
HTTP3 over QUIC Applied for Ingress Network

Communication Within a Kubernetes Environment

Pascal Raos, ICS

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Data Science)

Supervisor: Stefan Weber

April 2024

HTTP3 over QUIC Applied for Ingress Network

Communication Within a Kubernetes Environment

Pascal Raos, Master of Science in Computer Science

University of Dublin, Trinity College, 2024

Supervisor: Stefan Weber

Kubernetes provides an orchestration framework for micro-services based on container-
ised solutions. Individual services are instantiated a number of times within a Kuber-
netes deployment and the orchestration framework manages the network traffic between
the individual services to each other and network elements outside a deployment. The
communication between the components of a deployment, the control plane managing a
deployment and the networks elements outside a deployment is generally based on a very
traditional setup of HTTP/1.1 over TCP over IPv4

The evolution of HTTP has resulted in a development towards encrypted protocols
that implement stream-based communication over connection-less transport protocols e.g.
the current version of HTTP/3 is layered on top of QUIC which in turn is based on UDP
and implements TLS 1.3 and individually synchronised streams. This development is in
stark contrast to the traditional approach taken in Kubernetes and introduces significant
challenges when attempting to connect network elements outside a deployment to services
inside a deployment using HTTP/3 and to traffic from individual streams to specific
services within a deployment.

The research provides an attempt to apply the QUIC based HTTP3 protocol within a
kubernetes environment, for the purpose of ingress based communication. The focus lays
on the difficulties which lay therein, and the methods taken to circumvent and ultimately
get a working solution. We intend to avoid simplistic implementations which mirror a
simplified architecture, as that would defeat the purpose of applying it to the Kubernetes
environment. As such the focus is on ingress or ingress controller based implementations.
Finally we will compare the ease of setup against global use of the protocol, highlighting
the discrepancy within the current open source environment.

Acknowledgments

Thank you to my dissertation supervisor, Professor Stefan Weber for all of the support

throughout the project.

Pascal Raos

University of Dublin, Trinity College

April 2024

ii

Contents

Abstract i

Acknowledgments ii

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Structure & Contents . 2

Chapter 2 Transport Protocols - Technical Background 4

2.1 TLS . 4

2.2 UDP . 5

2.3 TCP . 5

2.4 QUIC Protocol . 6

2.4.1 Streams . 6

2.4.2 TLS integration . 6

2.4.3 Handshake . 7

2.5 Comparison . 7

Chapter 3 Application Protocols - Technical Background 8

3.1 HTTP . 8

3.1.1 HTTP/1 . 9

3.1.2 HTTP/2 . 9

3.1.3 HTTP/3 . 10

Chapter 4 Packet Capturing 11

4.1 Wireshark . 11

4.2 Tcpdump . 12

4.3 Qvis & Qlog . 12

iii

Chapter 5 Kubernetes - Technical Background 15

5.1 Basic Cluster Components . 16

5.1.1 Nodes . 16

5.1.2 Containers and Images . 16

5.1.3 Pods . 17

5.1.4 Deployments . 18

5.1.5 Services . 18

5.1.6 Secrets and ConfigMaps . 19

5.1.7 Namespaces . 19

5.2 Advanced Kubernetes Components . 19

5.3 Control Plane . 20

5.3.1 Kube-apiserver . 20

5.3.2 Etcd . 20

5.3.3 Kube-controller-manager . 21

5.3.4 Cloud-controller-manager . 21

5.4 Node Componenets . 21

5.4.1 Kubelet . 22

5.4.2 Kube-Proxy . 22

5.4.3 Container Runtime . 22

5.5 Cluster Setup . 22

5.6 Cluster Management Tools . 23

5.6.1 Kubectx and Kubens . 23

5.6.2 K9s . 24

5.6.3 Lens . 25

5.6.4 Helm . 25

5.7 Local Clusters . 26

5.7.1 K3d . 27

5.7.2 Minikube . 27

5.7.3 Kind . 27

5.7.4 Comparison . 27

5.8 Remote Clusters . 28

5.8.1 EKS . 28

5.8.2 AKS . 30

5.8.3 Cost Model . 31

5.8.4 GKE . 31

5.8.5 Comparison . 33

iv

Chapter 6 State of the Art 35

6.1 QUIC and HTTP3 Usage Statistics . 35

6.2 QUIC Implementations . 37

6.2.1 AIOQUIC . 37

6.2.2 Quic-go . 38

6.2.3 Comparisons . 38

6.2.4 Implementation Considerations . 39

6.3 Middlebox Ossification . 39

6.4 QUIC packet flow . 39

6.5 Ingress Controllers . 44

6.5.1 Nginx . 44

6.5.2 TraefikProxy . 45

6.5.3 Comparison . 46

6.6 Summary . 46

Chapter 7 Problem Formulation 47

7.1 Problem Formulation . 47

Chapter 8 Design 49

8.1 System Architecture . 49

8.2 System Transparency . 50

8.2.1 Packet Capturing . 50

8.2.2 Packet Visualisation . 50

8.3 QUIC Client Connections . 50

8.3.1 Web Client . 51

8.3.2 CLI Client . 51

8.4 Kubernetes Setup . 51

8.5 Ingress Server . 52

8.6 Backend Server . 52

8.7 Summary . 52

Chapter 9 Implementation 53

9.1 Kubernetes Cluster Setup . 53

9.2 Host Protcol Testing . 54

9.3 Image Building . 54

9.4 Kubernetes Yaml Construction . 54

9.5 Packet Capturing . 55

9.6 TraefikProxy Testing . 56

v

9.7 HTTP3 with TraefikProxy . 58

9.8 Cloud Environment . 60

9.8.1 Account Creation and CLI setup 60

9.8.2 Cloud TraefikProxy Testing . 61

9.8.3 Cloud HTTP3 Testing . 61

9.9 Summary . 65

Chapter 10 Evaluation 66

10.1 Results . 66

10.1.1 Local AIOQUIC . 66

10.1.2 Intra-Cluster Testing . 66

10.1.3 Cloud HTTP3 . 68

10.2 Summary . 70

Chapter 11 Conclusions & Future Work 71

11.1 Future Work . 71

Bibliography 73

Appendix A Appendix 76

A.1 Browser Testing . 76

A.2 Local Testing . 76

A.3 Image Building . 77

A.4 AIOQUIC-Deployment . 77

A.5 Traefik Testing . 80

vi

List of Tables

2.1 Transport Protocol Comparison . 7

5.1 Kubernetes Cloud Providers . 33

5.2 Kubernetes Cloud Providers . 33

vii

List of Figures

4.1 Wireshark Packet Capture . 11

4.2 TCPdump . 12

4.3 Qvis . 13

5.1 Basic Cluster Components . 16

5.2 Nodes . 20

5.3 K9s . 24

5.4 Lens . 25

5.5 Helm . 26

5.6 AKS Cluster Choice . 31

6.1 HTTP Usage Share . 36

6.2 HTTP3 Browser Share . 36

6.3 Local QUIC Pcap . 40

9.1 Minikube Start . 53

9.2 Local AIOQUIC . 54

9.3 Simple TraefikProxy . 57

9.4 Pending IP . 61

9.5 Multi-port NLB Error . 61

9.6 Traefik Values Reference . 63

9.7 Cloud HTTP/3 Reply . 65

10.1 Intra-Cluster PCAP . 67

10.2 Intra-Cluster PCAP . 68

10.3 Cloud Qvis 1 . 69

10.4 Cloud Qvis 2 . 69

viii

Chapter 1

Introduction

1.1 Motivation

Since the conception of the internet, starting as attempts for cross-university communica-

tion between computer systems in 1969 with the ARPANET [9], communication protocols

between nodes or servers have played a crucial role.

The original Network Control Protocol kernel-level protocol [27] used was too simplis-

tic, not accounting for homogenous networks or packet dropping. The Transmission Con-

trol Protocol (TCP) [7], first introduced in 1974, and later applied within the ARPANET

environment in 1983 [9], improved inter-network communication, alongside improved re-

liability, flow control and packet recovery.

TCP has been deeply rooted in the history of the internet, and despite being over

forty years old, is still the most used transport layer protocol on the internet [32]. in its

time it has become ingrained in different network layer protocols, such as the popular

SSH or HTTP, and as such, has solidified its place in network communication. Other

derived or standalone protocols have attempted to iterate on, or extend the use cases of

TCP. However they have been unsuccessful in attaining wide-spread adoption.

The QUIC protocol, initially designed by Google in 2013 and standardised in 2021,

is built upon the User Datagram Protocol (UDP), with the high level features of TCP

built on top of it seems, to indicate a shift in the networking landscape. QUIC improves

on some blocking, handshake and general performance over TCP, but its main advantage

over other TCP competitors is that it is proposed and used by Google. The sheer scale of

Google rivals the implementation biases brought about TCP’s early adoption, and pro-

vides this new transport layer protocol a stage to shake the global infrastructure.

1

Currently, within most modern open source softwares, QUIC or HTTP3 is seen as an

experimental software, and does not promise proper performance or implementation in

many software packages.

The motivation for this dissertation is identifying the level of adoption outside of

proprietary software, viewing open source implementations of the QUIC protocol, specif-

ically in conjunction with HTTP3. We want to explore to what level they have been

implemented, and how its improvements have been integrated into high performance net-

working applications. The environment of choice we wish to apply this to is Google’s own

kubernetes container orchestration environment, which its open source distribution does

not natively support QUIC. Highlighting and recording the difficulties in implementing

this standard.

1.2 Structure & Contents

The order and value of each of the chapters in the dissertation is as follows.

Chapter 2 - Transport Protocols

Contains technical background regarding the transport layer and transport protocols rel-

evant to the dissertation. Specifically minimum details needed to understand the QUIC

algorithm and benefits over its peers.

Chapter 3 - Application Protocols

Provides the reader with basic application layer protocol information. This helps to

understand the delegating of certain transport concepts and the relationship between the

application and transport layer.

Chapter 4 - Packet Capturing

This chapter introduces standard packet capturing and analysis tools, and how they differ

semantically and when deployed in environments.

2

Chapter 5 - Kubernetes

This section describes in great detail the core components of the Kubernetes environment.

It will help the reader understand the complexity of the environment, in the scope of

standard protocol application to the environment. It covers basic and advanced cluster

components, and local versus remote cluster deployment.

Chapter 6 - State of the Art

This section covers more applied technologies, or implementations of technical background

standards. We delve deeper into inference on design decisions and why previous perfor-

mance research for the QUIC protocol showed discrepancies. This sets up the core them

of the project, the broad scope of difficulty in all regards to QUIC adoption.

Chapter 7 - Problem Formation

Focuses on inference from the previous chapter, and what we conclude is a issue to address

or topic to explore within the dissertation.

Chapter 8 - Design

Based on previous research, the methods needed to set up a minimum viable HTTP3

testing architecture, and functional requirements our used technologies must follow.

Chapter 9 - Implementation

This chapter focuses on the application of software, following the design principle estab-

lished prior. It also highlights the issues present in deployment, and discrepancies in

performance of certain technologies, ultimately leading to using a cloud environment.

Chapter 10 - Evaluation

The section focuses on evaluating results obtained in the implementation section, to po-

tentially make more inference on results.

Chapter 11 - Conclusions & Future Work

Chapter focuses on final comments regarding the project, and areas that could be viewed

or stem from work done.

3

Chapter 2

Transport Protocols - Technical

Background

The Idea of the network stack, defines the encapsulation order of information as it be-

gins from the application creating the data, down to the hardware which transmits the

encoded data between two hosts.

Within this project, we focus greatly on the Transport Layer [25]. This is the layer

which controls higher level flow control, header and encapsulation of data between two

hosts. The User Datagram Protocol (UDP), QUIC and the transmission control protocol

(TCP) are some of the most prominent transport layer protocols in the modern age. Before

progressing, we will identify some of the most prominent differences between these major

transport layer protocols, and how QUIC compares against the most widely deployed

standard, TCP. We will also look at how network security is handled at the transport

layer.

2.1 TLS

TLS (Transport Layer Security) [30], is an encryption algorithm used to secure data on

the transport layer. It does so by allowing hosts first to agree on the version of TLS

to be used, and the encryption protocols supported by both hosts, all done through an

initial connection handshake. A host or server can register themselves with a third party

to have their ownership of a web domain recorded in a root certificate authority (CA).

Communication between a client and a server proceeds with the server sending a signed

certificate,its public key. The client would confer with the root CA, to see if the server

is the rightful owner of what the web domain the client is communicating with. Once

4

established, the client and server cryptographically generate session keys for encryption

and decryption for their singular session.

2.2 UDP

UDP works as a connectionless protocol, which trades off its reliability in favour of speed,

and reduced network bandwidth. This minimizes its usefulness outside of noiseless net-

work environments

UDP was initially created by David Patrick Reedm, with its standard defined by the

Internet Engineering Task Force (IETF) in their standard documentation Request for

Commons (RFC) number 768 [26].

While UDP allows failures and duplicate packet delivery in noisy network conditions, it

does not allow the processing of corrupted packets. It handles packet corruption detection

using checksums, which are binary outputs from logical operations on the original payload,

and sent alongside. if the same operation does not produce the same logical output, it

can be said one or more of the bits in the packet were corrupted during transmission.

2.3 TCP

TCP is a connection based transport layer protocol that transmits data packets in an

ordered delivery sequence [28]. It can account for lost packets with retransmission and

has congestion control to prevent oversaturate the connection bandwidth. TCP can send

multiple different data types at once but does not differentiate between them.

TCP includes more advanced transport layer functionality than UDP, to allow it to

maintain a strong level of communication, especially in a best effort network environment

like the internet. It does this by incorporating sequence numbers for packets, each of which

is acknowledged by the peer host after receiving them. This ensures proper tracking in

cases where packets can be dropped, corrupted or arrive out of order. It also implements

strongly researched congestion controls algorithms [2], alongside a connection oriented

bystream to ensure proper data handling.

TCP connections begin with a three way handshake, exchanging initial sequence in-

formation between hosts, and ensuring both hosts are in an acceptable state before trans-

mitting data. All of these functions are the basic building blocks of stable internet data

transfer.

5

2.4 QUIC Protocol

The QUIC protocol is a connection based transport layer protocol built on top of UDP.

It was created by Google in 2013 and standardised by the IETF in RFC9000. It adds its

own implementation of TCP-like packet encapsulation, congestion control, and connection

handling to stabilize UDP communication. Its relationship with UDP allows the encapsu-

lation of QUIC packets within UDP datagrams. The use of UDP allows interoperability

with older established services which only support older transport layer protocols.

In the following subsections we will highlight the unique features QUIC provides, and

improvements against its direct predecessor TCP.

2.4.1 Streams

The main transport level functionality offered by QUIC is its ability to handle multiple

byte streams within a single connection, providing a separate logical QUIC stream for

each source. flow control, priority and packet handling, can be handled on a per-stream

basis.This is different to TCP, which multiplexes multiple byte streams into a single tcp

connection stream.

TCP would suffer from a very prominent head-of-line blocking (HOL) issue. If a packet

of a specific data type was dropped and must be retransmitted, all other packets across

the connection stream must wait, even though not all of them have a dependence on

the lost packet. QUIC guarantees in-order delivery of packets in each individual stream,

allowing a client to allocate a separate stream for related packets, claiming to circumvent

the HOL blocking issue.

However, some points are brought into question, HOL blocking is removed only if

multiple QUIC streams are being used concurrently. Taking into account the bursty

nature of packets, if a packet is lost from a single stream due to network interference,

there is a likely chance it would be lost from other streams too, causing blocking on

multiple streams. An interesting discussion follows by Robert Marx on a github post

online [21]

2.4.2 TLS integration

TLS is used natively within QUIC, meaning all QUIC communication must be encrypted

and authenticated between hosts using the protocol. This differes greatly from TCP,

which uses TLS as an additional feature on top of its transport layer functionality. This

provides the benefit of encrypted communication at all applications of QUIC, but adds a

6

level of complexity when applying the protocol in simple use cases, or testing.

2.4.3 Handshake

QUIC follows the standard methods of initiating its connections with a handshake. The

native incorporation of TLS within the QUIC protocol itself allows QUIC to send TLS

handshake information alongside its own protocol handshake. This allows QUIC to come

to an agreement with a server within one round-trip-time (RTT), compared to TCP’s

1-RTT without TLS and 2-RTT with.

QUIC also offers a 0-RTT handshake, allowing a client and server to communicate

while the initial handshake is occurring. It is done based on remembered values from a

prior connection with the server. It incorporates some limitations however, such as the

inability to lower flow control parameters beyond the remembered values, or forfeiting a

level of security.

2.5 Comparison

Protocol Connectioned Reliability HOL Blocking RTT Encryption

UDP Connectionless Unreliable N/A N/A Possible w/ sockets

TCP Connectioned Reliable Yes 1-3 Optional

QUIC Connectioned Reliable Reduced 0-1 Mandatory

Table 2.1: Comparison of core transport layer features between protocols, identifying
whether the protocol establishes a connection with the server, how reliable is packet
delivery, HOL blocking, total RTT for packets, and how it implements security measures

7

Chapter 3

Application Protocols - Technical

Background

Application Layer Protocols [24] are the networking protocols responsible for the end to

end communication context between two machines. Transport Layer protocols determine

the advanced rules for how these messages travel between hosts. In the context of the

dissertation, the HTTP application layer protocol consists of messages which control

functional communication between hosts, and the transport protocols QUIC or TCP,

control packet level operations when sending and receiving these packets, ensuring they

reach their destinations.

An Application protocols design tends to adhere to functional limitations for the un-

derlying transport protocol it will support. For that reason, iteration and improvements

on an Application layer protocol could be heavily stunted if it could cause instability with

its transport layer.

3.1 HTTP

HTTP is an application layer protocol designed to communicate between a client and

server architecture. It follows a Create, Read, Update and Delete (CRUD) philoso-

phy. HTTP has four respective operations for a client to request of the server, POST,

GET, PUT, DELETE. HTTP is commonly used for serving web HTML, javascript and

stylesheets for web page loading. The HTTP protocol has been iterated on over the years,

greatly improving on the former version. HTTP3 is next in line.

8

3.1.1 HTTP/1

HTTP/1 [22]was a simplistic method of client to server communication, built to be

used by the globally accepted TCP transport protocol. It followed the basic CRUD

philosophy, which was very appropriate for the early days of the internet. It came with

many limitations, the most notable being, it required a separate TCP connection for each

HTTP Request. This meant TCP handshakes would occur for every request, causing

huge delays.

HTTP/1.1 resolved this by using persistent connections, allowing multiple HTTP

requests to be run on a single one, to which either party could signal the close of the

connection once finished. However it highlighted another issue, that a single connection

only allowed sequential request handling, meaning any delays would cause the next request

in line to wait. This is commonly know as Head-Of-Line (HOL) Blocking.

Furthermore, no resource prioritization was implemented, and requests would be han-

dled first-come first-serve, regardless of whether a prior request contained data which

needed to be received first. Finally, HTTP/1 stores packet header information as white-

space delimited plain-text, vastly underutilizing network bandwidth

3.1.2 HTTP/2

HTTP/2 [6] was introduced in 2015, sixteen years following its predecessor. In the

meantime, the average size of web pages would increase, with the development of more

complex web designing frameworks, and improved internet speeds facilitating that growth.

While HTTP/2 still depends on TCP for transport layer communication, it improves

on HTTP/1 in several ways. It implements a feature known as multiplexing, allowing it

to differentiate between separate HTTP requests along a single connection. It is achieved

through a feature known as binary framing, the act of splitting data into individual

binary encoded frames, associating them with requests and interleaving them across the

network connection. This means multiple requests can be created and sent to the server,

becoming queued until the server returns a HTTP reply. This eliminated HTTP-level

HOL Blocking, however the underlying implementation of TCP does not differentiate

between the separate packets it streams while multiplexing. This means if a packet is lost

in TCP communication, HOL Blocking still occurs, as it can not determine which other

byte streams are associated with the specific packet.

HTTP/2 does add prioritization to requests handling, ensuring the appropriate re-

quests are handled first. It also implements a server push feature, allowing the server to

return resources associated with a previous client request, saving round-trip times. Bi-

nary framing allowed improvement of network bandwidth usage by eliminating wasteful

9

cleartext in packet headers.

HTTP/2 introduced a header compression method known as HPACK to further reduce

packet header sizes. Header compression is maintained by both the client and server and is

represented by indices in dynamic table lists mapping to the corresponding HTTP header.

When a client sends a request to the server, it creates an index for this new header and

sends it along to the server with the original request. The server can then associate the

index with the header in its local dynamic table, allowing further communication between

client and server to use the index in place of a lengthy header. Encoding and decoding

can be done both ways

3.1.3 HTTP/3

Whilst HTTP/2 heavily improved over HTTP/1, It still had its shortcomings, especially

through some TCP specific limitations.

HTTP/3 [15] is the first HTTP built the new QUIC transport layer protocol. The

majority of its improvements over HTTP/2 directly mirror QUIC’s improvments over

TCP discussed previously. The binary framing mechanism incorporated in HTTP/2 is

delegated and implemented within the QUIC protocol. HTTP/3 delegates stream control

to QUIC natively, and simply maps each request and response pairing to an independant

QUIC stream, allowing concurrent queueing.

QUIC implements its own header compression algorithm, QPACK [14], as despite bi-

nary framing translating well to QUIC streams, HTTP/2’s HPACK header compression

relied on the guarantee of TCP delivery header frames in order to the server, to allow

approriate build-up of the dynamic table mappings used for compression. QUIC guar-

antees in order delivery of individual streams, but not packets on the connection as a

whole. Therefore QUIC implements its own compression algorithm at the transport layer

to handle these changes.

10

Chapter 4

Packet Capturing

4.1 Wireshark

Wireshark [11] is a packet capturing and analysis tool originally created by Gerald Combs

in 1997. Its iteration over the year has been by necessity. When a protocol was found to

be unsupported, packet dissection code was written for wireshark, and contributed to the

project.

Figure 4.1: Wireshark packet capture, showing the results of a QUIC
client-server session. Each individual line number corresponds to a UDP
datagram sent or received

11

Over the course of years, support for many protocols was incorporated into the original

software, upgrades to the graphical interface. Wireshark has a command-line alternative

named tshark, and works similarly to other command-line packet capturing tools like

Tcpdump

4.2 Tcpdump

Tcpdump [33] is an open-source Command-Line-Interface (CLI) based tool. it allows you

to listen to network traffic on, or travelling through, ,the host machine on which the tool

runs. It was developed and released in 1987 by Van Jacobson, Craig Leres and Steven

McCanne, who were workers at the Lawrence Berkeley National Laboratory in California,

USA

Figure 4.2: The figure shows a tcpdump command, acting on the UDP
protocol towards a specific IP address, in this case, a public google
endpoint. You can see the communication between the host computer,
the remote server, the timestamp,and the size of the UDP datagram

The tool is configurable to filter certain criteria to listen on. For example, you can

filter by specific port open on the host, specific network protocols, source and destination

addresses, and so on. The tool allows you to inspect the packets in real time in the

terminal, or allows you to write the output files to pcap format. You can easily use

another graphical tool, like Wireshark, to read and do more advanced dissection of the

pcap file produced.

4.3 Qvis & Qlog

QVIS is a QUIC protocol visualization tool developed by github user Robin Marx [31].

QVIS is designed to work natively with the qlog packet format. qlog is a trace-based

output, which stores the packet information of all QUIC connections between a client and

server.

12

Figure 4.3: The figure shows a QVIS graphical output from a qlog trace
file associated with an example QUIC client to server communication.
We can see handshake information from both client and server, included
within the traces would be server certificate information, key exchange
values, connection establishment and QUIC parameter configuration

It is a very useful tool for beginners to identify individual connection streams, and

client/server state changes when events occur. However, Wireshark’s packet dissection

provides more detail of the contents of each QUIC and UDP datagram, especially when

identifying TLS handshake processes.

While many open source QUIC implementations support qlog output for debugging

purposes, based on my research, QVIS is the only readily available visualization tool for

the native format.

The developer of the QVIS tool created an accessory software, named pcap2qlog, which

allows the conversion of pcap files to json, and then ultimately qlog formatted outputs.

This would allow users to use conventional tools like tcpdump and wireshark to capture

QUIC communication on a host network, and prepare it for visualization without using

a dedicated QUIC client or server with qlog output support.

Personal testing however introduced a major issue. I found I was not able to success-

fully convert pcaps to qlog outputs using the pcap2qlog tool. An issue is open on the

tool’s github regarding the issue, where it is suggested that new versions of Wireshark

have changed the way it parses pcap files when converting to json formats. Therefore

causing errors when the tool finally converts from json to qlog. The sole developer Rmarx

shows reluctance to update the tool, or provide direct pcap support for the QVIS tool

13

itself. The tool itself is only updated once every few years.

This issue with pcap converison causes an issue for testing environments. If an imple-

mentation of QUIC does not natively support qlog trace outputs, we will never be able to

receive qlog traces from the server’s perspective. Server flows are automatically generated

if you have a client’s perspective, but some internal state changes within the server will

not be visible.

14

Chapter 5

Kubernetes - Technical Background

ubernetes is a open source container orchestration software, first created in 2014 by

Google [5]. Containers are a high level software abstraction of a host machine, or server.

These containers are virtual instances of some minimal operating system, combined with

various tools and software built on top of it. This allows the creation of isolated lightweight

environments that allow a specific service or range of services to run.

An example of this can be some SQL database software, separated outside of your host

machine, cannot access the internet, and it is given a portion of your machine’s disk space

to store its data. The resources available to the container, and any software installed does

not affect your host machine in any way.

A Kubernetes cluster is the combined effort of multiple servers or nodes, working to-

gether to allocate resources to these containers. There are two distinct types of nodes,

Master nodes which delegate resources to the control plane, and worker nodes which del-

egate resources to containers.

The control plane controls the state of the cluster, and delegates the responsibility

of newly created containers to worker nodes. Worker nodes allocate CPU resources,

memory and disk space to allow containers to function in their isolated environments.

Which node a newly created container is delegated to depends on the total state of the

cluster, incorporating the requirements of the new container and which worker can best

provide these resources.

15

5.1 Basic Cluster Components

Here we will discuss the basic building blocks for Kubernetes, and how a single service

that may exist on your host machine, a load balancer, a database, or some cache service,

can be instantiated within a cluster.

Figure 5.1: Figure showcases the basic Kubernetes components refer-
enced below. From Deployments consisting of pods, their associated
services, configMaps or secrets, and namespaces which logically encap-
sulate association

5.1.1 Nodes

Nodes are the components which make up the underlying cluster infrastructure. Whether

they are master or control nodes, they are responsible for providing the CPU, Memory

and Disk space needed for both containers and the core underlying services which control

the cluster to function properly. Components are scheduled by the control plane to be

places on Nodes.

5.1.2 Containers and Images

Kubernetes containers are built up using an underlying container runtime, such as docker [13],

containerd [4] or others depending on the underlying operating system. These runtimes

define the set of rules to separate a container process and isolate it from your host ma-

chine, alongside networking, storage and resource management.

16

FROM pos tg r e s

CP s t a r t . sh / opt / s t a r t . sh

CMD [. / opt / s t a r t . sh]

Listing 5.1: The code shows a simple dockerfile image. The image is

built from the basic postgres image, then copies a file onto the container,

before finally running that file

On top of this are images. Images are the definition of what the core software of the

container will be, and what start-up commands will be run when it begins. This can

allow you to configure a working service, such as a database solution, without manually

running installation commands within the container environment. Images can be stored

on your local machine, or on some globally accessible image registry. A popular example

is docker hub

5.1.3 Pods

Within Kubernetes, a pod could be considered to be the smallest unit. A single pod

defines containers, with images, and what ports are accessible for those containers to in-

teract with other pods in the cluster

ap iVers ion : v1

kind : Pod

metadata :

name : nginx

spec :

c o n t a i n e r s :

− name : nginx

image : nginx : 1 . 1 4 . 2

por t s :

− conta ine rPor t : 80

Listing 5.2: Shows a simple Kubernetes yaml file, defining ”Kind” for

the component described, ”spec” contains container configuration fea-

tures, such as ”image” for the base container software, and ”ports” to

expose a container service outwards to the cluster

17

A Kubernetes yaml file can be used to define Kubernetes components, such as the

pod. This information is read into the cluster and updates the cluster state, beginning

the process of setting up the new component on a node.

When a pod with a specific image is defined, Kubernetes can find the image needed

through online registries or locally built images.

5.1.4 Deployments

Deployments are a way of defining a collection of Pods in a single yaml file. This can

allow you to create or delete pods by changing a single yaml, and allows the creation

of multiple duplicate pods, each with their own unique ip address accessible within the

cluster.

5.1.5 Services

When pods within a deployment go down and are restarted, they are given a new ip

address. This can cause issues if two pods are interacting using their given ip addresses.

A service is a way of attaching a static hostname onto a set of mutiple duplicated pods

defined by a deployment. This allows pods to communicate with a set of pods using a

service name instead of an IP. The service inherently load balances incoming connections

across all the replicated pods, which is the act of intelligently routing network traffic to

different sources, either through random chance, or based on the network congestion of

each server or pod. There are two advanced archetypes of the default service, a nodeport

and loadbalancer service. These are two methods of pushing Kubernetes services to be

reachable from outside of the cluster.

A Nodeport service maps a port from a Kubernetes service to all of the worker nodes

in the cluster. This is a way of allowing nodes which have been opened to the internet to

allow services to reach outside the cluster. The main issue is that the port is open on all

nodes in the cluster for routing.

Loadbalancer services are similar, but rely on third party methods of internet com-

munication. This is commonly done with cloud providers, who have their own network

configurations in datacentres, which allow them to map internal IP addresses to pods and

services. Once this is done, cloud providers can map their own external load balancers,

those existing outside of Kubernetes, to route traffic to the service within the cluster,

through the nodes. This eliminates the issues with Nodeport services which take up ports

on the host node.

18

5.1.6 Secrets and ConfigMaps

Secrets and ConfigMaps are very similar in design. They are stateful components which

define some sort of variable to be provided to a pod or multiple pods. ConfigMaps tend

to be used to store environment variable which are used at runtime by the pods, whilst

secrets store encrypted authentication or passwords, in the case a pod must login with

some credentials or API keys to access the internet or other services. These values are

retained when a pod restarts

5.1.7 Namespaces

Namespaces are a virtual abstraction of resources within Kubernetes. They allow you

to do separate groups of pods, services, or other components from each other. This can

allow you to set specific user permissions on namespaced components, for example, to

ensure within a company developers can only modify certain resources within the clus-

ter. Hostname resolution for services are namespaced. This means within two separate

namespaces, you can have the same set of pods and the same set of services exist simul-

taneously. If a pod tries to communicate with that service, it will by default prioritize

communication with the service in its own namespace.

<service-name>.<service-namespace>.svc.cluster.local

You can instead define a long-hand hostname in this form, which specifies the name

of the service, along with the namespace it resides in. This is useful to communicate with

namespaced components explicitly regardless of the initial calling pod’s location

5.2 Advanced Kubernetes Components

The worker and master nodes, which contribute to the state managing control plane, and

resource allocating working area respectively, have underlying components used to fulfill

their core functions

19

Figure 5.2: Figure shows the key components of the control plane and
the basic components of schedulable worker nodes.

5.3 Control Plane

The Kubernetes control plane consists of a few key components that allow an initial

cluster configuration to be created and functional. These are an etcd key-value store, the

Kubernetes api-server, a controller manager, and a scheduler. The control plane itself can

consist of one or more master nodes

5.3.1 Kube-apiserver

The kube-api server is the entrypoint into the cluster for a system administrator. It allows

the user to do create, read, update, and delete (CRUD) operations within the cluster, and

processes them to change the cluster state, or provide information to the user.

5.3.2 Etcd

etcd [10] is a software used for key-value storage applied to a distributed systems. It

brings with it functionality for fault tolerance across distributed nodes, scalability to new

nodes, consistency models across the nodes, and additional monitoring methods to ensure

up to date values.

20

Within Kubernetes the etcd software is used to store cluster state in its key-value

store, from which the control plane can make decisions on resource allocation, discover

new services within the cluster. The Kubernetes API is a way of modifying or reading

the etcd state data, if you have been given sufficient permission to do so.

Access to the etcd is equivalent to root access to the cluster, therefore certificates are

setup across the different control plane components to ensure only authenticated users

within the cluster can change cluster state.

5.3.3 Kube-controller-manager

A controller within Kubernetes is a type of service that defines some infinitely running

process which controls the behaviour of some cluster function. Some examples are the

Node controller, which helps responds to nodes failing within the cluster. The Job Con-

troller, which runs Kubernetes Job objects, which support the creation and deletion of

containers within the cluster.

This component in the control plane is responsible for running and managing all

controllers, and packages all built-in Kubernetes controllers into a single binary upon

initial installation.

Customized Controllers can be created yourself or deployed within your cluster to

provide some non-native functionality. Ingress controllers, one of the main focuses of this

dissertation, fall under this category. However they are not controlled by the control

plane, and must be configured manually to interact with other control plane services [16]

5.3.4 Cloud-controller-manager

This controller-manager allows interoperability between Kubernetes controller function-

ality and distinct cloud providers, such as Google, Microsoft, Amazon, or other smaller

bodies which offer Kubernetes services.

Some of the functionality offered is matching cloud load balancers to Kubernetes

services, mapping network communication within Kubernetes to the overarching network

within the provider’s datacentre

5.4 Node Componenets

Node components, cover general purpose functionality that all nodes need to control

cluster actions. Both the master nodes which comprise the control plane and the worker

nodes which house pods, all use the following basic resources.

21

5.4.1 Kubelet

The kubelet is a process which ensures the relationship between pod descriptions and

container health. Ensuring that containers are behaving exactly how described, restarting

incorrect or failing ones.

5.4.2 Kube-Proxy

The kube-proxy is reponsible for the networking side of the cluster. Controlling transport

layer forwarding between pods, port forwarding communication between the cluster and

outside hosts, and defines functionality for how the service component operates. It controls

how API requests from the client are handled coming into the cluster

5.4.3 Container Runtime

The container-runtime is the underlying software that determines and controls how con-

tainers are created, from initial startup and image fetching, to general uptime and moni-

toring. There are many usable container runtime softwares, with the most popular being

Docker and Containerd.

5.5 Cluster Setup

You can setup and install all of these Kubernetes components manually using the Ku-

bernetes open source implementation [17], using the scripts it provides. However this

brings about a lot of unforeseen complexity. Setting up a master node for the control

plane, initial networking for Kubernetes node discovery, installing all dependencies on

each node, joining multiple nodes together to form a cluster and finally setting up client

authentication to use the kube-api.

All of this is very complex and generally not too useful if we want to do testing only on

a single machine. In fact if you want to set up a multi-node Kubernetes cluster manually,

you would need to buy dedicated hardware and spend months configuring conditions of

the machines before even beginning.

This is where dedicated setup software helps us. There are tools that exist for the

sole purpose of providing an abstraction to the initial setup process. Networking can be

simplified by just connecting all nodes to a single network, like in datacentre conditions,

and allowing the software to discover them automatically. All installable files can be

fetched from the internet and setup on the host machines. Authentication setup is done

22

automatically, such as TLS certificates for node authentication, and user authentication

for the Kubernetes API.

Kubeadm [18] is an example of one of these tools, and reaches an initial cluster state

which can achieve a Kubernetes conformity standard

To simplify things further for testing purposes, there are implementations for single-

machine Kubernetes clusters specifically, where your node acts as a master node and

worker node. These are the ones we will explore for our simple cluster use case.

5.6 Cluster Management Tools

A few tools exist for Kubernetes cluster management. Kubectl is a mandatory CLI tool

built directly to communicate with the kube-api server residing in the cluster. It uses a

configuration file stored on your host machine to authenticate you as a valid user in the

Kubernetes cluster. Once validated, you are able to create HTTP based API requests to

the cluster, changing its state or querying state of specific components.

The kubectl tool however, is quite minimal in its graphical representation. This can

make it very difficult for someone with no prior Kubernetes knowledge to have a high level

understanding of what cluster componenets they are interacting with. A few open source

tools have been created since Kubernetes’ inception to help provide users with either a

more streamlined experience using kubectl, or a complete graphical overhaul.

5.6.1 Kubectx and Kubens

Kubens and Kubectx are tools that simplify part of the kubectl command suite. Within

kubectl, chaning between namespaces or even between which cluster you want to make

API requests to, requires multiple lengthy commands. Namespaces in particular are

frequently changed if you are an infrastructure level developer who requires access to the

entire cluster.

Kubectx allows you to list all available clusters referenced in your Kubernetes configu-

ration file, and swap between them, incorporating auto-complete features. Kubens offers

the same functionality for namespaces. These two are bundled together in a single binary

23

5.6.2 K9s

Figure 5.3: Image shows the k9s GUI terminal, focusing on pods in the
http3-test namespace, amongst other k9s macro, and cluster information

K9s is an oldschool graphical UI design, simulating terminal interfaces from the early

2000s, focusing on keyboard commands to navigate the interface. It provides a clean area

to display the Kubernetes components of interest, along with pre-defined macro commands

to easily switch, or search between components. It is considered a very lightweight tool,

which does not diverge greatly from the core kubectl command structure. It allows you

to execute commands on pods, bring up and delete components, view their defined yaml

files, setup port-forwards, among other simple features

24

5.6.3 Lens

Figure 5.4: Figure shows the Lens advanced GUI, accounting for all
Kubernetes resources within the side bar, and filtering down to pods in
the http3-test namespace. This mirrors the same filter criteria as the
K9s terminal

Lens is a highly advanced Kubernetes graphical interface. Unlike k9s it is very modern and

focuses on a mouse based graphical interface. It operates on a freemium model, meaning

for personal use the software is free, with extra features provided in a paid upgrade. For

enterprise situations, licenses must be purchased for both free and paid versions. On top

of the basic functionality provided by both kubectl and k9s, Lens strives to extend the

functionality further. It offers the basic features at a comfortable few clicks notice to the

user, while providing monitoring features, resource analytics, accessing namespaces within

using commands, and making general information extremely transparent. The pro license

features offer setting up custom user permissions through the software itself, extended

plugins, single-sign-on, and even support for security audits.

5.6.4 Helm

Helm is a templating tool used to remove boilerplate Kubernetes yaml definitions. It

allows you to create file-base objects called charts, along with defining a default values

25

file to populate the templated fields.

Figure 5.5: Figure shows a helm templating format, with the chain
bracket contents ” X ” corresponding to variable in the helm values file.

Within the chart you can create basic Kubernetes yaml files, while including variable

definitions within each line of the specificiation. A values file, contains a key-value map-

ping of these variables. Once you run, or install a helm chart, it will fill the templated

variables with the values provided in the default values file, creating valid Kubernetes

yaml.

Helm automates the process of installing these yaml files onto your cluster, includ-

ing intelligent versioning, rollback and history. The broader scale application of this is,

similar to images, you can download and install helm charts stored on the internet. This

allows open source software to be installed and setup for your specific use-case, simply by

providing a single custom values file during installation

5.7 Local Clusters

Local clusters are defined as Kubernetes clusters which can exist on a single host machine.

it trades off higher available cluster resources from multiple nodes, in favour of lower

setup and maintenance complexity. This lends very favourably for research and small

scale environment testing.

26

5.7.1 K3d

k3s is a simplified, light weight distribution of the open source Kubernetes implementa-

tion, developed by a company called rancher. k3d is a community driven iteration, and

deploys a docker-based wrapper around the open source k3s. It allows you to deploy a

k3 Kubernetes deployment within docker itself. K3s comes with traefikproxy installed as

an ingress controller, and a software called klipper to handle load balancing. However,

having pre-installed software can lead to some issues when reconfiguring it. I found some

cases where overriding the default ingress controller configurations caused issues. In the

case of accessing you services from the host machine, mappings of ports from the cluster

to the host machine must be defined on cluster creation

5.7.2 Minikube

Minikube is arguably the most popular method of setting up a local Kubernetes cluster.

It was created by a Kubernetes special interest group (SIG) which saw a need for local

kuberntes deployments for testing. It provides the ability to use a container environment

or a virtual machine to drive the cluster creation. Minikube does not come with prein-

stalled third party software, and can so manual configurations would have a lower chance

of poorly interacting with the cluster state. Accessing the services from inside of your

minikube k8s cluster can be done from a tunnel command after cluster creation

5.7.3 Kind

Kind stand for ”Kubernetes in docker”, and is developed by a Kubernetes SIG group

also. Its purpose was to provide a dockerized Kubernetes runtime, and follow core prin-

ciple surround stability of the cluster, longevity of development, and automation. Kind,

similarly must define port mappings from the host to the cluster on cluster creation, and

could be an arduous process when reconfiguring in testing.

5.7.4 Comparison

Due to my setup requiring simplicity and also configurability, I felt that kind and k3d

only offered one of these two in my initial research. Kind and k3d both both require the

mappings of ports from the cluster to the host for testing to be defined on cluster creation,

and therefore each test would require the reconstruction of the entire cluster. k3d comes

with pre-packaged ingress and loadbalancer software, which can be hard to disable or

reconfigure. Minikube is the best established local Kubernetes cluster for testing, and

27

one I am already familiar with from prior projects. As such I have decided to chose it as

my local cluster starting point.

5.8 Remote Clusters

Remote Clusters are Kubernetes clusters that are comprised of multiple nodes which are

not locally containerised or built up using virtual machines on a single host. There are

then two options for implementing a remote cluster. Firstly, buying dedicated hardware

and setting up initial operating system installations, necessary software dependencies for

Kubernetes, and ensuring nodes are reachable over the local network. Finally, setting up

the cluster either manually with the open source Kubernetes implementation, or through

setup software like kubeadm, k3s or others. Secondly, opting for a cloud provider, and

paying monthly costs. As a student, the expense of providing dedicated hardware, com-

bined with the time commitment of setting up the multi-node Kubernetes cluster, a cloud

provider is the only consideration.

The three main considerations are AWS’s Elastic Kubernetes service (EKS), Microsofts

Azure Kubernetes Service (AKS) , and Google’s Google Kubernetes Engine (GKE). The

three cloud providers operate on a similar precedence for cluster setup. Account creation

with through their web portals, and using a cloud terminal or authenticating yourself to

use their command-line-interface from your local machine. Afterwards is cluster setup,

which uses virtual networks in their datacentres to configure and connect multiple physical

or virtual machines as nodes to your Kubernetes cluster. Finally once the cluster is setup,

you update your local Kubernetes configuration to allow you to connect to the cluster.

The mapping between a cloud providers own resource to Kubernetes is where they differ

the most, since each uses their own native configuration formats or terminal commands.

At the simplest level they all provide almost the same functionality

The three main Kubernetes cloud providers differ mainly in their advanced features.

Automatic node and cluster updates, provisioning new worker nodes automatically, cluster

resource monitoring, and others. In our case we need a minimum viable product, with easy

testing setup to showcase the difficulties in applying the QUIC standard. Therefore for

cluster research we will focus on ease of setup, cost structure, and research commitment

to create a working cluster.

5.8.1 EKS

Amazon’s EKS comes with the full backing of AWS’s monolithic globally accessible dat-

acentre backbone. Amazon was one of the earliest adopters of the software as a service

28

business model, which is the movement of computation to datacentres, and offering piece-

meal slices of computation, and storage to customers. This allowed them to build a large

customer base and as a result pushed engineers, cloud technicians and general software

engineers to become highly specialized in using tools within the AWS environment. This

relationship between employees and clients dependance on AWS services, caused a level

of tech debt in the industry, allowing AWS to monopolize the cloud computing landscape.

Amazon’s EKS would lend well to those who have retained their AWS level knowl-

edge regarding AWS native components like Elastic Computer Cloud (EC2), which offers

abstracted computing to users, Elastic Block Store (EBS), which is virtual data storage

similar to hard drives. These concepts translate directly to Kubernetes, where EC2 in-

stances are provisioned as worker nodes, and EBS is provisioned as persistant storage for

services like databases.

Cluster setup

Following the information in the cluster setup guide [3], EKS offers multiple methods to

setup a cluster, but their eksctl tool allows you to create one in one step, however, once

you have done some prerequisite steps firstly. You must create and configure a virtual

private cloud (VPC), which is essentially a virtual network mapping of IP addresses to

be assigned to virtual machines (VMs), servers, containers or cluster components. AWS

insists you read their heavy documentation on choosing suitable addresses. The documen-

tation further suggests you are made aware of AWS’s Identity and Access Management

(IAM) service. To simplify essentially ensuring your AWS account has permissions to

create a cluster. Finally you can create a cluster with the following command:

e k s c t l c r e a t e c l u s t e r −−name my−c l u s t e r

−−r eg i on reg ion−code

−−v e r s i o n 1 .28

−−vpc−pr ivate −subnets subnet−ExampleID1 , subnet−ExampleID2

Listing 5.3: Shows the command to setup an EKS cluster, setting the

name of the cluster, the region in the world to be accessed from, the

Kubernetes version, whether the subnet for the cluster nodes should be

accessible from the internet, –vpc-private-subnets defines private only.

You can define a mix of both however

Once the cluster is created, you can receive the authentication information from the

cluster to query it with your kubectl CLI locally. The difficulty of the EKS management

29

comes with the cluster Kubernetes components themselves. For HTTP setup you must

assign a multitude of AWS components to map to your Kubernetes services. For con-

figuring an ingress controller to be accessible outside of an EKS cluster, there are many

complex steps to take. First, an AWS network load balancer has to be assigned to the

cluster, a Nodeport Kubernetes service must be configured, which maps incoming traffic

from the nodes to your own services instead. The AWS network load balancer must be

configured manually to map for each port we want to expose from our Kubernetes service,

to our node, then to the external load balancer. Finally a security group, which is AWS’s

network traffic control component, must be configured to allow traffic along these ports

to the cluster.

Each and every step is manual, which you can argue strengthens a users knowledge

about these core networking topics, and especially applied to AWS. However, it incurs

a longer setup time, especially considering if we are only interested in simple HTTP3

testing.

Cost Model

AWS does offer free 12 month use for EC2 instances, amongst other features, which allow

you to assign worker nodes to your Kubernetes cluster. However, they charge you a fixed

10 cents per hour for cluster maintenance and uptime, which is unavoidable.

5.8.2 AKS

AKS is offered by Microsoft’s Azure Cloud Service. I believe microsoft have managed to

adopt google’s Kubernetes software well into their own native cloud infrastructure.

Cluster Setup

AKS has an incredibly simple setup process for its cluster environment, and offloads any

required knowledge as optional reading. This could be considered unfavourable, especially

if you encounter more complex issues after cluster creation, but for our use case, a simple

setup is optimal. Microsoft allows you to use either their native Azure terminal interface

or a web portal to fully configure the cluster. The web portal configuration documentation

is succinct and clear.

30

Figure 5.6: Figure shows the multiple cluster configuration options for
an AKS cluster, ranging from Standard, Dev, Economy and Enterprise
level resource allocation

They are the only provider that have distinct cluster presets for testing purposes and

whose step-by-step cluster creation process does not require any additional documentation

research to complete. Similar to all other options, once the cluster is created, we receive

the cluster API credentials into our Kubernetes configuration and can begin creating

components

5.8.3 Cost Model

Azure offers two-hundred dollars of free credits for cluster computation. Cluster manage-

ment itself is free, so once your credits are expended, you can retain your cluster if you

do not use cluster resources

5.8.4 GKE

Kubernetes was originally created by Google in 2013 to compete directly against AWS’s

monopoly on the global cloud infrastructure. It’s efficacy in server resource management

has caused it to have a global cult following. Similar to how AWS has spawned workers

and clients to have a dependence on their software, Kubernetes has become so deeply

ingrained in infrastructure management, that both Microsoft and Amazon offer their own

Kubernetes managed clusters. Google comes with the advantage of being the pioneers of

31

both the Kubernetes environment, and the development of HTTP3 and QUIC. This po-

tentially adds an extra level of stability to the maintenance and setup of the environment.

Cluster Setup

The google cluster setup follows the standard principles of creating and registering an

account with the Google Compute Enginer. The installation of the CLI locally [12] and

authentication by logging in with you google account. You must then configure your

gcloud configuration to use a region for deployment. The GKE documentation is very

streamlined and does not force you to use cloud native components or terminology like

AWS. It recommended a private cluster, which can be configured to be accessible by au-

thorized IP addresses. VPCs and subnets are also created automatically

gcloud conta ine r c l u s t e r s c r e a t e d i s s e r t −c l u s t e r

−−create −subnetwork name=my−subnet1

−−enable−master−author ized−networks

−−enable−ip−a l i a s

−−enable−pr ivate −nodes

−−master−ipv4−c i d r 192 . 168 . 0 . 0/28

−−num−nodes=1 −−p r o j e c t http3−t e s t −in−gke

Listing 5.4: The following is the command for creating a google cloud

cluster, creates subnets automaticaaly. ‘enable-master-authorized-

networks‘ is used to later configure our host machine to access the kube-

api publically. ‘enable-ip-aliases‘ allow secondary IPs to be assigned to

pods, not just nodes. This allows traffic to be routed to pods without

the nodes processing them. ‘enable-private-nodes‘ creates nodes which

are not publically accessible

Once your private cluster is configured, within the google cloud portal, you can add

your public ip address to the cluster’s authorized IP addresses. Google automatically

configures external load balancers and assigns a public IP address if it sees an existing

loadbalancer service within the cluster, circumventing the heavy setup that EKS requires

to communicate with a service inside the cluster.

Cost Model

GKE offers three-hundred dollars of free credits to first time users of the Google Cloud

platform. While the cluster is prices at 10 cents per hour like EKS, the free credits cover

32

this.

5.8.5 Comparison

For GKE, the resource mappings of the cloud resources to the Kubernetes cluster com-

ponenets is more seemless than AWS due to Kubernetes being a Google created software.

Cluster Research

Commitment

Documentation

Complexity

Setup

Complexity

Service

Complexity

EKS High Med Med High

AKS Low Low Low Low

GKE Med Med Low Low

Table 5.1: Comparison of Kubernetes Environments between major
cloud providers. Indentifyin Research Commitment needed to setup
the cluster, documentation complexity, cluster setup complexity, and
setting up a remotely accessible service

Cluster Pricing Free

Credits
EKS 0.10/hr Cluster, Free Compute None

AKS Free Cluster, $0.10 to $1 per hour $200

GKE $0.10/hr Cluster, Variable Compute $300

Table 5.2: Comparison of Kubernetes Environments between major
cloud providers. Focus on cluster management and compute pricing,
along with provided free credits

AKS offers the least complexity, setup time, and generous pricing model. EKS is ar-

guably too complex, as the environment is reliant on competency with core AWS cloud

concepts. GKE sits in the middle, but benefits from both stability of Kubernetes envi-

ronment, as Kubernetes was built for google’s cloud environment, and may offer some

more streamlined support for HTTP3. Overall if simplicity of use and cluster setup is

your primary goal, and you do not have prior experience in the other cloud providers’

environments, choosing Azure’s Kubernetes Service will ease the research commitment

needed to begin your core HTTP3 testing.

I have decided to use the GKE environment as AKS does not offer much more ahead of

GKE, as the pricing model covers the time scope of the dissertation period, and the slight

33

complexity in documentation is negligible when we consider only simple cluster setups

are required in any case. The potential benefits of using a cloud environment designed

for Kubernetes may prevent issues in implementation.

34

Chapter 6

State of the Art

This section showcases to the reader the adoption level of QUIC and HTTP3 globally, and

how performance metrics are inconsistent depending on implementation and configuration

of the protocol, despite following the RFC standard. We identify how Google’s creation

of QUIC has given them an eight-year advantage in implementing and improving upon

the use of the protocol in their environments, especially in comparison to both their main

market competitors. Furthermore, we conclude that Google’s monopoly over browser use

and search-related internet traffic, skews the perceived success of the HTTP3 protocol

across the internet

6.1 QUIC and HTTP3 Usage Statistics

With how revolutionary QUIC claims to be, improving upon and upending TCP’s reigning

monopoly on the transport protocol networking scene, we have to question how widely de-

ployed is this next-protocol giant. Cloudflare is a global content delivery network provider,

providing a range of services to clients, such as DNS resolution for web domains, regional

and local network load balancing, and malicious attack prevention services. Cloudflare

being such a large central point for internet traffic across the world, allows them to collect

and reveal regular internet metrics. For one such case, Cloudflare offers usage statistics

targeting internet browser traffic [8], specifically HTTP3 traffic.

35

Figure 6.1: Figure shows cloudflares HTTP version share over global in-
ternet traffic towards their endpoints. Comparisons between HTTP/1.1
HTTP/2 and HTTP/3 are made

Despite the HTTP3 protocol becoming publically standardised in May of 2021, HTTP3

traffic has grown staggeringly, accounting for 25-30% of global internet traffic. Surely this

must be a good indication of how a superior protocol can quickly replace even the most

widely used TCP.

Figure 6.2: Figure shows HTTP/3 usage over cloudflare public end-
points, on a per browser basis. Comparisons between Chrome, Edge,
Firefox, Internet Explorer, and Safari are made

36

In all of the above browsers, HTTP3 has become a natively supported software. How-

ever, for stability and interoperability, browsers will still communicate with remote web

servers using older HTTP2 or HTTP1.1 version in order to establish a basic level of com-

munication, and following it, upgrade to HTTP3 using the ALPN protocol if the web

server supports HTTP3. Focusing solely on the HTTP3 traffic, Google spearheading the

HTTP3 movement is unsurprising. Google began use of HTTP3 through QUIC during

its first inception in 2013, essentially providing them an eight year head-start in protocol

development, testing and configuration.

6.2 QUIC Implementations

Implementations of the QUIC protocol must adhere to the RFC standard regardless of

whichever language they are to be implemented in. When choosing a language for an

implementation, it is imperative that quirks or considerations of the language do not

affect or alter any of the core underlying functionality required by the protocol. We will

explore some of the most prevalent implementations in the landscape, and additional

functionality they offer, which may assist us during our testing phases

6.2.1 AIOQUIC

AIOQUIC [1] is a python based QUIC implementation, which uses the asyncio python

library to allow asynchronous communication handling. It attempts to rigorously follow

RFC standards forthe QUIC protocol, and contains a custom TLS 1.3 implementation

to account for QUIC being deeply routed directly with TLS, to achieve its 1 and 0-RTT

communication. It provides an RFC compliant HTTP3 stack to interface with the defined

QUIC components, and finally offers client and server python files which offer examples

of use. It was created by Jeremy Lainé, a github user with a large background in telecom-

munications and networking.The core principle of his implementation is to provide an

input/output (IO) free QUIC service. This means it is up to the user to develop any ap-

plication level communication using his implementation, and only functions and objects

which encapsulate QUIC’s functionality are offered to the user. AIOQUIC acknowledges

the difficulties QUIC produces for testing environments, both with its mandatory encryp-

tion and its lack of packet dissection in the open source space. The implementation offers

the output of TLS session keys for decryption, ignoring invalid TLS certificates, qlog trace

outputs, and lengthy examples to headstart local testing

37

6.2.2 Quic-go

Quic-go [29] is a QUIC implementation written in the Go programming language. It

was originally created by github user Marten Seemann. It offers an RFC complient

implementation, includes TLS session key outputs, and ignoring invalid TLS certificates,

however does not offer qlog trace outputs. Compared to AIOQUIC its documentation

is not as concise, and requires a stronger background in go before using it correctly. It

is difficult to get any notable specifics about the quic-go implementation besides that it

follows the RFC standard.

6.2.3 Comparisons

While QUIC implementations adhere to the most recent draft from the RFC standardi-

sation of the protocol, it begs into question where the differences lie. Language specific

implementations allows easier interfacing with language specific services, exisiting in al-

ready established architectures for large businesses. Some sections in the RFC standard

are guidelines, and not explicitly mandatory for a compliant implementation. Specifi-

cally, different congestion control and flow control algortihms are suggested, where the

exact specifics can be chosen by individual implementers, while still adhering to the QUIC

standard. A paper regarding QUIC performance comparisons [34], identifies the key dif-

ferences between QUIC/HTTP3 performance when compared against Google, Cloudflare,

and Facebook hosted endpoints.

It concludes that the congestion control algorithm chosen heavily determines the per-

formance of HTTP3 against prior TCP-based HTTP communication. Google’s public

endpoints performed more consistently, with improvements for small and large data trans-

fers, multi or single-stream QUIC transfers, and packet loss scenarios. The most notable

observations were the congestion control algorithm used by the QUIC server, The TLS

configuration on the client being cohesive with the server, and ensuring QUIC communi-

cates with 1-RTT, offered the most improvements over TCP. Considering Google Chrome

accounts for 65% of browser usage, Google search accounting for a large portion of pub-

lic internet traffic, and finally, Google having a large lead in QUIC implementation and

testing, It is no surprise that Google performed the best when testing a variety of QUIC

clients against their public endpoints. While it seems QUIC does offer notable improve-

ments over its forty year old predecessor TCP, the overhead in protocol complexity and

migration of existing services, causes reluctance in other mainstream competitors. This

observation could be reflected in Cloudflare’s browser share staistics of HTTP/3 internet

usage 6.2. Perhaps in the next few years we will see more consistent performances of the

38

QUIC protocol across other large scale vendors

6.2.4 Implementation Considerations

Considering how the performance of individual QUIC implementations is heavily depen-

dant between client and server configurations, and especially server congestion control

choices, using an implementation with extended testing functionality would be ideal.

AIOQUIC fits this critera, is implemented in python, which is very readble, offers verbose

examples for how to setup local testing, and includes useful testing features, including

qlog trace outputs.

6.3 Middlebox Ossification

Google have stated QUIC fundamentally tries to tackles the issue of internet ossification.

Internet ossification is the act of middlebox machines, or routers between two end users

having free reign to modify and route packets by their packet headers [20]. It highlights

the conservative nature of internet routing, and packet header manipulation is highly

determined on already applied and existing standards at the time of configuration. The

introduction of new transport layer protocols, or the modification of existing ones, can

cause non-deterministic errors in network routing across the internet. Poorly configured

middleboxes may not recognize updgraded protocols, and may not support new ones.

QUIC addresses this issue partially by using UDP as a substrate, whilst QUIC is a

transport layer protocol by design, it exists within user space and not directly within the

operating system’s kernels. This allows its native TLS integration to provide end-to-end

encryption between users, further limiting what parts of QUIC’s headers are modifiable

by middleboxes. ALPN protocol negotiation is used as fallback mechanisms. However,

even considering these measures taken, during protocol development and testing within

Google in 2016, a single bit change in a public header caused catastrophic networking

issues for specific users behind a firewall with explicit QUIC blocking. The single bit

change caused the middlebox to not detect these packets as QUIC packets and allowed

them to bypass the firewall [19]

6.4 QUIC packet flow

Analysing the packet flow from the client-server example from the AIOQUIC examples

provides a good insight into the key mechanisms presented within the QUIC protocol and

the general guidelines we expect when testing the protocol within Kubernetes.

39

Figure 6.3: Figure shows Wireshark packet capture, showing the results
of a QUIC client-server session. Each individual line number corre-
sponds to a UDP datagram sent or received. The QUIC client commu-
nicates on port 38166 and the server listens on port 4433

We will describe deeply each individual packet in the example, referring to the data-

gram in the figure 6.3 above. At a higher level, the main communication flow is a

handshake for QUIC and TLS. A HTTP3 get request for the default test hyper-text-

markup-language (HTML) for AIOQUIC. Finally, a HTTP3 server push, which is when

the server sends extra information to the client without the client asking. It does this

in cases when the initial get request has additional objects or data associated, in our

case it is a cascading-style-sheet (CSS) file to accompany the HTML. For each packet, we

will label it with the corresponding UDP datagram number on the left-handside of 6.3.

Furthermore, for transparency, the next sections will be labelled to describe the direction

of the packet flow, client to server (C-S), or server to client (S-C).

Packet 1 C-S: Client Hello packet with TLS information

The Client sends a single UDP datagram to the server, inside is a single QUIC packet

containing a QUIC CRYPTO frame. The CRYPTO frame contains TLS Client Hello

Handshake information. It also contains an extension that follows the Application Layer

Negotiation Protocol (ALPN), telling it the versions of HTTP3 it supports. The TLS

Client Hello contains information regarding what cryptographic algorithms are supported

40

by the client, what methods of key exchange are to be used, and the initial key exchange

information to generate a shared secret.

Packet 2 S-C: Server Hello, ACK, and ALPN Negotiation

The Server sends two QUIC packets within a single UDP dataframe to the client

QUIC packet 1

The first packet contains a Server Hello Message within a QUIC CRYPTO frame. This

contains the chosen cryptographic algorithms from the ones provided by the client, and

key exchange data for the client to use to generate a shared secret. The packet also returns

an acknowledgement (ACK) that the server received the Client Hello

QUIC packet 2

The second packet contains information for the Application Layer Negotiation Protocol

within a QUIC ACK frame. The server has negotiated with the client that it will use

HTTP3 for further communication.

Packet 3 S-C: Further Handshake Information

The server sends TLS certificate information within a QUIC CRYPTO frame. It contains

the digital certificate and a cryptographic verification that the certificate is tied to this

TLS session. It also indicates that the handshake is finalised from the server’s side. The

client now can verify the digital certificate against a root CA. Both the client and the

server have enough TLS session information to construct a shared session key.

Packet 4 S-C: Server Sends Stream Creation Packets

The server sends a QUIC packet and three HTTP3 packets in a single UDP datagram.

The QUIC packet contains a CRYPTO frame with a TLS session ticket, so the client

can re-initiate communication with the server faster in the future. The QUIC packet

contains three STREAM frames. In our case, they create 3 Uni-directional QUIC streams

to the client. The three HTTP3 packets define how each QUIC stream is configured. By

default HTTP3 requires each peer to set up one control stream. This stream has the role

of controlling flow, error handling and parameter updates for individual future streams.

The two other streams are the encoder and decoder streams, which handle the instructions

for encoding and decoding the data travelling across the communication line.

41

Packet 5 C-S: Client Acknowledges The Handshake

This packet contains an ACK frame to acknowledge the handshake packet received in the

third UDP datagram above.

Packet 6 C-S: Client HTTP3 Streams and New Connection IDs

Similar to packet four from the server, the client creates three QUIC streams and three

HTTP3 streams to link them. It creates the same control, encoding and decoding stream.

Similarly, the client creates 7 NEW CONNECTION ID frames within the QUIC packet.

These are made available for the future if connection migration will occur. The client also

sends the max push ID along the HTTP3 control stream. This gives permission for the

server to make push promises.

Packet 7 C-S: Client Encoding Stream

The client has used stream 6, which maps to the HTTP3 encoding stream defined in UDP

datagram 4 above. This means the client is sending encoding instructions to the server.

The Wireshark dissector does not provide the means to interpret the hexadecimal values

associated with this unfortunately.

Packet 8 C-S: Client HTTP3 Get(’/’)

The Client created a short header QUIC packet. This indicates non-handshake or connec-

tion setup related information is being sent. Stream 0, a bidirectional stream is created

with the FIN flag set, indicating the client will not use this stream further after this first

use. A HTTP3 packet is within the datagram also. It defines a HTTP3 get request on

the ’/’ url path.

Packet 9 S-C: Server New Connection IDs and QPACK encoding

Within a QUIC packet it creates 7 NEW CONNECTION ID frames in case of connection

migration, this is a mirror of what the client did and is standard practice. A HTTP3 frame

uses the unidirectional stream 7, which maps to the encoding stream for the server. This

also mirrors the client

Packet 10 S-C: Server ACK for Client Encoding Stream

The server acknowledges the client encoding stream data, and implicitly all previous non-

acknowledged packets before that one. Which is Datagram 7 and prior on our pcap.

42

Packet 11 C-S: Client ACK for Server Encoding Stream

The client acknowledged the server encoding stream and all previous non-acknowledged

packets. This is datagram 9 and prior from the server on our pcap.

Packet 12 S-C: Server Push-Promise and Stream

The server sends a push-promise to the client, indicating the data it asked for in the get

request, will be accompanied with other data it did not ask for. In this case the HTML it

requested will be accompanies with a CSS stylesheet. The server sends this information on

the bidirectional stream 0. The server then created a stream with id 15, to communicate

the current push id to the client.

Packet 13 C-S: Client ACK Server Push Promise

The client acknowledges the Server Push-Promise.

Packet 14 S-C: Server HTTP 200 OK

The server sends a HTTP code 200 to indicate its initial HTTP get request was received

correctly.

Packet 15 S-C: Server Sends First Data Fragment

Server sends a UDP datagram with a fragment of the total HTML data to be sent to the

client. It sends 1167 out of 1276 bytes. This contains the HTTP3 payload containing an

example HTML landing page from AIOQUIC.

Packet 16 S-C: Server Sends Second Data Fragment

Server sends a UDP datagram with a fragment of the total HTML data to be sent to the

client. it sends the remaining 112 bytes. The HTTP3 return request is reassembled by

the client, with the two fragments, to create the final HTML. At this point, the HTML

would be loaded if using a web browser as the HTTP/3 client.

Packet 17 C-S: Client Acknowledges

Client acknowledged the data and all prior unacknowledged packets.

43

Packet 18 C-S: Client Initiates Close Connection

Client sends a CONNECTION CLOSE packet to cease communication with the server.

It seems the server push was never fulfilled, perhaps because I ran the command in a

command-line instead of a web browser.

6.5 Ingress Controllers

Ingress controllers fall along the category of controllers within Kubernetes. They are not

controlled by the native kube-controller-manager service but are third party controllers.

Ingress controllers are responsible for dynamically controlling how Kubernetes ingress is

handled. This means they determine how connections from outside of the Kubernetes

cluster are handled and distributed once entering the cluster.

Ingress controllers offer some basic functionality such as load balancing connections,

forwarding network packets, and TLS authentication on behalf of backend webservers.

Unlike normal ingress definitions within Kubernetes, controllers add an additonal level

of complexity and allow more dynamic route setting. They can support auto-scaling and

automatic TLS certificate renewal to allow a Kubernetes cluster to have high-availability

(HA) networking, mimiking a production level service architecture.

Ingress controllers allow some level of TLS handling customization. There are three

main features, TLS termination, which decrypts the incoming encrypted packets, before

forwarding the plaintext data to the back-end server. TLS passthrough, forwards the

encrypted packets directly to the back-end server, based on un-encrypted header infor-

mation. Finally, TLS bridging, which terminates the initial TLS communication, but the

the proxy establishes a new TLS encrypted connection with its backend servers.

TLS termination is standard practice, as it prevents back-end servers from handling

computationally intensive decryption algorithms, and allows the proxy or load balancer

to do advanced routing based not only on header, but only payload information. Google

themselves use the QUIC protocol with TLS termination at their front end servers [19]

6.5.1 Nginx

Nginx is a open source software created in the early 2000s as high-performance, scaling web

server. It was specifically created to solve early internet congestion issues once webservers

reached over ten-thousand concurrent client connections.

Nginx later evolved to offer proxying, TLS authentication, and load balancing proper-

ties. Essentially allowing an Nginx webserver to be loadbalanced by another Nginx load

44

balancer. Its versatile design has made it one of the most popular webserver and load

balancing services in the world.

Nginx later became a proprietary software, with its original open source version of-

fering less functionality than its paid version. Some open soruce developers took it upon

themselves to improve the core nginx software with a scripting language known as Lua, to

allow more dynamic configuration, further customized extensions, and additional monitor-

ing and metrics analytics. This Lua modified Nginx distribution is called Openresty, and

is the Nginx distribution used in the natively supported ingress-nginx ingress controller

for Kubernetes

HTTP3 Support

The core nginx software released experimental HTTP3 support during May 2023. It

allows defining configuration files for load balancing and webservers to use HTTP3. It

recommends the use of the same port for HTTPS and HTTP3 for ALPN protocol upgrades

over the same connection.

Unfortunately the Openresty distribution of nginx, which is used by the Kubernetes

ingress controller, only recently updated its core nginx version in late August 2023 [23].

Furthermore, despite it being successfully integrated, the Openresty team have decided

to not support HTTP3 due to compatibility reasons with their existing Lua scripting,

claiming multiple components of their software fail when using HTTP3 over QUIC. For

this reason, ingress-nginx for Kubernetes does not yet offer HTTP3 support.

This highlights the interdependence of open source software. Despite the Nginx core

open source distribution allowing HTTP3 support, Openresty, which is made for the sole

purpose of extending the core version with scripting and additional functionality, does

not successfully implement some of the originals core functionality. The scope of change

brought about by the QUIC protocol is to great, even despite QUIC using UDP datagrams

for the purpose of interoperability with existing networks.

6.5.2 TraefikProxy

TraefikProxy is a reverse proxy server, which promises real time routing updates at a

simplistic level, with its unique selling point being automatic discovery for services. It

has four main components, entrypoints, routers, middlewares, and services. Entrypoints

are defined as port mappings for initial connections, they define how communication enters

the TraefikProxy space. To simplify, you can separate HTTPS, HTTP, UDP, TCP and

others communication protocols with entrypoints, to allow traefik to handle these types

of requests in unique manners. Entrypoints can be defined for individual domains and

45

web paths also.

Routes control how to further route information once it has gone through an entry-

point, and map it to an existing back-end service. This allows you to separate further

individual packets, web paths or do authentication if credentials are required for a specific

web path.

Services act as the final front before your individual servers. They can act as load

balancers, forward packet headers for dissection, or configure web cookies for a client to

always communicate with the same server. Services in TraefikProxy act very similar to

services in Kubernetes

HTTP3 Support

TraefikProxy implements HTTP3 over quic using the quic-go library. It claims to offer

client to proxy HTTP3 communication by default, with the TraefikProxy service termi-

nating the TLS communication, finally forwarding unencrypted data to its load balanced

servers. The documentation for Traefik only loosely discusses configuration for Kuber-

netes, and does not contain an explicit sentence regarding HTTP3 support within the

environment.

6.5.3 Comparison

TraefikProxy and Nginx fundamentally offer the same service when considered at a high

level, simple configuration methods for ingress fields and the architectural objects that

provide these services are different. The main comparison of note is the interdependence

between Nginx, Openresty and ingress-nginx for Kubernetes. TraefikProxy has claimed

HTTP/3 support with its quic-go implementation, but does not explicitly define how to

configure it within the Kubernetes environment.

6.6 Summary

Within this chapter we have both identified state of the art QUIC implementations, and

Ingresses controllers, along with broadening our viewpoint of QUIC and its adoption. The

comparisons between QUIC performance in public enterprise domains and browser usage

through Cloudflare statistics, offers a baseline for mirrored comparisons when viewed at

the open source level. Furthermore, we identified a foundation for a QUIC packet flow,

which we can reference as our standard, when applying QUIC in different environmental

areas.

46

Chapter 7

Problem Formulation

7.1 Problem Formulation

With reference to our state of the art discussion, HTTP3 over QUIC communication is

viable only within proprietary environments, and even within them, Google offers the

most stable level of QUIC client-to-server communication. Safari, Firefox, and Microsoft

Edge lag behind in implementation, and identified performance irregularities may play a

large part in the slow adoption.

Within this dissertation we aim to identify potential causes for this reluctance to

switch. We focus on the open source implementations of QUIC communication, and

through the use of ingress controllers within the kubernetes environments, we can simulate

production level service configurations. Despite the RFC compliance of these standalone

QUIC implementations, and the HTTP3 support claimed by these ingress controllers, we

can highlight how the implementation discrepancies in the large scale comparison between

Google, Facebook, and Cloudflare, are both mirrored and exacerbated when testing the

standard in local Kubernetes environments.

The dissertation plans to address and test these issues through a piecemeal approach.

This entails starting at local testing between two local RFC compliant QUIC imple-

mentations, and observing packet communication to establish a baseline standard for

communication.

Furthermore, we will push this communication to intra-service communication within

kubernetes. Finally, we will extend this to production-stable environments, using a well

defined ingress-controller to handle communication from outside of the cluster inwards.

At each stage, we will identify not only any discrepancies between packet communi-

cation, but also difficulties in testing, issues observed in the ingress-controller through

enabling HTTP3, and also kubernetes environmental issues through using HTTP3.

47

The dissertation hopes to paint a picture of why the migration from the outdated

but wide-spread TCP protocol to QUIC is difficult, and how a globally perceived success

globally, is actually achieved solely by Google’s proprietary years of iteration and testing.

48

Chapter 8

Design

The following sections covers the core components needed to apply the HTTP3 and QUIC

communication standard within a Kubernetes environment. This identifies the ideal start-

ing point to make further

8.1 System Architecture

In order to design a cohesive system to test both the proper behaviour of the implemented

protocol, while also testing the ease of implementation and protocol use, we must ensure

a simple setup which contains the minimum viable needed services and configurations.

We need a basic kubernetes cluster, comprised of a single master/worker node, either

as a single node combined, or two total, containing all initial kubernetes resources to

ensure good cluster health. Within this cluster we would require simple backend servers

provided through a group of deployments and a service to access them. An implementation

of our chosen ingress controller, TraefikProxy, defined by configuration files that allow the

service heading the backend servers connections.

The Ingress controller must then be reachable from a AIOQUIC client service, initi-

ating HTTP3 QUIC connections. This can be done either through a portforward of the

TraefikProxy service to the host machine if the cluster is local. Additionally, if the cluster

is remote, an external IP address can be assigned to the hosting pod or service to provide

the same entrypoint.

With this, HTTP3 requests should be able to be served.

49

8.2 System Transparency

Once the initial network components are deployed, we must provide additional function-

ality for packet capturing and network transparency. Ensuring we can collect enough

information to make educated decisions on both cluster performance and HTTP3/QUIC

behaviour.

8.2.1 Packet Capturing

Due to the always-encrypted nature of QUIC connections, packet capturing requires us to

be able to decrypt these communications. Therefore we must use a QUIC implementation

that is configurable to allow TLS session keys to be extracted, along with the pcap packet

format. Depending on whether TLS passthrough is used or not, a packet capture must

occur at one, or two stages of the connection pipeline. If passthrough is used, we must

capture packets at the client, and the backend server, or if possible, solely at the proxy

server, which is the middleman in our pipeline. The AIOQUIC client offers functionality

to dump TLS session keys, along with ignoring TLS cert authentication for the remote

server. Similarly, the AIOQUIC server provides this functionality. Therefore we do not

need to capture packets on the ingress controller.

8.2.2 Packet Visualisation

We must be able to identify and separate individual packets and their payloads. Tcpdump

will allow us to generate pcap files for wireshark visualization, similar to figure 4.1. Com-

bined with the TLS session keys from our AIOQUIC client, we can identify minute details

in each packet on the network. Similarly, we can use the QVIS tool in combination with

wireshark, to identify individual QUIC frames and how they induce state changes within

the client and server 4.3. This offers a clearer picture of client and server separation

8.3 QUIC Client Connections

Due to the current use for QUIC connections as primarily as an experimental web feature,

and rarely used in an infrastructure service based communication network, rarely is QUIC

used as a primary communication protocol by default. Within the RFC9000 specification

itself, and Google’s pre-RFC specification [19], a function for backwards compatibility

was defined. By default servers will primarily work on standard HTTP2 or TCP based

connection mediums, allowing for protocol renegotiation to a QUIC connection. This

ensures optimisation for the common case. ALPN protocol negotiation is an inherent

50

part of QUIC’s implementation. Depending on the tool or browser implementation, we

can attempt to force HTTP3/QUIC only connections, ensuring the client attempts to

connect immediately with our preferred protocol. The caveat in a real world scenario

would be, you are not guaranteed to connect to a website if it does not support QUIC, or

does not support direct HTTP3 in its underlying webserver implementation.

8.3.1 Web Client

AIOQUIC provides some suggested flags to be configured within chrome based web

browsers to allow these required features. Appendix A.1 showcases AIOQUIC’s recom-

mended flags to be set on the browser level, to allow chromium based browsers to com-

municate with the AIOQUIC server without upgrading their connection from an older

HTTP version. Appendix A.2 shows how to generate an encoded fingerprint based on the

servers digital certificate associated public key.

8.3.2 CLI Client

The CLI client must be either native to a full RFC standard QUIC implementation, or

interface directly with one. Similar to the web client, we want the ability to interface

directly with the webserver without upgrading from an existing HTTP2 connection. Ig-

noring digital certificate authentication helps us save the time needed to setup any sort

of TLS server certificates. Since there is no graphical interface, the client must have a

method to output the TLS session keys that to allow us to decrypt the QUIC traffic and

view it in a packet viewing software.

8.4 Kubernetes Setup

Kubernetes is the environment we will apply our standard in, as in the industry it is the

gold standard for container orchestration. Applying the HTTP3/QUIC standard here will

be a strong indicator for the level of difficulty extending the application of QUIC away

from Google’s proprietary control and onto the open market. Kubernetes setup involves

the application of one of existing software distributions. Either setting up Kubernetes

manually using the open source software, or using a prepackaged configuration for testing,

such as minikube or k3s.

Once the Kubernetes cluster is set up, and a master node is running, preparation to

add further worker nodes or master nodes can commence. In our case, the implementation

is limited to a single local machine. This basic setup is ideal, where the only requirement

51

for our application of the standard is solely the proper running conditions of the initial

environment.

8.5 Ingress Server

As discussed in the background research, kubernetes’ native ingress functionality does

not support QUIC and HTTP3 connections. As such, for a kubernetes cluster to fol-

low our design requirements, requires the use of third party ingress controllers, such as

TraefikProxy. By design the proxy service must support TLS certificates for QUIC con-

trolled socket layer encryption and authentication, even if the certificates will be ignored

within our use case. The proxy service must be able to handle these HTTP3 connections

in a sufficient manner that is deemed to follow QUIC’s RFC 9000 standards. Whether

the connection is handled properly is a subject of testing during the implementation and

results sections.

8.6 Backend Server

The back-end server is the simplest component of our connection pipeline. Depending on

whether we use TLS passthrough or TLS termination will determine the type of backend

server needed.If TLS termination is used, and QUIC packets are decrypted at the proxy

level, the final backend server does not need to implement any QUIC server handling

features, and can communicate between the Ingress proxy using TCP with older HTTP

versions. Therefore some simple javascipt, nodejs or any other software which can serve

simple html pages would work. If TLS passthrough is enabled, the backend server must

contain an implementation of the QUIC protocol, following the RFC standard. Using

a tested, widespread implementation would limit any potential protocol errors within

the scope of the Ingress Controller specifically, easing the ability to test for misbehaviour

within our system. The AIOQUIC python implementation provides a simple server, which

serves basic test html files.

8.7 Summary

We have established the basic building blocks needed for minimal setup HTTP3 testing

for a Kubernetes Ingress setup, and can now progress with implementation

52

Chapter 9

Implementation

These sections are a step-by-step progression of applying the QUIC standard within the

Kubernetes environment, including unforseen issues which change the scope of the en-

vironment. It begins from initial cluster setup, small-scale testing, ingress controller

configuration for HTTP3, and finally highlights our decision to move away from a local

cluster to a cloud provided cluster

9.1 Kubernetes Cluster Setup

We begin by setting up our minikube based, Kubernetes local cluster. Once installing

our linux supported binary and installing it with a package manager, we can setup our

single-node Kubernetes cluster with a simple ”minikube start” at the terminal

Figure 9.1: The figure shows the output of starting a minikube cluster.
It uses the docker driver to create cluster nodes, pulls Kubernetes im-
ages required for control plane and node components to run within the
cluster, and provides further versioning or update information

Minikube will create the cluster, and update your local Kubernetes configuration file

to allow you to make API requests and change cluster state. Once the cluster is setup,

we are free to deploy custom Kubernetes components defined in Kubernetes yaml.

53

9.2 Host Protcol Testing

We begin by setting up a working AIOQUIC client and server to test conditions on our

host machine, and view the behaviour of the default example requests provided by the

AIOQUIC implementation. We do this using Wireshark packet captures.

Appendix A.4 shows the basic commands to start the AIOQUIC server on our localhost.

Appendix A.3 shows the basic commands to initiate a QUIC connection through a HTTP3

request.

Figure 9.2: The figure shows the output of locally testing two AIOQUIC
instances, a client and server respectively. The output is the reply to
its HTTP get request, recorded in the terminal

Now that we have established the protocol works correctly, we can begin applying it

within Kubernetes.

9.3 Image Building

Since Kubernetes is a container orchestration tool, we must follow the standard container

building setup. Therefore our first step is to create images which contain the AIOQUIC

dependencies and installation requirements. Appendix 5.1 shows the basic image defined

in a dockerfile format, comprised of aioquic dependencies, simple scripts and additional

network related tools. A few tools were installed additionally to ensure we could test

additional cases, or print successful output logs, netstat to show what ports our container

is listening on, screen in case we need to create threads. netcat to test UDP communication

is working. dnsutils to use the nslookup command, allowing us to test if Kubernetes DNS

names are working properly, for service name resolution.

The image was then built and pushed locally to minikube using:

minikube image built -t [name] .

9.4 Kubernetes Yaml Construction

Now that the image is built and loaded into minikubes local context, we can begin creating

a yaml file to create a server and client pod within our cluster.

54

Appendix A.6 shows the completed yaml for a http-3 client pod, the server is identical,

excluding naming convention.

Appendix A.7 shows the setup.sh script, which is run on pod creation, ensuring the

pod runs the approriate client or server functionality. A big issue encountered during

the setup process, is Kubernetes would automatically restart the pods immediately af-

ter creation. Kubernetes classifies runtime by ensuring a process is currently running

without failure. While the server is an AIOQUIC server which listens forever, the client

pod runs a single command and stops. This would prevent me from accessing the pods

and running further tests, such as packet captures. To allow meaningful manual testing,

I decided to include an infite loop in the setup.sh script which prints the status of the pod.

while t rue ; do

s l e e p 600

echo −e ” Current ly running s e r v e r at $ (date) i s : \n\n$ (ps −e f | grep ” [p] ython” | awk ’{ p r i n t $8 , $9 } ’) ”

done

Listing 9.1: Shows the infinite loop required to ensure Kubernetes does

not assume the pod is failing

Extending onto this, in Kubernetes, livenessProbes can be defined to customize and

categorize whether your pod is working correctly. Here I listed the active processes on

the container, and ensure a python one is running. If a dedicated thread was not created,

which is what my setup script ensures, the container is restarted.

l i v ene s sProbe :

exec :

command : [”/ bin /bash” , ”−c” , ”ps −e f | grep [p] ython”]

i n i t i a l D e l a y S e c o n d s : 120

per iodSeconds : 30

Listing 9.2: Shows the custom liveness check which ensures a python

process is running on the pod

9.5 Packet Capturing

Wireshark is a graphical interface, and cannot be easily run in containerized minimal

environments. I decided to opt for command-line capturing tools, such as Tcpdump. On

the AIOQUIC server pod, I ran a Tcpdump command, targeting the UDP protocol and

55

the port 4433 which the server was actively listening for QUIC connections. Since QUIC

frames are encapsulated in UDP datagrams, I could receive all QUIC traffic by filtering

for the UDP protocol.

sudo tcpdump udp port 4433 −X −w / opt / t e s t . pcap −vv

Listing 9.3: Command to listen for udp packets, ”-X” shows ascii output

of hex values, ”-w” writes all listened packets to a pcap format file.

A HTTP3 get request was then initiated from the AIOQUIC client pod. Once the

handshake was established, and data finalized, I interrupted the Tcpdump to receive an

output pcap file, containing all exchanged packets. Concurrently, the AIOQUIC server

had produced TLS session keys, which are output into a file. I combined the pcap along-

side the session keys within Wireshark to decrypt the QUIC communication. Alongside

this, a qlog capture was output from both the client and server pods, for later QVIS in-

spection. From the Wireshark and AIOQUIC client outputs we can conclude that QUIC

communication was successfully established between pods inside the cluster.

9.6 TraefikProxy Testing

TraefikProxy is our ingress controller of choice, it comes with a preconfigured implemen-

tation in the local cluster service k3d, and in minikube, our choice, we install it manually

to have an easily configurable setup. TraefikProxy was chosen because it offered some

unique testing considerations. TraefikProxy’s use of the quic-go QUIC implementation,

allows us to compare discrepancies between AIOQUIC to AIOQUIC local testing, versus

AIOQUIC client to quic-go communication. Notable observations could potentially mirror

the findings from [34], showcasing the findings when exploring open source technologies.

Traefikproxy was installed using a helm installing, by first downloading the chart from

their git repository, and then configuring a values file for our specific implementation.

My first step was to use the default values and attempt a basic configuration, to ensure

everything went smoothly.

To achieve this I prepared a basic deployment and service for nginx pods, referenced

in Appendix A.8, which serve a basic test html file for testing. If the HTML is visible

in a browser, then our ingress service is working. The deployment was setup and the

Traefikproxy helm chart was installed using default values with the following command:

helm i n s t a l l t r a e f i k t r a e f i k / t r a e f i k

56

Listing 9.4: Shows the helm installation command, which creates a new

helm release within the cluster called traefik, and installs the locally

referenced ”traefik/traefik” helm chart

Figure 9.3: The figure shows the architecture diagram for the port-
forwarding to the host machine. It defines the traefikproxy endpoints
and routers as logical areas over kubernetes services and pods. Entry-
points are mapped from the loadbalancer to the Traefik pod, where its
decrypted if needed, then forwarded to the nginx back-end service

This created the default entrypoints for traefik, the traefik dashboard, and exposed

ports to access them both on the service heading the pod deployment. Routes from the

entrypoints to the backend nginx deployment must now be created. As described in the

background research, traefikproxy can pickup and create routers either from their own

custom defined Kubernetes resources, IngressRoutes, or can pickup native Kubernetes

Ingress. Appendix A.9 covers the ingress setup for the nginx pod, to be automatically

picked up as a router by traefikproxy. Once the routers, entrypoints and deployment were

set up, I portforwaded the loadbalancing service sitting in front of the traefikproxy pod

to my host machine. My chrome browser was able to successfully load the nginx html

when accessing from the default web entrypoint.However, when accessing from the web-

secure entrypoint on port 443, which handles HTTPS communication, it would always fail.

This was immediately a huge issue, as QUIC communication requires encryption, and

if I could not get basic TLS working for HTTP2 and older, I could not progress. I

made an assumption that perhaps there was an issue with the TLS authentication, and

57

searched through the TraefikProxy helm chart to find out how the certificates were han-

dled. Through all the values file documentation, I could not find meaningful steps to apply

custom TLS certifcates. I created a self-signed certificate for the localhost domain while

inside the traefikproxy pod, and added the certificate to be trusted by my host machine.

The traefikproxy official documentation had limited resources for TLS configuration for

the helm chart. The documentation does not paint a full picture of how to configure

TLS properly, with the examples provided not specifying if it defines Kubernetes, helm,

or just the normal traefik installation on a host machine. I tried setting flags within the

Kubernetes pods, adding key-value pairs to the yaml file, creating Kubernetes secret files,

and nothing would work to allow me to provide my custom TLS certificates

Finally I found a ticket opened on the traefik helm chart github, which proposed a

solution to use one of Traefik’s TLSStore custom Kubernetes resources, and naming their

custom certificate ”default”. It seems a lot of developers were having issues with figuring

out how to properly set up certificates for Traefik. However, TLSStores would not work

with Traefik automatically creating routers from Kubernetes’ own ingress resource. I

was forced to create an IngressRoute custom traefik resource. Appendix A.10 shows a

Kubernetes secret, containing a tls public and private key b64 encoded. Appendix A.11

shows the TLS store yaml definition, which references the Kubernetes secret file and the

keys stored. Appendix A.12 shows the Ingress Route yaml definition, with the route

provided for the nginx-service

However, while my browser successfully showed the TLS certificate provided was in fact

my own, the webpage still failed to load when accessing from the websecure entrypoint.

Finally, I realised I was accessing the webpage through ”localhost:443”, which is the port

for the websecure entrypoint, however, I never explicity defined ”https://localhost:443”

in my web url. Unfortunately, this was the issue all along, which created wasted time

setting up self-signed TLS certificates.

9.7 HTTP3 with TraefikProxy

The documentation within both the helm chart and the official webpage for traefikproxy

mentioned the simplicity of extending traefikproxy to use http3. These were the suggested

changes to the values file.

por t s :

websecure :

http3 :

58

enabled : t rue

Listing 9.5: Shows a helm values file configuration for enabling the http3

feature in traefikproxy

The actual changes to yaml files for Kubernetes due to these helm values changes,

are the addition of an extra port in the loadbalancer service in front of the traefikproxy

service, and a mapping to the newly exposed port on the traefik pod

por t s :

− port : 80

name : ”web”

ta rge tPor t : web

pr o t o co l : TCP

− port : 443

name : ” websecure ”

ta rge tPor t : websecure

p r o t o co l : TCP

− port : 443

name : ” websecure−http3 ”

ta rge tPor t : websecure−http3

p r o t o co l : UDP

Listing 9.6: Shows the port mapping on the Kubernetes loadbalancer

service to the traefikproxy pod. This is the result of applying the http3

configuration for traefikproxy

It adds a second condition for the handling of UDP services on the same port as the

websecure entrypoint. Furthermore, it adds two flags to the container’s environment vari-

ables ”experimental.http3=true” and ”entrypoints.websecure.http3”.

Unfortunately, I still could not get the nginx web page to be returned. So I decided

to do further research on the matter. Eventually I found two major references regard-

ing minikube and Kubernetes. Firstly, Kubernetes port-forwarding to access the internal

pods only supports TCP based communications. This is still an open topic within the

Kubernetes open source implementation [?]. Secondly, Minikube’s other configuration

options, using NodePort services or ingress, both require the use of minikube tunnel to

forward connections to the host machine. Minikube tunnel does not currently support

UDP forwarding either.

59

I was presented with two options. The first is, k3d and kind also have local testing

functionality, with references to UDP forwarding. I can spend time testing k3d and kind,

hoping that other limitations would not occur during the testing process. The second

would be to commit to porting my applications to a cloud provider, and provisioning an

external load balancer from the cloud provider using a static public IP address.

9.8 Cloud Environment

Based on prior research, I have decided to use the GKE environment as AKS does not offer

much more ahead of GKE. The pricing model covers the time scope of the dissertation

period, and the slight complexity in documentation is negligible when we consider only

simple cluster setups are required in any case. The potential benefits of using a cloud

environment designed for Kubernetes may prevent issues in implementation. We will

now begin with initial conditions for setting up our google services and cluster creation,

followed by continuing our http3 testing

9.8.1 Account Creation and CLI setup

The first step of the process is to create or use a google account. I decided to use my

college provided gmail account to progress in this step. I applied for the free trial, which

provides approximately three-hundred United States Dollars of credits for use, lasting 2

months. I completed this process through my web browser.

The google cloud console allows you run google cloud commands and communicate

with you resources residing in one of their datacentres. One issue with this, is using it

through the web interface makes it difficult to apply and use local storage devices on my

personal machine. I opted to begin the processes of setting up the google cloud, gcloud

interface on my local machine.

Following the installation and setups steps from the documentation provided was

quick. Connecting to my google account, and authenticating through the browser, creat-

ing a project in the EU-west region for low latency, and then finally beginning the process

of setting up a GKE cluster.

As discussed previously, google offers two types of cluster archetype, with some con-

figurations for each. Private Clusters with no outside access to the control plane, and

60

private clusters with authorized outside access to the control plane.

9.8.2 Cloud TraefikProxy Testing

Once again we attempt an intial setup with HTTP3 not enabled, allowing us to debug

any other potential issues before we implement our HTTP3 solution. I installed the trae-

fikproxy helm chart with default values, then applied the referenced files in Appendix A.6,

and Appendix A.9

Google cloud automatically detected the use of a LoadBalancer service type, which is

defined in the helm chart image, and automatically provisioned an external IP address,

with the relevant port mappings for the web and websecure entrypoints.

Upon querying the IP address within my chrome browser, I was successfully able to

complete a HTTP and HTTPs request.

9.8.3 Cloud HTTP3 Testing

Figure 9.4: Figure shows the result of a ‘kubectl get svc‘ command,
which shows the state of service objects, including their cluster-IP and
external-IP addresses.

I then proceeded to enable HTTP3 features as in my previous minikube testing. However

I encountered an issue, the google cloud service would not provide an external IP address

for my TraefikProxy loadbalancer service.

Figure 9.5: Figure shows the error output when creating a Loadbal-
ancer of multiple port protocol types. The error prevents an external
IP address from being assigned to the load balance service

The logs produced by my traefikproxy pod were indicating that something google

cloud did not support shared ports for multiple protocols. I began numerous methods of

manually modifying the Kubernetes yaml files to change this

61

Separate Protocol Ports

My initial test was to change the ports in which the http3 services are forwarded to the

traefikpod. This could be done through the helm chart values file by setting the ”http3-

advertised-listeners” value to a different port.

− port : 443

name : ” websecure ”

ta rge tPor t : websecure

p r o to co l : TCP

− port : 4443

name : ” websecure−http3 ”

ta rge tPor t : websecure−http3

p r o to co l : UDP

Listing 9.7: Shows choosing a separate port for each protocol, an at-

tempt to circumvent mixed protocol support issues

This produced yaml output shown above in the Kubernetes loadbalancer service,

changes the port that is advertised on the external IP address, but on the traefik pod

itself, both entrypoints share the same port. This is because traefik must route HTTP3

requests through its TLS secure entrypoint. This solution present a potential fix on the

external load balancer provided by the cloud provider.

Unfortunately I encountered the same error, that external load balancers do not sup-

port multiple protocols regardless of port allocation.

UDP For All Entrypoints

− port : 443

name : ” websecure ”

ta rge tPor t : websecure

p r o to co l : UDP

− port : 443

name : ” websecure−http3 ”

ta rge tPor t : websecure−http3

p r o to co l : UDP

Listing 9.8: Shows the use of a single protocol for the loadbalancers

traefikproxy entrypoint mappings, an attempt to circumvent the un-

supported mixed protocol issue

62

I then attempted to configure the websecure entrypoint to only allow UDP traffic. I

assumed that due to my AIOQUIC forcing http3 communication without upgrading, I

did not need TCP based communication on the websecure entrypoint for traefik. While

the google cloud service successfully provided me with an external IPfor testing, unfortu-

nately I could not get a single HTTP3 reply returned with this configuration. Something

within the traefikproxy configuration did not support this, and the documentation for the

software offered no guidelines for this case

Load Balancer per Protocol

I found a reference to a Kubernetes Github ticket opened regarding allowing mixed pro-

tocol loadbalancer services. It stated that as of Kubernetes minor version 1.24, mixed

protocol services are enabled by default. Despite these changelogs and the assurance of

other commenters within the final few comments on the ticket, it would not work. The

error itself regarding mixed protocol load balancers not being supported, seemed to be an

issue in google’s external load balancers.

Figure 9.6: Figure shows a comment present in the traefikProxy values
helm file, offering a potential solution for the multi-protocol load bal-
ancer issue.

Within traefikproxy’s documentation regarding http3, it also references the previous

issue of Kubernetes not supporting mixed protocol load balancing. However, It provides a

suggestion to use two separate services for a single traefik pod, to handle the two transport

protocols. Appendix A.13 shows an attempt to create two separate load balancers, one

to handle tcp entrypoints, and one for the http3 websecure entrypoint

While our attempt was successful at creating two separate load balancers, and each

of which was successful at being assigned an external IP address, HTTP3 communica-

tion from our AIOQUIC client would fail when accessing the IP address and port for

the HTTP3 websecure entrypoint. My only conclusion is there is some relation between

the default websecure entrypoint and the the websecure entrypoint. It would account

63

for the previous two solutions of changing the default entrypoint to UDP not allowing

communications directly with the HTTP3 entrypoint. My first thought is, it is in ref-

erence to ALPN negotiation. For most Implementations of HTTP3, a client initiates a

regular HTTP2 or HTTP1.1 handshake with the server, and only once the server informs

the client it can support HTTP3 requests, through the alternative service header in the

HTTP reply, can HTTP3 communication occur.

c o n f i g u r a t i o n = QuicConf igurat ion (

i s c l i e n t=True ,

a l p n p r o t o c o l s=H0 ALPN i f args . l e ga c y h t tp else H3 ALPN,

c o n g e s t i o n c o n t r o l a l g o r i t h m=args . c o n g e s t i o n c o n t r o l a l g o r i t h m ,

max datagram size=args . max datagram size ,

)

Listing 9.9: Shows a snippet from the AIOQUIC github source reposi-

tory, showcasing the condition of choosing supported application layer

protocols for ALPN negotiation

AIOQUIC itself allows either HTTP version 0.9 or HTTP3 requests to be defined in

its supported ALPN definitions, but not both at the same time. Since upgrades are not

supported, this may indicate to me that I cannot use AIOQUIC to force HTTP3 only

communication with traefikproxy. However, I continued to research further

Static IP - Multi Service

I found a refernce on the google cloud documentation which references splitting up load

balancers to handle separate transport protocols. While the reference was for general pri-

vate cloud VMs and container instances using the google compute engine, I tried to apply

the same notions to the GKE cluster. The documentation references creating a single

static IP address, and assigning it to two individual load balancers. These load balancers

can then be configured through the Google CLI to handle protocols separately. In GKE,

since external load balancers are automatically created to follow Kubernetes loadbalancer

service yaml, I experimented with this firstly.

gc loud compute addre s s e s c r e a t e −−r eg i on=”eu−west ”

Listing 9.10: Command to reserve a single static public IP address

within the eu-west region

64

My first step was to reserve an external IP address within my google compute region,

rather than let GKE automatically assign one for each load balancer. Appendix A.14

shows my attempt to configure two distinct loadbalancer with the same external IP ad-

dress. GKE allows you to assign a ”LoadBalancerIP” key to the spec section within the

Kubernetes yaml file. The GKE engine will assign your reserved static IP address to it

once the service is started up within the cluster. Now that we have two load balancer

services running on the same external IP address, I tested the AIOQUIC client at the

available IP.

Figure 9.7: Figure shows the output of an AIOQUIC client, receiving a
HTTP3 return request from the remote cloud server.

Finally our first successful HTTP3 reply message has been received. The process to

achieve this, in what would be considered a simple ten minute setup for older HTTP

versions based on TCP, took extensive research into the QUIC protocol, QUIC imple-

mentations, TLS security, Kubernetes networking and finally Cloud offerings.

9.9 Summary

This section has taken us through the implementation considerations for QUIC within

Kubernetes, and identified how despite the majority of software used is globally deployed

and in some cases considered the main tool or software in the area, there were extreme

issues in QUIC testing and deployment. Finally a working HTTP3 testing setup was

reached after arduous effort.

65

Chapter 10

Evaluation

10.1 Results

The results section is an extra assertion of the correctness of our solution. Throughout the

implementation section we followed the chronological progression of the project towards

a working solution. AIOQUIC provides a minimal interface to print successful packet

sending and receiving on a command-line interface. Therefore, this section focuses on

the environmental differences using the HTTP3 and QUIC protocols, by identifying the

individual packets, asserting whether differences offer any notable observations. The

comparisons using QVIS and Wireshark allow us to view overall communication with

QVIS, and more detailed packet formation through Wireshark’s QUIC dissection. A

notable observation is QVIS displays individual QUIC packets, while Wireshark shows

UDP datagrams, which may contain multiple different packets

10.1.1 Local AIOQUIC

Our local AIOQUIC testing results were already showcased in figure 6.3. They were

achieved by running an AIOQUIC client and server on the host machine, with a Tcpdump

packet capture software listening on the server’s listen port. The step by step packet

analysis is identical to the previous example. We have established AIOQUIC in a neutral

control environment like the host machine, is the baseline for our test cases. The behaviour

of the packets in the examples is how client and server packets should loosely behave

10.1.2 Intra-Cluster Testing

The intra-kubernetes test results were done within the cluster, on the AIOQUIC http3-

client and http3-server pods. The image defined in Appendix 5.1 was packaged with

66

the Tcpdump software. Similar to the local testing, the pcap was generated from the

Tcpdump, ported into Wireshark for decryption with the TLS session keys output from

AIOQUIC, and the following results were obtained.

Figure 10.1: The figure shows the pcap post-tls-decryption. Unlike the
local test it only contains 14 packets, due to clever packet stuffing for
TLS handshake information, within a single UDP datagram

While the total packet number has changed from 18 to 14, it must be reminded that

within a single UDP datagram multiple QUIC frames. This can cause cases where a sin-

gle datagram at a QUIC handshake step may have different contents, but ultimately the

same processes happen by the end. One noticeable difference in UDP datagram packing

between the local and this intra capture is the local session used 3 datagrams to do the

server hello, server certificate and set up initial HTTP3 and QUIC streams.

In the intra network example, it did so in two packets. It packed a fragment of the

certificate into the initial UDP that contained the server hello, then instead of creating

a separate UDP datagram dedicated to certificate information like in the local capture,

it instead put the remaining certificate information in UDP datagram number 3, where

the certificate fragments were reassembled, and the initial HTTP3 and QUIC streams are

created in the same UDP datagram. Overall the process was the same, but while the local

communication took 25ms, the intra-kubernetes session took 13ms. The opportunistic

packing of QUIC frames into a single datagram allowed a faster overall handshake. In

67

terms of behaviour, it was perfectly in line with the baseline local example, as we would

expect. Next we will test host to cluster communication.

10.1.3 Cloud HTTP3

The cloud environment test results presented some interesting findings. Firstly, the use of

TraefikProxy’s implementation of quic-go, in contrast to the client implementation using

AIOQUIC, caused issues in Wireshark when attempting to decrypt the packets with the

appropriate TLS session keys.

Figure 10.2: The figure shows the 7 packet QUIC session to the cloud
server, running quic-go under traefikproxy. The differences in expected
packet format caused Wireshark to be unable to decrypt the pcap file

Previously we noticed a similar decryption error failure when researching QVIS packet

visualization, and converting pcap files to qlog trace files using the pcap2qlog tool.

There, disagreements in QUIC packet layout for json formats between Wireshark and

the pcap2qlog tool caused decryption errors in the final qlog output. It can be assumed

that implementation differences between AIOQUIC and Quic-go, have produced a non-

standard pcap file output, which Wireshark cannot successfully decrypt. Ironically how-

ever, our qlog output from AIOQUIC, whose packet traces are decrypted internally within

AIOQUIC using the same TLS session keys, succeeded in producing a decrypted output,

and could be visualized within QVIS

68

Figure 10.3: The figure shows the first half of the Qvis trace for client
to cloud server QUIC communication, it covers steps between the client
handshake, new connection setups, client control, encoding and data
streams, the client HTTP3 get request, and finally an encoding stream
message on stream 3 from the server

Figure 10.4: The figure shows the second half of the Qvis trace. It shows
the new connection token for connection resumption being passed to the
client, the HTTP3 response message, and the connection close

Compared to previous examples with both an AIOQUIC client and server, it was

69

impossible to return the qlog trace output from the server specifically, since configuring

quic-go from traefik’s internal helm chart was impossible. Therefore our QVIS output

contains information as viewed from the client only. Inspecting QVIS output, we no-

tice much longer round-trip time delays between packets, which is to be expected when

communicating with an internet endpoint. The total communication time was 62ms,

three times as long as the local QUIC tests and approximately 5 times longer than the

intra-cluster tests.

The AIOQUIC client creates three unidirectional QUIC streams for HTTP3 control,

encoding and decoding, or stream id 2, 6, and 10 respectively. Surprisingly, we only see a

control stream defined by the quic-go server, stream id 3. This indicates the server has no

intention to do header compression using the QPACK format. Another difference is the

server sends a ”new token” frame to the client, this is used for 0-RTT session resumption

in future connections. The prior examples for QUIC -¿ QUIC communication did not

facilitate that.

10.2 Summary

We have showcased how the working configurations reached in our implementation still

had noticeable differences between each other. Slight timing differences between host and

intra-cluster tests allowed the intra-cluster test to opportunistically encapsulate multiple

QUIC CRYPTO frames in a single UDP datagram, shortening the handshake time.

During cloud testing, differences were immediately more notable, with the total round

trip time quadrupling and packet dissection issues occurring once heterogeneous QUIC

implementations were used to generate the pcap file. Even in a best case testing scenario,

with a minimal cluster configuration, discrepancies arose in the testing of the new software.

70

Chapter 11

Conclusions & Future Work

Whilst the QUIC protocol attempts to tactically enter the inter-networking landscape, it

cannot avoid inherent issues with change in such solidified environments. Discrepancies

in performance across non-Google production endpoints[34], limited solving of ossification

across middleboxes[20] resorting to ALPN negotiation for support failover, all showcase

the difficulty in adoption at large-scale levels. When evaluating the usage statistics of the

protocol, Google is spearheading its use, and benefits the most out of properly configured,

cohesive QUIC communication.

Google’s large market share of both global inter-networking and browser usage, com-

bined with years of private protocol testing and iteration, have highlighted just how much

effort is needed to change the standard for transport protocols.

Our testing in the open source domain has identified extreme difficulties in the appli-

cation of the QUIC protocol within both heavily standardised environments like kuber-

netes, popular loadbalancing and proxy services like TraefikProxy, and within dedicated

packet dissection and visualization tools like Wireshark and QVIS. Further interdepen-

dence between open source projects, such as Nginx core to OpenResty and Kubernetes’

ingress-nginx, showcases how complex software depth only exacerbates the problem.

11.1 Future Work

The observations made in the environmental testing and configuration in this dissertation

will hopefully inspire and provide foundational information for any QUIC protocol testers

that follow in my suite. Time committed to technical research on both protocols, imple-

mentations, cloud providers, and the Kubernetes environment, combined with multiple

bumps with failed QUIC application, impeded the amount of testing possible by the end

of the dissertation.

71

Exploring the relationship between different TLS termination modes, and identifying

any possible discrepancies between QUIC communication at the multi-level would have

opened new avenues for analysis. TLS passthrough would allow an interesting observation

of how ingress-controllers can handle QUIC communication when only header information

is available, and may bring to light similarities between middlebox routers between end-

user internet communication.

72

Bibliography

[1] aiortc Authors. aiortc/aioquic GitHub Repository. https://github.com/aiortc/

aioquic.

[2] K. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC 5681, Septem-

ber 2009.

[3] Amazon Web Services. Amazon EKS Documentation - Create a Cluster. https:

//docs.aws.amazon.com/eks/latest/userguide/create-cluster.html, 2024.

[4] C. Authors. Containerd. https://containerd.io, 2024. Accessed on 29.04.2024.

[5] T. K. Authors. Kubernetes. https://kubernetes.io, 2024. Accessed on 29.04.2024.

[6] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer Protocol Version 2

(HTTP/2). RFC 7540, May 2015.

[7] V. G. Cerf and R. E. Kahn. A protocol for packet network intercommunication.

IEEE Transactions on Communications, 22, 1974.

[8] Cloudflare. Http/3 usage: One year on. https://blog.cloudflare.com/http3-usage-one-

year-on, 2021.

[9] P. J. Denning. The science of computing: The ARPANET after twenty years. Amer-

ican Scientist, 75, 1987.

[10] etcd Authors. etcd - Distributed reliable key-value store. https://etcd.io/.

[11] W. Foundation. Wireshark. https://www.wireshark.org.

[12] Google Cloud. Google Cloud SDK Documentation - Install. https://cloud.google.

com/sdk/docs/install.

[13] D. Inc. Docker. https://www.docker.com/, 2024. Accessed on 29.04.2024.

73

https://github.com/aiortc/aioquic
https://github.com/aiortc/aioquic
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://containerd.io
https://kubernetes.io
https://etcd.io/
https://www.wireshark.org
https://cloud.google.com/sdk/docs/install
https://cloud.google.com/sdk/docs/install
https://www.docker.com/

[14] J. Iyengar, M. Nottingham, and W. Ruellan. QPACK: Header Compression for

HTTP/3. RFC 9001, June 2021.

[15] J. Iyengar, M. Nottingham, and W. Tarreau. Hypertext Transfer Protocol Version 3

(HTTP/3). RFC 9000, June 2021.

[16] Kubernetes. Kubernetes Documentation - Running Controllers.

https://kubernetes.io/docs/concepts/architecture/controller/

#running-controllers.

[17] Kubernetes. Kubernetes GitHub Repository. https://github.com/kubernetes/

kubernetes.

[18] Kubernetes. Kubernetes Documentation - Creating a Cluster with kubeadm.

https://kubernetes.io/docs/setup/production-environment/tools/

kubeadm/create-cluster-kubeadm/, 2024.

[19] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Koura-

nov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik, P. Westin,

R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev, W.-T. Chang, and Z. Shi. The

QUIC transport protocol: Design and internet-scale deployment. In Proceedings of

the ACM Special Interest Group on Data Communication (SIGCOMM), pages 183–

196, New York, NY, USA, 2020. Google.

[20] Y. Liu, F. Zhu, H. Wang, Y. Zhang, and B. Zhang. Learning-based adaptive online

testing for web services under service-oriented architecture. IEEE Transactions on

Services Computing, 9(5):709–723, 2016.

[21] R. Marx. Head-of-line blocking in quic and http/3: The details. https://github.

com/rmarx/holblocking-blogpost, 2024.

[22] H. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux, J. Frystyk, and

T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, June 1999.

[23] OpenResty Authors. OpenResty Pull Request 920. https://github.com/

openresty/openresty/pull/920.

[24] OSI Model. Application layer. https://osi-model.com/application-layer/.

[25] OSI Model. Transport layer (Layer 4) of OSI Model. https://osi-

model.com/transport-layer/.

[26] J. Postel. User Datagram Protocol. RFC 768, August 1980.

74

https://kubernetes.io/docs/concepts/architecture/controller/#running-controllers
https://kubernetes.io/docs/concepts/architecture/controller/#running-controllers
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://github.com/rmarx/holblocking-blogpost
https://github.com/rmarx/holblocking-blogpost
https://github.com/openresty/openresty/pull/920
https://github.com/openresty/openresty/pull/920
https://osi-model.com/application-layer/

[27] J. Postel. NCP/TCP Transition Plan. RFC 801, November 1981.

[28] J. Postel. Transmission Control Protocol. RFC 793, September 1981.

[29] quic-go Authors. quic-go GitHub Repository. https://github.com/quic-go/

quic-go.

[30] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446,

August 2018.

[31] rmarx. GitHub Profile - rmarx. https://github.com/rmarx.

[32] L. Schumann, T. V. Doan, T. Shreedhar, R. Mok, and V. Bajpai. Impact of evolving

protocols and covid-19 on internet traffic shares. IEEE Internet Computing, 25, 2021.

[33] The Tcpdump Group. Tcpdump - A powerful command-line packet analyzer. https:

//www.tcpdump.org/.

[34] A. Yu and T. A. Benson. Dissecting performance of production quic. ACM Trans-

actions on Internet Technology, 2024.

75

https://github.com/quic-go/quic-go
https://github.com/quic-go/quic-go
https://github.com/rmarx
https://www.tcpdump.org/
https://www.tcpdump.org/

Appendix A

Appendix

A.1 Browser Testing

chromium−browser \
−−enable−exper imental−web−platform−f e a t u r e s \
−−ignore−c e r t i f i c a t e −e r r o r s −spki−l i s t=BSQJ0jkQ7wwhR7KvPZ+DSNk2XTZ/MS6xCbo9qu++VdQ= \
−−o r i g i n −to−f o r c e −quic−on =34 .89 .71 .52 :443 \
https : / / 3 4 . 8 9 . 7 1 . 5 2 : 4 4 3 /

Listing A.1: Code snippet shows browser flag configuration for HTTP3

requests. ”enable-experimental” turns on QUIC support, ”ignore-

certificate..” defines the fingerprint of the certificate we are to ignore,

and ”force-quic” ensures we only use a HTTP3 connection

opens s l x509 −in t e s t s / s s l c e r t . pem −pubkey −noout | \
opens s l pkey −pubin −outform der | \
opens s l dgst −sha256 −binary | \
opens s l enc −base64

Listing A.2: Code snippet shows how to generate a fingerprint for the

TLS certificate, to allow browsers to ignore authentication for it. It

generates a base64 encoded output of the public key associated with

the server’s digital certificate. This fingerprint can be used to explicitly

ignore authentication of the chrome browser

A.2 Local Testing

76

python3 a i o q u i c / examples / h t t p 3 c l i e n t . py −−ca−c e r t s a i o q u i c / t e s t s / pycacer t . pem https : // l o c a l h o s t :4433/ −−quic−l og . / q l og s / c l i e n t −k

Listing A.3: The following code shows the required flags to run a HTTP3

QUIC client with AIOQUIC. –ca-cert flag allows the python client to

verify the server’s certificate. It sends a get request to localhost:4433.

–quic-log specifies the client outputted qlog trace of all the packets be-

tween itself and the server. -k allows the client to ignore certificate

authentication, to simplify TLS certificate handling

python3 a i o q u i c / examples / h t t p 3 s e r v e r . py −−c e r t i f i c a t e a i o q u i c / t e s t s / s s l c e r t . pem −−pr ivate −key a i o q u i c / t e s t s / s s l k e y . pem −−s e c r e t s −l og t l s −handshake−s e c r e t s / l o c a l −s s l −keylog−s e c r e t s . l og −−quic−l og . / q l og s / s e r v e r /

Listing A.4: The following code shows the required flags to run a HTTP3

QUIC server with AIOQUIC. –secrets-log outputs the session keys be-

tween the client and server for packet decryption. –quic-log outputs the

server qlog trace for packet between itself and the client

A.3 Image Building

FROM pos tg r e s

CP s t a r t . sh / opt / s t a r t . sh

CMD [. / opt / s t a r t . sh]

Listing A.5: Code block above shows the setup of a basic image, using

ubuntu as its minimal OS starting image. It then copies the aioquic

github repository into the container, then uses the apt package manager

to install network testing tools, python, and the pip3 commands for the

AIOQUIC implementation to work Page 26 of 31r

A.4 AIOQUIC-Deployment

ap iVers ion : apps/v1

kind : Deployment

metadata :

name : http3−c l i e n t

namespace : http3−t e s t

l a b e l s :

app . kubernetes . i o /name : http3−c l i e n t

77

spec :

r e p l i c a s : 1

s e l e c t o r :

matchLabels :

app . kubernetes . i o /name : http3−c l i e n t

template :

metadata :

l a b e l s :

app . kubernetes . i o /name : http3−c l i e n t

spec :

c o n t a i n e r s :

− name : http3−c l i e n t

image : raosp /http3−t o o l s

imagePul lPo l i cy : Always

command : [”/ opt / s c r i p t s / setup . sh”]

args : [”−−s e r v e r ”]

por t s :

− conta ine rPor t : 4433

name : http3− l i s t e n

p r o to co l : UDP

l i v ene s sProbe :

exec :

command : [”/ bin /bash” , ”−c” , ”ps −e f | grep [p] ython”]

i n i t i a l D e l a y S e c o n d s : 120

per iodSeconds : 30

−−−
ap iVers ion : v1

kind : S e r v i c e

metadata :

name : http3−c l i e n t

namespace : http3−t e s t

l a b e l s :

app . kubernetes . i o /name : http3−c l i e n t

spec :

s e l e c t o r :

app . kubernetes . i o /name : http3−c l i e n t

por t s :

78

− pr o t o co l : UDP

port : 4433

ta rge tPor t : http3− l i s t e n

Listing A.6: The above code block defines both the deployment and

service yaml for the http3-client pods. The http3-server pod is identi-

cal bar the name field changes. both components are deployed in the

http3-test namespace. The pod has a container with the prior defined

docker image, and runs the setup.sh script to begin services. It has a

livenessProbe which checks if a python process is running on the con-

tainer to ensure pod health. The service maps the container exposed

port to be accessed globally in the cluster

HOST ID=” d e f a u l t ”

set −euo p i p e f a i l

while t e s t $# −g t 0 ; do

case ”$1” in

−−s e r v e r ∗)

HOST ID=” s e r v e r ”

s h i f t

; ;

−−c l i e n t ∗)

HOST ID=” c l i e n t ”

s h i f t

; ;

∗)

break

; ;

e sac

done

i f [[”$HOST ID” != ”0”]] ; then

i f [[”$HOST ID” = ” s e r v e r ”]] ; then

echo ” launching http3−t o o l s in $HOST ID mode”

79

/ usr /bin/ sc r e en −LdmS python3 / opt / a i o q u i c / examples / h t t p 3 c l i e n t . py \
−−ca−c e r t s / opt / a i o q u i c / t e s t s / pycacer t . pem https : // http3−s e r v e r :4433/ \
−−s e c r e t s −l og / opt / s s l −keylog−s e c r e t s . l og −k

e l i f [[”$HOST ID” = ” c l i e n t ”]] ; then

echo ” launching http3−t o o l s in $HOST ID mode”

/ usr /bin/ sc r e en −LdmS python3 / opt / a i o q u i c / examples / h t t p 3 c l i e n t . py \
−−ca−c e r t s / opt / a i o q u i c / t e s t s / pycacer t . pem https : // http3−s e r v e r :4433/ \
−−s e c r e t s −l og / opt / s s l −keylog−s e c r e t s . l og −k

f i

while t rue ; do

s l e e p 600

echo −e \
” Current ly running s e r v e r at $ (date) i s :

 \n\n$ (ps −e f | grep ” [p] ython” | awk ’{ p r i n t $8 , $9 } ’) ”

done

else

echo ”No host type s p e c i f i e d , use f l a g s −−s e r v e r or −−c l i e n t ”

f i

Listing A.7: The setup.sh script checks whether the pod is a client or

server, defined within the environment variables at deployment. it uses

the screen software to spin up a separate thread to run each command.

Regardless of type, the pod sleeps and echoes its status every 10 minutes.

This ensures kubernetes will not restart the pod

A.5 Traefik Testing

ap iVers ion : apps/v1

kind : Deployment

metadata :

name : nginx−deployment

80

namespace : http3−t e s t

l a b e l s :

app : nginx

spec :

r e p l i c a s : 3

s e l e c t o r :

matchLabels :

app : nginx

template :

metadata :

l a b e l s :

app : nginx

spec :

c o n t a i n e r s :

− name : nginx

image : nginx : 1 . 1 4 . 2

por t s :

− conta ine rPor t : 80

−−−
ap iVers ion : v1

kind : S e r v i c e

metadata :

name : nginx−s e r v i c e

namespace : http3−t e s t

spec :

s e l e c t o r :

app : nginx

por t s :

− pr o to co l : TCP

port : 80

ta rge tPor t : 80

Listing A.8: Code describes kubernetes yaml for a simple nginx deploy-

ment. mounted onto a service at port 80 to provide the communication

to the whole cluster

ap iVers ion : networking . k8s . i o /v1

kind : I n g r e s s

81

metadata :

name : i ng r e s s −t e s t

namespace : http3−t e s t

annotat ions :

t r a e f i k . i n g r e s s . kubernetes . i o / route r . en t rypo in t s : websecure

t r a e f i k . i n g r e s s . kubernetes . i o / route r . t l s : ” t rue ”

spec :

r u l e s :

− http :

paths :

− path : /

pathType : Exact

backend :

s e r v i c e :

name : nginx−s e r v i c e

port :

number : 80

Listing A.9: Code describes an ingress component, adding extra anno-

tations to configure how traefik treats it. Defining that ingress should

only use websecure endpoints. Paths that match the root filepath, will

be reverse proxied to the nginx servicesr

ap iVers ion : v1

kind : Sec r e t

metadata :

name : t l s −s e c r e t

namespace : http3−t e s t

type : kubernetes . i o / t l s

data :

t l s . c r t : LS0tLS1C . . .

t l s . key : LS0tLS1C . . .

Listing A.10: Code above depicts a kubernetes secret, base 64 encoded,

container public and private key information for TLS certificates. Se-

crets can be mounted onto a pod to be used in sensitive authentication

steps

ap iVers ion : t r a e f i k . conta ino . us/ v1alpha1

82

kind : TLSStore

metadata :

name : d e f a u l t

spec :

d e f a u l t C e r t i f i c a t e :

secretName : t l s −s e c r e t

Listing A.11: Code above describes a TLSStore mounting. This is stan-

dard measure for making secrets available to TraefikProxy for TLS au-

thentication, here we reference the previous secret file

ap iVers ion : t r a e f i k . conta ino . us/ v1alpha1

kind : IngressRoute

metadata :

name : example−i n g r e s s

spec :

ent ryPo int s :

− websecure

route s :

− match : Host (‘ l o c a l h o s t ‘)

kind : Rule

s e r v i c e s :

− name : nginx−s e r v i c e

port : 80

Listing A.12: The above is identical to the native ingress kubernetes

component described prior, however it used Traefik’s own CRD object

to define it. This is mandatory to use TLSStores

ap iVers ion : v1

kind : S e r v i c e

metadata :

name : t r a e f i k

namespace : http3−t e s t

l a b e l s :

app . kubernetes . i o /name : t r a e f i k

app . kubernetes . i o / in s t anc e : t r a e f i k −http3−t e s t

helm . sh/ chart : t r a e f i k −26.0.0

app . kubernetes . i o /managed−by : Helm

83

annotat ions :

spec :

type : LoadBalancer

s e l e c t o r :

app . kubernetes . i o /name : t r a e f i k

app . kubernetes . i o / in s t anc e : t r a e f i k −http3−t e s t

por t s :

− port : 80

name : ”web”

ta rge tPor t : web

pr o to co l : TCP

− port : 443

name : ” websecure ”

ta rge tPor t : websecure

p r o to co l : TCP

−−−

ap iVers ion : v1

kind : S e r v i c e

metadata :

name : t r a e f i k −http3

namespace : http3−t e s t

l a b e l s :

app . kubernetes . i o /name : t r a e f i k

app . kubernetes . i o / in s t anc e : t r a e f i k −http3−t e s t

helm . sh/ chart : t r a e f i k −26.0.0

app . kubernetes . i o /managed−by : Helm

annotat ions :

spec :

type : LoadBalancer

s e l e c t o r :

app . kubernetes . i o /name : t r a e f i k

app . kubernetes . i o / in s t anc e : t r a e f i k −http3−t e s t

por t s :

− port : 4433

name : ” websecure−http3 ”

84

ta rge tPor t : websecure−http3

p r o to co l : UDP

Listing A.13: The following kubernetes yaml showcases an attempt to

configure two separate load balancers for a single pod, adhereing to the

recommended solution referenced in the traefik helm chart

ap iVers ion : v1

kind : S e r v i c e

metadata :

name : t r a e f i k

namespace : http3−t e s t

l a b e l s :

app . kubernetes . i o /name : t r a e f i k

app . kubernetes . i o / in s t anc e : t r a e f i k −http3−t e s t

helm . sh/ chart : t r a e f i k −26.0.0

app . kubernetes . i o /managed−by : Helm

annotat ions :

spec :

type : LoadBalancer

loadBalancerIP : 3 4 . 8 9 . 7 1 . 5 2

s e l e c t o r :

app . kubernetes . i o /name : t r a e f i k

app . kubernetes . i o / in s t anc e : t r a e f i k −http3−t e s t

por t s :

− port : 80

name : ”web”

ta rge tPor t : web

pr o to co l : TCP

− port : 443

name : ” websecure ”

ta rge tPor t : websecure

p r o to co l : TCP

−−−

ap iVers ion : v1

kind : S e r v i c e

85

metadata :

name : t r a e f i k −http3

namespace : http3−t e s t

l a b e l s :

app . kubernetes . i o /name : t r a e f i k

app . kubernetes . i o / in s t anc e : t r a e f i k −http3−t e s t

helm . sh/ chart : t r a e f i k −26.0.0

app . kubernetes . i o /managed−by : Helm

annotat ions :

spec :

type : LoadBalancer

loadBalancerIP : 3 4 . 8 9 . 7 1 . 5 2

s e l e c t o r :

app . kubernetes . i o /name : t r a e f i k

app . kubernetes . i o / in s t anc e : t r a e f i k −http3−t e s t

por t s :

− port : 443

name : ” websecure−http3 ”

ta rge tPor t : websecure−http3

p r o to co l : UDP

Listing A.14: The following kubernetes yaml showcases two separate

load balancers with an external static ip reserved and provisioned for

both load balancers

86

	Abstract
	Acknowledgments
	Chapter Introduction
	Motivation
	Structure & Contents

	Chapter Transport Protocols - Technical Background
	TLS
	UDP
	TCP
	QUIC Protocol
	Streams
	TLS integration
	Handshake

	Comparison

	Chapter Application Protocols - Technical Background
	HTTP
	HTTP/1
	HTTP/2
	HTTP/3

	Chapter Packet Capturing
	Wireshark
	Tcpdump
	Qvis & Qlog

	Chapter Kubernetes - Technical Background
	Basic Cluster Components
	Nodes
	Containers and Images
	Pods
	Deployments
	Services
	Secrets and ConfigMaps
	Namespaces

	Advanced Kubernetes Components
	Control Plane
	Kube-apiserver
	Etcd
	Kube-controller-manager
	Cloud-controller-manager

	Node Componenets
	Kubelet
	Kube-Proxy
	Container Runtime

	Cluster Setup
	Cluster Management Tools
	Kubectx and Kubens
	K9s
	Lens
	Helm

	Local Clusters
	K3d
	Minikube
	Kind
	Comparison

	Remote Clusters
	EKS
	AKS
	Cost Model
	GKE
	Comparison

	Chapter State of the Art
	QUIC and HTTP3 Usage Statistics
	QUIC Implementations
	AIOQUIC
	Quic-go
	Comparisons
	Implementation Considerations

	Middlebox Ossification
	QUIC packet flow
	Ingress Controllers
	Nginx
	TraefikProxy
	Comparison

	Summary

	Chapter Problem Formulation
	Problem Formulation

	Chapter Design
	System Architecture
	System Transparency
	Packet Capturing
	Packet Visualisation

	QUIC Client Connections
	Web Client
	CLI Client

	Kubernetes Setup
	Ingress Server
	Backend Server
	Summary

	Chapter Implementation
	Kubernetes Cluster Setup
	Host Protcol Testing
	Image Building
	Kubernetes Yaml Construction
	Packet Capturing
	TraefikProxy Testing
	HTTP3 with TraefikProxy
	Cloud Environment
	Account Creation and CLI setup
	Cloud TraefikProxy Testing
	Cloud HTTP3 Testing

	Summary

	Chapter Evaluation
	Results
	Local AIOQUIC
	Intra-Cluster Testing
	Cloud HTTP3

	Summary

	Chapter Conclusions & Future Work
	Future Work

	Bibliography
	Appendix Appendix
	Browser Testing
	Local Testing
	Image Building
	AIOQUIC-Deployment
	Traefik Testing

