

School of Computer Science and Statistics

Towards Real-Time 3D VR

Simulation of Stained Glass Windows

Michael Makarenko

April 15, 2024

Supervisor: Dr. John Dingliana

A dissertation submitted in partial fulfilment

of the requirements for the degree of

Master in Computer Science (MCS)

i

Declaration
I, the undersigned, hereby declare that this work has not previously been

submitted as an exercise for a degree at this, or any other University, and that unless

otherwise stated, is my own work.

Signed

Michael Makarenko

April 15, 2024

ii

Permission to Lend and/or Copy
I, the undersigned, agree that Trinity College Library may lend or copy this

thesis upon request.

Signed

Michael Makarenko

April 15, 2024

iii

Acknowledgements
A number of people were crucial in the completion of this work, and I would like to

express my gratitude to everyone involved.

 Primarily, I thank my mother, Halyna Kushnir, for her unwavering support of

all my endeavours, academic and professional.

 I sincerely thank my supervisor, Dr. John Dingliana, for his invaluable

academic guidance and feedback throughout the course of this dissertation, as well as

for the provision of stained glass image files that were used in chapter three.

 I would also like to thank my close friend, Adam, for his encouragement and

helping me stay motivated.

 And finally, a special thanks to Student Universal Support Ireland (SUSI),

Trinity Access Programme (TAP), Higher Education Access Route (HEAR), and all

the staff of Trinity College Dublin for making my higher education here over the past

five years possible.

MICHAEL MAKARENKO

University of Dublin, Trinity College

April 2024

iv

Abstract
Stained glass, a visually stunning craft dating from as early as the late Roman Empire,

adorns the windows of both historical and modern architecture. Research across

disciplines continues being conducted to maintain and digitise these complex works of

art. Concurrently, newly developing 3D and VR technologies offer novel immersive

and interactive means to experience objects in virtual environments. This dissertation

casts a discerning light on the capacity of these computer technologies to greatly

enhance the appreciation and preservation of such artefacts. We define a workflow

for making digital recreations from photographs of existing stained glass windows

and build a proof-of-concept application in the Unity 3D development engine,

deployed to Google Cardboard VR. This prototype is assessed in the extent of its

delivery of photorealism and a smooth user experience, running on a high-end

Android smartphone released in 2021. Findings show efficient memory utilisation,

substandard yet usable frametime performance for VR, and mixed results regarding

visual fidelity, with marked differences between the rendered images on the

development PC and mobile test device. In this manner, we perform a practical

examination of the feasibility of real-time 3D VR for realistic simulations of stained

glass windows. We conclude that while accessible mobile hardware does not yet meet

the high computational demands of real-time 3D VR stained glass simulation, there is

certain potential in more powerful and dedicated VR platforms and future mobile

devices. Finally, we propose courses of action to refine and expand upon the

procedure and project defined in this body of work, given the prospect for real-world

applications in the fields of architectural simulation and preservation of cultural

heritage.

v

Table of Contents

1 Introduction ... 1

1.1 Background .. 1

1.2 Motivation .. 2

1.3 Research Objectives & Scope ... 2

1.4 Document Structure .. 3

2 Related Work ... 4

2.1 Computer Graphics Overview ... 4

2.2 Literature Review ... 7

2.2.1 Generating Stained Glass Renders .. 7

2.2.2 Realistic Stained Glass Rendering ... 9
2.2.3 Digitisation of Stained Glass Windows .. 11
2.2.4 Applications of Virtual Reality ... 11

2.3 Summary .. 13

3 Methodology .. 14

3.1 Design .. 14

3.2 Implementation .. 15

3.2.1 Setup ..15
3.2.2 Scene ... 16
3.2.3 Shaders ... 18
3.2.4 From Image to Material .. 23

3.2.5 Post-Processing and Lighting .. 27
3.2.6 Interactivity .. 31
3.2.7 Deployment .. 40

4 Results ... 42

4.1 Visual Fidelity ..42

4.2 Performance ... 45

4.3 Ablation Study ..48

5 Conclusion ... 50

5.1 Contributions ... 50

5.2 Limitations & Challenges .. 50

5.3 Future Work ... 51

Bibliography ... 52

vi

List of Figures
2.1 Meshes of the same object with varying numbers of triangles. Image credit: 3D

Digital Recording of Archaeological, Architectural and Artistic Heritage[13]

Fig. 2 ……………………………………………………………………………………………………5

2.2 Visualisations of the effects of normal mapping. Image credits: Normal

Mapping by Nikhil Kowshik[14] (top), Learn OpenGL by Joey de Vries[15]

(bottom) ………………………………………………………………………………………………. 5

2.3 High-level visualisation of the graphics pipeline with programmable steps

highlighted in blue. Image credit: Learn OpenGL by Joey de Vries[15] …………. 6

2.4 Simplified overview of the relationship between models and shaders sketched

in MS Paint ………………………………………………………………………………………….. 6

2.5 Source input image (left) and rendered output image (right) using Mould’s

method. Image credit: A Stained Glass Image Filter[16], Fig. 8 …………………….7

2.6 Source input image (left), target style input image (centre), and rendered

output image (right) using Brooks’ method. Image credit: Image-Based Stained

Glass[17], Fig. 15 ……………………………………………………………………………………8

2.7 Source input image (left) and rendered output image (right) using the method

by Setlur et al. Image credit: Automatic Stained Glass Rendering[18],

Fig. 1 …………………………………………………………………………………………………... 8

2.8 Source input image (left) and rendered output image (right) using the method

by Seo et al. Image credit: Stained Glass Rendering with Smooth Tile

Boundary[19], Fig. 3 ……………………………………………………………………………….8

2.9 Source input image (left) and rendered output image (right) using the method

by Doyle et al. Image credit: Painted Stained Glass[20], Fig. 3 and Fig. 6 ….…..8

2.10 A sample frame of the source input video (top-left) and three frames of the

rendered output video, using the method by Kang et al. Image credit: Video-

based Stained Glass[21], Fig. 9 and Fig. 10 ………………………………………………..9

2.11 Rendered stained glass squares using Shin’s method. Image credit: Modelling

Stained Glass[22], Fig. 6 …………………………………………………………………………9

vii

2.12 Resulting stained glass render with various viewing directions (top row) and

light source directions (bottom row) using the method by Kim et al. Image

credit: A Realistic Illumination Model for Stained Glass Rendering[23],

Fig. 5 …………………………………………………………………………………………………. 10

2.13 Stained glass window relighting results from three different source video input

frames using the methods presented by Thanikachalam et al. Image credit:

VITRAIL: Acquisition, Modelling, and Rendering of Stained Glass[24],

Fig. 19 …………………………………………………………………………………………………11

3.1 Module selection window in Unity Hub during Unity Editor install process … 16

3.2 Sample empty scene view in Unity Editor ………………………………………………..16

3.3 Searching for and installing ProBuilder in the Unity Package Manager ……….17

3.4 Sample bare interior environment created with ProBuilder in Unity ……………17

3.5 Prototype environment after importing free Unity Asset Store assets. Visible

assets include “Lemon Trees” by Numena, “Grass Flowers Pack Free” by ALP,

and “NoirMat – Noir Marble Pack Vol. 01” by Noir Project ……………………….. 18

3.6 Wind Shader Graph (WindShader) as implemented in Unity ………………………20

3.7 The shader input parameters we expose to the end user. We configure the UI

appearance and minimum/maximum/default values in Shader Graph ………..20

3.8 Stained Glass Shader Graph (SG_Shader) as implemented in Unity …………….22

3.9 User-facing shader input parameters for a sample stained glass window ……..22

3.10 Prototype environment after adding windowpanes with SG_Shader, each using

differently configured user input parameters …………………………………………..22

3.11 A thresholding tool’s area of effect on a sample stained glass window image to

create an appropriate diffuse texture. Note the imperfect selection on the more

intricate parts of the window …………………………………………………………………23

3.12 Zoomed in before and after the use of a thresholding tool ………………………….24

3.13 Using a brush tool to manually clean up the results of a thresholding tool …… 24

3.14 Poor results in using a basic greyscale filter to generate a normal map ……….. 25

viii

3.15 Improved resulting normal map generation using a thresholded image ………. 25

3.16 Image-to-material pipeline (left) and the two resulting materials as previewed

in Unity Editor on default spherical meshes (right) …………………………………..26

3.17 Prototype environment after applying the processed texture and normal map to

the SG_Shader materials and creating their respective shadow mask

materials …………………………………………………………………………………………….26

3.18 Normal map provides a false sense of depth for the individual panes of stained

glass making up the window, observable when light shines at a steep angle

(left). Screenshots differ only in sun position ………………………………………….. 27

3.19 Before (top) and after (bottom) applying bloom, vignette, and ACES

tonemapping post-processing. Visible assets include “Street Lamps 2” by

SpaceZeta ……………………………………………………………………………………………28

3.20 Before (left) and after (right) applying a generic coloured light cookie texture.

Like the distortion texture, it is generic and common to all three windows in

the prototype ……………………………………………………………………………………… 29

3.21 Attempting to apply one of the window images as a light cookie applies it

repeatedly to all light cast by the sun, leading to uncanny and unrealistic

results …………………………………………………………………………………………………29

3.22 Before (left) and after (right) generating lightmap data using Unity’s baked

indirect global illumination model. All other previously discussed techniques

are used in both images. The bluish tint seen on the left image is the result of

ambient light as configured in Unity’s lighting settings ……………………………. 30

3.23 Screenshots in GCVR of an unselected (top) and selected (bottom) teleport

platform ……………………………………………………………………………………………..36

3.24 The primary Unity Editor windows used in an animation workflow …………… 38

3.25 The five teleport platforms, two elevation buttons and three sun buttons ……38

3.26 Game View in the Occlusion Mesh render mode provided by MockHMD …….40

ix

4.1 One of the three stained glass windows in our prototype (left) and two

photographs (centre, right) of stained glass windows by Unknown on their

public web blog, highlighting the coloured shadows of stained glass …………..42

4.2 Comparing our prototype’s rendering of stained glass coloured shadows

occluded by vegetation shadow (left), and a photograph of the real-world

occurrence by Katja Linders on Pinterest (right) ……………………………………..43

4.3 Comparing our prototype’s rendering of a stained glass window illuminated by

sunlight exhibiting bloom/overexposure (left), and a real-world example

photographed by a deleted user on an archived Reddit post (right) ……………..43

4.4 Three GCVR screenshots displaying more pixelated shadows and lower

lighting contrast/dynamic range ……………………………………………………………44

4.5 Investigating the worst frametime spikes in the Unity Profiler window while

the application runs on the target device. Unity’s Profiler process is revealed to

consume over 21% of the frametime of some frames. Note that the GPU and

CPU are integrated on mobile chips, so GPU usage is also reported as CPU

usage …………………………………………………………………………………………..........46

4.6 Frametimes in Unity Profiler are shown to be worse when observing the

stained glass windows (top) and better when looking away towards the walls of

the interior (bottom), revealing the most performance-intensive parts of our

scene to be the windows and what is visible beyond them …………………………. 46

4.7 The memory section of the built-in Profiler ……………………………………………..47

4.8 Comparing two different snapshots of the test device’s memory in the Memory

Profiler. Note that “Total Allocated” memory as labelled here is defined

differently from that seen in Fig. 4.7, can safely exceed available device

memory, and is not indicative of application memory requirements …………… 47

x

List of Tables
3.1 High-level comparison of Unity render pipelines by their key features …………15

4.1 Comparing performance of four scenes with varying Unity Objects present or

missing. “Full” is the control prototype scene with no removed Objects, “Post &

Sun” combines the removals of both “No Exterior” and “No Interior”, and

“Empty” removes even the directional light and post-processing present in

“Post & Sun”. Data is obtained using Unity Profiler and Unity Memory Profiler

at application runtime, with frametimes converted to framerates rounded to

the nearest frame per second. Memory usage rounded to the nearest

megabyte …………………………………………………………………………………………….49

1

1 Introduction
This paper’s main objective is to explore the possibilities of simulating authentic

stained glass window lighting in interactive virtual reality. But before delving into the

specifics, this chapter explores the background and motivations that underpin the

work conducted here, offering a comprehensive understanding of the context and

driving forces behind this study.

1.1 Background
Stained glass windows have been a prominent feature in architectural design revered

for their intricate motifs and vibrant colours for centuries, providing not only

aesthetic value but also notable cultural and historical significance. The art of

creating stained glass windows dates back to ancient civilisation, with “coloured glass

windows” described as early as in the 3rd century CE in the early Christian basilicas of

Rome[1]. However, it was during the Middle Ages in Europe that stained glass

windows arguably reached their peak, adorning the walls of churches and cathedrals

with religious and narrative scenes. These windows served not only as mere daylight

sources or decorative art pieces, but also the practical purpose of conveying spiritual

and cultural stories to the illiterate masses of medieval times.

Today, stained glass windows continue to be a significant element in buildings

of all kinds, from the ecclesiastical and traditional to the decorative and modern.

However, over time, these windows may deteriorate due to a variety of causes such as

weathering, vandalism, and improper maintenance or lack thereof. Such factors

inevitably alter the physical and optical properties of the glass, as modelled by Verney-

Carron et al. in their paper[2]. The safe cleaning and restoration of these fragile pieces

also tends to be rather involved, with ongoing research into novel cleaning

methodologies such as that by Maingi et al. fairly recently[3]. Fortunately, the use of

computer technology in the fields of art and architecture has greatly enhanced the

way we experience and interact with the built environment. We can observe this

interweaving with the field of computer science, particularly in areas such as human-

computer interaction, architectural simulation, and computer graphics, which shall be

explored in this dissertation.

2

1.2 Motivation
Existing two-dimensional (2D) solutions for digitally recreating and relighting

stained glass windows fall short in authentically capturing the elaborate details and

colours of the original artwork, as seen by the human eye from various angles in a

three-dimensional (3D) environment, due to the inherent limitations of viewing a lone

2D plane. The advent of modern 3D graphics and virtual reality (VR) technologies has

opened up a new realm of possibilities for simulating stained glass windows. By

providing a more immersive and interactive experience, these technologies offer the

potential for a more realistic and detailed depiction of the original artwork, allowing

viewers to digitally perceive the windows in a way that was never before possible.

 A number of potential practical use cases exist here. One example we can

imagine, is providing a virtual tour in VR using not merely static 360° photography, as

seen on The Stained Glass Museum’s website[4], but with immersive real-time changes

in environmental lighting such as the movement of the sun or swaying of trees behind

the windows that vastly impacts the appearance and perception of stained glass.

Despite the promises of real-time 3D graphics and VR, their use in the

simulation and digitisation of real-world stained glass windows is still a developing

and underexplored area. There is a notable lack of research and literature on their

application in this specific context. It is therefore necessary to conduct a

comprehensive study to assess the full capabilities and limitations of these

approaches. In doing so, we can better understand how modern computer technology

can be employed in a way that truly captures the beauty and intricacy of stained glass

windows, ultimately enriching our appreciation and understanding of these cultural

and historical artworks.

1.3 Research Objectives & Scope
The primary objective of this dissertation is to simulate approximate yet high-fidelity

stained glass window lighting in real-time 3D using photo image data and deploy the

simulation to interactive VR. In the process, we hope to define a workflow that may be

used and extended in the future and evaluate the results that this workflow yields by

profiling the developed application. In doing so, this research aims to contribute to

the expanding body of literature in the field of architectural simulation and

3

preservation. By examining the potential of real-time 3D VR technologies in this

setting, we hope to inspire further advancements and developments in this area.

This work is primarily explorative in nature, and its scope is therefore limited

to creating a demonstrable proof-of-concept prototype that achieves the

aforementioned objectives, and not a final polished product. We will focus primarily

on performant real-time techniques with an eye on accessible, cross-platform,

interactive, real-time VR, not limited only to running on powerful new desktop PCs.

As such, expensive techniques such as raytracing will not be considered within the

scope of this study.

1.4 Document Structure
The subsequent chapter of this thesis, chapter 2, provides necessary contextual

information and reviews existing literature that is related to this body of work,

presenting a perspective of how this piece fits into the wider field of others related to

it. In chapter 3, we will cover the methodology and design of the 3D VR solution

developed as part of this research. In chapter 4 thereafter, we shall critically evaluate

the results of our work, before concluding the thesis with the closing chapter 5, where

we summate the contributions and limitations of this dissertation and propose future

work that may be undertaken from here on.

4

2 Related Work
Before performing a comprehensive review of existing works associated with the

subject matter, this chapter provides a concise outline of pertinent computer graphics

terminology in order to ensure utmost clarity for the remainder of this dissertation.

2.1 Computer Graphics Overview
Rendering, in this context, is the process of synthesising a 2D image to be displayed

on-screen from 3D data[5] by way of a framework known as the computer graphics

pipeline or rendering pipeline[6]. This work is done through the use of a computer

program known as a renderer, graphics engine, rendering system or similar[7]. The 3D

data is known as a scene and the individual 3D objects that compose it are referred to

as models. Since models are collections of data, and can be composed of a subset of

models, the scene is technically a model itself composed of all 3D objects that exist

within and is sometimes referred to as the model[8]. The final image can be either

rendered in real-time in a matter of milliseconds or pre-rendered ahead of time,

depending on whether or not real-time interactivity is a concern; thus, our focus lies in

the former category of the two. In latter sections, we encounter the terms “raytracing”

and “photon mapping”; these are global illumination techniques that simulate highly

realistic lighting that have until quite recently been constrained to the domain of pre-

rendering due to their high computation cost[9]. Practical real-time raytracing

currently requires powerful and modern dedicated graphics processing hardware.

Global illumination is discussed in a more specific context in section 3.2.5.

3D models are composed of a polygon mesh and, optionally, a material. The

mesh describes the geometry of the model by defining vertices, edges, and faces,

usually as triangle primitives, as well as normal vectors perpendicular to the individual

surfaces of the mesh. The material describes the surface appearance of the model by

defining a variety of properties that affect its interaction with light, such as colour.

Some material properties may be stored as 2D images called textures or maps, such as

the base colour texture or normal map, to have the properties vary at different points

on the mesh[10]. The base colour texture, also referred to as the diffuse or albedo

texture, describes the unmodified colour of the surface before taking any lighting

considerations into account. Colour values here are typically encoded as either RGB

5

or RGBA, standing for the individual 8-bit Red, Green, Blue, and Alpha values

respectively, where Alpha determines not colour but opacity[11]. The normal map is a

texture that is used to modify the mesh’s normals, which are used in lighting

calculations, to give a false sense of depth without increasing geometric complexity in

the mesh; normal maps encode normals as RGB values that translate to XYZ vector

directions[12]. These textures are applied to the mesh by using texture coordinates,

also known as UVs, which are stored in the mesh for each vertex.

Figure 2.1: Meshes of the same object with varying numbers of triangles. Image credit:

3D Digital Recording of Archaeological, Architectural and Artistic Heritage[13] Fig. 2

Figure 2.2: Visualisations of the effects of normal mapping. Image credits: Normal

Mapping by Nikhil Kowshik[14] (top), Learn OpenGL by Joey de Vries[15] (bottom)

The final appearance of a model is influenced by shaders, programs that run on

the Graphics Processing Unit (GPU) of the computer and are the main programmable

parts of the rendering pipeline. Compiled shader programs are composed of several

individual shader steps, though the two primary ones are the vertex shader, that

intuitively operates on the mesh’s vertex data, and the fragment shader, which uses

rasterised output from the vertex shader and the material properties as its input.

Rasterisation is the step in the rendering pipeline that takes place between the vertex

6

and fragment shaders and converts pure geometric data from the vertex shader into

fragments to be passed to the fragment shader. The fragment shader, as its name

suggests, calculates the values of fragments, which differ from pixels only in that

pixels are the fragments that make it into the final rendered image to be displayed. It

is usually in the fragment shader that we find lighting techniques that use a material’s

properties to calculate its model’s final surface appearance in the rendered image[15].

Figure 2.3: High-level visualisation of the graphics pipeline with programmable steps

highlighted in blue. Image credit: Learn OpenGL by Joey de Vries[15]

Figure 2.4: Simplified overview of the relationship between models and shaders

Within the graphics pipeline, vertices are transformed between a number of

different coordinate spaces defined by differing origin coordinates and ranges that all

position coordinates are made relative to; before ending up at final 2D normalised

screen coordinate space, where the origin is at the bottom-left of the rendered image

and coordinates correspond to on-screen positions. Such intermediate coordinate

spaces are used as they are easier to work in for certain operations. The two spaces

seen in this paper are object space, the coordinates relative to the object’s own local

origin, and world space, coordinates which are relative to the global origin of the

scene at large[15].

7

2.2 Literature Review
Armed with relevant computer graphics knowledge, we delve now into a review of

literature associated with the aim of our research,

2.2.1 Generating Stained Glass Renders

Until the early 2000s, stained glass windows were not thoroughly explored in

computer graphics literature. One of the earliest described rendering techniques in

this area was an automated method for transforming an arbitrary image into a stained

glass version of that image, as presented by Mould[16]. This stained glass image filter

takes a two-dimensional image such as a photo as input and renders a simple stained

glass style plane, with associated coloured glass segments and imperfections, as

output. Similar approaches exist, such as a method of restyling an image into a 2D

texture that plausibly approximates the visual appearance of a specified work of

stained glass, with minimal user input, proposed by Brooks[17]; as well as an

automated technique that filters input images to create results stylistically similar to

modern stained glass artworks described by Setlur et al.[18]; and a smoothed stained

glass tile segment generation procedure defined by Seo et al.[19] that, too, renders a

stained glass style plane from a source image. A later paper by Doyle et al.[20]

presents an approach that claims to directly improve on previous works by offering a

better representation of the original input photo while retaining the stained glass style

in the final output. Additionally, related to these single image processing works is a

rather recent paper by Kang et al.[21] that introduces a method for generating a

temporally coherent stained glass animation from a video input in a similarly stylised,

two-dimensional fashion.

Figure 2.5: Source input image (left) and rendered output image (right) using Mould’s

method. Image credit: A Stained Glass Image Filter[16], Fig. 8

8

Figure 2.6: Source input image (left), target style input image (centre), and rendered

output image (right) using Brooks’ method. Image credit: Image-Based Stained

Glass[17], Fig. 15

Figure 2.7: Source input image (left) and rendered output image (right) using the

method by Setlur et al. Image credit: Automatic Stained Glass Rendering[18], Fig. 1

Figure 2.8: Source input image (left) and rendered output image (right) using the

method by Seo et al. Image credit: Stained Glass Rendering with Smooth Tile

Boundary[19], Fig. 3

Figure 2.9: Source input image (left) and rendered output image (right) using the

method by Doyle et al. Image credit: Painted Stained Glass[20], Fig. 3 and Fig. 6

9

Figure 2.10: A sample frame of the source input video (top-left) and three frames of

the rendered output video, using the method by Kang et al. Image credit: Video-based

Stained Glass[21], Fig. 9 and Fig. 10

2.2.2 Realistic Stained Glass Rendering

We begin seeing a more three-dimensional approach alongside lighting considerations

in the field in works that model the interaction of light with stained glass, such as in

the raytracing and photon mapping algorithm developed by Shin[22]. This method

focuses on the realistic simulation of light as it passes through coloured transparent

surfaces based on the actual chemical and optical characteristics of stained glass,

rather than rendering full stained glass windowpanes.

Figure 2.11: Rendered stained glass squares using Shin’s method. Image credit:

Modelling Stained Glass[22], Fig. 6

10

Another realistic lighting model has been presented by Kim et al.[23], which

concentrates on simulating the appearance of light as it is seen passing through a

rendered 2D texture of a real stained glass image. This model is of particular interest

as it not only uses a photo of an existing stained glass window but also makes use of

performant, real-time rendering techniques unlike aforementioned works.

Figure 2.12: Resulting stained glass render with various viewing directions (top row)

and light source directions (bottom row) using the method by Kim et al. Image credit:

A Realistic Illumination Model for Stained Glass Rendering[23], Fig. 5

 Further, we can observe work done similar to that of Kim et al. in a paper by

Thanikachalam et al.[24] and the respective PhD thesis by the first author[25] that

proposes methods to perform virtual relighting of acquired stained glass images. The

authors provide 2D modelling and rendering techniques that aim to accurately re-

create the effects of light transport through stained glass in a physically accurate

manner. The resulting solution provides the interactive and dynamic relighting of

images of real-world stained glass windows.

11

Figure 2.13: Stained glass window relighting results from three different source video

input frames using the methods presented by Thanikachalam et al. Image credit:

VITRAIL: Acquisition, Modelling, and Rendering of Stained Glass[24], Fig. 19

2.2.3 Digitisation of Stained Glass Windows

The VITRAIL paper cited above states as one of its primary contributions the

workflow for digitising stained glass windows for use in virtual museums. As this

dissertation shares the motivation of digitising these artefacts for a variety of uses,

including preservation, it is worth exploring existing works that investigate this

practice.

 Rahrig et al.[26] demonstrated the high resolution 3D scanning of various

stained glass windows with a commercial-grade “structured light scanner” for the

purpose of evaluating conservation and restoration measures. Babini et al.[27] present

a review of invasive and non-invasive imaging and analysis techniques applied to

stained glass windows with their respective potentials and limitations, with a

particular focus on the potential of spectral imaging for the purpose of digitisation

and analysis over time. This paper led to the same authors to investigate improved

strategies for the acquisition of stained glass windows using hyperspectral

imaging[28]. In this latter work, the authors provided a detailed methodology for

acquiring information on the characteristics of individual stained glass works in-situ

at the Swiss National Museum under a variety of lighting conditions.

2.2.4 Applications of Virtual Reality

Beyond preservation of cultural heritage, an additional use case of the digital re-

creation of stained glass windows, is for the purpose of building design simulation in

the field of construction architecture. The utility of VR as a form of human-computer

interaction in this area has seen fairly rapid growth in recent years, and a number of

works examine its role here. Lucas[29] discusses VR simulation as a powerful tool in

12

construction science education and presents a content development framework that

can help students develop an understanding of the sequence and components of

construction assemblies, evaluated with a pilot test study. This work, with the use of

Unity Engine and C# scripting, finds that simulated VR experiences alongside

traditional classroom-based delivery of material allowed for enhanced student

learning over a lecture-only environment. Additionally, a study by Kim et al.[30] finds

that VR simulation was equal or superior to its computer-based counterpart in

construction education. Furthermore, a review by Patel et al.[31] on VR in

architectural learning finds it to be an “effective educational tool for extremely

complicated or conceptual issues that needed visualisation and spatial

comprehension” and that the technology “improves students' comprehension and

learning performance”. Related, is the review by Feng et al.[32] on the use of

immersive VR for building evacuation training. The authors concluded that VR is

“effective in delivering considerable evacuation knowledge, no matter whether it is

multiple knowledge (e.g., best practices) or single knowledge (e.g., spatial skill)”.

A paper by Han[33] explores the application of interactive VR in architectural

landscape design and the technology’s associated advantages over traditional

technical graphics. Further research by Shan et al.[34] delves into the use of VR

simulation in interior and exterior landscape planning and design alongside modern

3D modelling and computer-aided design software solutions. A review by Ververidis

et al.[35] looks at and compares several state-of-the-art VR solutions for the

Architecture, Engineering, and Construction (AEC) industry through the lens of

interdisciplinary collaboration. This review acknowledges the advantages of VR and

finds a need for an open standard combining the best aspects of existing systems due

to the significant differences between VR vendors. Two papers by Ehab et al.[36, 37]

investigate the potential of VR to enhance public involvement in co-design of

architectural projects for public and social spaces. They find that VR technologies can

enhance the design process, streamline decision-making, and facilitate participatory

urban design by virtue of providing real-time immersive and interactive experiences.

Several abovementioned works also cite accessibility as a primary advantage of

VR, such as students visiting virtual construction sites[29] or members of the public

contributing to the urban design of public spaces they have not physically visited[37].

We are also interested in the fact that dynamic light variation in images of stained

13

glass windows improves the memorability of those windows, as in the study

performed by Nevin[38]. Additionally, compelling VR simulation a valuable proxy for

reality and more useful than image-based stimuli for cognitive science studies, Snow

et al. found in their review[39].

2.3 Summary
In the pursuit of simulating coloured transparency such as that of stained glass,

numerous approaches have been devised. However, the project developed as part of

this research endeavours to go beyond existing works by attempting to perform such

lighting simulation in real-time VR. This choice stems from the acknowledged

benefits of the medium as reviewed in section 2.2.4 above. The objective is to strike a

delicate balance between realism and the demanding performance constraints

imposed by real-time rendering. We have discussed related techniques for generating

renders in the style of stained glass from diverse image and video inputs in section

2.2.1, though our specific intent lies in simulating authentic windows found in the

physical world. In section 2.2.3, we have also examined procedures for the highly

detailed digitisation of stained glass, but we provide an alternative means that

circumvents the necessity for costly or specialized equipment, relying instead on

digital photographs of the desired artefacts.

14

3 Methodology
In this chapter, we lay out our design considerations and decisions before providing a

comprehensive overview of the implementation approach taken.

3.1 Design
The first stage of any software project is choosing a toolset. As this will affect the rest

of the project, making a well-informed decision is of utmost importance. Unity Engine

is an all-in-one, real-time 3D development engine by Unity Technologies[40]. It was

the engine of choice in a previously discussed study by Lucas[29], is free and well-

documented[41], and has a thriving asset and plugin ecosystem[42]. It is a popular

engine of choice across a variety of industries such as AEC and automotive

transportation & manufacturing; with applications developed using it being

downloaded over three billion times per month in 2019 on over 1.5 billion unique

devices across more than 20 platforms[43]. It is also the leader in AR/VR

development, with Unity’s internal estimates of its use in the sphere ranging from

60%[44] to as high as 95%[45]. Its main competitor is Unreal Engine by Epic

Games[46]. While Unreal is popular with large development studios; Unity supports a

wider array of platforms, enjoys larger userbase and market share, and is considered

to be more user-friendly and accessible[47]. We can therefore consider this Unity

Engine to be a suitable choice for the purposes of creating a performant, interactive,

real-time VR prototype application. Unity provides a choice of three different

rendering pipelines:

• The legacy Built-in Pipeline focuses on ease-of-use and compatibility at the

cost of customisability.

• The High Definition Render Pipeline (HDRP) targets new, high-end devices

and provides advanced graphics capabilities at the cost of performance,

similar to Unreal Engine.

• The Universal Render Pipeline (URP) is optimised for performance to

reliably provide scalable, modern graphics to a range of platforms from web

and mobile to PC and VR while lacking support for newer performance-

intensive techniques such as real-time raytracing.

15

The latter two are based on Unity’s newer Scriptable Render Pipeline (SRP)

that provides developers more direct control in the C# programming language. Of the

three, URP is the most suitable choice for our VR prototype as it is modern, extensible,

and optimised for all VR platforms, including mobile and untethered VR[48].

 Built-in URP HDRP

Customisable (SRP) ❌ ✓ ✓

VR-Friendly ✓ ✓ ❌

Advanced Graphics ❌ ❌ ✓

Table 3.1: High-level comparison of Unity render pipelines by their key features

3.2 Implementation
The following section describes the general steps for creating the Unity prototype

project scene provided in a public GitHub repositoryi.

3.2.1 Setup

First, it is necessary to download the Unity Hub application from the official Unity

websiteii and install it. This application is used for Unity licence and project

management and Unity Editor installs. With an active Unity account and Personal or

Educational licence, we can select a version of Unity Editor to install. The prototype

was developed on Windows 11 using the latest recommended version, which as of this

point in development was 2022.3.17f1. It should be noted that Unity versions are

generally backwards compatible but not forwards compatible (i.e. using a newer

version of Unity Editor with an older project is supported, but not vice versa). Before

the installation begins, we are presented with a choice of modules to include in the

install. The modules included for the development of the prototype in this dissertation

were “Android Build Support” and its dependencies, as well as “Windows Build

Support (IL2CPP)”.

i https://github.com/Zugidor/VR-Stained-Glass
ii https://unity.com/download

https://github.com/Zugidor/VR-Stained-Glass
https://unity.com/download

16

Figure 3.1: Module selection window in Unity Hub during Unity Editor install process

After the installation is complete, a new project is created using the “3D cross-

platform (URP)” template. As VR compatibility may be added to an existing project,

we concentrate first on developing the prototype scene before preparing the project

for VR deployment. After the project is created, it is opened in a Unity Editor window.

We follow the optional but recommended step of configuring a code editor such as

Visual Studio Code to work with Unity[49].

3.2.2 Scene

Figure 3.2: Sample empty scene view in Unity Editor

In the Unity Editor, we observe four primary windows of interest on-screen similar to

Fig. 3.2 above:

1. The Object Hierarchy window that lists all items associated with the currently

open scene. New objects are added here with the right-click menu.

17

2. The Project File Explorer window, which allows the user to navigate the

currently opened project’s files and folders. New files can be created with the

right-click menu.

3. The Property Inspector window, where all the properties of the last selected

item are displayed and can be edited.

4. The Scene Viewer window which displays a configurable 3D render of the

current scene and allows direct selection and manipulation of visible objects.

To create an interior environment in the scene, we must install the ProBuilder

package by opening the Unity Package Manager window found in the top toolbar

menu under “Window > Package Manager” and searching for “ProBuilder” in the

Unity Registry packages. Referring to the official Unity Learn tutorial on using

ProBuilder for prototyping[50] provides us the requisite knowledge to create a

rudimentary room with cutouts for windows. Afterwards, we furnish the scene with

third-party assets such as textures and models freely available on the Unity Asset

Store. All assets used in the final prototype project are provided in numerically

labelled folders in the “Imported” folder and listed in a sources.txt file in the top-level

“Assets” folder in the project files.

Figure 3.3: Searching for and installing ProBuilder in the Unity Package Manager

Figure 3.4: Sample bare interior environment created with ProBuilder in Unity

18

Figure 3.5: Prototype environment after importing free Unity Asset Store assets.

Visible assets include “Lemon Trees” by Numenaiii, “Grass Flowers Pack Free” by

ALPiv, and “NoirMat – Noir Marble Pack Vol. 01” by Noir Projectv

3.2.3 Shaders

In Unity, shader programs are contained in Unity Shader objects (instances of the

Shader class), while Unity materials contain references to Shader objects[48]. Unity

shaders can be developed using either the ShaderLab declarative language and High-

Level Shader Language (HLSL), or the Shader Graph[51] node-based visual scripting

tool. In Shader Graph, each “node” represents a constant, variable, function, or a

mathematical or logical operation; with the exception of the vertex and fragment

“master nodes” that represent vertex shader and fragment shader outputs of the

shader program, respectively. Shader Graph supports custom nodes programmed in

HLSL, and Shader Graphs can be converted into ShaderLab/HLSL code. Shader

Graphs nodes can be grouped, and notes can be added as comments to improve a

graph’s readability. For the purposes of creating a proof-of-concept prototype, Shader

Graph meets our requirements while saving development time.

As per Nevin[38], we would like to see variation in the light and shadow passing

through the windows for the purposes of memorability. We can achieve this by

creating a shader program that simulates wind by manipulating the vertices of the tree

models. The official Unity YouTube channel provides a tutorial video for making a

simple wind shadervi, which we base our shader off of. The final wind shader used in

the prototype in Shader Graph can be seen in Fig. 3.6. Moreover, the shader can be

described in pseudocode, as in listing 1.

iii https://assetstore.unity.com/packages/3d/vegetation/trees/lemon-trees-200372
iv https://assetstore.unity.com/packages/2d/textures-materials/nature/grass-flowers-pack-free-138810
v https://assetstore.unity.com/packages/2d/textures-materials/noirmat-marble-pack-vol-01-128318
vi https://youtu.be/ZsoqrHHtg4I

https://assetstore.unity.com/packages/3d/vegetation/trees/lemon-trees-200372
https://assetstore.unity.com/packages/2d/textures-materials/nature/grass-flowers-pack-free-138810
https://assetstore.unity.com/packages/2d/textures-materials/noirmat-marble-pack-vol-01-128318
https://youtu.be/ZsoqrHHtg4I

19

Vertex WindShaderV(Vector2 WindDirection, Float WindStrength,
 Float WindSpeed, Float Flexibility){

 // strength to cyclically vary with time
 Float Strength = WindStrength * Time.SineTime();
 // original object space coords i.e. relative to self
 Vector3 ObjPos = Position(Space=Object);
 // vector.rgba == vector.xyzw
 Float PosY = ObjPos.G;
 // distort mesh from top
 Strength *= PosY;
 // bending function (x+1)^4 – (x+1)^2
 Strength = (Strength+1) * (Strength+1);
 Strength = (Strength * Strength) – Strength;
 // direction is 2D (looking from top)
 Vector2 Pos2d = WindDirection * Strength;
 // swap Y with Z (up/down to front/back)
 Vector3 Pos3d = Vector3(R=Pos2d.R, G=0, B=Pos2d.G);
 // original world space coords i.e. relative to entire scene
 Vector3 WrlPos = Position(Space=World);
 // new world space coords
 WrlPos += Pos3d;
 Vector3 NewPos = Transform(Input=WrlPos, From=“World”, To=“Object”,
 Type=“Position”);

 // non-uniform movement i.e. adding false sense of randomness to wind
 // speed to constantly vary with time
 Float Speed = WindSpeed * Time.Time();
 // convert speed to UV (XY) coords offset by speed value
 Vector2 VarOffset = TilingAndOffset(Offset=Vector2(Speed));
 // repeating noisy texture using offset by speed value as coords such that
 it moves with time at a constant speed, scaled by flexibility value to
 simulate a more or less flexible tree
 Float RandVal = GradientNoise(UV=VarOffset, Scale=Flexibility,
 Type=“Deterministic”);
 // simple a+(b-a)*t linear interpolation between full new position and
 original position according to randomly varying val
 Vector3 FinalPos = Lerp(A=NewPos, B=ObjPos, T=RandVal);
 Vertex Vert = Vertex(Position=FinalPos);
 return Vert;

}
Fragment WindShaderF(Texture2D Diffuse, Texture2D Normal){

 Vector4 Diff = SampleTexture2D(Texture=Diffuse, Type=“Default”,
 Space=“Tangent”);
 Vector4 Norm = SampleTexture2D(Texture=Normal, Type=“Normal”,
 Space=“Tangent”);
 // dim colour by factor of 4 so the tree doesn’t look too bright through
 the window
 Fragment Frag = Fragment(BaseColor=Diff.RGB/4, Alpha=Diff.A, Smoothness=0,
 Normal=Norm);
 return Frag;

}

Listing 1: Pseudocode translation of the wind shader with explanatory comments

20

Figure 3.6: Wind Shader Graph (WindShader) as implemented in Unity

Figure 3.7: The shader input parameters we expose to the end user. We configure the

UI appearance and minimum/maximum/default values in Shader Graph

The second, and most important, shader that we require is the stained glass

shader. We approximate the heterogeneity and imperfections in stained glass

windows with an additional generic normal map, using it as a “distortion texture”,

alongside the usual diffuse texture and normal map inputs. Desired effects include

variables to control the appearance of objects behind the glass such as blur,

brightness, and transparency. As the windows are static, we only implement a

fragment shader, leaving the vertices unmodified.

21

Fragment SG_ShaderF(Texture2D Diff, Texture2D DisTex, Texture2D Norm,
 Float Met, Float Smooth, Float Dist, Float Transpar, Float Bright,
 Float AmbOcc, Float Blur, Float Thick){

 // distortion
 Vector2 Distort = SampleTexture2D(Texture=DisTex, Type=“Normal”,
 Space=“Tangent”).RG * Dist;
 // make effect more subtle
 Distort = Distort / 40;
 // distort original 2D normalised screen coordinate
 Distort = ScreenPosition(Mode=“Default”).RG + Distort;
 // colour value behind transparent object at distorted coordinate
 Vector3 Distorted = SceneColor(UV=Distort);

 // Box Blur
 Vector2 Blr1, Blr2, Blr3, Blr4, Blr5, Blr6, Blr7, Blr8, Pos;
 Pos = ScreenPosition(Mode=“Default”);
 Blr1 = TilingAndOffset(UV=Pos, Offset=Vector2(Blur, 0));
 Blr2 = TilingAndOffset(UV=Pos, Offset=Vector2(Blur, Blur));
 Blr3 = TilingAndOffset(UV=Pos, Offset=Vector2(0, Blur));
 Blr4 = TilingAndOffset(UV=Pos, Offset=Vector2(-Blur, 0));
 Blr5 = TilingAndOffset(UV=Pos, Offset=Vector2(-Blur, -Blur));
 Blr6 = TilingAndOffset(UV=Pos, Offset=Vector2(0, Blur));
 Blr7 = TilingAndOffset(UV=Pos, Offset=Vector2(-Blur, Blur));
 Blr8 = TilingAndOffset(UV=Pos, Offset=Vector2(Blur, -Blur));
 Vector3 Blurred = (SceneColor(UV=Blr1) + SceneColor(UV=Blr2) +
 SceneColor(UV=Blr3) + SceneColor(UV=Blr4) + SceneColor(UV=Blr5) +
 SceneColor(UV=Blr6) + SceneColor(UV=Blr7) + SceneColor(UV=Blr8) +
 Distorted) / 9;

 // LERP between Base and max(Base,Blend) to provide end user with controls
 for both transparency and a sense of thickness where a “thicker” glass
 only lets higher colour values (like sunlight) through
 Vector3 Glass = Blend(Base=Vector3(Thick), Blend=Blurred,
 Opacity=Transpar, Mode=“Lighten”);

 Vector3 DiffTex = SampleTexture2D(Texture=Diff, Type=“Default”,
 Space=“Tangent”).RGB * Glass;
 // tint for a warmer, more natural white balance and user controllable
 stained glass pigment brightness.
 Vector3 Brightness = Vector3(R=Bright, G=(Bright / 1.2),
 B=((Bright / 1.2) / 1.2)) * DiffTex;
 Vector3 NormTex = SampleTexture2D(Texture=Norm, Type=“Normal”,
 Space=“Tangent”).RGB
 Fragment Frag = Fragment(BaseColor=DiffTex, Metallic=Metal,
 Smoothness=Smooth, AmbientOcclusion=AmbOcc, Alpha=1, Normal=NormTex,
 Emission=Brightness);
 return Frag;

}

Listing 2: Pseudocode translation of stained glass shader with explanatory comments

22

Figure 3.8: Stained Glass Shader Graph (SG_Shader) as implemented in Unity

Figure 3.9: User-facing shader input parameters for a sample stained glass window

Figure 3.10: Prototype environment after adding windowpanes with SG_Shader, each

using differently configured user input parameters

23

3.2.4 From Image to Material

This project used digital photographs of existing stained glass windows collected by

colleagues at Trinity College as part of a 2022 – 2023 project[52]. However, neither

these nor any other unprocessed photo images, can be used as-is with the above

SG_Shader. We must first prepare an appropriate texture image, normal map, and

shadow mask using an image editing program such as Adobe Photoshop[53] or

Paint.NET[54].

 The main diffuse texture that determines the colour of the light passing

through the windowpane is created by blacking out all elements of the image that are

not the stained glass panes themselves, such as walls, sills, seams, lead cames, and any

objects partially or completely obscuring the window. This is necessary as any non-

black areas, such as dark brown, will be rendered as transparent rather than opaque,

due to multiplication by a non-zero value. Only black areas of the texture, with RGB

values of exactly zero, will be rendered as opaque, letting no light through. This work

can be done with a combination of thresholding tools like “magic wand” or “bucket

fill” and manual paint brushing where thresholding fails to adequately black out

sections of the image, due to the inherent limitations of working with raster images.

Figure 3.11: A thresholding tool’s area of effect on a sample stained glass window

image to create an appropriate diffuse texture. Note the imperfect selection on the

more intricate parts of the window

24

Figure 3.12: Zoomed in before and after the use of a thresholding tool

Figure 3.13: Using a brush tool to manually clean up the results of a thresholding tool

 After completing this step, we must generate a normal map to provide a sense

of depth to the window. We must create a greyscale image where all the glass panes

are coloured white with the maximum RGB values of 255 and all else is black with

RGB values of zero. This can be achieved more quickly than the previous step, as we

have already coloured all opaque areas black, so we use the image editor’s relevant

thresholding tool to colour all non-black areas white. Any unsatisfactory parts can be

cleaned up again by manually brushing white or black where necessary. This processed

black-and-white image can then be used to generate a normal map with a tool such as

the one found in Photoshop 2023. It is important to note that simply applying a

greyscale filter leads to improper normal map generation and unsatisfactory results.

25

Figure 3.14: Poor results in using a basic greyscale filter to generate a normal map

Figure 3.15: Improved resulting normal map generation using a thresholded image

Finally, a shadow mask is created by simply marking all white areas as

transparent, which is usually done in image editors by selecting and deleting the

desired areas. To soften the appearance of the shadows and reduce the amount of light

allowed through the shadow mask, we apply a Gaussian blur filter. In paint.NET, a

radius value of 15.0 provides an acceptable result. It is particularly important to save

this mask as a PNG or similar image file format that stores alpha channel information,

unlike JPEG. The amount of time and effort required depends on the desired level of

detail and quality in the resulting material. Working on three windows, the average

time required to create a finished texture, normal map, and shadow mask was found to

be approximately one hour per window.

We create a material in Unity by using the right-click context menu in the

project file explorer window labelled in Fig. 3.2 and select our SG_Shader as the

26

material’s shader. The normal map and base colour texture are used as inputs to an

SG_Shader material as seen in Fig. 3.9, while the shadow mask is used on another

material, using the default URP Lit shader, applied to a different 2D plane mesh,

which we set to render “shadows only”, aligned with the window mesh in order to cast

the shadows cast by the opaque parts of the window. It is important to ensure at this

point that our normal maps are marked as such and not “Default” under the “Texture

Type” property in the Unity Property Inspector window for each normal map.

Figure 3.16: Image-to-material pipeline (left) and the two resulting materials as

previewed in Unity Editor on default spherical meshes (right)

Figure 3.17: Prototype environment after applying the processed texture and normal

map to the SG_Shader materials and creating their respective shadow mask materials

27

Figure 3.18: Normal map provides a false sense of depth for the individual panes of

stained glass making up the window, observable when light shines at a steep angle

(left). Screenshots differ only in sun position

3.2.5 Post-Processing and Lighting

Post-processing refers to the application of effects and filters to the entire image after

the frame has been rendered to stylise or improve the realism of the image by

simulating physical camera and film properties[48]. Unity’s URP includes an

integrated implementation of post-processing effects using the volume framework.

Bloom and vignette are listed as some of the most common and performant effects.

For VR, it is recommended that we use the vignette effect and avoid lens distortion,

chromatic aberration, and motion blur[55]. The Bloom effect creates fringes of light

extending from the borders of bright areas in an image, creating the illusion of

extremely bright light overwhelming the camera. Vignetting is the term for the

darkening towards the edges of an image compared to the centre, drawing focus to the

centre of the image. We can use tonemapping to remap the colour values of the image

to ACES colour space so as to approximate the appearance of a photo-realistic high

dynamic range image with a wide contrast between the darkest and brightest parts of

the image. Most post-processing effects in URP are configured in a special “volume”

object. In this prototype, we use a global volume which takes effect throughout the

entire scene[48, 55].

28

Figure 3.19: Before (top) and after (bottom) applying bloom, vignette, and ACES

tonemapping post-processing. Visible assets include “Street Lamps 2” by SpaceZetavii

 While we have previously ruled out the use of real-time raytracing as too

expensive, we still desire to have some approximation of coloured shadows or caustics

cast by light passing through the stained glass windows. This can be done by using a

coloured Unity light cookie texture, which is a mask attached to a light object to

create a shadow with a specific shape or colour, changing the appearance and

intensity of the light. Light cookies are an efficient way of simulating complex

lighting effects with minimal to no runtime performance impact[48]. The light cookie

used for this prototype was originally sourced from Jojo’s Texturesviii, provided free

for personal use, and edited with a variety of desaturation and blurring filters to

achieve a plausible appearance. The edited texture is made seamless using the free

online tool IMGonlineix. The light cookie is attached to the directional light object

representing the sun, and as such individual textures could not be cast as on a per-

window basis.

vii https://assetstore.unity.com/packages/3d/props/exterior/street-lamps-2-260395
viii https://jojotextures.blogspot.com/2016/12/stained-glass-seamless-textures-1.html
ix https://www.imgonline.com.ua/eng/make-seamless-texture.php

https://assetstore.unity.com/packages/3d/props/exterior/street-lamps-2-260395
https://jojotextures.blogspot.com/2016/12/stained-glass-seamless-textures-1.html
https://www.imgonline.com.ua/eng/make-seamless-texture.php

29

Figure 3.20: Before (left) and after (right) applying a generic coloured light cookie

texture. Like the distortion texture, it is generic and common to all three windows in

the prototype

Figure 3.21: Attempting to apply one of the window images as a light cookie applies it

repeatedly to all light cast by the sun, leading to uncanny and unrealistic results

Unity provides wide array of lighting options to approximate how light behaves

in the real world[48]. In this prototype, we use a point light source for the interior

lamp, and a directional light source for the sun. Since the point light is static and does

not move, we can mark it as such and allow Unity to “bake” its light data into a texture

called a lightmap so that it does not need to be re-calculated every frame, improving

performance. We do not have this luxury with the directional light, as we must

recalculate its interaction shadows of the windows when the sun moves, and of the

shifting tree shadows even if the sun itself does not move. This is all regarding direct

light, which is defined as light that hits a surface at most once before being registered

by the camera. Indirect light, such as ambient light from the sun or light that bounces

more than once inside a room, is commonly baked in all aspects of a scene. Modelling

both direct and indirect lighting to provide realistic results is known as global

illumination, which Unity has a wealth of lighting configuration settings for. This

30

prototype uses “Baked Indirect” which provides a balance of performance and visual

fidelity. Lightmaps are baked using Unity’s progressive GPU lightmapper to generate

the required lightmap textures. Unity chooses which scene objects to bake lighting for

based on whether they are marked “static” or not. The only object in our scene that is

expected to move currently is the directional light, so we can safely mark all other

objects static in the top-right corner of the property inspector for each object.

Figure 3.22: Before (left) and after (right) generating lightmap data using Unity’s

baked indirect global illumination model. All other previously discussed techniques

are used in both images. The bluish tint seen on the left image is the result of ambient

light as configured in Unity’s lighting settings

 Unity’s URP exposes advanced graphics options to us in the .asset files inside

the Settings folder[55]. We use the “High Fidelity_PipelineAsset.asset” file by default.

These setting’s changes are reflected instantly in the Scene View, so we can adjust

them to achieve the balance between performance and visual fidelity that we desire.

The most relevant settings here for our prototype are:

• Opaque Texture: Must be enabled for transparency to function in our

windows.

• Opaque Downsampling: A selection of filters for anything seen through our

windows that effectively blur the trees in addition to the blur implemented

in SG_Shader.

• HDR: Must be enabled as we are using the Tonemapping and Bloom post-

processing filters.

• Render Scale: Should be kept at 1 unless the target platform shows

unsatisfactory performance, in which case this can be lowered to reduce the

rendering resolution of the final image.

31

• Anti-aliasing: Hardware anti-aliasing should be disabled as it is not

compatible on all platforms and can be performance intensive to use on top

of software anti-aliasing like FXAA.

• Shadows: For our scene’s size, a Max Distance of 25 seems ideal. A cascade

count of 2 with the split at 12.5 metres and last border at 0 provides an

acceptable level of visual quality. Depth and Normal Bias are 1 by default

and may need to be reduced if light is found bleeding through the corners of

the walls or windows where it should not. We enable high quality soft

shadows for more realistic results.

• Main Light – Shadow Resolution: We can safely increase this to the

maximum value of 4096.

3.2.6 Interactivity

In addition to the standard Scene View we have been working with so far and that all

previous figures have been screengrabbed from, Unity Editor provides a “Game View”

which displays how the final, built application will look and run[48]. As such, it

requires a properly configured camera object to see anything other than a blank

screen, and custom input handling in order to provide any amount of end user

interaction. Our camera object uses the default built-in settings, except that post-

processing must be explicitly enabled in order for the effects to be rendered in Game

View. We also enable Fast Approximate Anti-Aliasing (FXAA) in the camera object, a

post-processing effect, which is the recommended anti-aliasing setting in Unity when

optimising for performance[55]. Anti-aliasing is a set of techniques used to smooth

out and reduce aliasing, the jagged polygon edges of objects or thin lines in raster

images[56]. Software-based anti-aliasing is one of the few post-processing effects

applied per camera object rather than in volume objects. As we are targeting VR

deployment, we must right-click our camera object and select the “XR > Convert Main

Camera to XR Rig” option. Unity automatically creates two parent objects for our

camera object. The immediate parent is a simple empty Camera Offset object that

serves to place the camera a certain distance higher relative to the top-level XR Rig

parent object. The XR Rig is initialised with a CameraOffset.cs input helper script,

which is given the height of the aforementioned Camera Offset object. This simulates

the VR headset being above the main body’s centre of mass. The Camera itself is

provided a Tracked Pose Driver component to provide motion control functionality.

32

Four C# scripts compose the interactive elements of this prototype, written

with the assistance of the Unity scripting documentation[57]. Unity provides the

UnityEngine namespace through which the vast majority of Unity scripting is done.

Scripts are attached as components of a Unity object and can communicate with

sibling components of the same object. Unity scripts are often defined as classes

derived from the UnityEngine.MonoBehaviour base class, which provides lifecycle

methods such as Start(), called once when a script is enabled and used for

initialisation, and Update(), called every frame and where most core script

functionality is defined.

CamController.cs uses simple WASD key input handling using the

UnityEngine.Input class to create a movement direction vector based on the

transform forward and right vectors of the object’s Transform component. The

Transform component contains position, rotation, and scale information of the object

in world space. The movement vector is multiplied by the delta time between the

previous and current frames, to generate consistent movement independent of

framerate, before being supplied to the Move() method of the CharacterController

component. A CharacterController is necessary as it calculates movement and

collision detection for the object it is attached to, so we mark it as a dependency for

Unity to automatically create one whenever the CamController script is attached to

an object. For ease of testing, we add an Esc key handler to quit Game View and have

the left shift key double our movement speed. When rotating the camera, we capture

the mouse when the right mouse button is held by hiding the cursor and locking its

position for convenience. The movement of the mouse is still recorded by Unity in this

state. We get this mouse movement from Unity’s Input class; multiply it by the delta

time as before; multiply by twenty so that the camera rotation is not too slow; and add

the horizontal and vertical values to the Transform’s yaw and pitch, respectively. We

unhide and unlock the cursor’s position when the right mouse button is released,

revealing the cursor to be in the same position as before rotating the camera and not

somewhere on the edge of the screen. A user-editable member field can be exposed in

the Unity Editor’s UI by declaring the field public, as is done with the base movement

speed float in this script. By attaching CamController.cs to the parent XR Rig object,

which is effectively the “body” of the user, we can move and look around in Game

View.

33

using UnityEngine;

[RequireComponent(typeof(CharacterController))]

public class CamController : MonoBehaviour
{
 CharacterController charCon;
 public float speed = 1.5f;
 float pitch, yaw, roll;
 Vector3 MovementInput()
 {
 Vector3 direction = Vector3.zero;
 Vector3 forward = transform.forward;
 Vector3 right = transform.right;
 if (Input.GetKey(KeyCode.W))
 {
 direction += forward;
 }
 //...
 direction.y = 0;
 return direction;
 }
 void Start()
 {
 charCon = GetComponent<CharacterController>();
 pitch = transform.eulerAngles.x;
 yaw = transform.eulerAngles.y;
 roll = transform.eulerAngles.z;
 }
 void Update()
 {
 // Press Escape to quit
 //...
 Vector3 moveDirection = speed * MovementInput();
 // Press Shift to sprint
 //...
 charCon.Move(moveDirection * Time.deltaTime);
 if (Input.GetMouseButton(1))
 {
 Cursor.visible = false;
 Cursor.lockState = CursorLockMode.Locked;
 Vector2 mouseMovement = 20 * Time.deltaTime *
 new Vector2(Input.GetAxis("Mouse X"), -Input.GetAxis("Mouse Y"));
 yaw += mouseMovement.x;
 pitch += mouseMovement.y;
 transform.eulerAngles = new Vector3(pitch, yaw, roll);
 }
 else
 {
 Cursor.visible = true;
 Cursor.lockState = CursorLockMode.None;
 }
 }
}

Listing 3: Contents of CamController.cs with most comments and the more repetitive

and simple code removed, but otherwise unmodified

34

 For the purposes of evaluating the prototype in VR, we will use Google

Cardboard VR (GCVR). By testing on a mobile device, we can ensure that the

prototype is performant and should run at a high framerate without issue on any other

VR platform. This also makes testing cheap and accessible, as no specialised nor

expensive hardware is required, only a relatively modern Android phone. Even a

GCVR headset is technically optional, as GCVR apps will still run with no headset

without issue. As such, we require a teleporting method of movement using the GCVR

pointer. We consult the GCVR Unity plugin documentation[58] and install the

relevant plugin as per the official quickstart guide[59]. Next, we add the

CardboardReticle object from the plugin files as a child of our camera object and

attach the CardboardStartup.cs script from the GCVR sample project files to the top-

level parent object of all interactive objects, which is the Room object in our

prototype. Finally, we must add a new layer in Unity, that we call “Interactive” in the

prototype, and select it as the Reticle Interaction Layer Mask in CardboardReticle.

We can now add objects to the scene that the CardboardReticle can select and interact

with in GCVR by marking them with the “Interactive” layer. Since the

CardboardReticle casts a ray to determine if an object is looked at, we must ensure

that interactive objects have properly configured static collider[48] components.

 To create teleportation platforms that will allow us to change positions around

the scene, we add five simple cube objects to the scene, and write a script that will

provide the actual teleportation functionality in GCVR. We define special public

methods in GCVR interaction scripts which are called by GCVR when specific

conditions are met, as in listing 4 below. We then attach this TeleportPlatform.cs

script to each of the five cube objects we wish to use as teleporters. Note that the XR

Rig is not a direct parent, child, nor sibling object to these platforms, so we make it a

public field for the user to initialise with the CharacterController they wish to be

targeted by the teleportation script.

35

/*
 @author: Michael Makarenko (Zugidor)
 @date: 19 March 2024
*/

using UnityEngine;

public class TeleportPlatform : MonoBehaviour
{
 // The CharacterController component (movement) of the XR Rig to teleport
(move)
 public CharacterController rig;
 Renderer platform;
 Color ogColour;
 void Start()
 {
 // Get the renderer of the platform
 platform = GetComponent<Renderer>();
 // Store the original base map colour of the platform
 ogColour = platform.material.color;
 }
 private void TeleportXRRig()
 {
 // Teleport the Rig to this platform
 rig.Move(new Vector3(transform.position.x, rig.transform.position.y,
transform.position.z) - rig.transform.position);
 }

 // OnPointer methods called by CardboardReticle

 public void OnPointerEnter()
 {
 // When the platform is looked at, change its color
 platform.material.color = Color.red;
 }
 public void OnPointerExit()
 {
 // When the platform is no longer looked at, change it back
 platform.material.color = ogColour;
 }
 public void OnPointerClick()
 {
 // When active platform is clicked, teleport the XR Rig
 TeleportXRRig();
 }
}

Listing 4: Unmodified contents of TeleportPlatform.cs, comments provide all

necessary explanation of the code

36

Figure 3.23: Screenshots in GCVR of an unselected (top) and selected (bottom)

teleport platform

In order to allow the user to view the windows from different points of

elevation, we add cylinders to a wall of the scene to function as buttons to lift the

previously added platforms. We write an ElevateButton.cs script to execute this

desired functionality and attach it to each of the two buttons in the prototype scene.

As before, we make the CharacterController public as we must elevate the rig with the

platforms. We also declare the parent object of all the platforms public to easily select

them all at once for the position transform. The rig’s position is transformed with

Move() as before, and the platforms are elevated by assigning a new position 0.8 units

higher in the Y direction, as the cubes in our prototype scene were initially placed 0.8

units into the ground. Sometimes, the platform’s collider may interfere with lowering

the rig, so we temporarily disable the platform’s colliders in the grounding method.

State is synced between the buttons by updating a boolean value across all instances of

ElevateButton.cs every time any of the buttons is activated. We also have a boolean to

indicate that a button has been pressed, in order to prevent the button from activating

several times a second as OnPointerClick() gets called by GCVR every frame.

37

public class ElevateButton : MonoBehaviour{
 public CharacterController rig;
 public GameObject elevatorParent;
 bool grounded = true;
 bool pressed = false;
 float rigElevatedY, rigGroundedY, elevatorElevatedY, elevatorGroundedY;
 void Start(){
 rigGroundedY = rig.transform.position.y;
 rigElevatedY = rigGroundedY + 0.8f;
 elevatorGroundedY = elevatorParent.transform.GetChild(0).position.y;
 elevatorElevatedY = elevatorGroundedY + 0.8f;
 }
 private void Elevate(){
 rig.Move(new Vector3(rig.transform.position.x, rigElevatedY,
 rig.transform.position.z) - rig.transform.position);
 for (int i=0; i<elevatorParent.transform.childCount; i++){
 elevatorParent.transform.GetChild(i).position =
 new Vector3(elevatorParent.transform.GetChild(i).position.x,
 elevatorElevatedY, elevatorParent.transform.GetChild(i).position.z);
 }
 grounded = false;
 }
 private void Ground(){
 for (int i=0; i<elevatorParent.transform.childCount; i++){
 elevatorParent.transform.GetChild(i).position =
 new Vector3(elevatorParent.transform.GetChild(i).position.x,
 elevatorGroundedY, elevatorParent.transform.GetChild(i).position.z);
 elevatorParent.transform.GetChild(i)
 .GetComponent<BoxCollider>().enabled = false;
 }
 rig.Move(new Vector3(rig.transform.position.x, rigGroundedY,
 rig.transform.position.z) - rig.transform.position);
 grounded = true;
 for (int i=0; i<elevatorParent.transform.childCount; i++){
 elevatorParent.transform.GetChild(i)
 .GetComponent<BoxCollider>().enabled = true;
 }
 }
 public void OnPointerExit(){
 pressed = false;
 }
 public void OnPointerClick(){
 if (!pressed){
 if (grounded)
 Elevate();
 else
 Ground();
 transform.parent.GetChild((transform.GetSiblingIndex() + 1) % 2)
 .GetComponent<ElevateButton>().grounded = grounded;
 pressed = true;
 }
 }
}

Listing 5: The contents of ElevateButton.cs, with all comments and previously seen

code removed, such as highlighting the button red, and most whitespace trimmed

38

The final interactive element present in the prototype scene is three identical

buttons placed above each window which activates or deactivates the movement of

the directional light, or sun, around the scene. The sun’s animation of orbiting the

scene is implemented using Unity’s animation system. The directional light is

manually rotated, and key positions are saved as keyframes in an animation clip. This

clip is then included in a state machine called an animator controller[48]. We define an

empty node with no animation as default and conditional state transitions to and from

the SunRotation animation clip based on the SunButtonPress parameter. This is a

“trigger” type parameter, which is effectively a boolean that is false by default and

resets to false whenever a state transition conditional on the trigger is executed.

When SunButtonPress is triggered during Empty, the animation clip begins, and the

sun begins rotating around the scene. Triggering SunButtonPress in this state

interrupts the clip, restoring the sun to its original position, transitioning to the red

exit node which automatically loops the state machine back to the entry node and

leads back to the default transition to the Empty node. In SunButton.cs, we declare

the sun object public for the user to supply the relevant directional light that has an

Animator component attached to it. We use this component’s SetTrigger() method to

activate state transitions in the animator controller. State is managed by the animator

controller and SunButtonPress trigger, so we do not sync a boolean between buttons.

Figure 3.24: The primary Unity Editor windows used in an animation workflow

Figure 3.25: The five teleport platforms, two elevation buttons and three sun buttons

39

/*
 @author: Michael Makarenko (Zugidor)
 @date: 20 March 2024
*/

using UnityEngine;

public class SunButton : MonoBehaviour
{
 // The Sun directional light to rotate (about y-axis only, continuously
 until pressed again)
 public GameObject sun;
 Animator sunAnim;
 Renderer button;
 Color ogColour;
 bool pressed = false;
 void Start()
 {
 // Get the renderer of the button
 button = GetComponent<Renderer>();
 // Store the original base map colour of the button
 ogColour = button.material.color;
 // Get the animator of the sun
 sunAnim = sun.GetComponent<Animator>();
 }
 // OnPointer methods called by CardboardReticle
 public void OnPointerEnter()
 {
 // Change the button's colour to indicate it's being looked at
 button.material.color = Color.red;
 }
 public void OnPointerExit()
 {
 // Change the button's colour back to its original colour
 button.material.color = ogColour;
 // Reset pressed to false
 pressed = false;
 }
 public void OnPointerClick()
 {
 // If the button is pressed, toggle animation
 if (!pressed)
 {
 sunAnim.SetTrigger("SunButtonPress");
 pressed = true;
 }
 }
}

Listing 6: Contents of SunButton.cs almost entirely unmodified except for the

removal of some whitespace. Comments provide all necessary explanation of the code

40

3.2.7 Deployment

We can use the MockHMD XR Unity package to simulate the stereo rendering and

occlusion mesh of a VR headset[60]. This plugin is often used to assist in development

for VR without a VR headset. “Initialize XR on Startup” and “Mock HMD Loader”

must be enabled in “Project Settings > XR Plug-in Management > Windows, Mac,

Linux Settings”. We can now click the play button near the top-centre of the Unity

Editor to enter Game View, which will use the “Both Eyes” render mode by default,

displaying two offset frames for each eye side by side. Selecting the drop-down menu

allows us to select the “Occlusion Mesh” render mode, as well as either the left or right

eye individually if desired.

Figure 3.26: Game View in the Occlusion Mesh render mode provided by MockHMD

We refer back to the GCVR quickstart guide[59] to configure our build settings

correctly for deploying to Android. In “File > Build Settings” we select Android and

click “Switch Platform” and, with the “Prototype3 GCVR” scene open, we click “Add

Open Scenes”. Since our prototype is composed of a single scene that is never changed

to another, we ensure only the one desired scene is added and enabled here. Below are

the specific settings in “Project Settings > Player > Android Settings” used in this

prototype that differ from or are not mentioned in the quickstart guide.

• Resolution and Presentation – Default Orientation: The guide leaves the

choice between Landscape Left or Right up to the reader; we use Landscape

Left i.e. rotating the phone anti-clockwise from portrait.

• Other Settings – Rendering:

41

o We disable Auto Graphics API and manually ensure that only

OpenGLES3 is present in the Graphics APIs list.

o To limit support to only modern Android mobile GPUs that are most

likely to run the VR app without issue, we enable “Require ES3.2”.

o Texture compression format should be ASTC, which is newer and

more efficient than ETC2.

o Ensure that “Allow HDR Display Output” and “Use HDR Display

Output” are disabled, as they negatively impact performance and

result in an extremely dark interior scene.

• Other Settings – Identification: If “Target API Level” is set to “Automatic:

Highest Installed”, this must be changed and manually set to “Android 13.0

(API Level 33)” or higher, as the former setting does not install and use API

Level 33 or higher by default.

• Other Settings – Configuration: Again, to support only modern phones and

avoid having to deal with technical issues on older or low-end mobile

devices, we only enable “ARM64” under “Target Architectures” and leave

“ARMv7” disabled.

All other settings should follow as specified in the aforementioned guide or left

untouched at their defaults. We can now connect our Android test device to the

computer via USB cable and click “Build And Run” at the bottom of the Build Settings

window. Depending on the device, the application may not look as desired, and

certain settings will need to be altered. Throughout the development of the prototype,

several final changes were made to improve the final GCVR output. We adjusted the

range, intensity, and indirect multiplier properties of the point light of the interior

ceiling lamp; tweaked the stained glass window material properties, particularly the

brightness, thickness, and transparency inputs; and corrected the post-processing

bloom intensity. While we are here, we ensure that “High Quality Filtering” is disabled

in bloom settings, as this is recommended to minimise the negative performance

impact on mobile devices[55].

42

4 Results
Below, we present and evaluate our resulting application in terms of realism and real-

time performance as we developed the project with the aims of pushing the former as

much as possible within the constraints of the latter.

4.1 Visual Fidelity
To convey moving aspects of the prototype, such as the trees swaying in the wind or

the sun moving across the sky, an illustrative video was recorded and can be found in

the aforementioned GitHub repository associated with this prototype. This video

demonstrates visuals both on desktop in Game View with MockHMD’s Occlusion

Mesh and in GCVR on an Asus ROG Phone 5 with a screen resolution of 1080×2448

pixels, running Android 13 using the process and settings described in this thesis. We

compare our rendered results with photographs of stained glass lighting phenomena

as below.

Figure 4.1: One of the three stained glass windows in our prototype (left) and two

photographs (centre, right) of stained glass windows by Unknown on their public web

blogx, highlighting the coloured shadows of stained glass

x https://lookingforsearching.blogspot.com/2014/02/stainglass-shadows.html

https://lookingforsearching.blogspot.com/2014/02/stainglass-shadows.html

43

Figure 4.2: Comparing our prototype’s rendering of stained glass coloured shadows

occluded by vegetation shadow (left), and a photograph of the real-world occurrence

by Katja Linders on Pinterestxi (right)

Figure 4.3: Comparing our prototype’s rendering of a stained glass window

illuminated by sunlight exhibiting bloom/overexposure (left), and a real-world

example photographed by a deleted user on an archived Reddit postxii (right)

xi https://www.pinterest.com/pin/300474606360173969/
xii https://www.reddit.com/r/Catholicism/comments/agxpae/

https://www.pinterest.com/pin/300474606360173969/
https://www.reddit.com/r/Catholicism/comments/agxpae/

44

 We obtain these results in mere minutes by adjusting the material settings

exposed to the user and made easily accessible in the Unity Editor UI by the

SG_Shader, and by moving the tree models or directional light as needed, preparing

the prototype scene to be quickly built and deployed with the desired appearance.

Unfortunately, the visuals of the application in GCVR are visibly downgraded

compared to the results seen in Unity’s Scene or Game View. We can observe lower

resolution shadows and lighting with a visibly lower contrast between light and

shadow, as illustrated in Fig. 4.4 below.

Figure 4.4: Three GCVR screenshots displaying more pixelated shadows and lower

lighting contrast/dynamic range

45

4.2 Performance
To measure our prototype’s runtime performance, we can make use of Unity’s

profiling tools[48]. In the Build Settings window, we must enable “Development

Build” and “Autoconnect Profiler” before clicking “Build And Run” with the target

device connected by USB cable. When the application launches on the target device,

the Profiler window should open in Unity, which can also be manually opened by

navigating to “Window > Analysis > Profiler”. Here, as long as the circular red

“Record Profiling” button is enabled, we can observe the most recent 300 – 2000

frames depending on the respective setting in Unity Preferences. The profiler records

frametimes in milliseconds, that is, how long it takes to display a given frame; we will

be converting to frames per second (FPS) by dividing 1000 by the frametime, as FPS is

the more common and intuitive metric. While 24 FPS is the standard for film, 30 FPS

is commonly considered the minimum acceptable framerate in real-time rendering

applications, with 60 FPS or higher being ideal for delivering a smooth end user

experience on a traditional display. Most standard modern displays such as computer

monitors and television screens have a refresh rate, which is the number of times a

new image is rendered by the display every second, of 60 Hertz. A high framerate is

made doubly important given that we are targeting VR, as a low framerate may result

in motion sickness. 90 FPS is considered the ideal standard for smooth VR

experiences, and the majority of VR headsets on the market have a refresh rate of 90

Hertz. Framerates as low as 60 or 72 are generally deemed acceptable but

suboptimal[61]. Most common mobile applications consume 130 – 500 megabytes of

memory during use[62]. This gives us the necessary context to understand whether

our prototype application’s resource usage and performance are satisfactory.

Our test device is a capable and relatively modern 2021 phone equipped with a

Qualcomm Snapdragon 888 chip and 16 gigabytes of memory. The Unity profiler does

not calculate average, maximum, nor minimum frametimes for us. We recorded an

average framerate of approximately 59 FPS, with a maximum of 165 and a minimum

of 34. The framerate often hovers in the 55 – 65 range with occasional spikes to

beyond 70 and rare troughs down to the 40s. The worst offending falls in framerate

are explained by inspecting the profiler and finding that the profiler process itself is

taking up substantial amounts of frametime at certain moments, as seen in Fig. 4.5.

46

We can therefore confidently assume that the minimum FPS during regular use is

higher and likely in the 40s.

Figure 4.5: Investigating the worst frametime spikes in the Unity Profiler window

while the application runs on the target device. Unity’s Profiler process is revealed to

consume over 21% of the frametime of some frames. Note that the GPU and CPU are

integrated on mobile chips, so GPU usage is also reported as CPU usage

Figure 4.6: Frametimes in Unity Profiler are shown to be worse when observing the

stained glass windows (top) and better when looking away towards the walls of the

interior (bottom), revealing the most performance-intensive parts of our scene to be

the windows and what is visible beyond them

With regard to memory utilisation, we can use both the regular Profiler

window and the dedicated Memory Profiler[48] to examine information on the

contents of the application’s working memory. Where the Profiler shows memory

usage on a per-frame basis, the Memory Profiler allows us to take snapshots of the

target device’s working memory for more thorough analysis. It should be noted that

taking a memory snapshot can temporarily reduce framerate to below 15 FPS due to

47

the slow copying of target device memory contents to the computer, which may take

approximately 200 milliseconds; we can safely disregard this outlier. Total application

memory usage is found to range between approximately 400 megabytes and 450

megabytes. This variation is ascribed to memory management factors out of our

control, as Unity Object memory usage is constant at 163.3 megabytes between

snapshots of memory.

Figure 4.7: The memory section of the built-in Profiler

Figure 4.8: Comparing two different snapshots of the test device’s memory in the

Memory Profiler. Note that “Total Allocated” memory as labelled here is defined

differently from that seen in Fig. 4.7, can safely exceed available device memory, and

is not indicative of application memory requirements

48

4.3 Ablation Study
To investigate the performance impact of the exterior objects, the grass textured

ground plane and two trees equipped with the Wind Shader, we perform a profiling

run on a build with these objects deleted from a duplicate scene. We observe an uplift

in performance and so decide to also examine the impact of the interior and all visible

objects as a whole. To this end, we create three additional duplicate scenes, one with

only the interior composed of the room, windows, and ceiling lamp deleted; another

with all objects deleted save for the XR Rig, Directional Light, and Post-Processing

Volume, which are present in all scenes except for the last; the emptiest scene contains

only the XR Rig and the default skybox illuminated by static ambient light. We

provide the observed results for direct comparison in table 2 below. From these

results, we can extrapolate:

• The interior is more resource intensive than exterior elements with regards to

both graphics and memory.

• The primary Unity Objects composing the scene consume relatively little

memory, at approximately 17% of total application memory.

• Framerate maxima vary wildly and are not particularly reliable performance

indicators.

• Post-Processing and a Directional Light in an otherwise empty scene have little

to no performance overhead at all, with average FPS and memory usage falling

within a margin of error of ±3%.

• A Unity application deployed to GCVR appears to be performance intensive by

default. As the test device has a refresh rate of 144 Hertz, we ensured that

Vertical Sync, a feature that caps the maximum framerate to the refresh rate of

the device’s screen, was off during this ablation study. Despite this, we only

observed average framerates slightly above 200 FPS in an empty scene devoid

of detail on a modern and powerful mobile device.

49

 Framerate (Frames Per Second) Memory Usage (Megabytes)

 minimum average maximum minimum maximum

Full 34 59 165 400 450

No Exterior 45 77 120 386 432

No Interior 56 86 156 365 403

Post & Sun 91 212 329 335 373

Empty 84 216 281 338 373

Table 4.1: Comparing performance of four scenes with varying Unity Objects present

or missing. “Full” is the control prototype scene with no removed Objects, “Post &

Sun” combines the removals of both “No Exterior” and “No Interior”, and “Empty”

removes even the directional light and post-processing present in “Post & Sun”. Data

is obtained using Unity Profiler and Unity Memory Profiler at application runtime,

with frametimes converted to framerates rounded to the nearest frame per second.

Memory usage rounded to the nearest megabyte

50

5 Conclusion
We conclude this study by laying out the contributions of this project, summarising its

limitations, and proposing potential work to extend the design presented here.

5.1 Contributions
In this dissertation, we have documented a novel approach to digitising stained glass

windows by rendering them in real-time within a three-dimensional environment

viewable in virtual reality, with digital photographs as the sole prerequisite input. We

reviewed existing literature related to the topic at hand and framed the context within

which this work has been conducted. In the process of developing this workflow, we

performed an investigation of the viability of real-time 3D graphics and interactive

VR technologies for near-photorealistic simulations of stained glass windows. A

proof-of-concept prototype application has been built as part of this research using

the Unity 3D development engine and deployed to Google Cardboard VR on an

Android mobile device. The Unity project that the application was built from has been

made available on a public GitHub repository and is accompanied by a demonstration

video. The workflow defined in this thesis has been evaluated by analysing the

resulting application’s frametime performance and memory usage on a high-end

smartphone released in 2021.

5.2 Limitations & Challenges
As we have worked with optimisations for mobile VR in mind, we had to compromise

on realistic yet performance-intensive graphics techniques such as real-time

raytracing and volumetric lighting. Indeed, as noted in section 3.1, our choice of SRP

in Unity was informed by this consideration, and some such techniques, such as

raytracing, are natively supported only in HDRP. We describe in section 4.2 how

profiling this application revealed suboptimal, albeit usable, framerate performance

and satisfactory memory usage on the target device. Visually, the scene is shown to be

impressive within Unity Editor on a PC, but significantly less so in mobile VR. This

may put the viability of mobile VR for accessible real-time simulation of stained glass

into question due to the limitations of modern mobile hardware for the time being. A

limitation of this study is also the fact that we only tested one device; chipsets that are

more powerful than that of the test device already exist as of the time of writing.

51

Additionally, there exist a vast array of non-smartphone based VR devices, both

tethered and untethered, that may provide an improved experience. Within the

application, stained glass windows are modelled as rectangular planes in 3D space

placed in simple rectangular cutouts in the interior room, resulting in jarring, flat

black areas where there should be three-dimensional extruded sills or frames. Beyond

the application itself, the image-to-material pipeline described in section 3.2.4 is

undermined by the length of time, approximately one hour, necessary to process a

single image into the required three textures to create stained glass window and

shadow mask materials.

5.3 Future Work
We hope for the above challenges to be understood as an encouragement to conduct

further examination and improvement on the work presented here, with the aim of

contributing to the preservation and public viewing of stained glass artworks by way

of digital architectural simulation.

We suggest investigation into a method to resolve the issue of tedious manual

editing of images to effectively automate the process and allow for the mass-

conversion photographs into high quality stained glass material textures and

associated shadow masks, perhaps with the use of computer vision techniques. This

challenge may also be tackled by switching from the use of digital photographs to

detailed scans informing of the physical material properties of individual stained glass

windows. We additionally note the possibility of using photogrammetry or emerging

AI technologies to create high-quality 3D models of sills and frames for individual

non-rectangular stained glass windows.

It may be worthwhile to attempt to apply the high-level workflow and

principles from chapter 3 in a different render pipeline such as HDRP or even a wholly

separate development engine such as Unreal Engine with a visual fidelity-first rather

than performance-first focus. This idea naturally lends itself to deploying and testing

on high-end VR platforms that provide superior experience to mobile VR, albeit at the

cost of mass public accessibility. A more conservative approach may be to refine the

Unity prototype presented here and test deploying to a variety of target VR devices,

making use of Unity’s strength of wide platform cross-compatibility.

52

Bibliography
[1] N. H. J. Westlake, A History of Design in Painted Glass. United Kingdom: J.

Parker and Company, 1881.

[2] A. Verney-Carron et al., "Alteration of medieval stained glass windows in

atmospheric medium: review and simplified alteration model," npj Materials

Degradation, vol. 7, no. 1, 2023, Art no. 49, doi: 10.1038/s41529-023-00367-0.

[3] E. M. Maingi et al., "Challenges in laser cleaning of cultural heritage stained

glass," Journal of Physics: Conference Series, vol. 2204, no. 1, 2022, Art no.

012079, doi: 10.1088/1742-6596/2204/1/012079.

[4] "The Stained Glass Museum Virtual Tour." The Stained Glass Museum.

https://stainedglassmuseum.com/virtualtour.php (accessed 2024).

[5] M. Rouse. "What is Rendering? - Definition from Techopedia." Techopedia.

https://www.techopedia.com/definition/9163/rendering (accessed 2024).

[6] G. Leach. "Lecture: Graphics pipeline and animation." RMIT University

Australia.

https://web.archive.org/web/20171207095603/http://goanna.cs.rmit.edu.au

/~gl/teaching/rtr%263dgp/notes/pipeline.html (accessed 2024).

[7] "What is a Rendering Engine?" AR Visual.

https://arvisual.eu/dictionary/rendering-engine/ (accessed 2024).

[8] Y.-C. Tian and D. C. Levy, Eds. Handbook of Real-Time Computing. Springer

Nature Singapore, p. 734.

[9] H. W. Jensen, "A practical guide to global illumination using ray tracing and

photon mapping," presented at the ACM SIGGRAPH 2004 Course Notes, Los

Angeles, CA, 2004.

[10] "What is a 3D material?" Foundry Visionmongers Limited.

https://www.foundry.com/insights/design/3d-materials-explained (accessed

2024).

[11] "What is 3D texturing?" Adobe Inc.

https://www.adobe.com/products/substance3d/discover/3d-texturing.html

(accessed 2024).

https://stainedglassmuseum.com/virtualtour.php
https://www.techopedia.com/definition/9163/rendering
https://web.archive.org/web/20171207095603/http:/goanna.cs.rmit.edu.au/%7Egl/teaching/rtr%263dgp/notes/pipeline.html
https://web.archive.org/web/20171207095603/http:/goanna.cs.rmit.edu.au/%7Egl/teaching/rtr%263dgp/notes/pipeline.html
https://arvisual.eu/dictionary/rendering-engine/
https://www.foundry.com/insights/design/3d-materials-explained
https://www.adobe.com/products/substance3d/discover/3d-texturing.html

53

[12] "What is normal mapping?" Adobe Inc.

https://www.adobe.com/products/substance3d/discover/normal-

mapping.html (accessed 2024).

[13] P. Novaković, M. Hornak, M. Zachar, and N. Joncic, 3D Digital Recording of

Archaeological, Architectural and Artistic Heritage. University of Ljubljana,

Faculty of Arts, 2017.

[14] N. Kowshik. "Normal Mapping." California Polytechnic State University, San

Luis Obispo.

https://users.csc.calpoly.edu/~zwood/teaching/csc473/finalw10/nkowshik/

(accessed 2024).

[15] J. d. Vries, Learn OpenGL: Learn modern OpenGL graphics programming in a

step-by-step fashion. Kendall & Welling, 2020.

[16] D. Mould, "A Stained Glass Image Filter," in Eurographics Workshop on

Rendering, P. Dutre, F. Suykens, P. H. Christensen, and D. Cohen-Or, Eds.,

2003: The Eurographics Association, in 14th Eurographics Symposium on

Rendering, doi: 10.2312/EGWR/EGWR03/020-025.

[17] S. Brooks, "Image-Based Stained Glass," IEEE Transactions on Visualization

and Computer Graphics, vol. 12, no. 6, pp. 1547-1558, 2006, doi:

10.1109/TVCG.2006.97.

[18] V. Setlur and S. Wilkinson, "Automatic Stained Glass Rendering," in Advances

in Computer Graphics, Hangzhou, T. Nishita, Q. Peng, and H.-P. Seidel, Eds.,

2006: Springer-Verlag Berlin Heidelberg, pp. 682-691, doi:

10.1007/11784203_66.

[19] S. Seo, H. Lee, H. Nah, and K. Yoon, "Stained Glass Rendering with Smooth

Tile Boundary," in Computational Science – ICCS 2007, Beijing, Y. Shi, G. D.

van Albada, J. Dongarra, and P. M. A. Sloot, Eds., 2007: Springer-Verlag Berlin

Heidelberg, pp. 162-165, doi: 10.1007/978-3-540-72586-2_23.

[20] L. Doyle and D. Mould, "Painted Stained Glass," in Computational Aesthetics,

A. Forbes and L. Bartram, Eds., 2016: The Eurographics Association, in

Workshop on Computational Aesthetics, doi: 10.2312/exp.20161058.

[21] D. Kang, T. Lee, Y.-H. Shin, and S. Seo, "Video-based Stained Glass," KSII

Transactions on Internet and Information Systems, vol. 16, no. 7, pp. 2345-

2358, 2022, doi: 10.3837/tiis.2022.07.012.

https://www.adobe.com/products/substance3d/discover/normal-mapping.html
https://www.adobe.com/products/substance3d/discover/normal-mapping.html
https://users.csc.calpoly.edu/%7Ezwood/teaching/csc473/finalw10/nkowshik/

54

[22] J. Shin, "Modeling Stained Glass," Swarthmore College, 2005. [Online].

Available:

https://www.swarthmore.edu/sites/default/files/assets/documents/enginee

ring/js_report_final.pdf

[23] J.-A. Kim, S. Ming, and D. Kim, "A Realistic Illumination Model for Stained

Glass Rendering," in ICVR, Beijing, R. Shumaker, Ed., 2007: Springer-Verlag

Berlin Heidelberg, pp. 80-87, doi: 10.1007/978-3-540-73335-5_9.

[24] N. Thanikachalam, L. Baboulaz, P. Prandoni, S. Trümpler, S. Wolf, and M.

Vetterli, "VITRAIL: Acquisition, Modeling, and Rendering of Stained Glass,"

IEEE Transactions on Image Processing, vol. 25, no. 10, pp. 4475-4488, 2016,

doi: 10.1109/TIP.2016.2585041.

[25] N. Thanikachalam, "Image Based Relighting of Cultural Artifacts," Docteur és

Sciences, Faculté Informatique et Communications, École Polytechnique

Fédérale de Lausanne, Laboratoire de Communications Audiovisuelles, 6990,

2016. [Online]. Available: https://infoscience.epfl.ch/record/218529

[26] M. Rahrig and M. Torge, "3D Inspection of the Restoration and Conservation

of Stained Glass Windows Using High Resolution Structured Light Scanning,"

Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol. XLII-2/W15, pp.

965-972, 2019, doi: 10.5194/isprs-archives-XLII-2-W15-965-2019.

[27] A. Babini, S. George, T. Lombardo, and J. Y. Hardeberg, "Potential and

Challenges of Spectral Imaging for Documentation and Analysis of Stained-

Glass Windows," Proc. IS&T London Imaging Meeting 2020: Future Colour

Imaging, vol. 1, pp. 109-113, 2020, doi: 10.2352/issn.2694-118X.2020.LIM-27.

[28] A. Babini, T. Lombardo, K. Schmidt-Ott, S. George, and J. Y. Hardeberg,

"Acquisition strategies for in-situ hyperspectral imaging of stained-glass

windows: case studies from the Swiss National Museum," Heritage Science,

vol. 11, no. 1, 2023, Art no. 74, doi: 10.1186/s40494-023-00923-6.

[29] J. Lucas, "Rapid development of Virtual Reality based construction sequence

simulations: a case study," Journal of Information Technology in Construction

(ITcon), vol. 25, pp. 72-86, 2020, Art no. 4, doi: 10.36680/j.itcon.2020.004.

[30] S. Kim, Z. Rybkowski, and H. D. Jeong, "Developing and Testing Computer-

and Virtual Reality-Based Target Value Design Simulations," in Proceedings of

the 31st Annual Conference of the International Group for Lean Construction

https://www.swarthmore.edu/sites/default/files/assets/documents/engineering/js_report_final.pdf
https://www.swarthmore.edu/sites/default/files/assets/documents/engineering/js_report_final.pdf
https://infoscience.epfl.ch/record/218529

55

(IGLC31), Lille, France, 2023, Lille, France, pp. 629-638, doi:

10.24928/2023/0194.

[31] P. Patel and S. Khan, "Review on Virtual Reality for the Advancement of

Architectural Learning," in 2023 IEEE Renewable Energy and Sustainable E-

Mobility Conference (RESEM), Bhopal, India 2023: IEEE, doi:

10.1109/RESEM57584.2023.10236123.

[32] Z. Feng, V. A. González, R. Amor, R. Lovreglio, and G. Cabrera-Guerrero,

"Immersive virtual reality serious games for evacuation training and research:

A systematic literature review," Computers & Education, vol. 127, pp. 252-266,

2018, doi: 10.1016/j.compedu.2018.09.002.

[33] W. Han, "Research on the Application of Virtual Reality Technology in the

Integrated Design of Architectural Landscape," in 2021 Global Reliability and

Prognostics and Health Management (PHM-Nanjing), Nanjing, China, 2021:

IEEE, doi: 10.1109/PHM-Nanjing52125.2021.9613094.

[34] P. Shan and W. Sun, "Auxiliary use and detail optimization of computer VR

technology in landscape design," Arabian Journal of Geosciences, vol. 14, no. 9,

p. 798, 2021, doi: 10.1007/s12517-021-07131-1.

[35] D. Ververidis, S. Nikolopoulos, and I. Kompatsiaris, "A Review of

Collaborative Virtual Reality Systems for the Architecture, Engineering, and

Construction Industry," Architecture, vol. 2, no. 3, pp. 476-496, 2022, doi:

10.3390/architecture2030027.

[36] A. Ehab, G. Burnett, and T. Heath, "Enhancing Public Engagement in

Architectural Design: A Comparative Analysis of Advanced Virtual Reality

Approaches in Building Information Modeling and Gamification Techniques,"

Buildings, vol. 13, no. 5, 2023, Art no. 1262, doi: 10.3390/buildings13051262.

[37] A. Ehab and T. Heath, "Exploring Immersive Co-Design: Comparing Human

Interaction in Real and Virtual Elevated Urban Spaces in London,"

Sustainability, vol. 15, no. 12, 2023, Art no. 9184, doi: 10.3390/su15129184.

[38] K. Nevin, "The Role of Light Variation in the Attending to and Memorisation

of Stained-Glass Windows: An Eye Tracking and Behavioural Study.," M.Sc.,

School of Psychology, Trinity College Dublin, 2024. [Online]. Available:

http://hdl.handle.net/2262/104878

http://hdl.handle.net/2262/104878

56

[39] J. C. Snow and J. C. Culham, "The Treachery of Images: How Realism

Influences Brain and Behavior," Trends in Cognitive Sciences, vol. 25, no. 6,

pp. 506-519, 2021, doi: 10.1016/j.tics.2021.02.008.

[40] Unity Engine. Unity Technologies Inc. [Online]. Available:

https://unity.com/products/unity-engine

[41] "Unity Documentation." Unity Technologies Inc. https://docs.unity.com/

(accessed 2024).

[42] "Unity Asset Store." Unity Technologies Inc. https://assetstore.unity.com/

(accessed 2024).

[43] United States Securities and Exchange Commission. (2020). Form S-1 Initial

Public Offering Registration Statement By Unity Software Inc. [Online]

Available:

https://www.sec.gov/Archives/edgar/data/1810806/000119312520227862/

d908875ds1.htm

[44] G. Nichols. "Google's DeepMind teams with leading 3D game dev platform

Unity." ZDNET. https://www.zdnet.com/article/googles-deepmind-teams-

with-leading-3d-game-dev-platform-unity/ (accessed 2024).

[45] J. Gaudiosi. "Why Valve’s Partnership With Unity Is Important to Virtual

Reality." FORTUNE. https://fortune.com/2016/02/11/valves-partners-with-

unity/ (accessed 2024).

[46] Unreal Engine. Epic Games, Inc. [Online]. Available:

https://www.unrealengine.com/

[47] R. Johns. "Unity vs Unreal." Hackr.io. https://hackr.io/blog/unity-vs-unreal-

engine (accessed 2024).

[48] "Unity Manual." Unity Technologies Inc. https://docs.unity3d.com/Manual

(accessed 2024).

[49] "Speed up debugging with Microsoft Visual Studio Code." Unity Technologies

Inc. https://unity.com/how-to/debugging-with-microsoft-visual-studio-code

(accessed 2024).

[50] "Enhance your prototype with ProBuilder." Unity Technologies Inc.

https://learn.unity.com/tutorial/enhance-your-prototype-with-probuilder

(accessed 2024).

https://unity.com/products/unity-engine
https://docs.unity.com/
https://assetstore.unity.com/
https://www.sec.gov/Archives/edgar/data/1810806/000119312520227862/d908875ds1.htm
https://www.sec.gov/Archives/edgar/data/1810806/000119312520227862/d908875ds1.htm
https://www.zdnet.com/article/googles-deepmind-teams-with-leading-3d-game-dev-platform-unity/
https://www.zdnet.com/article/googles-deepmind-teams-with-leading-3d-game-dev-platform-unity/
https://fortune.com/2016/02/11/valves-partners-with-unity/
https://fortune.com/2016/02/11/valves-partners-with-unity/
https://www.unrealengine.com/
https://hackr.io/blog/unity-vs-unreal-engine
https://hackr.io/blog/unity-vs-unreal-engine
https://docs.unity3d.com/Manual
https://unity.com/how-to/debugging-with-microsoft-visual-studio-code
https://learn.unity.com/tutorial/enhance-your-prototype-with-probuilder

57

[51] "Unity Shader Graph Package Manual." Unity Technologies Inc.

https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/i

ndex.html (accessed 2024).

[52] D. Shepherd. "Art, Light, and Awe: Uncovering the Mysteries of Stained

Glass." Templeton Religion Trust.

https://templetonreligiontrust.org/explore/art-light-and-awe-uncovering-

the-mysteries-of-stained-glass/ (accessed 2024).

[53] Adobe Photoshop. Adobe Inc. [Online]. Available:

https://www.adobe.com/ie/products/photoshop.html

[54] Paint.NET. dotPDN LLC. [Online]. Available: https://www.getpaint.net/

[55] "Unity Universal Render Pipeline Package Manual." Unity Technologies Inc.

https://docs.unity3d.com/Packages/com.unity.render-

pipelines.universal@17.0/manual/ (accessed 2024).

[56] E. Reinhard, "Sampling, Reconstruction, Aliasing, and Anti-Aliasing," in

Encyclopedia of Color Science and Technology, R. Shamey Ed. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2020, pp. 1-9.

[57] "Unity Scripting Reference." Unity Technologies Inc.

https://docs.unity3d.com/ScriptReference/index.html (accessed 2024).

[58] "API Reference for Google Cardboard XR Plugin for Unity." Google.

https://developers.google.com/cardboard/reference/unity (accessed 2024).

[59] "Quickstart for Google Cardboard for Unity." Google LLC.

https://developers.google.com/cardboard/develop/unity/quickstart

(accessed 2024).

[60] "Unity Mock HMD XR Package Manual." Unity Technologies Inc.

https://docs.unity3d.com/Packages/com.unity.xr.mock-

hmd@1.0/manual/index.html (accessed 2024).

[61] S. Butler. "How Important Are Refresh Rates In VR?" How-To Geek.

https://www.howtogeek.com/758894/how-important-are-refresh-rates-in-

vr/ (accessed 2024).

[62] Jovan. "How Much RAM Does A Smartphone Need Today?" KommandoTech.

https://kommandotech.com/guides/how-much-ram-does-a-smartphone-

need/ (accessed 2024).

https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/index.html
https://templetonreligiontrust.org/explore/art-light-and-awe-uncovering-the-mysteries-of-stained-glass/
https://templetonreligiontrust.org/explore/art-light-and-awe-uncovering-the-mysteries-of-stained-glass/
https://www.adobe.com/ie/products/photoshop.html
https://www.getpaint.net/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/
https://docs.unity3d.com/ScriptReference/index.html
https://developers.google.com/cardboard/reference/unity
https://developers.google.com/cardboard/develop/unity/quickstart
https://docs.unity3d.com/Packages/com.unity.xr.mock-hmd@1.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.mock-hmd@1.0/manual/index.html
https://www.howtogeek.com/758894/how-important-are-refresh-rates-in-vr/
https://www.howtogeek.com/758894/how-important-are-refresh-rates-in-vr/
https://kommandotech.com/guides/how-much-ram-does-a-smartphone-need/
https://kommandotech.com/guides/how-much-ram-does-a-smartphone-need/

	Declaration
	Permission to Lend and/or Copy
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Research Objectives & Scope
	1.4 Document Structure

	2 Related Work
	2.1 Computer Graphics Overview
	Figure 2.1: Meshes of the same object with varying numbers of triangles. Image credit: 3D Digital Recording of Archaeological, Architectural and Artistic Heritage[13] Fig. 2
	Figure 2.2: Visualisations of the effects of normal mapping. Image credits: Normal Mapping by Nikhil Kowshik[14] (top), Learn OpenGL by Joey de Vries[15] (bottom)
	Figure 2.3: High-level visualisation of the graphics pipeline with programmable steps highlighted in blue. Image credit: Learn OpenGL by Joey de Vries[15]
	Figure 2.4: Simplified overview of the relationship between models and shaders

	2.2 Literature Review
	2.2.1 Generating Stained Glass Renders
	Figure 2.5: Source input image (left) and rendered output image (right) using Mould’s method. Image credit: A Stained Glass Image Filter[16], Fig. 8
	Figure 2.6: Source input image (left), target style input image (centre), and rendered output image (right) using Brooks’ method. Image credit: Image-Based Stained Glass[17], Fig. 15
	Figure 2.7: Source input image (left) and rendered output image (right) using the method by Setlur et al. Image credit: Automatic Stained Glass Rendering[18], Fig. 1
	Figure 2.8: Source input image (left) and rendered output image (right) using the method by Seo et al. Image credit: Stained Glass Rendering with Smooth Tile Boundary[19], Fig. 3
	Figure 2.9: Source input image (left) and rendered output image (right) using the method by Doyle et al. Image credit: Painted Stained Glass[20], Fig. 3 and Fig. 6
	Figure 2.10: A sample frame of the source input video (top-left) and three frames of the rendered output video, using the method by Kang et al. Image credit: Video-based Stained Glass[21], Fig. 9 and Fig. 10

	2.2.2 Realistic Stained Glass Rendering
	Figure 2.11: Rendered stained glass squares using Shin’s method. Image credit: Modelling Stained Glass[22], Fig. 6
	Figure 2.12: Resulting stained glass render with various viewing directions (top row) and light source directions (bottom row) using the method by Kim et al. Image credit: A Realistic Illumination Model for Stained Glass Rendering[23], Fig. 5
	Figure 2.13: Stained glass window relighting results from three different source video input frames using the methods presented by Thanikachalam et al. Image credit: VITRAIL: Acquisition, Modelling, and Rendering of Stained Glass[24], Fig. 19

	2.2.3 Digitisation of Stained Glass Windows
	2.2.4 Applications of Virtual Reality

	2.3 Summary

	3 Methodology
	3.1 Design
	Table 3.1: High-level comparison of Unity render pipelines by their key features

	3.2 Implementation
	3.2.1 Setup
	Figure 3.1: Module selection window in Unity Hub during Unity Editor install process

	3.2.2 Scene
	Figure 3.2: Sample empty scene view in Unity Editor
	Figure 3.3: Searching for and installing ProBuilder in the Unity Package Manager
	Figure 3.4: Sample bare interior environment created with ProBuilder in Unity
	Figure 3.5: Prototype environment after importing free Unity Asset Store assets. Visible assets include “Lemon Trees” by Numena2F , “Grass Flowers Pack Free” by ALP3F , and “NoirMat – Noir Marble Pack Vol. 01” by Noir Project4F

	3.2.3 Shaders
	Listing 1: Pseudocode translation of the wind shader with explanatory comments
	Figure 3.6: Wind Shader Graph (WindShader) as implemented in Unity
	Figure 3.7: The shader input parameters we expose to the end user. We configure the UI appearance and minimum/maximum/default values in Shader Graph
	Listing 2: Pseudocode translation of stained glass shader with explanatory comments
	Figure 3.8: Stained Glass Shader Graph (SG_Shader) as implemented in Unity
	Figure 3.9: User-facing shader input parameters for a sample stained glass window
	Figure 3.10: Prototype environment after adding windowpanes with SG_Shader, each using differently configured user input parameters

	3.2.4 From Image to Material
	Figure 3.11: A thresholding tool’s area of effect on a sample stained glass window image to create an appropriate diffuse texture. Note the imperfect selection on the more intricate parts of the window
	Figure 3.12: Zoomed in before and after the use of a thresholding tool
	Figure 3.13: Using a brush tool to manually clean up the results of a thresholding tool
	Figure 3.14: Poor results in using a basic greyscale filter to generate a normal map
	Figure 3.15: Improved resulting normal map generation using a thresholded image
	Figure 3.16: Image-to-material pipeline (left) and the two resulting materials as previewed in Unity Editor on default spherical meshes (right)
	Figure 3.17: Prototype environment after applying the processed texture and normal map to the SG_Shader materials and creating their respective shadow mask materials
	Figure 3.18: Normal map provides a false sense of depth for the individual panes of stained glass making up the window, observable when light shines at a steep angle (left). Screenshots differ only in sun position

	3.2.5 Post-Processing and Lighting
	Figure 3.19: Before (top) and after (bottom) applying bloom, vignette, and ACES tonemapping post-processing. Visible assets include “Street Lamps 2” by SpaceZeta6F
	Figure 3.20: Before (left) and after (right) applying a generic coloured light cookie texture. Like the distortion texture, it is generic and common to all three windows in the prototype
	Figure 3.21: Attempting to apply one of the window images as a light cookie applies it repeatedly to all light cast by the sun, leading to uncanny and unrealistic results
	Figure 3.22: Before (left) and after (right) generating lightmap data using Unity’s baked indirect global illumination model. All other previously discussed techniques are used in both images. The bluish tint seen on the left image is the result of am...

	3.2.6 Interactivity
	Listing 3: Contents of CamController.cs with most comments and the more repetitive and simple code removed, but otherwise unmodified
	Listing 4: Unmodified contents of TeleportPlatform.cs, comments provide all necessary explanation of the code
	Figure 3.23: Screenshots in GCVR of an unselected (top) and selected (bottom) teleport platform
	Listing 5: The contents of ElevateButton.cs, with all comments and previously seen code removed, such as highlighting the button red, and most whitespace trimmed
	Figure 3.24: The primary Unity Editor windows used in an animation workflow
	Figure 3.25: The five teleport platforms, two elevation buttons and three sun buttons
	Listing 6: Contents of SunButton.cs almost entirely unmodified except for the removal of some whitespace. Comments provide all necessary explanation of the code

	3.2.7 Deployment
	Figure 3.26: Game View in the Occlusion Mesh render mode provided by MockHMD

	4 Results
	4.1 Visual Fidelity
	Figure 4.1: One of the three stained glass windows in our prototype (left) and two photographs (centre, right) of stained glass windows by Unknown on their public web blog9F , highlighting the coloured shadows of stained glass
	Figure 4.2: Comparing our prototype’s rendering of stained glass coloured shadows occluded by vegetation shadow (left), and a photograph of the real-world occurrence by Katja Linders on Pinterest10F (right)
	Figure 4.3: Comparing our prototype’s rendering of a stained glass window illuminated by sunlight exhibiting bloom/overexposure (left), and a real-world example photographed by a deleted user on an archived Reddit post11F (right)
	Figure 4.4: Three GCVR screenshots displaying more pixelated shadows and lower lighting contrast/dynamic range

	4.2 Performance
	Figure 4.5: Investigating the worst frametime spikes in the Unity Profiler window while the application runs on the target device. Unity’s Profiler process is revealed to consume over 21% of the frametime of some frames. Note that the GPU and CPU are ...
	Figure 4.6: Frametimes in Unity Profiler are shown to be worse when observing the stained glass windows (top) and better when looking away towards the walls of the interior (bottom), revealing the most performance-intensive parts of our scene to be th...
	Figure 4.7: The memory section of the built-in Profiler
	Figure 4.8: Comparing two different snapshots of the test device’s memory in the Memory Profiler. Note that “Total Allocated” memory as labelled here is defined differently from that seen in Fig. 4.7, can safely exceed available device memory, and is ...

	4.3 Ablation Study
	Table 4.1: Comparing performance of four scenes with varying Unity Objects present or missing. “Full” is the control prototype scene with no removed Objects, “Post & Sun” combines the removals of both “No Exterior” and “No Interior”, and “Empty” remov...

	5 Conclusion
	5.1 Contributions
	5.2 Limitations & Challenges
	5.3 Future Work

	Bibliography

