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Abstract

Imagine you are a novice programmer who has just written some code that you hope
works as intended. You are able to describe what your code should do in words, but you
struggle to think of test cases and implement them syntactically. You look online for help,
but the test cases you find are either too complicated, not adapted to your messy beginner
code, or do not compile and pass. Since you do not know the syntax well enough to fix
any of these problems, you feel like giving up.

Instead of looking online, you ask a large language model (LLM) to generate test cases.
However, this results in complicated tests that are not consistent or suitably documented,
since LLMs are trained using a corpus that is not necessarily suited for novice programmers.
Furthermore, the tests do not "wrap" around your messy beginner code correctly, since you
are unable to prompt the LLM with the necessary context from your limited understanding.
Finally, the tests fail at compilation and runtime since LLMs face hallucinations, which
cause incorrect tests. From this, you realize that LLMs face the same issues as standard
online searches.

The aim of this thesis is to develop TestPilot, a Visual Studio Code extension for Java,
one of the most common programming languages used by novice programmers. A novice
programmer can input a beginner natural language description of what their code should
do, and receive high-quality JUnit test cases that are semantically and syntactically
correct, at an appropriate level for a novice programmer, and written in a consistent style
that is suitably documented.

The extension interacts with a server that completes a strategic sequence of LLM inferences
to generate a suite of test cases using research-driven prompt engineering, fine-tuning,
and embeddings. The resulting test cases are displayed to the novice programmer using
natural language and code implementations that follow strict testing practices. The code
coverage of the tests is displayed to encourage the novice programmer to explore the
problem space instead of blindly copying code. It presents a "testing" and "discovery"
mode of operation to help a novice programmer depending on their learning goals.

Compared to a single prompt to ChatGPT, TestPilot generates tests that are 28% more
likely to compile, 26% more likely to test the intended logic from a vague prompt, and
30% more likely to include documentation through comments. A novice programmer who
initially struggled to find help using online searches or standard LLMs is now able to
understand tests that are catered for their level and more correct to help them learn about
software testing.
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1 Introduction

Testing is an essential part of programming. Writing good tests is not only important
to find bugs in your code, but to also explore the problem space. Although novice
programmers might have the necessary skills to solve a problem, they might not yet have
the knowledge to develop a suite of tests to evaluate the correctness of their program.
Implementing tests early has been proven to help novice programmers achieve greater
correctness and code coverage, yet 76% of them do not follow consistent testing behaviours
across different projects [1]. It is clear that novice programmers must be supported in
adopting consistent testing habits early on.

When a novice programmer does not have the necessary skills to test their code, they
might be tempted to search for help online. However, tests from different websites do not
guarantee a consistent style that is sufficiently documented to educate novice programmers
about good testing practices. Furthermore, it may be frustrating to find tests online that
are too complicated to understand, not adapted to messy beginner code, or do not compile
and pass. Only 1% of Java code snippets from websites such as Stack OverFlow compile
on their own due to a lack of class encapsulation, import statements and semicolons [2].
Therefore, online source code is not suitable for an inexperienced novice programmer.

Large language models (LLMs) are a possible solution to bridge the gap between novice
programmers and educational software testing. However, the same problems from standard
searches online persist [3]. LLMs are trained using a large amount of data from various
sources, resulting in a model that may generalize to complicated tests that are not
consistent or suitably documented. Furthermore, LLMs can struggle to "wrap" around
messy beginner code using limited context from a novice. Finally, LLMs may hallucinate,
leading to failed tests at compilation or runtime. Therefore, it is evident that adapting
LLMs for novice programmers learning software testing is necessary.

This dissertation introduces TestPilot, a Visual Studio Code extension that leverages
LLMs using research-driven prompt engineering, fine-tuning and embeddings to help
novice programmers learn how to write JUnit tests in Java. With this interface, a novice
programmer can input a beginner natural language description and receive high-quality
educational test cases in natural language with corresponding code implementations that
are semantically and syntactically correct, at an appropriate level for a novice programmer,
and written in a consistent style that is suitably documented.
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1.1 Motivation

While novice programmers may have the ability to develop a solution to a problem, they
may lack the ability to develop a suite of tests to assess their code. When stuck, novice
programmers are often tempted to seek information online [4]. When doing so, they
frequently use multiple online sources to help them test their code. Since different websites
use different coding standards that may not be at a novice-level, this behaviour does not
promote consistent software testing practices that a novice programmer can learn from.
Furthermore, tests found online may not be correct semantically (by testing the intended
logic) or syntactically (by using the correct programming syntax). Therefore, it is not
educational or practical for novice programmers to find tests online.

Each online source has varying levels of consistency and documentation, with optional
explanations for code being written in text above or below a code snippet. It has been
examined that novice programmers often look directly at the code when seeking help
online, skipping all other context before or after it [5]. With this limited context, novice
programmers only pay attention to 27% of a code snippet on websites such as Stack
OverFlow [6]. When using code with limited context in this manner, novice programmers
are not encouraged to test with consistent styling and suitable documentation.

Tests found online may be incorrect for a novice programmer’s code because they are
semantically incorrect (since there are different implementations of the same problem)
or syntactically incorrect (since code blocks might be truncated) [7]. If an inexperienced
novice programmer wanted to fix these issues, they might not have the adequate knowledge
to fix them, especially if the original code they found was not at a novice-level.

LLMs are a possible solution to provide novice programmers with educational tests.
However, issues related to finding tests online continue to exist. Training data for LLMs
are not suited for novice programmers, leading to tests that are not consistent or suitably
documented. Furthermore, LLMs can struggle to contextualize a novice programmer’s
messy code to provide an accurate solution. Finally, hallucinations may occur where an
LLM provides an incorrect solution. This establishes a strong motivation to adapt LLMs
for novice programmers learning software testing in a programming language through an
interface.

Novice programmers are often enrolled in introductory programming courses, for which
studies suggest that Java is best suited for students learning to program [8]. JUnit is a
popular testing framework for Java among novice programmers learning software testing.
Furthermore, Visual Studio Code extensions have been a successful interface for novice
programmers interacting with LLMs for general use cases such as code completion [9].
Therefore, there is an incentive to build a Visual Studio Code extension that interacts
with LLMs to provide reliable and educational JUnit tests for novice programmers.

TestPilot, a Visual Studio Code extension for teaching novice programmers how to write
educational JUnit tests in Java, would be helpful to bridge the gap between novice
programmers using standard searches online and asking commonly known LLMs such
as ChatGPT to generate tests, both of which may be inconsistent, incorrect, or non-
educational. The motivation behind TestPilot involves developing a methodology to adapt
LLMs for preventing the same issues that occur from novice programmers using arbitrary
code found online.
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1.2 Proposed methodology

The proposed methodology for TestPilot is developed by taking three pillars into account,
which include cost (number of tokens used for LLM input and output), correctness (seman-
tically and syntactically), and education (tests that are consistent with documentation at
the level of a novice programmer). Finding the right balance between all of these pillars is
difficult, since too much focus on one pillar can impact the rest. These pillars were used
to create two modes of operation.

The first mode of operation is "testing", which is aimed at novice programmers who
are unsure that their code is correct, and want to test it by giving a natural language
description of a test. For example, a novice programmer may write a simple function
to calculate the factorial of a natural number using recursion. A novice might not be
sure if their code is correct since they have not called it in the main method of the same
file yet. By inputting a beginner description "I think my code should return 120 for an
input of 5", TestPilot takes their description as the source of truth and generates a test
against the novice’s code in both natural language on a card and in code. The novice
can input more test cases which are appended to the list of cards and test functions.
The corresponding test functions are put in a separate testing file which may pass or fail
depending on whether the logic in the description matches the logic in the code.

The second mode of operation is "discovery", which is aimed at novice programmers
who are happy that their code is correct, but want to discover test cases that demonstrate
this. Using the same factorial function from before as an example, a novice might be
happy their function is correct since they called it in the main method of the same file with
inputs of 0 (only edge case) and 5 (normal case) and it returned 1 and 120 respectively.
However, they are unsure how they could discover test cases to demonstrate this formally.
By inputting a beginner description "I think my code should return 120 for an input
of 5", TestPilot takes their code as the source of truth and generates a list of "blurred"
natural language test cases in cards for the entire program space. The card matching
the novice’s description is "unblurred", and the novice can input more test cases which
"unblurs" more cards if they are correct. Test functions for these cards are put in a testing
file which always pass.

In either mode of operation, the code coverage of all test cases shown as cards against the
novice’s code is displayed in a progress bar. Only in "discovery" mode, there is a second
progress bar for case coverage, which shows the code coverage of the test cases from all
the "unblurred" cards. These two progress bars encourage the novice to focus on program
coverage. Alternatively to program coverage, studies show that novice programmers lack
the awareness of problem coverage (code coverage for testing the complete solution, which
the novice’s code might not be) [10]. A focus on problem coverage is implemented by
displaying a tooltip which shows the code coverage and number of test cases of a previously
known working test suite if the code that is being tested has appeared before on TestPilot.
If a student has less test cases and code coverage than the previously known test suite,
they might have missing functionality in their code.

When generating tests in "testing" mode, the novice’s description is converted from a
vague description to a clear description using a highly accurate but relatively expensive
model such as GPT-4. Since the expensive model only has to produce a single description,
expensive tokens from the input and output of lengthy code files are avoided. This concise
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description is subsequently passed to a cheaper but fine-tuned GPT-3.5 Turbo model to
create a "@Test" snippet. Each additional natural language description inputted from the
novice uses another GPT-4 and fine-tuned GPT-3.5 Turbo inference, with the resulting
test being appended to the list of test cases in cards as well as the code.

When generating tests in "discovery" mode, all necessary test cases in English for complete
code coverage are generated using a highly accurate but relatively expensive model such as
GPT-4. Since the expensive model only has to produce a list of test cases, expensive tokens
from the input and output of lengthy code files are avoided. Each of the N test cases are
outsourced to a cheaper but fine-tuned GPT-3.5 Turbo model to create their respective
"@Test" snippet which are combined through string manipulation. Each additional
description from the novice to "unblur" a test case uses another GPT-4 inference.

When using cheaper models for code generation, they often produce less reliable output.
To combat this, it requires careful prompt engineering, fine-tuning and embeddings. LLMs
are trained on data that follow human behaviour. Even if prompts including "I’m going
to tip $xxx for a better solution!" may seem silly, they are shown to improve the resulting
output of cheaper models [11]. Furthermore, fine-tuning allows the model to learn stylistic
behaviours which is essential for this use case, since novice programmers require solutions
at a novice-level that are consistent, correct, and educational. Finally, embeddings can be
used by LLMs to increase their knowledge base. A vector database can contain embeddings
for known good working solutions, where any previously successful tests are automatically
appended to the database.

Before returning the generated tests, sanity checks are completed by compiling the code
with Java and a JUnit. Code coverage is calculated using JaCoCo. Finally, code is
formatted using google-java-format before it is returned to the novice programmer. By
implementing this methodology, a novice programmer is encouraged to explore the problem
space while also benefiting from more accurate tests that are at a novice-level with suitable
documentation.

1.3 Challenges

TestPilot involves both education and LLMs. Therefore, challenges for developing TestPilot
stem from either education, LLMs, or both. Each of these categories are conflicting of
each other. For example, education needs to be reliable to be informative, yet LLMs
have been shown to be unreliable [12]. Since both aspects of TestPilot are inherently
contradictory, the resulting challenges from this contradiction need to be addressed.

LLM alignment is an issue that causes inconsistent tests with unsuitable documentation
[13]. If a novice programmer prompted an LLM to return a novice solution in a consistent
style that is documented with comments, this cannot be guaranteed. Overcoming LLM
alignment is a challenge that needs to be addressed to prevent novice programmers
receiving unsatisfactory tests that are not educational.

LLMs face hallucinations which can cause incorrect tests [14]. Knowledge from LLMs is
encoded in a probabilistic manner across many parameters, meaning that the encoding of
data is lossy. This results in an LLM generalizing to incorrect tests even if the required
knowledge is directly in the training data. Overcoming hallucinations is a challenge to
overcome the possibility of incorrect tests being presented to novice programmers.
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Fine-tuning requires large amounts of data. Data for LLMs needs to be diverse but
accurate, both of which cannot be guaranteed by scraping the web. LLMs are often
used to generate training data for other LLMs. However, LLMs are inherently unreliable,
therefore the generated data can be unreliable. Researchers have experimented with
temperature sampling to increase data diversity but this reduces the accuracy of the data
[15]. Overcoming the challenge of data collection for LLMs is essential to find a balance
between diverse and accurate data.

Educational resources that use artificial intelligence must avoid learner over-reliance [3].
LLMs pose the risk of influencing novice programmers to not think for themselves, and
instead use LLMs to do all the work. Reliance on LLMs to complete a suite of tests
removes any educational benefit from exploring the problem space. The challenge of
preventing learner over-reliance must be overcome to ensure novice programmers do not
rely on LLMs completing all necessary tests on their behalf.

The interface of TestPilot must be designed to foster exploration rather than being a
search engine that simply shows results. The user interface must be developed in a way
that encourages the novice programmer to explore the problem space. Implementing the
user interface in a manner that is educational and useful requires careful planning and
intricate workflows which is a challenge.

Tests can use a variety of techniques to make them educational such as coding standards,
testing strategies and function layouts. For example, testing strategies such as "Arrange,
Act, Assert" emphasize clean coding standards [16]. Having a consistent structure when
testing is essential for teaching novice programmers consistent testing habits. Choosing the
coding standards, testing strategies and function layouts for TestPilot to be educational
and not just a "test generator" for copying and pasting code is a challenge.

1.4 Goals

The aim of TestPilot is to be more accurate than a single prompt to ChatGPT. TestPilot
uses multiple LLM inferences with artificial intelligence techniques which involves extra
cost. Therefore, it is essential that the extra cost is worth it compared to ChatGPT
producing tests that might be inconsistent, incorrect or both.

A goal of TestPilot is to manage the pillars of cost, correctness, and education. Using
cheap models to decrease costs reduces correctness and educational benefit since cheap
models are less capable. Conversely, prioritizing correctness and educational benefit
requires expensive models which increases cost. TestPilot’s objective is to manage these
three pillars to find the Pareto frontier for this use case.

TestPilot aims to include a robust methodology that works regardless of LLM failures.
Since LLMs are inherently unreliable, incorrect results may appear at any point in a
chain of LLM inferences. Accurately finding incorrect responses through sanity checks
and verification is helpful to the system robust.

A goal of TestPilot is to minimize hallucinations and LLM alignment issues through
prompt engineering, fine-tuning and embeddings. These issues are open research problems
that are not fully preventable since LLMs are unreliable. However, minimizing these issues
as much as possible is a goal when developing TestPilot.
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TestPilot aims to use diverse and accurate data for fine-tuning. Generating synthetic
data that is both diverse and accurate is difficult. However, a goal of TestPilot is to use
seeding techniques to generate diverse data that is verified to be accurate through sanity
checks. Using diverse but accurate data will increase the ability of the fine-tuned LLMs to
generalize to consistent and suitably documented solutions for a wide range of tests.

A goal of TestPilot is to implement the user interface in a way that is educational. This
is completed by taking visual cues into account, such as progress bars and cards that
display useful information for a novice programmer. Implementing the user interface in
an easy-to-use format helps foster exploration and learning.

1.5 Dissertation Overview

This section will provide a high-level outline for the remainder of this dissertation. The
remaining chapters are as follows:

• Chapter 2: Background

◦ This chapter will discuss the technical background behind how LLMs function
and how they can subsequently be adapted.

◦ This chapter will conduct a literature review on the use of generative artificial
intelligence by novice programmers.

• Chapter 3: Design

◦ This chapter will present the system architecture of TestPilot, including how
the frontend and backend systems interact with each other.

◦ This chapter will discuss the configuration and usage of LLMs by TestPilot such
as synthetic data generation, fine-tuning, prompt engineering, and embeddings.

• Chapter 4: Evaluation

◦ This chapter will present metrics to evaluate TestPilot such as the compilation
rate, test accuracy rate and documentation rate.

◦ This chapter will discuss the performance of TestPilot in terms of cost, correct-
ness, and education.

• Chapter 5: Conclusion

◦ This chapter will reflect on the development process for TestPilot.

◦ This chapter will discuss the successes and future work that may proceed from
this dissertation.
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2 Background

It has been established that standard online searches for software testing education is not
suitable for novice programmers. Tests found online may be inconsistent, incorrect, or
non-educational due to insufficient documentation. Furthermore, LLMs face the same
issues as standard online searches. LLMs are trained on data that might be written
by experienced programmers, which results in complex tests. LLMs may struggle to
contextualize a novice programmer’s messy beginner code. Furthermore, LLMs face
hallucinations which cause incorrect tests.

Since standalone LLMs are not enough, LLMs need to be adapted in some way to help
novice programmers learn software testing. To accomplish this task, this chapter will
establish the technical background behind how LLMs are designed and how they can
be subsequently adapted. Furthermore, this chapter will discuss the current literature
on generative artificial intelligence for software education to show strong reasons why
TestPilot would be beneficial for novice programmers.

2.1 Technical background

LLMs are complex, yet powerful. In fact, many of their inner workings have not yet
been understood fully by researchers, since it is difficult to "give a narrative description”
for their overall behaviour [17]. LLMs use artificial neural networks as their underlying
architecture that calculates and adjusts numerical activation values within their internal
components, loosely related to human neurons [18]. These artificial neurons contain
hundreds of billions of connections which can be used multiple times while processing text.
The magnitude of these connections, along with their invocation at various times while
processing text, removes any single definite explanation for their overall behaviour.

2.1.1 Transformer architecture

The success of LLMs being applied to our daily lives is due to our fundamental understand-
ing of how they are trained and subsequently tweaked at inference. LLMs are pre-trained
on a dataset during the training procedure, usually amounting to billions or trillions of
tokens. Parameters exist within the model, which are weights that are adjusted through
optimization algorithms such as stochastic gradient descent to minimize the differences
between the input and output of a model. This difference is usually measured using a
loss function. Models can leverage the transformer architecture, consisting of several
similar layers stacked on top of each other. Each layer has an input and output, where
the output of layern−1 is the input of layern. This architecture was used in the very first
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GPT (Generative Pre-training Transformer) released by OpenAI in June 2018 [19], which
used the following loss function:

L1(U) =
∑
i

logP (ui|ui−k, . . . , ui−1; Θ) (1)

where U = {u1, . . . , un} is an unsupervised corpus of tokens and k is the size of the context
window where the conditional probability is modelled with parameters Θ. This loss
function is also known as the log-likelihood. Furthermore, the softmax function calculates
the probability of each token being the next token in the sequence, with the summation of
all probabilities equalling 1. This is used to calculate P (u), the probability of each token
u in the vocabulary being the next token in the sequence:

P (u) = softmax(hnW
T
e ) (2)

where n is the number of layers, hn is the final hidden state (the output of layer n) and
WT

e is the transpose of the token embedding matrix. During training, the input sequence
is embedded and split into substrings of length k. Iterating through each substring, the
model predicts the next token by calculating the output probability distribution using the
final softmax layer.

Each token in the probability distribution is mapped to the probability that the next
token is the actual next token in the subsequence. For each substring, the model outputs a
probability distribution, where the probability of the true token in the sequence is used for
loss calculation. Subsequently, the final loss is equal to the sum of the logarithms of these
true probabilities. The resulting log-likelihood loss function maximizes the logarithm of
the probability of correctly predicting the next token in a sequence given the previous
tokens.

2.1.2 Effects of sampling and temperature adjustment

The sampling used when choosing the next token from the probability distribution can be
changed. Greedy decoding involves choosing the word with the highest probability as the
next word. Beam search involves generating various possible sequences and using a beam
width parameter to choose how many sequences are kept at each step. Top-p sampling
involves selecting tokens until the cumulative probability mass of the selected tokens in
the probability distribution exceeds a threshold p.

However, the probability distribution itself can be adjusted to produce more deterministic
or random outputs on behalf of a novice programmer. Logits refer to raw unnormalised
scores produced by the last layer of a transformer before applying a final softmax consisting
of a vector z = [z1, ..., zn]. The temperature parameter T of a model scales the logits by
dividing the original logits by T , resulting in a vector z′ = [z′1, ..., z

′
n]. After this scaling,

this is passed to the softmax function to produce the final distribution in the form of
p = [p1, ..., pn]:

z′i =
zi
T

(3)
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pi =
ez

′
i∑

j e
z′j

(4)

Therefore, lower temperature values where 0 < T < 1 result in sharpening the probability
distribution. This leads to high-probability tokens being more likely to be sampled and
subsequently more deterministic outputs. Higher temperature values where T > 1 result
in flattening the probability distribution. This leads to lower-probability tokens being
more likely to be sampled, and subsequently more creative responses that would be out of
the ordinary.

T = 0 is not typically used since division by 0 leads to mathematical errors. Hypothetically,
using T = 0 would lead to scaled logits z′i approaching a positive infinity if they had a
positive sign and negative infinity if they had a negative sign. When this is passed to
the softmax function, it would always choose the token associated with the highest logit,
making all other alternatives impossible.

Furthermore, using T = 1 keeps the logits unchanged, since division by 1 results in
the original probabilities being used for sampling. Nondeterministic responses might be
creative, but often result in code that is not syntactically correct or uses libraries that are
out of scope in the provided context. For code generation, using T = 1 is not necessarily
optimal for determinism and subsequently a higher chance of code that compiles and runs.
Using T = 0 does not guarantee deterministic responses, although it is better than T = 1
which uses the original probabilities for sampling [20].

2.1.3 Fine-tuning

If the performance of a pre-trained LLM in response to a particular task needs to be
improved, fine-tuning is an approach that involves teaching the model using a small
dataset containing examples relating to the task while maintaining its general knowledge.
This helps to teach the model to behave in a particular way, which can be useful for
code generation in a particular style. The first GPT was fine-tuned to adapt parameters
Θ using a dataset C where each entry consists of a sequence of input tokens x1, ..., xm

labelled with y [19]:

L1(C) =
∑
(x,y)

logP (y|x1, . . . , xm) (5)

Language modelling as an auxiliary objective involves the task of predicting the next word
in a sequence of text as an additional objective alongside the primary supervised learning
task. Implementing this while fine-tuning helps the model generalize better and accelerate
convergence, the point at which the model’s performance stops improving further. This
was used in fine-tuning the first GPT: [19]:

L3(C) = L2(C) + λ ∗ L1(C) (6)

where L2(C) is the primary task loss and λ ∗ L1(C) is the language modelling loss, with
hyperparameter λ controlling the importance given to the language modelling compared
to the primary task. Learning to predict the next word in a sequence helps the model
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generalize better with new data for the primary task while reaching convergence quicker
through additional signals from language modelling.

Fine-tuning is not suited for improving the knowledge base of a model, but instead focuses
on improving the intended behaviour and style of responses. Models fine-tuned to a single
task may experience a phenomenon known as catastrophic forgetting, where the weights
of an LLM are adjusted to the point where it suits the single task but fails to generalize
outside the task by forgetting previously learned knowledge while learning new knowledge
[21]. Thus, avoiding overfitting by using a relatively small but carefully chosen fixed set
of examples for accurate generalization is key.

2.1.4 Prompt engineering

At inference, LLMs are prompted using a variety of prompt engineering techniques to
improve the effectiveness of their responses. Language models are few-shot learners [22],
therefore few-shot prompting is a commonly known technique for effective responses. This
property of language models first appeared when they were scaled to a sufficient size [23].
Few-shot prompting involves providing the model with a few examples in the prompt to
enable in-context learning.

Few-shot prompting is beneficial when an ideal answer requires context from an example.
Few-shot prompting relieves the need to fine-tune a model to respond in a particular
manner or format which can be cost-effective. The pre-trained model is aware of patterns
within language, which makes providing examples inside the prompts effective at helping
the model generalize better to new prompts. Zero-shot prompting involves providing
no examples but relying on the model to understand the underlying sentiment of a
prompt.

Question:
Generate test cases in natural language
for calculating the nth Fibonacci num-
ber.

Answer:
Sure! Firstly, test for input 0, which
should return 0. Secondly, test for input
1, which should return 1. Finally, test
for input 10, which should return 34.

Figure 2.1: Zero-shot prompting.

Question:
Generate test cases in natural language
for calculating the factorial of a natural
number.

Answer:
1. Input 0 should return 1
2. Input 5 should return 120

Question:
Generate test cases in natural language
for calculating the nth Fibonacci num-
ber.

Answer:
1. Input 0 should return 0
2. Input 1 should return 1
3. Input 10 should return 34

Figure 2.2: Few-shot prompting.
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However, the model might struggle to generalize to new prompts that require extensive
reasoning capabilities. To combat this, chain-of-thought prompting is a prompting
technique which involves providing intermediate reasoning steps inside the prompt [24].
This technique is commonly combined with few-shot prompting to maximize the chance
of a response that follows the requested structure and satisfies complex reasoning with
minimal hallucinations.

Prompt engineering techniques are useful in combination with specific instructions such
as "Let’s think step by step" which drastically increases the accuracy of responses in a
zero-shot setting [25]. As LLMs are trained with more high-quality data, their responses
will improve and subsequently not require specific prompts. But until then, leveraging
their similarity to human qualities (through their pre-training with data closely related
to human interaction found online) is a valid approach to maximize the efficiency of
responses.

2.1.5 Embeddings

To improve the knowledge base of an LLM, embeddings are a valuable tool to use.
Embeddings are dense vectors stored in an index in a vector database that are mathematical
representations of words in a high-dimensional space. Subsequently, relevant data can
be added to a prompt to improve the knowledge base of an LLM without relying on
information from its training data. To find the relevant data, the initial prompt is also
embedded into a vector to use similarity metrics such as the cosine similarity for finding
the data most similar to the initial prompt:

cos(θ) =
AB

∥A∥∥B∥
=

∑n
i=1AiBi√∑n

i=1 (Ai)2
√∑n

i=1 (Bi)2
(7)

where A and B are vectors representing an answer in a vector database and the prompt
respectively. Subsequently, the most similar answer in the vector database can be added
to the initial prompt in a similar structure to few-shot prompting. This improves the
knowledge base of an LLM without requiring the LLM to contain the information in its
training data. By storing related data in a vector database, embeddings offer improved
responses that use related information in their output.

Converting data to a vector for embeddings captures the semantic meaning of text, unlike
lexical information retrieval which looks for exact words from the query. Using a standard
database with lexical retrieval would limit any additional knowledge to contain the exact
words as in the prompt. Conversely, the semantic meaning from dense retrieval methods
helps the model generalize to different but similar problems it contains in its knowledge
base.

2.1.6 Scaling laws

The effectiveness of an LLM is not purely based on the number of parameters that exist
within the model, but also the volume and quality of data that it is trained on. A model
trained with a low amount of data and a high number of parameters can be overfitted
and subsequently struggle to generalize with unseen data. A model trained with a high
amount of data and a low number of parameters can be underfitted and subsequently
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struggle to understand complex relationships in the data. Finding a Pareto frontier in
this area for the correct balance between the parameters and data of an LLM for has been
an ever-changing research problem.

The Kaplan scaling laws introduced by OpenAI stated that a data-to-parameter ratio of
around 1.7 is optimal, with 300 billion tokens being used to train an LLM with 170 billion
parameters [26]. After this discovery, Chinchilla scaling laws introduced by DeepMind
stated that a data-to-parameter ratio of around 20 is optimal, with 1.4 trillion tokens being
used to train an LLM with 70 billion parameters [27]. However, it has been shown that
high quality data pruning can improve these scaling laws further [28]. This is currently
an open research problem which will improve over time.

2.1.7 Synthetic data

The principle of high quality data from scaling laws is the same with synthetic data that
is generated for fine-tuning. Synthetic data is generated artificially from LLMs to emulate
real-world data. Synthetic data is often used for fine-tuning because real-world data is hard
to find at scale [29]. Synthetic data can be generated by an LLM using prompt engineering
to receive data in a particular style for fine-tuning. However, raw unvalidated synthetic
data from an LLM is unreliable. Since LLMs are inherently unreliable themselves, using
unvalidated data to fine-tune an LLM compounds the unreliability.

Grounding, taxonomy-based generation and filtering are proposed techniques used in
synthetic data generation by researchers to minimize unfaithful data [30]. Grounding
provides real-world examples in prompts that act as seeds for inspiring the model to return
diverse data. Taxonomy-based generation includes theorizing k-ways the ideal data can be
identified under a classification to sample across k of these approaches, and subsequently
asking an LLM to generate data according to one of the classifications. Finally, filtering
consists of fine-tuning an LLM to know the difference between synthetic and real-world
data and prompting it with grounding data to remove ones that are synthetic.

When these techniques were proposed, grounding proved to be a key element to synthetic
data generation. However, taxonomy-based generation struggled to stay true to the under-
lying classification, since it assumes a uniform distribution over proposed classifications
when it might not be the case. Furthermore, filtering struggles to classify whether the
data is synthetic or real since it requires classifying data that may be "up for debate"
with no single definitive answer.

Choosing from these synthetic data generation techniques based on the type of data
required is essential. For generating novice-level code, grounding may involve providing a
function from a real-world repository and using it as a seed focal method for an LLM to
simplify into a simple novice-level implementation with a similar meaning to the original.
Taxonomy-based generation may be skipped to avoid assuming a uniform distribution
over proposed classifications. Synthetic data can be verified through use case specific
filtering by using compilation and code coverage checks, instead of fine-tuning an LLM to
do this operation.
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2.2 Literature review

The use of LLMs for teaching software testing to novice programmers is a relatively
new concept. However, there is a significant body of research on the use of LLMs in
programming education. The use of this literature is important for developing TestPilot,
since it serves as a chance to acknowledge the advantages, disadvantages, and opportunities
available when bridging the gap between a novice programmer and an LLM.

This section will outline the current literature on the use of generative artificial intelligence
by novice programmers. It will discuss research on the usage of OpenAI’s Codex, ChatGPT,
GPT-3.5 Turbo, and GPT-4 by novice programmers. Finally, this section will summarise
the key points from this literature to use when developing TestPilot.

2.2.1 Novice programmers using Codex

OpenAI’s Codex was released in 2021 which is a GPT language model fine-tuned on
publicly available code from GitHub [31]. Knowing what types of questions a novice
programmer typically asks an LLM is important, as it helps researchers improve responses
for those types of questions. A study was conducted asking introductory programming
learners to use OpenAI Codex to complete code-authoring tasks, which subsequently
allowed researchers to note what aspects of programming invoked an LLM inference by
these novice programmers [32]. It was discovered that loops and arrays were the most
common topics that made students prompt an LLM, with 84% and 85% of inferences
relating to those topics respectively.

When novice programmers used OpenAI’s Codex to ask a question involving arrays and
loops, students copied the highest proportion of the original question. This suggests that
novice programmers are inclined to paste more of the original question into the prompt
when they struggle with the concepts in it; 42% of the original question was used for loops
and 48% of the original question was used for arrays. From this observation, it can be
concluded that novice programmers who use OpenAI’s Codex struggled with arrays and
loops the most, which surprisingly also correlated with the highest amount of copying and
pasting from the original question compared to any other concept.

On the subject of prompting, the study highlighted that students with more experience
had an average score of 90% compared to students with less experience who had an average
score of 71% when using LLMs. Furthermore, the students suggested that they needed to
write prompts with a high level of detail to get the correct response they required, for
which they would rather code the answer themselves. From this, it can be concluded that
people with more experience tend to benefit the most from LLMs since they are more
likely to include the correct information in the prompt since they know what to ask for.
Conversely, novice programmers often struggle to know what to ask in the first place since
their foundational knowledge is lower.

It is important that LLMs are not just a temporary band-aid to a novice programmer’s
current problem. It was examined that students with previous programming knowledge
also did better at a retention test a week after compared to students with less experience.
However, students with less experience still did better with OpenAI’s Codex than without
it. This highlights that novice programmers are inclined to use LLMs as a temporary fix
rather than for long-term retention, since it boosts their ability temporarily.
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The output of an LLM has to be in a format that is digestible by a novice programmer.
The study highlighted that students become overwhelmed by an LLM that outputs a
large section of code. Therefore, breaking the output into multiple segments would be a
viable solution to this problem, forcing students to work on each segment before moving
on to the next. Furthermore, the study mentioned that additional documentation and
worked examples accompanying the responses would have improved the experience for
novice programmers in this regard.

Regardless of this disadvantage, some students who used OpenAI’s Codex reported that
they felt less stressed since it "reduced pressure" which may have help foster a better
learning environment. On the contrary, some students did not like that the LLM returned
the entire answer at times "instead of step-by-step hints to the user". This hindered their
learning process, since it did not let the learner think about the problem. Finally, students
did not like that the LLM did not always give proper explanations on "why the generated
code was what it was". Therefore, it is evident that a lack of explanations with responses
was a hindrance for novice programmers.

The study concluded that the usage of LLMs in programming support tools could scaffold
learning for novice programmers in the future. From novice programmers using OpenAI’s
Codex in this study, it is clear that novices improved their ability temporarily but there
are challenges that need to be fixed in the future with correct prompting, retention of
knowledge, and LLM output formats.

2.2.2 Novice programmers using ChatGPT

OpenAI’s ChatGPT was released in 2022 and is a sibling model to InstructGPT [33], a
model that was trained to follow instructions using human feedback. While ChatGPT
was not fine-tuned for programming in particular, research has been conducted to study
its effectiveness for novice programmers. A novice programmer requires an LLM that is
highly accurate, since they require a source of truth to test their own beliefs (which may
be right or wrong). An LLM that is inaccurate is not suitable for a novice programmer,
since the LLM or the novice programmer could be right, wrong or both, with no concrete
source of truth to rely on.

A study reviewed the accuracy of ChatGPT for questions from a popular software testing
curriculum taken by novice programmers [34]. ChatGPT was only able to respond to
77.5% of questions given. This was an interesting observation which reaffirms that LLM
alignment is a major issue for LLMs teaching novice programmers. This also highlights a
need for a system that always produces an answer to a question from a novice programmer
that is highly accurate.

From the questions that ChatGPT did answer, it only had a 55.6% chance of being correct
or partially correct, and a 53% chance of having a correct or partially correct explanation.
The main types of incorrect answers were due to poor knowledge, assumptions, or both.
Furthermore, the responses that seemed confident had little impact on the actual accuracy
of the response, which highlights the issue of hallucinations from LLMs teaching software
testing to novice programmers.

In the last subsection, it was established that loops and arrays were the most difficult
concepts for novice programmers. In this study, it was shown that ChatGPT performed
the worst with questions involving both code and concepts with an accuracy of 31.3%.
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This reveals an important feature about LLMs for teaching testing to novices, which is that
LLMs are moderate at generating code but struggle with conceptual questions that require
higher levels of reasoning. Arrays and loops require reasoning that is hard to capture in
the parameters of a model, since not every permutation and combination of loops and
arrays are captured in the training data. ChatGPT will make an educated guess based on
trends, but this study proves that this is not suitable for a novice programmer.

A reasonable follow-up question would be "If the accuracy of ChatGPT isn’t great, does it
still improve the skills of a novice programmer?". To answer this, another study reviewed
the impact of ChatGPT on the computational thinking skills, self-efficacy and motivation
of undergraduate students who took a programming course [35]. The opinions of students
were recorded while being given ChatGPT during weekly programming exercises using
a likert-type system. Surprisingly, their results show that university students believed
ChatGPT helped improve their algorithmic thinking, self-efficacy, and problem-solving
skills for complex programming tasks more than students who did not use ChatGPT.

This leads to an important observation, which is that although the accuracy of ChatGPT
is not high for novice programmers, novices believe that it helps their ability to program.
This raises a concern that novice programmers may experience a false sense of ability
without the privilege of such a tool at all times. This observation suggests that novice
programmers may rely on LLMs so much that their notion of their programming ability is
constructed under the assumption of an LLM by their side, which may be for better or
for worse!

Although computational thinking and self-efficacy were improved, the motivation of
students who were allowed to use ChatGPT was similar to students who were not when
given difficult questions. It was already established in the previous study that ChatGPT
struggles with conceptual questions that require higher levels of reasoning. Therefore, it
makes sense in this study that the motivation of novice programmers does not increase with
complex questions, since complex questions require conceptual reasoning that ChatGPT
does not work well with. Incorrect answers from complex questions may be the reason
there is no increase in motivation when using ChatGPT for complex questions.

2.2.3 Novice programmers using GPT-3.5 Turbo and GPT-4

OpenAI’s GPT-3.5 Turbo and GPT-4 [36] were released in 2023 which followed from
GPT-3, however they had better conceptual reasoning abilities. This rapid improvement
in understanding influenced researchers to compare it to OpenAI’s Codex for use by novice
programmers. A study tested the accuracy of GPT-3.5 Turbo against OpenAI’s Codex
for identifying and explaining the issues in student’s code from an online programming
course [37]. It was shown that GPT-3.5 Turbo was able to was able to detect all issues
55% of the time compared to only 15% from Codex. This displayed that GPT-3.5 was
much better at conceptual reasoning for novice programmers, which was a major issue for
LLMs up until then.

While there was an increase in conceptual reasoning, GPT-3.5 Turbo was still not perfect.
For example, the study showed that GPT-3.5 Turbo only had a 44%, 54% and 50% success
rate at finding all issues related to formatting, unwanted outputs, and missing outputs
respectively. This highlighted that LLMs can struggle to "wrap" around an initially
incorrect solution with a bug in it, and will subsequently provide an incorrect solution to
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fix it as a consequence. A common occurrence of this in the everyday life of a programmer
may include calling methods or referring to objects using the "this" identifier in Java,
which may lead to the LLM either making up a new function name or not using the
correct identifier in the response.

An interesting observation in the study was that GPT-3.5 Turbo reported imaginary
problems 48% of the time when asked 150 questions with help requests, such as mentioning
that an extra curly bracket exists when in reality it did not. Furthermore, GPT-3.5 Turbo
had a mere 35% accuracy at detecting all issues for problems with logic errors that use
conditionals. This emphasized that GPT-3.5 Turbo was a much better LLM for novice
programmers than anything on the market at the time, but it still could be adapted
further in some way for novice programmers to get accurate results.

On the same topic of fixing errors, the opinions of novices who used GPT-4 to provide
hints when faced with compiler errors were recorded in another study [38]. An intriguing
observation was made, which was that 56% of students believed the hints were very or
extremely useful. Conversely, 20% of students believed the hints were not useful at all.
This observation reaffirmed that GPT-4 was perceived as useful, but there is a "need
for further improvement of their relevance and accuracy" for novice programmers, which
could be completed with "refined prompt engineering or fine-tuning of the AI model to
better address diverse needs of students".

The study restated the issue of GPT models struggling with errors that required a
deeper conceptual understanding. In fact, students that had access to hints from GPT-4
performed slightly worse than the control group who did not have access to it. This
observation emphasized the importance of being careful when giving novice programmers
access to LLMs, since there is a potential for novice programmers to do worse with them.
This suggests that outsourcing different types of logic in some way might decrease the
chance of this happening. An example of this might be delegating an entire task that
requires a deep conceptual understanding away from such an LLM, and instead giving
more straightforward and confined tasks to various LLM inferences instead.

Apart from accuracy, the study showed that having hints from GPT-4 decreased the
confusion and frustration of novice programmers when stuck compared to the control
group. It has been established in the previous subsection that having access to ChatGPT
did not increase the motivation of students. This behaviour is repeated with GPT-4 in
this study, which stated that boredom and anxiety did not change regardless of access
to GPT-4 or not. These observations conclude that it is indisputable that LLMs are
helpful aids for novice programmers in the face of learning (which can be confusing and
frustrating), however the motivation and drive of a novice programmer is difficult to
improve with LLMs.

2.2.4 Implementations of LLMs for novice programmers

After studying the use of various LLMs by novice programmers, researchers noted the
observations and opinions of novices when implementing LLMs into various interfaces.
This subsection will examine related interfaces to TestPilot which use GPT-3.5 Turbo
and GPT-4 to help novice programmers. These related interfaces implemented feedback
from previous observations and opinions, which can subsequently help the development of
TestPilot by learning from their successes and mistakes.
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GILT

GILT is a Visual Studio Code extension that helps with code understanding [39]. GILT
stands for "Generation-based Information-support with LLM Technology for the Python
programming language". It uses GPT-3.5 Turbo to create a conversational user interface in
the sidebar of Visual Studio Code to help novice programmers understand their code.

As seen in previous literature, novice programmers struggle to write good prompts since
they do not always know what to ask for. GILT does not require a novice to input explicit
prompts, and instead offers four high-level requests such as code explanations, details
of API calls, explanations of domain specific terms, and usage examples of an API. The
researchers who developed GILT took a prompt-less approach which leveraged the fact
that novice programmers are not good at prompting themselves. As an alternative, GILT
also accepts open-ended prompts that are automatically contextualized by passing the
selected code from a novice into the prompt to GPT-3.5 Turbo.

It was established in the previous subsections that novice programmers do not like a
big chunk of text when asking an LLM for help. The researchers who developed GILT
used a need-based explanation approach, where an explanation is only generated if a user
requests it. By doing this, a user is not bombarded with a long paragraph of text which
is not digestible and includes information they did not ask for. This reduces distractions
and information overload for the novice programmer.

Researchers compared GILT with web search in a study using the technology acceptance
model (TAM) [40], and found that novice programmers rated it more useful with a TAM
score of 33.49 compared to 27.3 for standard online searches. Novices also believed it was
easier to use with a TAM score of 34.2 compared to 29.75 for standard online searches.
This evaluation concluded that an interface which does not focus on detailed prompts
increased the usefulness and ease of use of the interface for novice programmers.

In the paper for GILT, the researchers discussed the implications of GILT and the key prin-
ciples to follow for future researchers attempting a similar approach. Novice programmers
who used GILT mentioned that they frequently did "comprehension outsourcing" where
they did not bother understanding the code before prompting the LLM. This reaffirms
the statements from the previous subsections that novice programmers are inclined to
use LLMs as a temporary fix rather than for long term retention. Although GILT used
a prompt-less approach which makes it easier to understand code, the over-reliance of
LLMs by novice programmers was still a threat to validity for GILT.

Researchers also mentioned that more work is needed for the user interface. Prompt-less
interaction integrated into an IDE was successful compared to online searches, but it
was evident that further research is needed to accommodate novice programmers who
have different learning styles, such as using a button-based or prompt-based approach to
generate explanations. Furthermore, the researchers stated that using more context from
the code of a novice will improve the generated responses. This may involve using system
context such as programming languages and libraries in the prompt to alleviate prompt
engineering efforts elsewhere.

The researchers concluded that prompt-less interactions in an IDE with LLMs is a
promising future direction for tool builders. This reaffirms that designing interfaces that
reduce the need for explicit prompts from a novice programmer is a valid approach.
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Scratch Copilot

Scratch Copilot is a plugin for Scratch which provides code explanations for novice
programmers using GPT-4 [41]. Scratch is a visual programming language which helps
novice programmers learn to code [42]. It was aimed at programming education for
families getting into programming for the first time.

The researchers stated that Scratch Copilot was able to support middle schoolers in
understanding Scratch projects. The researchers found that Scratch Copilot was able to
explain code 90% of the time for 40 code explanations. Since the Scratch programming
language uses blocks of logic instead of normal text like Java, GPT-4 was able to create
appropriate metaphors for complex computational concepts such as loops or variables.

Debugging was achievable by Scratch Copilot with an accuracy of 80% for 40 debugging
examples. It was established in the previous subsections that GPT-3.5 Turbo reported
imaginary problems, and similar issues remain with GPT-4 as well. Researchers mention
that Scratch Copilot occasionally suggested creating variables when the actual issue was
from conditionals. This highlighted that there would always be a chance that responses will
be incorrect, but the odds for novice programmers were much better using GPT-4.

Another issue with Scratch Copilot was that the LLM repetitively suggested the same
ideas which did not encourage creative thinking. Managing creativeness and correctness
is a difficult challenge. As mentioned in the first section of this chapter, temperature
adjustment can change the creativeness of LLM responses which may solve this issue.
Researchers stated the importance of future models expressing when they are wrong,
which aligns with the literature on ChatGPT in the previous subsections, which state that
confident answers do not correlate with the actual accuracy of the response. Since LLMs
are not aware of their inaccuracies yet, this is a major difficulty for novice programmers
trusting them as a source of truth.

In the paper for Scatch Copilot, the researchers presented design guidelines for future AI-
enhanced coding tools. In the previous subsections, current literature suggests that models
like ChatGPT already promote self-efficacy. However, the researchers who developed
Scatch Copilot suggested the promotion of self-expression, meaning that LLMs should pose
strategic questions to novice programmers instead of providing direct answers. Models
promote self-efficacy since they make novice programmers more independent, but self-
expression should also be a key part of any interface used by novice programmers. This
relates to the observation that novice programmers do not want a chunk of text as a
response from LLMs.

The researchers also suggested that visual elements along with text would help novice
programmers locate specific programming blocks. The use of an interactive user interface
that includes visual aids is important since it prevents a novice programmer relying on
only the generated code which may overwhelm them. This may include progress bars,
buttons and cards which provide multi-modal support to a novice programmer.

Finally, the researchers emphasized the importance of adapting LLMs to be "tailored
to the coder’s experience level to maximize learning outcomes". It was established in
the previous chapter that LLMs are not trained on data that is suitable for a novice
programmer. Therefore, this statement from the researchers suggests that future work
needs to adapt LLMs in some way to make their responses at a novice-level
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VSCuda

VSCuda is a Visual Studio Code extension that offers CUDA syntax highlighting, code help
for CUDA APIs, code completion for CUDA functions, and code improvement suggestions
[9]. CUDA is a programming language that uses the GPU [43]. VSCuda used GPT-4 to
help novice programmers code with CUDA.

The researchers experimented with calling GPT-4 and reprompting if the provided solution
was incorrect when compiled for up to five reprompts. This approach was a potential
solution for the lack of accuracy by LLMs for novice programmers in the previous
subsection. It took 2 reprompts on average to converge on a correct solution with GPT-4.
This suggested that reprompting was a viable tool for increasing the accuracy of responses
after completing a sanity check through the compilation of the response before the novice
sees it.

The researchers also tried to use GPT-4 without reprompting, but instead asked it to
make improvements separately through individual inferences instead of all at once. When
asked a series of questions about suggested improvements, GPT-4 performed better with
individual optimizations. The researchers concluded that the performance of GPT-4 was
degraded when performing optimizations that were compounded but stayed stable when
performing optimizations individually.

The researchers performed a cost analysis with GPT-4 and found that it was a relatively
expensive model, with $0.03/1000 tokens for input and $0.06/1000 tokens for output
using the 8K context model. They stated that this was at least 10 times more expensive
than Llama 2 by Meta [23] which ranged from $0.001 - $0.002/1000 tokens. However,
experiments showed that Llama 2 required 3 reprompts on average compared to 2 from
GPT-4. When not using reprompts, Llama 2 was unable to perform any optimization
that was applied in isolation, compared to GPT-4 which was able to do so. Therefore, the
researchers chose GPT-4 as the LLM of choice for VSCuda.

The researchers designed the API calls to GPT-4 to be completed after each file save, so
that the model could identify issues with the code from the file currently open in Visual
Studio Code. Context was passed into the prompts such as thread divergence, accessed
to global memory, and computation intensity. This was an expensive route since GPT-4
inferences are expensive, but this provided a responsive user interface that found issues in
code quickly.

VSCuda also leveraged the benefits of implementing LLMs straight into an IDE, since
it provided suggestions as "diff" files which were shown in the front-end Visual Studio
Code extension. This was innovative since it was a non-evasive approach to provide
suggestions in the background, instead of big chunks of text which were disliked by novice
programmers as mentioned in the previous subsections.

For future work, the researchers who developed VSCuda stated that fine-tuning an existing
LLM would help the model recognize issues in CUDA code much better. This adaptation
of LLMs for novice programmers was previously mentioned in the literature for GPT-4 in
the previous subsection. This highlights the importance of fine-tuning when developing
LLMs for novice programmers since it is not only mentioned in the literature as a possible
solution to make the responses at a novice-level, but also in real-life implementations from
researchers who say it can improve the effectiveness of responses.
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2.2.5 Summary

From the current literature on the use of generative artificial intelligence by novice
programmers, there are many lessons that can be used for the development of TestPilot.
This subsection will summarise the key points from the literature review and map them
to concepts that TestPilot will implement.

Novice programmers ask LLMs about loops and arrays the most. When receiving a
response, LLMs struggle the most with prompts that include code and concepts that
require higher levels of reasoning, such as from questions involving loops and arrays.
Novice programmers struggle with conditionals that require a deep understanding of
logic, yet default LLMs are the worst at answering questions that require higher levels
of reasoning. Therefore, TestPilot should increase its knowledge base to have a better
chance at answering correctly. This can be done with a vector database that has known
good working solutions.

When novices prompt with concepts they struggle with, they had the highest chance of
copying and pasting text from the original question, promoting "comprehension outsourc-
ing" which is not educational. Furthermore, novices who are inexperienced struggle to
prompt since they do not know what to ask in the first place compared to an experienced
programmer. Therefore, TestPilot should use an input system that does not require explicit
prompts that are detailed. Vague descriptions should be enough of a requirement.

Novice programmers struggled with the retention of gained knowledge when using LLMs.
Novice programmers were inclined to use LLMs as a short-term fix since it boosted their
ability temporarily. Therefore, TestPilot should have a mode of operation that focuses on
testing the beliefs of a novice, instead of only generating a suite of tests that always pass.
When a novice is forced to think critically in this way, they are encouraged to examine
their beliefs with tests which may pass or fail, instead of generating tests which always
pass for the entire program space.

Large chunks of text in LLM output are not digestible by novice programmers. There-
fore, TestPilot should implement test cases in concise and compact cards which are not
overwhelming. Furthermore, novice programmers wished that LLMs used consistent docu-
mentation in their responses. Therefore, TestPilot should include documentation in the
form of comments above each function which describes the implemented test case. The use
of visual aids helps novice programmers focus on specific blocks of code better. Therefore,
TestPilot should have progress bars representing code coverage and case coverage.

Although LLMs decrease the frustration and stress experienced by novice programmers, it
is evident that models such as ChatGPT do not always respond to questions given. When
they do respond, they are not highly accurate since they face hallucinations and struggle
to "wrap" around messy beginner code. Therefore, TestPilot should use refined prompt
engineering and fine-tuning to improve the chance that the model responds correctly.
Reprompting the LLM is a valid solution if the model does not answer correctly.

Finally, research suggests that dividing up the overall logic in a task into smaller individual
segments over multiple inferences is a valid approach to improve LLM efficiency for novices.
An LLM can struggle with completing many tasks in one inference (such as generating
tests for many test cases in the case of TestPilot). Therefore, outsourcing each test case
to an LLM inference is a valid approach as long as it is cost-effective.
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3 Design

It has now been established that current literature also agrees that novice programmers
face issues when using various types of LLMs. Online searches are not viable, and default
LLMs are not sufficient for novice programmers either. However, the literature also
provides various improvements which can be used for TestPilot. This chapter will outline
the design of TestPilot, which uses the statistics and opinions from the current literature
to create a highly educational interface that is suitable for novice programmers.

3.1 High-level system architecture

This section will outline the possible inputs and outputs when a novice programmer
interacts with TestPilot, as well as the possible cases with those inputs. It will also provide
a high-level system architecture for the two modes of operation in TestPilot. It will discuss
how the different modes of operation work, the outsourcing of logic to different parts of
the system, and how this can ultimately be useful for a novice programmer.

For both modes of operation, the inputs from the novice programmer include the code they
wish to test and a beginner natural language description of a test case. Subsequently, the
outputs from the Visual Studio Code extension include the test cases in natural language
and the implemented tests in code. This high-level system architecture will discuss the
mechanisms in TestPilot that convert these inputs to outputs.

Modes of operation

Initially, TestPilot only had a "discovery" mode of operation which simply generated
tests that always pass. After the initial presentation, feedback and discussion
suggested an alternative mode of operation for tests that could pass or fail to test
the beliefs of a novice. This resulted in an additional "testing" mode of operation.

Furthermore, it is important to acknowledge the four possible cases when a novice
programmer inputs their code and description into TestPilot. Case 1 occurs when the code
and description are correct. Case 2 occurs when the code is incorrect but the description
is correct. Case 3 occurs when the code is correct but the description is incorrect. Case 4
occurs when both the code and description are incorrect.
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Code Description
Case 1 ✓ ✓
Case 2 ✗ ✓
Case 3 ✓ ✗

Case 4 ✗ ✗

Table 3.1: Possible cases for inputs being correct (✓) or incorrect (✗).

3.1.1 Testing mode

A novice programmer might be able to write a solution to a problem, but might not be
able to know if their code is correct. Although they might struggle with code as a novice,
they are less likely to struggle with natural language. Therefore, TestPilot takes a natural
language description of a test case and generates a test based on it. The generated test
may pass or fail, indicating to the novice if their code is performing as they describe in
natural language.

A card is shown in the sidebar showing this new test case, since it has been established that
novice programmers do not like large chunks of text. A test file is created which includes
the test case from the card, which can optionally be viewed by the novice programmer.
By not forcing a novice programmer to look at the entire solution immediately, they
are encouraged to explore the problem space and use the generated code as a learning
mechanism and not a copying and pasting mechanism. The code coverage of the test
case against the novice’s original code is shown in a progress bar to maintain a focus on
program coverage. This process is shown below in three main steps.

Figure 3.1: High-level system architecture for the "testing" mode in TestPilot.
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Step 1: The code and natural language description from the novice programmer is
passed by the Visual Studio Code extension to the Python Flask server via an API call.
The Python Flask server calls GPT-4 to transform the vague natural language description
to a concise test case. This is necessary because a novice programmer’s description will
be vague and possibly include words such as "I think". It is valuable to note that only
short textual descriptions are used for input and output with GPT-4 instead of lengthy
code snippets, since it is expensive but accurate compared to other models.

Step 2: After the vague description is sanitized with GPT-4, this test case is passed to a
GPT-3.5 Turbo model that is fine-tuned with synthetic data. When prompting GPT-3.5
Turbo, a known good working solution from a vector database is included if it exists
which is determined with a cosine similarity. This creates a "@Test" snippet which will
represent the test case implementation in code. It is valuable to note that lengthy code
generation is outsourced to cheaper fine-tuned models such as GPT-3.5 Turbo.

Step 3: The resulting "@Test" snippet is added to a test file using string manipulation
and compiled using Java and JUnit. The status of the test is stored, and code coverage
of the test file is calculated with JaCoCo. Finally, the testing file is formatted using
google-java-format before it is returned to the Visual Studio Code extension. When
returning the test file, the Python Flask server also returns the code coverage which is
shown in a progress bar and the status of the tests running which is shown as a green tick
or red box in the corner of the card displaying the test case.

Figure 3.2: A screenshot of "testing" mode in Visual Studio Code.

After this process is completed, the novice programmer may change the code and rerun it
to help them understand where they may have a gap in their understanding. Alternatively,
they can start over to generate a completely new test file. Through this mode of operation,
a novice programmer is able to test their beliefs using natural language to verify their
code does what they think it should.

3.1.2 Discovery mode

A novice programmer might be happy that their solution to a problem is correct, but
might not know how to formally test it by structuring it into test cases for the entire
problem. By providing a vague description of a test case, TestPilot can generate a suite of
test cases for the entire problem and show it in "blurred" cards, with the test case from
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the description being "unblurred". The novice programmer is encouraged to find all the
test cases by inputting more vague test cases to "unblur" more cards.

If the inputted test case is incorrect, no cards will "unblur" to inform the novice programmer
that their test case is not valid. A test file is created which includes the implemented code
for all the tests that will always pass, which can be viewed if the novice programmer is
unsure of more test cases at any point. By not displaying a large chunk of text, a novice
programmer is encouraged to explore the problem space as cards get "unblurred". The
code coverage of all generated tests ("unblurred" and "blurred") and the case coverage
("unblurred" only) are shown in progress bars to inform the novice if they are missing
more test cases. This process is shown below in three main steps.

Figure 3.3: High-level system architecture for the "discovery" mode in TestPilot.

Step 1: The code and natural language description from the novice programmer is
passed by the Visual Studio Code extension to the Python Flask server via an API call.
The Python Flask server calls GPT-4 to generate a list of N test cases in natural language
to cover the entire program space. While doing so, it is instructed to put an "(X)" beside
the element that relates closest to the novice programmer’s vague description. This acts
as a starting point to peak the curiosity of the novice programmer; this is the test case
which eventually will be shown as "unblurred" to the novice programmer, while the rest
remain "blurred". It is valuable to note that only a short description and list of test cases
is used for input and output with GPT-4 instead of lengthy code snippets, since it is
expensive but accurate compared to other models.

Step 2: After the receiving a list of N test cases with GPT-4, each test case is outsourced
to a separate fine-tuned GPT-3.5 Turbo inference. When prompting GPT-3.5 Turbo,
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a known good working solution from a vector database is included if it exists which is
determined with a cosine similarity. Each inference generates a separate "@Test" snippet
which will represent the test case implementation in code.

Step 3: The resulting "@Test" snippets are added to a test file using string manipulation
and compiled using Java and JUnit. The status of the tests are stored, and JaCoCo is
used to calculate the code coverage of the test file and the case coverage of the "unblurred"
test cases (which would have an "(X)" representing the novice’s description in the list
of test cases). Finally, the testing file is formatted using google-java-format before it is
returned to the Visual Studio Code extension to eliminate any potential indentation issues
from string manipulation. When returning the test file, the Python Flask server also
returns the code coverage and case coverage which are shown in progress bars and the
status of the tests running which will always show as a green tick in the corner of the
card displaying the test case since these tests always pass.

Figure 3.4: A screenshot of "discovery" mode in Visual Studio Code.

After this process is completed, the novice programmer may input more vague test cases
to "unblur" more test cases shown as cards, which is completed with another GPT-4
inference to add an "(X)" to the existing list of test cases. Alternatively, they can erase all
test cases shown as cards and start over to generate a completely new test file. Through
this mode of operation, a novice programmer can discover test cases formally and see
code implementations of these test cases. They can interactively unlock test cases by
"unblurring" them and can rest assured that they will pass.

3.2 Synthetic data generation

Fine-tuning is an expensive process which requires data that is unique and accurate. Ideal
data for fine-tuning requires a wide range of qualities in the data, which also follows the
format you require. Scraping data from online is not accurate all the time, but unique
data is hard to gather. A solution is to get another LLM to generate this data. This
section will discuss how GPT-3.5 Turbo was fine-tuned to create "@Test" snippets using
synthetic data that was generated by another LLM. The process of generating synthetic
data is shown below.

25



Figure 3.5: Synthetic data generation.

Microsoft’s methods2test dataset contains 780,944 pairs of focal methods and their
associated JUnit test methods from 91,385 open-source repositories [44]. However, this
data does not follow the strict coding guidelines which "@Test" snippets should ideally
have. Also, LLMs face hallucinations which causes incorrect code. A possible solution for
this is to convert a subsection of this dataset into simplified versions by using examples
from the dataset as a seed with zero-shot prompting and performing sanity checks to
ensure they are correct. Sanity checks can include compiling them and verifying they have
a code coverage over 70% with comments. These simplified pairs of focal methods and
test cases can be gathered to make a small but concise dataset for fine-tuning GPT-3.5
Turbo that is both unique (since it is inspired from open source repositories) but accurate
(since sanity checks are performed).

One of the cheapest models to use in the current market is Mistral 7B [45] which is already
fine-tuned to follow instructions with high accuracy. Therefore, it can be used to generate
simplified versions of focal methods and test methods from open source repositories.
However, it is computationally expensive to iterate through all entries in the methods2test
dataset. Research suggests that GPT-3.5 should be fine-tuned by using a small training
dataset, but this varies on the use case [46]. Datasets that are too big might catastrophic
forgetting where a model struggles to generalize outside the fine-tuning data. OpenAI
suggests that around 50 to 100 examples are sufficient [47]. To ensure that the model
learns from a consistent testing structure, TestPilot uses 100 examples because too few
examples have minimal effect and too many examples cause catastrophic forgetting.
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Using the test set in the methods2test dataset (which is 10% of the entire dataset), the
first tests in the first 100 repositories (when sorting them numerically by repository ID) are
used as 100 pairs of focal methods and test functions. Each pair requires two inferences to
generate a simplified focal method (based on the original focal method) and a simplified
test method (based on the simplified focal method but with a similar goal as the original
test method). The generated pair goes through sanity checks to ensure it compiles, has
code coverage greater than 70%, and uses a comment. Comments are verified through
regular expression checks in Python. If it fails the sanity check, the next entry is used
until 100 examples are collected in this way.

The temperature of the model is set to 0.7 to balance creative and accurate responses,
since research suggests that there is not a significant impact on problem-solving ability
when sampling temperatures from 0 to 1 for LLMs [48]. For this system, temperature
also does not have a massive impact, since all pairs go through sanity checks to ensure
they are correct.

3.3 Fine-tuning

GPT-3.5 Turbo (gpt-3.5-turbo-0125) and GPT-4 (gpt-4-0613) are accessed through
the OpenAI API [49]. API keys for OpenAI are stored locally in an .env.server
file. Mistral-7B (mistral-7B-instruct-v0.1) is accessed for synthetic data genera-
tion through the Anyscale API [50]. The API key for Anyscale is stored locally in an
.env.processing file. GPT-3.5 Turbo is fine-tuned on OpenAI’s platform [51]. The syn-
thetic data containing 100 examples is split into 80% for training (in fine-tuning.jsonl)
and 20% for validation (in validation.jsonl) for 3 epochs. This resulting fine-tuned
model is trained with 30,501 tokens and is able to create "@Test" snippets for test cases
using the strict coding guidelines that the synthetic data follows.

By fine-tuning GPT-3.5 Turbo with 100 novice-level "@Test" snippets which follow strict
coding guidelines, TestPilot is able to generate test cases that are consistent, suitably
documented and at a level that a novice programmer can understand. The aim of fine-
tuning is not to increase the knowledge base of GPT-3.5 Turbo, since that responsibility
is given to a vector database. The resulting "@Test" snippets will follow the behaviours of
the fine-tuning data, which in this case follow strict coding guidelines with an "Arrange,
Act, Assert" testing strategy, including comments in test functions, and using simple code
that does not have any unnecessary overhead such as external libraries that are not from
java.util, java.io or org.junit.

The fine-tuning procedure was completed with a training loss of 0.0009 which indicates
that the model fits the data very closely which is required for this use case. Novice
programmers need a consistent structure in their tests to learn from. It also had a
validation loss of 0.1735 and full validation loss of 0.1837 which suggests that the model is
performing moderately well at generalizing with unseen data. In the graph shown below,
it is evident that the training loss decreases over time which means the model is fitting
the data better over time.
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Figure 3.6: The fine-tuning procedure of TestPilot’s GPT-3.5 Turbo model with
steps on the x-axis versus training loss, validation loss and full validation loss on
the y-axis.

3.4 Prompt engineering

When prompting LLMs, few-shot prompting is used by TestPilot to increase the accuracy
of the model. This includes adding an example into the prompt to help the model
understand the context behind a question. TestPilot requires responses to follow a strict
format such as a list of test cases being numbered in a list or a "@Test" snippet including no
import statements or unnecessary text above or below the snippet. Zero-shot prompting is
effective, but it can lack accuracy without sanity checks. Alternatively, few-shot prompting
is 1 of the 26 prompting techniques which can improve the accuracy of responses [11].
Other prompting techniques which TestPilot uses are mentioned below.

• Assigning a role to the LLM as an "expert software tester" when generating a list of
test cases and as a "unit test assistant" when generating "@Test" snippets.

• Adding the intended audience by mentioning this is "for novice programmers".

• Adding "“I’m going to tip $100 for a better solution!" when asking an LLM to
generate a list of test cases to make them more accurate.

• Adding “You MUST” and “Your task is” when asking an LLM to generate a list of
test cases or a "@Test" snippet.

• Adding "Ensure that your answer is unbiased and avoids relying on stereotypes"
when sanitizing the novice programmer’s vague test case description to avoid an
LLM changing it to something else.

• Breaking down "complex tasks into a sequence of simpler prompts in an interactive
conversation" by asking GPT-4 to generate a list of test cases and GPT-3.5 Turbo
to generate a sequence of "@Test" snippets for example.

Apart from the techniques that were implemented, certain aspects of natural language
were avoided to increase the accuracy of responses which are mentioned below.
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• Avoiding negative language such as "do not" and replacing it with "do" instead.

• Avoiding unnecessary language to an LLM such as politeness with "I would like to"
or "thank you" and using the direct task instead.

The commonly known beginner fizzbuzz problem [52] is used in TestPilot when prompting
an LLM with few-shot prompting. For example, few-shot prompting is used when
prompting GPT-4 to create a list of test cases. The code for fizzbuzz, a test case for
fizzbuzz in natural language, and a list of test cases for the entire problem are supplied in
the prompt. An example is shown below for a novice programmer using TestPilot when
testing a Fibonacci sequence program.

Question:
<ASSERT_ROLE_OF_MODEL>

Question:
The code is <FIZZBUZZ_CODE>. A possible test case is <DIVISIBLE_BY_3>. Create a list of test
cases in English for 100% code coverage with an "(X)" on an element if it matches the possible test case.

Question:
1. If the input is divisible by 3 and 5, return "fizzbuzz".
2. If the input is divisible by 3, return "fizz" (X).
3. If the input is divisible by 5, return "buzz".
4. If the input is not divisible by 3, 5 or both, return the input number.

Question:
The code is <NOVICE_FIBONACCI_CODE>. A possible test case is
<NOVICE_DESCRIPTION_TESTING_ZERO>. Create a list of test cases in English for 100%
code coverage with an "(X)" on an element if it matches the possible test case.

Answer:
1. Input 0 should return 0 (X).
2. Input 1 should return 1.
3. Input 10 should return 34.

Figure 3.7: Prompting GPT-4 with few-shot prompting for a list of test cases.

A similar order of prompts are used for prompting GPT-3.5 Turbo to generate "@Test"
snippets, except that they also include a known good working solution from a vector
database. Through this approach, GPT-3.5 Turbo benefits by using a known good working
solution, few-shot prompting to understand the ideal format of a response, and prompt
engineering techniques which were mentioned previously.

Examples from fizzbuzz are included in the prompt to generate a "@Test" snippet since
it serves as a solid foundation for the LLM to use as an example. It contains relatively
few test cases while also containing multiple implementations (such as iterating from 1
to N or simply using one integer). Few-shot prompting with fizzbuzz aligns the model
to generate a test case for a specific version of fizzbuzz and the model follows with this
format when prompted with the code from a novice programmer as shown below.
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Question:
<ASSERT_ROLE_OF_MODEL>

Question:
To help you create the 1 @Test you need, here is an entire testing file to help you create 1 test function to
improve your knowledge base: <SIMILAR_SOLUTION_IN_VECTOR_DATABASE>.

Question:
The code is <FIZZBUZZ_CODE>. The test case to implement is <TEST_CASE_DIVISIBLE_BY_3>.
Create an @Test function for this test case.

Question:
<TEST_SNIPPET_DIVISIBLE_BY_3>

Question:
The code is <NOVICE_FIBONACCI_CODE>. The test case to implement is
<TEST_CASE_FOR_INPUT_ZERO>. Create an @Test function for this test case.

Answer:
<TEST_SNIPPET_FOR_INPUT_ZERO>

Figure 3.8: Prompting GPT-3.5 Turbo with few-shot prompting for a "@Test" snippet.

3.5 Vector database

A vector database can contain known good working solutions to help improve the knowledge
base of an LLM. Successful test files are appended to the database for improving the
knowledge of future LLM inferences. Data is stored as embeddings to capture the semantic
meaning behind the data instead of comparing exact text. AstraDB from DataStax [53] is
used as a vector database, which gives each entry an ID. The code file, test file and code
coverage from every successful test file is added. The code file is converted to an embedding
vector using OpenAI’s text-embedding-3-small model [54]. When generating a "@Test"
snippet, the cosine similarity is used to find how similar the embedding of the novice
programmer’s code is to an embedding of an existing code file in the vector database
which has an associated known good working testing file. The required keys for accessing
the vector database are stored in an .env.server file.

$vector id code tests code_coverage
[0.01277..., ] d354... public... import... 82%
[0.01542..., ] a893... package... package... 73%
[0.01914..., ] g926... import... import... 76%
...

...
...

...
...

En
tr

ie
s

Attributes of every entry

AstraDB

Figure 3.9: Attributes in the vector database for known good working solutions.
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This known good working testing file is added into the prompt when generating a "@Test"
snippet to increase the chance of a successful test case, since the LLM has an example
when generating a new solution. TestPilot uses a cosine similarity of 0.8 as the threshold
to acknowledge if an entry in the database is relatively similar to the code from a novice
programmer. This value was used as it balances the success from solutions being similar
enough and the failure from solutions not being similar enough. From all the entries that
have a cosine similarity of 0.8 or higher, the entry with the highest is used. If no entry
has a cosine similarity greater than 0.8, no known good working solution is added to the
prompt, and only few-shot prompting with fizzbuzz as an example is used instead.

Figure 3.10: TestPilot’s AstraDB vector database from DataStax.

An interesting point to note is that, as this vector database is populated, the responses
from TestPilot will become more accurate. A wide range of novice code and correct test
code can be filled in the vector database. Therefore, novice programmers will benefit more
as the database becomes more rich with examples. This is a unique feature since it has
the potential to get better over time, since previously successful tests are appended to the
vector database which is continuously populated by many novice programmers.

3.6 Backend Python Flask server

The Python Flask server performs the necessary logic to turn the inputs of TestPilot into
outputs that are sent back to the Visual Studio Code extension. The server uses the
OpenAI client to make API calls to GPT-4 and GPT-3.5 Turbo. The OpenAI client is
also used to make API calls to Mistral 7B since the Anyscale platform is compatible with
the same client. The server contains a variety of JAR files for performing operations such
as a JUnit JAR for running tests [55], a JaCoCo JAR for calculating code coverage [56],
and a google-java-format JAR for formatting the resulting testing file [57].

The server contains 2 endpoints for the Visual Studio Code extension to utilize. These
endpoints are called when a novice programmer presses the "Generate" button on the
Visual Studio Code extension. These endpoints represent the 2 modes of operation that
TestPilot offers which are shown below.
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• /testpilot/testing → "Testing" mode of operation.

◦ Parameter: code → Code from an opened file on Visual Studio Code.

◦ Parameter: description → Natural language description of a test case.

• /testpilot/discovery → "Discovery" mode of operation.

◦ Parameter: code → Code from an opened file on Visual Studio Code.

◦ Parameter: description → Natural language description of a test case.

◦ Parameter: testCode → Test file contents on Visual Studio Code.

◦ Parameter: testCases → Test cases in cards on Visual Studio Code.

◦ Parameter: knownTestCaseIndices → Indices of discovered test cases.

When these endpoints are called, the server completes API calls to OpenAI’s endpoints
using research-driven prompt engineering. GPT-4 is called first to either generate a concise
test case in "testing" mode or to generate a list of test cases in "discovery" mode. A
fine-tuned GPT-3.5 Turbo model is subsequently called to generate a "@Test" snippet of
the test case. When prompting GPT-3.5 Turbo, a known good working solution from the
vector database is added if it exists. The server finds a potential known good working
solution by performing a vector search on the vector database to find an entry with a
cosine similarity greater than 0.8 compared to the novice programmer’s code.

The generated "@Test" snippets from the LLM inferences are combined into one file with
correct class encapsulation using string manipulation. The same package name from the
original code is added with the necessary imports so that the new test file compiles. To
cover all novice cases, the following imports are added using wildcards:

• import java.util.*; → Covering utility classes and interfaces.

• import java.io.*; → Covering input and output operations.

• import org.junit.* → Covering JUnit’s annotations and assertion methods.

• import static org.junit.jupiter.api.Assertions.*; → Covering JUnit 5’s
assertion methods without the need to prefix them.

Subsequently, the class of the new test file uses the name of the original class from the
novice programmer’s code and appends "Test" to it. The compilation of Java files on the
server is completed by creating temporary Java files and writing the generated tests into
the files. After compiling and running the tests, the generated .java and .class files are
deleted. After running JaCoCo, generated code reports are also deleted including .exec
and .csv files.

These files are also deleted when performing sanity checks on synthetic data for fine-
tuning. When generating synthetic data, the server iterates through the test set in the
methods2test dataset and creates temporary files for the "@Test" snippets from Mistral
7B which are added to a class with string manipulation and deleted after the files are
compiled and run.

The endpoint for the "testing" mode in TestPilot at /testpilot/testing returns a JSON
response with the following attributes:
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• descriptions → Test case in natural language.

• tests → Test code that was generated.

• codeCoverage → The code coverage of the test code.

• vectorDatabaseCoverage → The code coverage of a similar solution in a vector
database if it exists.

• testStatus → A boolean representing whether the test case passed or failed.

The endpoint for the "discovery" mode in TestPilot at /testpilot/discovery returns a
JSON response with the following attributes:

• descriptions → Test cases in natural language.

• tests → Test code that was generated.

• codeCoverage → The code coverage of the test code.

• vectorDatabaseCoverage → The code coverage of a similar solution in a vector
database if it exists.

• caseCoverage → The case coverage of the discovered tests.

• testFunctionNames → Names of all functions in the generated test file.

• indexOfDescriptionFromNovice → The index of the test case from the novice.

These JSON responses are subsequently used by the Visual Studio Code extension to
visualize the response from the LLM in an educational user interface using cards, buttons,
and code implementations in the background.

3.7 Frontend Typescript Visual Studio Code exten-
sion

The Visual Studio Code extension provides an interface for a novice programmer to view
and interact with the output of an LLM. On startup, the novice programmer chooses a
mode of operation from the switch in the sidebar.

Figure 3.11: Switch in TestPilot to choose the mode of operation.

Subsequently, a novice programmer inputs a vague natural language description into the
input text box and presses "Generate" to explore a new test suite. The Axios library [58]
calls the correct endpoint on the server depending on the chosen mode of operation.
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Figure 3.12: Text input box in TestPilot to input a natural language description.

The natural language description of a test case and a snapshot of the file currently open on
Visual Studio Code is sent to the server. When a response is received from the server, the
Visual Studio Code extension visualizes the data in the JSON response using Microsoft’s
Fluent UI library [59] to render cards and buttons. In "testing" mode, a singular card
is added to the sidebar representing a test case from the novice programmer’s natural
language description which may pass or fail.

Figure 3.13: Failed test in "testing" mode.

Subsequently, a novice programmer can change the code implementation to make this
test pass. Alternatively, a novice can restart by selecting the "explore new test suite"
dropdown option to generate a test case for a new vague description. Either way, the
generated tests are automatically placed in a testing file located in a "test" folder.
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Figure 3.14: Code implementation of a generated test case.

If a novice programmer sees a failing test case in "testing" mode, they can attempt to fix
the test and rerun the code in Visual Studio Code to learn from their mistakes.

Figure 3.15: Changing a failing test to make it pass.

In "discovery" mode, all test cases for the entire program space are shown in cards which
are "blurred", with the test case that matches closest to the novice programmer’s input
being "unblurred" to give the novice programmer an initial start for exploration.
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Figure 3.16: "Blurred" and "unblurred" test cases in "discovery" mode.

More test cases can be inputted to "unblur" more cards if the natural language description
matches the test case. If the description does not match, nothing will be "unblurred".

Figure 3.17: "Unblurring" a test case in "discovery" mode.
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The Visual Studio Code extension shows progress bars for code coverage in "testing" mode,
but also shows the case coverage of the "unblurred" cards in "discovery" mode. This helps
a novice programmer understand how much of the program has been explored. A tooltip
shows the code coverage of a similar solution from a vector database if it exists.

Figure 3.18: Code coverage and case coverage in progress bars.

These two modes of operation with the use of cards, progress bars and code implementations
makes an effective Visual Studio Code extension that helps novice programmers learn how
to test using helpful test cases that are consistent, correct, and educational.
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4 Evaluation

It has been established that TestPilot aims to improve the cost, correctness, and educational
benefit of generated tests for novice programmers because there is a need to do so. This
need is satisfied through the intricate design of TestPilot. To test this hypothesis, internal
and external evaluations can be completed. Internal evaluations include verifying if prompt
engineering, fine-tuning and embeddings improve the generated tests and if so, examining
how much they improve the generated tests by.

External evaluations include verifying whether the generated tests from TestPilot are
better than a single prompt to ChatGPT. The improvement of tests can be evaluated
in the context of cost (from the number of tokens used), correctness (semantically and
syntactically) and educational benefit (from adequate documentation). This chapter will
perform these internal and external evaluations through the use of metrics, a performance
analysis and a cost analysis to make an overall judgement on the efficacy of TestPilot.

4.1 Evaluation dataset

A sequence of 50 source code files were allocated to prompt TestPilot and ChatGPT
with. This evaluation dataset consists of 20 Leetcode "easy" problems [60], 17 questions
from Exercism.org [61], and 13 questions from the module Introduction to Programming
I (CSU11011) at Trinity College Dublin [62]. These code files were chosen since they
represent the type of problems that a novice programmer would typically solve. For
each of the 50 code files, a beginner natural language description was mapped to it to
describe a test case which could be right or wrong. The first 25 code files were mapped
to a description which was correct and subsequently should create a passing test. The
remaining 25 code files were mapped to a description which was wrong and subsequently
should create a failing test.

These 50 code files and 50 natural language descriptions were placed in an evaluation.json
file to iterate through when prompting. When running the evaluation dataset against
TestPilot, the backend server internally calls the testpilot/testing endpoint for the
"testing" mode of operation to prompt with the evaluation dataset. The "discovery" mode
of operation is not called, since the "testing" and "discovery" modes of operation both
use the same underlying mechanism to generate a "@Test" snippet from a fine-tuned
GPT-3.5 model that uses prompt engineering and embeddings; this mechanism is the
focus of the evaluation dataset. Furthermore, 25 source code files have descriptions which
are correct and should result in correct tests, therefore the underlying mechanism behind
the "discovery" mode of operation is already tested in this way.
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The difference between the modes of operation is that "testing" mode generates a single
test case based on a natural language description which may pass or fail, and "discovery"
mode generates test cases for the entire program space which aim to always pass. By
only calling the "testing" endpoint, the evaluation dataset is effectively testing how well
the system can convert a vague natural language description into an accurate test case
in code. When running the evaluation dataset against ChatGPT, all 50 source files and
descriptions were manually passed into the online ChatGPT interface [63]. Regardless of
the description or mode of operation, the resulting tests should compile.

The goal of the evaluation dataset is to evaluate the overall operation of TestPilot by
testing how well a natural language description can be converted to a test case which
compiles and has adequate documentation. It is important to note that an evaluation
dataset for evaluating any LLM will have bias, since different questions which are not in
the evaluation dataset might lead to different results. The current evaluation dataset tries
to minimize this bias by gathering source code files from various sources. Furthermore,
different inferences with the same evaluation dataset will have slightly different results,
since LLMs respond differently across different inferences with the same prompt. Therefore,
the evaluation dataset must be used to discuss the general trends in the results rather
than focusing on exact figures which may change across inferences.

4.2 Metrics

During internal evaluations, the generated tests will be tested with the default TestPilot
system including prompt engineering, fine-tuning and embeddings, and subsequently
tested after removing each technique from the system to examine the impact it had.
During external evaluations, TestPilot and ChatGPT will be examined with the evaluation
dataset where an additional cost analysis will be performed. The improvement of tests is
evaluated in the context of cost, correctness and educational benefit.

For examining correctness, the internal and external evaluation will record the compi-
lation rate (how many of the generated tests compile) and test accuracy rate (how
many of the generated tests accurately passed or failed depending on the natural language
description). For examining the educational benefit, the internal and external evaluation
will record the documentation rate (how many of the generated tests have comments).
For examining cost, the external evaluation will include a cost analysis to examine the
cost of TestPilot versus ChatGPT for the tokens used. ChatGPT is currently free for
users, so the cost of the underlying GPT-3.5 model that powers ChatGPT will be used in
place of this to represent the true cost. When prompting ChatGPT or using TestPilot
without prompt engineering, the prompt shown below was used.

Question:
My code is <SOURCE_CODE>. I think <DESCRIPTION>. Create a JUnit test that can pass or fail to
test this belief.

Answer:
<@TEST_SNIPPET>

Figure 4.1: Prompts for ChatGPT or TestPilot with no prompt engineering.
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4.3 Interval evaluation

This section will perform an internal evaluation of TestPilot to examine how much each
technique used by TestPilot improves the generated tests. The attributes of improved
tests include the compilation rate, test accuracy rate, and the documentation rate. The
sequence of 50 source code files and descriptions from the evaluation dataset was passed
to the "testing" mode of operation in TestPilot with the default setup (using prompt
engineering, fine-tuning and embeddings) and subsequently without each of prompt
engineering, fine-tuning and embeddings. It is important to note that the compilation
rate, test accuracy rate, and documentation rate varied across multiple runs with the
evaluation dataset since LLMs return different results across different inferences. However,
the general trends from multiple runs are recorded and discussed below.

4.3.1 Prompt engineering

The evaluation dataset was used on the default TestPilot system and also after removing
prompt engineering techniques to show the effects on the responses. The results are
recorded below in terms of the compilation rate, test accuracy rate and documentation
rate.

Default TestPilot Without prompt engineering

Compilation rate 94% (47
50

) 62% (31
50

)

Test accuracy rate 78% (39
50

) 58% (29
50

)

Documentation rate 96% (48
50

) 90% (45
50

)

Table 4.1: Metrics of tests using TestPilot with and without prompt engineering.

Figure 4.2: Grouped bar chart visualizing the metrics of tests using TestPilot
with and without prompt engineering.
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From these results, it is clear that the compilation rate and test accuracy rate decrease
significantly without prompt engineering. Prompt engineering improved the chance of
tests compiling by 32% which can be explained by the use of few-shot prompting with
the fizzbuzz example using the correct identifier when calling the function in the format
class_name.function(). Without this, the system often created function calls with no
references to where it was coming from or making up a random function, causing compiler
errors from random_class.function() or simply incorrect_function_name().

Prompt engineering increased the test accuracy rate by 20% which can be explained by
prompting techniques such as "Ensure that your answer is unbiased and avoids relying on
stereotypes". The lack of these prompts caused the system to create incorrect tests based
on the natural language description. Prompt engineering increased the documentation
rate by only 6%. This marginal increase can be accounted for by the few-shot prompting
example with fizzbuzz which includes useful comments above and inside functions.

4.3.2 Fine-tuning

The evaluation dataset was used on the default TestPilot system and also after removing
fine-tuning to show the effects on the responses. The results are recorded below in terms
of the compilation rate, test accuracy rate and documentation rate.

Default TestPilot Without fine-tuning

Compilation rate 90% (45
50

) 86% (43
50

)

Test accuracy rate 82% (41
50

) 74% (37
50

)

Documentation rate 92% (46
50

) 56% (28
50

)

Table 4.2: Metrics of tests using TestPilot with and without fine-tuning.

Figure 4.3: Grouped bar chart visualizing the metrics of tests using TestPilot
with and without fine-tuning.
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From these results, it is evident that the compilation rate and test accuracy rate only
decreased slightly without fine-tuning. Fine-tuning improved the chance of tests compiling
by 4% and the chance of a natural language description becoming an accurate test by 8%.
These increases are marginal because fine-tuning does not aid the system in terms of its
knowledge base. The main benefit from fine-tuning is that an LLM learns the ideal format
of responses which includes stylistic behaviours. Therefore, these increases are insignificant
and can occur because of LLMs responding differently to the same prompt.

However, the documentation rate increased by 36% with fine-tuning. This significant
improvement is justified by the stylistic and behavioural improvements from fine-tuning.
Fine-tuning was completed with synthetic data that contained comments above every
function and inside each function, which followed an "Arrange, Act, Assert" testing
strategy with comments for each step. This format in the fine-tuning data improved the
rate of documentation significantly when using the fine-tuned GPT-3.5 Turbo model.

4.3.3 Embeddings

The evaluation dataset was used on the default TestPilot system and also after removing
embeddings to show the effects on the responses. The results are recorded below in terms
of the compilation rate, test accuracy rate and documentation rate.

Default TestPilot Without embeddings

Compilation rate 92% (46
50

) 88% (44
50

)

Test accuracy rate 74% (37
50

) 74% (37
50

)

Documentation rate 94% (47
50

) 92% (46
50

)

Table 4.3: Metrics of tests using TestPilot with and without embeddings.

Figure 4.4: Grouped bar chart visualizing the metrics of tests using TestPilot
with and without embeddings.
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From these results, it is clear that the documentation rate and compilation rate increase
marginally with embeddings. These small increases can be accounted for by the addition
of code files and test files from the evaluation dataset into the vector database. Across
50 inferences using the evaluation dataset, the inferences from the end of the evaluation
dataset benefited from known good working solutions from previous inferences, which
improved the compilation rate by 4% and the documentation rate by 2%. However, it is
important to note that these are small increases which can also be accounted for by the
LLM giving different responses across different inferences, meaning they are not majorly
significant.

The test accuracy rate remained the same with and without embeddings, which can be
explained by the fact that embeddings do not improve the system’s conceptual reasoning
to create a correct test for the novice. The test file from the most similar source code in the
vector database is added into the prompt, which does not have an impact on test accuracy
since the source code files in the evaluation dataset deal with varying concepts that are
not shared (unlike the shared syntax and comments which improved the compilation rate
and documentation rate respectively).

4.4 External evaluation

This section will perform an external evaluation of TestPilot to examine how well it
performs to an alternative standard LLM. ChatGPT uses GPT-3.5 to answer questions,
which is viable to use for comparing the improvement of generated tests. The attributes
of improved tests include the compilation rate, test accuracy rate and the documentation
rate. The sequence of 50 source code files and descriptions from the evaluation dataset was
passed into the "testing" mode of operation in Testpilot and subsequently into the online
interface for ChatGPT. Furthermore, the average tokens used for input was calculated to
perform a cost analysis between TestPilot and ChatGPT, where the costs for GPT-3.5
Turbo used in place of ChatGPT to determine the true cost.

4.4.1 ChatGPT

The evaluation dataset was used on the default TestPilot system and also on ChatGPT
to examine the improvement of tests. The results are recorded below in terms of the
compilation rate, test accuracy rate and documentation rate.

TestPilot ChatGPT (powered by GPT-3.5)

Compilation rate 90% (45
50

) 62% (31
50

)

Test accuracy rate 80% (40
50

) 54% (27
50

)

Documentation rate 94% (47
50

) 64% (32
50

)

Table 4.4: Metrics of tests using TestPilot and ChatGPT.

From these results, it is clear that the compilation rate, test accuracy rate and documen-
tation rate all increase with TestPilot. The compilation rate increased by 28% which
can be explained by the addition of import statements and class encapsulation using
string manipulation for the outputs of LLM inferences. Furthermore, known good working
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solutions from the vector database also increased the compilation rate, since the correct
identifiers and function usage from previous solutions helped with syntax.

Figure 4.5: Grouped bar chart visualizing the metrics of tests using TestPilot
and ChatGPT.

The use of prompt engineering also impacted the test accuracy rate which increased by
26%. Prompt engineering increased the test accuracy rate by specifying that the model
should avoid bias, and also effectively convert natural language descriptions into code
implementations through prompts such as "I’m going to tip $1000 for a better solution!".
The documentation rate increased by 30% which can be explained by the fine-tuned
GPT-3.5 Turbo model which was trained on synthetic data that followed strict coding
guidelines. The synthetic data contained comments above each function and comments
for the steps in the "Arrange, Act, Assert" testing strategy.

The accuracy recorded by ChatGPT in this evaluation aligns with the accuracy reported
by current literature which reaffirms the validity of the evaluation dataset [34]. It is
evident from this evaluation that ChatGPT often ignores the context of code snippets,
leading to almost half of the resulting tests not compiling. Furthermore, conceptual
reasoning is lacking in ChatGPT, resulting in only 54% of tests being what the novice
programmer intended to test from their vague natural language description. From the
improvements mentioned previously, it is clear that TestPilot improves compilation and
documentation by a significant margin and the test accuracy by a moderate margin.

4.4.2 Cost analysis

The cost of tokens from LLM usage is an important metric since it shows if a system is
financially viable. Since LLMs output different responses across different inferences, this
cost analysis will avoid the discussion of output token lengths since this can change highly.
Instead, this cost analysis will discuss the token usage from cost of input tokens since this
is a stable metric which can be evaluated from the evaluation dataset. This stable metric
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will explain the extra costs that TestPilot requires. It is important to note that TestPilot
uses multiple inferences across GPT-4 and GPT-3.5 Turbo to develop tests, whereas
ChatGPT only uses GPT-3.5. Input tokens include a novice natural language description,
novice code, and prompt engineering from techniques such as few-shot prompting. This
analysis aims to decide if the extra costs from splitting the logic across multiple inferences
is worth it for the improvements in tests mentioned previously. The current price for
GPT-4 is $0.03/1000 input tokens. The current price for GPT-3.5 Turbo is $0.0005/1000
input tokens. ChatGPT uses GPT-3.5 but OpenAI currently does not offer this model
directly from an API any more, therefore it is plausible to use the price of GPT-3.5 Turbo
in place of this which is $0.0005/1000 input tokens. The average tokens and average input
cost is displayed below for the evaluation dataset.

TestPilot ChatGPT

Average GPT-4 input tokens 1402 0

Average GPT-3.5 Turbo input tokens 2227 854

Average input cost per test $0.0431 $ 0.0004

Table 4.5: Evaluating the average cost of input with TestPilot and ChatGPT.

The average cost for GPT-4 input in TestPilot includes 63 tokens on average from the
descriptions in the evaluation dataset and 1339 tokens from the prompt engineering
required which totals to 1402. The average cost for GPT-3.5 Turbo in TestPilot includes
698 tokens on average from the code in the evaluation dataset and 1529 tokens from the
prompt engineering required which totals to 2227. Therefore, the total cost of input tokens
for TestPilot is (1402

1000
×0.03)+(2227

1000
×0.0005) ≈ 0.0431. The average cost of GPT-3.5 Turbo

in ChatGPT includes 63 tokens on average from the descriptions in the evaluation dataset,
698 tokens on average from the code in the evaluation dataset and around 93 tokens for
a standard prompt which is mentioned in figure 4.1 which totals to 854. Therefore, the
total cost of input tokens for ChatGPT is 854

1000
× 0.0005 ≈ 0.0004.

These results show that ChatGPT is extremely cheap for inputting the standard prompts
and completing all test generation in one inference. However, it has been established
that this leads to unsuitable tests that are inconsistent, incorrect, or non-educational.
These results show that TestPilot is around 10 times more expensive for input tokens,
but this price is also extremely cheap since the original cost was small to begin with.
This highlights that the improvement in tests comes at a price, but this is worth it since
TestPilot offers a 36% improvement in compilation, an 18% improvement in test accuracy
and a 30% improvement in documentation as mentioned in the previous subsection. It is
clear that the additional benefits from this small cost are justified from the educational
benefit that follow.

This cost analysis discussed the input tokens required to effectively transfer information
from a novice into large language models. TestPilot was around 10 times more expensive,
but this was because the original cost of an inference was extremely cheap. TestPilot
requires extra tokens because it splits the required logic into various inferences. It is
valuable to note that future implementations of TestPilot may include further costs.
For example, AstraDB is free for up to 80 GB of embeddings, and the generation of
synthetic data was also free from the $10 free credits on Anyscale for Mistral 7B which
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costs $0.15/million tokens. Furthermore, the conversion of text to embeddings with
text-embedding-3-small from OpenAI costs $0.00002/1K tokens, however this is too
insignificant to make a difference and is justified from the small increase it provides in the
compilation rate by 4%.

4.5 Conclusion

TestPilot was evaluated internally to validate if parts of the system improve the effectiveness
of the generated tests. It was found that prompt engineering increased the compilation
rate of tests by 32%, the test accuracy rate by 20% and the documentation rate by 6%.
This suggested that prompt engineering affects the compilation of tests and accuracy of
tests the most because of the model being prompted using few-shot prompting which
contains a structure of a test that will compile as well as requesting that the model is
unbiased in its responses. However, prompt engineering did not significantly improve the
documentation of tests, since this it does not impact the stylistic behaviour of responses
as much as fine-tuning does.

Fine-tuning increased the compilation rate by 4%, the test accuracy rate by 8% and
the documentation rate by 36%. This suggested that fine-tuning improves the ability of
an LLM to respond with consistent comments that document the code. However, the
compilation rate and test accuracy were not improved by a large factor, since fine-tuning
does not improve the knowledge or conceptual reasoning of an LLM. Embeddings improved
the compilation rate by 4%, the test accuracy rate by 0%, and the documentation rate
by 2%. This suggested that embeddings do not result in massive improvements in tests,
however they do result in small improvements which are justified from the minor costs
that are associated with them.

TestPilot was evaluated externally to validate if the system was effective compared to a
single prompt to ChatGPT. It was shown that TestPilot improves the compilation rate by
28%, the test accuracy rate by 26% and the documentation rate by 30%. This suggested
that TestPilot provides tests that are more usable by novice programmers because they are
more correct and documented. The costs of TestPilot were analysed, and it was 10 times
more expensive on average for input tokens compared to ChatGPT. This suggested that
the improvements in the generated tests comes at a price, relating heavily to the commonly
known "no free lunch" theorem that was popularized for optimizations in machine learning
[64]. This extra cost was justified because of the massive improvements in the generated
tests which was mentioned previously. In combination with the educational layout of
TestPilot, this evaluation suggests that TestPilot is an efficient system that is cost-effective
in return for the improvements in tests that it offers.
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5 Conclusion

This dissertation has established that novice programmers are unable to use tests found
online because they are inconsistent, incorrect, or non-educational. It has also established
that standard LLMs face the same issues from online searches because of their training
data containing complex code, a lack of context from a novice programmer’s messy code,
and hallucinations causing incorrect tests. To solve this, this dissertation introduced
TestPilot, a Visual Studio Code extension for teaching novice programmers how to write
JUnit tests in Java. By inputting a vague natural language description of your code, it
returns high-quality JUnit test cases which are semantically and syntactically correct, at
an appropriate level for a novice programmer, and written in a consistent style that is
suitably documented.

TestPilot introduced two modes of operation, a "testing" mode for testing the beliefs of a
novice programmer by generating a single test which may pass or fail, and a "discovery"
mode for generating a suite of tests for the entire program space. By using a strategic
sequence of LLM inferences with prompt engineering, fine-tuning, and embeddings, Test-
Pilot converts a vague natural language description into test cases in code that have a
higher chance of compiling, testing the intended logic from a vague prompt, and including
documentation alongside code through comments. Compared to a single prompt to
ChatGPT, TestPilot increased the compilation rate by 28%, the test accuracy rate by
26%, and the documentation rate through comments by 30%.

5.1 Reflection

Upon reflection, the development of TestPilot was a difficult process that involved many
challenges. The development of TestPilot started by gaining an understanding of how
LLMs work and how novice programmers can utilize them from current literature. This
initial period of understanding how LLMs can be adapted for novice programmers was
a vital but demanding step, since artificial intelligence is a constantly changing area.
For example, OpenAI posted 28 updates on their blog over the course of TestPilot’s
development [65]. Adapting to new updates and current research was a demanding but
important part of developing TestPilot.

In retrospect, the process of constantly updating TestPilot was also a vital part of
TestPilot’s development. An initial version 1 was developed which made simple API calls
to GPT-4 to generate tests for the entire program space with only prompt engineering.
This was not cost-effective and did not provide novice-level code that was consistently
documented. Subsequently, a version 2 was developed which outsourced lengthy code
generation to a fine-tuned GPT-3.5 Turbo model that used embeddings which was cost-
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effective and generated code at a novice-level with consistent comments for documentation
while improving over time with known good working solutions. Finally, a version 3 was
implemented after the initial presentation for TestPilot which suggested that a "testing"
mode of operation should exist to generate tests that may pass or fail to test the beliefs of
a novice programmer. This iterative development process which involved producing new
versions based on results and feedback was challenging but also rewarding. Ultimately,
constantly adapting to new research and opinions was the biggest challenge, but this also
made it an enjoyable experience.

5.2 Successes

The development of TestPilot resulted in a number of accomplishments which made it
ultimately successful. The educational user interface in TestPilot was successful because
it implemented advice from current literature which suggested that novice programmers
do not like large chunks of text which simply hand over the entire solution. Subsequently,
the use of cards, progress bars showing code coverage, and code implementations in a
testing file in the background were successful aspects of TestPilot’s design which resulted
from using current literature.

TestPilot was successful at implementing useful features for novice programmers, such
as a "testing" and "discovery" mode of operation. The use of feedback from the initial
presentation resulted in developing various modes of operation. Generating tests that
may pass or fail in "testing" mode helps novice programmers who are unsure if their
code works as intended, and wish to test it using natural language as the source of truth.
Generating a suite of tests for the entire program space in "discovery" mode helps novice
programmers who wish to explore all possible test cases by using their code as the source
of truth. These modes of operation made TestPilot suitable for novice programmers who
have different learning goals, and ultimately made it more successful.

In terms of metrics, TestPilot improved compilation of tests by 28% and test accuracy by
26% which was done through research-driven prompt engineering to aid class encapsulation
and correct function calls. TestPilot also improved the rate of documentation using
comments by 30% which was done through fine-tuning to aid in the stylistic behaviour
of responses which also made them a novice-level. The use of embeddings improved the
overall rate of compilation and test accuracy, leaving a potential for responses to get better
over time. Overall, TestPilot uses artificial intelligence techniques to make the process of
learning software testing easier for novice programmers, which makes it successful.

5.3 Future work

This section will outline potential work which can be completed in the future as a result
of reflecting on TestPilot and its successes. Prompt engineering and fine-tuning had
significant improvements on the compilation rate, test accuracy rate, and documentation
rate of generated tests. However, embeddings only improved these metrics by a small
margin. The costs of embeddings were minimal for vector databases as mentioned in the
cost analysis, therefore the use of embeddings was justified for TestPilot since any increase
in the metrics mentioned previously was welcomed. However, there is a potential to expand
on this work by populating the vector database with more known good working solutions,
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depending on the use case of a novice programmer. For example, lecturers or teaching
assistants teaching a programming module may populate the vector database with known
good working solutions from previous academic years, which may help students gain from
bigger increases in the metrics mentioned previously. There is a potential for future work
on the implementation and usage of vector databases being adapted to specific use cases
in software testing education.

Furthermore, TestPilot focused on using relatively popular LLMs such as OpenAI’s GPT-
3.5 Turbo and GPT-4. However, lesser known LLMs were also used, such as Mistral 7B
for the generation of synthetic data. There is a potential to use alternative LLMs in the
future as more LLMs are released in the future with better conceptual reasoning abilities.
For example, OpenAI’s current CEO Sam Altman has confirmed that GPT-5 will be
released in the near future. Future iterations of interfaces that teach software testing
using LLMs may not require intensive prompt engineering, since LLMs in the future will
get better at understanding the context behind a prompt without needing to prompt it in
a particular format.

Fine-tuning was an essential part of making TestPilot generate tests at a novice-level
that were suitably documented. Future work may involve using alternative datasets to
use as fine-tuning data. TestPilot used synthetic data that was generated by another
LLM, however this data could be swapped for alternative data depending on the testing
strategies and coding guidelines the novice programmer should learn from. For example,
a lecturer or teaching assistant could use data from a marking scheme which uses the
"ideal" style of code they wish their students would follow.

Finally, future work may also involve creating a unit test assistant using LLMs for other
programming languages. TestPilot focused on Java since it is one of the most popular
programming languages used by novice programmers. There is a potential to create an
alternative interface that works for other programming languages such as Python. A
challenge with alternative languages is that there may be various testing frameworks that
are commonly used. Therefore, a decision must be made to support multiple testing
frameworks or a single testing framework. Nonetheless, it serves as an opportunity to
transfer the benefits offered in TestPilot to different programming languages for novice
programmers learning software testing.
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A Appendix

A.1 TestPilot frontend source code

Source code for the frontend Visual Studio Code extension can be found at https:
//github.com/saisankp/TestPilot/tree/main/TestPilot.

A.2 TestPilot backend source code

Source code for the backend Python Flask server can be found at https://github.com/
saisankp/TestPilot/tree/main/server.

A.3 Evaluation dataset

The evaluation dataset for TestPilot can be found at https://github.com/saisankp/
TestPilot/tree/main/server/evaluation/dataset.

A.4 Evaluation results

The evaluation results can be found at https://github.com/saisankp/TestPilot/tree/
main/server/evaluation/results.
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