Tracking Keys in COVID Tracking Apps

Liam O Lionaird

A Dissertation
Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Computer Science

Supervisor: Stephen Farrell

April 2024

Declaration

I, the undersigned, declare that this work has not previously been submitted as an
exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Liam O Lionaird

April 15, 2024

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Liam O Liondird

April 15, 2024

Tracking Keys in COVID Tracking Apps

Liam O Lionaird, Master of Computer Science

University of Dublin, Trinity College, 2024

Supervisor: Stephen Farrell

Digital contact tracing apps were a common tool for combating the spread of COVID-19
on a national scale, but their true efficacy in the wake of the pandemic is still unclear.
The most prominent framework used, Google/Apple Exposure Notification (GAEN), em-
ployed a decentralised solution involving the exchange of cryptographic identifiers (TEKs)
between users’ devices to identify infectors and notify infectees; but despite mass adop-
tion in dozens of apps, along with international backend networks for sharing TEKSs across
countries (as in Europe), there is still a lack of research data to support in-depth large-
scale evaluations of this system. This project adapts a previous multi-year survey of TEKSs
from 32 regions into a concise yet comprehensive database, by tracking and processing all
unique TEK instances throughout the survey. The final database is easily queriable for
insights into TEK metadata differences between regions, as well as for tracking individual
TEKSs across space and time—revealing many intriguing possible avenues of analysing
GAEN’s ultimate effectiveness.

Acknowledgments

This dissertation owes its entire genesis to the work of Prof. Doug Leith and Dr. Stephen
Farrell in their Testing Apps for COVID-19 Tracing (TACT) project at TCD, where the
data used in this project was thoughtfully gathered for future research—I thank them
for both their significant contribution and the opportunity to build on it. Dr. Farrell
gave invaluable further guidance, knowledge, and encouragement as my dissertation su-
pervisor, and has been as engaging and inspiring as a teacher could hope to be; I must
also acknowledge his kind supervision of April Sheeran, who herself conducted important
Masters research with the same data and who shared fruitfully in our discussions.
Throughout this work, I was assisted generously in life by my long-time Dublin bene-
factors Michael and Mary Telford; by my dearest friends Lydia MacBride and Owen
Gallagher, and all who share their friendship; and by my wonderful family, who (though

less literally post-pandemic) are always with me, and whom I thank for everything I am.

LiaM O LIONAIRD

University of Dublin, Trinity College
April 2024

v

Contents

[Abstract] iii
[Acknowledgments| iv
[Chapter 1 Introduction| 1
(1.1 ~Research Question|, 2
[Chapter 2 Background| 5
2.1 GAEN| e 5
1.1 GABENIn Practicelo oo 6

2.1.2 The TEK Export ZIP| 7

2.2 The TACT Dataset| oo 8
2.3 Related Workl oo 10
[Chapter 3 Methodology| 12
[3.1 TEK Extraction and Processing| 12
[3.1.1 Development| 12

[3.1.2 The key_extract Tool 13

3.1.3 TEK Extractionl. o 14

[3.1.4 TEK Processing|. 15

[3.1.5 CSV Output|. 17

[3.2 Database Implementation| 18
[Chapter 4 Results| 20
4.1 New Datasets 20
4.2 Database Performance 21
4.3 Query Examples| 21
4.3.1 TEK records and metadatal 21

[4.3.2 Tracking TEKs 21

44 Discussionl 24

[Chapter 5 Conclusion|

[Bibliography|

vi

Chapter 1
Introduction

They say the worst is done

And it’s time to find out what we’ve all become. ..

—WEYES BLOOD

While the emergency phase of the COVID-19 pandemic has formally concluded, and
academic analysis of our global response has shifted from reactive to retrospective, the
importance of such analysis remains as acute as ever. We now possess the data and
hindsight to conduct bigger-picture studies of international scale (as has already been
done for general COVID policy [I]), enabling stronger evaluations and conclusions for the
global community to heed in future. However, studies of digital contact tracing apps—
once a linchpin of many COVID policies—have remained sparse in variety, small in scope,
and lacking in synthesid'] Although a vast amount of relevant data was generated by
these apps, and used by health services in their active response, there is still a need to
collate and publish this data in a form more useful to researchers going forward. This
dissertation project takes a practical step in that direction.

Contact tracingf] was recommended by the World Health Organisation throughout
the COVID-19 emergency as a “key strategy” for containing the spread of infection, but
the organisation also acknowledged many challenges to manual tracing, such as delays in
identification and notification of close contacts [2]. Digital contact tracing solutions were
therefore a popular choice for public health authorities—taking advantage of the ubiquity
of smartphones and the easy automation of tracking and notification—with several frame-
works for app-based COVID tracking systems being designed and implemented worldwide

in the first year of the pandemic.

1 As the literature review in the ‘Related Work’ section will later show.
2The practice of identifying close contacts of an infected individual and tracking/quarantining them
to prevent further infections.

1.1. RESEARCH QUESTION CHAPTER 1. INTRODUCTION

This dissertation project focuses on Google/Apple Exposure Notification (GAEN),
the most prominent of these frameworks. Developed by two smartphone tech giants and
integrated within their operating systems, it presented itself upon debut in April 2020 as
a “comprehensive solution” for building digital contact tracing systems [3]. Its automatic
implementation in millions of devices worldwide enabled vast decentralised contact-tracing
networks, whereby GAEN apps would handle their own detection of nearby devices using
Bluetooth, instead of leaving these duties to a centralised server. With these apps be-
ing used to report infections to public health authorities, GAEN would also identify an
infectee’s device within its records and notify users of possible exposure—enabling easy
and effective digital contact tracing en masse.

However, questions and concerns over the national-scale implementation of digital con-
tact tracing, and its efficacy against COVID, were raised by researchers even in these early
stages. The GAEN framework faced particular criticism for its closed implementation, its
questionable protections of privacy [4], and its decentralised contact tracing model being
potentially less effective and ethically sound than the centralised solutions it deterred [5].
As more and more health authorities adopted GAEN for use in their contact tracing apps,
these concerns could soon be evaluated with data gathered in practice.

One unique investigation into the GAEN framework was the Testing Apps for COVID-
19 Tracing (TACT) project [6], headed by Prof. Doug Leith and Dr. Stephen Farrell
of Trinity College Dublin. Initiated in April 2020, it primarily worked to determine
the accuracy of GAEN’s Bluetooth proximity detection [7]. As a secondary activity, it
conducted a survey of GAEN-based apps and their public-facing servers, scraping data
published to the servers of 32 apps on an hourly basis from June 2020 to September 2023.
This data contained the Temporary Exposure Keys (TEKs) and associated metadata
sent by devices after reporting infection, which were used to notify other users of their
exposure—the literal keys to GAEN’s contact tracing operation. With the dataset now
complete, containing over 20,000 hourly snapshots and totalling 2.3 terabytes in size, it
represents a sizable potential contribution to GAEN research; however, no study outside
TACT to date has made use of this dataset.

1.1 Research Question

Several trends identified over the course of the TACT survey added both intrigue and
complexity to the resulting dataset—making it both more valuable and more difficult to
extract value from. Early in the survey, it was noted that regions with shared GAEN
backends were sharing uploaded data among themselves. One example from October

2020 [§] involved Ireland and Northern Ireland, whose health authorities, though gov-

1.1. RESEARCH QUESTION CHAPTER 1. INTRODUCTION

erned separately, shared the same developer of their apps and backends—hence TEK
data uploaded to one region would later be uploaded to the other. (The survey detected a
two-hour delay on average.) Similar arrangements employed elsewhere became apparent
later—most notably, the European Federation Gateway Service (EFGS), established in
October 2020 to enable GAEN backend data-sharing on a continental scale, linked 19
participating countries together in its network [9].

Additionally, the TACT paper cited above presented evidence of ‘fake’ TEKs being
published in certain regions. Where public health authorities did not report these prac-
tices directly, they could still be inferred through examining trends in the hourly server
snapshots: some TEKs may be published in abnormally large numbers, only to disappear
from the server after a fraction of their standard lifetimes. The report assumes that these
measures aimed to pad out legitimate TEKSs for “privacy reasons” [8], but the dubious
success of these measures (and the wildly varying ratios/approaches between regions)
warrants further investigation.

Despite its potential value, the dataset as it stands is not perfect in structure or in-
tegrity (as will be detailed further), nor does its hour-by-hour redundancy and obfuscated
data format make for research-friendly utility. The latter issues can be solved through any
number of data-processing approaches, but the best possible approach requires tailoring
for the best possible purposes. In seeking such an ideal form and context for the TACT

dataset, this project began with the following research question:

Research question: Can a database of TEKs be created which allows easy querying
and tracking of TEKs?

A satisfactory answer to this question may empower the answering of further questions
relevant to future study of the TACT dataset, and of the GAEN ecosystem as a whole.
Such a database would ideally reveal the scope of aforementioned data-sharing between
regions and nations in fullest possible detail. From there, spatio-temporal data tracking
would illuminate where each TEK came from, where it went, and with what delays or
changes inbetween. Already new avenues of policy evaluation present themselves—e.g.
if TEKs are shown to take several days on average to move from one region to another,
the relevance and utility of TEK sharing in general may be called into question. The
potential of a TEK database thus stands to extend the frontier of interesting large-scale
studies concerning the implementation, usage, and efficacy of GAEN-based contact trac-
ing initiatives on a national and international level-—perhaps reinvigorating the slowly
stagnating landscape of research on this topic in recent times.

This project presents a proof-of-concept solution in multiple stages. Firstly, we show
that the TEKs stored in the TACT dataset can be tracked through initial extraction

1.1. RESEARCH QUESTION CHAPTER 1. INTRODUCTION

and processing, resulting in an initial condensed dataset that stores all unique instances
of each TEK using a fraction of the disk space. Secondly, we introduce a design and
implementation of a relational database built on this new dataset. Finally, we demonstrate
that this database can be easily used to track TEKSs across regions chronologically, as well
as enabling further insights on the use of TEK metadata—concluding afterwards with a

discussion of these findings and of future work.

Chapter 2
Background

This chapter provides further details on the most relevant technical aspects of this dis-
sertation project—namely the GAEN framework and the TACT dataset—to give further
context and justification for the project’s motivation, methodology, and results. It also
includes a literature review in which the current state of GAEN analysis, and inspirations

for the methodology of this project, are discussed.

2.1 Google/Apple Exposure Notification (GAEN)

The GAEN framework was jointly announced by Google and Apple in April 2020 [3], and
the first national COVID tracking app using the framework (Switzerland’s ‘SwissCovid’)
was deployed two months later [10]. GAEN is notable among COVID-era digital contact
tracing frameworks for its relatively wide adoption and its Big Tech lineage, as well as its
operational details, which will be sketched below.

Being created by the developers of iOS and Android, GAEN was launched as a com-
ponent of both operating systems—providing a built-in OS-level API for COVID tracking
apps to access, rather than implement individually. This design decision, though con-
troversial in locking down access, served to secure operational consistency across tracker
apps, and it is also relevant in proving the integrity of the GAEN-derived data being used
in this dissertation project—all data is generated and transmitted in the same manner,
following the same data specification, and using the same GAEN implementation deployed
on all i0S and Android phones. (There is still variance to be found between regions in
the usage of metadata fields defined by the GAEN specification; this will be discussed in
the ‘Results’ chapter.)

2.1. GAEN CHAPTER 2. BACKGROUND

2.1.1 GAEN in Practice

In keeping with Google/Apple’s stated commitment to preserve privacy, GAEN “is de-
signed so that information about a positive diagnosis or potential exposure does not
include identifying information.” [I1] Instead of sending names and locations, pseudo-
random identifiers are cryptographically derived, changed regularly within the device,
and exchanged with nearby devices using Bluetooth Low Energy (BLE). These identifiers
can be traced back to the device that generated them, but only symbolically, and their
use is intended only for other devices that have been in close contact. Such a decentralised
detection system is the basis of GAEN’s design and function.

The most important identifier within the GAEN ecosystem (and the chief unit of
data within this project) is the Temporary Exposure Key (TEK). Each TEK is a 16-byte
number, derived by a cryptographic random number generator function (left undefined
in the GAEN spec [12]). Every 24 hours, a GAEN device generates a new TEK and
stores it with a timestampf]| TEKs have a lifespan of 14 days before being deleted; thus
a maximum of 14 TEKSs are held at a time.

TEKSs are not used directly in day-to-day proximity tracking—a more temporary iden-
tifier, the Rolling Proximity Identifier (RPI), is derived from the most recent TEK using
a HMAC-based key derivation function, and is replaced each time the device’s Bluetooth
MAC address changes, “to prevent linkability and wireless tracking” [12]. It is these RPIs
that are exchanged between devices via BLE when within an app-defined range of each
other. Crucially, these RPIs can be used to re-derive the original TEK of the device that
generated them.

Only when a device user reports a COVID infection do the device’s TEKs come into
public use. All TEKSs stored on the infectee’s device are transmitted to the public health
authority’s Diagnosis Server, each one bundled with app-specific metadata such as report
type or risk level. The Diagnosis Server stores all such reported TEKs from all devices
using the given GAEN app (usually for 14 days, keeping with the TEKSs’ lifespans). Each
day’s new TEKs are batch-exported into ZIP files, which are posted on the Diagnosis
Server’s public URL directoryf] Each GAEN app client periodically fetches new TEK
export ZIPs from this URL. These TEKs can be compared, through derivation of the
RPIs exchanged with the client, to the TEKSs of each device it has previously recorded. If
a match is found, the client notifies the user of a potential close contact with an infected

person; relevant COVID policies are asserted from here.

3Both the timestamp and the 24-hour rolling period are specified in ‘rolling intervals’ of 10 minutes—
the former is converted to a UNIX timestamp for this project’s purposes.

4These directories are maintained by the app’s developers and often hardcoded into the apps—TACT’s
paper on GAEN privacy [] lists raw HTTP GET requests used by several GAEN apps.

2.1. GAEN CHAPTER 2. BACKGROUND

2.1.2 The TEK Export ZIP

Each TEK export ZIP contains two files: an ECDSA signaturd’| verifying the payload
(export.sig), and the payload itself (export.bin).

The data within each payload is not stored in plain text—it is serialised with the
Google-developed Protocol Buffer (‘Protobuf’) data format. The structure of a Protobuf

4

file is pre-defined (in this case by Google) in a ‘.proto’ specification, which is used to
unpack and access the data within. The Protobuf data itself is defined as a list of structs
and fields containing strings, numbers, or enums, similar to variables in code, and the
Protobuf specification can be ‘compiled’ in most programming languages to produce a
class of functions for interfacing with this data in programs.

Viewing the original Protobuf specificationf] is the best way to understand how the
TEK export ZIP is structured and interfaced with—however the most important elements
and quirks will be detailed here for emphasis.

The specification begins with start/end timestamps marking the arrival window of
TEKSs contained in the ZIP’s payload. It then defines a list of TemporaryExposureKey
structs, allowing any number of TEKs to be stored in a given payload. Each struct

contains a single TEK and all of the metadata associated with it. A summary of the

TemporaryExposureKey struct’s contents follows:

e key data (char[]): The TEK itself, stored in raw bytes.

(The byte array is not fixed-size, allowing malformed TEKSs of different length than
16 bytes. See Appendix for such examples found in the TACT dataset.)

e transmission risk_level (int32): Risk level associated with the TEK—defined

in earlier specifications as an integer range from 1 to 8.

(Interpretation and implementation of risk level was left to national health authori-
ties, making it less useful as an empirical risk indicator, and the field was eventually

deprecated.)

e rolling start_interval number (int32): Timestamp of the TEK’s original gen-

eration, measured in 10-minute ‘rolling intervals’.

5The public keys used by GAEN apps to verify these signatures have not been located. This project
assumes that each TEK ZIP in the TACT dataset has a valid signature.

5Google has taken down most of their GAEN documentation, including the export Protobuf
specification—however it remains publically viewable in the source code for their sample GAEN
server at https://github.com/google/exposure-notifications-server/blob/main/internal/pb/
export/export.proto.

https://github.com/google/exposure-notifications-server/blob/main/internal/pb/export/export.proto
https://github.com/google/exposure-notifications-server/blob/main/internal/pb/export/export.proto

2.2. THE TACT DATASET CHAPTER 2. BACKGROUND

e rolling period (int32): The duration for which the TEK is valid (before a new
one is generated), measured in 10-minute ‘rolling intervals’. The default value is
144, i.e. 24 hours.

e days_since onset_of symptoms (signed int32): Number of days between the

TEK’s generation and the user’s reported onset of symptoms.

e report_type (ReportType enum): Custom data type representing the type of in-
fection report made by the user. Values can be ‘Unknown’, ‘Confirmed test’, ‘Con-

firmed clinical diagnosis’, ‘Self report’, ‘Recursive’ (reserved for future use), or ‘Re-
voked’.

(‘Unknown’ and ‘Revoked’ types are not returned by the client API; they are des-
ignated by the Diagnosis Server as needed.)

e variant of concern (VariantOfConcern enum): Custom data type representing
levels of concern associated with the reported COVID-19 variant. Values can be
‘Unknown’ (default), ‘Vaccine is effective’, ‘Highly transmissive’, ‘High severity’, or

‘Vaccine breakthrough’.

(These definitions are only stored as comments in Google’s Protobuf specification,
leaving their final interpretations unclear. In the end, this field went unused by

every region in the TACT survey, as the ‘Results’ chapter will discuss.)

A second list of TEK structs is defined in the specification for storing ‘revised keys’
that have been revoked or otherwise changed. This was rarely used by apps, but still
processed along with the main list of TEKSs for this project.

The Protobuf specification was updated a handful of times in GAEN’s first year of im-
plementation, adding new metadata types for use by health authorities. (These fields are
prefixed with ‘optional’, thus early TEK zips without later metadata are still backwards-
compatible with the latest specification.) According to Google’s ‘Exposure Notification
Server’ GitHub release logs [13], the variant of concern field was the latest addition,
in August 2021. However, each health authority would need to update its own Diagno-
sis Server to replace old Protobuf specifications with new ones, and it is unknown how

common this practice was.

2.2 The TACT Dataset

The TACT dataset comprises 27,850 hourly snapshots of content from the Diagnosis
Servers of 32 regions with GAEN-deployed apps—calculated by this project to contain

8

2.2. THE TACT DATASET CHAPTER 2. BACKGROUND

143,521,117 unique TEKSs. These were downloaded through the Diagnosis Servers’ official
public URLs, which were reverse-engineered by TACT “based on examination of the
open-source client implementations” and additional network traffic analysis [§]. Each
snapshot is stored in its own timestamped folder (titled in ‘YYYYMMDD-HHMMSS’ format),
which contains TEK export ZIP files, JSON configuration files from Diagnosis Servers,
and HTTP headers (in .txt form) from the GET requests made to Diagnosis Servers.
ZIP files are prefixed with a code representing their region of origin, usually the region’s
internet TLD (e.g. ‘at’ for Austria, ‘za’ for South Africa)—a complete table of regions
and codes can be found in the Appendix.

Because new Diagnosis Servers were only added to the survey after their deployment,
with many being operational for weeks beforehand, the first 14 days of data from each
region may not show accurate initial upload dates for their ZIPs—in these cases the
timestamps included in the ZIPs themselves are a more accurate measurement.

Accompanying the hourly snapshots is the /all-zips folder. Throughout the survey,
the largest instance of each ZIP recorded in the hourly snapshots was copied into this
folder, producing a condensed version of the complete TEK dataset. In an additional
de-duplication effort, many early ZIP files were replaced with symlinks pointing to their
corresponding (identical) files in /all-zips. Though the folder is not used directly for
this project, it has been kept in the dataset for the purpose of preserving these symlinks.[]

It should also be noted that counting unique TEKSs from the /all-zips folder gives a
slightly smaller result than counting from the full hourly snapshot collection—a discrep-
ancy of around 6 million TEKSs. It is possible that TEKs were removed from ZIPs across
updates to the Diagnosis Servers, mostly likely test TEKSs.

A summary of the TACT dataset’s total coverage and data integrity can be found
in the Appendix. Here it suffices to conclude that the TACT dataset in its raw form is
not ideal for direct application in research. With ZIP files meant to remain on Diagnosis
Servers for up to 14 days, there are up to hundreds of copies of each ZIP file stored in the
dataset’s hourly snapshots, with the de-duplication effort mentioned above left incomplete
(files after April 2022 remain duplicated) and impractical due to the potential of ZIP files
to change in contents over time. The ZIP files themselves, being doubly obfuscated by
both compression and serialisation, require far more hassle to work with compared to
plain-text files or database tables. It will take much extraction and processing to bring

the valuable data contained within to the light it deserves.

"Originally the symlinks pointed to absolute filepaths—these were converted with a Bash script into
relative links for use by the author. This was the only direct manipulation of the TACT dataset made
as part of this project.

2.3. RELATED WORK CHAPTER 2. BACKGROUND

2.3 Related Work

The literature review conducted for this dissertation project focused primarily on the
current landscape of GAEN-based COVID tracker app research, with an eye towards
large-scale studies and usage of TEK data similar to TACT’s.

The scope of studies utilising the TACT dataset is restricted to papers from the TACT
project itself—chiefly the ‘October 2020 Survey of GAEN App Key Uploads’ [8] in which
an overview of TACT’s survey effort is described along with preliminary statistics. An
earlier paper from June 2020 [14] introduces the survey’s tooling as a possible model for
GAEN app transparency, with initial statistics from the first month of GAEN deployment.
Given that the survey continued for three more years, these papers obviously no longer
represent the total scope of the data gathered. A third TACT paper focusing on TEK
statistics [I5] only uses Irish data from October 2020 to April 2021. This is the complete
extent of research using the TACT dataset as of this project.

There remains a gap—of both scale and synthesis—in COVID tracker app research
literature that a comprehensive TEK database may help fill; this can be shown through a
brief survey of digital contact tracing app studies since 2020. The European Commission
published a notably intensive study in November 2022 [9] examining the 27 contact tracing
apps deployed by European countries during the pandemic. It remarks that health au-
thorities’ own evaluations of their apps “are rather few and lack standardised assessment
methods”—the cited evaluations generally use no more than a year of data.

A review of reviews of COVID tracker apps [16] was published in January 2024, and
remains the only one to date. It examined two dozen reviews, finding the majority to be
of low quality, with “methodological deficits” leading to a general weakness of evidence
for their conclusions. Notably, the frequency of reviews drops off sharply past mid-2021,
reflecting both the lower sense of urgency in the late phase of the COVID emergency
and perhaps a dwindling supply of data to draw from. Another general comparison of 73
COVID tracker apps by Kesarev and Korochkin [I7] restricts itself to a high-level privacy
and policy evaluation, explaining that a “lack of data” makes it a far harder task to
“assess and compare the effectiveness of these applications.”

Other smaller-scale studies, however, have showcased the usefulness of such data in
evaluating the performance of individual apps. Vaudenay and Vuagnoux’s review of
Switzerland’s SwissCovid app [I0] is a vigorous, detailed critique of both the GAEN
framework and the app’s implementation, driven in part by GAEN usage statistics pub-
lished by the public health authority maintaining the app (such as real/fake infection
reports). The aforementioned TACT paper on the Irish Covidtracker app [I5] uses daily
TEK upload statistics effectively to draw conclusions on the Irish GAEN app’s low over-

10

2.3. RELATED WORK CHAPTER 2. BACKGROUND

all usage relative to reported infections. There is clear potential for similar studies to be
made with apps in other regions—if data is available.

An extra investigation was made into previous databases for cryptographic keys similar
to TEKs. The most prominent examples were for HI'TPS certificates—first collected at
the IPv4 address space scale in 2013 by Durumeric et al. [I8], producing a comprehensive
dataset maintained by their company Censys [19] and accessible to researchers studying
the HT'TPS certificate ecosystem. Durumeric et al. used a PostgreSQL database to store
historical certificate data of scanned hosts, inspiring the use of PostgreSQL in this project
to store historical TEK data.

11

Chapter 3

Methodology

A two-phase methodology is used for this project. Firstly, the TACT dataset is processed
into a condensed form, listing every unique instance of every unique TEK in the dataset.
Secondly, this condensed dataset is used to populate a complete relational database, de-
signed to be easily queriable for information and insights on the data within. The first
phase produces actionable material on its own, perhaps for purposes beyond implemen-
tation of the second phase; it is hoped that such future use will be found in both phases
of this project.

All tools and scripts developed for this project are included in the scripts.zip file
submitted with this dissertation. The original GitHub repository containing the complete

code for this dissertation may also be accessed on request.

3.1 TEK Extraction and Processing

The first development phase of this project concerns the extraction of TEKSs from the bulk
export ZIPs comprising the TACT dataset, and the further processing of these TEKs (and
their occurrences/alterations) into a middle-stage condensed dataset, which is used later
to populate the final TEK database.

3.1.1 Development

The tooling used throughout this project was developed from scratch by the author. The
TACT project which produced the TEK dataset had previously developed a suite of small
scripts to extract and process TEKSs, written in Bash and Python, but the function of each
was limited in scope, not relevant to the task of this project, or thought to be inefficient
at processing the sheer amount of data at hand. A single comprehensive solution was

sought—hence the original direction taken.

12

3.1. TEK EXTRACTION AND PROCESSING CHAPTER 3. METHODOLOGY

While Python development was considered in the project’s early stages, this was even-
tually abandoned in favour of using Rust. Given the large amount of data to process,
and the small individual sizes of the TEK ZIPs in question, native code speeds and thor-
ough memory safety were sought—Rust provided both of these benefits, along with a

streamlined build system (Cargo) enabling fast development time and easy iteration.

3.1.2 The key extract Tool

key_extract is a Rust command-line tool that outputs a CSV-formatted list of unique
TEKSs from a specified region, tracking first/last appearances and encoding all unique
instances of each TEK throughout the TACT dataset.

The tool assumes a locally-stored instance of the TACT dataset, and accepts two forms

of input (alongside a region code):

1. -d <FOLDER PATH>: Either the full dataset folder or a single hourly snapshot folder
within the dataset.

(While useful in the latter case for quickly testing a small sample of the dataset,
the need to traverse the full directory and verify each file’s type before proceeding
makes this option prohibitively slow for processing the full dataset, which contains

over 22.5 million files in total.)
2. -p <FILE PATH>: A text file containing a sorted list of TEK ZIP filepaths.

(This list can be generated from the dataset directory with the GNU £find tool piped
through sort; a Bash script get-zip-paths.sh was written to automate this task.
This was found to be the far more efficient input solution of the two—it takes mere
seconds to filter through the list for ZIPs from the specified region. When both ‘-d’

and ‘-p’ are invoked, the latter takes priority.)

A verbose flag (-v) can also be passed to display various error messages while process-
ing TEK ZIPs.

The tool prints a dynamic progress bar (and any verbose info) to standard error, and
prints CSV data to standard output—this can be redirected to save results as a text
file. All combined, an example invocation ‘key_extract ie -p paths.txt > ie.csv’
will process all Irish ZIPs listed in the path file at paths.txt and save the resulting CSV

data to ie.csv.

13

3.1. TEK EXTRACTION AND PROCESSING CHAPTER 3. METHODOLOGY

3.1.3 TEK Extraction

The first step taken by key_extract is to confirm the validity of the arguments passed
to it. A hardcoded list of valid region codes is kept in memory to check against the code
passed as the first argument; the program will fail instantly if an invalid region is passed.
It will also fail if neither ‘~=d’ nor ‘~p’ are called, or if either argument points to an invalid
filepath.

Past these initial checks, the program branches depending on the choice to use a
directory or a path file. If a directory is used, the program will search using a glob
pattern for relevant ZIPs in the given directory. The TACT survey scripts prepend each
ZIP filename with its region of origin; hence we can assume, for example, every Irish ZIP
filename in a directory will begin with ‘ie-’, and will thus be found by a suitable search
pattern. (One important exclusion is made to ignore files under the ‘all-zips’ parent
folder; the contents are redundant and mostly undated.) If using a path file, the same
filtering technique is used to search through the path file for all ZIP files matching the
given region code.

Matching ZIP filepaths are pushed to a list once found. If using a directory, this list
is sorted alphabetically after searching completes. A path file is presumed to be already
sorted, thus no further action is needed in that case.

The only minor procedural exception to the above steps will occur if either ‘hr’ or
‘hu’ are passed as the first argument. The regions represented by these codes, Croatia
and Hungary, actually contain exclusively Croatian data, owing to an error made in
the original TACT survey scripts®|—hence ZIPs marked under either should be processed
together. When either region is called, the program will therefore filter the given directory
or path file for both Croatian and Hungarian ZIPs, and proceed using this combined list.
(Because the final filtered ZIP paths are sorted by their parent directories, we assume
the ZIPs are not processed achronologically, i.e. there is no risk of inaccurate start/end
timestamps for each key instance.)

With the list of ZIPs finalised, the program iterates through each filepath on the list.
A series of additional validity checks is made for each filepath. If the filepath points to
an invalid file, it is skipped. If valid, the zip is opened and its contents are examined—if
its structure does not match the standard TEK export format (two files, export.sig and
export.bin) or is otherwise malformed, it is skipped.

From here, the export.bin file is opened and the program attempts to decode and
process the Protobuf data within. The Protobuf specification itself is pre-compiled into

a Rust class, with functions for creating structs from decoded data and accessing their

8See the ‘Misclassified Data’ section of the Appendix for more information.

14

3.1. TEK EXTRACTION AND PROCESSING CHAPTER 3. METHODOLOGY

contents. If the export.bin file fails to be decoded by this class, the file is skipped as

malformed.

3.1.4 TEK Processing

If successful to this point, the key_extract program has decoded a given TEK export file
into a struct with all of its data accessible within; now its list of TEKs can be processed.

The end goal decided upon for the final processed dataset was to track every unique
instance of every unique TEK. Given these characteristics and the desire for optimal
speed, a two-dimensional hash mapﬂ (key_list) was implemented for storing and updat-
ing processed TEK data within program memory. The key data of the TEKSs, already
being cryptographic random numbers, are used as the literal keys in the top-level hash
map. Looking up a previously-stored TEK will therefore return its own hash map entry,
enabling easy updating when that TEK is found again in the dataset.

(At this point caution may be raised about the possibility of a collision between TEKs.
Some obvious test data, e.g. the key 00000000000000000000000000000000, were detected
from multiple regions at different times, but were not considered a compromise of the hash
map’s overall integrity. The probability p of at least one collision in n outputs from an

ideal A-bit random number generator, approximated by the ‘birthday problem’ formula

is calculated in our casd™| to be p ~ 1435211172/2(2'%) ~ 3.03 x 10723, i.e. negligible.
Regardless, multiple disparate instances of each TEK are easily judged by comparing the
key generation timestamps of each instance.)

The value tied to each key in the hash map is a Key struct containing the following:

e first appear, last_appear (int32): Timestamps marking the earliest and latest
detected appearances of the given TEK within the TACT dataset.

(Thanks to the naming scheme of each hourly snapshot folder in the database, we
can simply extract a timestamp from the ZIP’s parent directory name itself; the
program’s get_path_date() function performs this. A newly-added TEK always
initialises first_appear and last_appear as the same current folder time; upon

finding the TEK again, last_appear will be re-assigned to the new current folder

9This program uses the ahash library for its hash map implementation instead of Rust’s built-in
HashMap—the former uses a faster non-cryptographic hashing function that was considered a worthy
choice for processing TEKs with least delay.

10Using the number of unique TEKs in the TACT dataset from Section 2.2.

15

3.1. TEK EXTRACTION AND PROCESSING CHAPTER 3. METHODOLOGY

time. The prior chronological sorting of the program’s ZIP path list ensures that

last_appear will never be overwritten by an earlier timestamp.)

e records: Another hash map storing unique instances of the given TEK, in KeyRecord

structs.

This second layer of hash maps is what stores the TEK metadata. Its keys are hashed
using the KeyRecords themselves, meaning any change in metadata will register as a new
instance.

The KeyRecord struct’s fields closely mirror the TEK ZIP’s specified metadata fields

as outlined in Section 2.1.2, with some exceptions and additions. It contains the following:

e record first_appear, record last_appear (int32): The earliest and latest ZIP

file timestamps containing the given TEK instance.

(Contrast with the first_appear and last_appear fields above, though the record_
last_appear field is updated similarly to the latter. It was decided to include both
ZIP timestamps and snapshot timestamps in the database, as only both together can
provide full context for when the TEK was uploaded and when it was downloadable,
respectively. The snapshot timestamps were chosen for the top-layer hash map as
a broad overview of availability; the ZIP timestamps, being less chronologically
flexible but allowing easier tracing of given TEK instances to their original ZIPs,

were chosen for this bottom-layer hash map.)
e start (int32): UNIX timestamp of the TEK’s generation.

(Derived by multiplying the TEK’s rolling start_interval number field by 600,

the number of seconds in a 10-minute ‘rolling period’.)

e onset_of _symptoms (int32): UNIX timestamp marking the user’s onset of symp-

toms, as reported.

(Derived by subtracting the TEK’s days_since_onset_of _symptoms field—converted
from days to seconds—from the start timestamp above. This conversion was de-
cided upon for the sake of consistency and easy interoperability with other time-

based fields; the original field’s value can be easily derived in reverse as needed.)
e risk level (int32) The TEK’s transmission risk level field, unchanged.

e rolling period (int32) The TEK’s rolling period field, unchanged.

16

3.1. TEK EXTRACTION AND PROCESSING CHAPTER 3. METHODOLOGY

(A mistake was made here in not converting the rolling period into seconds, which
would fit better with the other UNIX timestamp fields. Doing this conversion on-

the-fly is trivial, however.)

e report_type, variant_of concern (pointer size int): Codes representing val-

ues of the ReportType and VariantOfConcern enums stored with the TEK.

(These enums are hardcoded into the program as string arrays, for later CSV print-
ing; hence these fields point to indices of either array. The pointer size int require-

ment is a related quirk of Rust’s array accessing.)

This process is repeated for each TEK ZIP in the program’s list, with data being
added and updated to the same key_list hash map. By the end of the loop, this hash
map contains each TEK posted by the given region, along with its date range and its

various unique instances. This data must now be re-serialised into text form.

3.1.5 CSV Output

The decision to use the CSV format for key_extract’s output was driven primarily by
its simplicity and compactness. The CSV structure defines its headers in the first row,
with the remaining rows containing only raw comma-separated data; compared to JSON,
where fields must be named every time, it is certainly more space-efficient.

However, the nature of the two-dimensional hash map defined above appears unsuit-
able for the inherently one-dimensional row format of CSV. The solution found was to
store the records hash map as a two-dimensional list within a single column. This for-
matting is less readable in plain text, but successfully preserves structure for importing
into another application, which remains the primary purpose of this CSV dataset. (The
KeyRecord field names are still listed within the CSV header.)

Rust’s built-in CSV library allows data to be written row-by-row to a given output
(here the terminal’s standard output) using the Writer class. The function write_csv()
is defined to accept the given region code and key_list hash map as input, and print
CSV rows by iterating through the hash map—most fields are printed as represented.

Here some formatting choices are made for the sake of PostgreSQL compatibility in
the next phase of development—sacrificing further generic readability in order to save on
time-consuming format conversion operations later as the database is populated. UNIX
timestamps are converted into a string format using the csv_timestamp() function, in
order to match PostgreSQL’s default timestamp representation (based on ISO 8601).
The report_type and variant_of_concern integer types are passed as indices to their

respective hardcoded arrays, returning the original enum values as strings. All brackets,

17

3.2. DATABASE IMPLEMENTATION CHAPTER 3. METHODOLOGY

commas and quote marks within the records column are escaped with a backslash—
otherwise PostgreSQL will fail to process them correctly.

The 16-byte TEK itself is encoded as 32 hexadecimal characters, following the example
set by the TACT project’s scripting suite.

Through passing every region code covered by the TACT dataset into key_extract,
we are left with a collection of 32 CSV files comprising a complete list of unique TEKSs
from every region in the dataset. These CSV files, though a good starting point, are
not sufficient on their own to allow for rich querying of the dataset as specified in this

project’s research question. The next phase will fulfil this goal.

3.2 Database Design and Implementation

The final phase of development involves designing and building a database suitable for
performing queries on the CSV data obtained through processing the TACT dataset with
key_extract. Many database paradigms were considered for implementation, such as the
document-based NoSQL platform MongoDB-—the JSON-based database syntax of which
would allow easy integration into web projects. Given the tabular structure of CSV,
however, it was decided the simplest solution for a proof-of-concept would be a relational
database management system. PostgreSQL was chosen for its advanced feature set and
performance, as well as the author’s previous experience working with it. Durumeric et
al.’s use of PostgreSQL for their own cryptographic key database [18] (as mentioned in
the ‘Related Work’ section) was a further contributing factor.

The process of initialising the database simply involved running the command createdb
tek on a fresh PostgreSQL install. From there, SQL scripts were developed to create the
tek database’s tables, define each table’s fields and special types, and populate their rows
by importing the CSV files using the built-in \copy command.

To make database population and usage more manageable, separate tables are used for
each of the 32 regions covered in the TACT dataset, matching the CSV files generated by
the key_extract program; each table shares the same schema, preserving interoperability.
(These tables were generated automatically using the build-database.sh file included
with the dissertation materials.)

Because SQL cannot directly select data from multiple tables, a hardcoded list of all
region table names is stored in a separate 1-column ‘countries’ table, and is used in
for-loops to iterate over the database (in part or in full). There is also another ‘uniques’
table which simply stores a list of every unique 16-byte TEK in the database, again for
easy iteration purposes.

The region table schema follows the structure and naming of the Key and KeyRecord

18

3.2. DATABASE IMPLEMENTATION CHAPTER 3. METHODOLOGY

structs as formatted in the CSV files. Timestamp fields are stored as SQL’s timestamp
data type. The KeyRecord list is stored as a SQL ‘composite type’ array, preserving its
two-dimensional form within a single SQL cell—its elements and attributes can be ac-
cessed by index as with any array. report_type and variant_of _concern are defined
again here as enum types, with their string-based values easily matched to the CSV’s
values. The full schema can be found in the build-1.sql script included with the dis-

sertation materials.

19

Chapter 4

Results

This project was conducted on a desktop PC running Manjaro Linux, with a Ryzen 7
5700X CPU, 32 GB of RAM (plus a further 32 GB of virtual swap space)ﬂ, and a solid-

state hard drive. All performance statistics have been recorded on this system.

4.1 New Datasets

When compressed into a .tar.gz file, the complete collection of CSV datasets measures
only 30 gigabytes on disk—1.3% the size of the original TACT dataset (2.3 terabytes).

Despite this immense size reduction, much of the TACT dataset’s pertinent content has
been preserved—in the case of new UNIX-format timestamp fields, even enhanced. The
primary aim of cutting all redundancy across the hourly snapshots has been achieved by
storing only unique TEK records per country. This comes with some tradeoffs elsewhere,
however.

The most glaring weakness of the new CSV datasets are their approximation of TEK
appearances using date ranges. Simple timestamps marking first/last appearances fail to
illuminate gaps in ZIP appearances recorded over time. An effort to fill this data gap was
attempted by including ZIP appearance data ranges as well (where first /last appearances
are usually equal) to help users pinpoint the exact ZIP containing the given TEK more
easily. Obviously including a full list of ZIP appearances would be both unwieldy and
inefficient, not to mention the additional memory it would take to track them. A tradeoff
of some kind needed to be made, and timestamps kept the most interoperability with the
other time-based TEK metadata fields.

HWithout adequate swap space, 48GB or more of RAM is recommended for running key_extract on
regions with large numbers of TEKS, such as Germany and Spain; otherwise the program’s hash maps
will grow too large to fit in RAM and the program will crash.

20

4.2. DATABASE PERFORMANCE CHAPTER 4. RESULTS

4.2 Database Performance

The PostgreSQL TEK database takes up 132 gigabytes on disk, approximately 6% the
size of the original TACT dataset.

Measuring the speed of queries depends on the size of the tables being queried, which
vary in size from 13 rows (ec) to 72 million rows (es); in the case of the average-sized nl
table (21 million rows), retrieving a single TEK takes 1.85 seconds. Performing queries
on every region table in the dataset is significantly more resource-intensive—the track ()

function described in section 4.3.2 takes on average 2.5 minutes to complete[?]

4.3 Query Examples

Queries spanning multiple regions/tables must use a for-loop to iterate smaller queries
over each region; results can be printed to console per-country, or added as rows to a new
temporary table for later use. Accessing individual records in a row can be done using
array access (records[1] returns the first record); alternatively the built-in unnest ()

function can be used to separate the array into distinct rows for each record.

4.3.1 TEK records and metadata

The script types.sql outputs a tally of report types for TEK records by region. The full
tally is shown in figure 4.1 (A similar count was made for the ‘variant of concern’ field,
which showed that all TEKSs in the database had this field set to ‘Unknown’.)

4.3.2 Tracking TEKSs

The script tektracker.sql defines a SQL function, track (), which takes a TEK string as
input and produces a chronological table of all instances of the TEK across the database—
allowing the user to track where/when the TEK first appeared, and where it travelled
over time. Table rows are sorted by first_appear and record first_appear, in that
order.

A sample of queries and results using the track() function are shown in the figures
below. Examples were chosen from regions known to be sharing keys (EFGS members,
Ireland /Northern Ireland, US states), across the timespan of the TACT survey; only the

most relevant columns have been included for clarity.

12These times were captured within PostgreSQL using its \timing command.

21

4.3. QUERY EXAMPLES

CHAPTER 4. RESULTS

Region Unknown | Confirmed | Confirmed | Self report | Recursive | Revoked
code test clinical
diagnosis
at 32674121
be 58834 14409409 13816105 7015317 25198051
br 18702
ca 175343 384258
ch 944287
cz 4933195 532029
de 731840 23483875 20594361 10961626 | 4537974
dk 565886 4586265
ec 13
ee 61162
es 72007699
fi 2042381 | 28165048
gu 2370958 3289776 944893
hr 268 64806905 682623
ie 1126295 | 41024706
it 14690292
lv 61935396
mt 58433641
nl 2120935 | 18897936
pl 26841870 | 182 224 28
pt 40960
si 63578 7504716 7671856 3727230 13065078
ukenw 12654772
ukgi 739848 8244210
ukni 799277 8387584
uksc 590086 7801376
usal 209000 15004106 6236 5845376 71
usde 98167 15217059 6236 5898025 71
usnv 6253
usva 55503 14334923 6233 5728627 70
uswy 98167 15217059 6236 5898025 71
za 205691 1340981

Figure 4.1: A chart tallying regional TEK records grouped by report type, according to

queries made to the TEK database using types.sql.

22

4.3. QUERY EXAMPLES

CHAPTER 4. RESULTS

Figure 4.2: SELECT * FROM track(’ffffffd2246680656101ac86f0f3a8e2’);

’ Region \ 1st server appearance \ 1st ZIP appearance \ Risk level \ Report type
ie 2022-03-13 21:00:01 2022-03-13 19:30:54 | 8 Confirmed test
de 2022-03-13 21:00:01 2022-03-13 20:00:00 | 8 Confirmed test
nl 2022-03-13 21:00:01 2022-03-13 21:03:07 | 3 Confirmed test
hr 2022-03-14 00:00:01 2022-03-13 23:59:59 | 8 Confirmed test
fi 2022-03-14 03:00:01 2022-03-14 00:00:00 | 6 Confirmed test
es 2022-03-14 06:00:01 2022-03-11 02:00:00 | 8 Unknown
mt 2022-03-14 14:00:01 2022-03-11 02:00:00 | 8 Unknown
lv 2022-03-14 18:00:01 2022-03-14 17:00:09 | 1 Unknown
be 2022-03-15 02:00:01 2022-03-15 00:00:00 | 8 Confirmed test
pl 2022-03-16 02:00:01 2022-03-16 00:00:00 | 8 Unknown

(TEK generated 2022-03-11 00:00:00)

Figure 4.3: SELECT * FROM track(’78a4243894366fece682766fd642e38¢e’);

] Region \ 1st server appearance \ 1st ZIP appearance \ Risk level \ Report type ‘

usde 2023-04-03 15:00:01 2023-04-03 12:00:00 | 6 Self report
uswy 2023-04-03 15:00:01 2023-04-03 12:00:00 | 6 Self report
usal 2023-04-03 20:00:01 2023-04-03 12:00:00 | 6 Self report
usva 2023-04-04 03:00:01 2023-04-04 00:00:00 | 6 Self report

(TEK generated 2023-03-29 00:00:00)

Figure 4.4: SELECT * FROM track(’e6e1d4635d6d2b52702268d91dc90bcf’) ;

’ Region \ 1st server appearance \ 1st ZIP appearance \ Risk level \ Report type ‘

ukni

2020-10-14 09:00:01

2020-10-14 07:57:28

0

Unknown

1e

2020-10-14 11:00:01

2020-10-14 10:00:26

0

Unknown

(TEK generated 2020-10-07 00:00:00)

23

4.4. DISCUSSION CHAPTER 4. RESULTS

4.4 Discussion

The sample figures derived from the TEK database already allow interesting observations

to be made about the GAEN app ecosystem:

1. The use of report types was found to be highly inconsistent between regions. Figure
shows that nearly a third of all regions had their TEKSs’ report_type perma-
nently set to ‘Unknown’, while 22 out of 32 regions only utilised two report_type
values at most. Only Belgium, Germany, and Slovenia showed consistent usage of
five report types; none used all six. The usage of the ‘Revoked’ type, along with the
extra ‘revoked keys’ TEK list in the Protobuf spec, was considerably rare, with only
Guam making substantive use of both. Another interesting usage pattern is of the
‘Recursive’ type, which is only specified by Google as a placeholder type “reserved
for future use”; its frequent usage by three regions in the survey is unexplained as

of yet.

2. The ‘variant of concern’ field was found to be completely unused (i.e. set to the
default ‘Unknown’ value) across the database. The late addition of this field to the
TEK export specification, with unclear definition of its usage by Google, may have

contributed towards its lack of implementation.

3. Regarding the EFGS member countries, the successful sharing of TEKSs is evident,
with the case of figure [4.2|showing 10 countries receiving the given TEK over time—
however, risk levels and report types also vary across regions, here jumping errat-
ically between ‘Confirmed test’ and ‘Unknown’. This behaviour may be explained
by the varying configurations of each region’s GAEN backend, as previously dis-
cussed via figure but is ultimately detrimental to most efforts of preserving and
trusting TEK metadata, or using it for evaluating COVID policy.

4. The time it takes for TEKSs to be shared across countries is sometimes significant; in
figure it takes three days for the TEK to propagate from Ireland to Poland—by
which time the TEK is five days of age, a sizable portion of its 14-day lifespan.
With delays of this length (or longer) now shown to be possible, the usefulness of
TEK-sharing networks such as the EFGS may be called into question.

From these findings, the project’s goal of using a dedicated database to facilitate new
insights on GAEN in practice—as outlined in the ‘Research Question’ section—has been
achieved. The tools have been established and demonstrated to go further in analysing

individual TEKs than previous research has gone, and on the greatest scale yet by far.

24

Chapter 5
Conclusion

In October 2020, the TACT project concluded in their TEK survey paper that “the
community needs to determine if COVID-19 tracing apps contribute to handling the
pandemic, are a distraction, or are detrimental.” [§] Four years later, there is still much
to determine—and much global incentive to do so.

With much of GAEN’s infrastructure and apps now defunct, the research landscape
is primed for retrospective evaluations of both GAEN’s varying implementations and its
aspirant effectiveness against COVID-19. Conducting these evaluations, however, requires
data—which is hard to gather now, in the mostly dormant state of the GAEN ecosystem.
This is what gives so much significance to the TACT dataset: it is a sizable snapshot of
GAEN activity from dozens of regions, covering the majority of its operational lifespan;
though certainly not a tell-all statistical source, it throws new and substantive light on
the usage and implementation of GAEN on an international scale, focusing on the raw
TEKSs that are so often overlooked in previous literature.

This dissertation project aimed to produce the most useful possible version of the
TACT dataset by reducing away its most cumbersome traits of redundancy and format
obfuscation. While this reduction came with tradeoffs in detail, the result preserves the
dataset’s potential for tracking TEKs through time, location, and metadata. It did so
using a two-phase methodology that produced usable material at both stages: a condensed
plain-text CSV dataset, and a powerful database implementation for querying it. As
part of this effort, a single comprehensive command-line tool was developed for directly
processing the TACT dataset, which may be adapted for other types of processing and
output.

While only preliminary, the findings detailed in this report still provide a remarkable
demonstration of the database’s capabilities, including eye-opening insights into how both

the Diagnosis Servers of public health authorities and the TEK-sharing backend systems

25

5.1. FURTHER WORK CHAPTER 5. CONCLUSION

touted by the EU and US played out in practice. It is evident that this new database—or
a similar one generated with these new tools—would support exactly the kind of extensive
and comparative evaluations that digital contact tracing researchers might no longer have

the means to conduct otherwise.

5.1 Further Work

The final database is designed to support further work in research concerning GAEN
and its implementations. Many possible avenues for research have been discussed in this
paper—chiefly the potential tracking of TEKs across key-sharing networks such as the
EFGS. Whether delays in TEK propagation rendered them less useful is perhaps the
most pressing question related to these networks, and a complete analysis would be both
feasible to perform using this database and highly illuminating.

However, the database itself could also be improved in efficiency. Currently, the
track() function takes over 2 minutes to run on a high-end PC, owing mostly to its
SELECT statements iterating over the entire database—with more than 140 million TEKS
in the database, tracking every single one may be impossible in a reasonable time. Since
the TEK data column serves as a primary key (when the records array is not unnested),
we should only expect to find one instance of a TEK per table, and can therefore continue
to the next table as soon as it is found; this operation will require more advanced SQL
than is currently used.

There is also no guarantee that the TEK database’s optimal form is its current
CSV/SQL-based relational paradigm. The two-dimensional array of TEK records is seem-
ingly at odds with SQL’s one-dimensional row format, though PostgreSQL enables it to
work well through using composite types. There may still be worth in exploring NoSQL
implementations of the TACT dataset: as mentioned in section 3.2, MongoDB was con-
sidered for its JSON-based document format, which may be a cleaner way of representing
TEKSs (being already defined as object-like structs of data). In the end only one database
management system was tested for this project due to time constraints, but it may be

fruitful to contrast it with implementations in other systems.

26

1]

8]

[9]

Bibliography

Kwadwo Agyapon-Ntra and Patrick E McSharry. A global analysis of the effectiveness
of policy responses to COVID-19. Scientific Reports, 13(5629), 2023. doi: 10.1038/
$41598-023-31709-2.

World Health Organisation. Contact tracing in the context of COVID-19: interim
guidance, 1 February 2021. Technical document, 2021. URL https://iris.who.
int/handle/10665/339128.

Apple Inc. Apple and Google partner on COVID-19 contact tracing
technology, April 2020. URL https://www.apple.com/newsroom/2020/04/

apple-and-google-partner-on-covid-19-contact-tracing-technology/.

Douglas J Leith and Stephen Farrell. Contact tracing app privacy: What data is
shared by Europe’s GAEN contact tracing apps, July 2020. URL https://www.
scss.tcd.ie/Doug.Leith/pubs/contact_tracing_app_traffic.pdfl

Lucie White and Philippe van Basshuysen. Privacy versus public health? A reassess-
ment of centralised and decentralised digital contact tracing. Science and Engineering
FEthics, 27(23), 2021. doi: 10.1007/s11948-021-00301-0.

Douglas J Leith and Stephen Farrell. Testing Apps for COVID-19 Tracing (TACT).
URL https://down.dsg.cs.tcd.ie/tact/.

Douglas J Leith and Stephen Farrell. Measurement-based evaluation of Google/Apple
Exposure Notification API for proximity detection in a light-rail tram. PLoS ONE,
15(9), September 2020. doi: 10.1371/journal.pone.0239943.

Stephen Farrell. October 2020 survey of GAEN app key uploads, October 2020. URL
https://down.dsg.cs.tcd.ie/tact/surveyl0.pdf.

European Commission. Digital contact tracing study: Study on lessons learned, best

practices and epidemiological impact of the common European approach on digital

27

https://iris.who.int/handle/10665/339128
https://iris.who.int/handle/10665/339128
https://www.apple.com/newsroom/2020/04/apple-and-google-partner-on-covid-19-contact-tracing-technology/
https://www.apple.com/newsroom/2020/04/apple-and-google-partner-on-covid-19-contact-tracing-technology/
https://www.scss.tcd.ie/Doug.Leith/pubs/contact_tracing_app_traffic.pdf
https://www.scss.tcd.ie/Doug.Leith/pubs/contact_tracing_app_traffic.pdf
https://down.dsg.cs.tcd.ie/tact/
https://down.dsg.cs.tcd.ie/tact/survey10.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[18]

[19]

contact tracing to combat and exit the COVID-19 pandemic, November 2022. URL
https://op.europa.eu/s/zizU.

Serge Vaudenay and Martin Vuagnoux. SwissCovid in the perspective of its goals.
Digital Threats, 3(3), February 2022. doi: 10.1145/3480465.

Apple Inc. and Google Inc. Exposure Notification Privacy-preserving Analytics
(ENPA). White paper, April 2021. URL https://covid19-static.cdn-apple.
com/applications/covidl9/current/static/contact-tracing/pdf/ENPA_
White_Paper.pdf.

Apple Inc. and Google Inc. Exposure Notification cryptography specifica-
tion. Technical document, April 2020. URL https://covidl9-static.
cdn-apple.com/applications/covidl9/current/static/contact-tracing/

pdf/ExposureNotification-CryptographySpecificationvl.2.pdf.

GitHub. Releases - google/exposure-notifications-server. URL https://github.

com/google/exposure-notifications-server/releases.

Stephen Farrell and Douglas J Leith. Transparency in the deployment of coron-
avirus contact tracing apps, June 2020. URL https://down.dsg.cs.tcd.ie/tact/
transp.pdf,|

Stephen Farrell and Douglas J Leith. Irish Covidtracker app key upload shortfalls,
April 2021. URL https://down.dsg.cs.tcd.ie/tact/ie-stats.pdf.

Felix Holl, Johannes Schobel, and Walter J Swoboda. Mobile apps for COVID-
19: A systemic review of reviews. Healthcare, 12(139), 2024. doi: 10.3390/
healthcare12020139.

Nikita Kesarev and Andrey Korochkin. Tracing the tracing apps: A technical re-
sponse to COVID in cultural comparison. Technology and Language, 4:97-115, 2023.
doi: 10.48417/technolang.2023.02.10.

Zakir Durumeric, James Kasten, Michael Bailey, and J Alex Halderman. Anal-
ysis of the HT'TPS certificate ecosystem. In Proceedings of the 2013 Conference
on Internet Measurement Conference, IMC ’13, pages 291-304, New York, NY,
USA, 2013. Association for Computing Machinery. ISBN 9781450319539. doi:
10.1145/2504730.2504755.

Censys Inc. Research access to Censys data. URL https://support.censys.io/
hc/en-us/articles/360038761891-Research-Access-to-Censys-Data.

28

https://op.europa.eu/s/zizU
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ExposureNotification-CryptographySpecificationv1.2.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ExposureNotification-CryptographySpecificationv1.2.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ExposureNotification-CryptographySpecificationv1.2.pdf
https://github.com/google/exposure-notifications-server/releases
https://github.com/google/exposure-notifications-server/releases
https://down.dsg.cs.tcd.ie/tact/transp.pdf
https://down.dsg.cs.tcd.ie/tact/transp.pdf
https://down.dsg.cs.tcd.ie/tact/ie-stats.pdf
https://support.censys.io/hc/en-us/articles/360038761891-Research-Access-to-Censys-Data
https://support.censys.io/hc/en-us/articles/360038761891-Research-Access-to-Censys-Data

Appendix
Summary of TACT Dataset Integrity

For a broader overview of the TACT dataset, please consult the relevant section of this
paper and the original TACT web page [6]. This appendix references information origi-
nally logged on the TACT web page, but with further detail provided by queries to the
TEK database.

Figure 1: A world map diagra with each region covered by the TACT
dataset highlighted in green.

13 Adapted from the Wikimedia Commons image ‘Blank Map with US subdivisions.svg’, created by
user EmmaCoop and licensed under CC-BY-SA 4.0.

29

APPENDIX APPENDIX

Data Coverage

The following table lists date ranges for the first and last detection of TEKs downloaded
from each Diagnosis Server (as queried in the final TEK database). The actual monitoring
period of each server may extend further in either direction, but with no TEKs detected
in that time. This table also does not take gaps in data into account; information on the

script outages and certificate expirations during the survey are chronicled on the TACT

web page.

Region Code | Data start Data end

Austria at 2020-07-09 01:23 | 2022-02-28 21:00
Belgium be 2020-10-02 15:00 | 2022-12-03 15:00
Brazil br 2020-10-02 15:00 | 2021-09-28 01:00
Canada ca 2020-08-20 13:00 | 2022-06-17 17:00
Croatia hr 2020-10-22 23:00 | 2023-02-21 21:00
Czechia cz 2020-10-02 22:00 | 2021-11-22 08:00
Germany de 2020-06-25 22:37 | 2023-05-26 09:00
Denmark dk 2020-07-05 16:44 | 2022-04-01 09:00
Ecuador ec 2020-10-02 15:00 | 2020-12-24 23:00
Estonia ee 2020-09-10 19:00 | 2022-05-06 06:00
Finland fi 2020-09-13 13:25 | 2022-06-15 00:00
Guam gu 2020-10-03 23:00 | 2022-01-10 20:00
Ireland ie 2020-07-10 19:15 | 2022-03-24 08:00
Italy it 2022-06-25 22:37 | 2022-12-30 14:00
Latvia lv 2022-07-09 02:38 | 2023-02-20 16:00
Malta mt 2020-10-02 15:00 | 2022-07-11 11:00
Netherlands nl 2020-10-03 00:00 | 2022-04-22 11:00
Poland pl 2020-06-30 16:10 | 2022-03-31 08:00
Portugal pt 2020-10-02 15:00 | 2022-06-10 06:00
Slovenia si 2020-10-09 13:00 | 2022-04-04 08:00
South Africa za 2020-10-02 22:00 | 2021-06-20 05:00
Spain es 2020-07-13 23:00 | 2022-10-11 16:00
Switzerland ch 2020-06-25 22:37 | 2022-03-31 22:00
UK: England & Wales | ukenw | 2020-10-02 15:00 | 2023-05-12 15:00
UK: Gibraltar ukgi | 2020-10-08 18:00 | 2022-06-04 07:00
UK: Northern Ireland | ukni | 2020-08-06 18:13 | 2022-09-21 07:00
UK: Scotland uksc | 2020-09-16 16:00 | 2022-04-29 13:00

30

APPENDIX APPENDIX

US: Alabama usal | 2020-09-10 18:00 | 2023-05-12 15:00
US: Delaware usde | 2020-09-16 16:00 | 2023-05-12 15:00
US: Nevada usnv | 2020-09-16 22:25 | 2020-10-27 01:00
US: Virginia usva | 2020-08-14 15:10 | 2023-09-03 14:00
US: Wyoming uswy | 2020-09-16 23:00 | 2023-05-12 15:00

Misclassified Data

From October 2020, data was gathered from what were presumed to be Hungarian servers,
and was classified as such (‘hu’). Data from Croatia was later added in December 2020, but
it appeared identical in content to Hungary. In reality, both sets of data were of Croatian
origin. This was only discovered in April 2022, after which Hungary was dropped from
TACT’s survey and Croatian data gathering continued.

To account for both the overlap in data and the original misclassified Croatian data
from Oct—Dec 2020, the key_extract tool includes a condition to extract ZIPs marked hr
and hu simultaneously, and all such data is merged into the same CSV export. The final

Croatia database table therefore contains all data from Croatia without gaps or conflicts.

Malformed Data

On several occasions, malformed UNIX timestamps were found attached to both TEKs

and ZIP files—in each case set to zero (January 1, 1970).

’ Region ‘ TEK timestamps ‘ ZIP timestamps ‘

ca 1
ie 2 2360
ukgi 2
ukni 2 2140

Figure 2: Table showing all regions with malformed UNIX timestamps.

There was also one instance of a malformed TEK found in the TACT dataset. The
key first appeared in the Northern Ireland dataset on 2020-08-07 23:00 and appeared two
hours later in the Ireland dataset. The key 0xd66cdcd462763af20dd34d34d34d34d34d34
exceeded the standard 16-byte length, and in each case the ZIP file’s timestamp was set
to zero. (It is assumed to have been half-corrupted during transmission.) These key
instances were simply truncated to 16 bytes, then added to the database without further

issues or conflicts.

31

	Abstract
	Acknowledgments
	Chapter Introduction
	Research Question

	Chapter Background
	GAEN
	GAEN in Practice
	The TEK Export ZIP

	The TACT Dataset
	Related Work

	Chapter Methodology
	TEK Extraction and Processing
	Development
	The key_extract Tool
	TEK Extraction
	TEK Processing
	CSV Output

	Database Implementation

	Chapter Results
	New Datasets
	Database Performance
	Query Examples
	TEK records and metadata
	Tracking TEKs

	Discussion

	Chapter Conclusion
	Further Work

	Bibliography
	Appendices

