

signi�cant increase in safety risks Song and Ding [2023].

Overall, integrating CAVs into mixed tra�c environments with HDVs holds the po-

tential to improve tra�c ow stability, throughput, and safety. However, careful planning

and management are required to address the safety risks and facilitate a smooth integra-

tion of CAVs into existing tra�c systems.

2.2.2 Communication Protocols in CAVs

A variety of viable wireless access technologies are available for vehicle-to-vehicle and

vehicle-to-infrastructure communication purposes. Within the domain of CAVs, widespread

wireless access technologies consist of communication via satellite, worldwide compatibil-

ity for microwave access (WiMAX), specialized short-range communications, cell phone

networks, and WLAN.

Dedicated Short Range Communications (DSRC)

Dedicated short-range communications (DSRC) underpin the majority of vehicular com-

munications Zhao et al. [2019b]. DSRC has been designed speci�cally to facilitate V2V

and V2I communications with minimal latency and high reliability.

4G/5G Cellular Networks

4G cellular networks have the capability to deliver mobile ultra-broadband internet access

Campos [2017]. Individuals are granted access to a multitude of networks without the

need to switch between them manually. Certain technologies, such as microcell base

stations and mobile communication systems with long-term evolution, are at the disposal

of entities that aim for rapid transmission in particular regions.

WLAN and WiMAX

WLAN is a wireless communication technology that enables highly adaptable access points

to connect to the broader internet. The coverage area of each access point is approximately
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100 meters Deng et al. [2017]. It is simple to expand the range of a WLAN by incorporating

one or more repeaters. The router's physical port limit does not constrain WLAN. As a

result, dozens or even hundreds of devices may be supported.

On the other hand, WiMAX wireless broadband communication technology imple-

ments the IEEE 802.16 speci�cation. For �xed stations, the maximum coverage range of

WiMAX is 50 kilometers Malankar and Shah [2017].

Satellite Communications

Telecommunication signals may be transmitted and ampli�ed via satellite communica-

tion Luo et al. [2019]. It is capable of establishing communication channels between geo-

graphically dispersed signal senders and receivers. The transmission data rate in satellite

communication is restricted to a maximum of one thousand gigabits per second. The

transmission data rate is limited to a maximum of 1000 Mbps. The range of its coverage

extends from 100 km to 6000 km. Typically, satellite communication is linked to a 4G/5G

cellular network in the context of CAVs.

2.2.3 MARL in Autonomous Vehicles

Autonomous vehicles (AVs) are being developed with the goal of reducing the occurrence

of accidents by trying to eliminate human intervention. Recent advancements in the

�eld of autonomous vehicle technologies have introduced increasing automation levels

from level 1(essential assistance) to level 5(denoting full automation). In mixed tra�c

scenarios with both AVs and human drivers sharing the road, challenges arise due to

the unpredictability of human behaviour, making it hard for AVs to adapt to mixed

tra�c scenarios. MARL has emerged as an important �eld of research for designing

decision-making strategies in AVs that consider the unpredictability of human behaviour

and adapt to mixed tra�c scenarios Dinneweth et al. [2022c]. The application of MARL

in the �eld of AVs has proven pivotal for developing adaptive, learning-based decision-

making strategies, which is essential for AVs' co-existence in mixed and fully autonomous

tra�c scenarios Dinneweth et al. [2022c]Zhou et al. [2022b].

The implementation of MARL in the context of AVs is well investigated with its appli-

cations in di�erent scenarios, including cooperative lane changing, tra�c signal control,

and highway on-ramp merging scenarios, demonstrating its adaptability in handling var-

ious complex driving scenarios in mixed tra�c conditions Zhou et al. [2022b]Chu et al.

[2020b]Chen et al. [2022]. Further, the study Lu et al. [2020] explores the implemen-

tation of MARL for hierarchical autonomous decision-making and motion planning of

autonomous vehicles in complex dynamic tra�c scenarios Lu et al. [2020].
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Furthermore, the integration of MARL in autonomous driving scenarios has high-

lighted the potential of MARL in addressing challenges in enhancing communication and

coordination in autonomous vehicles Chen et al. [2021]Xiao et al. [2023]Schmidt et al.

[2022]. In the study Qu et al. [2020a], the authors have demonstrated the capability of

MARL to mitigate tra�c congestion in autonomous vehicle environments by adjusting

the acceleration and speed of di�erent vehicles Qu et al. [2020a].

Overall, the literature review highlights the growing importance of MARL in address-

ing the shortcomings of autonomous vehicle technologies. The continued research in the

�eld of MARL for the improvement in autonomous vehicle technologies has the potential

to revolutionise the future of autonomous vehicles.

2.2.4 MARL in Autonomous Driving

Autonomous driving in urban highway environments presents complex scenarios where

multiple vehicles need to interact with each other frequently to execute safe and e�cient

actions Chen et al. [2019]. Multi-Agent Reinforcement Learning (MARL) frameworks

hold the potential to train the control policies for these vehicles to navigate complicated

scenarios like busy junctions, lane changing, roundabouts and on-ramp merges Lin et al.

[2021]. In navigating such complex scenarios, the agents need to take both continuous

(e.g. steering, acceleration/braking) and discrete actions (e.g. lane changing, turning)

to avoid collisions and perform safe actions Crewe et al. [2023]. An agent interacts with

other agents to receive information like position in the lane, orientation, and speed from

other nearby vehicles in the road network. However, these observations might be a�ected

by factors such as sensor noise and partial observability caused by occlusions, ie. Vehicles

blocking the view of the agent leading to a scenario where the agent can not observe and

communicate with its entire surrounding environment Chu et al. [2020a].

In MARL frameworks for autonomous driving, the reward design is a crucial com-

ponent that considers multiple factors and signi�cantly inuences the agents' behaviour.

Autonomous driving agents are expected to exhibit fast and e�cient driving behaviour

while avoiding collisions. So, a combination of both positive and negative rewards is

typically used in designing the reward structure.

Negative rewards are usually assigned for undesirable actions like causing collisions,

abrupt acceleration/braking (unnatural behaviour), and frequent lane changes Kim et al.

[2021]. These negative rewards discourage the agent from choosing actions that display

unnatural behaviour or cause accidents. On the other hand, positive rewards are assigned

to actions that promote e�cient, safe, and natural driving behaviours, like minimizing

driving times while avoiding collisions Kim et al. [2021]. Assigning these positive rewards

19



encourages the agent to choose actions that promote safe and e�cient driving practices,

contributing to overall tra�c ow and safety.

In this research, we will be considering a multi-agent scenario where all the agents

work towards a common goal of performing safe and e�cient highway on-ramp merging.

2.2.5 Challenges in the Application of MARL to Autonomous

Driving

Applying Multi-Agent Reinforcement Learning frameworks to address the complexities

of Autonomous driving in mixed tra�c scenarios presents various challenges that are

typically not encountered in single-agent scenarios. Most of the challenges arise due to

the presence of multiple agents with conicting goals, continuous optimization of the

policies and the partial observability of the agent's environment.

Non-stationarity caused by learning agents

A vital challenge of the application of MARL in autonomous driving is the problem of

non-stationarity caused due to continuous learning and adaptation of the agents. This will

result in continually changing agents' policies, making it di�cult for them to learn stable

strategies. Each agent adapts to the other agents' policies, whose policies, in turn, adapt

to the changes in other agents, causing cyclic and unstable learning dynamics. This issue

is further complicated as di�erent agents learn at di�erent rates based on rewards and

observations. For example, scenarios like changing tra�c patterns, road conditions, or

actions of other agents require constant adaptation to the evolving environment, making it

di�cult for the agents to learn e�ectively Dinneweth et al. [2022a]. The ability to handle

the issue of non-stationarity is a crucial aspect of MARL frameworks and has been an

area of research. Techniques such as considering the long-term inuence of an agent's

actions Kim et al. [2022], adapting to opponent agents' behaviours, inuencing other

agents' strategies Wang et al. [2021b] have been explored to resolve this issue. Dealing

with non-stationarity is essential for stable and e�cient learning of MARL agents Li et al.

[2022].

Partial Observability

Partial Observability is another signi�cant challenge for MARL frameworks where the

agents lack complete information about the environment's state due to restricted com-

munication between the agents Dinneweth et al. [2022a]Chu et al. [2020a]. In practical

applications like autonomous driving, partial observability is caused by sensor faults and
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occlusions caused by other vehicles blocking the view of the agent's environment Ding

et al. [2022]. For example, in the context of autonomous driving, it is di�cult for the

agents to observe and predict the actions of all the other agents in the shared environment

when their view is blocked by other vehicles Dinneweth et al. [2022a]. Various techniques

like decentralized learning through communication Karten et al. [2023], Integrating knowl-

edge compilation with reinforcement learning Ling et al. [2021], centralized training with

decentralized execution Zhao et al. [2022] have been explored to solve the issue of partial

observability. Further, approaches based on partially observable Markov decision pro-

cesses (POMDPs) Wu et al. [2020] have also been proposed to handle decision-making in

autonomous driving scenarios.

Curse of Dimensionality

Curse of Dimensionality Acito [2023] is another issue for MARL frameworks that refers

to the exponential increase of the state-action space with the increase in the number of

agents, leading to an exponential increase in the learning required, higher computational

complexity, and resources required Wang et al. [2021a]. Due to this issue in scalability,

MARL algorithms face di�culties in achieving complete exploration of the environment,

making it an even bigger issue for autonomous driving Hao et al. [2022]Salem et al.

[2023]. Various approaches like using Observation Embedding and Parameter Noise to

enable scalable Deep MARL Zhang et al. [2019], Policy Distillation and Value Matching

Wadhwania et al. [2019], use of Projection Exploration Tang et al. [2023] have been

proposed to solve this problem of scalability in MARL frameworks.

Addressing these issues by re�ning the learning schemes is essential for developing MARL

frameworks in complex mixed tra�c scenarios.

2.2.6 MARL in Tra�c Signal Control

Multi-Agent Reinforcement Learning has recently gained signi�cant attention for its po-

tential to address complex challenges in mixed tra�c scenarios. The applications of

MARL can be seen extensively in the areas of tra�c control and management, addressing

problems such as tra�c signal control, congestion management and control systems.

Traditional tra�c signal control methods often fall short in dynamic large-scale traf-

�c signal scenarios. These multi-intersection tra�c signal control shortcomings can be

e�ectively addressed by leveraging MARL frameworks. The applicability of MARL in

addressing tra�c signal problems has been extensively researched.

MARL has been proven to e�ectively address the challenges of tra�c demand, tra�c
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jams, and environmental pollution in multi-intersection scenarios in large-scale road net-

works. In the study Hu et al. [2023], the authors develop a decentralised MARL algorithm,

MFDQL-DTC, that independently learns policies for each intersection to improve overall

tra�c e�ciency. The MFDQL-DTC algorithm incorporates traditional tra�c methods,

intelligent control algorithms, and mean-�eld theory to reduce the complexity of joint ac-

tion space and provide improved real-time tra�c signalling in large-scale road networks.

Additionally, MFDQL-DTC is e�cient in handling convergence in large-scale road net-

works and outperforms the current state-of-the-art baseline models like MARL-DSTAN

in terms of scalability and convergence Hu et al. [2023].

Similarly, Qu et al. [2020b] proposed a distributed control method for urban networks,

MSNE-MARL, that integrates the notion of Mixed Strategy Nash-Equilibrium (MSNE)

into the decision-making process of the MARL to prevent disturbance-based tra�c con-

gestion. The integration of MSNE and MARL enhanced the proposed method's ability

to react rapidly and e�ectively to the disturbances in urban networks by accelerating the

convergence process and reducing the learning time. The proposed MSNE-MARL method

outperformed the baseline control strategies, FTC and II-MARL, in various tra�c situa-

tions, demonstrating its e�ectiveness in managing tra�c congestion Qu et al. [2020b].

Additionally, Chu et al. [2020b] proposed the method \Multi-agent Advantage Actor-

critic (MA2C)" that extends the idea of independent Q-learning and independent A2C

to address the challenges in adaptive tra�c signal control in complex tra�c networks.

MA2C method addresses the scalability issues by distributing global control to local RL

agents to make decisions based on local observations and limited communication. This

approach outperforms both independent A2C and independent Q-learning algorithms in

an extensive real-world tra�c network of Monaco city. It proves the adaptability of the

approach in large-scale tra�c signal control scenarios Chu et al. [2020b].

Overall, MARL frameworks demonstrate a wide range of applications in addressing

the shortcomings in tra�c signal control, congestion prevention and tra�c optimisation in

urban networks and have the potential to revolutionise tra�c and congestion management

systems and improve tra�c ow Qu et al. [2020b]Pan et al. [2020].

2.2.7 MARL in Cooperative Lane Changing

Integrating MARL to address the challenges associated with cooperative lane changing of

Connected and Autonomous Vehicles (CAVs) has been pivotal for ensuring safety and en-

hancing tra�c ow. E�cient lane-changing in CAVs helps overtake slow-moving vehicles,

manage tra�c ow and reduce tra�c congestion.

Research shows that data-driven methods such as MARL have emerged as a promising
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and scalable solution to address the complexities of decision-making tasks in highway lane

changing in mixed tra�c scenarios Zhou et al. [2022b]. Treating the lane-changing prob-

lem as a decentralized cooperative MARL problem and incorporating a multi-objective

reward function that accounts for fuel e�ciency, driving comfort, and safety enhanced the

performance of the multi-agent advantage actor-critic network (MA2C) algorithm as pro-

posed in the study Zhou et al. [2022b]. The MA2C algorithm outperforms other similar

MARL algorithms, such as MADQN, MAACKTR, and MAPPO, in various tra�c sce-

narios, displaying scalability, stability, and adaptive performance in response to di�erent

human driving behaviours in mixed tra�c conditions Zhou et al. [2022b].

Most cooperative lane-changing algorithms are developed by considering not only the

physical characteristics of the subject vehicle but also the leading and following vehicles

on the target lane, highlighting the importance of considering the surrounding environ-

ment in developing safe and e�cient lane-changing algorithms Shi et al. [2019]. MARL

algorithms that take into account the surrounding environment involve an agent control-

ling the headway by providing merging advisory services at merging points for e�cient

outer-lane vehicle merging, whilst other agents focus on the lane-changing advisory ser-

vices at advance lane-changing points to control the lane changes in AVs Zhu et al. [2021].

Furthermore, MARL has been used to develop lane-changing algorithms for CAVs in

mixed-tra�c environments, considering the motions of autonomous and human-driven

vehicles(HDVs) before changing lines Zhou et al. [2022b].

The literature review highlights the growing importance of MARL frameworks in ad-

dressing the challenges associated with cooperative lane changing for CAVs in mixed tra�c

scenarios. The application of MARL to tackle the lane-changing problem is a promising

approach to enhancing tra�c ow and safety in CAV operations.

2.2.8 MARL in Highway On-Ramp Merging

On-ramp merging of connected and automated vehicles (CAVs) in mixed-tra�c highway

scenarios is crucial for tra�c management and safety. E�cient and safe merging is crucial

for minimising tra�c congestion and avoiding the risk of accidents. Varying behaviour and

decision-making of di�erent drivers in mixed tra�c scenarios can lead to unpredictable

situations that challenge AVs in reacting to the dynamically changing environment. The

need for coordination and communication between the vehicles further complicates the

on-ramp merging process Chen et al. [2022]. Further, it is highlighted that the prediction

of HDV behaviour and arrival times at on-ramps are crucial for e�ective coordination

within CAVs Ma et al. [2023].

Integrating CAVs into mixed tra�c during highway on-ramp merging has gained sig-
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ni�cant attention in recent research, focusing on developing control strategies and optimi-

sation frameworks that facilitate the e�cient merging of CAVs at highway on-ramps Zhu

et al. [2022]. These strategies ensure safety and minimise delays by optimising merging

times, vehicle trajectories, and platoon coordination Mahbub et al. [2021]Ye et al. [2019].

Furthermore, the potential of decentralised control algorithms to coordinate CAVs in var-

ious tra�c scenarios like highway on-ramp merging has been explored Zhao et al. [2019a].

Adjusting vehicle speed and regulating lane changes are two of the most challeng-

ing tasks that must be completed in on-ramp merging scenarios on urban highways

Amezquita-Semprun et al. [2019]. Various control strategies for CAVs have been proposed

to examine how system vehicles safely and e�ciently navigate the convergence zone Xu

et al. [2019]. Lu and Hedrick [2003] introduced the view of virtual vehicle platooning

and transformed the ramp merging issue into a vehicle-following issue by mapping each

ramp vehicle to the main road. The centralised controller regulates the velocity of every

vehicle in the system to synchronise the moment the vehicle enters the convergence zone

and prevent collisions. Cao et al. [2015] utilised a model predictive control framework to

optimise the vehicle's trajectory and generate an appropriate distance by regulating the

vehicle's speed to guarantee the safety of ramp vehicle merging.

The study Liu et al. [2021] presented a strategy for coordinating CAVs in multilane

tra�c on-ramp convergence. A model of uneven tra�c ow was developed considering

the need for uniformity in tra�c ow across distinct lanes in the multilane scenario.

Furthermore, a reinforcement learning model is developed based on this model to assist

in lane selection to mitigate the congestion in the outside lane that arises from ramp

passenger vehicle merging. The simulation results indicated that fuel economy and tra�c

e�ciency increase constantly until the optimum allowable road capacity is reached, as

vehicle ow and the dispersion of tra�c ow between channels increase.

In the paper Schester and Ortiz [2019], the authors present an extended model that

utilises continuous space of states and actions, integrating a MARL approach to train

the controllers in an idealised environment. It leverages the recent developments in RL

and employs arti�cial neural network (ANN) architectures for function approximation

and policy modelling within the multi-agent Q-learning approach. Further, the research

evaluates the performance of the trained controllers in preventing collisions through var-

ious simulations involving vehicles with diverse behaviours, highlighting the e�ectiveness

of the proposed MARL approach in mixed-tra�c AV scenarios.

Hu et al. [2019] proposes the decision-making with adaptive strategies (IDAS) method

for resolving decision-making challenges associated with autonomous vehicle merging sce-

narios by incorporating driver type and road priority. By integrating driver type and road

priority into self-driving vehicles, the authors aim to empower AVs to autonomously learn
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from the actions of other drivers during interactions and utilise their cooperation to nav-

igate di�erent merging scenarios e�ectively. To address this within a MARL framework,

the study introduced a double critic approach consisting of a centralised and decentralised

action-value function. This method outperformed other approaches in terms of success

rate and merging e�ciency.

Zhou et al. [2022a] proposed a distributed multi-agent deep reinforcement learning

approach for cooperative merging control in connected and automated vehicles (CAVs)

called multi-agent Deep Deterministic Policy Gradient (MADDPG). This approach con-

siders various factors such as energy consumption, rear-end safety, lateral safety, safe

merging distances, and acceleration limits to optimise on-ramp merging scenarios. This

method aims to enhance the e�ciency and safety of on-ramp merging of CAVs. In or-

der to tackle the issue of a dynamic environment that arises from decentralised learning

of CAVs, Nakka et al. [2022] introduces a decentralised framework using MADDPG to

coordinate CAVs during highway convergence. This framework enables the transmission

and implementation of policies acquired by a limited subset of trained CAVs to unlim-

ited CAVs. In addition, it employs a reward function that incentivises high-speed travel,

promoting safer tra�c ow and reducing rear-end and lateral collisions.

Sun et al. [2020] proposes a Cooperative Decision-Making for Mixed Tra�c (CDMMT)

mechanism speci�cally designed to facilitate e�cient and smooth ramp merging of CAVs

and reduce potential conicts that may arise due to the non-cooperative behaviour of

HDVs in mixed tra�c. This study aims to improve tra�c e�ciency and safety in mixed

tra�c scenarios by leveraging discrete optimisation and bi-level dynamic programming.

Additionally, the proposed CDMMT mechanism incorporates optimal control-based tra-

jectory design for CAVs and implements cooperative and non-cooperative behaviours of

HDVs in mixed tra�c. The study also reviews the existing literature on cooperative merg-

ing models and trajectory design for CAVs and e�ciently addresses the limitations of the

current approaches. The CDMMT mechanism addresses the gaps in existing research by

demonstrating smoother and more e�cient ramp merging in mixed tra�c environments

through micro-simulations.

2.2.9 MARL Algorithms

In this research, we will use the multi-agent versions of the ACKTR, PPO, and DQN

algorithms extended in the research by Chen et al. [2022], available at Chen [2023], to

investigate the scalability of the above-mentioned algorithms to a multi-lane on-ramp

merging scenario.
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MAACKTR (Multi-Agent Actor-Critic using Kronecker-Factored Trust Re-

gion)

The Multi-Agent Actor-Critic using Kronecker-Factored Trust Region (MAACKTR) algo-

rithm, an extension of the Actor-Critic using Kronecker-factored Trust Region (ACKTR)

algorithm, is a signi�cant development in the �eld of autonomous driving. ACKTR was

developed at the University of Toronto and New York University by combining actor-

critic methods, trust region optimization, and distributed Kronecker factorization Ope-

nAI [2021]. ACKTR is an actor-critic method that learns the optimal policies by using

Kronecker-factored approximation to optimize the natural gradient Wu et al. [2017].

The version of the MAACKTR algorithm used in this research is a Multi-Agent Re-

inforcement Learning (MARL) framework, which is an extension of the single-agent vari-

ant ACKTR. This was extended in the study Chen et al. [2022] to address the chal-

lenges of highway on-ramp merging of CAVs in mixed tra�c scenarios Chen et al. [2022].

MAACKTR extends the ACKTR approach to a multi-agent setting by sharing the pa-

rameters and allowing the agents to learn collectively Chen et al. [2022].

MAPPO (Multi-Agent Proximal Policy Optimization)

The Multi-Agent Proximal Policy Optimization (MAPPO) framework is the extension of

the single-agent Proximal Policy Optimization (PPO) framework to a multi-agent scenario

Zabounidis et al. [2023]. MAPPO has been successfully used in various multi-agent set-

tings to train the agents and achieves state-of-the-art performance in various cooperative

multi-agent tasks Liang et al. [2023]Parada et al. [2022].

The multi-agent version of the PPO algorithm, MAPPO, used in this research is the

extension of the single-agent variant PPO. This was extended in the study Chen et al.

[2022] to address the challenges of highway on-ramp merging of CAVs in mixed tra�c

scenarios Chen et al. [2022]. By sharing observations and rewards, MAPPO leads to

e�cient navigation in mixed tra�c scenarios.

MADQN (Multi-Agent Deep Q-Network)

The Multi-Agent Deep Q-Network (MADQN) algorithm is a signi�cant advancement

in the �eld of Multi-Agent Reinforcement Learning. It extends the single-agent Deep

Q-Network (DQN) algorithm to multi-agent settings. MADQN agents update their Q-

values by observing the states, exchanging knowledge, and performing actions Ibrahim

et al. [2021]. The MADQN algorithm has been applied in various multi-agent scenarios

and is proven to show e�cient results.
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The Multi-Agent DQN (MADQN) algorithm used in this research is the extension

of the single-agent variant DQN. This was extended in the study Chen et al. [2022] to

address the challenges of highway on-ramp merging of CAVs in mixed tra�c scenarios

Chen et al. [2022]. By encouraging cooperative behaviours, MADQN can enable multiple

agents to learn and update their policies simultaneously.

2.3 Analysis

Analysis of the related work section highlights that most of the work done in the domain

of highway on-ramp merging of CAVs is done on a single-lane on-ramp environment. This

leaves a huge gap in multi-lane on-ramp scenarios, which is often overlooked in previous

research.

So, I decided to explore this area by focusing on the study Chen et al. [2022], which

provides a baseline for the comparison of the performance of the three di�erent MARL

frameworks (MADQN, MAPPO, and MAACKTR) developed for single-lane on-ramp

environments, when extended to a multi-lane on-ramp scenario.
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Chapter 3

Methodology

This chapter briey discusses the research question and my approach to addressing it

(Section 3.1), it explains the reason for choosing highway-env as the simulation environ-

ment (Section 3.2), it then discusses the architecture of highway-env (Section 3.3), then

it delves into details of implementation of the modi�ed simulation environment consisting

of two merging lanes on the on-ramp and the challenges faced along the way (Section 3.4),

and it ends with discussing the evaluation parameters (Section 3.5).

3.1 Introduction

To address the research question of whether existing Multi-Agent Reinforcement Learn-

ing (MARL) algorithms developed for single-lane on-ramp merging of Connected and

Autonomous Vehicles (CAVs) in mixed tra�c scenarios be scaled e�ectively to multi-

lane merging scenarios, lane changing and lane merging in CAVs must be framed as

a Multi-Agent Reinforcement Learning problem because, in any given scenario, we will

have multiple CAVs controlled by MARL algorithms. Answering this research question

would require testing the performance of the MARL algorithms developed for single-lane

on-ramp merging in a multi-lane on-ramp merging scenario.

The existing simulation environments were only designed for and limited to a single-

lane on-ramp. This necessitated the need to modify the existing simulation setup. So, the

single-lane on-ramp simulation environment has been extended to include an additional

lane on the on-ramp to simulate a multi-lane on-ramp merging environment. For the

simulation environment, I decided to use highway-env (Section 2.1.5).

For the choice of the MARL algorithms developed for single-lane on-ramp scenarios, I

chose MAPPO (Section 2.2.9), MADQN (Section 2.2.9), and MAACKTR (Section 2.2.9)

developed in the study Chen et al. [2022]. These frameworks were then used to train
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the agents in the extended multi-lane on-ramp environment to assess their scalability and

performance.

After training the agents using the three MARL frameworks, I evaluated and compared

the results across the single-lane and multi-lane on-ramp scenarios.

3.2 Choice of Simulation Environment

Reinforcement Learning (RL) and Multi-agent Reinforcement Learning (MARL) algo-

rithms modelled for scenarios like lane changing and on-ramp merging of Connected Au-

tonomous Vehicles (CAVs) in mixed tra�c scenarios are mostly tested on tra�c simulators

as it is unsafe and expensive to perform experiments in real-world scenarios. For example,

even running a single real-world experiment involving CAVs would take a lot of time as

the agent must train against various scenarios. Until the agent is well trained, it will

make a lot of random moves to explore its surrounding environment, which can lead to

many accidents. These problems can be overcome by using open-source tra�c simulators

as they are very inexpensive to set up and are a much safer way to enable the agent to

explore various scenarios and train based on the exploration.

There are various tra�c simulators that are designed to replicate real-world driving

scenarios. Some popular ones include Simulation Urban Mobility (SUMO) and highway-

env.

SUMO (Simulation of Urban MObility) Lopez et al. [2018] is an open-source library

designed to handle simulations of large road networks. SUMO is a very powerful tool

for tra�c simulations; however, it does have a few limitations. SUMO depends on other

packages, such as the tra�c control interface (TraCI) package and the Flow package,

to run simulations. Another major downside of the SUMO library is that it is very

computationally expensive, and even a single simulation takes hours to run. Considering

the above drawbacks of SUMO, I decided to explore other simulation environments.

Highway-env Leurent [2018a] follows a minimalistic style and Pythonic implementa-

tion to simulate various tra�c simulation scenarios. Some of the di�erent environment

o�erings available within highway-env are highway, merge, parking, roundabout, etc. The

original implementation of highway-env (2018) does not support multiple autonomous and

connected vehicles in hybrid Multi-Agent Reinforcement Learning settings. However, it

is possible to extend the support of this library to include multiple CAVs. Further, it is

also relatively simple to customise this library to suit the requirements of our simulation

environment.

Inspired by the simplistic implementation and various o�erings of highway-env, I

choose to use highway-env by Eduard Leurent as the simulation environment for this
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research. Since this paper aims to explore the scalability of existing Multi-Agent Rein-

forcement Learning (MARL) approaches to multi-lane on-ramp merging scenarios, using

the merge environment from highway-env was a viable starting point. To further sim-

ply the usability of this library, the study \Deep Multi-agent Reinforcement Learning

for Highway On-Ramp Merging in Mixed Tra�c" Chen et al. [2022] modi�ed the original

highway-env merge environment to include the support of multiple CAVs in a mixed tra�c

scenario. Inspired by this approach, I modi�ed this environment to include an additional

merge lane to the on-ramp.

Figure 3.1: Original Merge environment from highway-env. Blue vehicles are the HDVs
and the green vehicle is the autonomous vehicle.

Figure 3.2: Merge environment modi�ed by Dong Chen Chen et al. [2022]. Green vehicles
are the HDVs and the blue vehicle is the autonomous vehicle.

Figure 3.3: Modi�ed merge environment with additional merge lane. Green vehicles are
the HDVs and the blue vehicle is the autonomous vehicle.

Implementing these changes shown in "Figure 3.3" was not straightforward, and I was

faced with various challenges along the way. These changes are discussed in detail below.
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3.3 Highway-env Architecture

When it comes to the architecture of highway-env, for implementing or modifying any

environment, the RoadNetwork and the Vehicle are the two of the most important class

objects that need to be modi�ed. Their modi�cation is essential because any environment

in highway-env essentially simulates various vehicles on di�erent roads.

The RoadNetwork class is implemented using Lanes and Obstacles. To add an addi-

tional lane to the environment, we �rst have to initialise a lane and then add it to the road

network. In RoadNetwork, a single highway lane is de�ned as a combination of smaller

lanes. For example, as shown in Figure 3.4 , the lane \ad" is de�ned as a combination

of 3 smaller lanes: \ab", \bc", and \cd". Here, \a" is the starting point of the lane, and

\d" is the ending point of the lane. Each lane can be modelled into di�erent types, such

as a straight line or a sinelane (curved lane). Further, we can also de�ne if the lane is

continuous or stripped (a continuous lane does not allow for a lane change, whereas a

striped lane does allow for a lane change).

Figure 3.4: Lane \ad" that is split into 3 smaller roads \ab", \bc", and \cd".

To modify the vehicles simulated on the roads, the MDPVehicle and IDMVehicle

classes that extend the ControlledVehicle class need to be modi�ed. The MDPVehicle

class de�nes the controls for the Connected Autonomous Vehicles (CAVs) in the simulated

environment. The IDMVehicle class de�nes the behaviours of Human-driven vehicles

(HDVs) in the environment. Only the vehicles de�ned by the MDPVehicle class (CAVs)

will be trained using the Multi-Agent Reinforcement Learning (MARL) algorithms. The

MARL algorithms do not train the vehicles de�ned by the IDMVehicles class (HDVs).

However, the internal heuristics logic de�ned in the highway-env code allows the HDVs

to drive without collision and demonstrate the natural behaviours of HDVs.

The environment class de�nes all the lanes and adds them to the road network. This

class will also initialise and spawn the vehicles randomly on the road at di�erent positions.

The modi�ed environment \multi mergeenv v0" consists of one highway lane and two

merge lanes populated with 1-6 CAVs and 1-5 HDVs, depending on the density of the

simulation. Tra�c density \1" spawns 1-3 CAVs and 1-3 HDVs, Tra�c density \2" spawns

2-4 CAVs and 2-4 HDVs, and Tra�c density \3" spawns 4-6 CAVs and 3-5 HDVs. Due to
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time and hardware constraints, tra�c density \2" has been chosen to run the simulations.

It is an excellent middle ground with ample vehicles spawned in the environment to explore

various scenarios. Further, for the purpose of easier representation (Figure 3.5), let us

call the original merge lane on the on-ramp \merge lane 1" and the newly added merge

lane on the on-ramp \merge lane 2".

Figure 3.5: Modi�ed highway-env merge environment. Blue vehicles are the CAVs and
the green vehicles are the HDVs

3.4 Implementation

3.4.1 Adding Second Merge Lane

The original environment modi�ed consisted of one highway lane and one on-ramp merging

lane. To suit our requirements for this research, I modi�ed and extended the existing

environment to include an additional on-ramp lane that merges into the highway. As

mentioned above, each lane is de�ned by multiple smaller lanes. So, to add the additional

merge lane, I initialised and added three smaller lanes to the road network that are parallel

to merge lane 1 (original on-ramp lane). Finally, I added an obstacle at the end of the

newly added merge lane (merge lane 2) to indicate the end of the road.

Figure 3.6: Road network of the modi�ed environment

In the environment class, the make road method is used to design and incorporate

lanes into the road network. The original environment consisted of only two lanes in the

road network: a highway lane \ad" split into \ab", \bc", and \cd" and a merge lane \jc"

(merge lane 1) split into \jk", \kb", and \bc". It is worth noting that the small lane
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\jk" is a straight lane that comes before the point \k"; the small lane \kb" is a sinelane

(curved lane); and \bc" is a straight lane. To this initial setup, I added another merge

lane (merge lane 2), which is parallel to merge lane 1 and is de�ned by \mn", \nb", and

\bc". Similar to lane \jk" in merge lane 1, \mn" is a straight lane before the point \n"

in merge lane 2, which is parallel to \jk".

As we can observe from the "Figure 3.6", each lane in the environment is de�ned by

multiple smaller lanes. The additional merge lane (merge lane 2) added to the environment

de�ned by \mc" is divided into \mn", \nb", and \bc", where point \m" is the start of

the road and point \c" is the end of the road. The road \mc" consists of multiple lanes,

such as straight lanes and sinelanes (curved lanes). In the second merge lane, lanes \mn"

and \bc" are de�ned as straight lanes that are parallel to lanes \jk" and \bc", and the

lane \nb" is a sinelane that is parallel to \kb". All these smaller lanes are initialised

separately and added to the road network. To initialise each of these lanes, we have

to de�ne a start position, endingposition, line type (assigns the lane as a continuous

or a stripped lane), and forbidden (a Boolean value that allows or blocks vehicles from

changing to that lane). Following the above steps, I have created an additional merge lane

(merge lane 2) and added that to the road network for the vehicles to use. Next, using

the Obstacle class, I added an obstacle at the end of the second merge lane to indicate

the end of the road for the vehicles to follow. In the "Figure 3.6", yellow boxes placed at

the end of the merge lanes are the obstacles that de�ne the end of the road.

A critical aspect of lane implementation is the use of the argument \forbidden" while

setting up the lane. When \forbidden" is set to True, vehicles are prohibited from changing

their current lane and shifting into this lane. In the modi�ed environment, I set the

\forbidden" value of merge lane 1 to False, allowing vehicles to shift from merge lane 2 to

merge lane 1. Conversely, the \forbidden" value is set to True for the second merge lane,

preventing vehicles from moving from merge lane 1 to merge lane 2.

3.4.2 Spawning Vehicles on the Second Merge Lane

The code by Dong Chen Chen et al. [2022] Chen [2023] allows vehicles to be spawned

on the highway lane and �rst merge lane. However, the addition of an additional merge

lane (merge lane 2) required a change in the logic to spawn vehicles on the newly added

second merge lane. In the existing code,½of the vehicles were spawned on the highway

lane and the other half on the merge lane. In the modi�ed environment, I spawned½of

the vehicles on the highway lane; the other half of the vehicles were randomly spawned

between the two merge lanes. The vehicles on the second merge lane will change lanes

into the �rst merge lane before eventually merging into the highway lane.
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make vehicle method is used to spawn the vehicles on the di�erent lanes. As the

existing code only accounted for vehicles being spawned on the highway and the �rst

merge lane, the vehicle distribution logic had to be changed to spawn the vehicles onto

the second merging lane. The existing code spawns the vehicles on the roads in four parts

using a prede�ned list of spawn points containing the positions on the road where the

vehicles must be spawned. First, it spawns the CAVs on the roads, and then it spawns

the HDVs. In the existing code,½of both CAVs and HDVs are spawned on the highway

lane, and the other½are spawned on the merge lane. To account for an additional merge

lane, I decided to leave½vehicles on the highway lane and only focus on modifying the

code to split the other half of the vehicles between the two merge lanes. So, I modi�ed

this code to spawn vehicles on either of the two merging lanes randomly.

Spawning vehicles on the roads requires various arguments, such as the type of the

vehicle (CAV or HDV), the name of the lane in the road network where the vehicle needs

to be spawned, the random position on the road calculated using the spawn points, and

the initial speed of the vehicle. The initial speeds of the vehicles are randomly generated

and essential to simulating the real-world behaviours of various vehicles.

Even after modifying the \forbidden" argument of the �rst merge lane, I faced an issue

while spawning vehicles on the second merge lane. The HDVs spawned on the second

merge lane were not changing lanes into the �rst merge lane; they were going to the end of

the second merge lane and stopping. This issue was only isolated to HDVs, as the CAVs

were behaving normally. Upon troubleshooting, I realised that the problem is caused

by the MOBIL (Minimising Overall Braking Induced by Lane change) function of the

IDMVehicle class (a class that controls the behaviours of HDVs). In the MOBIL function,

initially, the jerk (assess the change in acceleration) computed was always assigned to zero;

this was the root cause of the issue. So, I added a statement to increment jerk by 0.11

if the acceleration of the HDV vehicle before and after the lane change (relative to the

preceding vehicles) would be the same. This ensures that the jerk is not zero and �xes

the issue. This change ensures that the HDVs are behaving normally and changing lanes.

The reward function calculates the rewards of each episode based on various factors

like collisions, overall throughput, and speeds of the vehicles on the merging and the

highway lanes. The individual rewards obtained by all the vehicles in an episode are

cumulated to calculate the reward of each episode. The general idea is that vehicles that

do not cause collisions and merge into the highway quickly and safely, maintaining a high

speed, get higher rewards. This rewards function has also been modi�ed to use the same

logic but to include and consider vehicles on the second merge lane.
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3.4.3 Forbidding Lane Changing of Vehicles from Left to Right

Lanes

While modifying the road network to add the second merge lane, I have changed the

\forbidden" argument of the �rst merge lane to False to allow vehicles from merge lane 2

to change to merge lane 1 before merging into the highway. However, this change caused

an issue where vehicles from the highway lane were changing into the �rst merge lane to

explore di�erent actions. This would be a scenario that can lead to collisions and should

not happen in real-world scenarios. So, I have modi�ed the logic to enable lane changes

only from the right lanes to the left lanes but not the other way around. I tried to address

this problem in a few di�erent ways, but this was the best possible solution.

Since the �rst merge lane's \forbidden" was set to False, the vehicles from the highway

lane are changing to the �rst merge lane to explore di�erent scenarios. I have tried to

�x this problem using the RoadNetwork class, but there is no possible way to solve this

using the RoadNetwork. So, I �xed this issue using the ControlledVehicle class. The

environment consists of two types of vehicles: CAVs and HDVs. The logic for the HDVs

is implemented using the IDMVehicle class, and the logic for the CAVs is handled by

the MDPVehicle class. Both of these classes are extended from the ControlledVehicle

class. So, I have changed the logic in this class to allow for lane changes only from the

right to the left lanes. I have added a condition for action \LANERIGHT" and set the

enablelane change to False. This change ensures that no vehicles change lanes to the

right lane.

3.5 Evaluation Set-up

The modi�ed highway-env merge environment, multimergeenv v0, implements a new

environment setup (Figure 3.3) that introduces an extra lane to the on-ramp and strate-

gically positions the vehicles on the road network. This setup simulates the highway

on-ramp merging of CAVs in mixed tra�c scenarios, particularly in the presence of a

multi-lane on-ramp. Each simulation in multi-agent scenarios termed an episode, is a

single sequence of states, actions, and rewards that the agents experience from the start

of an environment until it reaches a terminal state. In our context, an episode starts with

the spawning of the agents (CAVs) at the start of the road and ends when the agents

(CAVs) either reach the end of the road, cause a collision or when the time limit expires.

In Reinforcement Learning scenarios, agents are trained for a speci�c number of

episodes, allowing them to explore and learn from their environment. A cumulative re-

ward, the average of all agents' rewards in the environment, is calculated for each episode.
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In an ideal scenario where the agents learn from every training episode, the cumulative

reward should increase as the training episodes progress.

In the study Chen et al. [2022], the authors evaluated the performance of various

MARL algorithms over 20,000 episodes at 3 di�erent tra�c densities, adjusting the num-

ber of CAVs and HDVs varies in the environment (mentioned in section 3.3). Higher

tra�c densities, which have an increasing number of CAVs, would make it challenging to

learn optimal strategies.

Due to the limitations of my current hardware, it takes approximately 33 hours to run

20,000 episodes for each algorithm. So, considering hardware and time constraints, I used

the following settings to run the experiments.

Table 3.1: Parameters used for the Evaluation

Parameter Value

Number of Training episodes 10,000

Number of Evaluation episodes 3

Evaluation Interval 20

Tra�c density 2

Number of CAVs 2-4

Number of HDVs 2-4
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Chapter 4

Evaluation

This chapter discusses the evaluation metrics (Section 4.1), the design of the experiments

for evaluating the scalability of di�erent MARL algorithms like MAACKTR, MAPPO

and MADQN to the modi�ed multi-lane highway on-ramp merging environment (Section

4.2), the experiment parameters used (Section 4.3), discussion on the results (Section 4.4),

comparison of the various results (Section 4.5), and �nally a discussion on the experiments

(Section 4.6).

4.1 Evaluation Metrics

In this section, we will discuss the metrics used to assess the scalability of the MARL

algorithms, such as MAACKTR, MAPPO, and MADQN, to multi-lane merging scenarios.

The critical evaluation metric for evaluating the performance of the di�erent MARL

algorithms is the rewards obtained by the episodes. Each agent in a multi-agent scenario

is rewarded based on its actions in the environment. A positive reward is assigned if

an agent (CAV) follows actions that promote safe and e�cient merging. Otherwise,

a negative reward is assigned if the agent causes collisions or drives unnaturally. The

highest reward is assigned if the agents follow the most optimal policy. An average of

the rewards the agents earn in an episode is designated as the reward for that particular

episode. Ideally, as the number of training episodes increases, the agents must learn to

follow the optimal policy, increasing the rewards obtained.

For the baseline for our comparisons, I used the unmodi�ed environment by Chen

described in the study Chen et al. [2022] to generate the baseline results. I have not used

the graphs mentioned in the study Chen et al. [2022] directly because they trained the

model for 20,000 episodes. Still, I could only train the algorithms in modi�ed environments

for 10,000 episodes. The above-mentioned MARL algorithms have been trained for 10,000
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using the same evaluation settings on the unmodi�ed environment due to time constraints

and to maintain consistency in the baseline results. I have used the results of Chen et al.

[2022] as the baseline because the unmodi�ed environment simulates the highway on-ramp

merging of CAVs in mixed tra�c scenarios in the presence of a single lane on-ramp. This

is a good baseline as we are exploring the existing algorithms' scalability to a multi-lane

on-ramp merging scenario.

For the evaluation, I have trained the MAPPO, MAACKTR, and MADQN algorithms

for 10,000 episodes on the modi�ed merge environment. Every 20 episodes, I ran 3

evaluation episodes and used the average rewards obtained from these three episodes as

the evaluation metric. Ideally, the value of these rewards should increase as the training

episodes increase, indicating that the agents are learning the optimal solution based on

the algorithm.

4.2 Evaluation Design

Our primary objective is to devise more e�ective experiments for assessing the perfor-

mance of the MARL algorithms: MAPPO, MAACKTR, and MADQN in a modi�ed

environment. This environment is crucial as it presents unique challenges and scenarios

that are not encountered in the standard environment. The evaluation of these MARL al-

gorithms' performance is conducted in two parts. The �rst part focuses on the scalability

of these algorithms in multi-lane merging scenarios, comparing the average results against

the baseline case. The second part involves a comprehensive performance evaluation of

these algorithms against each other to determine the top performers.

One common challenge in evaluating RL/ MARL algorithms is their sensitivity to the

random seeds used for environment initialization. Additional detailed information on this

issue can be found in the research paper: Colas et al. [2018]. To address this, I have

meticulously evaluated the performance of the MARL algorithms across a wide range of

random test seeds. The average reward obtained over 3 evaluation episodes was plotted as

the performance score. The random seed values used for environment initialization were:

0, 25, 50, 75, 100, 125, 150, 175, 200, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550,

575. This comprehensive approach ensures the validity and reliability of the performance

assessment.

This experiment design helps us better understand the scalability of the existing

MARL algorithms by comparing the results of the modi�ed environment to the origi-

nal environment. It also allows us to understand which of the three algorithms tested is

performing better by comparing the results of the algorithms among themselves.

Based on the original experiment's results for 10,000 training episodes, the general
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expectation for the experiments is that MAPPO would be the best-performing algorithm,

followed by MAACKTR and then MADQN.

4.3 Experiment Settings

All three Multi-Agent Reinforcement Learning algorithms are trained on the same envi-

ronment parameters to maintain consistency in the comparisons.

Table 4.1: Environment parameters used for the experiment

Parameter Value

Number of Training episodes 10,000

Number of Evaluation episodes 3

Evaluation Interval 20

Tra�c density 2

Number of CAVs 2-4

Number of HDVs 2-4

Number of evaluation episodes de�nes the number of di�erent random seeds used in

the evaluation, the evaluation interval is the gap between evaluating the trained agents,

and tra�c density determines the total number of CAVs and HDVs spawned in each

episode.

4.4 Results

The Y-axis represents the average evaluation reward received by the agents, which is the

mean reward obtained from 3 consecutive evaluation episodes. The X-axis represents

the evaluation episode intervals. Episodes are evaluated at regular intervals of every 20

episodes.

The dashed blue line indicates the average evaluation reward obtained by the agents.

An overall upward trend in this line suggests that the agents are learning and improving

their optimal policy. This line is the primary indicator of the agent's performance in the

environment. The shaded area around the average rewards line is the standard devia-

tion of rewards across multiple random seeds. Wider the shaded area suggests that the

algorithm's performance is highly sensitive to the initial random seed. The shaded area

represents the volatility in the agents' performance based on the random seeds.
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In the reward graphs for Reinforcement Learning, the rewards often uctuate and dip

through the training episodes. This behaviour is typical as the Reinforcement Learn-

ing agents explore their environment in a trial-and-error process, and sometimes, in the

process of exploring the environment, they take actions that result in lower rewards.

4.4.1 Unmodi�ed environment results

MAACKTR

Figure 4.1: MAACKTR Rewards Graph on the unmodi�ed environment

The following �gure 4.1 represents the outcomes of training the agents over 10,000

episodes, utilizing the MAACKTR algorithm in medium mode, a crucial component of

our training process.

From the �gure 4.1, we can observe that the agents' rewards generally hoover around

40 to 60. This does not indicate high performance but suggests consistent learning from

the agents. The uctuations and occasional dips in the rewards indicate that the agents

are exploring the environment. Another observation from the 4.1 is that the standard

deviation of the rewards is relatively widespread. This suggests a high variability in

the agents' performance across di�erent random seed initializations. The analysis of the

average rewards line reveals a modest overall positive slope, pointing to a gradual learning

curve. This indicates that the agents are learning and improving their policies at a slow
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