
Scalability of existing MARL Frameworks for

Multi-Lane On-Ramp Merging of CAVs in Mixed

Traffic Scenarios

Sai Bala Subrahmanya Lakshmi Kanth Rayanapati, MCS

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Masters in Computer Science

Supervisor: Dr. Melanie Bouroche

April 2024



Scalability of existing MARL Frameworks for

Multi-Lane On-Ramp Merging of CAVs in Mixed

Traffic Scenarios

Sai Bala Subrahmanya Lakshmi Kanth Rayanapati, Masters in Computer Science

University of Dublin, Trinity College, 2024

Supervisor: Dr. Melanie Bouroche

Recent improvements in autonomous driving have the potential to revolutionise trans-
portation systems by improving traffic safety and efficiency and reducing traffic conges-
tion. However, even with the current advancements, the seamless integration of Connected
Autonomous Vehicles (CAVs) into complex mixed traffic scenarios like highway on-ramp
merging still remains a substantial challenge.

Existing approaches to highway on-ramp merging are predominantly focused on single-
lane highway on-ramp merging scenarios and often overlook the scenarios where multi-lane
on-ramps exist, leaving the behaviour of the CAVs highly unknown in such scenarios. So,
to address this crucial gap, this dissertation explores the scalability of existing Multi-
Agent Reinforcement Learning (MARL) frameworks to a multi-lane highway on-ramp
merging scenario of CAVs in mixed traffic. This dissertation extends the “highway-env”
merge simulation environment to include an additional lane on the on-ramp and tests the
scalability of the MAPPO, MADQN, and MAACKTR algorithms.

The results show that the MAPPO algorithm is highly efficient and scalable to the
modified (multi-lane on-ramp) environment. In contrast, MAACKTR and MADQN al-
gorithms show inconsistent performance and are not scalable to the multi-lane on-ramp
environment.
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Chapter 1

Introduction

This chapter introduces the work by first discussing the background (Section 1.1), then

highlights the motivation behind the work (Section 1.2) before presenting the research

question addressed (Section 1.3). It then summarises the contributions of this work (Sec-

tion 1.4) before concluding with the report roadmap (Section 1.5).

1.1 Background

Over the past few years, there has been a surge of enthusiasm surrounding self-driving

Autonomous Vehicles (AVs), particularly Connected Autonomous Vehicles (CAVs) and

their integration into the current world. Rapid advancements in the fields of Artificial

Intelligence (AI), electronics, information and communication technologies have played a

significant role in the growth of autonomous driving technologies Rosique et al. [2023].

This enthusiasm is led by the potential of AVs to revolutionise transportation systems by

increasing safety and efficiency Pendleton et al. [2017]. The autonomous vehicle market is

estimated to grow with an average annual growth rate of approximately 20.75% Statista

[2023], and by 2030, AVs are estimated to be 76% less likely to be involved in traffic

accidents than human-driven vehicles (HDVs) Statista [2024].

Over the years, many automotive companies have heavily invested in autonomous driv-

ing technologies to capture the growing demand for AVs Rauniyar et al. [2018]. Waymo

(formerly the Google self-driving car project) Waymo LLC [2024], Tesla Tesla, Inc. [2024],

and General Motors (GM) General Motors [2024] are the industry leaders in developing

and deploying autonomous driving technologies Nikitas et al. [2017]. Other major compa-

nies, such as Volvo, Toyota, and Ford, are actively researching and have announced plans

to launch fully AVs in the near future, indicating a significant shift in the automotive

industry towards autonomous driving Rauniyar et al. [2018].
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Recognising the potential of AVs in enhancing safety and efficiency, governments

worldwide are actively supporting the development of autonomous driving technologies.

Recently, the government of UK has funded £150 million to boost the development of au-

tonomous driving technologies Centre for Connected and Autonomous Vehicles [2023]. In

November 2016, the European Commission adopted a Cooperative Intelligent Transport

Systems (C-ITS) strategy to converge the investments and regulatory frameworks across

the EU to develop and deploy mature C-ITS European Commission [2024]. Further,

there is an ongoing effort to establish a standardised framework following international

standards for ensuring the reliability and safety of AV systems Takács et al. [2018].

Although AV technologies offer various benefits, in their current stage of development,

there are numerous safety and ethical challenges in integrating AVs and CAVs into public

traffic networks Martens and van den Beukel [2013]. While companies are actively re-

searching into these safety and cybersecurity concerns, accidents involving AVs cannot be

eliminated entirelyAndreia Martinho and Chorus [2021]. Studies show that the number of

accidents caused by AVs has increased with the increase in AVs on public road networks

Wong et al. [2022]. Notable incidents involving AVs include the 2016 Tesla accident Shep-

ardson [2017] and the 2018 Uber accident CNN [2023]Mayer et al. [2023]. These incidents

highlight the challenges that AVs and CAVs face in adapting to the conventional traffic

infrastructure and navigating complex traffic situations, such as lane changing, traffic

congestion, and on-ramp merging Lengyel et al. [2020].

The automotive industry is actively exploring the potential of multiple-vehicle coop-

eration to enhance the safety and efficiency of AVs Muzahid et al. [2023]. While AVs

operate independently using internal sensors, CAVs communicate with their surrounding

vehicles, infrastructure, and other entities to reduce accidents Tang and He [2020]. CAVs

improve their decision-making strategies by facilitating real-time information exchange

between the vehicles and their environment Susilawati et al. [2023]. They have the poten-

tial to address various complex traffic challenges like lane changing, traffic congestion, and

on-ramp merging safely and efficiently. However, this integration is not straightforward

as the CAVs must not only act as individual vehicles but also have to interact with the

surrounding vehicles and the environment to perform safe and efficient actions.

In conclusion, CAVs represent a significant advancement in the automotive industry,

potentially enhancing safety and efficiency. While they offer numerous benefits, a few

challenges must be addressed to ensure their successful integration into the public traffic

network. This sets the stage for exploring multi-lane merging strategies to enable safe

and effective on-ramp merging of CAVs in mixed traffic conditions.
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1.2 Motivation

The rapid advancements in the field of Connected Autonomous vehicles (CAVs) have

got the potential to revolutionise the transportation system by improving traffic safety,

efficiency, and reducing traffic congestion.

In ideal scenarios where CAVs operate in a CAV-only environment, implementing

CAV technologies can significantly improve traffic safety and overall traffic management

as the behaviours of CAVs are predictable and uniform. However, with current CAV

technologies, this transition from a world with Human Driven Vehicles (HDVs) to a world

of CAVs will not happen in a day, and HDVs will continue to share the roads with CAVs

for the foreseeable future. So, CAVs must adapt to these scenarios and learn to co-exist

with HDVs that exhibit a wide variety of unpredictable driving styles.

Despite the extensive research in this area, seamless integration of CAVs into complex

mixed traffic scenarios remains a substantial challenge as the CAVs should not only react

to any potential hazards on the road but also have to factor in the behaviours of the

HDVs sharing the road. CAVs must be able to communicate and adapt to the diverse

behaviours exhibited by both CAVs and HDVs. This diversity in driving behaviours

introduces significant uncertainties that CAVs must navigate to execute safe and efficient

actions. Even with vast amounts of research being done on various aspects of the CAVs,

these solutions need to be optimised for various scenarios.

One such scenario that requires more research and optimised solutions is the highway

on-ramp merging of CAVs in mixed traffic. In such complex scenarios, the CAVs must not

only consider the immediate actions of the adjacent vehicles (including both CAVs and

HDVs) but also react according to the overall traffic flow and behaviour patterns across

multiple lanes to ensure safe and efficient actions.

Most existing approaches to highway on-ramp merging of CAVs are mainly focused on

scenarios with a single-lane on-ramp (Figure 1.1). While effective to a certain degree in

such settings, these approaches are not proven to scale effectively to tackle the complexities

posed by multi-lane on-ramps scenarios (Figure 1.2). Multi-lane on-ramps are increasingly

common in urban and suburban highway systems. They are designed to reduce congestion

and improve overall traffic flow. However, the presence of multiple lanes for merging

further complicates the merging process for the CAVs due to the presence of additional

variables and interactions between the CAVs and HDVs.
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Figure 1.1: Single-lane highway on-ramp Chen et al. [2022].

Figure 1.2: Multi-lane highway on-ramp

Therefore, in this paper, I aim to address the gap in the scalability of the existing

MARL frameworks in accommodating the increased complexity of multi-lane merging

scenarios. In doing so, I seek to extend the existing state-of-the-art frameworks for on-

ramp merging to include multi-lane on-ramp scenarios. Then, I plan to explore the

adaptability and scalability of these existing frameworks in multi-lane merging scenarios.

This research is motivated by the need to develop scalable, efficient, and safe on-ramp

merging strategies for CAVs in mixed traffic conditions, with a particular focus on the

primarily underexplored area of multi-lane highway merge ramps. By focusing on multi-

lane merging scenarios, I aim to make a significant contribution to this field. Proving the

successful scalability of these existing frameworks to multi-lane merging scenarios would

be a pivotal step towards the integration of CAVs that promote safe and efficient actions.

1.3 Research Question

The aim of this research is to answer the question :

”Can the existing MARL frameworks for on-ramp merging of Connected Au-

tonomous Vehicles (CAVs) in mixed traffic conditions be adapted effectively

to handle multi-lane merging scenarios?”

1.4 Contributions

The main contribution of my work are as follows:
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• Investigating multiple state-of-the-art MARL frameworks for highway on-ramp merg-

ing.

• Designing and implementing a simulation platform by extending the merge envi-

ronment from ”highway-env”, to support the evaluation of MARL algorithms over

multi-lane merging scenarios.

• Evaluating the existing frameworks’ scalability and performance in multi-lane merg-

ing scenarios.

1.5 Structure of the Report

This section discusses the structure of my dissertation.

1. Chapter 1 begins with a background on Connected Autonomous Vehicles (CAVs),

with a focus on the current landscape. Then, we delve into the motivation for the

dissertation before presenting the research question.

2. Chapter 2 introduces the essential concepts used in this dissertation and further

discusses the related work in this domain.

3. Chapter 3 highlights the simulation environment choice and provides a detailed

analysis of the changes made to the simulation environment to make it suited to

answer our research question. Further, it highlights the challenges and solutions

developed.

4. Chapter 4 offers a detailed evaluation of the results of the simulations conducted.

It explains the evaluation metrics, design, and environmental parameters used in

detail. It provides a thorough discussion of the results.

5. Chapter 5 summarises the dissertation by presenting the key findings and drawing

conclusions about the study. Finally, it proposes directions for possible future work.
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Chapter 2

Literature Review

This chapter initially discusses the background of Autonomous Vehicles (Section 2.1.1),

Connected Autonomous Vehicles (Section 2.1.2), Reinforcement Learning (Section 2.1.3),

Multi-Agent Reinforcement Learning (Section 2.1.4), highway-env simulator (Section 2.1.5),

and OpenAI Gym (Section 2.1.6). Further it discusses the relevant work done in this do-

main (Section 2.2). Finally, identifies the gap in the research and indicates the direction

for this research (Section 2.3)

2.1 Background

2.1.1 Autonomous Vehicles (AVs)

Autonomous vehicles (AVs), or self-driving cars, are a significant innovation in transporta-

tion technology, allowing vehicles to operate without human intervention. The primary

functions of an autonomous vehicle revolve around the ability to perceive the environment,

make informed decisions, and execute control without human input Zanchin et al. [2017].

According to their current classifications, notable from SAE International, autonomous

driving is described into five levels based on the extent of human driver necessity and the

sophistication of automated systems. Level 0 implies no automation, while level 5 repre-

sents full automation, where no Human intervention is required under any circumstances

Ribbens [2017].

AVs are equipped with various sensors like cameras, RADAR, and LIDAR, which work

with Artificial Intelligence (AI) and aid in navigating and understanding complex traffic

scenarios. The transition from human-operated to fully autonomous vehicles involves

integrating these technologies to handle all types of driving traditionally managed by

humans Zanchin et al. [2017].

A true autonomous system operates independently without the need for external in-
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puts or communications; however, when vehicles rely on external communications with

infrastructure or other vehicles for information gathering or navigating, they are part of a

“cooperative” system rather than being fully “autonomous” Connelly et al. [2006]. Despite

their potential, AVs must be capable of understanding and predicting human behaviour

accurately to safely co-exist with human-operated vehicles and pedestrians Rendong Bai

and Liu [2019].

2.1.2 Connected Autonomous Vehicles (CAVs)

Connected Autonomous vehicles represent a transformative progression within the au-

tonomous sector by combining autonomous driving technologies with advanced commu-

nication systems Umberto Montanaro and Mouzakitis [2019]. These vehicles can operate

autonomously for extended periods of time without the need for human involvement,

significantly enhancing vehicle functionality and transportation efficiency Talebpour and

Mahmassani [2016a]Umberto Montanaro and Mouzakitis [2019]. The capability of CAVs

to revolutionise highway traffic stabilisation and performance, along with safety, due to

their potential to completely transform modes of transportation, has sparked enormous

recognition.

CAVs encompass the concepts of autonomous vehicles (AVs) and Vehicle to Vehicle

(V2V) Communication. AVs are vehicles where human decision-making is either supple-

mented or entirely replaced by autonomous systems. On the other hand, V2V commu-

nication facilitates wireless connectivity between autonomous vehicles and tower vehicles

within a wireless communication range Ali Alheeti and McDonald-Maier [2017]. Unlike

traditional vehicles, CAVs utilise cooperative capabilities such as a combination of sensors,

Artificial Intelligence, and Machine Learning Algorithms. These advanced technologies,

facilitated by the networked communication between the vehicles and the surrounding

infrastructure, enables CAVs to perceive the environment, make decisions and navigate

safely Talebpour and Mahmassani [2016a].

The core technology of CAVs includes complex systems for path planning, vehicle

management, and environment identification. An open platform strategy that makes use

of traditional vehicles and sensors to speed up the development and testing of these in-

novations is considered essential for improving the algorithms that allow CAVs to carry

out challenging autonomous navigating operations Kato et al. [2015].The advancements

of CAVs have inspired a wide array of research, focussing on their interaction with pedes-

trians and cyclists, policy implications, and enhancements in traffic management Stanciu

et al. [2018]He et al. [2022b]Fagnant and Kockelman [2015].

A primary benefit of CAVs is their ability to improve traffic flow and traffic capacity
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on highways while lowering fuel consumption and environmental impacts by employing

safe and efficient driving practices Luettel et al. [2012]. These vehicles might not only sig-

nificantly lower human error rates that result in collisions but also investigations into the

safety impacts of CAVs on highways and areas prone to accidents reveal that they would

decrease the likelihood of collisions and improve driver awareness of their surroundings

Luettel et al. [2012]Papadoulis et al. [2019a]Zhang et al. [2021]. The concept of CAVs

is built upon ultra-reliable, low-latency communication theories, empowering vehicles to

interact with their environment, transfer crucial data and make data-driven decisions in

real time Yamazato [2017]Khan et al. [2021]. CAVs can constantly change their behaviour

according to the kind of vehicle initiating the communication Martin-Gasulla et al. [2019].

Furthermore, employing game theory to model lane-changing behaviours in connected en-

vironments highlights the crucial overlap between human decision-making processes and

telecommunications in the concepts of CAVs Talebpour et al. [2015].

The rise of CAVs calls for substantial changes to existing road infrastructure to sup-

port the mixed traffic environments of autonomous and manual-operated vehicles He

et al. [2022b]. While acknowledging the potential limitations in CAVs’ ability to per-

ceive information about roads and nearby vehicles, it is essential to recognise that their

decision-making processes may not always be perfect Yao et al. [2021].

The communication framework essential for CAVs involves a range of communica-

tion modes, including vehicle-to-vehicle (V2V), vehicle-to-roadside unit (V2R), vehicle-to-

infrastructure (V2I), vehicle-to-personal device (V2P), and vehicle-to-sensor (V2S) com-

munication. This wide array of communication types underscores the convoluted network

architecture that underpins the seamless operation of CAVs Wang [2023].

2.1.3 Reinforcement Learning (RL)

Reinforcement learning (RL) is a machine learning method that trains agents to make

decisions that maximize the numerical rewardAWS [2023]Sutton and Barto [2020]. Unlike

supervised learning, where the systems are trained on labelled examples, and unsuper-

vised learning, which tries to find the hidden structures in unlabeled data, the agent in

Reinforcement learning is not guided through the actions to be done. Instead, it learns

the optimal decision-making strategies through “trial-and-error” exploration of the en-

vironment. Reinforcement learning also considers a “delayed-reward” as the cumulative

reward attained for the learner’s actions not only depends on the current reward but also

on all subsequent rewards in the sequence Sutton and Barto [2020]. For example, in a

backgammon game, a reward of 1 might be linked to a state of having moved all one’s

pieces off the board, representing a winning state. While a reward of 0 can be associated
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with all the states leading up to a win. So, the agent’s objective would be to maximize

the long-term reward instead of just focusing on the immediate gains Sutton and Barto

[2020].

In reinforcement learning, the agent actively learns through its own experience by

interacting with its environment and receiving rewards for its actions. These rewards can

be both favourable and unfavourable based on the outcomes of the actions taken by the

agent. A positive reward can encourage the agent to repeat its actions, which gradually

leads to the achievement of the goal, and a negative reward discourages the agent from

entering certain undesirable or dangerous situations. Negative rewards act as penalties

that promote the agent to learn and avoid harmful actions Fuchida et al. [2010]. Learning

from these rewards and penalties, the agent gains insights into the actions to take in the

environment to achieve the maximum reward.

Figure 2.1: Basic Reinforcement Learning (RL) Framework Wang et al. [2023]

One of the critical challenges in reinforcement learning is finding the optimal exploration-

exploitation trade-off. On the one hand, the reinforcement learning agent needs to select

actions it has not selected before to learn and explore the environment to discover actions

that yield the maximum reward. On the other hand, to obtain a high reward, the agent

must also choose actions that have been successful in the past to acquire the maximum

reward. This balance between exploration and exploitation is necessary for yielding the

highest reward. So, a reinforcement learning agent must try a variety of actions, contin-

uously learning and adapting from strategies that give the maximum cumulative reward
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Sutton and Barto [2020].

In Reinforcement Learning (RL), at each time step t, the transition of the agent from

the current state st ∈ S ⊆ Rn to the next state st+1 ∈ S ⊆ Rn by taking the action

at ∈ A ⊆ Rm will result in a reward rt ∈ R based on the reward function R. The

transition of the agent from state st to st+1 is called an iteration, and the sequence of

states that lead to a terminal state is called an episode Doe and Smith [2018] Chen et al.

[2022].

Markov Decision Processes (MDPs)

Most Reinforcement Learning (RL) problems are modelled as Markov Decision Processes

(MDPs) because this framework allows for structured representation and solution of se-

quential decision-making problems with limited feedback. MDPs are mathematical formu-

lations that define the interactions between an agent and its environment through states,

actions, and rewards, helping RL algorithms learn optimal behaviours van Otterlo and

Wiering [2012] Doe and Smith [2018] Hu et al. [2018].

In Partially Observable Markov Decision Processes (POMDPs), where the agent can

only observe part of the state, the MDP is defined by a tuple (S,A,R, P, γ) Doe and

Smith [2018] Hu et al. [2018]. Here:

• S is a finite set of states, i.e., the state space.

• A is a finite set of actions, i.e., the action space.

• R : S × A× S → R is the reward function.

• P : S × A× S → [0, 1] is the state transition probability matrix.

• γ ∈ [0, 1] is the discount factor.

Policy

A policy π in reinforcement learning (RL) is a strategy or a distribution over actions given

the current state Cai et al. [2021] OpenAI [2018]. It is expressed as:

π(a | s) = P (at = a | st = s).

Policies can be of two types:

• Deterministic policies: The actions are determined solely by the current state

Cai et al. [2021] OpenAI [2018].
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• Stochastic policies: A random noise is added to the action chosen by the policy

Cai et al. [2021] OpenAI [2018].

Return

Reinforcement Learning (RL) aims to choose actions that maximise the expected return

value over time Tangkaratt et al. [2018]. The return, Gt, is the total discounted reward

from time step t that guides the agent to make optimal decisions Nguyen et al. [2020]:

Gt = Rt+1 + γRt+2 + · · · =
∞∑
k=0

γkRt+k+1

Discounted future rewards help interpret the current value of future rewards. The discount

factor γ influences the agent’s behaviour by valuing either immediate or delayed rewards;

a γ value close to 0 leads to short-sighted evaluations, and a γ value close to 1 leads to

far-sighted evaluations Xie et al. [2020].

Value Function

In Reinforcement Learning (RL), value functions evaluate the desirability of states or

state-action pairs based on the expected return. These functions are central to determin-

ing the best policies an agent can follow. There are two primary types of value functions:

State Value Function The state value function, denoted as V (s), takes a state s as

input and calculates the agent’s expected return, or cumulative reward, from following

policy π Winder.AI [N.d.] Karunakaran [2021] Li et al. [2004]. The mathematical expres-

sion is:

V π(s)
.
= Eπ[G | s] = Eπ

[
T∑

k=0

γkrk | s

]
where:

• G is the return,

• s is the state,

• γ is the discount factor,

• r is the reward.
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State-Action Value Function Commonly denoted by Q(s, a), the state-action value

function takes a state s and an action a as inputs. It calculates the expected return of

taking action a in state s, under policy π Karunakaran [2021] Xie et al. [2020]:

Qπ(s, a) = Eπ

[
∞∑
k=0

γkrt+k+1 | st = s, at = a

]

where:

• G is the return,

• s is the state,

• a is the action,

• γ is the discount factor,

• r is the reward.

Bellman Equation

The idea behind the Bellman equation is that the value of the current state is the sum of

the expected value of the immediate reward and the discounted value of the next state.

For a given policy π, the state value function V π(s) can be expressed by the Bellman

equation as OpenAI [2018] Grosse et al. [2020] face [N.d.]:

V π(s) = Eπ[Rt+1 + γV π(St+1) | St = s]

where:

• Eπ denotes the expected value under policy π,

• Rt+1 is the reward at the next time step,

• γ is the discount factor,

• St+1 is the state at the next time step.

Similarly, the Bellman equation for the state-action value function Qπ(s, a) is given

by OpenAI [2018] Grosse et al. [2020] face [N.d.]:

Qπ(s, a) = Eπ[Rt+1 + γQπ(St+1, At+1) | St = s, At = a]

The Bellman equation helps in iteratively updating the value functions.
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Optimal Value Functions

The optimal state value function V ∗(s) is defined as the maximum state value function

over all policies:

V ∗(s) = max
π

V π(s)

where V π(s) represents the value function under policy π for state s OpenAI [2018].

Similarly, the optimal state-action value function Q∗(s, a) is the maximum state-

action value function over all policies:

Q∗(s, a) = max
π

Qπ(s, a)

where Qπ(s, a) represents the state-action value function under policy π for state s and

action a OpenAI [2018].

Optimal Policy

The optimal policy π∗ is defined as being better than or equal to all other policies

OpenAI [2018]. This is expressed as:

π∗ ≥ π, for all π

This means that for the optimal policy π∗, the following statements hold for all states s

and actions a:

V π∗(s) ≥ V π(s) and Qπ∗(s, a) ≥ Qπ(s, a)

A Reinforcement Learning (RL) agent aims to learn the optimal policy

π∗ : S → A

that maximises the reward

Rt =
∞∑
k=0

γkrt+k

Chen et al. [2022] where:

• rt+k is the reward at time step t+ k,

• γ, the discount factor, γ ∈ (0, 1].
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Advantage Function

In Reinforcement Learning, we sometimes do not describe an action as being better in

terms of absolute values. Instead, we can define it as, on average, how much better it

is than the others (relative advantage of the action). This advantage function can be

mathematically represented by OpenAI [2018]:

Aπ(s, a) = Qπ(s, a)− V π(s)

where:

• Aπ(s, a) denotes the advantage of taking action a in state s under policy π,

• Qπ(s, a) is the state-action value function,

• Vπ(s) is the state value function.

Policy Gradient

Policy gradient methods in Reinforcement Learning (RL) focus on directly optimising

the policy by estimating the gradient of the agent’s policy with respect to its parameters

Li et al. [2021]. They use gradient ascent to find weights and iteratively improve the

expected returns. The policy is updated using the following equation,

∇J(θ) = E[∇ log πθ(s, a)A
πθ(s, a)]

Miller [2023] where:

• ∇J(θ): The gradient of the objective function with parameters θ,

• ∇ log πθ(s, a): The gradient of the logarithm of the policy π,

• Aπθ(s, a): The advantage function of taking action a from state s.

2.1.4 Multi-Agent Reinforcement Learning (MARL)

Multi-Agent reinforcement learning (MARL) is a field of study that is an extension of

Reinforcement Learning (RL), where multiple autonomous agents interact within a shared

environment, working towards a common goal to maximise the sum of received rewards.

Each agent receives rewards based on the actions chosen. In contrast to single-agent

reinforcement learning, where the learner interacts with the environment to maximise

their own reward, MARL agents must learn and coordinate their actions with other agents
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in the same environment to achieve common goals or compete against each other MAR

Busoniu et al. [2008].

Similar to Reinforcement Learning (RL), MARL algorithms learn optimal policies

via trial-and-error to maximise the agents’ cumulative rewards and returns. A set of

“n” individual agent actions, referred to as joint action, can change the dynamics of the

environment based on the individual rewards of the agents obtained as a result of this

change in the environment.

MARL is a rapidly growing field that showcases its adaptability across a broad spec-

trum of fields, including robotics, game theory, complex systems, distributed control, and

resource management. Multiple agents must interact and coordinate in these fields to

adapt to the environment and yield maximum rewards. MARL techniques are versatile

and can be applied to various real-world scenarios like autonomous driving that involve

cooperative, competitive, or mixed behaviours of multiple agents. In autonomous driving,

MARL can be utilised to model intelligent agents that exhibit cooperative behaviours to

make collective decisions in complex scenarios like highway on-ramp merging Zhu et al.

[2024].

MARL techniques provide a robust and adaptable framework for tackling various

complex real-world scenarios involving multiple agents.

2.1.5 Highway-env

Highway-env is an open-source, lightweight simulation platform that includes various en-

vironments, such as Highway, Merge, Roundabout, Parking, Intersection, and many more.

It has been developed and maintained by Eduard Leurent Leurent [2018b] since 2018 and

is used for simulating decision-making scenarios in autonomous driving tasks Leurent

[2018c]. Highway-env is lightweight and highly computationally efficient compared to

other open-source simulators like CARLA and SUMO Sun et al. [2021].

Some Key features of highway-env are:

Realistic Simulation: Highway-env models dynamic vehicle behaviors such as accel-

eration, deceleration, and steering, providing realistic simulations.

Multiple Agents: Supports simulations with multiple vehicles, including Controlled

Autonomous Vehicles (CAVs) and Human Driven Vehicles (HDVs), enabling train-

ing in diverse scenarios.

Customizable: Offers extensive customization options, allowing adjustments to envi-

ronment features like the number of lanes, vehicle densities, and presence of obsta-
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cles.

Collision Detection and Rewards: Implements collision tracking and assigns rewards

or penalties, aiding in the development of safe and efficient driving behaviors.

2.1.6 OpenAI Gym

Highway-env is implemented using the OpenAI Gym framework Dinneweth et al. [2022b]

Brockman et al. [2016], a popular open-source library for developing and comparing Rein-

forcement Learning (RL) algorithms Towers et al. [2023]. It was created by OpenAI, but

now it is renamed to “Gymnasium” and is being actively maintained by Farama Foun-

dation. OpenAI Gym provides a wide variety of “gym” environments that can be used

to train and test Reinforcement Learning (RL) agents. These environments can range

from simple 2D environments to control problems like the inverted pendulum, to ad-

vanced environments like Atari video games to complex three-dimensional environments

like simulated robotics Foundation [2023a]Foundation [2023b].

2.2 Related Work

2.2.1 CAVs in Mixed Traffic Scenarios

Connected and autonomous vehicles (CAVs) perceive their environment using a variety

of sensors, including lidar, cameras, and radar Guanetti et al. [2018]. Considering the

existing shortcomings in the perception process, He et al. [2022a] highlight the need to

prepare road infrastructure for mixed traffic flow conditions, emphasizing the importance

of addressing the imminent emergence of CAVs He et al. [2022a]. Without this, the

envisioned future of CAVs to Improve traffic congestion and decrease the accidents caused

by human error may remain unattainable.

Incorporating CAVs into mixed traffic conditions with human-driven vehicles (HDVs)

can improve traffic flow stability and throughput and enhance safety Talebpour and Mah-

massani [2016b]. Introducing CAVs into mixed traffic systems is associated with eco-

driving, emphasizing their importance in significantly reducing energy consumption and

pollutant emissions Wang et al. [2020]. Another critical benefit of CAVs in mixed traffic

is the improvement in road safety. Research shows that CAVs significantly reduce acci-

dents, providing compelling safety benefits even at low penetration rates Papadoulis et al.

[2019b]. Moreover, dedicated lanes (DL) for CAVs on freeways have proven to enhance

traffic efficiency and reduce traffic conflicts in mixed-traffic scenarios Kim et al. [2023]He

et al. [2022a].
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Despite the potential advantages of CAVs, they also present various security and

privacy concerns Nanda et al. [2019]. The growing levels of automation and connectivity

contribute to intensifying the security threat. This was demonstrated by Charlie Miller

and Chris Valasek in 2015 by successfully hacking into a Jeep Cherokee via the Internet,

exploiting a vulnerability in the vehicle’s infotainment system Crede. Additionally, Song

and Ding [2023] highlighted the safety risks associated with the transition of a CAV into

an automated vehicle (AV) in mixed traffic due to communication failure, indicating a

significant increase in safety risks Song and Ding [2023].

Overall, integrating CAVs into mixed traffic environments with HDVs holds the po-

tential to improve traffic flow stability, throughput, and safety. However, careful planning

and management are required to address the safety risks and facilitate a smooth integra-

tion of CAVs into existing traffic systems.

2.2.2 Communication Protocols in CAVs

A variety of viable wireless access technologies are available for vehicle-to-vehicle and

vehicle-to-infrastructure communication purposes. Within the domain of CAVs, widespread

wireless access technologies consist of communication via satellite, worldwide compatibil-

ity for microwave access (WiMAX), specialized short-range communications, cell phone

networks, and WLAN.

Dedicated Short Range Communications (DSRC)

Dedicated short-range communications (DSRC) underpin the majority of vehicular com-

munications Zhao et al. [2019b]. DSRC has been designed specifically to facilitate V2V

and V2I communications with minimal latency and high reliability.

4G/5G Cellular Networks

4G cellular networks have the capability to deliver mobile ultra-broadband internet access

Campos [2017]. Individuals are granted access to a multitude of networks without the

need to switch between them manually. Certain technologies, such as microcell base

stations and mobile communication systems with long-term evolution, are at the disposal

of entities that aim for rapid transmission in particular regions.

WLAN and WiMAX

WLAN is a wireless communication technology that enables highly adaptable access points

to connect to the broader internet. The coverage area of each access point is approximately
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100 meters Deng et al. [2017]. It is simple to expand the range of a WLAN by incorporating

one or more repeaters. The router’s physical port limit does not constrain WLAN. As a

result, dozens or even hundreds of devices may be supported.

On the other hand, WiMAX wireless broadband communication technology imple-

ments the IEEE 802.16 specification. For fixed stations, the maximum coverage range of

WiMAX is 50 kilometers Malankar and Shah [2017].

Satellite Communications

Telecommunication signals may be transmitted and amplified via satellite communica-

tion Luo et al. [2019]. It is capable of establishing communication channels between geo-

graphically dispersed signal senders and receivers. The transmission data rate in satellite

communication is restricted to a maximum of one thousand gigabits per second. The

transmission data rate is limited to a maximum of 1000 Mbps. The range of its coverage

extends from 100 km to 6000 km. Typically, satellite communication is linked to a 4G/5G

cellular network in the context of CAVs.

2.2.3 MARL in Autonomous Vehicles

Autonomous vehicles (AVs) are being developed with the goal of reducing the occurrence

of accidents by trying to eliminate human intervention. Recent advancements in the

field of autonomous vehicle technologies have introduced increasing automation levels

from level 1(essential assistance) to level 5(denoting full automation). In mixed traffic

scenarios with both AVs and human drivers sharing the road, challenges arise due to

the unpredictability of human behaviour, making it hard for AVs to adapt to mixed

traffic scenarios. MARL has emerged as an important field of research for designing

decision-making strategies in AVs that consider the unpredictability of human behaviour

and adapt to mixed traffic scenarios Dinneweth et al. [2022c]. The application of MARL

in the field of AVs has proven pivotal for developing adaptive, learning-based decision-

making strategies, which is essential for AVs’ co-existence in mixed and fully autonomous

traffic scenarios Dinneweth et al. [2022c]Zhou et al. [2022b].

The implementation of MARL in the context of AVs is well investigated with its appli-

cations in different scenarios, including cooperative lane changing, traffic signal control,

and highway on-ramp merging scenarios, demonstrating its adaptability in handling var-

ious complex driving scenarios in mixed traffic conditions Zhou et al. [2022b]Chu et al.

[2020b]Chen et al. [2022]. Further, the study Lu et al. [2020] explores the implemen-

tation of MARL for hierarchical autonomous decision-making and motion planning of

autonomous vehicles in complex dynamic traffic scenarios Lu et al. [2020].
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Furthermore, the integration of MARL in autonomous driving scenarios has high-

lighted the potential of MARL in addressing challenges in enhancing communication and

coordination in autonomous vehicles Chen et al. [2021]Xiao et al. [2023]Schmidt et al.

[2022]. In the study Qu et al. [2020a], the authors have demonstrated the capability of

MARL to mitigate traffic congestion in autonomous vehicle environments by adjusting

the acceleration and speed of different vehicles Qu et al. [2020a].

Overall, the literature review highlights the growing importance of MARL in address-

ing the shortcomings of autonomous vehicle technologies. The continued research in the

field of MARL for the improvement in autonomous vehicle technologies has the potential

to revolutionise the future of autonomous vehicles.

2.2.4 MARL in Autonomous Driving

Autonomous driving in urban highway environments presents complex scenarios where

multiple vehicles need to interact with each other frequently to execute safe and efficient

actions Chen et al. [2019]. Multi-Agent Reinforcement Learning (MARL) frameworks

hold the potential to train the control policies for these vehicles to navigate complicated

scenarios like busy junctions, lane changing, roundabouts and on-ramp merges Lin et al.

[2021]. In navigating such complex scenarios, the agents need to take both continuous

(e.g. steering, acceleration/braking) and discrete actions (e.g. lane changing, turning)

to avoid collisions and perform safe actions Crewe et al. [2023]. An agent interacts with

other agents to receive information like position in the lane, orientation, and speed from

other nearby vehicles in the road network. However, these observations might be affected

by factors such as sensor noise and partial observability caused by occlusions, ie. Vehicles

blocking the view of the agent leading to a scenario where the agent can not observe and

communicate with its entire surrounding environment Chu et al. [2020a].

In MARL frameworks for autonomous driving, the reward design is a crucial com-

ponent that considers multiple factors and significantly influences the agents’ behaviour.

Autonomous driving agents are expected to exhibit fast and efficient driving behaviour

while avoiding collisions. So, a combination of both positive and negative rewards is

typically used in designing the reward structure.

Negative rewards are usually assigned for undesirable actions like causing collisions,

abrupt acceleration/braking (unnatural behaviour), and frequent lane changes Kim et al.

[2021]. These negative rewards discourage the agent from choosing actions that display

unnatural behaviour or cause accidents. On the other hand, positive rewards are assigned

to actions that promote efficient, safe, and natural driving behaviours, like minimizing

driving times while avoiding collisions Kim et al. [2021]. Assigning these positive rewards
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encourages the agent to choose actions that promote safe and efficient driving practices,

contributing to overall traffic flow and safety.

In this research, we will be considering a multi-agent scenario where all the agents

work towards a common goal of performing safe and efficient highway on-ramp merging.

2.2.5 Challenges in the Application of MARL to Autonomous

Driving

Applying Multi-Agent Reinforcement Learning frameworks to address the complexities

of Autonomous driving in mixed traffic scenarios presents various challenges that are

typically not encountered in single-agent scenarios. Most of the challenges arise due to

the presence of multiple agents with conflicting goals, continuous optimization of the

policies and the partial observability of the agent’s environment.

Non-stationarity caused by learning agents

A vital challenge of the application of MARL in autonomous driving is the problem of

non-stationarity caused due to continuous learning and adaptation of the agents. This will

result in continually changing agents’ policies, making it difficult for them to learn stable

strategies. Each agent adapts to the other agents’ policies, whose policies, in turn, adapt

to the changes in other agents, causing cyclic and unstable learning dynamics. This issue

is further complicated as different agents learn at different rates based on rewards and

observations. For example, scenarios like changing traffic patterns, road conditions, or

actions of other agents require constant adaptation to the evolving environment, making it

difficult for the agents to learn effectively Dinneweth et al. [2022a]. The ability to handle

the issue of non-stationarity is a crucial aspect of MARL frameworks and has been an

area of research. Techniques such as considering the long-term influence of an agent’s

actions Kim et al. [2022], adapting to opponent agents’ behaviours, influencing other

agents’ strategies Wang et al. [2021b] have been explored to resolve this issue. Dealing

with non-stationarity is essential for stable and efficient learning of MARL agents Li et al.

[2022].

Partial Observability

Partial Observability is another significant challenge for MARL frameworks where the

agents lack complete information about the environment’s state due to restricted com-

munication between the agents Dinneweth et al. [2022a]Chu et al. [2020a]. In practical

applications like autonomous driving, partial observability is caused by sensor faults and
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occlusions caused by other vehicles blocking the view of the agent’s environment Ding

et al. [2022]. For example, in the context of autonomous driving, it is difficult for the

agents to observe and predict the actions of all the other agents in the shared environment

when their view is blocked by other vehicles Dinneweth et al. [2022a]. Various techniques

like decentralized learning through communication Karten et al. [2023], Integrating knowl-

edge compilation with reinforcement learning Ling et al. [2021], centralized training with

decentralized execution Zhao et al. [2022] have been explored to solve the issue of partial

observability. Further, approaches based on partially observable Markov decision pro-

cesses (POMDPs) Wu et al. [2020] have also been proposed to handle decision-making in

autonomous driving scenarios.

Curse of Dimensionality

Curse of Dimensionality Acito [2023] is another issue for MARL frameworks that refers

to the exponential increase of the state-action space with the increase in the number of

agents, leading to an exponential increase in the learning required, higher computational

complexity, and resources required Wang et al. [2021a]. Due to this issue in scalability,

MARL algorithms face difficulties in achieving complete exploration of the environment,

making it an even bigger issue for autonomous driving Hao et al. [2022]Salem et al.

[2023]. Various approaches like using Observation Embedding and Parameter Noise to

enable scalable Deep MARL Zhang et al. [2019], Policy Distillation and Value Matching

Wadhwania et al. [2019], use of Projection Exploration Tang et al. [2023] have been

proposed to solve this problem of scalability in MARL frameworks.

Addressing these issues by refining the learning schemes is essential for developing MARL

frameworks in complex mixed traffic scenarios.

2.2.6 MARL in Traffic Signal Control

Multi-Agent Reinforcement Learning has recently gained significant attention for its po-

tential to address complex challenges in mixed traffic scenarios. The applications of

MARL can be seen extensively in the areas of traffic control and management, addressing

problems such as traffic signal control, congestion management and control systems.

Traditional traffic signal control methods often fall short in dynamic large-scale traf-

fic signal scenarios. These multi-intersection traffic signal control shortcomings can be

effectively addressed by leveraging MARL frameworks. The applicability of MARL in

addressing traffic signal problems has been extensively researched.

MARL has been proven to effectively address the challenges of traffic demand, traffic
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jams, and environmental pollution in multi-intersection scenarios in large-scale road net-

works. In the study Hu et al. [2023], the authors develop a decentralised MARL algorithm,

MFDQL-DTC, that independently learns policies for each intersection to improve overall

traffic efficiency. The MFDQL-DTC algorithm incorporates traditional traffic methods,

intelligent control algorithms, and mean-field theory to reduce the complexity of joint ac-

tion space and provide improved real-time traffic signalling in large-scale road networks.

Additionally, MFDQL-DTC is efficient in handling convergence in large-scale road net-

works and outperforms the current state-of-the-art baseline models like MARL-DSTAN

in terms of scalability and convergence Hu et al. [2023].

Similarly, Qu et al. [2020b] proposed a distributed control method for urban networks,

MSNE-MARL, that integrates the notion of Mixed Strategy Nash-Equilibrium (MSNE)

into the decision-making process of the MARL to prevent disturbance-based traffic con-

gestion. The integration of MSNE and MARL enhanced the proposed method’s ability

to react rapidly and effectively to the disturbances in urban networks by accelerating the

convergence process and reducing the learning time. The proposed MSNE-MARL method

outperformed the baseline control strategies, FTC and II-MARL, in various traffic situa-

tions, demonstrating its effectiveness in managing traffic congestion Qu et al. [2020b].

Additionally, Chu et al. [2020b] proposed the method “Multi-agent Advantage Actor-

critic (MA2C)” that extends the idea of independent Q-learning and independent A2C

to address the challenges in adaptive traffic signal control in complex traffic networks.

MA2C method addresses the scalability issues by distributing global control to local RL

agents to make decisions based on local observations and limited communication. This

approach outperforms both independent A2C and independent Q-learning algorithms in

an extensive real-world traffic network of Monaco city. It proves the adaptability of the

approach in large-scale traffic signal control scenarios Chu et al. [2020b].

Overall, MARL frameworks demonstrate a wide range of applications in addressing

the shortcomings in traffic signal control, congestion prevention and traffic optimisation in

urban networks and have the potential to revolutionise traffic and congestion management

systems and improve traffic flow Qu et al. [2020b]Pan et al. [2020].

2.2.7 MARL in Cooperative Lane Changing

Integrating MARL to address the challenges associated with cooperative lane changing of

Connected and Autonomous Vehicles (CAVs) has been pivotal for ensuring safety and en-

hancing traffic flow. Efficient lane-changing in CAVs helps overtake slow-moving vehicles,

manage traffic flow and reduce traffic congestion.

Research shows that data-driven methods such as MARL have emerged as a promising
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and scalable solution to address the complexities of decision-making tasks in highway lane

changing in mixed traffic scenarios Zhou et al. [2022b]. Treating the lane-changing prob-

lem as a decentralized cooperative MARL problem and incorporating a multi-objective

reward function that accounts for fuel efficiency, driving comfort, and safety enhanced the

performance of the multi-agent advantage actor-critic network (MA2C) algorithm as pro-

posed in the study Zhou et al. [2022b]. The MA2C algorithm outperforms other similar

MARL algorithms, such as MADQN, MAACKTR, and MAPPO, in various traffic sce-

narios, displaying scalability, stability, and adaptive performance in response to different

human driving behaviours in mixed traffic conditions Zhou et al. [2022b].

Most cooperative lane-changing algorithms are developed by considering not only the

physical characteristics of the subject vehicle but also the leading and following vehicles

on the target lane, highlighting the importance of considering the surrounding environ-

ment in developing safe and efficient lane-changing algorithms Shi et al. [2019]. MARL

algorithms that take into account the surrounding environment involve an agent control-

ling the headway by providing merging advisory services at merging points for efficient

outer-lane vehicle merging, whilst other agents focus on the lane-changing advisory ser-

vices at advance lane-changing points to control the lane changes in AVs Zhu et al. [2021].

Furthermore, MARL has been used to develop lane-changing algorithms for CAVs in

mixed-traffic environments, considering the motions of autonomous and human-driven

vehicles(HDVs) before changing lines Zhou et al. [2022b].

The literature review highlights the growing importance of MARL frameworks in ad-

dressing the challenges associated with cooperative lane changing for CAVs in mixed traffic

scenarios. The application of MARL to tackle the lane-changing problem is a promising

approach to enhancing traffic flow and safety in CAV operations.

2.2.8 MARL in Highway On-Ramp Merging

On-ramp merging of connected and automated vehicles (CAVs) in mixed-traffic highway

scenarios is crucial for traffic management and safety. Efficient and safe merging is crucial

for minimising traffic congestion and avoiding the risk of accidents. Varying behaviour and

decision-making of different drivers in mixed traffic scenarios can lead to unpredictable

situations that challenge AVs in reacting to the dynamically changing environment. The

need for coordination and communication between the vehicles further complicates the

on-ramp merging process Chen et al. [2022]. Further, it is highlighted that the prediction

of HDV behaviour and arrival times at on-ramps are crucial for effective coordination

within CAVs Ma et al. [2023].

Integrating CAVs into mixed traffic during highway on-ramp merging has gained sig-
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nificant attention in recent research, focusing on developing control strategies and optimi-

sation frameworks that facilitate the efficient merging of CAVs at highway on-ramps Zhu

et al. [2022]. These strategies ensure safety and minimise delays by optimising merging

times, vehicle trajectories, and platoon coordination Mahbub et al. [2021]Ye et al. [2019].

Furthermore, the potential of decentralised control algorithms to coordinate CAVs in var-

ious traffic scenarios like highway on-ramp merging has been explored Zhao et al. [2019a].

Adjusting vehicle speed and regulating lane changes are two of the most challeng-

ing tasks that must be completed in on-ramp merging scenarios on urban highways

Amezquita-Semprun et al. [2019]. Various control strategies for CAVs have been proposed

to examine how system vehicles safely and efficiently navigate the convergence zone Xu

et al. [2019]. Lu and Hedrick [2003] introduced the view of virtual vehicle platooning

and transformed the ramp merging issue into a vehicle-following issue by mapping each

ramp vehicle to the main road. The centralised controller regulates the velocity of every

vehicle in the system to synchronise the moment the vehicle enters the convergence zone

and prevent collisions. Cao et al. [2015] utilised a model predictive control framework to

optimise the vehicle’s trajectory and generate an appropriate distance by regulating the

vehicle’s speed to guarantee the safety of ramp vehicle merging.

The study Liu et al. [2021] presented a strategy for coordinating CAVs in multilane

traffic on-ramp convergence. A model of uneven traffic flow was developed considering

the need for uniformity in traffic flow across distinct lanes in the multilane scenario.

Furthermore, a reinforcement learning model is developed based on this model to assist

in lane selection to mitigate the congestion in the outside lane that arises from ramp

passenger vehicle merging. The simulation results indicated that fuel economy and traffic

efficiency increase constantly until the optimum allowable road capacity is reached, as

vehicle flow and the dispersion of traffic flow between channels increase.

In the paper Schester and Ortiz [2019], the authors present an extended model that

utilises continuous space of states and actions, integrating a MARL approach to train

the controllers in an idealised environment. It leverages the recent developments in RL

and employs artificial neural network (ANN) architectures for function approximation

and policy modelling within the multi-agent Q-learning approach. Further, the research

evaluates the performance of the trained controllers in preventing collisions through var-

ious simulations involving vehicles with diverse behaviours, highlighting the effectiveness

of the proposed MARL approach in mixed-traffic AV scenarios.

Hu et al. [2019] proposes the decision-making with adaptive strategies (IDAS) method

for resolving decision-making challenges associated with autonomous vehicle merging sce-

narios by incorporating driver type and road priority. By integrating driver type and road

priority into self-driving vehicles, the authors aim to empower AVs to autonomously learn
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from the actions of other drivers during interactions and utilise their cooperation to nav-

igate different merging scenarios effectively. To address this within a MARL framework,

the study introduced a double critic approach consisting of a centralised and decentralised

action-value function. This method outperformed other approaches in terms of success

rate and merging efficiency.

Zhou et al. [2022a] proposed a distributed multi-agent deep reinforcement learning

approach for cooperative merging control in connected and automated vehicles (CAVs)

called multi-agent Deep Deterministic Policy Gradient (MADDPG). This approach con-

siders various factors such as energy consumption, rear-end safety, lateral safety, safe

merging distances, and acceleration limits to optimise on-ramp merging scenarios. This

method aims to enhance the efficiency and safety of on-ramp merging of CAVs. In or-

der to tackle the issue of a dynamic environment that arises from decentralised learning

of CAVs, Nakka et al. [2022] introduces a decentralised framework using MADDPG to

coordinate CAVs during highway convergence. This framework enables the transmission

and implementation of policies acquired by a limited subset of trained CAVs to unlim-

ited CAVs. In addition, it employs a reward function that incentivises high-speed travel,

promoting safer traffic flow and reducing rear-end and lateral collisions.

Sun et al. [2020] proposes a Cooperative Decision-Making for Mixed Traffic (CDMMT)

mechanism specifically designed to facilitate efficient and smooth ramp merging of CAVs

and reduce potential conflicts that may arise due to the non-cooperative behaviour of

HDVs in mixed traffic. This study aims to improve traffic efficiency and safety in mixed

traffic scenarios by leveraging discrete optimisation and bi-level dynamic programming.

Additionally, the proposed CDMMT mechanism incorporates optimal control-based tra-

jectory design for CAVs and implements cooperative and non-cooperative behaviours of

HDVs in mixed traffic. The study also reviews the existing literature on cooperative merg-

ing models and trajectory design for CAVs and efficiently addresses the limitations of the

current approaches. The CDMMT mechanism addresses the gaps in existing research by

demonstrating smoother and more efficient ramp merging in mixed traffic environments

through micro-simulations.

2.2.9 MARL Algorithms

In this research, we will use the multi-agent versions of the ACKTR, PPO, and DQN

algorithms extended in the research by Chen et al. [2022], available at Chen [2023], to

investigate the scalability of the above-mentioned algorithms to a multi-lane on-ramp

merging scenario.
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MAACKTR (Multi-Agent Actor-Critic using Kronecker-Factored Trust Re-

gion)

The Multi-Agent Actor-Critic using Kronecker-Factored Trust Region (MAACKTR) algo-

rithm, an extension of the Actor-Critic using Kronecker-factored Trust Region (ACKTR)

algorithm, is a significant development in the field of autonomous driving. ACKTR was

developed at the University of Toronto and New York University by combining actor-

critic methods, trust region optimization, and distributed Kronecker factorization Ope-

nAI [2021]. ACKTR is an actor-critic method that learns the optimal policies by using

Kronecker-factored approximation to optimize the natural gradient Wu et al. [2017].

The version of the MAACKTR algorithm used in this research is a Multi-Agent Re-

inforcement Learning (MARL) framework, which is an extension of the single-agent vari-

ant ACKTR. This was extended in the study Chen et al. [2022] to address the chal-

lenges of highway on-ramp merging of CAVs in mixed traffic scenarios Chen et al. [2022].

MAACKTR extends the ACKTR approach to a multi-agent setting by sharing the pa-

rameters and allowing the agents to learn collectively Chen et al. [2022].

MAPPO (Multi-Agent Proximal Policy Optimization)

The Multi-Agent Proximal Policy Optimization (MAPPO) framework is the extension of

the single-agent Proximal Policy Optimization (PPO) framework to a multi-agent scenario

Zabounidis et al. [2023]. MAPPO has been successfully used in various multi-agent set-

tings to train the agents and achieves state-of-the-art performance in various cooperative

multi-agent tasks Liang et al. [2023]Parada et al. [2022].

The multi-agent version of the PPO algorithm, MAPPO, used in this research is the

extension of the single-agent variant PPO. This was extended in the study Chen et al.

[2022] to address the challenges of highway on-ramp merging of CAVs in mixed traffic

scenarios Chen et al. [2022]. By sharing observations and rewards, MAPPO leads to

efficient navigation in mixed traffic scenarios.

MADQN (Multi-Agent Deep Q-Network)

The Multi-Agent Deep Q-Network (MADQN) algorithm is a significant advancement

in the field of Multi-Agent Reinforcement Learning. It extends the single-agent Deep

Q-Network (DQN) algorithm to multi-agent settings. MADQN agents update their Q-

values by observing the states, exchanging knowledge, and performing actions Ibrahim

et al. [2021]. The MADQN algorithm has been applied in various multi-agent scenarios

and is proven to show efficient results.
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The Multi-Agent DQN (MADQN) algorithm used in this research is the extension

of the single-agent variant DQN. This was extended in the study Chen et al. [2022] to

address the challenges of highway on-ramp merging of CAVs in mixed traffic scenarios

Chen et al. [2022]. By encouraging cooperative behaviours, MADQN can enable multiple

agents to learn and update their policies simultaneously.

2.3 Analysis

Analysis of the related work section highlights that most of the work done in the domain

of highway on-ramp merging of CAVs is done on a single-lane on-ramp environment. This

leaves a huge gap in multi-lane on-ramp scenarios, which is often overlooked in previous

research.

So, I decided to explore this area by focusing on the study Chen et al. [2022], which

provides a baseline for the comparison of the performance of the three different MARL

frameworks (MADQN, MAPPO, and MAACKTR) developed for single-lane on-ramp

environments, when extended to a multi-lane on-ramp scenario.
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Chapter 3

Methodology

This chapter briefly discusses the research question and my approach to addressing it

(Section 3.1), it explains the reason for choosing highway-env as the simulation environ-

ment (Section 3.2), it then discusses the architecture of highway-env (Section 3.3), then

it delves into details of implementation of the modified simulation environment consisting

of two merging lanes on the on-ramp and the challenges faced along the way (Section 3.4),

and it ends with discussing the evaluation parameters (Section 3.5).

3.1 Introduction

To address the research question of whether existing Multi-Agent Reinforcement Learn-

ing (MARL) algorithms developed for single-lane on-ramp merging of Connected and

Autonomous Vehicles (CAVs) in mixed traffic scenarios be scaled effectively to multi-

lane merging scenarios, lane changing and lane merging in CAVs must be framed as

a Multi-Agent Reinforcement Learning problem because, in any given scenario, we will

have multiple CAVs controlled by MARL algorithms. Answering this research question

would require testing the performance of the MARL algorithms developed for single-lane

on-ramp merging in a multi-lane on-ramp merging scenario.

The existing simulation environments were only designed for and limited to a single-

lane on-ramp. This necessitated the need to modify the existing simulation setup. So, the

single-lane on-ramp simulation environment has been extended to include an additional

lane on the on-ramp to simulate a multi-lane on-ramp merging environment. For the

simulation environment, I decided to use highway-env (Section 2.1.5).

For the choice of the MARL algorithms developed for single-lane on-ramp scenarios, I

chose MAPPO (Section 2.2.9), MADQN (Section 2.2.9), and MAACKTR (Section 2.2.9)

developed in the study Chen et al. [2022]. These frameworks were then used to train
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the agents in the extended multi-lane on-ramp environment to assess their scalability and

performance.

After training the agents using the three MARL frameworks, I evaluated and compared

the results across the single-lane and multi-lane on-ramp scenarios.

3.2 Choice of Simulation Environment

Reinforcement Learning (RL) and Multi-agent Reinforcement Learning (MARL) algo-

rithms modelled for scenarios like lane changing and on-ramp merging of Connected Au-

tonomous Vehicles (CAVs) in mixed traffic scenarios are mostly tested on traffic simulators

as it is unsafe and expensive to perform experiments in real-world scenarios. For example,

even running a single real-world experiment involving CAVs would take a lot of time as

the agent must train against various scenarios. Until the agent is well trained, it will

make a lot of random moves to explore its surrounding environment, which can lead to

many accidents. These problems can be overcome by using open-source traffic simulators

as they are very inexpensive to set up and are a much safer way to enable the agent to

explore various scenarios and train based on the exploration.

There are various traffic simulators that are designed to replicate real-world driving

scenarios. Some popular ones include Simulation Urban Mobility (SUMO) and highway-

env.

SUMO (Simulation of Urban MObility) Lopez et al. [2018] is an open-source library

designed to handle simulations of large road networks. SUMO is a very powerful tool

for traffic simulations; however, it does have a few limitations. SUMO depends on other

packages, such as the traffic control interface (TraCI) package and the Flow package,

to run simulations. Another major downside of the SUMO library is that it is very

computationally expensive, and even a single simulation takes hours to run. Considering

the above drawbacks of SUMO, I decided to explore other simulation environments.

Highway-env Leurent [2018a] follows a minimalistic style and Pythonic implementa-

tion to simulate various traffic simulation scenarios. Some of the different environment

offerings available within highway-env are highway, merge, parking, roundabout, etc. The

original implementation of highway-env (2018) does not support multiple autonomous and

connected vehicles in hybrid Multi-Agent Reinforcement Learning settings. However, it

is possible to extend the support of this library to include multiple CAVs. Further, it is

also relatively simple to customise this library to suit the requirements of our simulation

environment.

Inspired by the simplistic implementation and various offerings of highway-env, I

choose to use highway-env by Eduard Leurent as the simulation environment for this
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research. Since this paper aims to explore the scalability of existing Multi-Agent Rein-

forcement Learning (MARL) approaches to multi-lane on-ramp merging scenarios, using

the merge environment from highway-env was a viable starting point. To further sim-

ply the usability of this library, the study “Deep Multi-agent Reinforcement Learning

for Highway On-Ramp Merging in Mixed Traffic” Chen et al. [2022] modified the original

highway-env merge environment to include the support of multiple CAVs in a mixed traffic

scenario. Inspired by this approach, I modified this environment to include an additional

merge lane to the on-ramp.

Figure 3.1: Original Merge environment from highway-env. Blue vehicles are the HDVs
and the green vehicle is the autonomous vehicle.

Figure 3.2: Merge environment modified by Dong Chen Chen et al. [2022]. Green vehicles
are the HDVs and the blue vehicle is the autonomous vehicle.

Figure 3.3: Modified merge environment with additional merge lane. Green vehicles are
the HDVs and the blue vehicle is the autonomous vehicle.

Implementing these changes shown in ”Figure 3.3” was not straightforward, and I was

faced with various challenges along the way. These changes are discussed in detail below.
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3.3 Highway-env Architecture

When it comes to the architecture of highway-env, for implementing or modifying any

environment, the RoadNetwork and the Vehicle are the two of the most important class

objects that need to be modified. Their modification is essential because any environment

in highway-env essentially simulates various vehicles on different roads.

The RoadNetwork class is implemented using Lanes and Obstacles. To add an addi-

tional lane to the environment, we first have to initialise a lane and then add it to the road

network. In RoadNetwork, a single highway lane is defined as a combination of smaller

lanes. For example, as shown in Figure 3.4 , the lane “ad” is defined as a combination

of 3 smaller lanes: “ab”, “bc”, and “cd”. Here, “a” is the starting point of the lane, and

“d” is the ending point of the lane. Each lane can be modelled into different types, such

as a straight line or a sinelane (curved lane). Further, we can also define if the lane is

continuous or stripped (a continuous lane does not allow for a lane change, whereas a

striped lane does allow for a lane change).

Figure 3.4: Lane “ad” that is split into 3 smaller roads “ab”, “bc”, and “cd”.

To modify the vehicles simulated on the roads, the MDPVehicle and IDMVehicle

classes that extend the ControlledVehicle class need to be modified. The MDPVehicle

class defines the controls for the Connected Autonomous Vehicles (CAVs) in the simulated

environment. The IDMVehicle class defines the behaviours of Human-driven vehicles

(HDVs) in the environment. Only the vehicles defined by the MDPVehicle class (CAVs)

will be trained using the Multi-Agent Reinforcement Learning (MARL) algorithms. The

MARL algorithms do not train the vehicles defined by the IDMVehicles class (HDVs).

However, the internal heuristics logic defined in the highway-env code allows the HDVs

to drive without collision and demonstrate the natural behaviours of HDVs.

The environment class defines all the lanes and adds them to the road network. This

class will also initialise and spawn the vehicles randomly on the road at different positions.

The modified environment “multi merge env v0” consists of one highway lane and two

merge lanes populated with 1-6 CAVs and 1-5 HDVs, depending on the density of the

simulation. Traffic density “1” spawns 1-3 CAVs and 1-3 HDVs, Traffic density “2” spawns

2-4 CAVs and 2-4 HDVs, and Traffic density “3” spawns 4-6 CAVs and 3-5 HDVs. Due to
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time and hardware constraints, traffic density “2” has been chosen to run the simulations.

It is an excellent middle ground with ample vehicles spawned in the environment to explore

various scenarios. Further, for the purpose of easier representation (Figure 3.5), let us

call the original merge lane on the on-ramp “merge lane 1” and the newly added merge

lane on the on-ramp “merge lane 2”.

Figure 3.5: Modified highway-env merge environment. Blue vehicles are the CAVs and
the green vehicles are the HDVs

3.4 Implementation

3.4.1 Adding Second Merge Lane

The original environment modified consisted of one highway lane and one on-ramp merging

lane. To suit our requirements for this research, I modified and extended the existing

environment to include an additional on-ramp lane that merges into the highway. As

mentioned above, each lane is defined by multiple smaller lanes. So, to add the additional

merge lane, I initialised and added three smaller lanes to the road network that are parallel

to merge lane 1 (original on-ramp lane). Finally, I added an obstacle at the end of the

newly added merge lane (merge lane 2) to indicate the end of the road.

Figure 3.6: Road network of the modified environment

In the environment class, the make road method is used to design and incorporate

lanes into the road network. The original environment consisted of only two lanes in the

road network: a highway lane “ad” split into “ab”, “bc”, and “cd” and a merge lane “jc”

(merge lane 1) split into “jk”, “kb”, and “bc”. It is worth noting that the small lane
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“jk” is a straight lane that comes before the point “k”; the small lane “kb” is a sinelane

(curved lane); and “bc” is a straight lane. To this initial setup, I added another merge

lane (merge lane 2), which is parallel to merge lane 1 and is defined by “mn”, “nb”, and

“bc”. Similar to lane “jk” in merge lane 1, “mn” is a straight lane before the point “n”

in merge lane 2, which is parallel to “jk”.

As we can observe from the ”Figure 3.6”, each lane in the environment is defined by

multiple smaller lanes. The additional merge lane (merge lane 2) added to the environment

defined by “mc” is divided into “mn”, “nb”, and “bc”, where point “m” is the start of

the road and point “c” is the end of the road. The road “mc” consists of multiple lanes,

such as straight lanes and sinelanes (curved lanes). In the second merge lane, lanes “mn”

and “bc” are defined as straight lanes that are parallel to lanes “jk” and “bc”, and the

lane “nb” is a sinelane that is parallel to “kb”. All these smaller lanes are initialised

separately and added to the road network. To initialise each of these lanes, we have

to define a start position, ending position, line type (assigns the lane as a continuous

or a stripped lane), and forbidden (a Boolean value that allows or blocks vehicles from

changing to that lane). Following the above steps, I have created an additional merge lane

(merge lane 2) and added that to the road network for the vehicles to use. Next, using

the Obstacle class, I added an obstacle at the end of the second merge lane to indicate

the end of the road for the vehicles to follow. In the ”Figure 3.6”, yellow boxes placed at

the end of the merge lanes are the obstacles that define the end of the road.

A critical aspect of lane implementation is the use of the argument “forbidden” while

setting up the lane. When “forbidden” is set to True, vehicles are prohibited from changing

their current lane and shifting into this lane. In the modified environment, I set the

“forbidden” value of merge lane 1 to False, allowing vehicles to shift from merge lane 2 to

merge lane 1. Conversely, the “forbidden” value is set to True for the second merge lane,

preventing vehicles from moving from merge lane 1 to merge lane 2.

3.4.2 Spawning Vehicles on the Second Merge Lane

The code by Dong Chen Chen et al. [2022] Chen [2023] allows vehicles to be spawned

on the highway lane and first merge lane. However, the addition of an additional merge

lane (merge lane 2) required a change in the logic to spawn vehicles on the newly added

second merge lane. In the existing code, ½ of the vehicles were spawned on the highway

lane and the other half on the merge lane. In the modified environment, I spawned ½ of

the vehicles on the highway lane; the other half of the vehicles were randomly spawned

between the two merge lanes. The vehicles on the second merge lane will change lanes

into the first merge lane before eventually merging into the highway lane.
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make vehicle method is used to spawn the vehicles on the different lanes. As the

existing code only accounted for vehicles being spawned on the highway and the first

merge lane, the vehicle distribution logic had to be changed to spawn the vehicles onto

the second merging lane. The existing code spawns the vehicles on the roads in four parts

using a predefined list of spawn points containing the positions on the road where the

vehicles must be spawned. First, it spawns the CAVs on the roads, and then it spawns

the HDVs. In the existing code, ½ of both CAVs and HDVs are spawned on the highway

lane, and the other ½ are spawned on the merge lane. To account for an additional merge

lane, I decided to leave ½ vehicles on the highway lane and only focus on modifying the

code to split the other half of the vehicles between the two merge lanes. So, I modified

this code to spawn vehicles on either of the two merging lanes randomly.

Spawning vehicles on the roads requires various arguments, such as the type of the

vehicle (CAV or HDV), the name of the lane in the road network where the vehicle needs

to be spawned, the random position on the road calculated using the spawn points, and

the initial speed of the vehicle. The initial speeds of the vehicles are randomly generated

and essential to simulating the real-world behaviours of various vehicles.

Even after modifying the “forbidden” argument of the first merge lane, I faced an issue

while spawning vehicles on the second merge lane. The HDVs spawned on the second

merge lane were not changing lanes into the first merge lane; they were going to the end of

the second merge lane and stopping. This issue was only isolated to HDVs, as the CAVs

were behaving normally. Upon troubleshooting, I realised that the problem is caused

by the MOBIL (Minimising Overall Braking Induced by Lane change) function of the

IDMVehicle class (a class that controls the behaviours of HDVs). In the MOBIL function,

initially, the jerk (assess the change in acceleration) computed was always assigned to zero;

this was the root cause of the issue. So, I added a statement to increment jerk by 0.11

if the acceleration of the HDV vehicle before and after the lane change (relative to the

preceding vehicles) would be the same. This ensures that the jerk is not zero and fixes

the issue. This change ensures that the HDVs are behaving normally and changing lanes.

The reward function calculates the rewards of each episode based on various factors

like collisions, overall throughput, and speeds of the vehicles on the merging and the

highway lanes. The individual rewards obtained by all the vehicles in an episode are

cumulated to calculate the reward of each episode. The general idea is that vehicles that

do not cause collisions and merge into the highway quickly and safely, maintaining a high

speed, get higher rewards. This rewards function has also been modified to use the same

logic but to include and consider vehicles on the second merge lane.
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3.4.3 Forbidding Lane Changing of Vehicles from Left to Right

Lanes

While modifying the road network to add the second merge lane, I have changed the

“forbidden” argument of the first merge lane to False to allow vehicles from merge lane 2

to change to merge lane 1 before merging into the highway. However, this change caused

an issue where vehicles from the highway lane were changing into the first merge lane to

explore different actions. This would be a scenario that can lead to collisions and should

not happen in real-world scenarios. So, I have modified the logic to enable lane changes

only from the right lanes to the left lanes but not the other way around. I tried to address

this problem in a few different ways, but this was the best possible solution.

Since the first merge lane’s “forbidden” was set to False, the vehicles from the highway

lane are changing to the first merge lane to explore different scenarios. I have tried to

fix this problem using the RoadNetwork class, but there is no possible way to solve this

using the RoadNetwork. So, I fixed this issue using the ControlledVehicle class. The

environment consists of two types of vehicles: CAVs and HDVs. The logic for the HDVs

is implemented using the IDMVehicle class, and the logic for the CAVs is handled by

the MDPVehicle class. Both of these classes are extended from the ControlledVehicle

class. So, I have changed the logic in this class to allow for lane changes only from the

right to the left lanes. I have added a condition for action “LANE RIGHT” and set the

enable lane change to False. This change ensures that no vehicles change lanes to the

right lane.

3.5 Evaluation Set-up

The modified highway-env merge environment, multi merge env v0, implements a new

environment setup (Figure 3.3) that introduces an extra lane to the on-ramp and strate-

gically positions the vehicles on the road network. This setup simulates the highway

on-ramp merging of CAVs in mixed traffic scenarios, particularly in the presence of a

multi-lane on-ramp. Each simulation in multi-agent scenarios termed an episode, is a

single sequence of states, actions, and rewards that the agents experience from the start

of an environment until it reaches a terminal state. In our context, an episode starts with

the spawning of the agents (CAVs) at the start of the road and ends when the agents

(CAVs) either reach the end of the road, cause a collision or when the time limit expires.

In Reinforcement Learning scenarios, agents are trained for a specific number of

episodes, allowing them to explore and learn from their environment. A cumulative re-

ward, the average of all agents’ rewards in the environment, is calculated for each episode.
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In an ideal scenario where the agents learn from every training episode, the cumulative

reward should increase as the training episodes progress.

In the study Chen et al. [2022], the authors evaluated the performance of various

MARL algorithms over 20,000 episodes at 3 different traffic densities, adjusting the num-

ber of CAVs and HDVs varies in the environment (mentioned in section 3.3). Higher

traffic densities, which have an increasing number of CAVs, would make it challenging to

learn optimal strategies.

Due to the limitations of my current hardware, it takes approximately 33 hours to run

20,000 episodes for each algorithm. So, considering hardware and time constraints, I used

the following settings to run the experiments.

Table 3.1: Parameters used for the Evaluation

Parameter Value

Number of Training episodes 10,000

Number of Evaluation episodes 3

Evaluation Interval 20

Traffic density 2

Number of CAVs 2-4

Number of HDVs 2-4
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Chapter 4

Evaluation

This chapter discusses the evaluation metrics (Section 4.1), the design of the experiments

for evaluating the scalability of different MARL algorithms like MAACKTR, MAPPO

and MADQN to the modified multi-lane highway on-ramp merging environment (Section

4.2), the experiment parameters used (Section 4.3), discussion on the results (Section 4.4),

comparison of the various results (Section 4.5), and finally a discussion on the experiments

(Section 4.6).

4.1 Evaluation Metrics

In this section, we will discuss the metrics used to assess the scalability of the MARL

algorithms, such as MAACKTR, MAPPO, and MADQN, to multi-lane merging scenarios.

The critical evaluation metric for evaluating the performance of the different MARL

algorithms is the rewards obtained by the episodes. Each agent in a multi-agent scenario

is rewarded based on its actions in the environment. A positive reward is assigned if

an agent (CAV) follows actions that promote safe and efficient merging. Otherwise,

a negative reward is assigned if the agent causes collisions or drives unnaturally. The

highest reward is assigned if the agents follow the most optimal policy. An average of

the rewards the agents earn in an episode is designated as the reward for that particular

episode. Ideally, as the number of training episodes increases, the agents must learn to

follow the optimal policy, increasing the rewards obtained.

For the baseline for our comparisons, I used the unmodified environment by Chen

described in the study Chen et al. [2022] to generate the baseline results. I have not used

the graphs mentioned in the study Chen et al. [2022] directly because they trained the

model for 20,000 episodes. Still, I could only train the algorithms in modified environments

for 10,000 episodes. The above-mentioned MARL algorithms have been trained for 10,000
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using the same evaluation settings on the unmodified environment due to time constraints

and to maintain consistency in the baseline results. I have used the results of Chen et al.

[2022] as the baseline because the unmodified environment simulates the highway on-ramp

merging of CAVs in mixed traffic scenarios in the presence of a single lane on-ramp. This

is a good baseline as we are exploring the existing algorithms’ scalability to a multi-lane

on-ramp merging scenario.

For the evaluation, I have trained the MAPPO, MAACKTR, and MADQN algorithms

for 10,000 episodes on the modified merge environment. Every 20 episodes, I ran 3

evaluation episodes and used the average rewards obtained from these three episodes as

the evaluation metric. Ideally, the value of these rewards should increase as the training

episodes increase, indicating that the agents are learning the optimal solution based on

the algorithm.

4.2 Evaluation Design

Our primary objective is to devise more effective experiments for assessing the perfor-

mance of the MARL algorithms: MAPPO, MAACKTR, and MADQN in a modified

environment. This environment is crucial as it presents unique challenges and scenarios

that are not encountered in the standard environment. The evaluation of these MARL al-

gorithms’ performance is conducted in two parts. The first part focuses on the scalability

of these algorithms in multi-lane merging scenarios, comparing the average results against

the baseline case. The second part involves a comprehensive performance evaluation of

these algorithms against each other to determine the top performers.

One common challenge in evaluating RL/ MARL algorithms is their sensitivity to the

random seeds used for environment initialization. Additional detailed information on this

issue can be found in the research paper: Colas et al. [2018]. To address this, I have

meticulously evaluated the performance of the MARL algorithms across a wide range of

random test seeds. The average reward obtained over 3 evaluation episodes was plotted as

the performance score. The random seed values used for environment initialization were:

0, 25, 50, 75, 100, 125, 150, 175, 200, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550,

575. This comprehensive approach ensures the validity and reliability of the performance

assessment.

This experiment design helps us better understand the scalability of the existing

MARL algorithms by comparing the results of the modified environment to the origi-

nal environment. It also allows us to understand which of the three algorithms tested is

performing better by comparing the results of the algorithms among themselves.

Based on the original experiment’s results for 10,000 training episodes, the general
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expectation for the experiments is that MAPPO would be the best-performing algorithm,

followed by MAACKTR and then MADQN.

4.3 Experiment Settings

All three Multi-Agent Reinforcement Learning algorithms are trained on the same envi-

ronment parameters to maintain consistency in the comparisons.

Table 4.1: Environment parameters used for the experiment

Parameter Value

Number of Training episodes 10,000

Number of Evaluation episodes 3

Evaluation Interval 20

Traffic density 2

Number of CAVs 2-4

Number of HDVs 2-4

Number of evaluation episodes defines the number of different random seeds used in

the evaluation, the evaluation interval is the gap between evaluating the trained agents,

and traffic density determines the total number of CAVs and HDVs spawned in each

episode.

4.4 Results

The Y-axis represents the average evaluation reward received by the agents, which is the

mean reward obtained from 3 consecutive evaluation episodes. The X-axis represents

the evaluation episode intervals. Episodes are evaluated at regular intervals of every 20

episodes.

The dashed blue line indicates the average evaluation reward obtained by the agents.

An overall upward trend in this line suggests that the agents are learning and improving

their optimal policy. This line is the primary indicator of the agent’s performance in the

environment. The shaded area around the average rewards line is the standard devia-

tion of rewards across multiple random seeds. Wider the shaded area suggests that the

algorithm’s performance is highly sensitive to the initial random seed. The shaded area

represents the volatility in the agents’ performance based on the random seeds.
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In the reward graphs for Reinforcement Learning, the rewards often fluctuate and dip

through the training episodes. This behaviour is typical as the Reinforcement Learn-

ing agents explore their environment in a trial-and-error process, and sometimes, in the

process of exploring the environment, they take actions that result in lower rewards.

4.4.1 Unmodified environment results

MAACKTR

Figure 4.1: MAACKTR Rewards Graph on the unmodified environment

The following figure 4.1 represents the outcomes of training the agents over 10,000

episodes, utilizing the MAACKTR algorithm in medium mode, a crucial component of

our training process.

From the figure 4.1, we can observe that the agents’ rewards generally hoover around

40 to 60. This does not indicate high performance but suggests consistent learning from

the agents. The fluctuations and occasional dips in the rewards indicate that the agents

are exploring the environment. Another observation from the 4.1 is that the standard

deviation of the rewards is relatively widespread. This suggests a high variability in

the agents’ performance across different random seed initializations. The analysis of the

average rewards line reveals a modest overall positive slope, pointing to a gradual learning

curve. This indicates that the agents are learning and improving their policies at a slow
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learning rate. As the learning rate is slow, it would require a lot of training to achieve

good results.

Overall, the MAACKTR algorithm exhibits high volatility and sensitivity to the ini-

tial seed values, which could pose challenges in environments where reproducibility is

crucial. Despite this, in a traffic density two environment, the agents learning using the

MAACKTR algorithm exhibit a positive learning rate, as evidenced in the figure. These

results are used as the baseline for the performance of the MAACKTR algorithm.

MADQN

Figure 4.2: MADQN Rewards Graph on the unmodified environment

The following figure 4.2 represents the outcomes of training the agents over 10,000

episodes, utilizing the MADQN algorithm in medium mode, a crucial component of our

training process.

From the figure 4.2, we can observe that the agents’ rewards vary roughly between -100

and 50. The rewards dipping into negatives implies that the agents often take actions that

result in penalties or losses, reflecting exploratory behaviour that involves testing various

options. The sharp fluctuations observed for the evaluation rewards suggest that the

agents encountered both high peaks and significant troughs in the performance, indicating

an inconsistent model performance. Another observation from the figure 4.2 is that the

MADQN algorithm’s performance does not exhibit a clear upward trend, stating that

there is no consistent improvement in learning. The standard deviation visualised by the
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blue shaded area in the graph is consistently significant throughout the training episodes.

This demonstrates that the MADQN algorithm is highly sensitive to initial random seed

values.

Overall, the MADQN algorithm exhibits an unstable, erratic learning curve with high

sensitivity to random seed values and no learning or policy improvement indication. This

variability in the rewards obtained indicates that the MADQN algorithm is struggling to

train the agents in a medium-density environment. These results are used as the baseline

for the algorithm’s performance.

MAPPO

Figure 4.3: MAPPO Rewards Graph on the unmodified environment

The following figure 4.3 represents the outcomes of training the agents over 10,000

episodes, utilizing the MAPPO algorithm in medium mode, a crucial component of our

training process.

From the 4.3, we can observe that the agents’ rewards vary roughly between 0 and 70.

In most cases, even while the algorithm explores the environment, the average rewards

roughly vary in the range of 20 to 60, indicating that even exploratory actions do not result

in significant losses. The average evaluation rewards oscillate notably but are less violent

than the other two algorithms. This suggests that the agents are exploring various strate-

gies but taking relatively better actions by learning from the previous episodes. Another
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observation from the 4.3 is that although the MAPPO algorithm’s performance fluctu-

ates throughout the training episodes, it exhibits a clear upward learning trend, indicating

that the agents are updating the optimal policy by learning from the previous episodes.

Similar to the other algorithms, the standard deviation is considerable, suggesting that

the MAPPO algorithm is sensitive to the initial random seed values chosen.

Overall, the MAPPO algorithm’s learning curve shows a positive learning slope within

a specific range, indicating that the agents efficiently learn based on the training episodes.

MAPPO provides a good framework for the agents to learn and perform well in a medium-

mode setting. These results are used as the baseline for the performance of the MAPPO

algorithm.

4.4.2 Modified environment

MAACKTR

Figure 4.4: MAACKTR Rewards Graph on the modified environment

The following figure 4.4 represents the outcomes of training the agents over 10,000

episodes, utilizing the MAACKTR algorithm in medium mode, a crucial component of

our training process.

The analysis of the average rewards from the 4.4 does not reveal any clear upward

or a downward trend, indicating that the agents are neither learning nor declining based

on the training episodes. The agents’ rewards are generally varying between 10 and 20.
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This shows that while the algorithm’s performance is not great, it is consistent. The

fluctuations in the evaluation rewards indicate that the rewards reach high peaks, but the

agents are not learning from these episodes. Another observation from the 4.4 is that the

standard deviation from the average rewards is quite significant. This indicates that the

algorithm’s performance heavily depends on the initial seed values.

Overall, the MAACKTR algorithm in the medium mode environment exhibits volatil-

ity and high sensitivity to the initial seed values. The agent’s performance does not clearly

indicate learning in this environment. The very high sensitivity to random seeds makes

reproducibility challenging.

MADQN

Figure 4.5: MADQN Rewards Graph on the modified environment

The following figure 4.5 represents the outcomes of training the agents over 10,000

episodes, utilizing the MADQN algorithm in medium mode, a crucial component of our

training process.

We can observe that the MADQN’s performance in the modified environment is very

similar to that in the unmodified environment. From the 4.5, we can observe that the

agents’ rewards vary between -100 and 50, with the dip in the rewards implying that

the agents often take exploratory actions that result in penalties or losses. The average

rewards line going up and down randomly suggests that the agents encountered both high
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peaks and significant troughs in the performance, indicating an unstable algorithm per-

formance. Another observation from the 4.5 is that the MADQN algorithm’s performance

does not exhibit a clear upward or downward trend, stating that there is no consistent

improvement in learning. This highlights that the model is in a cycle of trial-and-error

exploration and needs to be learned. High variance in the rewards obtained is observed

in the graph throughout the training episodes. This demonstrates that the MADQN

algorithm is highly sensitive to initial random seed values.

Overall, the MADQN algorithm demonstrates an agent experiencing both high and low

performance in quick successions. It exhibits an unstable, erratic learning curve with high

sensitivity to random seed values and no indication of learning or policy improvement.

This variability in the rewards obtained indicates that the MADQN algorithm struggles

to train the agents in a medium-density environment.

MAPPO

Figure 4.6: MAPPO Rewards Graph on the modified environment

The following figure 4.6 represents the outcomes of training the agents over 10,000

episodes, utilizing the MAACKTR algorithm in medium mode, a crucial component of

our training process.

From the figure 4.6, we can observe that the rewards are negative at the start of

the training, and by the end of the 10,000 training episodes, the rewards are close to

75. This indicates a clear upward learning trend, indicating that the agents update
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the optimal policy by learning from the previous episodes. In most cases, the average

rewards are between 25 and 50, indicating that even exploratory actions do not result in

significant losses. The occasional dips into negative rewards mean the agents explore new

scenarios that cause negative rewards. However, this only happens a few episodes before

the rewards reappear, indicating that the agents learn based on the training. The average

evaluation rewards oscillate notably but are less violent than the other two algorithms.

This suggests that the agents are exploring various strategies but taking relatively better

actions by learning from the previous episodes. While some standard deviation is present,

it is not as extreme, indicating that MAPPO is less sensitive to random seed values than

other algorithms.

Overall, the MAPPO algorithm’s learning curve shows a positive learning slope within

a, indicating that the agents are efficiently learning based on the training episodes. It

shows stability in its learning with comparatively fewer fluctuations. MAPPO provides a

good framework for the agents to learn and perform well in medium-mode settings.
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4.5 Comparisons

4.5.1 Scalability of the Algorithms

MADQN

Figure 4.7: MADQN Rewards Graph comparing performance in the modified and the
unmodified environment

The results in figure 4.7 are the results of training the agents for 10,000 episodes

using the MADQN algorithm in medium mode on both the modified and unmodified

environments.

From the figure 4.7 and the results from sections (section 4.4.1 and section 4.4.2),

MADQN shows an upward trend in neither case, indicating that the agents are learning

based on the training episodes. In both cases, the performance of the MADQN in terms

of variability, stability, and consistency is identical. The MADQN algorithm in both cases

follows a similar pattern. This indicates no degradation in performance when scaled to

the new environment.

In summary, from the figure 4.7, the MADQN algorithm’s performance in the modified

environment is on par with its performance in the unmodified environment. This suggests

that the MADQN algorithm is scalable to the new environment as there is no degradation

in the algorithm’s performance. However, no clear learning trend is visible in the average

rewards; instead, they fluctuate heavily. This indicates that the agents are not learning
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from the training episodes. So, although the MADQN algorithm is scalable to the new

environment, there are better algorithms in this scenario of highway on-ramp merging of

CAVs as the agents are not learning.

MAACKTR

Figure 4.8: MAACKTR Rewards Graph comparing performance in the modified and the
unmodified environment

The results in figure 4.8 are the results of training the agents for 10,000 episodes

using the MAACKTR algorithm in medium mode on both the modified and unmodified

environments.

From the results in sections(section 4.4.1 and section 4.4.2) and the figure 4.8, we can

observe that the performance of the MAACKTR algorithm in the unmodified environ-

ment is much better than the performance of the MAACKTR algorithm in the modified

environment. MAACKTR algorithm in the unmodified environment reaches higher re-

ward values when compared to the modified environment. In the unmodified environment,

the agents show a slow but positive learning trend, indicating that the agents are slowly

learning based on the training episodes. However, in the modified environment, no such

trend is shown. The standard deviation of the rewards is much higher in the modified

environment compared to the unmodified environment, indicating that the MAACKTR

algorithm is more sensitive to random seeds in the modified environment. Although both
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scenarios display fluctuations, the fluctuations in the unmodified environment are much

more tightly packed and indicate an upward trend in learning.

Considering these factors, in a medium traffic density setting, the MAACKTR algo-

rithm performs much better in the unmodified environment than in the modified environ-

ment. Therefore, we can say that the MAACKTR algorithm is not scalable to the modified

environment, as there is a considerable degradation in the algorithm’s performance.

MAPPO

Figure 4.9: MAPPO Rewards Graph comparing performance in the modified and the
unmodified environment

Figure 4.9 Are the results of training the agents for 10,000 episodes using the MAPPO

algorithm in medium mode on both the modified and the unmodified environments.

Based on the figure 4.9 and the results from sections (section 4.4.1 and section 4.4.2),

the MAPPO algorithm in both modified and unmodified environments shows an apparent

positive learning curve where the agents learn from the previous training episodes. In

both scenarios, the fluctuations in the rewards seem similar, and the standard deviation

in the rewards shows a similar degree of variability. Looking at the average rewards line,

MAPPO performs well in both environments, with a positive learning trend. MAPPO

in the modified environment slightly outperforms the average rewards obtained and a

somewhat tighter cluster of reward ranges. Still, overall, the performance of MAPPO in

both environments is similar.
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Overall, in a medium traffic density setting, the performance of the MAPPO algorithm

is similar, if not better, to that of the modified environment compared to the unmodified

environment. This indicates that the MAPPO algorithm is scalable to the modified

environment, as there is no degradation in the algorithm’s performance in the modified

environment. The MAPPO algorithm shows good performance and a positive learning

slope in both environments, making it a good choice for training the agents in both

environments.

4.5.2 Which Algorithm Performs Better

Unmodified environment

Figure 4.10: Comparison of the performance of different algorithms in the unmodified
environment

Figure 4.10 are the results of training the agents for 10,000 episodes using different

algorithms-MAPPO, MADQN, and MAACKTR-in medium mode on the unmodified en-

vironment.

From the figure 4.10, we can clearly observe that the performance of the MADQN

algorithm is considerably worse and unstable than that of the other two algorithms.

MAPPO and MAACKTR algorithms show similar performance, but the learning rate in

the MAACKTR algorithm is slower than that of MAPPO. This is because the slope of

the average rewards line for MAACKTR is less than the slope of the average rewards line
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for MAPPO. All three algorithms show considerable fluctuations, but MADQN shows

the highest fluctuations, making it highly inconsistent. The standard deviation is similar

among all the three algorithms.

In summary, both MAACKTR and MAPPO perform well in the unmodified environ-

ment, with both algorithms showing a positive learning trend. However, MAPPO shows

a slightly higher learning rate for the agents when compared with MAACKTR. MADQN

performs significantly worse and needs a better algorithm to train the agents in the un-

modified environment. So, we can conclude that the MAPPO and MAACKTR algorithms

are good choices for training the agents in the unmodified environment.

Modified environment

Figure 4.11: Comparison of the performance of different algorithms in the modified envi-
ronment

Figure 4.11 are the results of training the agents for 10,000 episodes using different

algorithms-MAPPO, MADQN, and MAACKTR-in medium mode on the modified envi-

ronment.

From the figure 4.11, we can see that the MAPPO algorithm outperforms both MAACKTR

and MADQN algorithms in the modified environment. MAPPO consistently achieves

higher rewards and shows a positive learning trend compared to the other two algorithms.

Also, the standard deviation of the average rewards is much lower for the MAPPO algo-

rithm than for the other two algorithms. MAACKTR algorithm shows little to no learning
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in the agents based on the training episodes, as there is no visible positive slope in the

average rewards line. In addition, it shows a very high standard deviation of the average

rewards, indicating that it is highly sensitive to random seed values. All three algorithms

show notable fluctuations, but MADQN shows the highest fluctuations, making it highly

inconsistent.

Overall, MAPPO is the best-performing algorithm in the modified environment as it

consistently achieves higher rewards and shows a clear positive learning trend, indicating

that the agents are learning from the previous episodes. MAACKTR shows no precise

learning curve, meaning that the agents are not learning from the earlier episodes, and

the average rewards achieved are considerably lower compared to MAPPO. MADQN’s

inconsistent performance makes it not a good algorithm for training the agents in the

modified environment. So, the MAPPO algorithm is the best algorithm out of the three

to train agents in the modified environment.

4.6 Summary

Comparing the performance of three different MARL algorithms-MAPPO, MADQN, and

MAACKTR-in a medium traffic density setting in both the modified and the unmodified

environment revealed meaningful insights on the performance and the scalability of these

algorithms.

In the unmodified environment, MAPPO consistently achieves higher average rewards

and exhibits an apparent positive learning curve. While MAACKTR also shows a pos-

itive learning trend, the algorithm’s learning rate is slower than that of MAPPO. This

suggests that MAACKTR will need to train the agents longer than MAPPO to learn op-

timal policies. In contrast to these algorithms, MADQN struggles to maintain consistent

performance in an unmodified environment.

When scaled to the modified environment, MAPPO maintains its performance in

achieving higher rewards and showing a positive learning trend. Its performance is simi-

lar, not improved, compared to the unmodified environment. This proves that MAPPO

is scalable to the modified environment. However, the performance of the MAACKTR

algorithm is degraded when scaled to the modified environment. This shows that the

MAACKTR algorithm does not scale well to the modified environment. Similar to the

unmodified environment, the MADQN algorithm struggles to maintain a consistent perfor-

mance when scaled to the modified environment. It maintains a comparable performance

to the unmodified environment. Although the MADQN algorithm performs similarly in

the modified environment, it could be more consistent.

In conclusion, the MAPPO algorithm is the most scalable and efficient algorithm out of
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the three training agents for highway on-ramp merging of CAVs in mixed traffic conditions.

This can be evidenced by its performance and learning rate across both the modified and

the unmodified environments. Although the MAACKTR algorithm performed well in the

unmodified environment, its performance degraded and did not scale well to the modified

environment. Finally, MADQN displayed the most inconsistent performance across both

the modified and the unmodified environments, making it the least suitable out of the

three for highway on-ramp merging of CAVs in mixed traffic conditions.
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Chapter 5

Conclusions & Future Work

This chapter summarises the work presented in the dissertation, discusses the conclusions

that can be drawn from the experiments (Section 5.1), and the possible future directions

of this research (Section 5.2).

5.1 Summary

This dissertation aimed to verify the scalability of the existing Multi-Agent Reinforce-

ment Learning (MARL) frameworks to a multi-lane highway on-ramp merging scenario

involving Connected Autonomous Vehicles (CAVs) in mixed traffic scenarios. Most exist-

ing research in highway on-ramp merging of CAVs tests the algorithms on a single-lane

on-ramp and often oversees the possibility of a multi-lane on-ramp. This leaves the perfor-

mance of these algorithms largely unknown in such multi-lane on-ramp merging scenarios.

To address this crucial gap in the research, in this paper, I have extended (section

??) the existing merge environment from ”highway-env” to add an extra lane on the

on-ramp. Further, in this new environment, I tested the scalability of three different

MARL frameworks-MAPPO, MADQN, and MAACKTR Chen et al. [2022]. These three

algorithms, proposed in the study Chen et al. [2022] and available at Chen [2023], were

used to train the CAVs in both the modified multi-lane on-ramp environment and the

unmodified single-lane on-ramp environment to assess their scalability and performance.

The experiments’ findings indicate that the MAPPO algorithm is the most scalable

and effective algorithm for managing the complexities of multi-lane merging scenarios.

MAPPO obtains higher average rewards and demonstrates a positive learning curve in

both the modified and unmodified environments. This indicates that the CAVs are learn-

ing from previous episodes, making it a good choice for training CAVs in highway on-ramp

merging scenarios.
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The MADQN algorithm proved to be the most unpredictable in terms of performance,

with the average rewards fluctuating erratically in both environments. While the algo-

rithm’s performance has potential for scalability in the modified environment, its incon-

sistent learning trend in both environments renders it unsuitable for training CAVs in

mixed traffic and highway on-ramp merging scenarios.

MAACKTR algorithm showed reasonable performance in an unmodified environment

with agents slowing learning from the previous episodes. However, it did not scale well

to the modified environment. The algorithm’s performance declined drastically, and the

average rewards obtained showed that the agents had not learned from the previous

episodes. This indicates that MAACKTR is not scalable to the modified environment.

Even though it was a good algorithm to train agents in the unmodified environment, its

performance suggests that it needs to train the agents well in the modified environment.

In conclusion, this dissertation highlights the limitations in scaling the existing Multi-

Agent Reinforcement Learning (MARL) frameworks to more complex, multi-lane on-ramp

merging scenarios. The experiments concluded that not all existing MARL frameworks

scale seamlessly to multi-lane on-ramp merging scenarios. Out of the three MARL frame-

works tested-MAPPO, MADQN and MAACKTR-only MAPPO successfully scale to the

modified multi-lane on-ramp merging environment. This work lays a foundation towards

exploring the limitations and potential of Multi-Argent Reinforcement Learning in the

context of highway on-ramp merging of CAVs in mixed traffic scenarios.

5.2 Future Work

This dissertation addresses the gap in exploring the scalability of existing MARL frame-

works to a multi-lane on-ramp merging scenario. This research only discussed the scal-

ability of three different algorithms: MAPPO, MADQN, and MAACKTR. One of the

obvious directions for future work is to explore the scalability of various other existing

MARL frameworks.

Moreover, there is a crucial need to enhance the existing frameworks to improve scal-

ability and real-world performance. Another direction would be to enhance the existing

frameworks to make them more scalable to various real-world scenarios. Focus can be put

on strengthening the algorithms to make Connected Autonomous Vehicles (CAVs) bet-

ter co-exist with Human Driven Vehicles (HDVs) while considering scalability, efficiency,

and security. One prominent way would be exploring the application of Distributional

Reinforcement Learning as it offers enormous potential for significant improvements and

is relatively unexplored in this area.

Future research in these areas will be essential for the successful and seamless integra-
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tion of Connected Autonomous Vehicles into mixed-traffic environments.
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agent reinforcement learning for autonomous vehicles: a survey. Autonomous In-

telligent Systems, 2(1):27, November 2022c. ISSN 2730-616X. doi: 10.1007/

s43684-022-00045-z. URL https://doi.org/10.1007/s43684-022-00045-z.

John Doe and Jane Smith. A theoretical exploration of deep learning, 2018.

European Commission. Cooperative, connected and automated mobility (ccam). Euro-

pean Commission - Mobility and Transport, April 2024. URL https://transport.

ec.europa.eu/transport-themes/intelligent-transport-systems/

cooperative-connected-and-automated-mobility-ccam_en. Accessed: 2024-04-

22.

Hugging face. The bellman equation: simplify our value estimation. https://

huggingface.co/learn/deep-rl-course/unit2/bellman-equation, N.d.

Daniel J. Fagnant and Kara Kockelman. Preparing a nation for autonomous vehicles:

opportunities, barriers and policy recommendations. Transportation Research Part

A: Policy and Practice, 77:167–181, 2015. ISSN 0965-8564. doi: https://doi.org/10.

1016/j.tra.2015.04.003. URL https://www.sciencedirect.com/science/article/

pii/S0965856415000804.

Farama Foundation. Gym library, 2023a. URL https://www.gymlibrary.dev.

Farama Foundation. Gymnasium, 2023b. URL https://gymnasium.farama.org.

T. Fuchida, K. T. Aung, and A. Sakuragi. A study of q-learning considering neg-

ative rewards. Artificial Life and Robotics, 15:351–354, 2010. doi: 10.1007/

s10015-010-0822-7.

General Motors. Path to autonomous driving, 2024. URL https://www.gm.com/

commitments/path-to-autonomous. Accessed: 2024-04-22.

Roger Grosse, Chris Maddison, Juhan Bae, and Silviu Pitis. Csc 311: Introduction

to machine learning. https://www.cs.toronto.edu/~rgrosse/courses/csc311_

f20/slides/lec11.pdf, 2020.

60

https://doi.org/10.1007/s43684-022-00045-z
https://doi.org/10.1007/s43684-022-00045-z
https://doi.org/10.1007/s43684-022-00045-z
https://transport.ec.europa.eu/transport-themes/intelligent-transport-systems/cooperative-connected-and-automated-mobility-ccam_en
https://transport.ec.europa.eu/transport-themes/intelligent-transport-systems/cooperative-connected-and-automated-mobility-ccam_en
https://transport.ec.europa.eu/transport-themes/intelligent-transport-systems/cooperative-connected-and-automated-mobility-ccam_en
https://huggingface.co/learn/deep-rl-course/unit2/bellman-equation
https://huggingface.co/learn/deep-rl-course/unit2/bellman-equation
https://www.sciencedirect.com/science/article/pii/S0965856415000804
https://www.sciencedirect.com/science/article/pii/S0965856415000804
https://www.gymlibrary.dev
https://gymnasium.farama.org
https://www.gm.com/commitments/path-to-autonomous
https://www.gm.com/commitments/path-to-autonomous
https://www.cs.toronto.edu/~rgrosse/courses/csc311_f20/slides/lec11.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc311_f20/slides/lec11.pdf


Jacopo Guanetti, Yeojun Kim, and Francesco Borrelli. Control of connected and auto-

mated vehicles: State of the art and future challenges. Annual Reviews in Control,

45:18–40, January 2018. ISSN 1367-5788. doi: 10.1016/j.arcontrol.2018.04.011. URL

https://www.sciencedirect.com/science/article/pii/S1367578818300336.

Xiaotian Hao, Hangyu Mao, Weixun Wang, Yaodong Yang, Dong Li, Yan Zheng, Zhen

Wang, and Jianye Hao. Breaking the curse of dimensionality in multiagent state

space: A unified agent permutation framework, 2022.

Shanglu He, Fan Ding, Chaoru Lu, and Yong Qi. Impact of connected and autonomous

vehicle dedicated lane on the freeway traffic efficiency. European Transport Research

Review, 14(1):12, April 2022a. ISSN 1866-8887. doi: 10.1186/s12544-022-00535-4.

URL https://doi.org/10.1186/s12544-022-00535-4.

Sheng He, Feng Ding, Chao Lu, et al. Impact of connected and autonomous vehicle

dedicated lane on the freeway traffic efficiency. European Transport Research Review,

14:12, 2022b. doi: 10.1186/s12544-022-00535-4. URL https://doi.org/10.1186/

s12544-022-00535-4.

Tianfeng Hu, Zhiqun Hu, Zhaoming Lu, and Xiangming Wen. Dynamic traffic signal con-

trol using mean field multi-agent reinforcement learning in large scale road-networks.

IET Intelligent Transport Systems, 17(9):1715–1728, 2023. ISSN 1751-9578. doi:

10.1049/itr2.12364. URL https://onlinelibrary.wiley.com/doi/abs/10.1049/

itr2.12364. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1049/itr2.12364.

Yeping Hu, Alireza Nakhaei, Masayoshi Tomizuka, and Kikuo Fujimura. Interaction-aware

decision making with adaptive strategies under merging scenarios. In 2019 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 151–158.

IEEE, 2019. doi: 10.1109/IROS40897.2019.8967767.

Yujing Hu, Qing Da, Anxiang Zeng, Yang Yu, and Yinghui Xu. Reinforcement learning

to rank in e-commerce search engine: Formalization, analysis, and application, 2018.

Abdikarim Mohamed Ibrahim, Kok-Lim Alvin Yau, Yung-Wey Chong, and Celimuge Wu.

Applications of multi-agent deep reinforcement learning: Models and algorithms.

Applied Sciences, 11(22):10870, 2021. doi: 10.3390/app112210870. URL https:

//doi.org/10.3390/app112210870.

Seth Karten, Mycal Tucker, Huao Li, Siva Kailas, Michael Lewis, and Katia Sycara. In-

terpretable learned emergent communication for human–agent teams. IEEE Trans-

61

https://www.sciencedirect.com/science/article/pii/S1367578818300336
https://doi.org/10.1186/s12544-022-00535-4
https://doi.org/10.1186/s12544-022-00535-4
https://doi.org/10.1186/s12544-022-00535-4
https://onlinelibrary.wiley.com/doi/abs/10.1049/itr2.12364
https://onlinelibrary.wiley.com/doi/abs/10.1049/itr2.12364
https://doi.org/10.3390/app112210870
https://doi.org/10.3390/app112210870


actions on Cognitive and Developmental Systems, 15(4):1801–1811, 2023. doi:

10.1109/TCDS.2023.3236599.

Dhanoop Karunakaran. Relationship between state (v)

and action(q) value function in reinforcement learning.

https://medium.com/intro-to-artificial-intelligence/

relationship-between-state-v-and-action-q-value-function-in-reinforcement-learning-bb9a988c0127,

2021.

Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ninomiya, Kazuya Takeda, and

Tsuyoshi Hamada. An open approach to autonomous vehicles. IEEE Micro, 35(6):

60–68, 2015. doi: 10.1109/MM.2015.133.

Hamza Khan, Petri Luoto, Sumudu Samarakoon, Mehdi Bennis, and Matti Latva-

Aho. Network slicing for vehicular communication. Transactions on Emerging

Telecommunications Technologies, 32(1):e3652, 2021. doi: https://doi.org/10.1002/

ett.3652. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3652.

e3652 ett.3652.

Dong-Ki Kim, Matthew Riemer, Miao Liu, Jakob N. Foerster, Michael Everett,

Chuangchuang Sun, Gerald Tesauro, and Jonathan P. How. Influencing long-term

behavior in multiagent reinforcement learning, 2022.

Jong-Hoon Kim, Jun-Ho Huh, Se-Hoon Jung, and Chun-Bo Sim. A study on an enhanced

autonomous driving simulation model based on reinforcement learning using a col-

lision prevention model. Electronics, 10(18), 2021. ISSN 2079-9292. doi: 10.3390/

electronics10182271. URL https://www.mdpi.com/2079-9292/10/18/2271.

Jongho Kim, Donghyun Lim, Younghoon Seo, Jaehyun (Jason) So, and Hyungjoo Kim.

Influence of dedicated lanes for connected and automated vehicles on highway traffic

flow. IET Intelligent Transport Systems, 17(4):678–690, 2023. ISSN 1751-9578. doi:

10.1049/itr2.12295. URL https://onlinelibrary.wiley.com/doi/abs/10.1049/

itr2.12295. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1049/itr2.12295.

Henrietta Lengyel, Tamás Tettamanti, and Zsolt Szalay. Conflicts of automated driving

with conventional traffic infrastructure. IEEE Access, 8:163280–163297, 2020. doi:

10.1109/ACCESS.2020.3020653.

Edouard Leurent. An environment for autonomous driving decision-making. https:

//github.com/eleurent/highway-env, 2018a.

62

https://medium.com/intro-to-artificial-intelligence/relationship-between-state-v-and-action-q-value-function-in-reinforcement-learning-bb9a988c0127
https://medium.com/intro-to-artificial-intelligence/relationship-between-state-v-and-action-q-value-function-in-reinforcement-learning-bb9a988c0127
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3652
https://www.mdpi.com/2079-9292/10/18/2271
https://onlinelibrary.wiley.com/doi/abs/10.1049/itr2.12295
https://onlinelibrary.wiley.com/doi/abs/10.1049/itr2.12295
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env


Edouard Leurent. An environment for autonomous driving decision-making. https:

//github.com/eleurent/highway-env, 2018b.

Edouard Leurent. An environment for autonomous driving decision-making. https:

//github.com/Farama-Foundation/HighwayEnv, 2018c.

L. Li, V. Bulitko, and R. Greiner. Batch reinforcement learning with state importance.

In J.-F. Boulicaut, F. Esposito, F. Giannotti, and D. Pedreschi, editors, Machine

Learning: ECML 2004, volume 3201 of Lecture Notes in Computer Science, Berlin,

Heidelberg, 2004. Springer. doi: 10.1007/978-3-540-30115-8 53.

Shengxiang Li, Ou Li, Guangyi Liu, Siyuan Ding, and Yijie Bai. Trajectory based priori-

tized double experience buffer for sample-efficient policy optimization. IEEE Access,

9:101424–101432, 2021. doi: 10.1109/ACCESS.2021.3097357.

Wenhao Li, Xiangfeng Wang, Bo Jin, Junjie Sheng, and Hongyuan Zha. Dealing with

non-stationarity in marl via trust-region decomposition, 2022.

Yanchang Liang, Xiaowei Zhao, and Li Sun. A multiagent reinforcement learning approach

for wind farm frequency control. IEEE Transactions on Industrial Informatics, 19

(2):1725–1734, 2023. doi: 10.1109/TII.2022.3182328.

Yiheng Lin, Guannan Qu, Longbo Huang, and Adam Wierman. Multi-agent reinforce-

ment learning in stochastic networked systems, 2021.

Jiajing Ling, Kushagra Chandak, and Akshat Kumar. Integrating knowledge compilation

with reinforcement learning for routes. Proceedings of the International Conference

on Automated Planning and Scheduling, 31(1):542–550, May 2021. doi: 10.1609/

icaps.v31i1.16002. URL https://ojs.aaai.org/index.php/ICAPS/article/view/

16002.

Jun Liu, Wei Zhao, and Cheng Xu. An efficient on-ramp merging strategy for connected

and automated vehicles in multi-lane traffic. IEEE Transactions on Intelligent Trans-

portation Systems, 23(6):5056–5067, 2021. doi: 10.1109/TITS.2021.3070946.

Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang

Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wagner, and

Evamarie Wießner. Microscopic traffic simulation using sumo. In IEEE Intelligent

Transportation Systems Conference (ITSC). IEEE, 2018. URL https://sumo.dlr.

de/docs/index.html.

63

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env
https://github.com/Farama-Foundation/HighwayEnv
https://github.com/Farama-Foundation/HighwayEnv
https://ojs.aaai.org/index.php/ICAPS/article/view/16002
https://ojs.aaai.org/index.php/ICAPS/article/view/16002
https://sumo.dlr.de/docs/index.html
https://sumo.dlr.de/docs/index.html


Xiao-Yun Lu and J. Karl Hedrick. Longitudinal control algorithm for automated

vehicle merging. International Journal of Control, 76(2):193–202, 2003. doi:

10.1080/0020717031000060541.

Yang Lu, Xin Xu, Xinglong Zhang, Lilin Qian, and Xing Zhou. Hierarchical Reinforce-

ment Learning for Autonomous Decision Making and Motion Planning of Intelligent

Vehicles. IEEE Access, 8:209776–209789, 2020. ISSN 2169-3536. doi: 10.1109/

ACCESS.2020.3034225. URL https://ieeexplore.ieee.org/document/9241055.

Conference Name: IEEE Access.

Thorsten Luettel, Michael Himmelsbach, and Hans-Joachim Wuensche. Autonomous

ground vehicles—concepts and a path to the future. Proceedings of the IEEE, 100

(Special Centennial Issue):1831–1839, 2012. doi: 10.1109/JPROC.2012.2189803.

Zhen Luo, Zhongliang Pei, and Bihua Zou. Directional polarization modulation for se-

cure dual-polarized satellite communication. In 2019 International Conference on

Communications, Information System and Computer Engineering (CISCE), pages

270–275. IEEE, 2019. doi: 10.1109/CISCE.2019.00062.

Lijing Ma, Shiru Qu, Lijun Song, and Bo Liu. Exploring the effect of connected

autonomous vehicles in mixed traffic flow. In Third International Conference on In-

telligent Computing and Human-Computer Interaction (ICHCI 2022), volume 12509,

pages 201–206. SPIE, January 2023. doi: 10.1117/12.2656036. URL https://www.

spiedigitallibrary.org/conference-proceedings-of-spie/12509/125090W/

Exploring-the-effect-of-connected-autonomous-vehicles-in-mixed-traffic/

10.1117/12.2656036.full.

A. M. Ishtiaque Mahbub, Behdad Chalaki, and Andreas A. Malikopoulos. A Con-

strained Optimal Control Framework for Vehicle Platoons with Delayed Communica-

tion, November 2021. URL http://arxiv.org/abs/2111.08080. arXiv:2111.08080

[math].

Neelesh R. Malankar and Raj Shah. Qos analysis over wimax network with varying modu-

lation schemes and efficiency modes. International Journal of Computer Applications,

162(8):9–16, 2017. doi: 10.5120/ijca2017914286.

M.H. Martens and A.P. van den Beukel. The road to automated driving: Dual mode and

human factors considerations. In 16th International IEEE Conference on Intelligent

Transportation Systems (ITSC 2013), pages 2262–2267, 2013. doi: 10.1109/ITSC.

2013.6728564.

64

https://ieeexplore.ieee.org/document/9241055
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12509/125090W/Exploring-the-effect-of-connected-autonomous-vehicles-in-mixed-traffic/10.1117/12.2656036.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12509/125090W/Exploring-the-effect-of-connected-autonomous-vehicles-in-mixed-traffic/10.1117/12.2656036.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12509/125090W/Exploring-the-effect-of-connected-autonomous-vehicles-in-mixed-traffic/10.1117/12.2656036.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12509/125090W/Exploring-the-effect-of-connected-autonomous-vehicles-in-mixed-traffic/10.1117/12.2656036.full
http://arxiv.org/abs/2111.08080


Marilo Martin-Gasulla, Peter Sukennik, and Jochen Lohmiller. Investigation of the impact

on throughput of connected autonomous vehicles with headway based on the leading

vehicle type. Transportation Research Record, 2673(5):617–626, 2019. doi: 10.1177/

0361198119839989. URL https://doi.org/10.1177/0361198119839989.

Maike M. Mayer, Axel Buchner, and Raoul Bell. Humans, machines, and double stan-

dards? the moral evaluation of the actions of autonomous vehicles, anthropomor-

phized autonomous vehicles, and human drivers in road-accident dilemmas. Fron-

tiers in Psychology, 13, 2023. ISSN 1664-1078. doi: 10.3389/fpsyg.2022.1052729.

URL https://www.frontiersin.org/journals/psychology/articles/10.3389/

fpsyg.2022.1052729.

Tim Miller. Policy gradients. Available: https://gibberblot.

github.io/rl-notes/single-agent/policy-gradients.html#

policy-improvement-using-gradient-ascent, 2023.

A.J.M. Muzahid, S.F. Kamarulzaman, M.A. Rahman, et al. Multiple vehicle cooperation

and collision avoidance in automated vehicles: survey and an ai-enabled conceptual

framework. Sci Rep, 13:603, 2023. doi: 10.1038/s41598-022-27026-9.

Srikanth K. S. Nakka, Behdad Chalaki, and Andreas A. Malikopoulos. A multi-agent

deep reinforcement learning coordination framework for connected and automated

vehicles at merging roadways. In 2022 American Control Conference (ACC), pages

3297–3302. IEEE, 2022. doi: 10.23919/ACC53348.2022.9867412.

Ashish Nanda, Deepak Puthal, Joel J. P. C. Rodrigues, and Sergei A. Kozlov. Inter-

net of Autonomous Vehicles Communications Security: Overview, Issues, and Di-

rections. IEEE Wireless Communications, 26(4):60–65, August 2019. ISSN 1558-

0687. doi: 10.1109/MWC.2019.1800503. URL https://ieeexplore.ieee.org/

document/8809661. Conference Name: IEEE Wireless Communications.

Thanh Tang Nguyen, Sunil Gupta, and Svetha Venkatesh. Distributional reinforcement

learning via moment matching, 2020.

Alexandros Nikitas, Ioannis Kougias, Elena Alyavina, and Eric Njoya Tchouamou. How

can autonomous and connected vehicles, electromobility, brt, hyperloop, shared use

mobility and mobility-as-a-service shape transport futures for the context of smart

cities? Urban Science, 1(4), 2017. ISSN 2413-8851. doi: 10.3390/urbansci1040036.

URL https://www.mdpi.com/2413-8851/1/4/36.

65

https://doi.org/10.1177/0361198119839989
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2022.1052729
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2022.1052729
https://gibberblot.github.io/rl-notes/single-agent/policy-gradients.html#policy-improvement-using-gradient-ascent
https://gibberblot.github.io/rl-notes/single-agent/policy-gradients.html#policy-improvement-using-gradient-ascent
https://gibberblot.github.io/rl-notes/single-agent/policy-gradients.html#policy-improvement-using-gradient-ascent
https://ieeexplore.ieee.org/document/8809661
https://ieeexplore.ieee.org/document/8809661
https://www.mdpi.com/2413-8851/1/4/36


OpenAI. Part 1: Key concepts in rl. https://spinningup.openai.com/en/latest/

spinningup/rl_intro.html, 2018. Accessed: 2024-04-15.

OpenAI. Openai baselines: Acktr & a2c, 2021. URL https://openai.com/research/

openai-baselines-acktr-a2c. Accessed: [Insert date of access here].

Zhaotian Pan, Zhaowei Qu, Yongheng Chen, Haitao Li, and Xin Wang. A Distributed

Assignment Method for Dynamic Traffic Assignment Using Heterogeneous-Adviser

Based Multi-Agent Reinforcement Learning. IEEE Access, 8:154237–154255, 2020.

ISSN 2169-3536. doi: 10.1109/ACCESS.2020.3018267. URL https://ieeexplore.

ieee.org/document/9172059. Conference Name: IEEE Access.

Alkis Papadoulis, Mohammed Quddus, and Marianna Imprialou. Evaluating the safety

impact of connected and autonomous vehicles on motorways. Accident Analysis

Prevention, 124:12–22, 2019a. ISSN 0001-4575. doi: https://doi.org/10.1016/j.

aap.2018.12.019. URL https://www.sciencedirect.com/science/article/pii/

S0001457518306018.

Alkis Papadoulis, Mohammed Quddus, and Marianna Imprialou. Evaluating the safety

impact of connected and autonomous vehicles on motorways. Accident Analy-

sis & Prevention, 124:12–22, March 2019b. ISSN 0001-4575. doi: 10.1016/j.

aap.2018.12.019. URL https://www.sciencedirect.com/science/article/pii/

S0001457518306018.

Leandro Parada, Eduardo Candela, Luis Marques, and Panagiotis Angeloudis. Safe and

efficient manoeuvring for emergency vehicles in autonomous traffic using multi-agent

proximal policy optimisation, 2022.

Scott Drew Pendleton, Hans Andersen, Xinxin Du, Xiaotong Shen, Malika Meghjani,

You Hong Eng, Daniela Rus, and Marcelo H. Ang. Perception, planning, control,

and coordination for autonomous vehicles. Machines, 5(1), 2017. ISSN 2075-1702.

doi: 10.3390/machines5010006. URL https://www.mdpi.com/2075-1702/5/1/6.

Xiaobo Qu, Yang Yu, Mofan Zhou, Chin-Teng Lin, and XiangyuWang. Jointly dampening

traffic oscillations and improving energy consumption with electric, connected and

automated vehicles: A reinforcement learning based approach. Applied Energy, 257:

114030, January 2020a. ISSN 0306-2619. doi: 10.1016/j.apenergy.2019.114030. URL

https://www.sciencedirect.com/science/article/pii/S0306261919317179.

Zhaowei Qu, Zhaotian Pan, Yongheng Chen, Xin Wang, and Haitao Li. A Dis-

tributed Control Method for Urban Networks Using Multi-Agent Reinforcement

66

https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
https://openai.com/research/openai-baselines-acktr-a2c
https://openai.com/research/openai-baselines-acktr-a2c
https://ieeexplore.ieee.org/document/9172059
https://ieeexplore.ieee.org/document/9172059
https://www.sciencedirect.com/science/article/pii/S0001457518306018
https://www.sciencedirect.com/science/article/pii/S0001457518306018
https://www.sciencedirect.com/science/article/pii/S0001457518306018
https://www.sciencedirect.com/science/article/pii/S0001457518306018
https://www.mdpi.com/2075-1702/5/1/6
https://www.sciencedirect.com/science/article/pii/S0306261919317179


Learning Based on Regional Mixed Strategy Nash-Equilibrium. IEEE Access, 8:

19750–19766, 2020b. ISSN 2169-3536. doi: 10.1109/ACCESS.2020.2968937. URL

https://ieeexplore.ieee.org/document/8967108/.

Ashish Rauniyar, Desta Haileselassie Hagos, Manish Shrestha, and Claudio Agostino

Ardagna. A crowd-based intelligence approach for measurable security, privacy, and

dependability in internet of automated vehicles with vehicular fog. Mobile Infor-

mation Systems, 2018:7905960, 2018. ISSN 1574-017X. doi: 10.1155/2018/7905960.

URL https://doi.org/10.1155/2018/7905960.

Wutthigrai Boonsuk Rendong Bai and Peter P. Liu. Autonomous driving and related

technologies. In 2019 ASEE Annual Conference & Exposition, number 10.18260/1-2–

32137, Tampa, Florida, June 2019. ASEE Conferences. https://peer.asee.org/32137.

William B. Ribbens. Chapter 12 - autonomous vehicles. In William B. Ribbens,

editor, Understanding Automotive Electronics (Eighth Edition), pages 573–593.

Butterworth-Heinemann, eighth edition edition, 2017. ISBN 978-0-12-810434-

7. doi: https://doi.org/10.1016/B978-0-12-810434-7.00012-0. URL https://www.

sciencedirect.com/science/article/pii/B9780128104347000120.

Francisca Rosique, Pedro J. Navarro, Leanne Miller, and Eduardo Salas. Autonomous

vehicle dataset with real multi-driver scenes and biometric data. Sensors, 23(4), 2023.

ISSN 1424-8220. doi: 10.3390/s23042009. URL https://www.mdpi.com/1424-8220/

23/4/2009.

Hammam Salem, M.D. Muzakkir Quamar, and Adeb Magad et al. Data-driven integrated

sensing and communication: Recent advances, challenges, and future prospects.

TechRxiv, July 2023.

Leon Schester and Luis E. Ortiz. Longitudinal position control for highway on-ramp

merging: A multi-agent approach to automated driving. In 2019 IEEE Intelligent

Transportation Systems Conference (ITSC), pages 3461–3468. IEEE, 2019. doi: 10.

1109/ITSC.2019.8917375.

Lukas M. Schmidt, Johanna Brosig, Axel Plinge, Bjoern M. Eskofier, and Christopher

Mutschler. An Introduction to Multi-Agent Reinforcement Learning and Review of

its Application to Autonomous Mobility, March 2022. URL https://arxiv.org/

abs/2203.07676v2.

67

https://ieeexplore.ieee.org/document/8967108/
https://doi.org/10.1155/2018/7905960
https://www.sciencedirect.com/science/article/pii/B9780128104347000120
https://www.sciencedirect.com/science/article/pii/B9780128104347000120
https://www.mdpi.com/1424-8220/23/4/2009
https://www.mdpi.com/1424-8220/23/4/2009
https://arxiv.org/abs/2203.07676v2
https://arxiv.org/abs/2203.07676v2


David Shepardson. Tesla driver in fatal ’autopilot’ crash got numerous warnings:

U.s. government. Reuters, June 2017. URL https://www.reuters.com/article/

idUSKBN19A2XC. Accessed: 2024-04-22.

Yunpeng Shi, Qing He, and Zhitong Huang. Capacity Analysis and Cooperative

Lane Changing for Connected and Automated Vehicles: Entropy-Based Assessment

Method. Transportation Research Record, 2673(8):485–498, August 2019. ISSN

0361-1981. doi: 10.1177/0361198119843474. URL https://doi.org/10.1177/

0361198119843474. Publisher: SAGE Publications Inc.

Ziyu Song and Haitao Ding. Modeling car-following behavior in heterogeneous traffic

mixing human-driven, automated and connected vehicles: considering multitype ve-

hicle interactions. Nonlinear Dynamics, 111(12):11115–11134, June 2023. ISSN

1573-269X. doi: 10.1007/s11071-023-08377-y. URL https://doi.org/10.1007/

s11071-023-08377-y.

Sergiu C. Stanciu, David W. Eby, Lisa J. Molnar, Renée M. St. Louis, Nicole Zanier,

and Lidia P. Kostyniuk. Pedestrians/bicyclists and autonomous vehicles: How will

they communicate? Transportation Research Record, 2672(22):58–66, 2018. doi:

10.1177/0361198118777091. URL https://doi.org/10.1177/0361198118777091.

Statista. Projected size of the global autonomous vehicle market

by vehicle type. https://www.statista.com/statistics/428692/

projected-size-of-global-autonomous-vehicle-market-by-vehicle-type/,

2023. [Online; accessed 20-April-2024].

Statista. Impact of vehicle automation on collision rates. https://www.statista.com/

statistics/1238242/impact-of-vehicle-automation-on-collision-rates/,

2024. [Online; accessed 20-April-2024].

Haojie Sun, Shuo Feng, Xiangbin Yan, and Henry X. Liu. Corner case generation

and analysis for safety assessment of autonomous vehicles. Transportation Re-

search Record, 2675(11):587–600, 2021. doi: 10.1177/03611981211018697. URL

https://doi.org/10.1177/03611981211018697.

Zhiyuan Sun, Tao Huang, and Peng Zhang. Cooperative decision-making for mixed traffic:

A ramp merging example. Transportation Research Part C: Emerging Technologies,

120:102764, 2020. doi: 10.1016/j.trc.2020.102764.

68

https://www.reuters.com/article/idUSKBN19A2XC
https://www.reuters.com/article/idUSKBN19A2XC
https://doi.org/10.1177/0361198119843474
https://doi.org/10.1177/0361198119843474
https://doi.org/10.1007/s11071-023-08377-y
https://doi.org/10.1007/s11071-023-08377-y
https://doi.org/10.1177/0361198118777091
https://www.statista.com/statistics/428692/projected-size-of-global-autonomous-vehicle-market-by-vehicle-type/
https://www.statista.com/statistics/428692/projected-size-of-global-autonomous-vehicle-market-by-vehicle-type/
https://www.statista.com/statistics/1238242/impact-of-vehicle-automation-on-collision-rates/
https://www.statista.com/statistics/1238242/impact-of-vehicle-automation-on-collision-rates/
https://doi.org/10.1177/03611981211018697


S. Susilawati, W. J. Wong, and Z. J. Pang. Safety effectiveness of autonomous vehicles

and connected autonomous vehicles in reducing pedestrian crashes. Transportation

Research Record, 2677(2):1605–1618, 2023. doi: 10.1177/03611981221108984.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Sec-

ond edition edition, 2020. URL http://incompleteideas.net/book/RLbook2020.

pdf. Accessed: 2024-04-15.

Árpád Takács, Dániel András Drexler, Péter Galambos, Imre J. Rudas, and Tamás

Haidegger. Assessment and standardization of autonomous vehicles. In 2018 IEEE

22nd International Conference on Intelligent Engineering Systems (INES), pages

000185–000192, 2018. doi: 10.1109/INES.2018.8523899.

Alireza Talebpour and Hani S. Mahmassani. Influence of connected and autonomous

vehicles on traffic flow stability and throughput. Transportation Research Part C:

Emerging Technologies, 71:143–163, 2016a. ISSN 0968-090X. doi: https://doi.org/10.

1016/j.trc.2016.07.007. URL https://www.sciencedirect.com/science/article/

pii/S0968090X16301140.

Alireza Talebpour and Hani S. Mahmassani. Influence of connected and autonomous

vehicles on traffic flow stability and throughput. Transportation Research Part C:

Emerging Technologies, 71:143–163, October 2016b. ISSN 0968-090X. doi: 10.1016/

j.trc.2016.07.007. URL https://www.sciencedirect.com/science/article/pii/

S0968090X16301140.

Alireza Talebpour, Hani S. Mahmassani, and Samer H. Hamdar. Modeling lane-changing

behavior in a connected environment: A game theory approach. Transportation Re-

search Part C: Emerging Technologies, 59:216–232, 2015. ISSN 0968-090X. doi:

https://doi.org/10.1016/j.trc.2015.07.007. URL https://www.sciencedirect.com/

science/article/pii/S0968090X15002478. Special Issue on International Sympo-

sium on Transportation and Traffic Theory.

Hainan Tang, Juntao Liu, and Zhenjie Wang et al. Projection exploration for multi-agent

reinforcement learning. PREPRINT (Version 1) available at Research Square, Apr

2023. URL https://doi.org/10.21203/rs.3.rs-2759603/v1. Accessed: [Insert

today’s date or the date you accessed the information].

Zuoyin Tang and Jianhua He. Noma enhanced 5g distributed vehicle to vehicle com-

munication for connected autonomous vehicles. In Proceedings of the ACM Mo-

biArch 2020 The 15th Workshop on Mobility in the Evolving Internet Architec-

69

http://incompleteideas.net/book/RLbook2020.pdf
http://incompleteideas.net/book/RLbook2020.pdf
https://www.sciencedirect.com/science/article/pii/S0968090X16301140
https://www.sciencedirect.com/science/article/pii/S0968090X16301140
https://www.sciencedirect.com/science/article/pii/S0968090X16301140
https://www.sciencedirect.com/science/article/pii/S0968090X16301140
https://www.sciencedirect.com/science/article/pii/S0968090X15002478
https://www.sciencedirect.com/science/article/pii/S0968090X15002478
https://doi.org/10.21203/rs.3.rs-2759603/v1


ture, MobiArch’20, page 42–47, New York, NY, USA, 2020. Association for Com-

puting Machinery. ISBN 9781450380812. doi: 10.1145/3411043.3412505. URL

https://doi.org/10.1145/3411043.3412505.

Voot Tangkaratt, Abbas Abdolmaleki, and Masashi Sugiyama. Guide actor-critic for

continuous control, 2018.

Tesla, Inc. Support for tesla autopilot, 2024. URL https://www.tesla.com/en_ie/

support/autopilot. Accessed: 2024-04-22.

Mark Towers et al. Gymnasium. https://github.com/Farama-Foundation/Gymnasium,

2023.

Saber Fallah Mehrdad Dianati Alan Stevens David Oxtoby Umberto Montanaro,

Shilp Dixit and Alexandros Mouzakitis. Towards connected autonomous driv-

ing: review of use-cases. Vehicle System Dynamics, 57(6):779–814, 2019. doi:

10.1080/00423114.2018.1492142. URL https://doi.org/10.1080/00423114.2018.

1492142.

Martijn van Otterlo and Marco Wiering. Reinforcement learning and markov decision pro-

cesses. In Marco Wiering and Martijn van Otterlo, editors, Reinforcement Learning,

volume 12 of Adaptation, Learning, and Optimization. Springer, Berlin, Heidelberg,

2012. doi: 10.1007/978-3-642-27645-3 1.

Samir Wadhwania, Dong-Ki Kim, Shayegan Omidshafiei, and Jonathan P. How. Pol-

icy distillation and value matching in multiagent reinforcement learning. In 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 8193–8200, 2019. doi: 10.1109/IROS40897.2019.8967849.

Mingyu Wang. An improved research of in-vehicle Internet of Things based on PID algo-

rithm. In Xiangjie Kong and Francisco Falcone, editors, 3rd International Conference

on Internet of Things and Smart City (IoTSC 2023, volume 12708, page 127080Y.

International Society for Optics and Photonics, SPIE, 2023. doi: 10.1117/12.2683896.

URL https://doi.org/10.1117/12.2683896.

Sung-Jung Wang, S. K. Jason Chang, and Saber Fallah. Autonomous bus fleet con-

trol using multiagent reinforcement learning. Journal of Advanced Transportation,

2021:6654254, 2021a. doi: 10.1155/2021/6654254. URL https://doi.org/10.1155/

2021/6654254.

Woodrow Z. Wang, Andy Shih, Annie Xie, and Dorsa Sadigh. Influencing towards stable

multi-agent interactions, 2021b.

70

https://doi.org/10.1145/3411043.3412505
https://www.tesla.com/en_ie/support/autopilot
https://www.tesla.com/en_ie/support/autopilot
https://github.com/Farama-Foundation/Gymnasium
https://doi.org/10.1080/00423114.2018.1492142
https://doi.org/10.1080/00423114.2018.1492142
https://doi.org/10.1117/12.2683896
https://doi.org/10.1155/2021/6654254
https://doi.org/10.1155/2021/6654254


Xinshui Wang, Ke Meng, Xu Wang, Zhibin Liu, and Yuefeng Ma. Dynamic user resource

allocation for downlink multicarrier noma with an actor–critic method. Energies, 16:

2984, 03 2023. doi: 10.3390/en16072984.

Ziran Wang, Guoyuan Wu, and Matthew J. Barth. Cooperative Eco-Driving at Sig-

nalized Intersections in a Partially Connected and Automated Vehicle Environ-

ment. IEEE Transactions on Intelligent Transportation Systems, 21(5):2029–2038,

May 2020. ISSN 1558-0016. doi: 10.1109/TITS.2019.2911607. URL https:

//ieeexplore.ieee.org/document/8704319. Conference Name: IEEE Transac-

tions on Intelligent Transportation Systems.

Waymo LLC. Waymo - autonomous vehicle technology, 2024. URL https://waymo.com.

Accessed: 2024-04-22.

Winder.AI. Predicting rewards with the state-value function. https://rl-book.com/

learn/mdp/state_value_function/, N.d. Accessed: 2024-04-15.

M. K. Wong, T. Connie, M. K. O. Goh, et al. A visual approach towards forward collision

warning for autonomous vehicles on malaysian public roads. F1000Research, 10:928,

2022. doi: 10.12688/f1000research.72897.2. [version 2; peer review: 2 approved].

Yuhuai Wu, Elman Mansimov, Shun Liao, Roger Grosse, and Jimmy Ba. Scalable trust-

region method for deep reinforcement learning using kronecker-factored approxima-

tion, 2017.

Zhenyu Wu, Kai Qiu, and Hongbo Gao. Driving policies of v2x autonomous vehicles

based on reinforcement learning methods. IET Intelligent Transport Systems, 14

(5):331–337, 2020. doi: https://doi.org/10.1049/iet-its.2019.0457. URL https://

ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-its.2019.0457.

Baidi Xiao, Rongpeng Li, Fei Wang, Chenghui Peng, Jianjun Wu, Zhifeng Zhao, and

Honggang Zhang. Stochastic Graph Neural Network-based Value Decomposition for

MARL in Internet of Vehicles, March 2023. URL http://arxiv.org/abs/2303.

13213. arXiv:2303.13213 [cs].

R. Xie, Z. Meng, Y. Zhou, Y. Ma, and Z. Wu. Heuristic q-learning based on experience

replay for three-dimensional path planning of the unmanned aerial vehicle. Science

Progress, 103(1), 2020. doi: 10.1177/0036850419879024.

Tao Xu, Cheng Wen, Lei Zhao, Ming Liu, and Xiaoxiang Zhang. The hybrid model for

lane-changing detection at freeway off-ramps using naturalistic driving trajectories.

IEEE Access, 7:103716–103726, 2019. doi: 10.1109/ACCESS.2019.2931726.

71

https://ieeexplore.ieee.org/document/8704319
https://ieeexplore.ieee.org/document/8704319
https://waymo.com
https://rl-book.com/learn/mdp/state_value_function/
https://rl-book.com/learn/mdp/state_value_function/
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-its.2019.0457
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-its.2019.0457
http://arxiv.org/abs/2303.13213
http://arxiv.org/abs/2303.13213


Takaya Yamazato. V2x communications with an image sensor. Journal of Communi-

cations and Information Networks, 2:65–74, 2017. doi: 10.1007/s41650-017-0044-4.

URL https://doi.org/10.1007/s41650-017-0044-4.

Ronghan Yao, Xiaojing Du, Wenyan Qi, and Li Sun. Evolutionary dynamics of mandatory

lane changing for bus exiting. Journal of Advanced Transportation, 2021:Article ID

2958647, 2021. doi: 10.1155/2021/2958647. URL https://doi.org/10.1155/2021/

2958647.

Fei Ye, Jianlin Guo, Kyeong Jin Kim, Philip V. Orlik, Heejin Ahn, Stefano Di Cairano, and

Matthew J. Barth. Bi-level Optimal Edge Computing Model for On-ramp Merging

in Connected Vehicle Environment. In 2019 IEEE Intelligent Vehicles Symposium

(IV), pages 2005–2011, June 2019. doi: 10.1109/IVS.2019.8814096. URL https:

//ieeexplore.ieee.org/document/8814096. ISSN: 2642-7214.

Renos Zabounidis, Joseph Campbell, Simon Stepputtis, Dana Hughes, and Katia Sycara.

Concept learning for interpretable multi-agent reinforcement learning, 2023.

Betina Carol Zanchin, Rodrigo Adamshuk, Max Mauro Santos, and Kathya Silvia Col-

lazos. On the instrumentation and classification of autonomous cars. In 2017 IEEE

International Conference on Systems, Man, and Cybernetics (SMC), pages 2631–

2636, 2017. doi: 10.1109/SMC.2017.8123022.

Hui Zhang, Yanyong Guo, Ninghao Hou, Jianhua Zhang, Xuyi Li, and Yan Huang. Evalu-

ating the safety impact of connected and autonomous vehicles with lane management

on freeway crash hotspots using the surrogate safety assessment model. Journal of

Advanced Transportation, 2021:5565343, 2021. doi: 10.1155/2021/5565343. URL

https://doi.org/10.1155/2021/5565343.

Jian Zhang, Yaozong Pan, Haitao Yang, and Yuqiang Fang. Scalable deep multi-agent

reinforcement learning via observation embedding and parameter noise. IEEE Access,

7:54615–54622, 2019. doi: 10.1109/ACCESS.2019.2913235.

Jian Zhao, Xunhan Hu, Mingyu Yang, Wengang Zhou, Jiangcheng Zhu, and Houqiang Li.

Ctds: Centralized teacher with decentralized student for multi-agent reinforcement

learning, 2022.

Liuhui Zhao, Andreas A. Malikopoulos, and Jackeline Rios-Torres. On the Traffic Im-

pacts of Optimally Controlled Connected and Automated Vehicles. In 2019 IEEE

Conference on Control Technology and Applications (CCTA), pages 882–887, August

72

https://doi.org/10.1007/s41650-017-0044-4
https://doi.org/10.1155/2021/2958647
https://doi.org/10.1155/2021/2958647
https://ieeexplore.ieee.org/document/8814096
https://ieeexplore.ieee.org/document/8814096
https://doi.org/10.1155/2021/5565343


2019a. doi: 10.1109/CCTA.2019.8920630. URL https://ieeexplore.ieee.org/

document/8920630.

Xiangmo Zhao, Shubin Jing, Fei Hui, Rongjie Liu, and Asad J. Khattak. Dsrc-based rear-

end collision warning system—an error-component safety distance model and field

test. Transportation Research Part C: Emerging Technologies, 107:92–104, 2019b.

doi: 10.1016/j.trc.2019.08.011.

Shun Zhou, Weihua Zhuang, Guodong Yin, Hongchao Liu, and Chunxiang Qiu. Coop-

erative on-ramp merging control of connected and automated vehicles: Distributed

multi-agent deep reinforcement learning approach. In 2022 IEEE 25th International

Conference on Intelligent Transportation Systems (ITSC), pages 402–408. IEEE,

2022a. doi: 10.1109/ITSC55140.2022.9920596.

Wei Zhou, Dong Chen, Jun Yan, Zhaojian Li, Huilin Yin, and Wanchen Ge. Multi-agent

reinforcement learning for cooperative lane changing of connected and autonomous

vehicles in mixed traffic. Autonomous Intelligent Systems, 2(1):5, March 2022b. ISSN

2730-616X. doi: 10.1007/s43684-022-00023-5. URL https://doi.org/10.1007/

s43684-022-00023-5.

C. Zhu, M. Dastani, and S. Wang. A survey of multi-agent deep reinforcement learning

with communication. Autonomous Agents and Multi-Agent Systems, 38(1):4, Jan

2024. doi: 10.1007/s10458-023-09633-6.

Jie Zhu, Said Easa, and Kun Gao. Merging control strategies of connected and au-

tonomous vehicles at freeway on-ramps: A comprehensive review. Journal of Intel-

ligent and Connected Vehicles, 5(2):99–111, 2022. ISSN 2399-9802. doi: 10.1108/

JICV-02-2022-0005. URL https://ieeexplore.ieee.org/document/10004548.

Conference Name: Journal of Intelligent and Connected Vehicles.

Tong Zhu, Xiaohu Li, Wei Fan, Changshuai Wang, Haoxue Liu, and Runqing Zhao.

Trajectory Optimization of CAVs in Freeway Work Zone considering Car-Following

Behaviors Using Online Multiagent Reinforcement Learning. Journal of Advanced

Transportation, 2021:e9805560, November 2021. ISSN 0197-6729. doi: 10.1155/2021/

9805560. URL https://www.hindawi.com/journals/jat/2021/9805560/. Pub-

lisher: Hindawi.

73

https://ieeexplore.ieee.org/document/8920630
https://ieeexplore.ieee.org/document/8920630
https://doi.org/10.1007/s43684-022-00023-5
https://doi.org/10.1007/s43684-022-00023-5
https://ieeexplore.ieee.org/document/10004548
https://www.hindawi.com/journals/jat/2021/9805560/

	Abstract
	Acknowledgments
	Chapter Introduction
	Background
	Motivation
	Research Question
	Contributions
	Structure of the Report

	Chapter Literature Review
	Background
	Autonomous Vehicles (AVs)
	Connected Autonomous Vehicles (CAVs)
	Reinforcement Learning (RL)
	Multi-Agent Reinforcement Learning (MARL)
	Highway-env
	OpenAI Gym

	Related Work
	CAVs in Mixed Traffic Scenarios
	Communication Protocols in CAVs
	MARL in Autonomous Vehicles
	MARL in Autonomous Driving
	Challenges in the Application of MARL to Autonomous Driving
	MARL in Traffic Signal Control
	MARL in Cooperative Lane Changing
	MARL in Highway On-Ramp Merging
	MARL Algorithms

	Analysis

	Chapter Methodology
	Introduction
	Choice of Simulation Environment
	Highway-env Architecture
	Implementation
	Adding Second Merge Lane
	Spawning Vehicles on the Second Merge Lane
	Forbidding Lane Changing of Vehicles from Left to Right Lanes

	Evaluation Set-up

	Chapter Evaluation
	Evaluation Metrics
	Evaluation Design
	Experiment Settings
	Results
	Unmodified environment results
	Modified environment

	Comparisons
	Scalability of the Algorithms
	Which Algorithm Performs Better

	Summary

	Chapter Conclusions & Future Work
	Summary
	Future Work

	Bibliography

