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With the advancement of Automatic Speech Recognition (ASR) systems, a significant
number of large ASR models trained on high-resource languages were created. We want
to explore the application of transfer learning to develop ASR systems for low-resource
languages, in our case on Lithuanian. Understanding the challenge of having a limited
amount of labelled data available for low-resource languages, we want to speed up the
fine-tuning of pre-trained models by making use of the common linguistic features across
languages. The first experiment conducted uses clustering techniques to analyse feature
similarity in cluster visualisations and silhouette scores. The second experiment performs
fine-tuning on the pre-trained models and then gets predictions using the test dataset,
to calculate Word Error Rate (WER) and Character Error Rate (CER) scores. Then we
examine the results from experiment one and experiment two, to find a correlation. The
results indicate that we can reduce the computational expenses of choosing models by
pinpointing model compatibility prior to fine-tuning. From this, we can conclude that
transfer learning can significantly reduce the need for large labelled datasets in building
ASR systems for low-resource languages, like Lithuanian.
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Chapter 1

Introduction

Automatic Speech Recognition (ASR) systems allow computers to understand spoken lan-
guage and convert it into text. ASR systems are used in a lot of everyday places, such
as transcription services, voice-activated commands and assistants that can be found
in smartphones and smart devices. While these technologies have made significant ad-
vancements in accuracy and reliability, they are mostly available to languages with large
amounts of labelled data.

1.1 Project
Developing ASR systems for low-resource languages is not an easy task, the main reason
being the lack of labelled data available on these languages. With the recent advancements
in deep learning, the newer ASR models require an extraordinary amount of data to create
large models. Because of this, advancements in ASR technologies mainly benefited high-
resource languages like English. I want to investigate if transfer learning techniques can
enhance ASR systems for the Lithuanian language with a limited amount of labelled
speech data. The essence of this project is using models that have been pre-trained
on high-resource languages and then fine-tuning them using the low-resource Lithuanian
language to get prediction results. By doing so I want to understand the viability of
using transfer learning to create effective ASR systems for low-resource languages like
Lithuanian.

1.2 Motivation
The motivation for this research comes from the unfairness of Automatic Speech Recog-
nition technologies, where languages with a higher number of resources get more techno-
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logical support than others. As a native speaker of several low-resource languages one of
which is Lithuanian, I understand the benefits of having access to good ASR technology.
A lot of the smartphones and smart devices in general that use speech recognition, don’t
have support for low-resource languages, such as Lithuanian. This limits the application
of speech recognition technologies around the world and obstructs people from accessing
certain digital services. This work is also motivated by the desire to use and preserve
low-resource languages. As a lot of the smaller or indigenous languages are being used
less and less, they are in danger of disappearing. Making ASR technologies available for
these languages can keep them more active and relevant, as local people can use these
technologies in their native languages and thus preserve them.

1.3 Aims
The main objective of this project is to understand the viability of using transfer learning
to create effective ASR systems for low-resource languages like Lithuanian. Based on
this we want to find out, if we can find the best pre-trained models for transfer learning,
without needing to fine-tune them on Lithuanian by using less computationally intensive
methods, like clustering. We want to know if we can cluster the features and see if there is a
discernible structure. We then want to know if the fine-tuned model performance matches
our cluster performance measure. If there is a correlation between the results, we can use
clustering in the future to choose pre-trained models that best fit our target low-resource
language. These would reduce the computational cost of training ASR systems using
transfer learning for low-resource languages, with a limited amount of labelled data.

1.4 Structure
Chapter 2, State of the Art: provides a detailed overview of research in the field of ASRs.
It starts by giving an introduction to the field and then talks about the history of ASR
technologies. After that, it discusses the ethics of building large models from unsuper-
vised models and then talks about several approaches for transfer learning, unsupervised
learning and meta-learning.

Chapter 3, Design: provides a detailed description of the technologies that can be used,
then formulates the problem. Then describe the challenges I identified and propose work
to alleviate these challenges and design our software system. Lastly, it gives an overview
of the Design with all its steps.
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Chapter 4, Implementation: discusses the step by step process of the implementation.
Explains each step in detail: data pre-processing, feature extraction and analysis, and
fine-tuning.

Chapter 5, Evaluation: describes the experimental setup and then discusses the results I
obtained from both experiments. Lastly, this section discusses how the results from both
experiments correlate.

Chapter 6, Conclusions and Future Work: summarises the work I have done and the
results obtained. It also explains several areas of possible future work.
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Chapter 2

State of the Art

2.1 Background
Automatic speech recognition (ASR) is a technology that allows computers to interpret
human speech and convert it into text. Early adoptions use algorithms to analyse the
audio signals and decode them into text using engineered audio features as opposed to
extracting these features automatically from speech data. Modern speech recognition
systems use advanced machine learning techniques such as deep neural networks and
transformers to improve the performance, accuracy and adaptability of ASRs. This tech-
nology is used in different applications, such as voice assistants, transcription services, and
interactive voice response systems. It is fascinating to see how much the ASR technology
has changed over the years.

2.1.1 History of automated speech recognition

Automatic speech recognition has a long history starting as early as the 1950s. The first
attempt at speech recognition was made by Bell Laboratories who designed the ‘Audrey‘
system, which could recognise single digits spoken with 90% accuracy (Davis, 1952). Since
then the field of speech recognition has evolved together with technological advancements.
Later on in the 1980s and 1990s Statistical methods were used for speech recognition,
where the introduction of Hidden Markov Models(HMM) contributed to the development
of modelling of time series data, like audio signals Rabiner (1989). I won’t be delving
too deeply into these methods as my project mainly focuses on deep learning-based ASR
models.
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2.1.2 History of AI automated speech recognition

The history of speech recognition started with the pivotal advancement that was made
in the early 2010s when Deep Neural Network (DNN) methods were introduced to main-
stream speech recognition (Hinton et al., 2012). These advancements led to the devel-
opment of end-to-end deep learning models, such as Transformers Vaswani et al. (2017)
originally made for translation purposes, which were then adapted to ASR by Dong et al.
(2018). This led to an improvement in the performance, accuracy and reliability of auto-
matic speech recognition models.

Hinton et al. (2012) combined the findings from several research groups that showed the
effectiveness of DNNs in speech recognition. Before this publication, the main approach
for speech recognition was using Gaussian Mixture Models(GMMs) in combination with
HMMs (Rabiner, 1989). Although these models could handle the statistical aspects of
speech recognition, they weren’t able to model complex nonlinear relationships in acoustic
signals very well. The authors chose to use DNNs with nonlinear activation functions as
this allowed models to learn high-level abstractions contained in the data. Researchers
back in the time of making these models faced the challenge of training deep networks,
which suffered from vanishing gradients (Bengio et al., 1994). To address this challenge,
pre-trained methods were used, such as Restricted Boltzmann Machines, to initialise
the weights of the network Hinton and Salakhutdinov (2006). This meant that before
fine-tuning the model on the labelled data, the network would be pre-trained in an unsu-
pervised manner. This allowed authors to significantly improve the DNNs’ performance.
Another way the performance of DNNs was improved was by using GPUs to speed up
the training process. Based on the above, we could argue that the DNN models were the
first step in the development of modern AI ASRs, we could also say that the DNNs such
as those developed Hinton et al. (2012) walked, so that the more complex models made
after could run.

Throughout the years new ASR models were implemented with variations of existing
Deep Neural Networks, such as Recurrent Neural Networks (RNNs). Following the de-
velopment of more recent transformer models (Devlin et al., 2018), Dong et al. (2018)
proposed the Speech-Transformer model, which uses the attention mechanism, which was
originally designed for text processing and translation Vaswani et al. (2017), removing the
need for recurrence. It was then adapted for speech recognition in this paper. The core in-
novation of this model is the use of self-attention, where representations of a sequence are
computed by relating different positions of the input to each other. This allows for higher
parallelisation of computations compared to RNNs and reduces the training times. This,
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in turn, makes it easier to run the Speech-Transformer model on the GPUs and makes
better use of the many computational cores the GPUs possess, increasing the speed of
training and the performance of the model.

2.1.3 Ethics behind the large AI models

The evolution of ASR marks a significant shift from traditional Heuristic models to ad-
vanced neural Network-based models. From the work of Bender et al. (2021) we can
notice that recently we have seen a massive push towards building Large Language Mod-
els (LLMs), such as BERT, GPT, and Switch-C, which have significantly improved the
performance of Natural Language Processing (NLP) tasks. Although LLMs have shown
significant performance improvements, it is still questionable whether there is a necessity
to continually increase model sizes and if it is sustainable to do so given the associated
risks and costs. The significant financial costs and environmental impact of training
and deploying LLMs and large ASR models raise huge concerns. The name of the pa-
per ‘Stochastic Parrots,‘ refers to the idea that language and speech recognition models,
regardless of their complexity or size, mimic or ‘parrot human‘ language without under-
standing meaning or context. This mimicry is based on patterns found in massive text
and speech corpora used to train these models. With this behaviour comes the risks of
using vast, unlabelled/unvetted datasets scraped from the internet to train LLMs or ASR
models. These datasets can often be biased and contain predominant viewpoints that
can be harmful towards marginalised groups. Therefore, it is important to carefully select
datasets and document any training material to ensure transparency while creating LLMs
and ASR models. The authors state that having biases in the training data of ASRs can
lead to biased outputs, where the model can perform better with certain accents and
dialects than others. This could provide systematic disadvantages to individuals based
on their speech patterns. There have been works to address these kinds of issues in ASR,
one of which is (Lonergan et al., 2023).

Using Balanced Training Corpora for low resource languages for ASRs

In the paper by Lonergan et al. (2023), the authors explore the effectiveness of using
balanced training corpora to enhance speech recognition models across different dialects
of Irish (a low-resource language). To do this, the authors created 12 different datasets
with varying numbers of corpora for each dialect and then trained the XLS-R wav2vec
2.0 (Schneider et al., 2019) pre-trained model with Connectionist Temporal Classifica-
tion (CTC) Graves and Graves (2012). They initially trained the model with a corpora
that was balanced across the three Irish dialects. Following this, these resulting models
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were fine-tuned by the 12 datasets with varying dialect-specific material. The research
showed that when using balanced corpora, there were significant differences in ASR per-
formance across the dialects. The authors pointed out how the Ulster dialect consistently
under-performed when compared to Munster and Connacht dialects. This suggests that
just balancing the corpora is not enough in balancing an ASR system, as the quantity of
data doesn’t always translate to balanced performance. The authors note that different
datasets with added dialect-specific data do improve recognition performance, but the im-
provement varies from dialect to dialect. All in all, the authors conclude that even though
the usage of balanced corpora for low-resource languages does help with the recognition
of dialect-specific data, it is not a panacea.

2.2 Related Work
In this section I will be talking about related work to what I am trying to accomplish,
specifically approaches to low-resource ASRs.

2.2.1 Speech Recognition for Languages without Audio using
n-gram statistics

The work done by Li et al. (2022a) investigates if developing speech recognition models for
languages with little to no audio datasets is feasible, by relying on textual data or n-gram
statistics. The authors hypothesised that they accomplished an effective speech recogni-
tion solution without direct audio. They planned to achieve this by using multilingual
models, available dictionaries and rules of the languages, and lastly, a language model
built from text data. To make this speech recognition model authors created a pipeline
composed of three key elements: an acoustic model, a pronunciation model and a language
model. The acoustic model utilises multilingual models to recognise phonemes of the tar-
get language even if they are not in the target language audio data. It does this by using
an allophone-based multilingual architecture. This architecture makes use of a language-
independent universal phone recognition model to identify the physical-level phone units
from speech audio. The universal model is trained on high-resource languages like English
and Mandarin. The authors make use of allophones, which are language-dependent phone
to phoneme mappings which were encoded by phonologists Mortensen et al. (2020). These
allophones allow the model to adapt to new languages without the need for direct training
data from those languages. The Pronunciation model uses a multilingual grapheme-to-
phoneme(G2P) model to predict phoneme pronunciations from text. If the languages
happen to be high-resource and have existing dictionaries and rules, this model can be
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trained directly by using this data. For languages with little to none of this data available,
zero-shot Li et al. (2022b) or transfer learning is used, where the multilingual G2P model
approximates pronunciation by using models from linguistically similar languages. It does
this by selecting the top-k nearest languages and combining their models to predict the
most likely phoneme sequence for the target language. The authors conducted experi-
ments on 129 languages using two major datasets: Common Voice and CMU Wilderness.
This speech recognition model achieves a respectable Character Error Rate (CER) and
Word Error Rate (WER), where the CER and WER get better with a higher number of
utterances(raw text) used, where when ten thousand utterances are used CER equals to
50% and 45% and WER equals to 79% and 69% in Common Voice Ardila et al. (2019)
and Wilderness Black (2019) datasets respectively. The authors also pointed out that
the performance varied significantly based on the linguistic characteristics of the target
language. This is a new approach to ASR systems, but it is very complex in its struc-
ture as well as computationally expensive because multiple datasets need to be used and
processed.

2.2.2 Pre-training on High-Resource ASR task to Improve Low-
Resource Speech-to-Text Translation

Low-resource languages often don’t have effective Speech-to-text Translation(ST) models,
as they often lack training data. Usually, these systems would be built with a combination
of ASR and Machine Translation(MT). However, in the case of low-resource languages,
this method is not feasible. So paper by Bansal et al. (2018) tries to assess if pre-training
an ST model on a high-resource ASR task can fix the issues of low-resource languages
in ST. The authors chose to use the encoder-decoder model with attention 2.1, used for
both of their ASR and ST models. The encoder processes the input data and converts
it into a set of feature representations, while the decoder generates corresponding text in
the target language. As we can see in the figure, the encoder consists of CNNs followed
by bidirectional Long Short-term Memory Networks (LSTMs). The decoder makes use
of an attention mechanism and its fully connected layers to focus on different parts of
the speech input and generate text. The authors first want to pre-train this model on
a high-resource ASR task, therefore they want to train the encoder-decoder model with
attention on a high-resource language like English or French. Then they fine-tune the
pre-trained ASR model on the low-resource ST task, where a smaller target dataset pairs
audio from the low-resource language with text in the target language.
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Figure 2.1: Encoder-decoder model with attention for ASR and ST (Bansal et al. (2018))

To test out how this methodology worked, the authors used two datasets for pre-
training ASRs and two more for fine-tuning STs. To pre-train the English ASR they used
The Switchboard Telephone Speech Corpus Godfrey and Holliman (1993) and to pre-train
French ASR they used The GlobalPhone French Speech Corpus Schultz (2002). To fine-
tune Spanish-English ST the authors used The Fisher Spanish Speech Corpus Graff et al.
(2010) and to fine-tune Mboshi-French ST they used a corpus that includes about four
hours of Mboshi speech translated into French Godard et al. (2017). The results show
significant improvements when models are pre-trained on ASR tasks and then are fine-
tuned for ST tasks. We can see this from the Spanish-English ST model result, where
it achieves a BLEU Papineni et al. (2002) score improvement from 10.8 to 20.2. This
happens when it first gets pre-trained on 300 hours of English ASR data and then fine-
tuned on 20 hours of Spanish-English ST data. The authors conclude that this method
is effective in training STs for low-resource languages by using high-resource ASR data
to pre-train the models. It is also important to note that, even when trained on different
languages compared to the target ST language, pre-training can provide a substantial
performance boost to the model. This is largely due to the transferable nature of the
learned acoustic models, which capture phonetic variations that are broadly applicable
across languages.
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2.2.3 Unsupervised Learning for Speech Recognition

Unsupervised learning can be dangerous due to the biases it can hold, but it still is
a good tool for languages with scarce labelled data. Schneider et al. (2019) discusses
the challenges of developing speech recognition models that require a lot of transcribed
audio data for high performance. Due to the recent success of unsupervised training in
Computer Vision and NLP tasks at the time of publishing of their paper, the authors
proposed unsupervised pre-training as a solution for ASR models. They introduced the
Wav2Vec model, which is designed to utilise large amounts of unlabelled audio data to
learn general audio representations. The representations learned by wav2vec are then used
to improve the training of speech recognition models, achieving significant improvements
in WER even when very little transcribed data is available. The Wav2Vec model consists
of 2 steps: a feature encoding step and a context aggregation step. The raw audio input
is passed through an encoder network, which is a convolution neural network (CNN), that
consists of five convolutional layers, where each layer has a progressively more abstract
representation of the input audio. This encoder finds and saves local acoustic features from
the raw audio without requiring any information that is labelled/transcribed. After the
encoding step, a context network consisting of nine convolutional layers aggregates these
features over time to create a temporal context. The context network also has a receptive
field of 210ms, allowing it to process 210ms of audio at once, enhancing the performance
wav2vec model. To test the performance of the wav2vec model the authors used Wall
Street Journal(WSJ) Garofolo et al. (1993a) and TIMIT Garofolo et al. (1993b) datasets,
while pre-training was done on the subset of the LibriSpeech Panayotov et al. (2015)
and WSJ datasets. The TIMIT dataset was used to mostly train phoneme recognition,
while WSJ and LibriSpeech datasets were used for training the model in extensive speech
tasks, like Word prediction. They also utilised the wav2letter++ toolkit for building
and evaluating acoustic models, where some fine-tuning was done to prevent overfitting.
The wav2vec model shows substantial improvements over the baseline systems it was
compared to. Particularly on the WSJ nov92 test, the wav2vec large model trained on
LibriSpeech got a WER of 2.43%, which outperforms most of the traditional models used
at the time. The model also showed significant improvements in low-resource settings,
having up to 36% reduction in WER. The authors also point out that using larger and
more diverse datasets to train the wav2vec model leads to better outcomes. The results
show that wav2vec is a good model for scenarios where labelled data is scarce. This makes
the wav2vec model very useful in our situation, where we are trying to perform transfer
learning for low-resource languages.
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Conneau et al. (2020) also explores the use of unlabeled speech data across multiple
languages to improve speech recognition performance, especially for low-resource lan-
guages. The authors use pre-existing architecture and training methods of wav2vec 2.0
and build upon it. They then make use of unsupervised learning to pre-train a model
called XLSR from raw speech from multiple languages. As labelled data is scarce and it
is even more the case in low-resource languages, this paper tries to solve that by using
multiple languages to pre-trained an XLSR model.

XLSR made by authors adapts the wav2vec 2.0 framework to work with multiple
languages, where it can learn from raw audio of different languages without the need for
labelled data. The model architecture 2.2 is made of a convolutional feature encoder that
maps the raw audio to latent speech representations, followed by a Transformer network
outputting context representations. After that a quantisation module discretises these
feature encoder outputs, forming the multilingual quantised latent speech representations.
All of these allow the model to have a contrastive learning objective where it can learn to
identify the correct latent representation among distractors. Following this, the model is
pre-trained on unlabeled data from a mix of languages, aiming to capture universal speech
features. Finally, for fine-tuning, a classifier is added on top of the model, which is then
trained on labelled data using a Connectionist Temporal Classification (CTC) loss Graves
and Graves (2012).

Figure 2.2: The XLSR model (Conneau et al. (2020))

The paper by Conneau et al. (2020) shows that cross-lingual pre-training significantly
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outperforms monolingual approaches, particularly benefiting low-resource languages with
a small amount of labelled data. The XLSR model achieves remarkable reductions
in Phoneme Error Rate (PER) and WER across various benchmarks while using the
Common Voice and BABEL datasets for training. This suggests that the model learns
language-specific features and also captures general phonetic patterns that can be used
across languages. This in our case means that the model effectively transfers knowledge
between related languages and can be used for transfer learning in low-resource languages.

2.2.4 Improved Meta-Learning for Speech Recognition

Singh et al. (2022) introduces a framework that uses meta-learning to improve the speech
recognition capabilities of ASR models for low-resource languages. End-to-End (E2E)
models can often fall short when used for recognising low-resource languages due to the
lack of labelled data. To counteract this, the authors propose that using the multi-step
loss (MSL) function for the meta-learning framework could lead to more stable training
procedures. Therefore, this would result in more accurate ASR systems for low-resource
languages. The ASR model used in this paper is based on a Transformer architecture.
It utilises a sequence-to-sequence model based on the encoder-decoder setup. The model
also has a feature extraction layer that uses learnable VGG-based CNN when process-
ing the input speech data. For the meta-learning component to quickly adapt to new
languages with minimal gradient descent steps, the authors designed it to optimise the
initialisation of model parameters. The Multi-Step Loss (MSL) method used by the au-
thors complemented this by allowing a stable meta-learning process. To test the resulting
model authors used the Common Voice v7.0 Ardila et al. (2019) dataset, which has mul-
tiple low-resource languages. The MSL-enhanced meta-learning framework significantly
outperforms the standard MAML in terms of stability and accuracy. The results show im-
provements in Character Error Rates (CER) across multiple languages that were tested.
We can see that MSL stabilises the training process of the ASR model and also accelerates
convergence speeds and improves the accuracy of the model.

2.3 Summary
When working on developing ASRs for low-resource languages it is important to keep in
mind the existing research in the same area. From the extensive research done in the
field, we can gather the best methods and models researchers came up with and use them
to propel our research. It is important to cite and give credit to the work done by other
researchers, as it shows appreciation and allows that work to reach even more people.
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We should also put a lot of consideration when designing our models and methods as to
which pre-existing techniques to use based on their advantages and disadvantages.

I took a look at different ASR models, such as wav2vec Schneider et al. (2019) and XLSR
Conneau et al. (2020) model. I also described the Transformer Dong et al. (2018) model,
together with the Connectionist Temporal Classification(CTC) Lonergan et al. (2023).
These models can be considered State of the Art models available for use. It is important
to take into account the work done by the authors of these models when designing our
own models and methodologies. All in all, in this section I described found methods and
descriptions of work that have helped to design the proposed ASR system and helped to
avoid the pitfalls researchers have faced in the past.
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Chapter 3

Design

Before we can start the implementation, we have to plan and design our project based on
the challenges and opportunities we identified during the literature review. We also need
to determine what tools we will use for our implementation. So in this chapter, I will
determine what kind of software needs to be built for our ASR system and discuss what
key resources are needed.

3.1 Problem Formulation
The goal we have is to understand how viable transfer learning is for the low-resource
language of Lithuanian. From this stems our main problem: how can we find the best
pre-trained models to effectively learn low-resource languages without having to fine-tune
models? It is computationally expensive to fine-tune large ASR models. Due to this, we
are trying to find out if we can use some less computationally expensive methods, like
clustering, to find the best pre-trained models. Then we would fine-tune those models to
evaluate If our hypothesis is correct.

3.1.1 Identified Challenges

From what we saw in the previous chapter, one of the challenges we are facing is fine-tuning
a model pre-trained on high-resource languages with data from low-resource languages.
The main challenge would be the scarcity of labelled audio datasets in the Lithuanian
language. Even with the use of transfer learning it might still be hard to fine-tune large
models to fit the Lithuanian language. Another issue is the complexity of the Lithuanian
language, where even native speakers often struggle with spelling and correctly building
sentences. This is due to the Lithuanian language being mostly unchanged since the
14th century and also having quite a big alphabet, with multiple variations of similar
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vowels. To counteract this we will need to perform some dataset pre-processing. The
last challenge is the computational intensity of fine-tuning models as a lot of the training
on the models is done on a GPU and requires quite a bit of memory. For this reason, I
needed to devise ways to reduce the training workload and use techniques to speed up
the training processes.

3.1.2 Proposed Work

Based on the identified challenges, I identified three main tasks:

• The First part would be collecting the Lithuanian language dataset, cleaning the
dataset and preparing the dataset for future work with the models.

• The Second part would be feeding these datasets to various pre-trained models,
extracting the features from the models and then performing clustering on them.
Lastly, we will see if we can find similarities between the features of the pre-trained
language and the target language without fine-tuning (reducing computational ex-
pense).

• The third part of this analysis is to fine-tune the pre-trained models and check if
the results we got in the second part correlate with the fine-tuning performance.

3.2 Overview of the Design

3.2.1 Tools to be used

Jupyter notebook with Python kernel

The choice of programming language and the environment was the first thing that needed
to be decided for the implementation of the project. For the environment of the project,
I used Jupyter notebooks with a Python kernel. The main reason I chose the Jupyter
notebook as the environment is because it provides an interactive environment where code,
output, and notes are displayed in the same place, making it ideal for data analysis and
iterative coding. Due to this, adjustments can be easily made on the fly after running
a part of the code and receiving immediate feedback. Finally, I chose Python as my
Programming language, as it is very versatile and has a massive ecosystem of different
libraries and tools, such as Transformers, Torch, etc.
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Libraries and Tools

Now that we will be using Python as our programming language, we need to explore the
available libraries that will help us build our ASR system. The Transformers library Wolf
et al. (2019) made by Hugging Face is perfect for this purpose, as it is easy to use and has
state-of-the-art models for ASR. It includes models like Wav2Vec2, Wav2Vec2ForCTC,
etc. that are pre-trained on vast datasets which is perfect in our case, as we need pre-
trained models for transfer learning. Another Hugging Face library I will be using is
Datasets. It is highly compatible with the Transformers library and is designed to easily
load and pre-process data for machine learning. It has a great caching mechanism, which
together with Jupyter notebook works seamlessly at speeding up data processing work-
flows. For part two 3.2.3 of my design, I used the Scikit-learn Pedregosa et al. (2011)
library, as it has clustering and dimensionality reduction functionality. Another library
for visualisation of the extracted features is Seaborn Waskom (2021), as it can handle
complex datasets and create visualisations with relatively simple code. The last major
library I used is Torch Collobert et al. (2011) as it has a strong GPU support, which
greatly reduces training and fine-tuning time.

3.2.2 Part one: Dataset pre-processing

Firstly, I used the Mozilla-foundation Common Voice Lithuanian language audio dataset.
After loading the dataset using the Dataset library from Hugging Face, I removed the
columns not used in this analysis, special characters and extra vowel characters found in
Lithuanian. Then I extracted the dictionary of unique characters present in the vocabu-
lary. I did this to build a tokeniser that would be used in model training. I also set the
sampling rate to 16000Hz, as most models only accept audio of this sampling rate. The
last bit of the dataset manipulation was done to discard any utterance that was too large
to load into the model given the GPU available to me.

3.2.3 Part two: Extracting model features and analysing them

To extract features from the pre-trained model, we first feed it the Lithuanian language
dataset. Followed by taking the features from the last three layers of the model. Getting
these facilitated analyses and visualisations of the features using different clustering tech-
niques. I ran two clustering models, one being PCA with Agglomerative clustering and
the second one being PCA with K-means clustering. I hypothesise that the higher the
silhouette score of these clustering models and the more distinct the clusters are in visu-
alisations, the better the results of fine-tuning the model with a low-resource Lithuanian
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language dataset will be.

3.2.4 Part three: Fine-tuning pre-trained models

Fine-tuning the pre-trained models on the low-resource Lithuanian language dataset is
the last step in the process. To fine-tune the models I initialised the training arguments
and a Trainer model from the Transformers library Wolf et al. (2019) and then ran the
Trainer using the pre-trained model.

Figure 3.1: Diagram of Design

The final design is visualised in 3.1. It shows all the designed parts and the order in which
they were run. The results of Part Two ( 3.2.3) and Part Three ( 3.2.4). will be compared
in Section 5.2.

3.3 Summary
After considering and evaluating the best solutions, I provided a design for this project
implementation. I also chose the most suitable programming language - Python, envi-
ronment - Jupyter notebook and libraries, such as Transformers. Finally, I planned and
explained each part of our design and created a visualisation showing the flow of the
proposed design in the diagram 3.1.
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Chapter 4

Implementation

4.1 Overview of the Solution
In the previous section, I proposed the design for the implementation and we outlined the
steps needed to build our software system. All of the software implementation is done in
a Jupyter notebook with a Python kernel in a sequential manner. The implementation
follows the design 3.1, where the software has three parts. The first part is the loading of
the Lithuanian Language dataset and cleaning it up into a format that models can accept.
The second part is feeding these datasets into pre-trained Wav2Vec2 models that have yet
to be fine-tuned and then extracting the features from the last three layers of the models.
After extracting the features we need to perform clustering on it, followed by visualising
those clusters and getting their silhouette scores. The third part consists of fine-tuning
the Wav2Vec2 models, performing the predictions based on the test dataset and then
calculating the Word Error Rate (WER) and Character Error Rate (CER). The last step
is to evaluate the findings from parts two and three and see if there is any correlation.

4.2 Dataset Pre-procressing
I started the data pre-processing, by loading the Mozilla-foundation Common Voice
Lithuanian language audio dataset Ardila et al. (2019). After loading the dataset I got rid
of any metadata that were not used in the model, these include: accent, age, client_id,
down_votes, gender, locale, segment and up_votes. The Lithuanian language dataset is
too scarce to make any sense of the metadata so it was removed, as data points are often
missing key metadata. Next, special characters were removed and the text was converted
into lowercase. Even though large ASRs can predict special characters that constitute the
punctuation in sentences, they need a language model (rules) to do so. Special characters
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can negatively affect fine-tuning as it is much harder to classify speech segments into
special characters as they don’t correspond to a phoneme. Where the letter ‘a‘ might
have a clear sound, the special character ”.” does not 4.1.

1 chars_to_remove_regex = '“‘”�„–[\,\?\.\!\-\;\:\"\\%\\\\\\']'
2

3 def remove_special_characters(batch):
4 batch["sentence"] = re.sub(chars_to_remove_regex , '', batch["sentence"

]).lower()
5 return batch
6

7 common_voice_train = common_voice_train.map(remove_special_characters)
8 common_voice_val = common_voice_val.map(remove_special_characters)
9 common_voice_test = common_voice_test.map(remove_special_characters)

Listing 4.1: Regex class to remove special characters and turn the
sentences into lower case

The Lithuanian alphabet contains special characters, which can add extra complexity
when fine-tuning models. These special characters are modifications of standard charac-
ters, some of which like ‘Č‘, ‘Š‘ and ‘Ž‘ have different phonemes compared to C, S and
Z. However this is not the case for the vowels, where modified vowels are just longer
versions of standard characters. For example: ‘ą‘ doesn’t have a different sound from ‘a‘,
the sound is just longer, and one could say ‘ą‘ == ‘aa‘. For this reason, I chose to replace
these special characters with their standard counterparts 4.2, as there is no real phoneme
difference between these characters. I replace these vowels to make it easier to fine-tune
the models and increase the accuracy of the fine-tuned ASR.

1 def replace_extra_vowel_characters(batch):
2 batch["sentence"] = re.sub('ą', 'a', batch["sentence"])
3 batch["sentence"] = re.sub('į', 'i', batch["sentence"])
4 batch["sentence"] = re.sub('y', 'i', batch["sentence"])
5 batch["sentence"] = re.sub('ų', 'u', batch["sentence"])
6 batch["sentence"] = re.sub('ū', 'u', batch["sentence"])
7 batch["sentence"] = re.sub('ę', 'e', batch["sentence"])
8 batch["sentence"] = re.sub('ė', 'e', batch["sentence"])
9 return batch

10
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11 common_voice_train = common_voice_train.map(replace_extra_vowel_characters)
12 common_voice_val = common_voice_val.map(replace_extra_vowel_characters)
13 common_voice_test = common_voice_test.map(replace_extra_vowel_characters)

Listing 4.2: Replacing special vowels in Lithuanian language

Next, I extracted unique characters from the dataset and saved them into a vocabulary
dictionary. Then, I replaced the space ” ” with the ”|” pipe character and also added
‘[UNK]‘ and ‘[PAD]‘ tokens into the vocab dictionary. I created this vocabulary dictionary,
as it was used to initialise the CTC Tokenizer class from Wav2Vec2. This tokenizer was
then used to fine-tune the model, changing the model output sizes to the length of the
vocab dictionary.

1 def prepare_dataset(batch):
2 audio = batch["audio"]
3

4 batch["input_values"] = processor(audio["array"], sampling_rate=audio["
sampling_rate"]).input_values[0]

5 batch["input_length"] = len(batch["input_values"])
6

7 with processor.as_target_processor():
8 batch["labels"] = processor(batch["sentence"]).input_ids
9 return batch

10

11 common_voice_train = common_voice_train.map(prepare_dataset , remove_columns
=common_voice_train.column_names)

12 common_voice_val = common_voice_val.map(prepare_dataset , remove_columns=
common_voice_val.column_names)

13 common_voice_test = common_voice_test.map(prepare_dataset , remove_columns=
common_voice_test.column_names)

Listing 4.3: Processing the data into the format expected by
Wav2Vec2ForCTC

Until now, I discussed the changes made to the metadata and labels of the dataset, now it’s
time to process the audio data. The first thing I changed is the sampling rate of the audio,
as Common Voice audio data has a sampling rate of 48000Hz. The Wav2Vec2 models use
audio data with a sampling rate of 16000Hz, so I re-sampled the audio data. Next, I used
Wav2Vec2Processor to process the data to the format expected by Wav2Vec2ForCTC for

20



training 4.3. Finally, I filter out any audio with an input length of more than 90,000, to
prevent Out-Of-Memory errors.

4.3 Extraction and analysis of model features
Now that the dataset has been cleaned, we can load in the pre-trained models and
feed our dataset into it, to extract model features. For the models, I chose an En-
glish model by Grosman (2021a), the Facebook model by Arun et al. (2021) and the
Russian model by Grosman (2021b). After choosing the models, I loaded them using
the Wav2Vec2ForCTC method from the Transformers library 4.4 with parameters from
the blog by von Platen (2021). Lastly, I set output_hidden_states to True in the model
initialisation in order to view and extract features from model layers.

1 model = Wav2Vec2ForCTC.from_pretrained(
2 "jonatasgrosman/wav2vec2 -large -xlsr -53-russian",
3 attention_dropout=0.1,
4 hidden_dropout=0.1,
5 feat_proj_dropout=0.1,
6 mask_time_prob=0.05,
7 layerdrop=0.05,
8 ctc_loss_reduction="mean",
9 pad_token_id=processor.tokenizer.pad_token_id ,

10 vocab_size=len(processor.tokenizer),
11 output_hidden_states=True, # We add this to take a look at the features

extracted!
12 ignore_mismatched_sizes=True
13 )

Listing 4.4: Initialisation of the pre-trained models

Following this we feed input values into the pre-trained model using the Wav2Vec2Processor
method from the Transformer library. Then we access and save the features from the hid-
den states of the last layer, second last layer and third layer. We then normalise the
features we got using the MinMaxScaler method from the Scikit-learn library. We then
perform Principal Component Analysis (PCA) with 4 components to reduce the dimen-
sionality of the data. With the results from the PCA, I ran two different clustering
methods: Agglomerative clustering and K-means clustering. Following this, I visualise
the results by using the labels from the clustering methods and we also calculate silhouette
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scores for each clustering.

4.4 Fine-tuning of pre-trained models
To start fine-tuning the models detailed above, we need to define a data collator von
Platen (2021). This data collator treats input values and labels differently, applying
different padding functions to them, as input and output are of different modalities. It
also pads the training batches dynamically meaning that all training samples should only
be padded to the longest sample in their batch, reducing computational expense and the
amount of memory needed to run this fine-tuning. I also created a function that computes
the WER metric and then uses it to evaluate the fine-tuning. Next, we need to freeze the
feature extractor, so it doesn’t get fine-tuned. We do this because the feature extractor
consists of a stack of CNN layers that extract “acoustically meaningful - but contextually
independent - features” von Platen (2021) from the raw audio data.

We proceed to define all the training arguments 4.5, noting that a small batch size
was used due to memory constraints. I also batch inputs of similar size together, dodging
a lot of useless padding and speeding up the training process. Additionally, I assigned
the gradient accumulation parameter to a higher value as we have smaller batch sizes.
This allows for the simulation of larger batch sizes without the corresponding increase in
memory usage, where instead of updating model weights after each batch, the accumulated
gradient of multiple smaller batches is averaged and used as model weights. Then we
initialise a trainer that takes in all the instances of classes and functions we have made
4.6. The model is then fine-tuned in the Lithuanian language. The test dataset was then
passed into this model and the audio input was transcribed into a text output. Lastly,
we take the transcribed audio returned by the model and the labels from the test dataset
to calculate the WER and CER metrics.

1 training_args = TrainingArguments(
2 output_dir=r".",
3 group_by_length=True,
4 per_device_train_batch_size=2,
5 per_device_eval_batch_size=1,
6 gradient_accumulation_steps=4,
7 evaluation_strategy="steps",
8 num_train_epochs=10,
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9 gradient_checkpointing=True,
10 save_steps=200,
11 eval_steps=200,
12 logging_steps=1000,
13 learning_rate=3e-4,
14 warmup_steps=10,
15 save_total_limit=2,
16 )

Listing 4.5: Initialisation of Training arguments arguments

1 trainer = Trainer(
2 model=model ,
3 data_collator=data_collator ,
4 args=training_args ,
5 compute_metrics=compute_metrics ,
6 train_dataset=common_voice_train ,
7 eval_dataset=common_voice_val ,
8 tokenizer=processor.feature_extractor ,
9 )

Listing 4.6: Initialisation of the Trainer

4.5 Summary
In this chapter, I presented a detailed description of the software system I built based
on the design I proposed in the previous Section 3. I also explained how I manipulated
the dataset for optimal results and why I made the changes I did. Then I proceeded to
explain how the features were extracted from the model by feeding it the input dictionary.
I outlined the reasons why I needed to do this and what results I wanted to achieve by
clustering these features. Lastly, I explained the fine-tuning process, the reasons why I
chose certain parameters for training and what results we are trying to calculate from the
fine-tuned model. Having completed the implementation of the software we can proceed
to the Evaluation stage, where I will discuss the experiments and the final results.
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Chapter 5

Evaluation

Evaluation in this case consists of two separate experiments. The first experiment will
involve clustering the extracted features, getting the silhouette scores and analyzing the
visualisations of clusters. For the second experiment, I present the recognition results for
the test dataset and calculate the Word Error Rate (WER) and Character Error Rate
(CER) metrics. Lastly, I show whether there is any correlation between the results of
the two experiments, which will indicate whether we can use clustering to find languages
that have similar features. If true, this could reduce the computational expense necessary
for developing ASR models and make Transfer-learning more accessible for low-resource
languages.

5.1 Experiments
For these experiments, I chose three different models from Hugging Face: an English
model Grosman (2021a), a multilingual Facebook model Arun et al. (2021) and a Russian
model Grosman (2021b). The English model is a large XLSR model pre-trained in 53
languages and fine-tuned for speech recognition in English. The Facebook model is a
large XLSR model trained in 128 different languages and has 300m parameters. Lastly,
the Russian model similar to the English model is a large XLSR model pre-trained on 53
languages and fine-tuned for speech recognition in Russian. For training, validation and
testing datasets on the Lithuanian language, I used the Common Voice Corpus 17.0 Ardila
et al. (2019). This dataset has 24 validated hours of transcribed speech recordings in the
Lithuanian language. We are going to use this dataset for both of our experiments, for the
first experiment I am going to use only the test dataset, while for the second experiment,
I will use all three datasets: training, validation and test.
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5.1.1 Experiment One: Silhouette scores and Visualisation of
feature clustering

For the first experiment, I decided to test the last three layers of the models we loaded
from pre-trained. The experiment started by loading in the pre-trained models using the
Wav2Cev2ForCTC method from Transformers library ??. Next, I fed the model the pre-
processed test dataset, to get the model outputs. I then extracted the features from the
last three layers of the model, in order to cluster them. Before clustering, I normalised
the activations using the MinMaxScaler method from Scikit-learn. Normalising the fea-
tures obtained from the models was important because it brought all the features to the
same scale, allowing the clustering methods to converge faster with better performance.
Another reason to do this, was because we are using the K-means algorithm to perform
clustering, which computes the distance between data points. If the features are not
scaled, the K-means algorithm can perform poorly on this task.

After the features have been retrieved and normalised, we perform clustering on them.
The first thing we do is reduce the dimensionality by using Principal Component Analysis
(PCA) and taking the best four components. We then cluster the data from PCA, compute
the silhouette scores and visualise the clusters using the Seaborn library. As part of the
first experiment, I obtained silhouette scores and visualised the clusters. To measure how
long it took to run the clustering algorithms and obtain silhouette scores I used Jupyter
notebook’s in-built system which measures the time to run a piece of code’s execution
within a cell. It is important to note that I ran the first experiment on my PC, which has
an AMD Ryzen 5900X 12-core CPU, with 64GB of DDR4 RAM so the speeds may differ
based on the machine being used.

5.1.2 Experiment Two: WER and CER for fine-tuned models

For the second experiment, I calculated the WER and CER metrics after the test dataset
was passed into a fine-tuned model. For this experiment, we will use the same models as
in the first experiment. We will use the train and validation split of the Common Voice
dataset to train and evaluate the training process of the model ??. After fine-tuning, I
passed the test dataset to get speech recognition results (predictions) and then calculated
WER and CER metrics by testing those results against the labels. I also measured the
time needed to train each model on the Lithuanian language, by using Jupyter notebook’s
in-built system which measures the time to run a cell with code. To train the models I
used my laptop with a Nvidia RTX 3070 with 8 GB of onboard memory and 8 more GB
of shared memory.
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5.2 Results
In this section, I will be talking about the results obtained in the two experiments, their
significance and how the results from experiment 1 and experiment 2 correlate.

5.2.1 Results of experiment one

We can see the silhouette scores for the last three layers with both clustering methods
and for all three models in our Table 5.1. The first thing we see in the results is that PCA
and K-means get better silhouette scores compared to PCA and Agglomerative clustering.
We can also notice how the silhouette score of each layer differs from one another and
based on the model either the third or the last layer performs the best. This way the
English model has a silhouette score of 0.489 for the third layer and a silhouette score of
0.454 for the last layer. Similarly, the Russian model also has the best results on the third
layer equalling 0.430, meanwhile, the multilingual Facebook model has the best results on
the last layer - 0.384. From these results, we can see that the Facebook model performs
the worst, which is surprising considering it has the largest number of parameters and
has been trained in 128 different languages. The English and Russian model scores are
not far from each other, but the English model silhouette scores are slightly higher. Now
we can take a look at the runtime of the clustering for each model in Table 5.2. The
main takeaway from the runtime is that PCA with K-means is much faster than PCA
with agglomerative clustering. Considering that agglomerative clustering also produces
worse results compared to K-means, it does not make sense to keep using agglomerative
clustering for evaluating the clusters of these model features.

Table 5.1: Silhouette Scores

Methods English Model Facebook Model Russian Model
Last layer PCA + Kmeans 0.45391539 0.38363495 0.42095956
Second last layer PCA + Kmeans 0.45993826 0.35967001 0.38149124
Third layer PCA + Kmeans 0.48879614 0.36589018 0.43029657
Last layer Agglomerative + PCA 0.18018568 0.12158866 0.12297121
Second last layer Agglomerative + PCA 0.16219062 0.14129034 0.09873130
Third layer Agglomerative + PCA 0.15105152 0.11973694 0.10230178

26



Table 5.2: Runtime of clustering and silhouette score calculations

Methods English Model Facebook Model Russian Model
Last layer PCA + Kmeans 1m 6s 1m 19s 1m 9s
Second last layer PCA + Kmeans 1m 12s 1m 22s 1m 17s
Third layer PCA + Kmeans 1m 3s 1m 15s 1m 7s
Last layer Agglomerative + PCA 22m 43s 25m 12s 23m 7s
Second last layer Agglomerative + PCA 23m 52s 27m 37s 20m 56s
Third layer Agglomerative + PCA 21m 47s 25m 11s 22m 36s

As agglomerative clustering doesn’t perform the best, I only visualise the clusters created
from PCA + K-means. First, I will discuss the visualisation of the clusters in Figure 5.1
for the English model. In Figure 5.1(a) of the third layer, we can see some distinct
clusters but there is a large degree of overlap between clusters. Considering the silhouette
scores obtained for this layer I would expect better-defined clusters. However, in the
second last and last layer visualisations we can see some distinct clusters where we can
distinguish between the clusters with the naked eye. This could mean that the network
can distinguish between the languages it is decoding. In the last layer scatter plot, we
can also see a cluster disconnected from other clusters, indicating some sort of structure
found in the features.

In Figure 5.2, which corresponds to the features of the multilingual Facebook model,
we can see a clear separation between the clusters. Even though there is a clear separation
between clusters, it’s hard to tell if the clusters have distinct features, as they have a
continuous transition from one cluster to another. Lastly, in the visualisation of the
clusters 5.3 of the Russian model, we can see some distinct groupings of data. Some of
the clusters seem to have a higher density of data points, which could be indicative of the
way the underlying data is distributed.
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(a) Third Layer

(b) Second Last Layer

(c) Last Layer

Figure 5.1: Visualisations of clusters for the English model using PCA
+ Kmeans
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(a) Third Layer

(b) Second Last Layer

(c) Last Layer

Figure 5.2: Visualisations of clusters for the Facebook model using PCA
+ Kmeans
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(a) Third Layer

(b) Second Last Layer

(c) Last Layer

Figure 5.3: Visualisations of clusters for the Russian model using PCA
+ Kmeans
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5.2.2 Results of experiment two

In the Table 5.3 we can see the Word Error Rates (WERs) and Character Error Rates
(CERs) obtained after fine-tuning the models and getting the predictions. From the
results, we can see that the Russian model was the most effective in speech recognition
after it went through fine-tuning. English closely followed, with a score of 0.73% in terms
of WER and 0.19% in CER. The multilingual Facebook model ended up getting the worst
results, which is surprising as it is the largest model out of the three and was trained in
128 languages. Based on the research from Conneau et al. (2020), we would assume that
the more languages a model has been pre-trained on, the better performance it would
have after it is fine-tuned for a low-resource language. We should also notice that the
models have low CER, showing that fine-tuned models can recognise characters with a
surprising degree of accuracy. Meanwhile, the WER rate is quite high, but considering
it’s fine-tuned from the pre-trained model of another language, this is unsurprising. We
should also consider that the Lithuanian dataset it was trained on is quite scarce and the
training was done for 10 epochs - around 220 minutes. Overall the results obtained from
fine-tuning were reasonably good, especially the CER being around 14%.

Table 5.3: WER and CER scores for our fine-tuned models

Model WER CER Training time
English xlsr-53 62.19 14.56 231m
Facebook xls-r-300m 67.17 16.66 219m
Russian xlsr-53 61.46 14.37 223m

5.3 Summary
For this section, I described two experiments and discussed the results obtained from
them. I also discussed what these results entail. At this point, we should also discuss the
association between the results from the first and second experiments. The results of the
first experiment suggested that the multilingual Facebook model would have the worst
performance based on its low silhouette scores. From the results of the second experiment,
we can see that this indeed ended up being true. However, the silhouette scores also
showed that the English model would end up with the best performance. However, the
English model lead to slightly worse WER and CER results than the Russian model, which
ended up having the best performance. This could be explained by the visualisations of the
clusters from experiment one, where the Russian model had the most distinct groupings
of data and had a higher density of data at those distinct feature clusters.
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Chapter 6

Conclusions & Future Work

I started this work by researching the literature in the area of automatic speech recog-
nition, transfer learning and learning for low-resource languages. I also researched works
done in the field, such as XLSR Conneau et al. (2020) and Wav2Vec Schneider et al.
(2019), which introduce unsupervised learning for speech recognition. I talked about how
this work can be utilised to build the proposed ASR system while avoiding the pitfalls
researchers faced in the past. I then identified the problems with developing such a model,
the ways they were solved and the tools used. Following these, I proposed the design of a
software system, which is divided into three parts: Dataset pre-processing, model feature
extraction and analysis, and lastly, fine-tuning of pre-trained models. For the next step,
I implemented our software system from the proposed design. Firstly, I started our work
in a Jupyter notebook with Python Kernel, we loaded the Common Voice Lithuanian
language dataset Ardila et al. (2019) and cleaned up the training, validation and test
datasets. Secondly, I initialised the models 4.4, created methods to extract the features
and performed clustering on the features. Then I obtained the silhouette scores and visu-
alised the clusters obtained from the extracted features. Lastly for the implementation,
I initialised the trainer arguments 4.5 and the trainer 4.6 itself and then fine-tuned the
pre-trained models that were loaded. Following this I calculated the Word Error Rate
(WER) and Character Error Rate (CER) from the predictions we got from the fine-tuned
models.

With the software system ready, I performed two major experiments. I started by loading
the pre-trained models and feeding the Lithuanian language dataset into the models.
I followed this by extracting the features from the last three layers of the model and
performing clustering on normalised feature values. As the last part of experiment one,
I got the silhouette scores and visualised the clusters from these clustering methods.
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Next, I performed experiment number two, where we fine-tuned the pre-trained models on
Lithuanian and then got the WER and CER values. Given the CER results, I concluded
that transfer learning is a viable and efficient approach for enhancing ASR systems in
low-resource languages. I also observed some association between the results of the first
and second, where the fine-tuned large Facebook model got the worst WER and CER, just
as the silhouette scores indicated. Although the silhouette scores of the English model
were slightly higher than the Russian model, they ended up having very similar WER
and CER scores. This can be explained by the more favourable cluster visualisations of
the Russian model where it has the most distinct groupings of data and higher density of
data at those distinct feature clusters. From these findings, I conclude that we can reduce
the computational expenses of choosing models by pinpointing model compatibility prior
to fine-tuning.

6.1 Future Work
There are three main directions for future work: apply this software system to more
models, test it in different low-resource languages and perform similar analyses for other
ASR network architectures. By exploring these in future works we could further enhance
transfer learning by applying it to a broader number of languages. This would open up
the path for low-resource languages to have better speech recognition systems and would
allow for larger linguistic diversity across the international scene.
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