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Abstract

Research into laughter classification is a compelling field that captivates scientists and sociologists seeking to
unravel the enigmatic nature of this social signal. This paralinguistic cue possesses a notably intricate acoustic
structure. Unveiling its discriminating properties could shed light on the internal acoustic structure of laughter.
Previous studies have undertaken experiments to identify these discriminating acoustic properties, presenting
a comprehensive pipeline that spans machine learning selection, identification of discriminating properties,
and exploring factors influencing them. However, previous research has not released its dataset publicly, and
some procedures require enhancement. To construct a more rigorous pipeline and comprehensively analyse
discriminating acoustic properties, we compiled our dataset tailored to our research objectives from the
“MULTISIMO” raw corpus(Multimodal and Multiparty Social Interactions Modelling), followed by identifying
discriminating properties in mirthful and discourse laughter within our constructed dataset, performing
regression analysis on the datasets to identify significant features that could explain discourse and mirthful
laughter ,and exploring factors influencing discriminative acoustic properties.

The main findings in our work highlight that through a synthesis of the results from the machine learning
experiments and regression analysis, we identified five shared discriminating acoustic properties across
both experiments and laughter types: fundamental frequency, mel-frequency cepstral coefficient, auditory
spectrum, spectral features, and jitter. The first four properties gauge energy-related information in acoustic
laughter, while the last describes temporal characteristics. Our findings exhibit both concurrence and disparity
with the findings from Tanaka and Campbell(2014),our replicated work, attributable to differences in the
acoustic feature set quantity and the total number of utterance instances. Notably, fundamental frequency
and spectral features emerge as common discriminating properties in both studies.

This work makes significant contributions both in theory and practice. Theoretically, this research has estab-
lished a comprehensive pipeline encompassing dataset construction, verification, machine learning design
and implementation, identification of acoustic properties, and examination of factors that may influence dis-
criminating properties. This pipeline presents a novel avenue for researchers in audio processing and artificial
intelligence. In terms of practical applications, although the study emphasises lies in theory, the developed
algorithm shows promise for integration into real-time video systems to assist in laughter classification. It
enables dynamic tracking of specific acoustic properties unique to instances of laughter.
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The explanation of discriminating acous-
tic properties

Table 1: A Look-up table before the maIn text: The explanation of discriminating acoustic properties in this
work

Acoustic property
name

Simple explanation

F0 Fundamental frequency measures the lowest formant and preserves a specific
person’s voice footprint.

Jitter The frequency oscillation in a circle is measured, and this temporal aspect property
is quantified in seconds.

MFCC Mel-frequency cepstral coefficients preserves the specific emphasised frequency
in each frame of audio.

Auditory spectrum This property measures the range of specific audio in the time domain.

Spectral Features This property describes the general features of the OpenSimile in the time domain,
and this temporal property is then transformed into the frequency domain.
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1 Introduction

1.1 Background and motivation

Laughter is a social signal that has captivated the interest of philosophers and researchers for millennia and
continues to be a subject of fascination(Ginzburg et al., 2020). Especially in today’s competitive society and
the economic downturn, laughter could somehow melt down misunderstandings and conflicts among people
to some degree, as laughter, to some degree, implicitly conveys empathy and acknowledges others’
opinions. Moreover, it can embolden timid individuals to forge ahead. Although laughter often occurs within
interpersonal interactions, individuals may also laugh at themselves(Ludusan & Schuppler, 2022).

Conversation represents the primary context for laughter, wherein it assumes various roles. For instance, in
clinical settings like laughter therapies, doctors’ laughter can bolster the morale of cancer patients
(Morishima et al., 2019). Similarly, in international conferences—such as those convened by the United
Nations—laughter among prime ministers or presidents can foster diplomatic ties between nations. Beyond
expressing joy, laughter also serves as a means of conveying and interpreting information. For example,
when a student asks an embarrassing question during a lecture, a professor might respond with a chuckle to
gently signal the inappropriate nature of the query, thus maintaining decorum.

In laughter research, laughter has many categorisations. One category is defined by the sound of laughter,
encompassing giggles (Pietrowicz et al., 2019). Another category delves into the emotional aspects,
distinguishing between mirthful and discourse laughter (Tanaka & Campbell, 2011, 2014). As the main
purpose of laughter is to convey emotion (Gilmartin et al., 2013; Koutsombogera & Vogel, 2022), the latter
category directly relates to peoples’ emotions. Mirthful laughter emerges from authentic excitement from the
heart, while discourse laughter could break down embarrassment or disguise authentic feelings to maintain
etiquette to some extent.

As emotional state can be inferred from this laughter categorisation, distinguishing between these two types
of laughter can sometimes be accomplished by the human auditory system or inferred from other elements
such as facial expression. However, in environments with considerable noise, identifying the type of laughter
becomes challenging for human listeners. In such cases, automated classification of these laughter types
becomes necessary to analyse conversations and discern laughter with and without underlying emotions.
Although laughter can be expressed through facial expressions(Sherman et al., 2012), facial cues may
sometimes be concealed, such as with a smirk. On the other hand, listening to the sound of laughter is often
more reliable, as the voice carries a unique signature that can help locate a person and discern their
emotional state, which may not be easily disguised(Alluri & Vuppala, 2020). Thus, in this context, the primary
focus lies on classifying acoustic laughter, even though other factors may also impact and correlate with
acoustic laughter. Given this rationale, investigating the classification of acoustic laughter is
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well-motivated.

Within this necessity of automatic acoustic laughter classification, the application of acoustic laughter
classification between mirthful and discourse laughter has a potential market in industries. Distinguishing
between mirthful and discourse laughter through acoustic classification holds potential applications,
particularly in analysing the correlation between laughter in cinema and box office success across genres
such as comedies and political thrillers. Filmmakers could strategically incorporate plot elements to evoke
specific emotional responses from audiences based on laughter patterns, thus discerning which narrative
elements are associated with different types of laughter. In international conferences, where cameras
typically capture real-time discourse, laughter can be identified through video analysis, given the continuous
stream of visual and audio data. By combining facial expressions and gestures captured in images with
corresponding audio signals during laughter, specialised software and algorithms can be employed to
differentiate between types of laughter emitted by presidents or officials from different states. For instance, if
a leader’s laughter aligns with unreasonable conditions or statements of other states, it may indicate
collusion or deceit.

Diverse applications of automatic autistic acoustic laughter classification attract researchers to know about
the internal structure of laughter (Ludusan & Wagner, 2019, 2022b; Tanaka & Campbell, 2011, 2014). Just
as an amateur can distinguish between different musical instruments based on their sounds, some
instruments, like the saxophone and clarinet, produce similar sounds that necessitate professional training
and specialised equipment for accurate identification. Similarly, while human hearing can discern to some
extent between different types of laughter, such as mirthful and discourse laughter, describing the precise
distinctions between them proves challenging. The intricacies of the internal structure of these laughter
types are so subtle that they often elude detection by the auditory system. For instance, the fundamental
frequency, which measures voice pitch, is associated with the sound of laughter, as supported by several
studies(Kipper & Todt, 2003; Mittal & Yegnanarayana, 2015; Szameitat et al., 2011; Tanaka & Campbell,
2011, 2014; Vettin & Todt, 2004).

Acoustic properties, similar like a “special timbre” in musical instruments, also need some device to extract
and detect. Previous research utilised the Snack tool to extract acoustic properties from laughter, even
though this feature set is relatively small(Tanaka & Campbell, 2014). A large feature set will have more
acoustic properties, such as “Opensimile”(Eyben et al., 2010), a state-of-the-art feature extraction tool.
“Opensimile” is an audio extract tool incorporating a 6,373 acoustic parameter set in “ComParE_2016 ”
collection(Eyben et al., 2015). Besides, none of the current work utilised “Opensimile” to extract acoustic
properties and select some appropriate classifiers for the acoustic laughter classification task. To address
this research gap, this project aims to utilise "Opensimile" as a feature extraction tool and employ an
appropriate model on the relevant dataset.

Another challenge in implementing such a system is that the dataset contains relatively fewer laughter types,
such as mirthful and discourse laughter. Additionally, the author of this research has opted not to release
these types as annotations, recognising the significant craftsmanship required in accurately tagging laughter
instances. The dataset requires continuous moments featuring various utterance events, including laughter,
as well as other types such as silence and spoken words. Fortunately,Koutsombogera & Vogel (2018a)
released an open dataset publicly, the MULTISIMO corpus. This dataset contains an EAF, an XML format,
and an audio file. EAF contains a laughter tag and spoken word text, such as “OK, thanks for coming today
[eh],” whereas the audio contains the recording related to each session. Based on this raw dataset, we could
conduct further analysis to extract useful information from two types of files in the “MUTISIMO”corpus and
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construct a dataset that aligns with our research question.

Based on this motivation, we proposed our research question as: “Are there systematic differences in the
acoustic properties of different acoustic laughter?”.

The semantics of each contextual term in our research question are as follows. The “acoustic laughter” is
explained above, including mirthful and discourse laughter. Additionally, the phrase,“acoustic properties” is
also interpreted in the above explanation. The only contextual term that has not been explained is
“Systematic differences”. Systematic differences in acoustic properties indicate that some properties have
distinct values and contribute to predicting specific laughter; besides, systems different from the classifier
perspective feature some properties in predicting specific laughter. Based on this fact, a decision tree could
present the importance of features and visualise the branch selection to show the disclaiming feature. The
discriminating feature in multinomial regression is also present in the coefficient in each response
variable

Fortunately, our work is based on previous work’s shoulders. As our project intends to identify systematic
differences in acoustic properties in categories of laughter in the “MULTISIMO” dataset, previous work,
Tanaka & Campbell (2014) have done similar work on their dataset towards mirthful and discourse laughter
and proposes a complete framework from feature extraction and machine learning model selection to feature
analysis. However, since they have not released their dataset and there are more appealing to explore the
factors that impact laughter, this project intends to replicate their work and explore some phenomena they
have not identified.

The significance of this work could be discussed in terms of theoretical contribution and potential practical
contribution. As our work is based on algorithmic and machine learning models, particularly theoretical work,
the main contribution of this work is to identify the discriminating properties in discourse and mirthful
laughter. The findings of this work could inspire researchers in speech recognition and natural language
processing to explore more interesting phenomena in conversation. In terms of practical implications, the
methodologies developed in this study could be integrated into real-time video systems for various
applications. For example, discriminating properties could be tracked in real-time, along with patient emotion
variation and different laughs in psychological clinical treatment. Besides, it is worth noting that this study is
based solely on the MUTLSIMO dataset. However, the algorithms developed here could be adapted to
different laughter annotation systems, thereby enabling the exploration of discriminating properties across a
broader range of acoustic laughter types.

Even though the work in this area sounds exciting and has many potential applications, implementing this
system takes work. Hence, we split this huge amount of work into different components. The next section,
“Research Objectives”, will illustrate the road map to achieving this project’s aim.

1.2 Research Objectives

The main objective of this research is to construct a comprehensive acoustic laughter classification pipeline
that includes dataset construction, dataset verification, machine learning selection, identification of
discriminating properties, and investigation of factors impacting discriminating properties.

Expect dataset construction and verification; the rest of the components in our dataset are similar to Tanaka
and Campbell’s (2014) work. For dataset construction, we used the “MULTSIMO” dataset to construct a
dataset that fits our research question.
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Overall, the objectives of the dissertation are as follows:

• Develop an algorithm to classify annotation in each session EAF to make a simple version of the
symbol annotated in the original EAF(cf. Figure.1.1)) serve as the categorical value of the target
variable, such as transforming “OK, thanks for coming today.[eh] we’re going to play a quiz” to
simpler representation, such as “M”, a simple represents mixture type with speaking and
non-laughter vocalisation(“[eh]”).

Figure 1.1: Session 2 information in EAF file visualisation by ELAN

• Develop a string symbolisation algorithm to detect the silence moment not annotated in EAF and
mark it as “Silence” (see the sixth row in Figure 1.1, showing that after the “Discourse” annotation,
there is a blank gap, and this gap is a silence moment).

• Construct continuous time moments from EAF from the ANNOTATION tag in the EAF file to
streamline each session’s start-to-end moment. Use the above algorithm to classify raw annotation,
detect silence simultaneously, and then store them in a CSV called “ELAN CSV.”

• Construct a CSV containing acoustic properties called “Opensimile CSV”.

To reach this objective, we need to utilise the Python segmentation library to cut each session
audio file, ranging from 5 min to 10 min, into multiple audio pieces based on a fixed duration (200
ms) and a variable duration (the same duration as each moment in EAF per session). Then, we
need to use the Python Opensimile API to extract acoustic properties from each audio file and
store each moment with acoustic properties in the same row.

• Merge two types of CSVs, including ELAN CSV and Opensimile CSV, to construct the final
version of CSV, which will include one fixed-duration version and a varied-duration version.

For the varied duration version final dataset, we need to align the Opensimile CSV each moment
to align the moment in the EAF one by one as each two CSV sunrise start time and end time in
each moment; for the fixed duration dataset, these two CSVs does not synchronise in start and end
times. Designing an algorithm to align both CSV systems is necessary for this case.

• Apply various data verification techniques to assess the constructed CSV.

• Employ machine learning classifiers to identify the discriminating properties in each version of the
dataset (fixed and varied duration dataset) in different laughter (mirthful and discourse laughter) in
the diverse models (decision tree and multinomial logistic regression).

• Conduct regression analysis to identify the significant properties to explain the variance of the
target variable and adopt non-parametric hypothesis testing to identify the discriminating property
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correlation.

• Adopt quantitative and qualitative assessments to evaluate our work, including quantitative and
qualitative approaches.

The quantitative approach uses classification accuracy and the Cohen kappa coefficient to
measure machine learning model performance to assess the selected models, while the qualitative
approach evaluates factors that impact discriminating property to support or falsify the claim from
related literature.

1.3 Dissertation structure

The dissertation is organised in the following manner:

• Chapter 1—Introduction: This chapter constructs the research territory, signifies the significance of our
research within the research scope, and outlines the research question and contribution to this work.

• Chapter 2—Research Background and Literature Review:This chapter briefly introduces the key
techniques in the acoustic laughter classification and elaborates on Tanaka & Campbell (2014)’s
analysis of this work. Additionally, retrospect another laughter system in the “MULTSIMO”dataset to
identify research direction in this area.

• Chapter 3—Methodology:This chapter describes the dataset construction and verification, as well as
the consideration of machine learning models and the design of experiments.

• Chapter 4—Results:This chapter describes the parameter setting in each machine learning model and
presents the results from the designed research methodology.

• Chapter 5—Evaluation:This chapter utilises quantitative and qualitative assessment to evaluate our
results from the experiment chapter.

• Chapter 6—Conclusion:This chapter summarises the dissertation, discusses the potential drawbacks
and lists future directions.
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2 Research Background and Literature Re-
view

This chapter furnishes the foundational knowledge necessary for comprehending the research question
addressed in this dissertation by reviewing related research in the field. Accordingly, it begins by introducing
techniques in acoustic laughter classification and provides a detailed analysis of our replicated work,
drawing from Tanaka & Campbell (2014). Following this, it presents previous laughter systems outlined in
undergraduate final-year reports or master’s dissertations, as these systems typically entail a more extensive
amount of work compared to peer-reviewed articles. Finally, resources utilised in this dissertation, such as
corpora and feature extraction tools, are introduced.

2.1 Acoustic Laughter classification and our replicated work

Laughter serves as a non-verbal language and social signal, attracting researchers to inspect this factor to
identify the key factors impacting laughter. Acoustic laughter classification is one of the areas to explore in
the task. This research focuses on identifying acoustic laughter and exploring existing work on the
classification of acoustic features can provide valuable insights for our study. Tanaka & Campbell (2014)
present a comprehensive framework, spanning from feature extraction to machine learning model selection
to feature analysis. Emulating their methodology not only guides the research but also empowers us to
develop a new dataset tailored to our specific objectives, potentially uncovering insights beyond those
elucidated by Tanaka & Campbell (2014). This replication effort is motivated by the desire to extend the
existing pipeline in this specialised research area and to identify and address any limitations encountered,
thereby enhancing the robustness of future endeavours.

2.1.1 Key techniques in laughter classification

Acoustic laughter classification involves several key steps: feature extraction, model selection, identification
of determinant factors, and feature analysis. The cornerstone of this pipeline is determining the crucial
factors that impact laughter classification, which could be acoustic features or internal structures of laughter
like bouts and duration. Among the tools available, the Snack toolkit and Opensmile(Eyben et al., 2010)
have gained widespread acceptance for feature extraction in prior research. For model selection, various
approaches are utilised to classify different laughter types, including decision tree models (Tanaka &
Campbell, 2014), principal component analysis (Tanaka & Campbell, 2014), neural networks(Knox &
Mirghafori, 2007), and others. In the feature analysis phase, both parametric statistical tests such as the
Student’s t-test (Tanaka & Campbell, 2011, 2014) and non-parametric tests like the Wilcoxon rank test
(Maggie, 2021) are employed in this research domain.
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In terms of discriminant factors, common ones are listed in the table below (cf. Table 2.1). We elucidate the
purpose, measurement, and correlation of each feature with acoustic laughter classification. The concept of
formants is particularly intricate compared to the others; therefore, priority is given to explaining this
concept.

Table 2.1: Common discriminant factors

Determinant factor Paper

Formant Tanaka & Campbell (2011, 2014)

Root mean energy (Ludusan & Wagner, 2022a)

Bout Tanaka & Campbell (2011, 2014)

Figure 2.1: Vocal cord sample from the website of national cancer institute

The formant is the vocal fingerprint, created by the resonance of airflow and the human vocal cords at a
specific speed, or more simply, it represents the pitch of voice (cf. Figure.2.1 from national cancer institute
website(https://www.cancer.gov/publications/dictionaries/cancer-terms/def/
vocal-cord)). The fundamental frequency is the pitch of the voice, which could be metaphorised as the
basic note(the first harmonic peak in the acoustic spectrum) of a musical instrument. The other formats
(f1,f2,f3,f4) delineate the vocal contour, shaped by variations in the mouth and throat, and reveal distinctive
nuances within the voice that the fundamental frequency alone cannot convey.

Several research studies substantiate that formants correlate with vowels and constant laughter(Tanaka &
Campbell, 2011, 2014; Trouvain & Schröder, 2004), such as “/a/”. This acoustic contour assists in eliciting
different types of laughter based on formants. For example, mirthful laughter is produced by authentic
emotional engagement. The vibration of this type of laughter is stronger than its discourse laughter
counterpart as the voice of this type of laughter is lower pitch.
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Understanding the concept of formants requires some phonetic knowledge, as described above. The
remaining concepts are more straightforward. Root mean square (RMS) energy measures the intensity of
voice, and different types of laughter can be differentiated based on this feature, which is recognisable by the
human auditory system. On the other hand, Bout measures the duration of a specific type of continuous
interval, such as laughter in a conversation. This duration of laughter could reflect the airflow length in the
mouth and throat. Due to the emotional enjoyment conveyed by mirthful laughter, the mouth tends to be
more open compared to discourse laughter.

2.1.2 Elaboration of Tanaka and Campbell (2014)’s work

Tanaka & Campbell (2014) aimed to develop a sensor module that could be applied in presenting different
types of laughter (polite versus mirthful) in a video clip rendered by computer graphics techniques. To
achieve this, the audio signal from the natural dialogue served as the primary source for conducting two
experiments. These experiments aimed to investigate the correlation between ten volunteers, potentially
from diverse backgrounds such as different countries or genders, and specific laughter types. Specifically,
the first corpora in their Experiment were “Expressive Speech Processing”(ESP)1 .

The dataset contained two aspects of information regarding ten participants, including nationality (6
Japanese, 2 Chinese, and 2 Americans) and gender (5 female and 5 male). Specifically, the first corpora in
their experiment was the Expressive Speech Processing. The dataset contained two aspects of information
regarding ten participants, including nationality(6 Japanese,2 Chinese,2 American) and gender(5 female and
5 male). To select a representative sample of this corpora, they conducted an ablation study focused on
different native language populations. This included Japanese male speakers aged 20 who participated in
experiment A, Japanese male speakers aged 20 who participated in experiment B, English male speakers
aged 20 who participated in experiment A, English female speakers aged 20 who participated in experiment
A, Chinese female speakers aged 30 who participated in experiment A, and Chinese male speakers aged 20
who participated in experiment A. Comparing it with the first dataset, which contained audio information from
ten volunteers, the second dataset, FAN(ages), was contained within ESP. This dataset only focused on one
volunteer, a young Japanese female.

With the explanation of these two datasets, Japanese students were the sample to verify the laughter types,
and this person only presented polite social laughter instead of loud laughter. The second dataset aimed to
establish the connection between speakers’ acoustic features and different categories of laughter. Based on
the explanation of the datasets, they conducted the first experiment and recruited 20 Japanese students to
reflect the most recognised laughter by Japanese students.

The findings of this experiment revealed that "mirthful" and "polite" laughter were the predominant categories.
Hence, they selected these two representative laughter to conduct the experiment 2. The second experiment
aimed to extract the relevant acoustic parameters and analyse the relevance between these features and the
two types of laughter they finally decided in experiment 1. Not only did they select fundamental prosodic
parameters, such as F0, but they also introduced additional parameters, including spectral tilt, shape
parameters and positional parameters, to boost audio quality and to encode the laughter acoustic dynamics.
They also computed these parameters’mean, maximum, and minimum values as the acoustic
features.

Then, they applied principal component analysis (PCA) to reduce the dimensionality of the data. Their
results revealed that, among other features, fundamental frequency,spectral slope,power, and F0moveAB

1https://www.speech-data.jp/
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were the main components for all speakers. In addition to PCA, they employed decision trees to conduct
more refined filtering on three parameters: fundamental frequency, power, and two parameters derived from
the PCA analysis, min-max and min.

Based on the decision tree, these features were influential, including mean,pmax, pct and dn. However, the
classification accuracy of this model was relatively low in specific groups of people(FAN). High dimensional
acoustic parameters might lead to overfitting. To address this, the researchers considered both contributing
features from principal component analysis and the decision tree classifier. Eventually, they identified seven
important acoustic features, including “fmean,ppct, pmax,h1a3,duration, No.Call and F0moveAB”.

Subsequently, they employed a support vector machine (SVM) to predict category based on these acoustic
features. However, further analysis revealed no statistically significant difference between
speaker-independent outcomes and results after reducing dimensionality. As a result, they conducted an
error analysis using the student-t test, focusing specifically on tokens of polite laughter from two speakers:
an English male speaker and a Chinese female speaker. Their findings suggested that errors in
classification might be attributed to noise within the audio files.

2.1.3 Insight from Tanaka and Campbell(2014)’s work

Tanaka & Campbell (2014) work uses a decision tree to conduct binary labelling tasks, discourse, and
mirthful laughter classification by showing feature selection having ten leaves. While their visualisation
allows for the identification of discriminating acoustic properties, it lacks clarity regarding the importance of
features for nodes or branches at the same level, as it only provides the hierarchy rank from the root to the
node. Therefore, it is preferable to present a ranked list of feature importance generated by the decision tree,
as it clarifies the level of importance. Furthermore, they categorised five utterance types: non-laughter
vocalisation, discourse laughter, mirthful laughter, derisive laughter, and other types.

However, their presentation only focuses on binary classification tasks concerning discourse laughter and
mirthful laughter. In this setup, the reduction of negative samples from prediction and classification might
undermine the trustworthiness of their results to some extent. To address this limitation, expanding the
consideration to other utterance types and introducing more samples would enhance the rigor of the
process.

Simultaneously, the multi-labelling task must also be taken into account. Unlike binary classification, where
there is no competition among target response labels, multi-classification involves such competition.
Incorporating this experiment will enhance the rigor of this study.

In addition to employing a decision tree for identifying discriminating properties, they also employed principal
component analysis (PCA). However, there is an issue within this model selection. Even though PCA is able
to interpret the most discriminating feature, the rest of the features are not adequate. Therefore, it is better to
consider another statistical model that can integrate all discerning features. In the testing phase, acoustic
properties were analysed using a student t-test. However, the normality of each property was not confirmed
beforehand. Given that the hypothesis of the student t-test relies on parametric assumptions, it is
recommended to conduct tests for normality prior to selecting types of statistical hypotheses.

Based on the above analysis and constructive critique towards Tanaka & Campbell (2014)’s work, this
research provides guidance for identifying acoustic processes, spanning from feature extraction to machine
learning model selection and statistical hypothesis testing. In comparison to existing studies in this domain, it
presents a more lucid framework for conducting research, thereby motivating the replication of this study
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using the new MULTISIMO dataset(Koutsombogera & Vogel, 2018a).

2.2 Previous laughter system developed on MUTISIMO dataset for
laughter classification

By reviewing previous system concerning laughter classification is work in the undergraduate final year
project and master dissertation (cf. Table.2.2), we intend to identity the research direction from these works
as they provided a relatively compete sample. Laughter systems developed on the MUTISIMO dataset
mainly inspect aspects related to laughter.

Table 2.2: Previous laughter system in the final year project or dissertation

Paper Dataset Research object Address issue

Mohan
(2019)

MULT-
SIMIO

Conversational domi-
nance and laughter

Investigate the relationship between par-
ticipant dominant and two laughter includ-
ing mirthful and discourse laughter

Hegarty
(2022)

MULT-
SIMIO

The social laughter in
the conversion and
OCEAN personality

Investigation of the effects of ratified/ratyt-
ing/solo laughter and an association be-
tween the OCEAN personality model and
natural/social laughter
events

2.2.1 The research findings of Mohan

Mohan (2019) intended to investigate the relationship between the level of conversational dominance
measured by five annotators and two types of laughter, discourse and mirthful laughter in two components of
an experiment. The dominance score ranges from 1 to 4, indicating that the higher the mark, the more
willing to dominate the conversation.

In first experiment, a dominance score was utilised to assess participant involvement. More concretely,
Specifically, the total and average number of two types of laughter (mirthful and discourse laughter) were
analysed using the Kruskal-Wallis test (for median) and the Wilcoxon Rank Sum test (for mean). This
analysis aimed to identify statistical patterns, supporting the hypothesis that low dominant individuals tend to
participate more in discourse laughter compared to mirthful laughter. Conversely, individuals with high
dominant scores were more likely to express mirthful laughter than their low dominant score
counterparts.

In the second experiment, the focus was on understanding the relationship between the two types of
laughter and their frequency of occurrence in the final quarter of each dialogue session. Using the same
statistical techniques as the first experiment, the researchers formulated a hypothesis that discourse
laughter frequency increases in the final quarter of each session, while mirthful laughter occurs randomly
throughout.

Reflecting on these findings, several insights emerge. The first experiment sheds light on the role of laughter
in facilitating conversation dynamics, while the second experiment delves into the temporal aspects of
laughter. Given our research interest in identifying acoustic properties in laughter, further investigation could
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explore the correlation between specific acoustic processes in mirthful or discourse laughter and domain
scores to understand how internal structures impact conversational dominance. Moreover, delving into time
series analysis of different acoustic properties in the two types of laughter could yield valuable insights. This
approach would deepen our understanding of the relationship between temporal aspects and laughter
expression, enriching our exploration of the intricate dynamics of human communication.

2.2.2 The research findings of Hegarty’s work

Hegarty (2022) investigated the effects of social and natural laughter and an association between the
OCEAN (openness, conscientiousness, extraversion, Agreeableness and Neuroticism) personality model
and specific laughter events, such as mirthful laughter on the MULTISIMO corpus (Koutsombogera & Vogel,
2018b). Social laughter in their work involves solo, ratified, and ratifying laughter, while natural laughter in
this work includes mirthful and discourse laughter. Following data processing, modelling and evaluation, the
author this work concluded that mirthful laughter is more likely to be found by individuals who dominate
conversations, resulting in them being more likely to initiate laughter followed by other participants.
Regarding the personality model findings, it was observed that a ratified laughter leader is more likely to be
noticed among conscientious individuals.

As social laughter is not annotated in the MULTSIMO dataset, they devised an algorithm to identify this type
of laughter and construct a dataset suitable for their research objective. Dataset construction is equally
crucial in our research, as we aim to capture each continuous moment’s utterance event. This algorithm
could potentially offer insights to guide us in constructing our dataset.

Specifically, they utilised an additional column to record the social laughter information for each moment,
employing a half-second threshold to discern ratified laughter. Ratified laughter was determined if the time
difference between the end of the previous laughter and the start of the current laughter was less than or
equal to this threshold. Laughter failing to meet this condition was categorised as solo laughter. Due to the
complexity of laughter annotation, two cases were examined. In the first case, where solo laughter was
ratified, it needed to be reclassified as ratified laughter. In the second case, where laughter ratified another
ratified laughter, the previous laughter retained its original status.

Furthermore, they assessed whether the time difference between the start of the initial instance of laughter
and the end of successive laughter fell within the threshold to determine the ratified status of the first
laughter instance. In addition to the median dominance score derived from the MUTISIMO dataset, extra
columns were introduced to include scores of OCEAN personality traits obtained from participant
self-reflection parchments and collated local percentiles of the original test dominance score. These
additional columns were incorporated to facilitate statistical analysis.

For dataset verification, they examined participant codes to ensure that instances where the same volunteer
marked two consecutive laughter occurrences as "ratified" were flagged. In such cases, these paired
laughter instances were reclassified as individual instances of solo laughter. Additionally, they accounted for
another scenario where previous verification procedures might have missed cases where two successive
laughter instances reciprocated the preceding laughter. To rectify this, multiple conditional statements were
implemented. Besides automated verification, manual testing involved listening to the audio to
cross-reference with the laughter annotations, serving as another layer of verification to ensure
accuracy.

Through their meticulous dataset construction and verification process, our work must carefully choose the

11



appropriate dataset structure and algorithm to extract pertinent information from the MUTISIMO dataset.
This involves conducting various automatic and manual verifications to guarantee the correctness of our
dataset.

To conduct their experiment, the researchers proposed several statistical hypotheses regarding the influence
of conversation dominance and personality traits on various instances of laughter. They utilized an R script
to examine the interaction of laughter tendencies with personality and dominance scores. In the analysis of
laughter within the social context, they found a higher occurrence of solo discourse and communal laughter
with mirthful characteristics, along with a lower incidence of solo mirthful laughter and communal laughter
than anticipated, as determined by the chi-square test.

They conducted a Wilcoxon rank sum test on Big Five OCEAN personality scores by testing the personality
traits and specific laughter instances, such as mirthful or discourse laughter. This result showed that
individuals with a relatively high scores in openness and neuroticism were more likely to exhibit mirthful
laughter, whereas those with lower scores in these traits tended to display discourse laughter. Subsequently,
they investigated the correlation between the five personality traits and the social dimension of laughter
using the Wilcoxon rank sum test. However, this analysis yielded little evidence of a significant relationship
between OCEAN traits and specific types of laughter. In further exploration, they conducted additional
testing involving all personality traits. This revealed that individuals with higher agreeableness scores were
more likely to influence the duration of laughter, with higher agreeableness scores associated with shorter
laughter duration.

To examine the impact of the laughter leader (a participant who initiates laughing), they conducted several
supplementary experiments. These experiments suggested that individuals with longer laughter durations
within a group, relatively higher conscientiousness scores, and higher dominance scores were more likely to
assume the role of a laughter leader. Although the analysis of laughter leaders did not demonstrate
statistical significance regarding the association between dominance and the leadership role in laughter, an
alternative hypothesis from the literature was explored. According to this hypothesis, a laughter leader
should not merely follow others’ laughter. Based on this premise, it was found that individuals who initiated
and ratified their laughter were more likely to have higher dominance scores compared to those who only
ratified others’ laughter or laughed independently.

This research involves constructing continuous time intervals incorporating natural laughter, social laughter,
and annotations for the Big Five personality traits during dataset construction. Prior to the experiment,
various verification were undertaken to ensure dataset accuracy. During the experiment phase, a series of
statistical tests were conducted to assess the impact of psychosocial factors on laughter. Overall, the study
offers several insights and avenues for further exploration. The researchers utilised the Big Five inventory to
gauge the correlation between personality traits and social/mirthful laughter. In contemporary contexts, the
Myers-Briggs Type Indicator (MBTI) is often favored for career path assessment. This personality
assessment could also be viewed through the lens of MBTI, which can be translated into Big Five personality
traits. Such correlation investigations hold potential relevance in real-world scenarios. Additionally, since
they conducted a continuous time moment dataset, a time series plot in terms of social laughter could be
considered, as this visualisation gives a more direct sense of ratified and rating laughter.

2.2.3 Research direction from these two systems

From the two aforementioned research studies(Hegarty, 2022; Mohan, 2019), exploring another dimension
of laughter influence in conversation necessitates the creation of a cross-classification annotation dataset.
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However, constructing such a dataset is more labour-intensive compared to other conversation datasets due
to the need for manual annotation and intricate algorithmic design. This scarcity is not unique to the
MULTSIMO corpus but extends to various fine-grained dialogue datasets within dialogue systems. Examples
include datasets containing multiple sentences expressing preferences towards both the user and the
dialogue agent(Boyd et al., 2020; Eric et al., 2019; Ma et al., 2021; Zhang et al., 2018).

Moreover, the quality of results is significantly influenced by the adoption of appropriate statistical testing
methods. In both prior systems, the Wilcoxon rank test was employed, acknowledging that the distribution of
laughter is often non-normally distributed in most cases.

2.3 Corpus and feature extraction tool

In this section, we introduce the resource to assist our research :corpus and feature extraction tool.

2.3.1 MULTSIMO corpus

Laughter is a social signal and a catalyst to foster dialogue dynamics. The MUTISIMO corpus (Multimodal
and Multiparty Social Interactions Modelling) was developed to analyse collaboration and task success
within groups (Koutsombogera & Vogel, 2018a). Laughter instances are meticulously annotated in the
MUTISIMO dataset, with laughter text tags annotated in EAF (XML format), alongside acoustic laughter
information embedded within the audio files.

This dataset incorporates eighteen conversation sessions, comprising either audio or video recordings, with
each session lasting approximately five to ten minutes. The structure of each session typically involves
participants seated on either side of a table, responding to three questions posed by a facilitator. Each
participant answers three questions and then ranks them based on popularity, addressing a question posed
by the facilitator. In this process, participants could collaborate with different verbal or non-verbal signals,
such as laughter.

Besides, each participant completed a Big Five personality test before the session and an experience survey
after each session. This valuable data can be analyzed in conjunction with laughter occurrences to explore
potential correlations between laughter and personality traits. Additionally, the dataset contains a wealth of
supplementary information such as gaze behavior, hand gestures, etc., providing further insights into the
factors influencing laughter dynamics.

2.3.2 OpenSimile feature extraction tool

This subsection will introduce the feature extraction tool, Opensimile in this dissertation and how this tool
extracts acoustic features and what acoustic parameters this tool incorporates (cf. Table.2.3).

Table 2.3: Literature related to “Opensimile”

Paper Address issue

Eyben et al. (2010) How Opensimile sample acoustic features from audio file

Eyben et al. (2015) How acoustic parameter work in the Opensimile
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Eyben et al. (2010) describes how the Opensimile is being used for acoustic feature sampling. “Opensimile”
is a ready-to-use and general low-level acoustic feature extraction tool, and this software utilises a single
configuration feature file to perform large-scale feature extraction(Eyben et al., 2010). For the architecture of
“Opensimile” , this software utilised C++ as programming laughter to perform at a fast speed when visiting
memory. It employed a ring buffer memory structure to optimise space usage. Opensimile is a ready-to-use
and general acoustic feature extraction tool that utilises a single configuration feature file for large-scale
feature extraction. The power of Opensimile is armed with several low-level acoustic descriptors, such as
Mel-Frequencey Cepstral Cofficent, pitch, and multiple functional features that relate to each acoustic
feature, such as segments and percentile.

Eyben et al. (2015) identified the subset of allowable parameters crucial for acoustic parameter extraction,
offering a pathway towards understanding diverse emotional states. Previous endeavors relied on machine
learning models to generate expansive parameter sets, impeding generalisation. Building upon this
insight,they advocated for a streamlined set easily accessible online. The selection criteria for these
parameters were threefold: indexability of psychological changes, continuity with prior research, and
theoretical significance. The minimalist parameter set encompasses three groups. The first group,
frequency-related parameters, includes "pitch, jitter, formant frequency (formants 1, 2, and 3), and first
formant bandwidth." Energy-related parameters constitute the second group, encompassing "shimmer,
loudness, and harmonics-to-noise ratio." The final group, spectral parameters, integrates "alpha ratio,
Hammarberg index, spectral slope, formant 1, 2, 3 relative energy, and Harmonic difference H1-H2,
H1-A3."

Furthermore, low-level acoustic descriptors underwent smoothing techniques, employing arithmetic mean
and coefficient of variation (e.g., standard deviation). These processed descriptors, termed "Functionals,"
were applied to 18 low-level descriptors, incorporating spectral and frequency parameters documented
extensively in prior literature. Arithmetic mean and coefficient of variation were also applied to these
extended sets. Evaluation revealed that Eyben et al.’s model for acoustic parameter extraction from audio
waveforms outperformed five benchmark datasets in terms of size, which were limited to binary
classification.

This research used Python programming language to implement our system and selected Opensimle python
API to extract acoustic feature extraction2.

2https://audeering.github.io/opensmile-python/
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3 Methodology

3.1 Methodology Introduction

The research delineates the roadmap of our study along with the research methods employed, focusing
primarily on innovating dataset construction, dataset correctness verification, and dataset analysis.
Specifically, dataset construction stands out as pivotal within our research methodology. These methods
incorporate various data structures, including linked lists and stacks, as well as diverse algorithms, such as
time interval alignment and text symbolisation algorithms.

3.1.1 Research design

In this project, we meticulously examined various facets of research design to ensure the robustness and
reliability of our methods. Our research approach encompasses dataset construction methods, the accuracy
of dataset construction, and dataset analysis techniques. Given the central role of data in each of these
methods, our approach to research design is fundamentally rooted in a data-centric perspective. The
components of our research design primarily encompass research philosophy, research approach, and
research methods.

Research philosophy This research adopts positivism as all design and implementation hinge upon
construction and analysis rooted in empirical study. It provides a systematic framework for gathering
objective data and drawing verifiable conclusions, aligning with the study’s empirical focus and aim for
rigorous analysis(Park et al., 2020).

Research approach The research approach contains inductive and deductive approaches. In our study,
we opted for the deductive approach as it was necessary to derive knowledge from the phenomena observed
in the experiment, thereby indicating that our results are derived through a bottom-up sequence.

Research methods Lastly, the research philosophy and approach significantly influence the direction of
the research methods. In this study, we have opted for a quantitative research method. Building upon the
aforementioned research design, we have formulated our research methods, which include both data
construction and analysis techniques. These methodologies have been tailored to align with the quantitative
research approach chosen for this study.

3.1.2 Structure of chapter 3

The methodology’s structure comprises a cascade pipeline that includes dataset construction methods,
ensuring the correctness of dataset construction, and employing data analysis methods. The correctness of
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dataset construction involves employing various verification techniques to ensure the dataset fed into the
machine model is 100% accurate. Furthermore, the dataset analysis methods explore the internal structure
of the dataset and select suitable models for identifying discriminating acoustic properties to address our
research question. The structure of this chapter is illustrated in the diagram below(cf. Figure.3.1).

Figure 3.1: The structure of the methodology chapter

3.2 Connection between research design and research methods

As research design operates on a high-level perspective, research methods serve as instances of research
design. In our study, aimed at identifying low-level acoustic features of two types of acoustic laughter, data
analysis relies on algorithmic generation. We employ machine learning and statistical tools to examine the
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properties of the data, aligning with the fundamental tenets of positivism in research. This approach reflects
the sequential progression of research methodologies and primary methods within a quantitative research
strategy.

3.3 Data construction methods

In data construction methods, we introduced how our dataset in this study was generated from the raw
MULTISIMO dataset.

3.3.1 Motivation and approximate replication of Tanaka and Campbell (2014)

Tanaka & Campbell (2014) work utilised sensors to gather dialogue session recordings and categorised
laughter into discourse and mirthful laughter. This dichotomy reflects the functional aspects of laughter. They
employed principal component analysis and a decision tree to identify disorienting features extracted by the
"Snack speech processing Toolkit." Their research has been integrated into clinical therapy and facial
expression detection software, with a significant focus on identifying low-level acoustic properties.

However, they did not release their dataset, hindering replication and further exploration. To replicate and
potentially build upon Tanaka & Campbell (2014)’s work, researchers require recorded conversations
annotated with laughter and other dialogue elements, such as silence, spoken words, and non-laughter
vocalisations. Fortunately, Koutsombogera & Vogel (2018a) addressed this gap by publishing the
MULTSIMO dataset, a multimodal dialogue dataset containing various paralinguistic annotations, including
laughter, publicly. Leveraging this dataset aids in replicating Tanaka & Campbell (2014)’s findings and
uncovering additional phenomena.

To replicate their work effectively, it is necessary to extract the relevant paralinguistic elements from the
MULTSIMO dataset. This dataset comprises multiple XML files recording continuous time and associated
text information, along with several audio files capturing the voices of different participants. Given the scale
and complexity of the dataset, developing an algorithm to construct the required dataset automatically is
more efficient than manual extraction session by session.

An explanation of the content related to our project within the MUTISIMO dataset will determine the
processing approach selection for this corpus. The raw dataset originated from 18 session EAF files and 54
audio files(three participants per session) in the MUTISIMO dataset. Each session comprised three audio
files corresponding to three speakers. The EAF files were structured in XML format, necessitating the
utilisation of a Python library to parse and extract the relevant tiers. Regarding the audio files, within each
mono folder were three distinct files: one for the moderator, one for the left participant, and one for the right
participant. Each audio file was engineered to amplify the current speaker’s voice while attenuating the other
speakers’ voices.

The motivation behind devising an algorithm for constructing continuous moments stems from the
dissatisfaction with the results obtained through manual manipulation using the export function (refer to
Figure 3.2). The representation in ’CV-merge-M-L-S’ cannot represent the mixed utterance between spoken
words and non-laughter vocalisation. Besides, manual export might introduce more errors. For instance, we
aim to avoid situations such as the incomplete utterance "[v". Ideally, both left and right brackets should be
present simultaneously.
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Figure 3.2: The continuous moments for the moderator tier in session two generated by the ELAN export
function

Therefore, our primary task is to design an algorithm to generate continuous moments from the original EAF
file. The author of this dissertation intended to employ two diagrams to illustrate our process in a high-level
overview (refer to Figure 3.3 and Figure.3.4).
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Figure 3.3: Overall Dataset construction diagram
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Figure 3.4: The dynamics of overhead variation diagram

Our model starts by employing our algorithms, as outlined in the section below, to construct the initial
dataset. The initial dataset contains two phases: the before-simplified and simplified versions, highlighted in
blue in Figure 3.4. The overhead of this dataset before simplified processing is depicted in the first rectangle
within a blue contour in Figure 3.4. It’s important to note that the subsequent section elucidates how the
initial overhead without simplified processing transformed into the second overhead. We refer to this system,
generated by our classification algorithm, as System 1. Furthermore, the format of this initial dataset is CSV,
and this process simulates the ELAN export function to a certain extent. Later on, we also dub this initial
dataset "ELAN CSV". Once the initial dataset is constructed, there are two methods to merge the datasets
by two systems: one system generates an EAF file, while the second system is derived from an audio file
and subsequently processed using the Python Opensimile API to extract 6,373 acoustic features.

In one approach, we utilise a CSV extracted by Opensimile on each audio clip with the same start and end
times in each moment per session as “ELAN CSV” to align the initial dataset (see the model in Chapter 3.3.2
in the figure.3.3); the overhead of this merged version is represented by the third rectangle in Figure
3.4.

In another merging approach, we utilise a constant duration. Previous literature suggests that selecting a
minimum duration range from 120 to 170 milliseconds is appropriate for auditory perception(Efron, 1970).
Therefore, based on this suggestion, we choose 200 milliseconds as this value is not significantly different
from the boundary of auditory perception that human beings can discern. Using 200 milliseconds as the
constant duration, we extract the same duration for 18 sessions per speaker; the overhead of this operation
is depicted in the fourth rectangle in Figure 3.4. Lastly, we combine the CSV generated by OpenSmile
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(referred to as “Opensimile CSV” later on) with the “ELAN CSV” by applying the algorithms in the following
section to generate the final constant merged CSV. The overhead of this operation is depicted in the last
rectangle in Figure 3.4.

3.3.2 Initial dataset construction

The construction of the initial dataset involves receiving each session’s EAF and transforming it into
continuous moments in the format provided below (cf.Figure.3.5).

Figure 3.5: Initial dataset overhead

In the sample provided above, the session ID represents an ordinal number assigned to sessions, while the
participant ID indicates the participant number, typically formatted as ’P002’. Start time and end time denote
specific moments in milliseconds, with the duration calculated as the difference between the end and start
times. The ’CV-Merge-M-L-S’ column retains the original utterance labeling, such as ’[V] V [V] V [V] [V]’,
necessitating processing of the initial labeling into a simpler representation. Finally, applying a
straightforward algorithm processes the initial labeling and stores this new annotation in the ’consider merge
type’ column as a candidate for the response variable. The following description outlines the primary output
of initial dataset construction and its crucial functionality within the main product.

The below description illustrates the main product of initial dataset construction and critical functionality
within the main product.

3.3.2.1 Overall continuous time algorithm mechanism

Our first step involves parsing the EAF structure, similar to the XML format, followed by storing and
converting this structure, which comprises time and precise utterance content (cf. Listing A1.1), into Python
DataFrame format. This process aims to establish continuous time intervals for each speaker, thereby
creating an initial DataFrame, which serves as the input specification for this project. Subsequently, the core
functionality is outlined in the pseudo-code below (cf. Algorithm.1).

There are four main steps for the below pseudo code (cf. Algorithm.1):

1 [Lines 1-5] This group of code intends to parse the continuous time in the EAF with respect to the
"TIME_ORDER" tag and store it into a different data frame (cf. listing.A1.2) as this information could provide
an initial timestamp and a terminated timestamp. Followed by the acquisition of the participant list by "Tier
id" from the initial data frame, a regular expression is employed to query strings starting with "P" and "M" to
locate this pattern to find players in specific session and store them into a participant list in the current
session. The final instruction in this group filters the laughter tier as this column contains specific laughter
annotations, such as discourse laughter.

2 [Lines 6-10] Once acquire a unique participant list, the algorithm iterate three players to extract relevant
information. For the specific player in each iteration, the program selects specific rows for the designated
participant name, such as “P002”. Given the demand for dynamically inserting time intervals and filling
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silence gaps, the approach of constant insertion for a linked list data structure is being considered for this
purpose. Line 10 starts iteration at each time interval in the specific player tier. This logic read the raw
utterance annotation as input and produced labelled utterance type as the output by the algorithm.2.

3 [Lines 11-21] The next step determines the inclusion of laughter macro in the current time tuple. On the
one hand, if it exists, this logic aligns the abstract laughter annotation, such as “[laugh]” with the precise
laughter “Discourse laughter”. It merges it into crossed laughter annotation, such as “[laugh]-discourse” by
the Algorithm.3. This logic then merges with laughter annotation with another element, such as “S” if it exists
a situation where a particular speaks with laughter. Once this annotation proceeds, include the current time
interval and associated annotation in the link list. On the other hand, if no laughter macro is present, direct
insert the current time interval and annotation into the link list.

4 [Lines 22-30] The last code group scrutinises the start time with 0 ms and the end time with the designated
end time in the EAF. If it does not fit this condition, insert a silence interval ahead of the link list or tail of the
link list. The last step is to transfer the link list to the data frame.

Algorithm 1 Overall procedure of utterance event for specific player

1: function OVERALLEVENTCONSTRUCTION
2: D ← GetDataframeFromEAF()
3: tlastTimenode ← GetlastTimeStamp() ▷ Acquire the last time moment in the current session
4: P ← ParticipantList() ▷ The set contains unique participant list
5: L ← FilterTier(D, ’laughter_section tier’)
6: for all p ∈ P do
7: Dp ← FilterPlayer(D, p) ▷ Dp: The laughter tier vector of particular player
8: Ip ← PlayerMomentLinkedList() ▷ Ip: LinkedList for p
9: for all (tS, tE , annotation) ∈ Dp do

10: v ← UtteranceCategorisation(annotation) ▷ Call Algorithm.2 to categorise the utterance in the
EAF into our predefined format

11: laughMarcostr ← ’[laugh]’
12: if laughMarcostr ∈ annotation then ▷ Determine current annotation contains laughter marco
13: τ ← (tS, tE ) ▷ Construct time tuple
14: λ← LaughterIntervalAlignmentAlgorithm(τ ,L) ▷ Call Algorithm.3 to align current abstruct

laughter to concrete version
15:
16: µ← UtteranceConncation(v ,λ)

▷ Link laughter with other element in utterance
17: Ip.AddNodeIntoLinklist(tS, tE ,µ)
18: else
19: Ip.AddNodeIntoLinklist(tS, tE , v )
20: end if
21: end for
22: tcurrentSpeakerendTime ← Ip.QueryForLastTimeInLinklist()
23: if tcurrentSpeakerendTime < tlastTimenode then
24: Ip.AddNodeIntoLinklist(tend, tlastTimenode, ’Silence’)
25: end if
26: D′

p ← LinklistToDataFrame(Ip)
27: tmin_start ← AcquireMinStartTime(D′

p, ’Start time’)
28: if tmin_start ̸= 0 then
29: InsertSlienceIntoDataFrame(0, tmin_start, ’Silence’,D′

p)
30: end if
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3.3.2.2 Silence detection

To enhance our program’s ability to detect silence gaps, we have implemented dynamic time interval
insertion, utilising a linked list structure for swift operations. Each node in this linked list holds crucial
information: start time (in milliseconds), end time (in milliseconds), and annotation (a string). If the end time
of the previous moment does not align with the start time of the current one, our program intelligently
identifies and populates the gap with a node representing the silent interval. Specifically, it sets the start time
of the gap as the end time of the previous moment and the end time of the gap as the current moment’s start
time.

3.3.2.3 Vocal classification

This functionality transforms original utterances in the EAF into a series of self-defied symbols, such as V to
represent speaking and [V] to respect non-laughter vocalisation. Additionally, it preserves punctuation,
including exclamation marks, question marks, commas, full stops, and semicolons, to rephrase the original
utterance without loss of precision at this stage. The algorithm specification and pseudocode are provided in
the description below.

Algorithm specification

1. Input: s be a input string in the annotation.

2. Output: The function produces a classified string string.

3. Sample input and output: “[eh] the next one [i].” → “[V] V [V].”; “Laugh] Violin”→ “[laugh] V” ; “Hello,
this is a test + with [brackets] and other symbols.” → “V, V [V] V.”.

Algorithm 2 Utterance categorisation

1: function UTTERANCECATEGORISATION (inputStr )
2: inputStr ← TransformIntoLowerCase(inputStr )
3: strList ← SplitStringBySpace(inputStr )
4: result_list ← InitEmptyList()
5: for each currstr in strList do
6: currstr ← RemoveLeadingTrailingSpce(currStr )
7: if ContainLaughterMarco(currStr ) then
8: augmentText ← ProcessLaughterMarco(current_str )
9: new_list .Append(augmentTtext)

10: else
11: utteranceStr ← ProcessUtterance(currentStr )
12: newList .Append(utteranceStr )
13: end if
14: end for
15: returnStr ← TrnasfromStringVectorIntoString (newList)

With the Function.2, there are three main steps:

1 [Lines 1-4] This logic first transforms the input string into lowercase,and then splits a single string into a
string vector.

2 [Lines 5-14] Iterate the string vector and remove leading and trailing spaces in each turn. Determine if the
current string contains laughter marco (“[laugh]”). If it contains this marco, our program maintain original
string string as it is; otherwise, the function replaces each string with "V" to simplify the utterance
representation.
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3 [Lines 15] The last step involves converting string vectors into one string separated by one space.

3.3.2.4 Laughter alignment

This function aims to align the abstract laughter annotation from the “participant tier” into specific laughter in
the “laughter_section” tier(cf.figure.A1.2).

Inputs:

• lcurrent: current moment tuple,where lcurrent = (sp, ep)

• L: Laughter section list, where each tuple in L is the below format:(sl , el , exactlaugh)

Output:

• s: Specific laughter or NULL.

Algorithm 3 Laughter Interval Alignment algorithm

1: function LAUGHTERINTERVALALIGNMENTALGORITHM(curr_tuple, laughter_list)
2: sp ← curr_tuple[0] ▷ sp denotes the start time of current participant
3: ep ← curr_tuple[1] ▷ ep denotes the end time of current participant
4: for inner_l in laughter_section_list do
5: sl ← inner_l [0] ▷ sl denotes the start time of current laughter moment
6: el ← inner_l [1] ▷ el denotes the end time of current laughter moment
7: subCond1← sp ≥ sl
8: subCond2← ep ≤ el )
9: 1stCond ← (sp = sl ∧ ep = el ) ▷ The former interval equals the later interval

10: 2ndCond ← (subCond1 ∧ subCond2
▷ The former interval is within the later interval

11: 3rdCond ← (sp ≤ sl ∧ ep ≥ el ) ▷ The former interval contains the later interval
12: if 1stCond ∨ 2ndCond ∨ 3rdCond then
13: specific_laugh← inner_l [2]
14: return specific_laugh
15: end if
16: end for
17: return “null”

The above Function.3 aligns with three conditions of the current moment with laughter Marco ([laugh])in the
iteration with specific laughter, such as laughter that is laughable in the laughter tier.
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3.3.2.5 Simplified representation of self-defined annotation type

The initial dataset algorithm stimulates the symbols in the discourse, but some of them represent the same
semantics, such as “V [V] V.” and “V [V].”. Therefore, it is imperative to devise a more coherent
representation. This symbolic representation incorporates two types of utterances: single-type utterances
and merge-type utterances. A single-type utterance consists of original laughter tags, such as
“[laugh]-Mirthful,” silence tag “[V],” and “S” tag. In merge-type utterances, the “M” symbol indicates the
combination of “S” and “[V]” when both types of elements appear in the same utterance, with the occurrence
of each type being greater than or equal to one.

3.3.3 Varied duration construction algorithm

The overhead of the varied duration dataset follows the format described below (cf. Figure 3.6 ). To construct
each moment within this overhead, the Python Audio Segment API divides each audio into continuous
segments, with each segment’s duration matching that of the corresponding moment in the initial dataset (cf.
Figure 3.5). Because each moment’s duration may vary, resulting in what we term the varied duration
dataset. Subsequently, the Python Opensimile API extracts 6,373 acoustic properties from each audio
segment clip per moment, appending these properties to the initial dataset overhead. At the conclusion of
each iteration, the generated audio file is deleted to conserve space(cf.Figure.3.7).

Figure 3.6: The overhead of Varied duration dataset

25



Figure 3.7: The process of construction of varied duration dataset from two CSV system

3.3.4 Fixed duration construction algorithm

This section explains the alignment process for constructing a fixed-duration dataset from two CSV systems.
Then, it offers concrete examples of how our solution addresses the alignment issue between different
duration systems.

3.3.4.1 Overall process

The overhead of the varied duration dataset is expected in the below format (cf. Figure.3.8). When
compared to the overhead of the varied duration dataset (cf. Figure 3.6), the fixed duration dataset overhead
includes two additional columns: "First Time Appeared" and "Count for the Same Utterance Type." The first
new column contains two values, "true" and "false," while the second extra column records occurrences of
the same event.

Figure 3.8: The overhead of fixed duration dataset

The term "concise merge type" is defined below as an utterance event. The diagram (cf. Figure 3.9) below
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illustrates one participant in one session, introducing the alignment process with two CSV systems: ELAN
CSV and OpenSimile CSV. It demonstrates how to construct a fixed-duration dataset.

The general alignment mechanism involves iterating over each moment in the ELAN interval and using one
utterance event to match one row or multiple rows in the OpenSimile CSV. For any ELAN CSV session, this
program first extracts a unique player list, including two participants and one facilitator, then iterates over
different players. For the specific player, the reduced data frame is extracted by filtering the specific players.
Once a specific player data frame is acquired, , two cases arise for aligning the two systems.

Firstly, if the current duration is greater than or equal to 200 milliseconds, which surpasses the minimum
range of the human hearing system, the program proceeds. The duration at this moment is divided by 200 to
determine the quantity of integer iterations that match with the OpenSimile interval. Then, the remainder
interval is calculated using modulo 200 to determine whether the current reminder interval belongs to the
current utterance event or the next. Secondly, if the duration is less than 200 milliseconds, regardless of how
tiny the interval is, this interval belongs to the next utterance event.
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Figure 3.9: The diagram of alignment between fixed duration Opensimile interval and varied ELAN interval
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3.3.4.2 Solution to alignment between two duration CSVs

This program utilised ELAN CSV in session 2, as shown in Figure .3.10, and Opensimile CSV in session 2,
as shown in Figure .3.11, to generate the merged constant duration CSV. It is important to note that the
ELAN CSV (cf. Figure 3.10) contains utterance events, whereas the Opensimile CSV does not.

Figure 3.10: The sample dataset extracted from Session 2 ELAN CSV

Figure 3.11: The sample dataset extracted from Session 2 Opensimile CSV

Definition of threshold The idea that auditory perception operates within milliseconds was initially
proposed by Efron (1970). This study adopts a sampling duration of 200 milestones, aiming to keep each
sample within the realm of human perceptibility. Specifically, it focuses on 120 milliseconds, identified as the
lower threshold for acoustic perception intervals. The ratio between 120 milliseconds and 200 represents the
minimum interval employed to recall the duration of the ELAN interval. Referred to as α, this ratio signifies
the anchor usage saturation. To categorise any reminder interval, it should be divided by 200 milliseconds,
and the resulting ratio compared with the anchor usage saturation to determine the placement of the
utterance event.

Case analysis In Figure 3.9, three cases of alignment are mentioned: when reminder interval usage is
greater than or equal to the threshold, when reminder interval usage is less than the threshold, and when it
is of tiny duration.

•Case 1:

The remainder of the first row in ELAN CSV (cf. Figure.3.10) is calculated as 1375-200×6 = 175,
which corresponds to the first six rows in the Opensimile CSV(cf.Figure.3.11) belonging to the
current moment event in the ELAN CSV(cf.Figure.3.10). As for the reminder moment from 1300 to
1400 milliseconds in the Opensimile, the reminder usage could be derived from this calculation:
175/200 = 0.875, greater than the anchor usage saturation of 0.6, indicating that this reminder
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relatively fully utilises the interval within 200 ms(cf. Figure.3.12) and the event of this reminder
should belong to the current utterance.

Figure 3.12: Example case 1 for threshold boundary

•Case 2:

For another case, if the duration is 471 milliseconds, the reminder could be derived from this
calculation:471 = 200 ×2 +71. The remainder is 71. The interval usage is 71/200 = 0.355, which is
less than the anchor usage saturation (cf. Figure 3.13), indicating this reminder event should
belong to the next utterance event.

Figure 3.13: Example case 2 for threshold boundary

•Case 3:

To ensure consistency with the ELAN CSV, every event should be covered, even if its duration is
less than 200 milliseconds (cf. Figure 3.14). Thus, the utterance of the event of the current moment
should belong to the current utterance moment, regardless of how brief the current duration is. This
operational logic maintains the coherence of the merge CSV, aligning it with the requirements of
ELAN CSV.
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Figure 3.14: The duration in ELAN csv is less than 200

3.3.5 Comparison between different duration datasets

There are four aspects to compare between the two version duration datasets:

• Capacity: the capacity of varied version is 1.67 GB whereas the fixed counterpart is around 15 GB.

• The content in acoustic property extracted from Opensimile: Some moments in varied duration
datasets that are less than 200 milliseconds do not have acoustic properties due to the artefact and
configuration in OpenSimile(cf.figure.3.15 ). In contrast, the fixed duration dataset does not have this
issue.

• Alignment issue: In the process of construing a varied duration dataset, each moment in Opensimile
CSV does not discard as two CSV systems synchronise each other in each moment, while In the
process of construing fixed duration dataset, some rows might discord in the Opensimle CSV as two
systems moment is not always one-to-one perfect alignment.
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Figure 3.15: Issue in the varied duration:some laughter moments that are less than 60 ms could not be
processed in Opensimile

3.4 Correctness of dataset construction

Dataset quality significantly impacts machine learning performance, thus necessitating thorough verification.
Four key aspects must be assessed to ensure the quality of our dataset prior to conducting machine learning
experiments.

3.4.1 Verification of code logic for the issue in the construction of the fixed duration
dataset

To verify code logic in a fixed-duration dataset, potentially addressing alignment issues, the author of this
dissertation employed a button-based mechanism. This method allowed the author to ascertain whether the
reminder interval corresponds to the current utterance event or the subsequent one. The relevant code logic
is presented in Listing 3.1 and is discussed in the context preceding the iteration before the integer part
(highlighted in a yellow rectangle in Figure 3.16).

Code Listing 3.1: Button for verification of control fixed duration dataet alignment

if button_for_move_next_event == True:

count_this_type += 1

number_intervals -= 1

# When finished it should be shutdown immedicately

button_for_move_next_event = False
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Figure 3.16: Utterance event control in fixed duration dataset

3.4.2 Verification of null category in response variable

Here are the NULL categories in the EAF file, and it needs to transform any laughter category containing
"null", such as "[laugh]-null Discourse"(cf. Figure.3.17 and Figure.3.18 ) to “Ambiguous”.

Figure 3.17: Missing annotation in session 2 in visualised by ELAN
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Figure 3.18: Inspection of missing annotation in session 2

Besides, this project also changes “[laugh]-Discourse S” and “[laugh]-Discourse [V]” into “[laugh]-Discourse”
as it is hard to distinguish the speaking or non-laughter vocalisation is interleaved with laughter.

3.4.3 Verification of quantity of utterance event in the fixed duration dataset

To address the alignment issue, the fixed duration dataset requires merging two CSVs: the ELAN CSV and
the OpenSimile version CSV.

Figure 3.19: The screenshot of constant dataset for the total utterance event inspection

This study uses two columns to verify the count number (cf. Figure 3.19). If the "count for the same
utterance type" is one, it can be inferred that the "First time appears" column is True. Otherwise, if any value
is not 1, it indicates that the "First time appear" column should be false.
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3.4.4 Verification of total event in fixed duration dataset alignment with varied
duration dataset

When processing the ELAN CSV and Opensimile CSV datasets with varied versions, each moment is
aligned to the same duration. Utilising the varied duration dataset as a reference point, we can assess the
completeness and accuracy of the fixed duration dataset. This involves selecting the ’count for the same
utterance type’ column and filtering the final events by choosing all instances where this count equals
1.

Here is screenshot of varied duration dataset:

Figure 3.20: The screenshot varied duration dataset

Here are all the rows where the value in the "count for the same utterance type" column equals 1:

Figure 3.21: All unique utterance events in the fixed duration dataset

Based on figures 3.20 and 3.21 above, it is apparent that both the total row count of the varied dataset and
the total row count of the fixed duration dataset, under the condition where the value in the "count for the
same utterance type" column equals 1, amount to 14,441 rows. This observation suggests that the fixed
duration dataset exhibits 100% accuracy.

3.5 Data analysis methods

The section on Data analysis methods involves dataset exploration, identification of discriminating features
and interaction among acoustic features. It is important to note that all experiments are currently in the
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design phase, and the results will be presented in the subsequent chapter dedicated to results.

3.5.1 Dataset exploration

Data exploration presents seven types of response variables in “consider merge type”, with these labels
serving as the independent variables, while 6,373 acoustic properties act as the dependent variable Table
3.1 below provides explanations for each label.

Table 3.1: Classified utterance and explanation

Self-defined re-
sponse variable

Explanation

S Spoken words such as "ahaha"

Silence Silence moment

M Merge type consists of any number of speaking and non-laughter vocalisation,such
as "[ah] I ....[em]"

[laugh]-Discourse Discourse laughter

[V] Non-laughter vocalisation

[laugh]-Mirthful Mirthful laughter

Ambiguous Due to missing labels in the EAF file, some annotations exist, such as "[laugh]-
null.". We transform all these types into "Ambiguous".

This section also presents the quantity of discourse and mirthful laughter in the varied and fixed-duration
datasets. Upon examining the figures (cf. Figure 3.22 and Figure 3.23), it becomes evident that laughter
accounts for only a small fraction of the total label quantity.
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Figure 3.22: The label distribution of varied duration dataset

Figure 3.23: Fixed duration dataset label distribution

3.5.2 Identification of discriminating acoustic features

In this section and results chapter, both acoustic properties and acoustic features are interchangeably
referenced. This project employs two models, Decision Tree and Multinomial Regression, to identify
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distinctive features in various types of laughter. Before inputting the dataset into the Decision Tree model,
the target variable must be converted into binary classification; otherwise, the model won’t discern the
discriminating features effectively. This decision model design process is depicted in Figure 3.24. Regarding
multi-label classification (refer to Figure 3.25), this project leverages its characteristics to extract the
coefficients of features corresponding to different labels, thus identifying the distinguishing features. In both
models, a Decision Tree is employed to visualise the discriminant features.

Figure 3.24: The diagram for the discriminating acoustic feature process generated by decision tree model
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Figure 3.25: The diagram for the discriminating acoustic feature process generated by multinomial logistic
regression model
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3.5.3 Interaction among discriminating acoustic features

To examine the interaction among acoustic features, we employed the Wilcoxon signed rank test to compare
the adjacency feature generated by the machine learning approach utilised in this project after conducting a
normality test,such as Shapiro-Wilk test (cf. Figure 3.26).

Feature importance list generated
from decision

Visualisation

Select the features whose p-
value is less than 0.5

Adopt linear regression to identify the features
which are significant in explaining the variance in the concise merge type 

Visualize the low-level acoustic
feature in bar chart with

quantity

Any laughter categories either in varied or fixed duration dataset

Utilize Shapiro-Wilk test and D‘Agostino’s K^2 
test to all features

Determine the normality of all 6,373 acoustic features.

Most feature-significant values are less than 0.5
and it is not normal for features. Hence, we should select
a non-parametric test

Adopt the Wilcoxon signed rank 

Visualize the top-N feature correlation
networks(Vertex: features; Edge: 

significant value

From the decision tree model

Test the adjacency feature in the feature importance rank list

Figure 3.26: The diagram of interaction between discriminating acoustic feature

3.6 Summary of methodology

The methodology chapter introduces the research design in a high-level description and proposes research
methods, encompassing data construction and dataset analysis. Prior to conducting machine learning
experiments, this work rigorously validates dataset annotations across various dimensions to ensure
accuracy. In essence, this chapter furnishes a fundamental framework for the subsequent chapter.
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4 Results

The results chapter presents the findings of the machine learning experiment in the methodology chapter.
This chapter will begin by detailing the experiment’s parameter settings. Subsequently, it will present the
binary classification results followed by the multi-classification results. Next, a synopsis of discriminative
features in our study will be provided. Finally, the chapter will compare our results with those of Tanaka &
Campbell (2014), as well as discuss the findings regarding acoustic feature interactions.

To ensure clarity, we consistently employ the term “feature” to denote acoustic properties within the
experimental context. Here, acoustic properties serve as features, while the response variable (concise
merge type) functions as the target or dependent variable. When referring to acoustic features, we intend the
same semantic meaning as acoustic properties in this study. Furthermore, each low-level acoustic property
extracted from the Opensimile includes acoustic property names and functional information, such as
statistical details. We interpret acoustic property names exclusively by querying them on this website,
excluding statistical information to facilitate summarisation and comparison with others’ work(cf. link
https://github.com/rupafn/CulturalClassifier).

4.1 Experiment setup

Before presenting the experimental results, it is helpful to provide an overview of the experimental setups to
assist in replicating this work. The following four subsections detail each component configuration used in
our experiment.

4.1.1 Machine learning model parameter configuration

This dissertation employed two machine learning models: a decision tree for binary classification and
multinomial logistic regression for multi-class classification. Given that the computation time required for
hyperparameter tuning can be substantial, we predefined parameter collections for each model. Below are
two configurations.

Code Listing 4.1: Decision tree model parameter

from sklearn.tree import DecisionTreeClassifier

model = tree.DecisionTreeClassifier(criterion='gini',

max_depth=3,min_samples_split=10,

random_state=42,class_weight='balanced')

Here is the explanation for decision tree model parameter setting (cf.listing.4.1):
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•criterion: The ‘criterion‘ parameter denotes the partition algorithm in the decision tree model. There are two
mainstream approaches based on entropy and the Gini index. We select the Gini index based on
computationally efficient and high-dimensional data orientation compared to associated properties in
entropy(cf.link:https://www.javatpoint.com/gini-index-in-machine-learning#:~:text=
Advantages%3A,example%2C%20entropy%20or%20misclassification%20rate.).

•max_depth:To fit the page size properly, we set the max depth of decision tree as 2 or 3 depend on varied
duration dataset or fixed duration dataset.

•min_samples_split :To prevent over-split, we set the minimum sample partition in each node as ten
units.

•random_state:To achieve the same results in different executions, we set random states to a specific
number forcibly.

•class_weight’:As our dataset has a relative imbalanced distribution towards laughter and other elements in
the discourse, such as non-speaking vocalisation, we need to allow the classifier to adjust imbalanced target
labels.

Here is the multinomial regression parameter setting, and this configuration comes from the modification of
Karishma (2022)’s work as they adopted basic configuration. It is convenient to adjust in our
work(cf.listing.4.2).

Code Listing 4.2: Multinomial logesitic regression model parameter

from sklearn.linear_model import LogisticRegression

model = LogisticRegression (multi_class='multinomial',

penalty='l2',

solver ='lbfgs',

max_iter=1000,class_weight='balanced')

•multi_class:We set this parameter as the multinomial label forcibly to signal the classifier to deal with the
multi-labelling tasks.

•penalty:We opt for the L2 penalty in the penalty parameters to prevent overfitting in multinomial regression
based on squaring hyperparameters.

•solver:As for the optimisation solver, we selected “lbfgs”,as this quasi-Newtown method could handle large
computations for a relatively small capacity dataset(around 1GB to 20 GB)and multinomial issues.

•max_iter:As our dataset might need large amount of time to execute, we set 1000 max iteration to control
converge turn.

•class_weight: The same setting and explanation as in the decision tree model(cf.listing.4.1).

4.1.2 Considerations of discriminating feature range

In the decision tree model, we selected acoustic properties with feature importance scores above 0,
determined through ranking in the built-in classification package, according to different types of laughter
such as discourse or mirthful laughter. In examining feature importance for the multi-label labeling task, the
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coefficient matrix produced by multinomial logistic regression highlights each significant feature for various
utterance types. Specifically, we consider coefficient values greater than 0 for a given laughter type as
distinguishing features for that particular laughter.

4.1.3 Hypothesis testing for feature correlation and feature reduction

Before conducting hypothesis testing, this study utilised the Shapiro-Wilk test and D’Agostino’s K2 test to
verify the normal distribution of discriminating properties before selecting types of statistical hypothesis
testing (non-parametric or parametric) to verify the normality of each feature. After normality testing, it was
revealed that our data followed a non-normal distribution in most cases. Consequently, we opted for the
Wilcoxon signed-rank test. The research employed the Wilcoxon signed rank test for the decision tree model
to inspect the top-N acoustic properties, as the number of top-N acoustic properties is within 10.

Another application of the Wilcoxon signed-rank test for multinomial regression involved filtering adjacency
acoustic properties. This was based on the criterion that the coefficient feature exceeds 0 in the rank list
generated by multinomial regression. The justification for this approach hinges on the number of these
acoustic properties, which falls within the range of approximately.

4.1.4 Regression analysis for identification of significant feature explaining vari-
ance of target variable

Regression analysis identifies acoustic properties that could explain the variance of the response variable,
indicating that these significant properties correlate with the response variable when the coefficient of this
independent variable is less than the alpha value(0.05).

This research selects different sets of acoustic properties for different sampling datasets for regression
analysis. For the varied duration dataset, which has a relatively minor capacity (1.67 GB), we utilise all
acoustic properties.

However, for the fixed duration dataset with a larger capacity issue (around 15 GB), before conducting
regression analysis, we apply the Wilcoxon rank test to reduce features by removing strongly correlated
ones. Additionally, each unique utterance event in the varied duration dataset might occupy multiple rows.
After this operation, the acoustic properties fed into regression analysis are limited to 100, a feasible number
for our machine to execute.

With this configuration, we can acquire the acoustic properties that explain the variance in different duration
datasets given different types of laughter. Then, we elucidate our process of analysing acoustic properties
by employing linear regression to examine each feature, explaining the significant variance in the associated
laughter in this context, specifically “[laugh]-discourse”. We select the features whose p-value is less than
0.05.

Sequentially, for each select feature, such as “jitterLocal_sma_quartile3”, we retain the text before the first
underscore(“_”) as this text represents the lower-level acoustic feature, while the text after the first
underscore indicates functional information, such as statistical details. We can derive the following
visualisation by tallying each processed text.
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4.1.5 Decision tree branch visualisation explanation

This study employed a decision tree for visualising both binary and multi-labels within the response variable.
In the experimental setup, the "Sklearn" library facilitated the acoustic selection process through the
implementation of a decision tree model (cf. link.https://scikit-learn.org/stable/modules/
generated/sklearn.tree.export_graphviz.html).

Each node or leaf has several parameters related to branching and here is the statement of the parameters
in each row per node:

•The row related to the comparison between specific acoustic properties with some threshold indicates the
discriminating feature at the current level.

•The row related to the Gini index measures the impurity of this node. The less impurity, the better the
separation is.

•The text related to samples denotes the quantity of each response label in the current separation.

•The row related to class shows the predominant class in this node.

4.2 Binary classification results

This section initially presents decision tree visualisation for binary labelling tasks,and discriminating features
of discourse and mirthful laughter in varied and fixed duration datasets, ranked by the decision tree model.
Subsequently, this subsection focuses on decision tree visualisation for binary labelling task.

4.2.1 Feature selection visualisation

The decision tree depicted above is constructed for binary classification, distinguishing between
non-discourse laughter (“Not [laugh]-Discourse”) and discourse laughter (“[laugh]-discourse”) within the
varied duration dataset (cf.Figure.4.1). In this tree, the root node’s determiner is spectral Features. If a
sample’s spectral features are less than or equal to 0.036 Hz, the predominant utterance type is deemed to
be discourse laughter. Subsequently, if this condition holds, the model predicts the class as non-discourse
laughter; otherwise, it predicts it as discourse laughter. The tree continues to branch based on different
discriminators until the third depth level is reached.

It is important to note that the presented tree only exhibits thresholds for the third-level depth without
comparisons involving different acoustic properties. Analysis of this tree highlights that several low-level
acoustic properties, such as spectral features, mel-frequency cepstral coefficients, auditory spectrum, and
jitter, play pivotal roles in determining discourse laughter within the varied duration dataset.
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pcm_fftMag_spectralFlux_sma_peakMeanMeanDist ≤ 0.036
gini = 0.5

samples = 10108
value = [5054.0, 5054.0]
class = [laugh]-Discourse

mfcc_sma[2]_peakMeanAbs ≤ -0.742
gini = 0.386

samples = 7118
value = [3632.031, 1243.055]
class = Not [laugh]-Discourse

True

mfcc_sma_de[1]_range ≤ 0.365
gini = 0.396

samples = 2990
value = [1421.969, 3810.945]
class = [laugh]-Discourse

False

audspec_lengthL1norm_sma_de_iqr1-3 ≤ -0.588
gini = 0.498

samples = 1203
value = [598.805, 686.951]
class = [laugh]-Discourse

pcm_fftMag_spectralRollOff75.0_sma_de_upleveltime75 ≤ -0.124
gini = 0.262

samples = 5915
value = [3033.225, 556.104]
class = Not [laugh]-Discourse

gini = 0.117
samples = 478

value = [246.021, 16.356]
class = Not [laugh]-Discourse

gini = 0.452
samples = 725

value = [352.785, 670.595]
class = [laugh]-Discourse

gini = 0.139
samples = 4277

value = [2201.293, 147.204]
class = Not [laugh]-Discourse

gini = 0.432
samples = 1638

value = [831.932, 408.9]
class = Not [laugh]-Discourse

mfcc_sma[1]_quartile3 ≤ 0.097
gini = 0.3

samples = 1774
value = [800.47, 3631.029]
class = [laugh]-Discourse

jitterDDP_sma_iqr1-2 ≤ 0.023
gini = 0.354

samples = 1216
value = [621.499, 179.916]
class = Not [laugh]-Discourse

gini = 0.218
samples = 1040

value = [436.339, 3173.061]
class = [laugh]-Discourse

gini = 0.493
samples = 734

value = [364.131, 457.968]
class = [laugh]-Discourse

gini = 0.155
samples = 997

value = [513.188, 32.712]
class = Not [laugh]-Discourse

gini = 0.484
samples = 219

value = [108.311, 147.204]
class = [laugh]-Discourse

Figure 4.1: Feature selection process of discourse laughter in varied duration dataset

mfcc_sma[2]_quartile3 ≤ -0.389
gini = 0.5

samples = 10108
value = [5054.0, 5054.0]
class = [laugh]-Mirthful

pcm_fftMag_spectralFlux_sma_peakMeanMeanDist ≤ -0.143
gini = 0.379

samples = 2904
value = [1396.003, 4091.333]

class = [laugh]-Mirthful

True

audSpec_Rfilt_sma_de[25]_quartile2 ≤ -1.226
gini = 0.33

samples = 7204
value = [3657.997, 962.667]
class = Not [laugh]-Mirthful

False

mfcc_sma_de[12]_percentile99.0 ≤ 0.012
gini = 0.467

samples = 1577
value = [796.038, 433.2]
class = Not [laugh]-Mirthful

mfcc_sma[1]_quartile3 ≤ 0.285
gini = 0.239

samples = 1327
value = [599.965, 3658.133]
class = [laugh]-Mirthful

gini = 0.293
samples = 1058

value = [539.713, 24.067]
class = Not [laugh]-Mirthful

gini = 0.491
samples = 519

value = [256.325, 409.133]
class = [laugh]-Mirthful

gini = 0.178
samples = 844

value = [357.936, 3441.533]
class = [laugh]-Mirthful

gini = 0.5
samples = 483

value = [242.028, 216.6]
class = Not [laugh]-Mirthful

F0final_sma_linregerrQ ≤ -0.234
gini = 0.457

samples = 480
value = [235.901, 433.2]
class = [laugh]-Mirthful

pcm_fftMag_spectralFlux_sma_de_quartile3 ≤ 0.357
gini = 0.232

samples = 6724
value = [3422.096, 529.467]
class = Not [laugh]-Mirthful

gini = 0.445
samples = 249

value = [127.141, 0.0]
class = Not [laugh]-Mirthful

gini = 0.325
samples = 231

value = [108.76, 433.2]
class = [laugh]-Mirthful

gini = 0.126
samples = 5827

value = [2970.719, 216.6]
class = Not [laugh]-Mirthful

gini = 0.487
samples = 897

value = [451.378, 312.867]
class = Not [laugh]-Mirthful

Figure 4.2: Feature selection process of mirthful laughter in varied duration dataset

The decision tree depicted in Figure.4.2 is designed for binary classification, distinguishing between
non-mirthful laughter (“Not [laugh]-Mirthful”) and mirthful laughter (“[laugh]-Mirthful”) within the varied
duration dataset (cf.Figure.1.2). At its core, the root node hinges on mel-frequency cepstral coefficients.
When a sample’s Mel-frequency cepstral coefficients fall below or equal to -0.389 W/Hz, the prevailing
utterance type is identified as discourse laughter. Notably, since Mel-frequency cepstral coefficient
represents a power spectrum measurement, the unit of measurement remains consistent. The negative sign
denotes an inverted cosine wave.

If the first inequality is satisfied, the model predicts that the class is mirthful laughter; otherwise, it predicts it
as non-mirthful laughter. This tree exhibits various branching determiners until the third depth level is
reached. It is important to note that at this depth, there are no threshold comparisons involving different
acoustic properties (features); we only present the third-level depth. From this tree above, it is evident that
the following low-level acoustic properties, including mel-frequency cepstral coefficient, spectral features,
auditory spectrum, and fundamental frequency, are key determiners for identifying mirthful laughter within
the diverse duration dataset.

The decision tree depicted below is constructed for binary classification, distinguishing between
non-discourse laughter (“Not [laugh]-Discourse”) and discourse laughter (“[laugh]-discourse”) within the fixed
duration dataset (cf.Figure.4.3). The fundamental frequency determines the root node of this tree. When a
sample’s fundamental frequency is less than or equal to 291.659 Hz, the predominant utterance type is
classified as non-discourse laughter. If this condition is met, the model predicts the class as non-discourse
laughter; otherwise, it predicts it as discourse laughter. This decision tree proceeds with different branching
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F0final_sma_percentile99.0 ≤ 291.659
gini = 0.5

samples = 103142
value = [51571.0, 51571.0]
class = Not [laugh]-Discourse

audspec_lengthL1norm_sma_flatness ≤ 0.973
gini = 0.499

samples = 100552
value = [50327.273, 46921.972]
class = Not [laugh]-Discourse

True

audSpec_Rfilt_sma_de[23]_iqr1-3 ≤ 0.026
gini = 0.333

samples = 2590
value = [1243.727, 4649.028]
class = [laugh]-Discourse

False

mfcc_sma[1]_range ≤ 35.57
gini = 0.496

samples = 33428
value = [16667.968, 19725.16]
class = [laugh]-Discourse

pcm_fftMag_fband250-650_sma_percentile1.0 ≤ 0.0
gini = 0.494

samples = 67124
value = [33659.305, 27196.812]
class = Not [laugh]-Discourse

gini = 0.492
samples = 28105

value = [13992.687, 17965.171]
class = [laugh]-Discourse

gini = 0.479
samples = 5323

value = [2675.281, 1759.989]
class = Not [laugh]-Discourse

gini = 0.5
samples = 31199

value = [15606.993, 15109.34]
class = Not [laugh]-Discourse

gini = 0.48
samples = 35925

value = [18052.312, 12087.472]
class = Not [laugh]-Discourse

pcm_fftMag_spectralEntropy_sma_peakRangeAbs ≤ 0.732
gini = 0.413

samples = 479
value = [241.638, 99.622]

class = Not [laugh]-Discourse

mfcc_sma[9]_quartile2 ≤ -19.829
gini = 0.296

samples = 2111
value = [1002.088, 4549.406]
class = [laugh]-Discourse

gini = -0.0
samples = 447

value = [226.917, 0.0]
class = Not [laugh]-Discourse

gini = 0.224
samples = 32

value = [14.722, 99.622]
class = [laugh]-Discourse

gini = 0.443
samples = 267

value = [134.526, 66.415]
class = Not [laugh]-Discourse

gini = 0.272
samples = 1844

value = [867.563, 4482.991]
class = [laugh]-Discourse

Figure 4.3: Feature selection process of discourse laughter in fixed duration dataset

determiners until the third depth level is reached. Notably, no threshold comparisons with various acoustic
properties (features) are presented, as only the third-level depth is showcased. From the above tree, it is
evident that several low-level acoustic properties play crucial roles in determining discourse laughter within
the fixed-duration dataset. These properties include fundamental frequency, auditory spectrum,
mel-frequency cepstral coefficient, and spectral features.

pcm_fftMag_spectralFlux_sma_stddev ≤ 0.227
gini = 0.5

samples = 103142
value = [51571.0, 51571.0]
class = [laugh]-Mirthful

mfcc_sma[2]_amean ≤ 1.325
gini = 0.498

samples = 90406
value = [45269.727, 39452.033]
class = Not [laugh]-Mirthful

True

audSpec_Rfilt_sma_de[3]_stddev ≤ 0.016
gini = 0.45

samples = 12736
value = [6301.273, 12118.967]

class = [laugh]-Mirthful

False

audSpec_Rfilt_sma_de[4]_rqmean ≤ 0.011
gini = 0.488

samples = 12882
value = [6414.067, 8762.275]

class = [laugh]-Mirthful

F0final_sma_quartile1 ≤ 165.948
gini = 0.493

samples = 77524
value = [38855.66, 30689.758]
class = Not [laugh]-Mirthful

gini = 0.145
samples = 1011

value = [510.859, 43.593]
class = Not [laugh]-Mirthful

gini = 0.481
samples = 11871

value = [5903.208, 8718.681]
class = [laugh]-Mirthful

gini = 0.497
samples = 66702

value = [33407.168, 28510.088]
class = Not [laugh]-Mirthful

gini = 0.408
samples = 10822

value = [5448.492, 2179.67]
class = Not [laugh]-Mirthful

audSpec_Rfilt_sma_de[6]_rqmean ≤ 0.014
gini = 0.312

samples = 1083
value = [546.265, 130.78]
class = Not [laugh]-Mirthful

pcm_fftMag_spectralVariance_sma_quartile1 ≤ 14137.55
gini = 0.438

samples = 11653
value = [5755.008, 11988.187]

class = [laugh]-Mirthful

gini = 0.296
samples = 60

value = [28.831, 130.78]
class = [laugh]-Mirthful

gini = 0.0
samples = 1023

value = [517.435, 0.0]
class = Not [laugh]-Mirthful

gini = 0.212
samples = 630

value = [318.149, 43.593]
class = Not [laugh]-Mirthful

gini = 0.43
samples = 11023

value = [5436.859, 11944.593]
class = [laugh]-Mirthful

Figure 4.4: Feature selection process of mirthful laughter in fixed duration dataset

46



The decision tree depicted above is constructed for binary classification between non-mirthful laughter (“Not
[laugh]-Mirthful”) and mirthful laughter (“[laugh]-Mirthful”) within the fixed duration dataset (cf. Figure.4.4). At
the root node, spectral features serve as the primary determinant. Mirthful laughter is identified as the
predominant utterance type if a sample’s spectral features measure less than or equal to 0.227 Hz. If this
condition is met, the model classifies the sample as non-mirthful laughter; otherwise, it categorizes it as
mirthful laughter. This decision tree proceeds through various branching determinants until the third depth
level is revealed. It is important to note that no threshold comparisons are made with different acoustic
properties (features) beyond the third-level depth presented here. From the analysis of this decision tree, it
becomes evident that low-level acoustic properties such as spectral features, mel-frequency cepstral
coefficients, auditory spectrum, and fundamental frequency play pivotal roles in determining mirthful laughter
within the fixed duration dataset.

4.2.2 Quantitative analysis of discourse laughter in a varied duration dataset using
decision trees

By utilising a decision tree model, we can ascertain the contribution of each feature to the response variable
through its feature importance value. Features with a feature importance greater than zero are selected,
signifying their positive contribution to the response variable.

Figure.4.5 displays seven features meeting the aforementioned criteria. Subsequently, by selecting the
acoustic property name, a ranked list within the diverse duration dataset provided by discourse laughter is
presented as follows: spectral features, mel-frequency cepstral coefficients, auditory spectrum, and
jitter.
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Figure 4.5: Feature importance ranked by decision tree model given by discourse laughter in varied duration
dataset

4.2.3 Quantitative analysis of mirthful laughter in a varied duration dataset using
decision trees

Figure.4.6 shows seven features that satisfy the above requirement. Then, by selecting the acoustic property,
a ranking list within the diverse duration dataset, based on mirthful laughter, is presented as follows:
Mel-frequency cepstral coefficients, spectral features, the auditory spectrum and fundamental
frequency.
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Figure 4.6: Feature importance ranked by decision tree model given by mirthful laughter in varied duration
dataset

4.2.4 Quantitative analysis of discourse laughter in a fixed duration dataset using
decision trees

Figure.4.7 shows seven features that meet the aforementioned criteria. Subsequently, in the fixed duration
dataset provided by discourse laughter, the ranked list based on acoustic properties is as follows:
fundamental frequency,the auditory spectrum,spectral features and mel-frequency cepstral
coefficients.
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Figure 4.7: Feature importance ranked by decision tree model given by discourse laughter in fixed duration
dataset

4.2.5 Quantitative analysis of mirthful laughter in a fixed duration dataset using
decision trees

Figure.4.8 illustrates seven features that meet the aforementioned requirement. Subsequently, focusing on
the acoustic property, a ranked list from the fixed duration dataset, based on mirthful laughter, is presented
as follows: spectral features, mel-frequency cepstral coefficients, and fundamental frequency.
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Figure 4.8: Feature importance ranked by decision tree model given by mirthful laughter in fixed duration
dataset

4.3 Multi-classification results

This section presents decision tree visualisation of decision trees for multi-labelling tasks,and discerning
features of discourse and mirthful laughter across varied and fixed duration dataset, ranked by the
multinomial regression model.

4.3.1 Feature selection visualisation

In the context of multi-label classification, which encompasses seven distinct utterance types (’Ambiguous’,
’M’, ’S’, ’Silence’, ’[V]’, ’[laugh]-Discourse’, ’[laugh]-Mirthful’), decision trees demonstrate a capacity for
feature selection tailored to multi-classification scenarios.

The decision tree depicted in Figure 4.9 pertains to a multi-classification analysis of the varied duration
dataset(cf.figure.4.9) is based on a multi-classification in the varied duration dataset. The root node of this
tree is the mel-frequency cepstral coefficient. Mirthful laughter predominates as the utterance type if a
sample’s mel-frequency cepstral coefficient is less than or equal to 0.118 W/Hz. If this condition is met, the
model predicts that the class is engaged in speaking within the discourse; otherwise, it is categorised as a
merged type involving both speaking and non-laughter vocalisation. This tree utilises various branching
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mfcc_sma[1]_quartile3 ≤ 0.118
gini = 0.857

samples = 10108
value = [1444.0, 1444.0, 1444.0, 1444.0, 1444.0, 1444.0, 1444.0]

class = [laugh]-Mirthful

audspec_lengthL1norm_sma_de_posamean ≤ -0.47
gini = 0.815

samples = 5463
value = [1203.333, 197.072, 393.127, 1391.255, 396.392, 1219.689

1251.467]
class = S

True

mfcc_sma_de[1]_rqmean ≤ -0.123
gini = 0.763

samples = 4645
value = [240.667, 1246.928, 1050.873, 52.745, 1047.608, 224.311

192.533]
class = M

False

gini = 0.498
samples = 3452

value = [0.0, 53.747, 110.304, 1200.561, 136.85, 140.194, 89.39]
class = S

gini = 0.777
samples = 2011

value = [1203.333, 143.325, 282.823, 190.694, 259.542, 1079.495
1162.076]

class = Ambiguous

gini = 0.645
samples = 1267

value = [0.0, 250.819, 234.463, 45.442, 877.725, 116.828, 75.638]
class = Silience

gini = 0.706
samples = 3378

value = [240.667, 996.109, 816.41, 7.303, 169.882, 107.482, 116.895]
class = M

Figure 4.9: Feature selection process for all utterances in varied duration dataset

determiners until the second depth level is reached. It is important to note that there is no threshold
comparison with different acoustic properties (features) at this stage, as we only present the second-level
depth. From the tree above, it is evident that low-level acoustic properties, such as mel-frequency cepstral
coefficient and auditory spectrum, play crucial roles in determining different utterance types in the varied
duration dataset. However, it cannot identify a discriminating feature rank order for specific laughter.

pcm_fftMag_spectralSlope_sma_peakMeanAbs ≤ 0.102
gini = 0.857

samples = 103142
value = [14734.571, 14734.571, 14734.571, 14734.571, 14734.571

14734.571, 14734.571]
class = S

logHNR_sma_percentile99.0 ≤ 0.661
gini = 0.773

samples = 15945
value = [11460.222, 3496.996, 2747.468, 1968.01, 3521.255, 2362.465

2603.149]
class = [V]

True

mfcc_sma_de[2]_peakMeanAbs ≤ -1.959
gini = 0.845

samples = 87197
value = [3274.349, 11237.575, 11987.103, 12766.562, 11213.317

12372.106, 12131.422]
class = S

False

gini = 0.551
samples = 5941

value = [10641.635, 769.21, 712.307, 894.31, 1242.126, 910.83
1083.608]
class = [V]

gini = 0.838
samples = 10004

value = [818.587, 2727.786, 2035.162, 1073.7, 2279.129, 1451.635
1519.542]

class = Silience

gini = 0.29
samples = 394

value = [1637.175, 80.799, 68.553, 50.343, 22.791, 28.463, 62.276]
class = [V]

gini = 0.84
samples = 86803

value = [1637.175, 11156.776, 11918.55, 12716.218, 11190.525
12343.643, 12069.146]

class = S

Figure 4.10: Feature selection process for all utterances in fixed duration dataset

The decision tree depicted in Figure 4.10 is constructed for multi-classification within the fixed duration
dataset (cf. Figure.4.10). At the root node of this tree, spectral features serve as the primary determinant. If
a sample’s spectral features measure less than or equal to 0.102 Hz, the predominant utterance type is
categorised as spoken words. In case this condition is met, the model classifies the class as non-laughter
vocalisation within the discourse; otherwise, it predicts it as the spoken words in the discourse. The tree
proceeds through various branching determiners until the second depth level is reached.

Notably, the analysis does not involve threshold comparisons with different acoustic properties beyond the
second depth level. The examination of this tree reveals that low-level acoustic properties such as spectral
features, harmonic-to-noise ratio, and mel-frequency cepstral coefficients play pivotal roles in determining
different utterance types within the fixed duration dataset. However, it’s important to highlight that the tree
does not provide a discerning feature rank order specifically for laughter.
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4.3.2 Quantitative analysis of discourse laughter in a varied duration dataset using
multinomial regression

Using a multinomial logistic regression model, this approach constructs a matrix detailing each feature’s
coefficient with respect to every response variable within a multi-label target. Through analysis of various
laughter instances, features are selected based on coefficients greater than zero, signifying a positive
contribution to the corresponding response variable.

There are 36 features whose coefficients are greater than 0. We selected the first five features to present in
the main text.

Figure 4.11: Top-5 feature importance ranked by multinomial regression model given by discourse laughter
in varied duration dataset

Figure.4.11 shows the first five features that meet the aforementioned criteria. Subsequently, prioritising the
acoustic property name, a ranked list within the varied duration dataset provided by discourse laughter is
presented as follows: mel-frequency cepstral coefficients and auditory spectrum.
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4.3.3 Quantitative analysis of mirthful laughter in a varied duration dataset using
multinomial regression

There are 49 features with coefficients greater than 0. We have chosen to present the first five features to
present in the main text.

Figure 4.12: Top-5 feature importance ranked by multinomial regression model given by mirthful laughter in
varied duration dataset

Figure.4.12 shows the initial five features that meet the aforementioned criteria. Subsequently, focusing on
the acoustic property name, a ranked list within the varied duration dataset provided by mirthful laughter is
presented below: auditory spectrum, spectral harmonicity, mel-frequency cepstral coefficients, jitter and
Spectral Feature.
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4.3.4 Quantitative analysis of discourse laughter in a fixed duration dataset using
multinomial regression

There are 52 features with coefficients greater than 0. In the main text, we chose to present the first five
features.

Figure 4.13: Top-5 feature importance ranked by multinomial regression model given by discourse laughter
in fixed duration dataset

Figure.4.13 depicts the top five features that meet the aforementioned criteria. Subsequently, in the fixed
duration dataset provided by discourse laughter, a ranking based on the acoustic property names is
presented as follows: auditory spectrum,mel-frequency cepstral coefficients and spectral features.
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4.3.5 Quantitative analysis of mirthful laughter in a fixed duration dataset using
multinomial regression

There are 60 features with coefficients greater than 0. We have chosen to highlight the first five features in
the main text.

Figure 4.14: Top-5 feature importance ranked by multinomial regression model given by mirthful laughter in
fixed duration dataset

Figure.4.14 shows first 5 features that satisfy the above requirement. Then, focusing on the acoustic
property name, a ranked list in the fixed duration dataset provided by mirthful laughter is presented as
follows:root-mean-square signal frame energy,mel-frequency cepstral coefficients and spectral
feature.
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4.4 Summary of discriminating features

To discern the distinctive features within different laughter categories across varied and fixed duration
datasets, we utilised website1 to retrieve the names of low-level acoustic features for each category. We then
isolated the acoustic features, excluding functional components such as “sma”, to enhance clarity. The
discriminating features are summarised in rank order in the table.4.1 below.

Table 4.1: The summary of discriminating acoustic properties towards different model given different laughter
per dataset type

Classifier Dataset type
Discriminating prop-
erties of Discourse
laughter

Discriminating proper-
ties of Mirthful laughter

Decision tree

Varied duration
dataset

Spectral Features Spectral Features
Mel-frequency cepstral
coefficients

Mel-frequency cepstral
coefficients

Auditory Spectrum Fundamental frequency
Jitter

Fixed duration
dataset

Fundamental frequency Spectral Features
Auditory Spectrum Auditory Spectrum

FFT Fundamental frequency
Mel-frequency cepstral
coefficients
Spectral Features

Multinomial logistic
regression

Varied duration
dataset

Mel-frequency cepstral
coefficients

Auditory Spectrum

Pulse code modulation Fundamental frequency
Auditory Spectrum Jitter

Pulse code modulation

Fixed duration
dataset

Auditory Spectrum Auditory Spectrum
Mel-frequency cepstral
coefficients

Mel-frequency cepstral
coefficients

Pulse code modulation Pulse code modulation
Jitter Jitter

The table.4.1 above highlights common discriminating features in two dataset, showing that the most
dominant acoustic properties include the auditory spectrum,spectral features, fundamental
frequency,mel-frequency cepstral coefficients, and jitter.

4.5 Comparison between our result with Tanaka & Campbell (2014)’s
work

This section compares our results with those of Tanaka & Campbell (2014) in two key aspects, including
identifying agreements and disagreements regarding discriminating features in both studies, and comparing

1https://github.com/rupafn/CulturalClassifier
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the total number of instances of utterance events in each.

4.5.1 Agreement and disagreement for discriminating features in both two
work

In comparison to Tanaka & Campbell (2014)’s study, which employed the Expressive Speech Processing
(ESP) corpus, the domain acoustic properties include the following: the mean value of fundamental
frequency (fmean), the maximum value of power (pmax), the position of the power maximum in relative
percentage values (ppct), the difference between the first harmonic and the third formant (h1a3), duration of
the laugh (dn), the number of calls in a bout (No.call), and pitch change between the first and the second call
(F0moveAB).

Comparing our results in the table.4.1 with their results, we could notice that fundamental frequency,the
auditory spectrum and spectral features are shared discriminating features in both works. Differences in the
acoustic features utilised between Tanaka & Campbell (2014) study and ours could contribute to distinct
discriminatory properties observed. Tanaka & Campbell (2014) employed the “Snack Speech Processing
tool"” for acoustic feature extraction, developed in 1997, which offered a relatively limited selection of
acoustic features. In contrast, we adopted the ComParE 2016 feature set, comprising over 6,000 low-level
acoustic features. Furthermore, we evaluated each acoustic feature across a spectrum of statistical
parameters, including mean, skewness, kurtosis, quartile, among others. The extensive range of acoustic
features and comprehensive statistical descriptions in our approach rendered our results more nuanced,
despite not achieving perfect alignment with the discriminating acoustic properties observed in their
work.

4.5.2 Total number of instances of utterance event

Tanaka & Campbell (2014) conducted a study that recorded three 30-minute audio sessions featuring
various types of laughter, including mirthful laughter, discourse laughter, derisive laughter, non-laughter
vocalisation, and other types of utterances. They presented a 30-minute conversation between two males,
and total utterance events were 7,875 instances, including non-laugh vocalisation(6,999 instances),
discourse laughter(579 instances), mirthful laughter(244 instances), derisive laughter(49 instances), and
other utterance type that they have not clearly noted (4 instances).

In our work, the diverse duration dataset contains continuous unique utterance events at each moment,
segmented using the same start and end times for each dialogue session with the EAF file. In this dataset,
our dataset consisted of a total of 14,441 utterance event instances, including discourse laughter (460),
mirthful laughter (309), spoken words (7536), silence (5093), a mixture of spoken words and non-laughter
vocalisation (601), non-laughter vocalisation (436), and ambiguous type (6). A comparison of the total
utterance events in our varied duration dataset with that of previous work reveals a moderately noticeable
difference in the quantity of laughter events, with only approximately 100 instances of variance (discourse
laughter: 579 in their work compared to 460 in ours; mirthful laughter: 244 in their work compared to 309 in
ours). Regarding the remaining utterance events, we have 13,726 instances, excluding the two types of
laughter, whereas their work reported 7,052 instances. Consequently, we have a greater number of negative
samples compared to their work.

The fixed-duration dataset has 147,347 instances of utterance. It emerges from each row utterance event
from ELAN CSV to align single or multiple rows from 200 milliseconds constant duration in Opensimile CSV,
resulting in a large capacity (around 15 GB). This relatively narrow segmentation(200 ms) in our setting
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results in finer extracted features compared to the varied duration dataset (ranging from around 10 to 10000
ms). Short-time segmentation is more conducive to capturing variations in laughter acoustic properties, as it
allows for more frequent changes in the original laughter instances within a shorter time frame. Additionally,
it’s worth noting that the total number of utterance events in our dataset far exceeds that of Tanaka &
Campbell (2014), even though the fixed duration dataset has the same total number of utterance events as
its varied duration counterpart.

4.6 Results from interaction among acoustic properties

To demonstrate the interaction between various acoustic features, we initially employ regression analysis to
ascertain which acoustic features account for the variability in laughter across varied and fixed duration
datasets. Subsequently, we illustrate the correlations among the discriminative features generated by the
decision tree model in the network graph, highlighting the interplay of these discriminative features.

However, this visualisation has not been tested with the decision tree model for feature correlation analysis
in multinomial regression as, due to the capacity issues, we have removed all discriminating features from
the positively correlated features that could potentially correlate.

It is important to note that the edges between nodes signify the correlation between these two nodes as
determined by the Wilcoxon signed rank test. In the second subsection of this section, we exclusively
present the correlation between discriminating features correlation generated by decision tree model in both
two types of duration datasets.

4.6.1 The summary of regression analysis

Given the relatively large capacity of the fixed duration dataset, we utilised a subset of features with weak
correlations. Conversely, in the varied duration dataset, we incorporated all 6,373 acoustic features. Under
this configuration, we assessed features whose p-value fell below the predefined alpha threshold of 0.05.
This signifies that these features could elucidate the variance of the response variable, laughter. In this
context, the specific numerical value of a feature’s significance is immaterial; our primary aim is to identify
significant features.
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Table 4.2: The summary of significant acoustic properties yield by ordinary least squares

Dataset type Significant properties of
Discourse laughter

Significant properties of
Mirthful laughter

Varied duration dataset

Auditory Spectrum Auditory Spectrum
Mel Frequency Cepstrum
Coefficient

Pulse code modulation

Pulse code modulation Mel Frequency Cepstrum
Coefficient

Shimmer Fundamental frequency
The ratio of the energy of
harmonic signal components to
the energy of noise

The ratio of the energy of
harmonic signal components to
the energy of noise

Fundamental frequency Shimmer
Jitter Jitter

Fixed duration dataset
Auditory Spectrum Auditory Spectrum
Mel Frequency Cepstrum
Coefficient

Mel Frequency Cepstrum
Coefficient

Pulse code modulation Pulse code modulation

The table above.4.2 illustrates that across different type duration dataset, several acoustic features notably
account for the variance in acoustic laughter. For the varied duration dataset,these features include auditory
spectrum, mel-frequency cepstrum coefficients,jitter, and harmonic-to-signal ratio. Conversely, for the
dataset with fixed durations, significant explanatory features for acoustic laughter variance comprise auditory
spectrum, mel-frequency cepstral coefficients, and pulse code modulation.

4.6.2 Feature correlation visualisation in decision tree model

To visualise feature correlation, we used a network graph from the Python package to present the top-N
features in the adjacency feature rank list. We have showcased the top 10 distinguishing properties, a
slightly higher number compared to the typical count of distinguishing properties generated by different
models across various datasets (around 7 features). This choice allows for a more comprehensive
exploration of correlations.

In this subsection, we focus on the top 10 adjacency feature correlations within discourse laughter in the
varied duration dataset. The remaining correlations are detailed in the “Results Chapter Supplement
Material” in the appendix.A1.3.
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Figure 4.15: Top-N adjacency features correlation given discourse laughter in varied duration datasets.

In the above figure.4.15, each node represents an adjacency feature ranked by the decision tree model,
while edges depict the correlation values between these adjacency features determined by the Wilcoxon
signed-rank test. To illustrate varying levels of significant correlation between adjacency features, we use red
to indicate a significant correlation (p < 0.05) and blue to denote a non-significant correlation (p >= 0.05).
Additionally, the most discriminating feature (the auditory spectrum) is positioned at the top centre of the
figure.

Observing this figure, it becomes evident that each selected discriminating feature correlates with the
subsequent adjacency feature in the rank list. This phenomenon may be attributed to synchronised
variations among these discriminating features.

Notably, the measurement of adjacency feature correlation follows a consistent pattern across the remaining
three analyses: mirthful laughter in the varied duration dataset(cf.figure.A1.3), discourse laughter in the fixed
duration dataset(cf.figure.A1.4), and mirthful laughter in the fixed duration dataset(cf.figure.A1.5).
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5 Evaluation

The methodology chapter has provided a rationale for our chosen methods and confirmed the accuracy of
the dataset. The evaluation chapter assesses the machine learning model using classification accuracy and
Cohen’s kappa coefficient. While there are numerous metrics available for assessing a machine learning
model’s performance, we opted for these two specific metrics for several reasons. Firstly, by employing
classification accuracy, our results can be directly compared with Tanaka and Campbell’s (2014) work, as
both studies involved the classification of discourse and mirthful laughter, despite differences in sample size.
Additionally, the instances of laughter in our dataset, occurring in varied and fixed durations, are significantly
fewer than non-laughter instances. Consequently, Cohen’s Kappa coefficient addresses this imbalance
issue, ensuring that the assessment score is more justified.

Additionally, this section examines the dynamics of specific discriminating properties for three types of
utterance events in the time domain, including discourse laughter, mirthful laughter, and spoken words. The
objective is to assess the level of randomness exhibited by these utterance events. Furthermore, we
investigate acoustic laughter duration and topic termination patterns to align with certain assertions made in
related literature.

The last section aims to determine whether the particular session/participant demonstrates distinctive
patterns in discriminating properties compared to others, specifically concerning laughter. This evaluation
employs both quantitative and qualitative assessments. Initially, quantitative assessment is utilised to gauge
the model’s performance. Conversely, qualitative assessments are employed in the following sections,
utilising diverse duration datasets incorporating discriminating acoustic properties generated by the decision
tree model. These experiments are designed to either validate or refute claims posited in the
literature.

5.1 Machine learning model performance

The metrics employed to evaluate the machine learning model in this study include classification accuracy
and Cohen’s Kappa coefficient to assess its performance. Notably, our dataset comprises more non-laughter
utterance types than laughter types. Relying solely on classification accuracy may not provide a
comprehensive evaluation, as this metric encompasses all label situations. Therefore, Cohen’s Kappa
coefficient is utilised alongside the confusion matrix to scrutinise and address the imbalance issue.

Classification accuracy We used classification accuracy to validate the testing set on both models at
each duration dataset. In binary classification, the response label contains two types: “Discourse laughter”
and “Non-discourse laughter.” In the table below, we used “laugh]-discourse” to represent the positive label in
binary classification. However, for multi-classification, we provide both overall accuracy and accuracy for
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each utterance.

For classification accuracy tested on the decision tree model, Table 5.1 shows classification accuracy on the
varied duration dataset is relatively higher than the fixed duration counterpart in the corresponding laughter
type, showing around 75% accuracy on the varied duration dataset and around 70% accuracy in the fixed
duration dataset given discourse laughter. Accuracy for binary classification in mirthful laughter in varied
duration datasets (around 84%) still beats discourse laughter counterpart (around 77%).

Even though classification accuracy is relatively higher than Tanaka and Campbell’s (2014) results,
classification accuracy alone does not explain anything. The score evaluated by classification accuracy only
presents the ratio of correct predicated samples of the total samples. Reliability might decrease if the
classification result is solely trusted, as the predicated samples include positive and negative samples. In
our dataset, instances of laughter are much fewer than instances of non-laughter.

Another reason why classification alone is unreliable is evident in Tanaka and Campbell’s (2014) work. They
conducted several classification tasks on diverse racial groups, including native English speakers and
non-English speaker groups. In contrast, in our classification task, we did not consider this factor and added
these factors as categorical variables to feed into the machine learning model. Considering these factors, we
need other dimensional metrics to evaluate the model’s performance, such as the confusion matrix and
Cohen’s kappa coefficient.

Table 5.1: Classification accuracy on decision tree

Duration Main binary variable Acc on test set

Varied duration [laugh]-Discourse 0.756981306
[laugh]-Mirthful 0.843295638

Fixed duration [laugh]-Discourse 0.709241036
[laugh]-Mirthful 0.773396675

To further the accuracy of each label’s prediction, we combined confusion matrix visualisation, and this could
clearly illustrate positive and negative samples. From this visualisation (cf. Figure. A1.8, Figure. A1.9, Figure.
A1.10, and Figure. A1.11), laughter’s true positive sample is relatively scarce due to the small number of
laughter samples.

This situation also happens in the multi-label classification, and the classification accuracy test of multinomial
regression is presented in Table. 5.2. The overall accuracy in varied duration datasets is doubled that of the
fixed duration counterpart (around 80% versus 40%). Similarly, a similar trend emerges when it comes to
laughter classification, encompassing both discourse and mirthful laughter. Each laughter classification sees
significantly higher accuracy in the varied duration dataset than in the fixed duration dataset. It is worth
noting that the accuracy for both laughter classifications is close to 0.1 in the fixed duration dataset. This low
percentage may be attributed to a pattern where non-laughter instances dominate, leading to more negative
samples and reducing the accuracy of laughter classification. This trend is further reflected in the confusion
matrix in the appendix, which indicates fewer true positive samples for laughter (cf. Figure.A1.6 and Figure.
A1.7).
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Table 5.2: Classification accuracy on multinomial regression

Duration Feature name Acuracy on test set

Varied

Overall 0.816985922
Ambiguous 0
M 0.38
S 0.86
Silience 0.91
[V] 0.54
[laugh]-Discourse 0.36
[laugh]-Mirthful 0.4

Constant

Overall 0.387625834
Ambiguous 0
M 0.25
S 0.29
Silience 0.46
[V] 0.09
[laugh]-Discourse 0.11
[laugh]-Mirthful 0.07

From the above table, it is evident that regardless of whether it’s a varied or a fixed duration dataset, the
precision of the ambiguous type is consistently zero. The ambiguous type constitutes only a minuscule
portion of the overall dataset, accounting for 6 out of 14,441 instances in the varied duration dataset and 30
out of 147,347 instances in the fixed duration dataset. Subsequently, we employed random spoliation on the
dataset to generate both training and testing sets. Following these operations, it’s highly probable that no
instances of the ambiguous type appear in the testing set, resulting in zero precision for both datasets.
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Cohen’s kappa coefficient Based on the relatively small sample of laughter instances, the Cohen Kappa
coefficient was adopted to measure imbalanced data classification performance more accurately than
classification accuracy. Table 5.3 and Table 5.4 show the Cohen kappa coefficients of the decision
tree.

Table 5.3 shows that the decision tree model generates most values less than 0.02 in both varied duration
and fixed duration datasets, indicating significant agreement. However, the Cohen kappa coefficient on the
multinomial regression-generated dataset with varied duration is around 0.7(cf. Table 5.4), indicating
substantial agreement. However, that value in the fixed duration is around 0.02.

As McHugh (2012) suggested, the Cohen Kappa coefficient ranges from 0.41 to 0.61, indicating moderate
alignment between the prediction label and the true label. Additionally, for measuring the value of another
numeral range in our results, the value of the Cohen Kappa coefficient ranges from 0.1 to 0.2, indicating a
slight alignment between the prediction label and the true label.

Based on these criteria, our results of both classifiers could be a better match. But this does not mean our
work is worse, and an imbalanced sample is the central issue causing this phenomenon.

Table 5.3: The Cohen kappa coefficient of decision tree

Duration Main binary variable Cohen Kappa value on test set

Varied [laugh]-Discourse 0.132194302
[laugh]-Mirthful 0.123472128

Fixed [laugh]-Discourse 0.011690505
[laugh]-Mirthful 0.016283401

Table 5.4: Cohen kappa coefficient for multinomial regression

Duration Cohen Kappa coefficient for multinomial regression model on test set

Varied 0.699875026

Fixed 0.098180117
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5.2 Inspection of some discriminating properties’ internal structure
generated by the decision tree model by given utterance event
tested on varied duration dataset

This section intends to conduct a small experiment to assess the randomness of certain discriminating
properties generated by the decision tree model in a binary labelling task within selected utterance events,
such as mirthful and discourse laughter. This experiment will be tested on datasets of varied duration, as
this dataset preserves unique utterance events temporally. Three stand-alone experiments presented here
align with claims from the literature.

5.2.1 Discriminating features comparison between laughter and spoken
words

Previous research has indicated the internal structure of laughter and spoken words. Koutsombogera &
Vogel (2022) state that the distribution of discourse is more systematic than its mirthful counterpart, and
discourse laughter is usually associated with topic termination. Dunbar (2014) also found that laughter and
speech have some shared acoustic properties, such as prosody. By combining the statement from two
works(Dunbar, 2014; Koutsombogera & Vogel, 2022), a claim could be speculated, stating that the internal
structure of mirthful laughter has a certain level of randomness compared to related factors in spoken words
and discourse laughter.

To validate this assertion, we conducted experiments to confirm or refute this hypothesis. In our prior
research, we identified the distinguishing characteristics of mirthful and discourse laughter, while the
distinguishing properties of spoken words still need to be identified. In this small-scale study, we utilised a
decision tree model to perform binary labelling tasks on datasets of varying duration, aiming to compare the
outcomes with laughter under similar conditions.

Figure 5.1 presents the top N discriminating features that positively contribute to spoken words, indicating
that these features primarily involve the MFCC and auditory spectrum. This presentation aims to enhance
clarity.
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Figure 5.1: Feature importance ranked by decision tree model given by spoken words in varied duration
dataset
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Three distinct experiments were conducted to investigate whether the pattern of discourse laughter and
spoken words leans more towards rhythmic than mirthful laughter. These experiments encompassed
comparing the time gaps between utterances and examining the statistical significance of three types of
utterances.

The objective of the four experiments is as follows.

• The first experiment aims to observe the level of randomness across three types of utterances by
examining the time gap between the end time of the previous moment and the start time of the current
moment within specific sessions, focusing on particular acoustical properties.

• The second experiment presents the duration of each moment in three utterance types that progressed
in the whole session flow.

• The third experiment presents statistical information for three utterance types, including the median,
mean, and standard deviation, and identifies pairwise statistical significance among them.

Here are the reasons why we designed these three experiments. We aim to assess the level of randomness
exhibited by mirthful laughter, discourse laughter, and spoken words. We utilise columns such as ’Start Time
-ms’, ’End Time -ms’, and ’Duration -ms’ to analyse the temporal dynamics that discriminate among these
three types of utterances. Different allocations at timestamps may reflect the randomness of specific
utterance types. These three experiments encompass various aspects of verification.

The first experiment examines the time span from the end time of a previous utterance event to the start time
of the next moment, which can provide insights into the frequency of specific utterances.

The second experiment independently plots the time flow duration for each continuous moment. This
approach allows us to observe distinct patterns for each utterance type at different timestamps and to infer
relationships with other types.

It is important to note that the previous two experiments were conducted only on specific sessions (session
3), potentially limiting their generalisability to some extent. Therefore, in experiment 3, we considered all
sessions to explore the acoustic properties identified in the previous two experiments. This broader
approach assists us in identifying general patterns within the dataset.

Comparison of utterance appearance time gap

Sequentially, we used the distinguishing properties of discourse laughter, mirthful laughter, and spoken
words in time aspects. Due to variations in session duration across the 18 sessions, we selected session 3,
which had a relatively short duration of around 5 minutes. In this subsection, we meticulously categorised all
distinguishing properties among the three types of utterance events: discourse laughter, mirthful laughter,
and spoken words. We provided an analysis of the temporal dynamics for one specific low-level acoustic
property, while the remaining properties were included in the supplemental material for evaluation in the
appendix chapter. Utilising our dataset, which established a continuous timeline for each utterance type
along with their corresponding acoustic properties, we assessed the level of randomness in the distribution
of the three utterance types by tracking the energy magnitude of specific acoustic properties in the time
domain.

As we mentioned the term "energy" several times, there are reasons why we empathise with it. Our focus
lies within audio processing, where an acoustic wave embodies energy over time. Various units exist to
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quantify the power of distinct acoustic properties, including Hertz. Therefore, in this context, "energy"
signifies the magnitude of specific acoustic attributes.

Figure 5.2: The dynamics of “Magnitude of L1 norm of Auditory Spectrum” in the session 3 for three utterance
types
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In this study, auditory spectrum properties were employed in session 3 to analyse the figure above,
facilitating an examination of the underlying pattern behind the observed phenomenon.

In session 3, we selected “Magnitude of L1 norm of Auditory Spectrum” as selected properties, as these
properties are common discriminating properties from three utterance events. From the above Figure.5.2,
“S”, “[laugh]-Discourse”, and “[laugh]-Mirthful” represent spoken words, discourse laughter, and mirthful
laughter, respectively. We utilised distinct colours to denote the commencement and conclusion times of
each type of utterance: spoken words were represented in red, discourse laughter in green, and mirthful
laughter in blue. Nonetheless, this visualisation could potentially exhibit a narrow overlap within brief
intervals. The connecting line between dots illustrates the temporal gap between the end time of the
previous moment and the current moment.

It was observed that between approximately 170 to 310 seconds, the pattern of three utterances becomes
more pronounced compared to other time intervals. Specifically, the frequency of mirthful laughter
undergoes significant variation, increasing from around 1.0 Hz at approximately 170 seconds to around 3.0
Hz at around 300 seconds. Following this increase, during the subsequent short-time continuous event, the
energy of mirthful laughter rapidly decreases to 1 Hz. In contrast, the discourse and spoken word patterns
within the same time windows exhibit relatively stable oscillations, with frequencies around 1.2 Hz and 1.4
Hz, respectively.

The rest of the discriminating properties pattern in the 200 s to 300 s time windows, including fundamental
frequency (cf. Figure. A1.16), auditory spectrum (cf. Figure.A1.12 and Figure.A1.13), MFCC(cf.
Figure.A1.14) and jitter(cf. Figure. A1.15), shows that the magnitude of mirthful laughter has a significant
jump either increasing or decreasingly. In most discriminating properties, the pattern of discourse laughter
constantly varied, even though the magnitude of some properties for discourse laughter changed
significantly, such as f0 (cf. Figure A1.16). As for the spoken words’ pattern, this utterance oscillates at the
certain value.

The substantial time span between the previous moment’s end time and the current moment’s start time for
mirthful laughter signifies volatile energy levels (measured in hertz, the magnitude of the auditory spectrum)
compared to other types of utterances, including discourse laughter and spoken words. Higher energy levels
(in hertz for the auditory spectrum) correspond to a richer sound of laughter, suggesting that specific
acoustic characteristics of laughter distinctly impact mirthful laughter, resulting in a more randomly
distributed energy pattern in the time domain, characterised by significant fluctuations.

In contrast to the energy variations observed in discourse laughter and spoken words, the energy levels of
these two utterance types show relatively minor changes from the end time of the previous moment to the
start time of the next, as depicted in this chapter and the appendix. This observation highlights the stability
of energy levels within a specific range for these two utterance types, contrasting sharply with the
pronounced fluctuations observed in mirthful laughter. The relatively high level of randomness in energy
variation indicates mirthful laughter, whereas rhythmic energy variations are characteristic of discourse
laughter and spoken words.

Comparison of duration and distribution

However, it is noted that Figure 5.2 does not show the duration and allocation of each utterance in terms of
the auditory spectrum in the temporal flow. Hence to identify the duration distribution progress in the
temporal flow, we visualise the below illustration (cf. Figure.5.3) to present the duration progression in the
time flow.
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The figure below consists of three subplots for mirthful laughter, discourse laughter, and spoken words,
respectively; the x-axis of each figure stands for the time stamps, and the overall x-axis represents the total
duration of the specific session. The y-axis stands for the energy of the particular properties. In this context,
we used Hertz to describe the energy power of these acoustic properties. Additionally, each dot in the
sub-figures represents the duration of particular utterance types at a given moment. By amalgamating this
information, we can interpret each plot as illustrating the distribution pattern of specific acoustic properties
across different utterance types over time.

Figure 5.3 shows the energy of auditory spectrum variation regarding time flow for mirthful laughter,
discourse laughter, and spoken words from the top(cf.Figure.5.3(a)),middle(cf.Figure.5.3(b)),and
bottom(cf.Figure.5.3(c)). These sub-pictures represent the energy of auditory spectrum variation regarding
time flow for mirthful laughter, discourse laughter, and spoken words.
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((a)) Duration and distribution of mirthful laughter for auditory spectrum
property

((b)) Duration and distribution of discourse laughter for auditory spectrum
property

((c)) Duration and distribution of spoken words for auditory spectrum
property

Figure 5.3: Duration and distribution in terms of auditory spectrum of three utterance types

To show the duration of each moment, we also add text related to each moment’s duration. From these three
figures, it is noted that the pattern of discourse and spoken words follow a seemly fixed trajectory, even
though the quantity of spoken words is larger than its discourse counterpart, as this might be since the
“MULTSIMO” dataset is a dialogue dataset and spoken words predominate the most category. Compared to
an incremental variation in the pattern of discourse laughter and spoken words, the variation of mirthful
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laughter follows a random oscillation from around 1 Hz at 180 s to around 3 Hz at 300 s.

Investigation of statistical significance fro three utterance types

As shown in Figure 5.3, the duration and allocation of three types of utterances differ in session three, and
we need to know the situation in other sessions. Besides, this figure cannot present information related to
the internal structure of each utterance in the same measurement and loses some generality to some extent.
Hence, to guarantee our results, we tested the properties of the auditory spectrum for all 18 sessions using
these three types of utterances to convert the. Additionally, to address the same measurement issue, we
used each moment’s energy of acoustic properties (Hz) divided by the associated moment’s duration.

We called this ratio the normalised energy magnitude. After this conversion, the statistical information and
statistical hypothesis testing are presented in the below table.

Table 5.5 shows the mean, median, and standard deviation of the normalised energy magnitude of the
auditory spectrum in three utterance types. Notably, the numerical values for spoken laughter and spoken
words exhibit proximity across the mean, median, and standard deviation, approximately at 0.002096 for the
mean, 0.00164 Hz/ms for the median, and 0.00168 Hz/ms for the standard deviation (cf. Table.5.5). This
proximity indicates that the numerical value in different statistical measurements(mean,median,std) for both
utterance types is the same.

However, the numerical value in different statistical measurements (mean, median, std) of mirthful laughter
has different numbers after three decimal places compared with the associated statistical measurement of
spoken words and discourse laughter, even though these numerical differences between spoken
words/discourse laughter and mirthful laughter are within 0.001. Such findings shed light on the comparable
energy usage of these two types of utterances (discourse laughter and spoken words).

Table 5.5: The statistical information related to normalised energy magnitude of auditory spectrum in three
utterance types

Mean(Hz/ms) Median(Hz/ms) Standard deviation(Hz/ms)

Discourse laughter 0.002096224 0.001645573 0.001686378

Mirthful laughter 0.00167502 0.001301723 0.001289957

Spoken words 0.002096224 0.001645573 0.001686378

To further inspect more significance differences among the three types, we adopted the Wilcoxon rank sum
test to assess the pairwise correlation between every two types without self- and duplicate mutual
comparisons. Given that the normalised energy magnitude does not adhere to a normal distribution in most
cases, we opted for non-parametric hypothesis testing, specifically the Wilcoxon rank sum test, to assess the
correlation. The null hypothesis of this testing is that two pairwise variables have the same continuous
distribution between each other if the statistical significance (p-value) is less than the predefined alpha value
(0.05).
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Table 5.6: Pairwise comparison in terms of statistical significance towards normalised energy magnitude of
auditory spectrum among three utterance types

Discourse laughter Mirthful laughter

Mirthful laughter 4.70× 10−6 -

Spoken words 1 4.70× 10−6

Table 5.6 shows that the value between mirthful laughter and discourse laughter is less than 0.05. This
indicates a statistical difference in the normalised energy magnitude of the auditory spectrum between
mirthful laughter and discourse laughter, leading to the rejection of the null hypothesis.

Similarly, the statistical significance value between spoken words and mirthful laughter shows that the null
hypothesis can be rejected(p-value < alpha:4.70× 10−6 < 0.05).

As for the comparison between spoken words and discourse laughter, the statistical significance value
shows that the null hypothesis failed to be rejected (p-value >= alpha:1>=0.05), indicating that the normal
energy magnitude of the auditory spectrum property for discourse laughter is not statistically different from
the related property in spoken words.

Based on the above interpretation, the normalised energy magnitude of the auditory spectrum property for
mirthful laughter has a different continuous distribution with the same property in discourse laughter and
spoken words. In contrast, the normalised energy magnitude of discourse laughter, and spoken words has
the same continuous distribution in relation to auditory spectrum. This experiment validates the similar
distribution of spoken words and discourse laughter under the same conditions in one facet.

Short summary

While the findings from experiments 1 and 2 were derived solely from the selected session (session 3) and
specific discriminating acoustic properties, the findings from experiment 3 encompassed all sessions and
focused on particular acoustic properties. Despite these variations, these pilot studies confirm the relatively
strong randomness of mirthful laughter compared to the associated patterns in discourse laughter and
spoken words, aligning with the claim we seek to validate.

5.2.2 Previous event observation and topic termination verification

Koutsombogera & Vogel (2022) claimed that discourse laughter normally accompanies topic termination. To
verify this statement, we select the ’CV-merge-M-L-S’ column (cf. Figure.1.4) containing punctuation, which
could assist us in finding the topic termination. The column after the third column is the response variable in
the experiment and the simple version of the value in column three.

This assessment selects full stops, question marks, and exclamation marks to count topic termination.
During the original data frame iteration, check and store the previous utterance before the specific laughter
type, such as “[laugh]-Discourse” detected in the “concise merge type” column. Based on this operation, we
could acquire related data and the result is presented in the below Table.5.7.

.

Note that this experiment is carried out on the varied duration dataset for all 18 sessions.
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Figure 5.4: ’CV-merge-M-L-S’ type and ’concise merge type’ in varied duration dataset

Table 5.7 presents termination occupancy in terms of terminated punctuation before the laughter event in the
first column. The values in this column indicate the number of topic punctuation symbols in the
“CV-merge-M-L-S” type before two types of laughter. The second value indicates the total number of laughter
events across varied durations(refer to figure.3.22). The third column represents the ratio between the first
and second columns, indicating the percentage of previous events before laughter, which may signal
potential topic termination. In some aspects, this percentage of topic termination reflects the occurrence of
topic-related punctuation before responding with laughter. However, it’s important to note that topic
termination may not always be explicitly indicated within our selected scope in conversation.

Table 5.7: The occurrence related to topic termination signal in our definition in both laughter(Round to four
decimal places)

Topic termination before laugh-
ter

Total number Percentage of topic termination us-
age

Discourse laugh-
ter

63 460 0.1370

Mirthful laughter 30 309 0.0971

The Table.5.7 notes that the percentage for discourse laughter (0.1370) is relatively more significant than
that for mirthful laughter(0.0971), which shows some degree, that discourse laughter is associated with topic
termination. This moderate difference in percentage might stem from the fact that there is no multiple
relationship and overlapping between the quantity of mirthful laughter (309) and discourse laughter
(460).
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5.3 Identification the key participant/session in terms of discrimi-
nating properties generated by decision tree model in varied
duration dataset

This section investigates the key participants and sessions regarding discriminating properties generated by
the decision tree model in the varied duration dataset. During the experiment, participants were engaged in
discerning properties across 18 sessions, with 49 participants included in the exploration. Kernel density
estimation plots were utilised to illustrate the distribution and likelihood of each point, emphasising
noteworthy individuals. The notable consistency observed across all participants and sessions in this
experiment is reflected in the shape of the kernel density estimation plot, which closely resembles a normal
distribution.

5.3.1 Identification of the key participant for given discriminating properties

To examine the primary contributors among all individuals, we focus on two acoustic properties: fundamental
frequency and auditory spectrum. These properties are pivotal in distinguishing disclosure and mirthful
laughter within our dataset of varied durations. Specifically, we first extract all participants from the
"Participant ID" column. Then, we iterate through the dataset, isolating subsets of data corresponding to
each unique participant identifier, such as "P001". During each iteration, we extract specific laughter
instances from the target response column and their associated properties, including fundamental frequency.
Once the operation was finished, we used this final conversion to feed into the kernel density estimation plot
to draw normal distribution across 49 participants highlighting the most significant participant based on the
shape close to normal distribution.

Figure.5.5 shows the key participants in each laughter for different discriminating properties. We used
orange to make the key participant whose shape is close to the normal distribution while employing red to fill
the 95% confidence interval and label the lower and upper bound of this range on the figure. Horizontal
observation shows that the key participant has different acoustic properties regarding the same type of
laughter. In contrast, in the vertical comparison, the key participant laughing different type of laughter
impacts the same acoustic properties.
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((a)) Kernel density of all participants in discourse laughter
related fundamental frequency property

((b)) Kernel density of all participants in discourse laughter
related to auditory spectrum property

((c)) Kernel density of all participants in mirthful laughter
related to fundamental frequency property

((d)) Kernel density of all participant in mirthful laughter
related to auditory spectrum property

Figure 5.5: Kernel density of all participant in both types of laughter related to fundamental frequency and
auditory spectrum property

From the result, it is noted that Participant 40 stands out from all participants owing to its distinct impact on
the frequency of discourse laughter. The value is clustered at 35.6 to 212.09 Hz for the fundamental
frequency of discourse laughter (upper left figure) and has more data for the 95% confidence interval. The
probability of this range is roughly 0.01 to 0.02. This range of information reflects the variation of
fundamental frequency in the discourse laughter and explains why Participant 40 could stand out from all
participants in the fundamental frequency in the discourse laughter with a specific energy range distinct from
the rest of the participants

The remaining three figures have the same interpretation, even though they have different cluster ranges in
different laughter for different acoustic properties. From these four subfigures, we could observe the
following phenomena: Participant 19 has a distinct impact on the auditory spectrum in mirthful laughter;
Participant 10 has a distinct impact on fundamental frequency in mirthful laughter; Participant 36 has a
distinct impact on the auditory spectrum in mirthful laughter.

This analysis aligns with our initial anticipation that the specific participant has a distinct impact on specific
laughter and stands out on particular discriminating acoustic properties by testing different laughter within all
participants. Given the inherent differences in voice characteristics, such as pitch, between male and female
participants, our initial hypothesis posits that each participant contributes uniquely to the acoustic profile of
specific laughter types.
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5.3.2 Identification of the key session for given discriminating properties

The process of identifying key themes across all 18 sessions mirrors that of identifying key participants,
ensuring consistency in discerning acoustic properties and selection criteria, such as fundamental frequency
and auditory spectrum. The observation approach remains consistent with previous comparisons regarding
the impact of participants on laughter.

Similar to the previous key participant experiment, we used orange to make the key participant whose shape
is close to the normal distribution. Additionally, we employed red to shade the 95% confidence interval and
label the lower and upper bounds of this range on the figure.

The result (cf.Figure.5.6) shows that session 3 stands out from all participants owing to having a distinct
impact on the fundamental frequency of discourse laughter. The value is clustered at 89.14 to 194.96 Hz for
the fundamental frequency of discourse laughter (upper left figure) and has more data for the 95%
confidence interval.

((a)) Kernel density of all sessions in discourse laughter
related to fundamental frequency property

((b)) Kernel density of all sessions in discourse laughter
related to auditory spectrum property

((c)) Kernel density of all sessions in mirthful laughter
related to fundamental frequency property

((d)) Kernel density of all sessions in mirthful laughter
related to auditory spectrum property

Figure 5.6: Kernel density of all sessions in both types of laughter related to fundamental frequency and
auditory spectrum property

The remaining three figures share the same interpretation, despite featuring different cluster ranges for
various acoustic properties across different types of laughter. Among these four sub-figures, it’s notable that
session 3 distinctly affects the fundamental frequency in mirthful laughter, as well as the auditory spectrum
in discourse laughter. Meanwhile, session 17 primarily impacts the auditory spectrum in mirthful
laughter.
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This analysis aligns with our initial anticipation that the specific session has a distinct impact on specific
laughter and stands out on particular discriminating acoustic properties by testing different laughter within all
sessions. Our initial hypothesis suggests that sessions vary in duration, ranging from 5 to 10 minutes, and
feature recordings of different participants’ voices. Given this context, we aim to ascertain whether specific
sessions distinctly influence particular acoustic properties in the laughter observed across all sessions.
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6 Conclusion

The conclusion chapter encapsulates an overview of the entire process discussed in this dissertation. It
reflects on the project undertaken and offers a comprehensive discussion of the results within their broader
context. Furthermore, it outlines potential directions for future work.

6.1 Overview

This dissertation aimed to identify systematic differences in acoustic properties among laughter categories
within the "MULTISIMO" dataset. To elucidate the complexity of this task, the motivation section within the
introduction and background chapter reviewed previous research, highlighting the scarcity of datasets
suitable for our research objectives. Our motivation also stemmed from the desire to replicate the work of
Tanaka & Campbell (2014), given their comprehensive analysis of acoustic properties. Building upon this
background investigation, the methodology chapter aimed to extract pertinent information from the raw
MULTSIMO dataset to generate a dataset tailored to our research question. Subsequently, machine learning
models were employed to discern features that distinguished the decision tree from multinomial regression
models. The methodology encompassed dataset construction, validation, and analysis techniques. Dataset
production generated both fixed-duration and varied-duration datasets, followed by rigorous verification
procedures to ensure dataset accuracy. Furthermore, the chapter delineated the process by which our
constructed dataset was utilised in machine learning models. Additionally, regression analysis was
incorporated to pinpoint statistically significant properties explaining variance in the target variable.

The methodology chapter drew upon the foundation laid by the background chapter to devise appropriate
research methods aligned with our research question, thereby guiding the experiment chapter in generating
data directly relevant to answering the research question. In the Results chapter, multinomial regression and
decision tree models were employed to identify discriminatory properties across two types of datasets per
machine learning approach. Regression analysis was also utilised to identify significant properties capable
of elucidating variance in the target variable. It is noted that fundamental frequency, mel-frequency cepstral
coefficient, auditory spectrum, spectral features, and jitter emerged as common properties between machine
learning experiments and regression analysis. Although the research question was only partially addressed
in the results chapter, this marks a crucial stage rather than the conclusion of the investigation.

In order to elucidate the impact of these distinctive attributes within the two datasets, the evaluation chapter
undertakes several preliminary studies to examine factors influencing these attributes in the varied duration
dataset, thereby corroborating certain assertions found in the relevant literature. For instance, it is observed
that mirthful laughter exhibits a more arbitrary distribution compared to discourse laughter and spoken words
counterparts. Furthermore, we assess the efficacy of the machine learning model through classification
accuracy and Cohen’s Kappa coefficient. Despite achieving an overall classification accuracy of 70%, the
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precision of laughter samples is relatively lower. This discrepancy is largely attributable to the imbalance
between samples annotated as laughter and those labelled as non-laughter.

In the main chapter, we established the dataset following the methodology employed by Hegarty (2022) and
implemented a comprehensive acoustic property identification pipeline inspired by the work of Tanaka &
Campbell (2014). Our approach enhanced their methodology by integrating additional tests that were not
previously considered. By employing this refined pipeline, we effectively addressed our research
question.

6.2 Reflection

Overall, this research has successfully addressed all the objectives outlined in the introduction chapter. The
significant aim of this work, dataset construction, has been accomplished and verified correctly. However,
there are still some limitations to this work. These limitations are elaborated upon in the subsequent
sections, encompassing programming language selection, dataset construction, model selection, acoustic
properties selection, and influential factors for discriminating properties.

• Programming language selection: In this project, we used Python programming language to implement
the whole project. Even though this language could achieve our objectives quickly, the execution time
of dataset construction is almost 1 hour, especially for the fixed-duration datasets. As Opensimile also
contains C++ programming language, a lower-level architecture programming language to manipulate
the operation system, the execution time will be rocketed if we apply this programming language to
construct datasets and use this programming language in an industrial setting. Besides, in the
evaluation chapter, we employed an indirect approach to assess the impact of session/participant
variables on discriminating properties. Unlike Python, R or Weka(Hall et al., 2009) support categorical
features, which provides a more robust analysis framework. Furthermore, the evaluation chapter
exclusively utilised varied duration data to validate claims from existing literature, potentially limiting the
generalisability of results in certain scenarios.

• Dataset construction: This research only uses a 200-ms duration to split the audio due to capacity
constraints. The rationality of choosing this value is based on it being slightly greater than the minimum
human’s auditory perception (170 ms). This number selection is also arbitrary, and a more constant
duration application will be more trustworthy, even though it requires more capacity, such as 100 GB.

• Model selection: The decision tree model theoretically can handle multi-label tasks. However, both
Python and R lack the functionality to clearly differentiate discriminating properties in feature ranks for
multi-classification. Consequently, our approach with the decision tree is adapted to binary labelling
tasks. This adaptation potentially mitigates feature race conditions and amplifies the impact of specific
acoustic properties, introducing bias towards the generated feature ranks. Additionally, in regression
analysis on the fixed duration dataset, we have yet to use the full 6.373 properties to feed into the
regression model due to capacity. We implemented this project using Python, which only accepts
numeral values for the independent variables and does not accept categorical variables.

• Acoustic properties selection: For each model in the varied duration and fixed duration datasets, we
only consider discriminating properties whose feature rank coefficient is greater than 0. In practice, this
operation sounds to some extent. However, some meaningful discriminating properties will be
discarded if their coefficient is close to 0. The range of candidates for discriminating properties could
be larger to explore more meaningful acoustic properties.
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• Influential factors discriminating properties: in the evaluation chapter, we focused solely on verifying
the selected session, Session 3, within the temporal dynamics experiment. This session specifically
examined the disorienting properties of mirthful laughter, discourse laughter, and spoken words. The
findings from this experiment might be niched, and it is better to test all 18 sessions, even though it
requires more time. We only used one discriminating property in all sessions to inspect the normalised
energy in the evaluation chapter. The mean, median, and standard deviation of normalised energy are
not distinct, indicating mirthful laughter’ normalised energy in the auditory spectrum is moderately
larger than related numeral values in discourse laughter and spoken words. It is better to test on other
discriminating properties to draw a more objective conclusion.

6.3 Discussion

The nature of acoustic laughter is intricate(Bachorowski et al., 2001), and acoustic laughter is a component
of laughter per se, even though we have identified some reasonable discriminating properties. In the
discussion section, we will discuss our work’s contribution to laughter classification and broader
context.

6.3.1 Contribution in Laughter classification

This study reveals several intriguing discoveries, such as discriminating acoustic properties and the factors
influencing these properties’ discrimination.

Discussion towards discriminating acoustic properties

This work identifies the fundamental frequency, MFCC, auditory spectrum,spectral features and jitter as
common discriminating acoustic properties intersected from machine learning experiments and regression
analysis. In this discussion, we discuss the discriminating acoustic properties identified in previous literature
directly or indirectly, and these acoustic properties depict different aspects of voice information.

Fundamental frequency is the first peak in the formants, and formants are the peak of the audio wave. The
first peak preserves the lower frequency of the formant and preserves the most important voice fingerprint
as the f1, f2, and f3 are the amplified frequencies of the fundamental frequency. Based on this information,
fundamental frequency is the unique identification of voice. This thought that fundamental frequency is
associated with vowels is also shared by Akagi et al. (1998), verifying that they found some fluctuation
between fundamental frequency and vowels displayed in the electroglottography experiment. In Tanaka &
Campbell (2014) work,they concluded that acoustic laughter is mixed with vowels and constants at lower
levels. Based on these two researchers’ statements(Akagi et al., 1998; Tanaka & Campbell, 2011), this
property could uncover some unique information in acoustic laughter, which is also confirmed in Tanaka &
Campbell (2014) work, our replicated work.

The effect of MFCC (mel-frequency cepstral coefficient) is to select representative audio information in each
frame in select audio clips, and an explanation of these concepts needs some phonetic knowledge. To
explain MFCC (mel-frequency cepstral coefficient) clearly, we provide some phenetic information herein.
Given any audio length, we could acquire its spectrum envelope, a smooth curve connecting all formats.
However, hearing perception focuses only on a specific religion(Deng et al., 2004) rather than the whole
spectrum developed in human auditory perception. The Mel frequency is based on a human being’s auditory
perception, acting as a filter to emphasise certain frequencies and allowing relevant signals to be highlighted.
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As the auditory system operates as a unique non-linear system, it responds differently to various
frequencies, enabling the extraction of semantic and personal acoustic information from audio signals.
MFCC leverages this by converting the linear spectrum into a non-linear Mel frequency spectrum, effectively
capturing human auditory features. To reconstruct the voice in the time domain, the next step involves
employing a discrete cosine transform to convert the audio wave from the frequency domain back into the
time domain. This process results in a feature vector for each frame, encapsulating detailed voice
information across specific frequencies within each frame.

Previous research confirmed that MFCC correlates with a higher emotional recognition accuracy (Wang &
Shen, 2023). Additionally, laughter could convey emotion(Gilmartin et al., 2013; Koutsombogera & Vogel,
2022). In our project, we aim to discern the distinctive properties of mirthful and discourse laughter. Utilising
MFCC properties, we seek to quantify and present the emotional states associated with these laughter
types, potentially through means such as electroencephalography(Ismail et al., 2016).

Even though two temporal-associated discriminating acoustic properties have not appeared in most
literature, including the auditory spectrum and jitter, these properties still inspire us to explore some exciting
findings. The auditory spectrum measures the range of specific wavelengths of laughter; this information is
also associated with the duration of laughter(Tanaka & Campbell, 2014) as it reflects the wave fluctuation
range of acoustic properties in the time domain and could be translated into the frequency domain by Fourier
transformation to identify the energy of specific acoustic properties via time.

Jitter is the cycle of frequency variation, measuring and extracting frequency oscillation in the time domain.
To the best of our knowledge, no studies have identified this acoustic property, and the article mentioned in
the background chapter(cf. Chapter 2) has not identified it. However, this property could reflect the cycle of
laughter from some perspectives and might assist us in tracking the trajectory of specific acoustic projects to
identify some rhythmic patterns.

Following this conjecture, we could further explore this temporal property, as the number of cycles for
specific acoustic discriminating properties might also be an undiscovered and interesting topic, as this
thought is indirectly confirmed by Brockmann et al. (2011), showing that jitter has a significant impact on
vowels, especially in males’ voice. Additionally, previous research in the literature review chapter(cf. Chapter
2) presented that some acoustic properties correlate with vowels(Tanaka & Campbell, 2011, 2014; Trouvain
& Schröder, 2004). By amalgamating these two statements, we could speculate that our hypothesis might
be true, even though further exploration needs to be verified by an EEG test(electroencephalogram)(Ringer
et al., 2023). As these two acoustic properties have not appeared in previous literature, they are probably
related to the configuration in Opensimile, resulting in this phenomenon.

Lastly, spectral features are a general acoustic property in the "Opensimple" framework that describes a
feature transforming the temporal signal into a frequency domain by utilising the Fourier transform. Even
though this properties could not be aligned perfectly with others’ work due to different namings, Tanaka &
Campbell (2014) depict some features in the frequency domain that might correspond to these two feature
semantically,such as “the maximum value of power (pmax)”,as our work and theirs utilised different sets of
acoustic property extraction features.

Discussion towards factors impact on discriminating acoustic properties

In the evaluation chapter, we found evidence suggesting that mirthful laughter exhibits greater randomness
in both the auditory spectrum and fundamental frequency compared to discourse laughter and spoken
words. This observation aligns with the findings of Koutsombogera & Vogel (2022), who assert that
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discourse laughter demonstrates a more structured pattern than mirthful laughter. Furthermore, they note
that discourse laughter shares similarities in its topical termination function with spoken words. Compared to
their work, this research has provided nuance information regarding the disorienting properties variation in
temporal flow and normalised feature energy of discriminating property, and this additional experiment has
yet to be done by others, even though we only conduct some sessions and some discriminating
properties

Another pilot study, which previous work has overlooked, involves verifying the influence of key participants
or sessions on specific acoustic properties, whether related to discourse or mirthful laughter. Given that
participants may vary in pitch, certain acoustic properties may be more pronounced in particular participants
than in others. Additionally, each session may vary in duration, ranging from 5 to 10 minutes, and this
variation in length could potentially affect the perceptual properties of laughter. Thus, this pilot study aims to
investigate these factors, providing motivation for its implementation.

6.3.2 Wider context discussion

This work thoroughly classifies the acoustic properties of two types of laughter: discourse and mirthful
laughter. Most of the work in this research project is algorithm design and machine learning selection, which
is partly theoretical. In a wider context, our findings could be embedded into a large system to track laughter
related to patients’ emotional states in a clinical setting.

The therapeutic potential of laughter in alleviating depression has been suggested(Navarro et al., 2014), and
our research delves into identifying discriminating properties inherent in laughter. This exploration extends
beyond mere discourse laughter and mirthful laughter. We aim to establish correlations between
discriminating acoustic properties in various types of laughter and depression, using Navarro et al. (2014)’s
work as inspiration. This potential product could assist psychiatrists and psychologists in accurately
quantifying the emotional state of patients with mental disorders via the dynamics of specific acoustic
properties in different acoustic laughter over time. The time series plot we envision is similar to what we
investigated in the evaluation chapter in terms of the dynamics of discriminating acoustic properties in three
utterance types(cf.Figure.5.2).

Not only could our work benefit in a clinical setting, but our work may also bring benefits to more areas, such
as improving participant engagement. Based on findings of this research, the product born from our work
might be embedded into a laughter response agent, such as the work of Türker et al. (2017) in the
human-rot interaction to identify the discriminating properties in the specific laughter, find the correlation,
and enhance participant engagement in a fine-grained manner.

6.4 Future work

No research work is perfect, and we proposed two directions for future work, even though other directions
might exist. One potential direction is to explore the MUTLSIMO dataset to identify some associated
laughter-related elements.

6.4.1 Influence of different genders on acoustic properties in laughter

Males and females exhibit distinct vocal pitches(Latinus & Taylor, 2012), with laughter potentially serving as a
cue for gender recognition(Folorunso et al., 2020). Given the differing acoustic properties between genders
and the availability of annotations in the MULTISIMO dataset, incorporating a new column is necessary to
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retain this information. Consequently, for future investigations, we could pose the following research
question: “Are there discernible variations in the acoustic properties of laughter based on the genders of the
individuals involved?”. This inquiry delves into the fundamental differences in acoustic laughter across
genders, highlighting their significance in interaction with discourse and mirthful laughter.

6.4.2 Consideration of ratified/ratifying laughter to explore more undiscovered
phenomena in laughter research

In the background review chapter, we delved into the research conducted by Hegarty (2022), which involved
the construction of a dataset comprising both ratified and ratifying laughter. To examine the distinguishing
characteristics associated with laughter leadership (defined by Hegarty (2022) as the individual who initiates
laughter), such as ratified laughter, we could integrate her ratified/ratifying laughter detection program into
our project, given that we have obtained approval to access their code. Then, we could investigate degree of
correlation between social laughter (ratified and ratifying) and natural laughter (discourse and mirthful
laughter) regarding discriminating acoustic properties. Another further research direction in this category
could be identifying discriminating acoustic properties strongly correlated with a laughter leader.
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A1 Appendix

The appendix chapter encompasses source code and the supplementary material from the
methodology,result,and evaluation chapter.

A1.1 Source code

All source codes in this project serve as supplemental material and are stored in Trinity Computer Science’s
GitLab repository.

https://gitlab.scss.tcd.ie/mshi/

acuosticpropertiesidentification-trinitydissertation.

A1.2 Supplementary material in the methodology chapter

The figures and listings below are referred to in the methodology chapter for the motivation of dataset
construction.
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Figure A1.1: Sample of P006 tier in S02_Final.eaf

Code Listing A1.1: XML structure in each EAF file containing time information and annotation information

<TIER DEFAULT_LOCALE="en" LINGUISTIC_TYPE_REF="UtteranceType" TIER_ID="shared_6_7">

<ANNOTATION>

....

<ANNOTATION>

....

</TIER>

Table A1.1: The Tier ID count for the S2 session extracted from EAF

Tier ID

M001_S02

Sections

Continued on next page
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Table A1.1: The Tier ID count for the S2 session extracted from EAF (Continued)

P007

P006

comment

laughter_section

nonlaughter_section

shared_6_7

shared_6_M001

merge_6

merge_7

merge_S02

solo_6

solo_7

solo_M001

Laughter_M001_S02

Turns

Laughter_7

Laughter_6

subsections

secsubsec

subsub

Code Listing A1.2: The annotation of continous moments in the TIME_ORDER tag

<TIME_ORDER>

<TIME_SLOT TIME_SLOT_ID="ts1" TIME_VALUE="0"/>

<TIME_SLOT TIME_SLOT_ID="ts2" TIME_VALUE="0"/>

<TIME_SLOT TIME_SLOT_ID="ts3" TIME_VALUE="0"/>

<TIME_SLOT TIME_SLOT_ID="ts4" TIME_VALUE="0"/>

<TIME_SLOT TIME_SLOT_ID="ts5" TIME_VALUE="0"/>

<TIME_SLOT TIME_SLOT_ID="ts6" TIME_VALUE="1375"/>

....

<TIME_SLOT TIME_SLOT_ID="ts2815" TIME_VALUE="622200"/>

<TIME_SLOT TIME_SLOT_ID="ts2816" TIME_VALUE="622817"/>

<TIME_SLOT TIME_SLOT_ID="ts2817" TIME_VALUE="622817"/>

</TIME_ORDER>

Code Listing A1.3: The annotation of continous moments with utterance content in the ANNOTATION tag

<ANNOTATION>
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<ALIGNABLE_ANNOTATION ANNOTATION_ID="a106" TIME_SLOT_REF1="ts1385"

TIME_SLOT_REF2="ts1394">

<ANNOTATION_VALUE>Are you ready for the second question

now?</ANNOTATION_VALUE>

</ALIGNABLE_ANNOTATION>

</ANNOTATION>

<ANNOTATION>

<ALIGNABLE_ANNOTATION ANNOTATION_ID="a466" TIME_SLOT_REF1="ts373"

TIME_SLOT_REF2="ts375">

<ANNOTATION_VALUE> [i] [eh] </ANNOTATION_VALUE>

</ALIGNABLE_ANNOTATION>

<ANNOTATION>

<ALIGNABLE_ANNOTATION ANNOTATION_ID="a672" TIME_SLOT_REF1="ts155"

TIME_SLOT_REF2="ts163">

<ANNOTATION_VALUE>Mirthful</ANNOTATION_VALUE>

</ALIGNABLE_ANNOTATION>

</ANNOTATION>

<ANNOTATION>

<ALIGNABLE_ANNOTATION ANNOTATION_ID="a680" TIME_SLOT_REF1="ts746"

TIME_SLOT_REF2="ts759">

<ANNOTATION_VALUE>Discourse</ANNOTATION_VALUE>

</ALIGNABLE_ANNOTATION>

</ANNOTATION>

<ANNOTATION>

<ALIGNABLE_ANNOTATION ANNOTATION_ID="a726" TIME_SLOT_REF1="ts430"

TIME_SLOT_REF2="ts679">

<ANNOTATION_VALUE>[non_laugh]</ANNOTATION_VALUE>

</ALIGNABLE_ANNOTATION>

</ANNOTATION>
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Figure A1.2: Sample screenshot of laughter tier row instances
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A1.3 Supplementary material in the results chapter

The figures and listings below are referred to in the results chapter for the regression analysis task.

Figure A1.3: Top-N adjacency features correlation given mirthful laughter in the varied duration datasets.

Figure A1.4: Top-N adjacency features correlation given discourse laughter in the fixed duration datasets.

Figure A1.5: Top-N adjacency features correlation given mirthful laughter in the fixed duration datasets.
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A1.4 Supplementary material in the evaluation chapter

Below figures are referred to in the machine learning model performance in the evaluation chapter.

A1.4.1 Confusion matrix

Figure A1.6: The confusion matrix for multinomial logistic regression on the varied duration dataset
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Figure A1.7: The confusion matrix for multinomial regression on the fixed duration dataset
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Figure A1.8: The confusion matrix for Decision tree tailed for "[laugh]-Discourse " for the varied duration
dataset
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Figure A1.9: The confusion matrix for Decision tree tailed for "[laugh]-Mirthful" for the varied duration dataset
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Figure A1.10: The confusion matrix for Decision tree tailed for "[laugh]-Discourse" for the fixed duration
dataset
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Figure A1.11: The confusion matrix for Decision tree tailed for "[laugh]-Mirthful" for the fixed duration dataset
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A1.4.2 Other acoustic properties dynamics for three utterance events

Figure A1.12: The dynamics of “Mean distance of spectral Features ” in the session 3 for three utterance
types

Figure A1.13: The dynamics of “Third quartile of spectral Features” in the session 3 for three utterance types
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Figure A1.14: The dynamics of “Range of MFCC” in the session 3 for three utterance types

Figure A1.15: The dynamics of “The differential frame-to-frame Jitter” in the session 3 for three utterance
types
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Figure A1.16: The dynamics of “The linear regression error of fundamental frequency” in the session 3 for
three utterance types
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