
Abstract

It’s becoming significantly easier to develop, write and maintain code with
the addition of natural language learning models (such as Chat-GPT). This
combined with the ability to obfuscate your codebase makes it more difficult
to detect similarity between programs. The research problem was to discover
whether through regression testing via fuzz testing and profiling classes that
based on the data that is extracted a similarity score between programs could
be determined.

The quest to effectively detect code similarities has prompted innovative ap-
proaches beyond traditional static analysis methods. This research investigates
the viability of utilizing runtime information as a metric for code similarity de-
tection, with the aim of reshaping current paradigms in this domain. Various
methodologies were explored, including leveraging Java Quick Fuzzing (JQF)
in conjunction with tools like VisualVM and Java Command-Line Management
(JCMD), to capture runtime data such as CPU usage and memory behavior.
Despite encountering challenges in accurately profiling target applications and
extracting desired data formats, these initial attempts provided valuable insights
into potential metrics for consideration.

The evaluation phase involved analyzing runtime data extracted from a di-
verse dataset of user submissions. The dataset was organized and formatted
into a spreadsheet for comprehensive analysis. Through meticulous examina-
tion, both similarities and differences between user submissions were uncovered.
Notable findings include instances of code segments exhibiting similar structures
and variable naming conventions, indicative of potential code reuse or plagia-
rism. Moreover, comparisons were made between the runtime scores obtained
from the dataset and similarity scores generated by the compare50 tool. Re-
sults revealed discrepancies in the closest pairs identified by runtime scores and
those identified by compare50, underscoring the need for further investigation
and refinement of code similarity detection methodologies.

In conclusion, this research contributes to the ongoing discourse on code
similarity detection by proposing runtime information as a promising avenue for
exploration. By shedding light on the challenges and opportunities associated
with leveraging runtime data, this study lays the groundwork for future advance-
ments in this field. Ultimately, the findings advocate for a holistic approach to
code similarity detection, one that incorporates runtime metrics alongside ex-
isting static analysis techniques to enhance the accuracy and effectiveness of
plagiarism detection tools.

1


