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It’s becoming significantly easier to develop, write and maintain code with the addition
of natural language learning models (such as Chat-GPT). This combined with the ability
to obfuscate your codebase makes it more difficult to detect similarity between programs.
The research problem was to discover whether through regression testing via fuzz testing
and profiling classes that based on the data that is extracted a similarity score between
programs could be determined.

The quest to effectively detect code similarities has prompted innovative approaches
beyond traditional static analysis methods. This research investigates the viability of
utilizing runtime information as a metric for code similarity detection, with the aim
of reshaping current paradigms in this domain. Various methodologies were explored,
including leveraging Java Quick Fuzzing (JQF) in conjunction with tools like VisualVM
and Java Command-Line Management (JCMD), to capture runtime data such as CPU
usage and memory behavior. Despite encountering challenges in accurately profiling target
applications and extracting desired data formats, these initial attempts provided valuable
insights into potential metrics for consideration.

The evaluation phase involved analyzing runtime data extracted from a diverse dataset
of user submissions. The dataset was organized and formatted into a spreadsheet for com-
prehensive analysis. Through meticulous examination, both similarities and differences
between user submissions were uncovered. Notable findings include instances of code
segments exhibiting similar structures and variable naming conventions, indicative of po-
tential code reuse or plagiarism. Moreover, comparisons were made between the runtime
scores obtained from the dataset and similarity scores generated by the compare50 tool.



Results revealed discrepancies in the closest pairs identified by runtime scores and those
identified by compare50, underscoring the need for further investigation and refinement
of code similarity detection methodologies.

In conclusion, this research contributes to the ongoing discourse on code similarity
detection by proposing runtime information as a promising avenue for exploration. By
shedding light on the challenges and opportunities associated with leveraging runtime
data, this study lays the groundwork for future advancements in this field. Ultimately, the
findings advocate for a holistic approach to code similarity detection, one that incorporates
runtime metrics alongside existing static analysis techniques to enhance the accuracy and
effectiveness of plagiarism detection tools.
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Chapter 1

Introduction

1.0.1 Background

In the ever-expanding landscape of software development, the integrity and originality of

code are paramount. Particularly in academic settings, where assignments and projects

serve as fundamental components of learning and assessment, ensuring the authenticity

of code submissions is crucial. Plagiarism detection mechanisms play a vital role in

maintaining academic integrity, allowing educators to identify instances of code reuse or

unauthorized collaboration among students. Traditional methods for detecting plagiarism

primarily rely on static analysis techniques, which examine code structures and syntactic

patterns to identify similarities between code fragments. While these methods have been

effective to some extent, they often struggle to capture nuanced similarities and can be

prone to false positives. This in combination with the addition of large language models

and MOSSAD, it has become significantly easier to avoid the detection of traditional

plagiarism tool.

1.0.2 Motivation

The limitations of static analysis methods have spurred on this research to explore alter-

native approaches for code similarity detection. One promising avenue is the utilization of

runtime information, which provides insights into how a program behaves during execu-

tion. Unlike static analysis, which examines code at rest, runtime analysis offers dynamic

insights into program execution, including CPU utilization, memory usage, and function

call patterns. By leveraging runtime data, this research aim to uncover hidden similar-

ities between code fragments that may elude traditional static analysis techniques. The

motivation for this research also stemmed from the involvement of using random input

to test programs using fuzz testing (Fuzzing). The research problem itself is unique and
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tackling this question provided an opportunity to learn more about how programs utilize

the CPU and fuzz testing.

1.0.3 Research Gap

Despite the potential benefits of using runtime information for code similarity detec-

tion, this approach remains relatively under-explored in the academic literature. Existing

studies primarily focus on static analysis methods, leaving a gap in our understanding of

the effectiveness and practicality of runtime-based approaches. Moreover, the challenges

associated with capturing, processing, and interpreting runtime data present significant

hurdles that must be addressed to realize the full potential of this approach.

1.0.4 Research Objectives

In light of the aforementioned gaps and challenges, this research seeks to address the

following objectives:

1. Investigate the feasibility of utilizing runtime information as a metric for code similarity

detection.

2. Explore methodologies for capturing and analyzing runtime data, including tools and

techniques for profiling program execution.

3. Evaluate the effectiveness of runtime-based approaches in detecting code similarities

compared to traditional static analysis methods.

4. Identify challenges and limitations associated with runtime-based approaches and pro-

pose strategies for mitigating them.

1.0.5 Research Methodology

To achieve these objectives, a multi-faceted research methodology will be employed. The

study will begin with a comprehensive review of existing literature on code similarity

detection, focusing on both static analysis and runtime-based approaches. Subsequently,

a series of experiments will be conducted to capture runtime data from a diverse dataset

of code samples. Tools such as Java Fuzzing (JQF) and Java CoMmanD (JCMD) will be

utilized to profile program execution and extract relevant runtime metrics. The collected

data will then be analyzed and compared against results obtained from traditional static

analysis methods.
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1.0.6 Significance of the Study

This research holds significant implications for academia, industry, and the broader soft-

ware development community. By advancing our understanding of runtime-based ap-

proaches to code similarity detection, the study aims to contribute to the development

of more robust and accurate plagiarism detection tools. Furthermore, the findings of this

research may inform pedagogical practices in computer science education, helping educa-

tors design more effective strategies for teaching and assessing programming skills. There

have been many papers, Gipp and Meuschke (2011) which have attempted to improve

solving more elaborate attempts at copying and modifying work. Additionally, insights

gained from this research may have applications in software quality assurance and code

review processes in industry settings.

1.0.7 Structure of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 provides a detailed review

of existing literature on code similarity detection, highlighting key concepts, methodolo-

gies, and research findings. Chapter 3 outlines the research methodology employed in this

study, including data collection procedures, experimental design, and analysis techniques.

Chapter 4 presents the results of the experiments conducted, including comparisons be-

tween runtime-based and static analysis methods. Chapter 5 discusses the implications of

the findings, identifies limitations of the study, and suggests directions for future research.

Finally, Chapter 6 offers concluding remarks and summarizes the key contributions of this

research.
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Chapter 2

Literature Review

In the realm of programming assignments, being able to detect similarities in work is

important especially at the university level. Students are required to demonstrate their

understanding of concepts and ability to solve problems. In an ideal world we could trust

that each and every student upholds that goal of showcasing their knowledge, skills and

experience gained throughout their time spent working on the module and course. That

isn’t the case all of the time and as such, there have been tools developed in order to

prevent students submitting work that has not be properly cited or has been passed off

as their own. To start off this literature review, I will be discussing a number of tools

that are being used by academic institutions all around the world.

2.1 MOSS - Plagiarism Detection

MOSS is a tool that is used for automatic plagiarism detection, it was developed by

Stanford in the mid 1990’s. There is a paper on the ideas behind MOSS, Schleimer et al.

(2003). MOSS relies on the winnowing algorithm which is one of many finger-printing

algorithms available to find matching sequences in code. The winnowing algorithm is

efficient and highly-scalable. MOSS takes a structure-based approach towards detecting

similarities, which works even when comments on the program or the lines of the code have

been rearranged. The system goes through a bundle of programs that been submitted

and generates similarity scores, it is important to bear in mind that a pair of programs

can have a high similarity score without plagiarism occurring. Currently, it can detect

similarities in code for more than 20 different programming languages. In the paper

MOSS is based of, it discusses the winnowing algorithm which MOSS makes use of in

order to detect similarities between programs. The process of how MOSS works can

be broken down into four processes.
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1. Remove white space and identifiers from the document

2. Produce hash sequences from the k-grams derived from the pre-processed document.

What is a K gram? k-grams refer to contiguous sequences of k characters within

a document. These k-grams are used as the basis for generating hash sequences,

which are then utilized to identify and compare similarities between documents.

The k is an number, often ranging between [3 - 10].

3. Select a subset of these hashes to use as the document’s fingerprint

4. Documents that have many matching fingerprints should be matched together and

flagged.

The third part of the process involves the winnowing algorithm which is fingerprint

selecting algorithm that applies a sliding window of size w to the hashes. If the smallest

rightmost value has not been recorded, it records it then slides on until the end of the

sequence of hashes. After completing this the hash values that have been recorded, form

the document’s fingerprint. Figure 2.1 shows an example of document fingerprinting.

Figure 2.1: The process of document fingerprinting using the winnowing
algorithm

Source: https://yangdanny97.github.io/blog/2019/05/03/MOSS
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2.1.1 Applications of MOSS:

From an academic standpoint, a lecturer or a teaching assistant having over two hundred

assignments to mark it can be difficult to notice the similarities while grading a bundle of

assignments. In this case, the tool can be used to detect similarities between students and

also past assignments given. From my research I have found that there are multiple ways

to use MOSS, some involve using the command line, others use a graphical interface which

can be more intuitive to those with no prior experience scripting. MOSS is provided as an

internet service and requires you to email in order to obtain an account. After creating an

account you can submit queries to MOSS, and the server will respond with a URL. Figure

2.2, displays the results of a query that has been submitted to MOSS. This shows the

files that are most similar, to what percentage and the number of lines that match. After

viewing the results of the query, users have the option to click on any pair of programs

display and this will open up a side by side comparison of the pair of programs which can

be used for further inspection to determine if the similarity between programs was due to

work being passed off.

Figure 2.2: The results of MOSS query from the URL provided by the
server

Source: Link to Figure 2.2 and 2.3
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Figure 2.3: Page shown after clicking a pair of programs with a high
similarity percentage

2.2 Compare50

Compare50 is another plagiarism tool on the market and serves as an alternative to MOSS.

Compare50 is a tool that was developed for a computer science module (CS50) in Harvard

Malan et al. (2021). It was one of many open-source tools created in order to facilitate to

learning of students and lecturer’s ability to grade and check assignments for plagiarism.

Similarly to MOSS, it can detect similarity for different programming languages. As it

stands, it can detect up to 300 different programming and templating languages. It is

used from the command-line and can be installed using the python installer ”pip install

compare50”. The commands on the terminal are intuitive, making it a lot simpler to

use for students and lecturers alike. Compare50 has five different comparison methods:

structure, text, exact, no comments and misspellings, the first four make use of

the winnowing algorithm. For the misspellings, they compare words in a document to the

a English dictionary. It’s the first of its kind and is used to aid discovering similarities in

code. Combining these five different comparison methods gives a different variety to the

ways you can highlight similarities in code and provides a more detailed insight into pairs

of programs.

2.2.1 Applications of Compare50:

The applications of Compare50 exceed that of MOSS, which is due to the fact that it can

compare similarities for not only programming languages but also templating languages.

Compare50 can be used in educational institutions to evaluate the similarities between

student’s assignments not only for programs but dissertations, thesis’ .etc. There are

many online courses provided today and one of disadvantages of online courses is that it
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is a lot easier to plagiarism code. Compare50 can be implemented to allow for the

detection of plagiarism in the submitted work. Since there are many languages avail-

able for comparison in Compare50, there are many applications for Compare50 aside from

an educational aspect, such as using it to compare documents in a legal capacity. In order

to evaluate the effectiveness of Compare50, it was tested locally and a comparison was ran

between a bundle of binary search tree files that were written in java. On the terminal,

Compare50 was installed and this command was ran in the directory that contained the

bundle of files: compare50 * -x ”*” -i ”*BST.java”.

Fig 2.4 displays the output of terminal after running this command

Figure 2.4: A screenshot of Compare50 running locally in the terminal

Source: Compare50 docs
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After the execution of this command, a HTML file is created that can be opened in

your browser that visualises the comparison between the bundle of files inputted. The

next image 2.5 show’s this visualisation

Figure 2.5: Outputted HTML file displayed on browser with comparison
scores

There are a number of details given in this HTML file:

1. On the left is a list of user’s whose submissions have the highest similarity scores in

descending order

2. On the right is a graphical display of nodes with edges, the node signify a user, whilst

the edge serves to display that nodes that are connected have some sort of similarity

between the user’s submissions

3. Below that graph is bar that filters the minimum value of the comparison score to

display on the graph and list. If you changed the value to ten, then we would only

see one comparison score the first one as that is the only one with a similarity score

of ten.
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This HTML file is not the only file outputted from the console, but for each match

we get a match.HTML file which shows what lines of the code are similar. With many

programs and documents, it is not absurd to see lines that are similar especially if it

there is already a layout or structure that has been defined by a lecturer before giving the

assignment to his students. An example of what this looks like can be seen below in Fig

2.6

Figure 2.6: Matching sequences of code between two users

2.3 JPlag

JPlag is another tool used for detecting similarities between programs, it was ”developed

in 1996 by Guido Mahlpohl and others at the chair of Prof. Walter Tichy” at Karlsruhe

Institute of Technology (KIT). It does not support as many programming languages as the

previous tools but has the main languages that most programmers would use especially at

an academic level. The jar file can be downloaded from the JPlag repository, which you

can then call on the command line. Unlike MOSS and Compare50, JPlag uses a different

type of algorithm for detecting similarities. The Greedy String Tiling algorithm is the

architecture behind JPlag, this algorithm identifies similar areas between two strings by

finding the longest common sub strings iteratively. It scans the source string and compares

it with the target string, and selects the longest common sub-string at each step. This
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process continues until the entire source is scanned. The algorithm outputs a set of

matches or similarities between the two strings. JPlag has some features that separate

it from other plagiarism tools aside from making use of a different type of algorithm

they also allow for bundle submissions of files to have a base code file, this tells the

architecture to ignore similarities between two files that share the same similarities with

that base code file. This feature ensures that the similarity score is not impacted by code

that had been pre-written i.e. a main function to test their (student’s) code. The paper

that was written on this tool was Prechelt and Malpohl (2003). JPlag can be applied in

other areas aside from an academic standpoint having been used lawfully in intellectual

property cases where it has been used by expert witnesses according to their site

2.3.1 Applications of JPlag:

There are a number of features available that are unique to JPlag. As mentioned before

after downloading the jar file you can make use of it on the command line, but there is

also the option of using JPlag programmatically. Using this API, it provides ways for

users to creatively apply similarity detection for submissions of code. The image provided

below is an example of how you may make use of this API.

Listing 2.1: Example of API call in Java

JavaLanguage language = new JavaLanguage ( ) ;

language . getOptions ( ) ; //Use t h i s to s e t language s p e c i f i c op t i ons

Set<Fi l e> s ubm i s s i onD i r e c t o r i e s = Set . o f (new F i l e ( ”/path/ to / rootDi r ” ) ) ;

F i l e baseCode = new F i l e ( ”/path/ to /baseCode” ) ;

JPlagOptions opt ions = new JPlagOptions ( language , submi s s i onD i r e c to r i e s ,

Set . o f ( ) ) . withBaseCodeSubmiss ionDirectory ( baseCode ) ;

try {
JPlagResult r e s u l t = JPlag . run ( opt ions ) ;

// Opt iona l

ReportObjectFactory reportObjectFactory = new

ReportObjectFactory (new F i l e ( ”/path/ to /output ” ) ) ;

reportObjectFactory . createAndSaveReport ( r e su l t , ”/path/ to /output ” ) ;

} catch ( ExitExcept ion e ) {
// error hand l ing here

}

Source: JPlag Github
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To execute the JPlag jar file on the command line interface, we use the command:

java -jar jplag.jar path/to/the/submissions. Which can be set with additional

parameters, for setting the programming language, the base code file, the mode .etc.

After the execution has been completed successfully a zipped result file is returned which

can be viewed using JPlag’s report viewer on jplag.github.io/JPlag/. This zipped

result file contains JSON formatted files that detail the overview of the submission, the

identification numbers given to each file in the submission, the options chosen either on

the command line or programmatically, a JSON file for each comparison and a vue file

for a visual display of the overall report. The next figure 2.7 shows an example of what

the JPlag report can look like.

Figure 2.7: An example of what a JPlag report can look like

This report provides options to change the metrics from average similarity to maxi-

mum similarity, in most cases the average similarity would be used but if you had many

programs with different length the maximum similarity will provide a better insight into

the pairs of programs. You can change the x-axis scale from linear to logarithmic depend-

ing on your requirements. On the right, it shows the top comparisons, with the name of

the students, the similarity scores for the average and maximum similarity and the cluster.

The cluster details the group of submissions that share the same score. At the top of the

report, you can see the total submissions, the number of comparisons shown against the

total number of comparisons and a minimum token match, which is a parameter that can

be tuned that adjusts the sensitivity of the comparisons made by JPLag.
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What separates JPlag from the other plagiarism tools that have been discussed, lies

in its ability to detect disguised plagiarism which can take on the form of:

1. Inserting comments or empty lines

2. Changing function or variable names

3. Addition of useless lines of code or changing lines of code

4. Restructuring the program flow

5. Changing control structures, if statements to switch cases .etc.

6. Modifying expressions (X ¿ Y) to !(X ¡= Y)

7. Statements in code being merged or split

Using the end-to-end testing, JPlag can detect these changes of code that may deceive

other plagiarism tools. This requires user’s to develop a testing strategy and can be

structured using the JPlag API which would require a certain level of understanding of

how the JPlag architecture works and programming knowledge.

Listing 2.2: Original Code

private f ina l <T> void swap (T [ ] arr , int i , int j ) {
T t = arr [ i ] ;

a r r [ i ] = ar r [ j ] ;

a r r [ j ] = t ;

}

Listing 2.3: Plagiarized code

private f ina l <T> void paws (T [ ] otherArr , int i , int j ) {
T t = otherArr [ i ] ;

otherArr [ i ] = otherArr [ j ] ;

otherArr [ j ] = t ;

}

The above listings show an example of plagiarism code, that was changed by changing

both the variable and function names. The output shows that the result of the match

is 100% signifying the tool’s ability to detect disguised plagiarism. Listing 2.4 shows the

results in the format of a JSON.
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Listing 2.4: Results from JSON file

”SortAlgo−SortAlgo1 ” : {
”m in ima l s im i l a r i t y ” : 100 .0 ,

”maximum similarity ” : 100 .0 ,

”matched token number” : 56

} ,

2.4 Effectiveness and Limitations

2.4.1 Effectiveness

Plagiarism checkers of this type are highly effective due to their ability to detect potential

instances of code plagiarism with a good degree of accuracy. By providing in-depth anal-

ysis of the code structure and matching code segments, these tools enable educators and

researchers to identify similarities between different code submissions, even in cases where

the code has been slightly modified. This capability is particularly valuable in educational

settings, where maintaining academic integrity is paramount. One of the key advantages

of these plagiarism checkers is their support for a wide range of programming languages.

This versatility allows users to compare code written in different languages, making the

tools applicable across various programming courses and disciplines. Whether students

are working with Java, Python, C++, or any other programming language, these tools

provide a consistent and reliable means of detecting code similarities. Moreover, these

plagiarism checkers play a crucial role in upholding the integrity of courses and academic

programs. By identifying instances of code plagiarism, educators can address academic

misconduct and ensure that students are evaluated fairly based on their own original

work. This helps maintain the credibility and reputation of educational institutions and

promotes a culture of academic honesty and integrity among students. One of the most

significant benefits of these tools is their ability to save users a significant amount of

time that would otherwise be spent manually checking code submissions for similarities.

By automating the process of plagiarism detection, these tools streamline the evaluation

process and allow educators to focus their time and resources on other aspects of teaching

and research. By making use of the implementation of advanced algorithms such as the

winnowing algorithm. This algorithm has proven to be highly efficient and effective in

identifying similarities between code segments, even in cases where the code has been

intentionally modified. By utilizing such algorithms, these tools are able to achieve a

high level of accuracy and reliability in detecting code plagiarism. In particular, JPlag

stands out for its unique architecture and detection mechanisms. Unlike other plagiarism
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checkers, JPlag employs a diverse range of detection methods, allowing it to detect various

forms of plagiarism with precision. This versatility makes it significantly more difficult for

students to circumvent detection and copy work from others, thereby enhancing the effec-

tiveness of plagiarism prevention efforts. Importantly, the capabilities of these plagiarism

checkers are not limited to academia alone. While they are commonly used in educational

settings, their effectiveness and utility extend to other areas also. For example, these tools

can be applied in software development environments to detect code reuse and identify

potential copyright infringement issues. By leveraging the capabilities of these tools in

diverse contexts, organizations and individuals can safeguard their intellectual property

and ensure compliance with legal and ethical standards. In summary, the effectiveness

of plagiarism checkers in detecting code similarities lies in their comprehensive analysis

capabilities, support for multiple programming languages, and utilization of advanced

detection algorithms. These tools play a critical role in upholding academic integrity,

saving time for educators, and promoting fairness in the evaluation process. Moreover,

their versatility and applicability extend beyond academia, making them valuable assets in

various professional and organizational contexts. Sources taken from Novak et al. (2019)

and Ahadi and Mathieson (2019).

2.4.2 Limitations

Even with the abundance of benefits, there are some limitations and disadvantages. The

algorithms employed can flag content that is unique as plagiarized, paraphrasing (chang-

ing variable names) can cause the algorithm to miss plagiarized content. False positives

occurring from code that the user may not have written themselves but possibly came

with the assignment specification. Another challenge arises from the presence of false

positives resulting from code the user may have obtained from legitimate sources. These

false positives undermine the credibility of plagiarism detection results and complicate

the process of assessing academic integrity. There are tools available online that are able

to defeat these plagiarism tools, an example of this is MOSSAD which has developed an

algorithm that takes advantage of MOSS’ in order to manipulate the comparison score.

These tools leverage sophisticated algorithms to manipulate comparison scores and evade

detection, posing a significant challenge to the effectiveness of existing plagiarism detec-

tion methods. The development of such tools highlights the battle between plagiarism

checkers and individuals seeking to circumvent them, underscoring the need for continued

innovation and improvement in this field, MOSSAD is further discussed in this paper

Devore-McDonald and Berger (2020). In addition to the general limitations of plagiarism

checkers, here are also some limitations specific to JPlag, which include the fact that it
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does not have much support for detecting similarities for ordinary text, Tuli (2016), which

limit it’s capabilities in certain contexts. With the many features available to JPlag, in

order to best make use of the tool you require an understanding of the architecture and

the ability to extend the tool using their API (Application Programming Interface) call.

This limits the effectiveness of the tool to user’s who understand the tool deeply and know

how to best make use of it. This reliance on technical expertise may hinder the tool’s

accessibility and usability for users who are not familiar with its inner workings.

Looking at the current landscape of code plagiarism, with the emergence of artificial

language learning models such as Chat-GPT and its variants, they have the capability

to generate code and alter existing code in ways that can deceive traditional plagiarism

checkers. A review on the different tools in relation to the emergence of artificial language

learning models was spoken about in Omar et al. (2024) Multiple sources online show how

these learning models can be provided code and with certain creative prompts will create

and alter code to avoid detection by plagiarism tools. This presents a significant challenge

for plagiarism detection efforts, as it is becoming increasingly difficult to distinguish gen-

uine code and code that has generated or been manipulated. As a result, this has called

for more innovative approaches to similarity detection.

Source: Chat-GPT beating MOSS
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Chapter 3

Methodology

3.1 Overview

The current state of architecture for similarity tools focus on employing various algorithms

and techniques to identify similarities between text and code. These can range from

tokenization to string matching. These methods while proven to work are not immune

to false positives and code can be altered to avoid detection. As programs execute,

when this information is profiled i.e. determining where a component method or line is

consuming the most resources this information reflects the behavior and characteristics of

the program’s execution. Unlike code itself, runtime information is more difficult to alter

or obfuscate, as it is generated dynamically during program execution. This formed the

basis of the research undertaken in this study, to investigate the possibility of leveraging

runtime information from programs to detect similarities amongst programs. This is a

departure from traditional methods of identifying code similarities. By exploring the

potential of runtime data, the aim is to redefine the applications of existing similarity

detection tools, thereby enhancing their effectiveness and applicability in diverse contexts.

The primary objective of this chapter is to discuss the methods employed for extracting

the runtime information and to highlight the attempt of utilising this data for identifying

similarities among programs. The data that is extracted at runtime offers insights into

the actual behavior and execution dynamics of the program, providing a more total view

of a program’s functionality and behavior. This chapter will delve into previous attempts

made at leveraging runtime information for similarity detection and the shortcomings

of those methods. There has been an attempt to utilize runtime-based information for

program characterization in an attempt to discover similarities in code, Jhi et al. (2015),

but the methodology approach taken here is novel as far as we know. In essence the

methodology, will serve as a foundational exploration of the novel approach proposed by
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the research question and lay the groundwork for future discussions on this topic.

3.2 Data Collection

Given that plagiarism detection tools are mainly used in academic settings, it was impor-

tant to utilize student assignments as dataset for testing this methodology. The dataset

was taken from Trinity College, specifically sourced from the ”Algorithms and Data Struc-

tures” module. This aim of the module is for students to learn how to write effective and

efficient programs using common data structures and algorithms In total, the dataset

comprised over 250 assignments, each representing a student’s implementation of func-

tions for a binary search tree. The use of these assignments was deliberate as it provided

a common ground for comparison, as all assignments were tasked with achieving the same

objective although through potentially different approaches. The focus on Java assign-

ments was crucial since java programs generate a lot of runtime data during execution

and since the automation tool ”Maven” was to be used this was the perfect choice.

3.2.1 Data Pre-processing

To uphold data protection standards and ensure the anonymity of students, the data

was anonymized discarding names and numbers of students associated with each assign-

ment submission. To achieve this, a python script was created to systemically anonymize

the identifying information in the dataset. The script iterated through each submission,

replacing the original student names with identifiers in the format ”user n”, where ’n’

represented a unique number for each student. For instance the 50th iteration of the

anonymization process would assign the identifier ”user 50” to the corresponding assign-

ment submission. It’s important to note that some students may have submitted multiple

submissions for this assignment. To accommodate this scenario, the script was designed

to handle multiple submissions from the same student so that each submission would be

regarded as being made by the same user.

3.3 Maven

Maven is a build automation tool used for java projects. It enables developers to au-

tomate essential tasks such as project compilation, testing, packaging and deployment.

One of the key advantages of Maven lies in its ability to manage project configurations

and dependencies through a standardized format defined in the project’s pom.xml file,

the pom file used during this research is shown in .4. For this project we created the
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maven project by installing maven and running this command in the terminal mvn

archetype:generate -DgroupId=com.mycompany.app -DartifactId=my-app -

DarchetypeArtifactId=maven-archetype-quickstart -DarchetypeVersion=1.4 -

DinteractiveMode=false. These parameters have an impact on the file structure for

where the classes and test classes are stored, the package named associated with the

classes is determined by ”-DgroupId”, in this case the top of each java class would begin

with the following package name.

Listing 3.1: -DgroupId

package com .mycompany . app ;

Using the command mvn package in the terminal at the directory of the maven folder,

will compile your java code, run any tests, and finish by packaging the code up in a JAR

file within the target directory. Maven’s plugin architecture provides an extension to

the functionality of the project as per the requirements of the project determined by the

user. This research employed a Fuzz testing library mentioned in the next section, which

required the addition of this snippet 3.2 below in the pom.xml file in order to add the

library as a dependency to the project.

Listing 3.2: Fuzz testing POM dependency

<dependency>

<groupId>edu . be rke l ey . c s . j q f</groupId>

<a r t i f a c t I d>j q f−f uzz</ a r t i f a c t I d>

<version>2 .0</version>

</dependency>

3.4 Fuzz Testing

Upon collecting the bundle of assignments, the next pivotal phase involved rigorously

testing the programs to assess their functionality and performance. This process had an

imperative need for randomized testing inputs. The paper Doi (2023) discusses regres-

sion testing via fuzz testing making use of the library to be mentioned. The random

inputs were important to verify that the function calls made by the program exhibited

unpredictable behavior. Randomized testing inputs was a means to evaluate the robust-

ness and versatility of the programs. Using these rigorous tests ensured that the runtime

Source: Learn Maven
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information given for each program was large, large enough to analyse and discuss fur-

ther. In order to accomplish this we made use of a fuzz testing framework called JQF

+ Zest: Coverage-guided semantic fuzzing for java. A java class was created in

order to generate random inputs for the assignments. Padhye et al. (2019) discusses the

techniques proposed of how to implement these generator classes and how to use them,

exploring this paper detailed how to create a generator class and the capabilities of JQF.

The binary search tree that students were asked to implement was generic, meaning the

tree could be instantiated with any object and for this research we focused on an integer

key and an integer value which is shown by listing 3.3 below.

Listing 3.3: New Binary Search Tree

BST<Integer , Integer> bst = new BST<>();

The generator had been created to instantiate an array that can hold a thousand

objects and return it with random values. With this array, we loop through each position

in the array and add a random integer value ranging from [-10, 10]. The purpose of this is

to ensure while the values in the array are random but are not wildly varying to maintain

some sort of control for each of the programs. Using the maven plugin, the programs

can be tested using the command mvn jqf:fuzz. This can be altered and additional

commands can be added to control the fuzzing session such as the duration of time the

fuzzing runs for; the number of executions of each program; an option to save the random

inputs generated which can be used again for other fuzzing sessions. Combining these

commands, the seed of the inputs were saved to ensure all the programs were tested by

the same randomly generated inputs which served as another control and the number of

executions of each program were limited to a hundred trials

Listing 3.4: Array Generator Function

@Override

public I n t eg e r [ ] generate ( SourceOfRandomness random ,

Generat ionStatus i g n o r e )

{
I n t eg e r [ ] array = new I n t eg e r [ 1 0 0 0 ] ;

for ( int i = 0 ; i < array . l ength ; i++)

{
array [ i ] = ( In t eg e r ) random . next Int (−10 , 1 0 ) ;

}
return array ;

Source: JQF Library
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}

3.4.1 Test Class

A test class was created which employed the executions of tests by generating arrays

populated with random input data. These arrays fed randomized values into the binary

search tree. The objective of this strategy was to thoroughly check the functionality of

the binary search tree across a diverse range of inputs. To elaborate further on the testing

process, lets delve into the mechanics. Each array generated by the test class which was

obtained from the array generator mentioned earlier contains a sequence of randomly

generated values. These values are then processed iteratively by the binary search tree

with each iteration invoking a distinct method based on the remainder obtained from

diving the current array element by three. The division operation yields a remainder

of either zero, one or two, which will dictate the specific method to be called on the

binary search tree. When the remainder is zero, the test class triggers the call of the

”contains” method on the binary search tree. This function evaluates whether the current

array element exists within the binary search tree and returns a boolean value indicating

whether it is in the tree or not. When the remainder is one, the test class calls the

”put” method on the binary search tree, this will insert the current array element into

the tree structure. This method modifies the internal state of the tree and does not

return any value. When the remainder is two, the test class will call the ”get” method

of the binary search tree. This method retrieves the value associated with the specified

key (in this case, the array element) from the binary search tree, enabling the retrieval of

stored values based on their corresponding keys. After each iteration the array, the test

class increments the array index by three. This ensures that the subsequent method calls

operate on distinct elements within the array. This process continues until all elements

in the array have been process. By using this testing approach, each implementation of

the binary search tree will leave performance information that is extracted for further

inspection

3.5 Profiling

The fuzzing process serves a crucial role in generating runtime information for subsequent

analysis. After each fuzzing session, we need to extract the runtime information that had

been generated. To begin, prior to initiating each fuzzing session, the paths of the program

submissions are recorded in a designated text file. Methods to profile are discussed in

this paper Hasan et al. (2016), which were made use of in the previous methodologies
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attempted. This file provides a way to associate the runtime information generated during

the fuzzing process with the respective program submissions. To ensure consistency and

accuracy, each the path in the file is updated dynamically, with each fuzzing session

overwriting the paths of the previously processed submissions. Having this information,

the next step involved extracting and preparing each of the java class files which contained

the implementation of the binary search tree for each user. This file is extracted from

the submissions folder, where all user programs are stored and copied into the designated

maven project folder. This step allowed for each binary search tree implementation to

be readily accessible and integrated into the maven project environment for subsequent

fuzzing. Once the files are in place, the fuzzing process is initiated by executing the

test class against the binary search tree class using the maven command mvn jqf:fuzz.

This command is altered with addition parameters to customize the behavior of the fuzz

framework, which included specifying the use of a random seed input for all programs

and setting the number of executions for each trial to a hundred. These parameters were

essential to ensure consistency and repeatability across the sessions, allowing for accurate

profiling and analysis of program behaviors. To streamline and automate the entire fuzzing

process, a bash script is employed. This script begins the sequential execution of the

previously mentioned steps, automating these tasks enhanced reproducibility and ensure

minimal manual intervention was required.

3.5.1 Extracting runtime information

The runtime information was created by starting a timer before a function call to the

binary search tree was made, this was done for all methods observed (contains, get, put)

and after the method call we stopped the time. This observed time was then stored inside

a csv file, after every iteration execution of the test class i.e A single trial (Listing 1). Each

entry in the csv file comprised three distinct components: the path indicating the origin

of the program within the assignment bundle, a numerical identifier ranging from 0 to 2

corresponding to the specific method call (contains, get, put) and an accumulated average

score representing the execution time of each method call. With the execution of 100 trials

for each submission and a bundle of assignments containing over 250 submissions, the

cumulative output resulted in an extensive dataset comprising over 40,000 lines within

the csv file. Various scripts were ran in order to derive meaningful insights from the

raw runtime data. This method of capturing and analyzing the runtime metrics lead to

potential implications for identifying similarities between programs.
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3.5.2 Post-processing runtime information

As previously mentioned after the entire fuzzing session had complete and the runtime

information had been extract we were left with voluminous dataset. A post-processing

step was essential to condense the data and extract useful insights from it. This phase

involved reducing the dimensions of the dataset and calculating the average metrics to

facilitate subsequent analysis. To achieve this, a python script was employed to streamline

the data processing workflow. The initial step involved reading the raw data containing

the runtime information. The script iteratively processed each entry in the dataset and

populated a dictionary to aggregate the execution times of method calls for each program

iteration. For every iteration of a program, the script calculated the average execution

time for each method call, this resulted in a condensed representation of the runtime

information. Upon completion of this process, the script generated a csv file containing

the averaged method call numbers for the total number of trials. Since some users had

submitted multiplied assignments, the dataset still comprised multiple entries for these

users. To address this, a subsequent python script was created to iteratively process the

intermediate csv file and calculate the average performance metrics for each user. This

involved determining the number of submissions contributed by each user and computing

the average performance metrics across all their submissions. This script generated a

refined dataset that encapsulated the average method call numbers for each user.

3.6 How it was evaluated

After completing the fuzz testing and having extracted the runtime information, this data

need to be analysed in order to determine if there was any signal given by the runtime data

that would indicate similarity between the programs. There were two distinct approaches

employed to evaluate the extracted runtime information. Firstly, an examination was

conducted on the functions within the binary search tree programs of users who exhibited

similar runtime scores. This approach aimed to identify any discernible patterns in code

structures of users. By examining the code snippets of these users, the goal was to

ascertain whether similarities in runtime behavior corresponded to similarities in code

implementation. A comparative analysis was also conducted on programs from users

with dissimilar runtime scores. This served as a control mechanism to establish a baseline

for understand the relationship between runtime scores and code similarity. The aim was

to discern whether variations in runtime behavior were reflective of differences in code

implementation.

In addition to the internal analysis of runtime data, an external evaluation was also
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taken using the Compare50 tool. This involved subjecting the bundle of assignments

to the Compare50 algorithm to identify similarities between programs based on tradi-

tional approaches. Similarly, the similarities detected by Compare5o were juxtaposed with

the findings derived from the runtime-based methodology. This comparative assessment

aimed to discover the efficacy of the runtime-based approach by validating its outcomes

obtained against the ones through conventional similarity detection mechanisms.

By adopted a multi-faced approach, a comprehensive evaluation on the effectiveness

and reliability of leveraging runtime information for identifying code similarities was cre-

ated. The overall aim was to gain deeper insight into the potential of runtime information

based methodologies in the area of code similarity detection. This approach lead to high-

lighting strengths and limitations of the proposed methodology, informing future research

directions on this topic.

3.7 Other Methods Tried

3.7.1 JQF + VisualVM

A study on improving component coupling information by dynamic profiling was under-

taken which made use of VisualVM’s capabilities on eclipse, Kakarontzas and Pardalidou

(2018). This was the first attempt at approaching the research question, it involved

making use of the fuzzing framework library mentioned before and VisualVM which is

a visual interface for viewing information about java applications. Detailed information

about java programs were monitored and this could be extracted as a snapshot of the

runtime information of the program. The information showed memory leaks, the heap

data, the garbage collector and the profiling information obtained from the CPU. The

profiling information from the CPU was what was focused on, it showed the percentage

of the time of the CPU each method call used. After beginning a fuzzing session, the

interface would then be used to begin capturing the java application and after the appli-

cation terminated the interface would capture a snapshot. With this method of approach,

the issue that occurred was that fuzz testing framework was being profiled instead of the

binary search tree application. This meant that the snapshots did not reflect the usage

of the CPU by the users program, but the fuzz testing session that was running to test

the users program. This did give an initial idea on how to approach the problem and

gave more shape to what metrics we might be interested in and the others that we could

discard.
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3.7.2 Hard-Coded JUnit Input + VisualVM

Building on the first approach, knowing that the fuzz testing library was obstructing

VisualVM’s capability to profile information. The framework was scrapped and instead

we relied on using JUnit testing with hard coded input that would replace the array

generator created by JQF. This did allow for VisualVM to correctly profile the binary

search tree application, and resulted with a snapshot of the program shown in figure 3.1.

Figure 3.1: A screenshot of a snapshot of the CPU profiling of the BST
class
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This image shows what methods are called by the class and what percentage of the

CPU is being used by each method call. With this information, the next step was to then

automate the process for every program in the file and then extract the profiled runtime

information from VisualVM. This was not possible with the interface, and the idea to

hand-write each number was considered briefly but quickly turned down as it was not

feasible for the number of programs that needed to be profiled. In an attempt to figure

out a way to solve this issue, an extension of VisualVM was used GraalVM but to no

effect. This resulted in this approach being abandoned.

3.7.3 JQF + JCMD

Taking the failure of both approaches into consideration, multiple profiling tools were

considered in order to be able to discover a way to profile information and extract that

information. With this, we would be able to automate this process for all the programs.

Ideas were obtained from the Yin et al. (2018), where they applied different profiling

methods to obtain useful data from their applications and they extended the functionality

of JCMD. JCMD is a command line tool that sends diagnostic requests to the java virtual

machine (JVM) which enables the execution of java byte-code essentially an interpreter

of java programs for the hardware of a machine. This was the command used in order to

run the jcmd on the terminaljcmd ¡process id/main class¿ ¡command¿ [options],

it had additional parameters that could be added to the command. In order to utilise

this command, a fuzzing session would be started followed by using the jcmd command

on terminal with the process number of a the java application. This would begin the

profiling process and once the java application terminated, the jcmd command terminates

too. After a Java Flight Recorder (jfr) file would be outputted to the folder containing the

java class. This file is then read on VisualVM, which displayed the profiling information

shown in figure 3.2. This information was similar to the There were two issues with this

approach, the first being it took in the CPU usage of the fuzzing library which has an

effect on how the data is shaped although this may not have been a massive issue since all

the programs would share the same problem. The second issue was that the data could

not be extracted in the form desired such as on a spreadsheet, csv file or even a text file.

All these approaches led to the methodology discussed above, although not ideal it did

provide a starting point to answering the research question posed.
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Figure 3.2: A screenshot of a JFR snapshot of the CPU profiling of the
BST class
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Chapter 4

Evaluation

4.1 Results

4.1.1 Dataset

The extracted runtime information was formatted on a spreadsheet which was then or-

ganised into different spreadsheet tabs for further analysis. The first spreadsheet tab was

the input data obtained from the post-processed csv file, shown in Table 4.1

User Number Method 0 Method 1 Method 2
6 0.002069 0.002058 0.00204837237
1 0.009589 0.00950548278 0.009521
2 0.007963 0.00789023994999999 0.007888
3 0.02365628741 0.023402 0.02341647106

Table 4.1: First four rows on the spreadsheet

The next spreadsheet tab contained pairs of submissions with their runtime score

difference, this tab was created in order to allow for searching of pairs of submissions by

users to determine what the difference in their runtime score was. This provided more

context as to which pairs shared a low or high runtime score and upon recognizing the

difference provided an opportunity to manually check the code for further inspection.

The final tab outputted the pair of user submissions with their runtime score difference

for the 25 closest pairs. This showed which users had a runtime score most similar.

4.1.2 Comparison of average runtime scores

After processing the data, it was formatted onto a spreadsheet for analysis, and the

subsequent findings are presented below. The spreadsheet was used to find the 25 closest
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User 1 User 2 Difference
2 1 0.00487426156
3 1 0.04185947303
3 2 0.04673373459
4 1 0.02229259022

Table 4.2: First four rows on the spreadsheet

pairs of submissions, the users with the smallest difference according to their runtime

scores were user 194 and user 136. The difference in their runtime score was 0.0000210625

seconds. Their code was then closely inspected to observe if there were any obvious

similarities in their design.

Listing 4.1: User 194 contains function

public boolean conta in s (Key key )

{
return get ( key ) != null ;

}

Listing 4.2: User 136 contains function

public boolean conta in s (Key key ) {
return get ( key ) != null ;

}

The similarities in code are quite observable and for this case, they both use the same

variable names and formatting of return. The next step was to observe the get functions

and how they were formatted.

Listing 4.3: User 194 get function

public Value get (Key key ) { return get ( root , key ) ; }

private Value get (Node x , Key key )

{
i f ( x == null ) return null ;

int cmp = key . compareTo (x . key ) ;

i f (cmp < 0) return get ( x . l e f t , key ) ;

else i f (cmp > 0) return get ( x . r i ght , key ) ;

else return x . va l ;

}
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Listing 4.4: User 136 get function

public Value get (Key key ) { return get ( root , key ) ; }

private Value get (Node x , Key key ) {
i f ( x == null ) return null ;

int cmp = key . compareTo (x . key ) ;

i f (cmp < 0) return get ( x . l e f t , key ) ;

else i f (cmp > 0) return get ( x . r i ght , key ) ;

else return x . va l ;

}

Similar results as the contains function, both their get methods use the same variable

names and the conditional statements are set up in the same way. Lastly, the put function

for both users needed to be looked at

Listing 4.5: User 194 put function

public void put (Key key , Value va l )

{
i f ( va l == null ) { de l e t e ( key ) ; return ; }
root = put ( root , key , va l ) ;

}

private Node put (Node x , Key key , Value va l )

{
i f ( x == null ) return new Node( key , val , 1 ) ;

int cmp = key . compareTo (x . key ) ;

i f (cmp < 0) x . l e f t = put (x . l e f t , key , va l ) ;

else i f (cmp > 0) x . r i g h t = put (x . r i ght , key , va l ) ;

else x . va l = va l ;

x .N = 1 + s i z e (x . l e f t ) + s i z e ( x . r i g h t ) ;

return x ;

Listing 4.6: User 136 put function

public void put (Key key , Value va l ) {
i f ( va l == null ) { de l e t e ( key ) ; return ; }
root = put ( root , key , va l ) ;

}
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private Node put (Node x , Key key , Value va l ) {
i f ( x == null ) return new Node( key , val , 1 ) ;

int cmp = key . compareTo (x . key ) ;

i f (cmp < 0) x . l e f t = put (x . l e f t , key , va l ) ;

else i f (cmp > 0) x . r i g h t = put (x . r i ght , key , va l ) ;

else x . va l = va l ;

x .N = 1 + s i z e (x . l e f t ) + s i z e ( x . r i g h t ) ;

return x ;

}

Both users have the same put method, using the same variable names and their of

conditional statements is the same also. From this we can observe that the runtime score

could potentially indicate a signal that there is similarities in the code but in order to

be certain, it is important to check two user’s that whose runtime score difference was

large. The pair of user’s with second closest runtime score are user 174 and user 27. For

this pair of submission, user 174 has slightly different formatting then user 27 but that

is only through how the code is formatted it. The conditional statements still operate in

the same way, this could potentially fool a plagiarism tool but the runtime score is not

impacted by moving statements. See appendices .2 and .3 for their code.

The submissions from the pair user 64 and user 145 share the third closest runtime

scores. The interesting part about these users is that they both have a single submission,

whereas the other two closest pairs have more than submission of the binary search tree

code. The pair user 64 and user 145, the put, get and contains function are the exact same

and considering they both have the same code for those functions it’s understandable why

their runtime scores are similar.

4.1.3 Comparison between runtime scores and Compare50 sim-

ilarity scores

The next part of the evaluation was to compare the 25 closest pairs of submissions based

on their runtime score to compare50’s 25 closest pairs based on their similarity scores.

From observing both, there was no direct correlation between compare50’s closest pairs

and the 25 closest pairs of runtime scores. Compare50’s closest pairs were user 60 and

user 61’s submission, the runtime score obtained from the experiments shows the pair

had a difference of 0.00234793988 seconds. Compare50 scored this with a similarity score

of ten out of ten. When looking at the lowest similarity scores according to which is 0.9

out of 10, these were users 174 and 188, users 12 and 174, and finally users 171 and 147.

Looking at the runtime score difference between these pairs for user 174 and user 188 it is
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0.00784664077 seconds. For user 174 and user 12 it is 0.00829447651 seconds and for user

171 and 147 it is 0.02784342206 seconds. From this, it is clear that the runtime scores

differ slightly for pair programs that had a lower comparison score.

4.2 Discussion

The comparison of runtime scores and traditional similarity scores generated by tools

like Compare50 provides valuable insights into the efficacy and limitations of different

plagiarism detection methodologies. This section discusses the implications of the findings,

explores potential explanations for observed discrepancies, and suggests avenues for future

research in the field of code similarity detection.

Discrepancies between Runtime Scores and Compare50 Similarity Scores

The lack of direct correlation between runtime scores and Compare50 similarity scores

raises important questions about the underlying factors influencing code similarity detec-

tion. While Compare50 relies on static analysis techniques to identify syntactic similari-

ties between code fragments, runtime-based approaches offer a more dynamic perspective,

capturing nuances in program behavior that may not be evident from static code analysis

alone. The observed discrepancies suggest that traditional static analysis methods may

overlook certain types of code similarities that become apparent when analyzing program

execution.

Factors Influencing Runtime Scores

Several factors may contribute to variations in runtime scores across different code sub-

missions. Firstly, the efficiency and optimization of code implementation can significantly

impact runtime performance. Submissions with well-optimized algorithms and data struc-

tures are likely to exhibit lower runtime scores compared to less optimized counterparts.

Additionally, the choice of programming language, compiler optimizations, and hardware

architecture may influence runtime behavior, leading to variations in observed runtime

scores.

Potential Limitations of Compare50

The findings suggest that traditional static analysis tools like Compare50 may have limita-

tions in accurately detecting certain types of code similarities. Static analysis techniques

typically focus on syntactic features such as variable names, function calls, and control

structures, overlooking deeper structural similarities and algorithmic approaches. As a
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result, Compare50 may fail to identify similarities present at the algorithmic or semantic

level, leading to discrepancies between runtime scores and similarity scores.

Implications for Plagiarism Detection

The discrepancies between runtime scores and Compare50 similarity scores underscore the

importance of adopting a multi-faceted approach to plagiarism detection. While static

analysis tools like Compare50 play a valuable role in identifying surface-level similari-

ties, runtime-based approaches offer complementary insights into program behavior and

execution dynamics. Integrating both static and dynamic analysis techniques into pla-

giarism detection frameworks can enhance the accuracy and robustness of code similarity

detection, enabling educators to identify instances of plagiarism more effectively.

Findings

The comparison between runtime scores and Compare50 similarity scores in this study

yields significant insights into the effectiveness of various plagiarism detection method-

ologies. While conventional static analysis tools like Compare50 serve as valuable initial

screening tools for identifying surface-level code similarities, the incorporation of runtime-

based approaches provides a complementary perspective by delving into program behavior

and execution dynamics. This research underscores the importance of integrating both

static and dynamic analysis techniques to enhance the robustness and effectiveness of

plagiarism detection frameworks, particularly in academic settings. The findings suggest

that a combined approach offers a more comprehensive understanding of code similarity

and improves the accuracy of detecting instances of plagiarism.
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Chapter 5

Limitations and Future Works

5.1 Limitations

While this study sheds light on whether or not runtime information can signal similarities

between programs, it’s essential to acknowledge its limitations. The research focused pri-

marily on a specific set of programming tasks and may not capture the full spectrum of

code similarity scenarios encountered in real-world academic settings. Additionally, the

evaluation was mostly based on runtime-based scores and Compare50 similarity scores, ne-

glecting the exploration of other plagiarism detection methodologies such as JPlag which

makes use of a different algorithm. This narrow focus may limit the generalizability of

the findings and overlook alternative approaches that could offer complementary insights.

Furthermore, the study’s sample size and diversity of programming tasks may not be

sufficient to draw definitive conclusions about the efficacy of different detection methods

across various contexts. Lastly, the evaluation may not fully account for the complexities

of detecting plagiarism in programming assignments, such as the potential for obfusca-

tion techniques as discussed in Devore-McDonald and Berger (2020). These limitations

highlight the need for further research to explore a broader range of detection methods,

consider diverse programming tasks, and address the complexities inherent in plagiarism

detection in coding assignments.

5.2 Future Works

Future work endeavors on this research question should continue to explore the central re-

search question of whether runtime information can effectively signal similarities between

programs. Building upon the findings of this study, there are several avenues for further

investigation that can advance our understanding of this topic.
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1. One promising direction for future research is to conduct more extensive empirical

studies to validate and refine the findings of this research. This could involve ex-

panding the dataset to include a wider range of programming tasks, languages, and

contexts, thereby enhancing the robustness of the conclusions drawn. By analyz-

ing a larger and more diverse set of programming assignments, researchers can gain

deeper insights into the relationship between runtime behavior and code similarities,

identifying patterns and heuristics that are applicable across different scenarios.

2. Exploring novel methodologies and techniques for leveraging runtime information to

detect similarities between programs. This could include developing advanced algo-

rithms and machine learning models that can analyze runtime data more effectively,

identifying subtle patterns and correlations that may not be apparent through tra-

ditional static analysis techniques alone. By making use of the power of machine

learning and data analytics, researchers can develop more sophisticated and accurate

plagiarism detection tools that leverage runtime information to identify suspicious

code similarities.

3. Furthermore, there is a need to investigate the practical implications of incorporat-

ing runtime-based approaches into existing plagiarism detection frameworks. This

could involve conducting usability studies and user evaluations to assess the feasi-

bility and effectiveness of these approaches in secondary schools and universities.

By partnering with instructors and students to deploy and evaluate runtime-based

detection tools in programming courses, researchers can gather valuable feedback on

the usability, acceptance, and impact of these tools on academic integrity practices.

4. Additionally, future research should explore the potential limitations and challenges

associated with using runtime information for plagiarism detection. This includes

investigating factors such as code variability, optimization techniques, and the im-

pact of external factors on runtime behavior. By conducting thorough sensitivity

analyses and benchmarking experiments, researchers can identify the boundaries

and constraints of runtime-based detection methods, helping to guide the develop-

ment of more robust and reliable detection strategies.

5. Moreover, in the future there may be a need to address the ethical implications and pri-

vacy concerns associated with the use of runtime-based plagiarism detection tools.

This includes ensuring that these tools adhere to principles of data privacy, trans-

parency, and fairness, and that they do not infringe upon students’ rights or com-

promise their academic integrity. By incorporating ethical considerations into the
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design and implementation of runtime-based detection systems, researchers can pro-

mote responsible and equitable use of these technologies in educational settings.

6. Furthermore, future research should explore the potential synergies between runtime-

based detection methods and other approaches to plagiarism detection, such as

static analysis, manual inspection, and peer review. By integrating multiple detec-

tion techniques into a unified framework, researchers can develop more comprehen-

sive and reliable plagiarism detection systems that leverage the strengths of each

approach while mitigating their individual limitations.

In conclusion, future research in the field of code similarity detection should continue

to explore the potential of runtime information as a signal for identifying similarities be-

tween programs. By advancing our understanding of the relationship between runtime

behavior and code similarities, researchers can develop more effective and reliable plagia-

rism detection tools that enhance academic integrity and promote fairness in educational

evaluation practices.
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Chapter 6

Conclusions

This paper has explored the potential of leveraging runtime information to detect similar-

ities between programs, aiming to redefine the applications of existing similarity detection

tools. Through a comprehensive investigation, we have gained valuable insights into the

efficacy and limitations of different plagiarism detection methodologies.

The comparison between runtime scores and traditional similarity scores obtained

from tools like Compare50 revealed intriguing discrepancies, suggesting that traditional

static analysis tools may overlook certain types of code similarities. While static analysis

techniques focus on syntactic features, runtime-based approaches offer a more dynamic

perspective, capturing nuances in program behavior that may not be evident from static

code analysis alone.

Factors such as code optimization, programming language choice, and hardware ar-

chitecture influence runtime behavior, leading to variations in observed runtime scores

across different code submissions. Despite these variations, by integrating runtime-based

approaches into plagiarism detection frameworks there could be an enhancement of the

accuracy and robustness of code similarity detection, complementing the capabilities of

traditional static analysis tools.

Our findings underscore the importance of adopting a multi-faceted approach to pla-

giarism detection in programming assignments. By integrating both static and dynamic

analysis techniques, educators and researchers can develop more effective and reliable pla-

giarism detection tools, thereby upholding academic integrity and promoting fairness in

educational evaluation practices.

Looking ahead, future research endeavors should focus on validating and refining the

findings of this study through more extensive empirical studies. Exploring novel method-

ologies for leveraging runtime information, conducting usability studies, addressing eth-

ical implications, and exploring synergies between different detection techniques are all

37



promising avenues for further investigation.

The aim of this research was to uncover whether the runtime information could signal

similarities in programs, it is clear from this research that this is in fact a possibility. With

the appearance of generative language models, the ability to create and modify code has

become simpler and with that a goal has appeared: To shift from traditional approaches

in detecting plagiarism and uncover new techniques to create a more effective plagiarism

tool.

In conclusion, this dissertation contributes to the ongoing discourse on plagiarism

detection in programming assignments by highlighting the potential of runtime-based ap-

proaches. By advancing our understanding of the relationship between runtime behavior

and code similarities, we pave the way for the development of more effective and reliable

plagiarism detection tools, thereby enhancing academic integrity and promoting fairness

in educational evaluation practices.
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Appendix

.1 Test Class

Listing 1: Test Class

@RunWith(JQF. class )

public class TestBST {

@Fuzz

public void BstTest (@From( ArrayGenerator . class ) In t eg e r [ ] numbers )

{
// Spec i f y the path to your f i l e

St r ing f i l ePa t h = ” . . . / c u r r e n t f i l e . txt ” ;

S t r ing l i n e = ”” ;

try ( BufferedReader br =

new BufferedReader (new Fi leReader ( f i l ePa t h ) ) ) {
l i n e = br . readLine ( ) ;

} catch ( IOException e ) {
e . pr intStackTrace ( ) ; // Handle any IO excep t i on s

}
BST<Integer , Integer> bst = new BST<>();

HashMap<Integer , Double> runTimes = new HashMap<>();

long startTime = 0 ;

long endTime = 0 ;

double elapsedTime = 0 ;

for ( int i = 0 ; i + 3 < numbers . l ength ; i = i + 3) {
switch ( numbers [ i ] % 3) {

case 0 :

startTime = System . nanoTime ( ) ;

// Add a t r y / catch here
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try {
boolean containsOutput

= bst . conta in s ( numbers [ i ] ) ;

} catch ( Exception e ) {
}
endTime = System . nanoTime ( ) ;

elapsedTime += (( endTime − startTime ) /

1 000 000 000 . 0 ) ;

runTimes . put (0 , elapsedTime ) ;

break ;

case 1 :

startTime = System . nanoTime ( ) ;

// Add a t r y / catch here

try {
I n t eg e r getOutput = bst . get ( numbers [ i ] ) ;

} catch ( Exception e ) {
}
endTime = System . nanoTime ( ) ;

elapsedTime += (( endTime − startTime ) /

1 000 000 000 . 0 ) ;

runTimes . put (1 , elapsedTime ) ;

break ;

case 2 :

startTime = System . nanoTime ( ) ;

// Add a t r y / catch here

try {
bst . put ( numbers [ i ] , numbers [ i ] ) ;

} catch ( Exception e ) {
}
endTime = System . nanoTime ( ) ;

elapsedTime += (( endTime − startTime ) /

1 000 000 000 . 0 ) ;

runTimes . put (2 , elapsedTime ) ;

break ;

default :

break ;

}

42



}

.2 User 174 BST class

Listing 2: User 174’s Binary Search Tree class

public boolean conta in s (Key key )

{
i f ( get ( key ) != null )

{
return true ;

}
else

{
return fa l se ;

}
}

public Value get (Key key )

{
return get ( root , key ) ;

}

private Value get (Node x , Key key )

{
i f ( x == null )

{
return null ;

}

int cmp = key . compareTo (x . key ) ;

i f (cmp < 0)

{
return get ( x . l e f t , key ) ;

}
else i f (cmp > 0)

43



{
return get ( x . r i ght , key ) ;

}
else

{
return x . va l ;

}
}

/∗∗
∗ I n s e r t key−va lue pa i r in t o BST.

∗ I f key a l r eady e x i s t s , update wi th new va lue .

∗
∗ @param key the key to i n s e r t

∗ @param va l the va lue a s s o c i a t e d wi th key

∗/
public void put (Key key , Value va l )

{
i f ( va l == null )

{
de l e t e ( key ) ;

}
else

{
root = put ( root , key , va l ) ;

}
}

private Node put (Node x , Key key , Value va l )

{
i f ( x == null )

{
return new Node( key , val , 1 ) ;

}

int cmp = key . compareTo (x . key ) ;
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i f (cmp < 0)

{
x . l e f t = put (x . l e f t , key , va l ) ;

}
else i f (cmp > 0)

{
x . r i g h t = put (x . r i ght , key , va l ) ;

}
else

{
x . va l = va l ;

}

x .N = 1 + s i z e (x . l e f t ) + s i z e ( x . r i g h t ) ;

return x ;

}

.3 User 27 BST class

Listing 3: User 27’s Binary Search Tree class

public boolean conta in s (Key key ) {
return get ( key ) != null ;

}
public Value get (Key key ) { return get ( root , key ) ; }

private Value get (Node x , Key key ) {
i f ( x == null ) return null ;

int cmp = key . compareTo (x . key ) ;

i f (cmp < 0) return get ( x . l e f t , key ) ;

else i f (cmp > 0) return get ( x . r i ght , key ) ;

else return x . va l ;

}

/∗∗
∗ I n s e r t key−va lue pa i r in t o BST.
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∗ I f key a l r eady e x i s t s , update wi th new va lue .

∗
∗ @param key the key to i n s e r t

∗ @param va l the va lue a s s o c i a t e d wi th key

∗/
public void put (Key key , Value va l ) {

i f ( va l == null ) { de l e t e ( key ) ; return ; }
root = put ( root , key , va l ) ;

}

private Node put (Node x , Key key , Value va l ) {
i f ( x == null ) return new Node( key , val , 1 ) ;

int cmp = key . compareTo (x . key ) ;

i f (cmp < 0) x . l e f t = put (x . l e f t , key , va l ) ;

else i f (cmp > 0) x . r i g h t = put (x . r i ght , key , va l ) ;

else x . va l = va l ;

x .N = 1 + s i z e (x . l e f t ) + s i z e ( x . r i g h t ) ;

return x ;

}

.4 Pom.xml file

Listing 4: POM file for Maven

<p r o j e c t xmlns=”http ://maven . apache . org /POM/4 . 0 . 0 ”

xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s t ance”>

<modelVersion >4.0.0</modelVersion>

<groupId>i e . tcd . makanjui</groupId>

<a r t i f a c t I d>fuzz</a r t i f a c t I d>

<packaging>j a r</packaging>

<vers ion >1.0−SNAPSHOT</vers ion>

<name>fuzz</name>

<ur l>http ://maven . apache . org</ur l>

<dependencies>

<dependency>

<groupId>j un i t </groupId>

<a r t i f a c t I d>j un i t </a r t i f a c t I d>
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<vers ion >4.13.1</ vers ion>

</dependency>

<dependency>

<groupId>com . pho l ser</groupId>

<a r t i f a c t I d>j un i t−quickcheck−core</a r t i f a c t I d>

<vers ion >1.0</ vers ion>

</dependency>

<dependency>

<groupId>com . pho l ser</groupId>

<a r t i f a c t I d>j un i t−quickcheck−generator s</a r t i f a c t I d>

<vers ion >1.0</ vers ion>

</dependency>

<dependency>

<groupId>edu . be rke l ey . c s . j q f </groupId>

<a r t i f a c t I d>j q f−fuzz</a r t i f a c t I d>

<vers ion >2.0</ vers ion>

</dependency>

<dependency>

<groupId>org . apache . commons</groupId>

<a r t i f a c t I d>commons−csv</a r t i f a c t I d>

<vers ion >1.10.0</ vers ion>

</dependency>

</dependencies>

<bui ld>

<plug ins>

<plugin>

<groupId>edu . be rke l ey . c s . j q f </groupId>

<a r t i f a c t I d>j q f−maven−plugin</a r t i f a c t I d>

<vers ion >2.0</ vers ion>

</plugin>

<plugin>

<groupId>org . apache . maven . p lug ins</groupId>

<a r t i f a c t I d>maven−s u r e f i r e −plugin</a r t i f a c t I d>

<vers ion >3.0.0</ vers ion>

</plugin>

</plug ins>
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</bui ld>

</pro j e c t>
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