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Abstract As machine learning models become more prevalent in our lives and take on
critical decision-making roles across various sectors of society, ensuring their decisions are
not only accurate but also fair has become ever more crucial.

This paper focuses on individual fairness in Bayesian Neural Networks (BNNs). In-
dividual fairness ensures that similar individuals receive similar outcomes by a model.
Specifically, we undertake the definition of ϵ − δ individual fairness. BNNs offer advan-
tages over deterministic neural networks due to their ability to quantify uncertainty and
effectively handle smaller datasets; a capability that has led to their adoption in critical
fields such as medicine.

In this paper, we construct a fairness regularisation method for BNNs by transferring
techniques from adversarial robustness training and employing the Fair-FGSM algorithm
[17] for generating similar inputs. This approach draws on existing research that high-
lights the similarity between adversarial robustness and individual fairness definitions.
The regulariser is designed to be simple, facilitating its integration into existing train-
ing procedures without extensive modifications. We also introduce a simple metric for
measuring and comparing ϵ − δ individual fairness models in an intuitive manner, the
Threshold-Fairness metric.

Through our experimentation on various model architecture sizes and similarity metric
parameters, encompassing a total of three-thousand models, we can attest that our devised
regulariser is effective at improving the individual fairness of a BNN. However, due the
to fairness-accuracy trade-off, there is a small degradation of model accuracy imposed by
the regulariser. Additionally, we empirically evaluate that there is a relationship between
the set of non-protected ϵ parameter values and the effectiveness of the regulariser at
improving fairness. We hope that our devised regulariser acts a starting point for more
sophisticated and adaptable individual fairness mechanisms, and that these findings will
serve as a foundational piece for future research into individual fairness in BNNs.
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Chapter 1

Introduction

1.1 Introduction and Motivation

Artificial Intelligence (AI) and Machine Learning (ML), a subset of the former, has trans-

formed the landscape of technology and society. ML models have enabled systems to

learn complex relationships from data and make accurate decisions with minimal human

intervention. With the vast amounts of data generated by the internet and modern tech-

nology, these models have the capability to aggregate, analyse and identify patterns in

large datasets within reasonable time frames - a task far beyond the capacity of any human

team. Its effectiveness and versatility in tackling complex problems has been utilised in al-

most every sector of society. In healthcare, ML has contributed to improving diagnostics,

personalising treatment plans, and enhancing patient care through predictive analytics

and disease detection [41][35]. ML has also found use in finance [16], competitive gaming

[21], music recommendation [58], computer networking [11], and construction [20], just

to name a few. State of the art AI chat bots such as ChatGPT can even perform code

analysis and bug detection using ML [48]. The application of these models is extensive

and it is not an understatement to say it has become one of the cornerstones of modern

technology.

With that said, the impact of these models on both the individual and at the societal
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level is substantial [55]. Numerous studies have shown that these models may risk perpet-

uating various forms of discriminatory bias found within data and their design [44][13][54].

Accounts of biased AIs and ML systems is significant. For instance, it was noted by a

Harvard professor that AI-driven search engines routinely push predatory credit lending

on those with African-American sounding names [1]. Recruitment ML algorithms have

shown preferences for men over women [15], and facial recognition software has shown dis-

criminatory behaviour towards black people [2]. It is therefore crucial that these models

are not only accurate but fair in their decision making processes.

The study of fairness within ML encapsulates research into evaluating and enforc-

ing fair decisions by such models towards certain groups or individuals with protected

attributes. Protected attributes include but are not limited to gender, race, sexual orien-

tation, nationality, and disability. It is a fast developing research area, with many methods

deployed already to define and enforce fairness in a multitude of ML models [44]. Unfor-

tunately, however, there is currently no ‘silver bullet’ for the issue of defining fairness in

ML. Fairness, and what it means to make a ‘fair’ decision, is largely based on the context

of the decision-making problem. As such, the concept of fairness is inherently subjective

and can vary widely depending on cultural, social, and individual perspectives. Conse-

quently, we are tasked with the complex task of navigating this subjectivity to develop

models that are not only technically sound but also ethically aware. Despite the absence

of this ‘silver bullet’, the ongoing pursuit of fairness in ML is a multidisciplinary task,

encompassing ethics, law, sociology, and computer science, to come together to develop

systems to enforce fairness. With this in mind, we are motivated to hopefully contribute

a piece of the puzzle to furthering the progression of fair ML models.

As it stands, there is very little research into methods to define or improve fairness for

uncertainty aware ML models, such as Bayesian neural networks (BNNs). Uncertainty

aware, or more precisely, stochastic ML models have the advantage over deterministic

models in that they can quantify and incorporate uncertainty directly into their decision

making processes. This allows them not only to provide predictions but also measures of
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confidence in those predictions. This ability to assess and communicate uncertainty can

lead to more informed and transparent decision making, potentially reducing the risk of

overconfidence in inaccurate predictions. Considering these benefits and the existing gap

in research on fairness within BNNs, we are motivated to investigate potential mechanisms

to enhance fairness in these models.

1.2 Research Objectives

In current literature, ML fairness definitions can be categorised into group fairness and

individual fairness [18]. Group fairness aims to treat similar individuals similarly on a

group level by enforcing a form of statistical parity on each group’s statistics. For exam-

ple, having the same false positive rate between two groups. Individual fairness, however,

aims to treat similar individuals by assigning them similar outcomes, as defined by [18],

the authors who originally defined individual fairness. Although the former is generally

easier to compute and more widely adopted, the latter makes more intuitive sense. In-

dividual fairness also moves beyond the limitations of group characteristics, offering a

fairness notion that does not rely solely on group-based attributes. This approach can

be particularly beneficial in contexts where group definitions are fluid, overlapping, or

not fully representative of individual identities, scenarios where group fairness falls short

[10]. We describe these definitions in more detail later in Section 2.2 of our literature re-

view. In essence, individual fairness is a more flexible and consistent definition of fairness

compared to group fairness, hence we will be adopting a form of the definition for our

project.

Recent work has drawn parallels between the definitions of individual fairness and

adversarial robustness, and has exploited this parallel to transfer techniques to measure

individual fairness in BNNs [17]. Adversarial robustness is an area of ML that attempts to

make models more resistant to adversarial inputs; inputs that have minimal perturbations

compared to correctly classified inputs, but get completely misclassified by the model.
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We intend to go a step further than [17] and utilise their findings to further explore

and harness this parallel by transferring techniques from adversarial robustness to devise

a mechanism to improve individual fairness in BNNs. We then hope to investigate the

devised mechanism’s applicability and effectiveness. We can thus summarise our project’s

objectives as follows.

• Develop a mechanism to improve individual fairness within BNNs at training time

by transferring and adapting adversarial robustness regularisation procedures to the

context of individual fairness.

• Investigate and provide insight on the effectiveness of the devised mechanism on

improving individual fairness by comparing to a standard BNN.

• Investigate and discuss any effects the devised mechanism may have on the predictive

performance of a BNN.

• Empirically evaluate the overall base performance of the devised mechanism and

discuss its applicability for improving individual fairness within BNNs.

1.3 Outline of Approach

In this paper, we develop a mechanism to improve ϵ− δ individual fairness, as defined by

[30], by making use of the Fair-FGSM algorithm developed by [17] to measure individual

fairness for BNNs. In addition to this, we adapt the adversarial robustness training

regulariser developed in [24] to our context of individual fairness in BNNs. By combining

the Fair-FGSM algorithm with our adapted regulariser, we create an individual fairness

regulariser for BNNs. This regulariser can thus improve the individual fairness for a

BNN at training time. We also develop a simple metric to allow for easy comparison of

the individual fairness levels of two models, the Threshold-Fairness metric. This metric

is designed to be more intuitive and easier to comprehend than the existing maximum

difference metric used for measuring individual fairness of BNNs.
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Proceeding this, we rigorously test our regulariser through a series of experimental

trials, testing different BNN architecture sizes and parameter values. We train all our

models on the Adult dataset [8], a benchmark dataset for fairness tasks. We thus observe

the effect of the regulariser on both the individual fairness levels and predictive perfor-

mance of a BNN, as well as the influence of parameter values may have on the regulariser’s

effectiveness.

1.4 Contributions

In this paper, we provide a foundational piece for the investigation and development of

individual fairness in BNNs. We develop a simple regulariser that can be used during

training time to improve the individual fairness of a BNN; the first of its kind. Through

our rigorous experimentation, we can deem that our regulariser has a base performance of

being fast and effective with confidence. With that said, we also provide the insight that

the regulariser may hinder predictive performance slightly due to the fairness-accuracy

trade off, which we outline in detail in Section 2.2.4. Additionally, we describe the re-

lationship between the values of the set of non-protected ϵ values, a parameter assigned

to the regulariser, and its effectiveness in enhancing ϵ − δ individual fairness of a BNN.

It is with our hope that these contributions fill the current gap in literature, and act as

an initial starting point that will inspire further developments in this crucial area of ML

fairness research.

1.5 Report Outline

We structure our paper as follows.

• Chapter 2 Literature Review. We review existing literature on biases in AI and

ML, as well as the definitions of fairness, particularly focusing on individual versus

group fairness, and the existing methods for both measuring and improving fairness
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under these definitions in ML models.

• Chapter 3 Formalisation. We delve into the core technical concepts necessary

for understanding our devised methodology. In this, we include a formalisation on

neural networks (NNs), BNNs, and the definition of ϵ− δ individual fairness.

• Chapter 4 Methodology. We describe the development of our fairness regulariser

and the Threshold-Fairness metric. We detail our adaptation of adversarial robust-

ness training procedures to our context of enhancing fairness in BNNs, as well as

the use of Fair-FGSM.

• Chapter 5 Experiments. We outline our experimental setup. Here we detail the

packages and tools used, the parameters and architectures tested, and the metrics

collected for assessing fairness, accuracy, and uncertainty. In addition, we give a

detailed account of the trials conducted to test our developed regulariser, as well as

code snippets.

• Chapter 6 Results. Presents our findings from the experimental results. Through

the observation of our produced visualisations of the data, we describe how the reg-

ulariser influenced the individual fairness and predictive performance of the BNNs.

We also describe the observed relationship between the regulariser’s parameters and

its performance.

• Chapter 7 Evaluation and Limitations. We critically evaluate the strengths

and weaknesses of our findings and discuss its limitations.

• Chapter 8 Conclusion and Future Work. We summarise the main insights and

contributions of our paper, as well as the potential areas for future research to be

conducted.

6



Chapter 2

Literature Review

In this chapter, we review the existing literature on fairness in machine learning. We

examine the key sources of bias and the necessity to combat them. We then explore

the existing definitions of fairness within ML literature, primarily focusing on individual

fairness and the methodologies developed to both measure and evaluate it in deterministic

NNs and BNNs.

2.1 Bias in AI and ML

As ML algorithms become more dominant in decision-making processes across society,

the damage of biases present in the training data and algorithms’ designs become more

apparent and challenging to reverse [61]. These biases lead to individuals or groups being

unfairly mistreated by such systems. To gain scope of the effect of these biases, we will

first outline the main (non-exhaustive) sources of bias that have been in discovered in

current ML literature.

2.1.1 Sources of Bias

Algorithmic bias is when bias is not present in the input space and is added purely

by the algorithm [6]. The choice of optimisation functions, regularisations, the
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consideration of applying regression models to subgroups, and the use of statistically

biased estimators in the algorithmic design can all lead to biased outcomes [44].

Historical bias is the already existing bias and socio-technical issues in the world

which can be present in the data generation process, even given a perfect sampling

and feature selection [60]. One of the most cited examples of this is that of Amazon’s

failed recruiting algorithm, which would discriminate against women due to the

historical dominance of men hired in the tech industry [15]. Other examples of

this include a 2018 image search that would produce fewer female CEO images due

to only 5% of Fortune 500 CEOs being women, causing the system to be biased

towards men [60].

Measurement bias is bias inherited from how we choose, utilise and measure

specific features [60]. A prominent example of this type of bias was observed in the

recidivism risk prediction tool COMPAS, in which it used prior arrests as a proxy

variable for how likely an individual would recommit a crime. This was observed

to be inappropriate, due to the fact that minority communities are policed more

frequently, so they have higher arrest rates. This would lead to the conclusion that

an individual a part of a minority group is considered more dangerous, which is

incorrect as there is a difference in how these groups are treated and assessed [60].

Representation bias is bias that arises from the non-random sampling of sub-

groups [44]. For example, if smartphone data is collected in order to inform the

design of city transportation system, individuals over the age of 65 years old will be

under-represented, which could lead to services providing for the needs of the older

population being inaccessible [14].

Population bias is bias that arises when a user population of a platform pertains

statistics, demographics, representatives and characteristics different to the original

target population [52]. For example, in a 2007 survey on college students it was found
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that Hispanic students were significantly less likely to use Facebook and more likely

to use MySpace. On the other hand, White, Asian and Asian-American students

were significantly less likely to use MySpace and more likely to use Facebook [25].

2.1.2 Necessity of Combating Bias

The necessity for implementing systems that mitigate bias and enhance fairness in ML

systems is evident in both literature and society. Organisations around the world have

begun advocating for the address of bias in artificial intelligence systems. CNN, for

instance, has noted modern large-language models such as ChatGPT and Microsoft’s

chat-bots can be racist, sexist and creepy [64]. The Washington Post have described how

modern AI image generators can amplify ‘outdated Western stereotypes’ [50]. The New

York Times even questions the diversity issue underpinning the tech industry, which has

contributed to biased systems, saying that it is a problem ‘tech companies are reluctant

to acknowledge’ [46].

Evidence of the effects are widespread across society. In education, it was found

algorithms predicting six-year college graduation generally have higher false positive rates

for White students and higher false negative rates for Latino students [5]. In the medical

field, a widely used algorithm in U.S. hospitals used to allocate health care to patients

was found less likely to refer black people than white people, who were equally sick, to

programs that improve care for patients with complex needs [51]. A 2022 study found

that a state-of-the-art robot trained by AI was more likely to associate black men with

criminals, or women being homemakers. It was concluded by researchers that use of the

robot would only amplify “malignant stereotypes” that fuel racism and misogyny, and

they issue a call to justice, imploring that “the Robotics, AI, and AI Ethics communities

to collaborate in addressing racist, sexist, and other harmful culture or behavior relating

to learning agents, robots, and other systems.”[28].

The addressal of these issues is in its infancy and is fast developing, with the EU only
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introducing the first comprehensive AI regulation act in the world in 2023 [49]. These

examples and calls to action illustrate the need for more research into developing systems

and methodologies to reduce bias in AI and ML systems.

2.1.3 Developing Systems to Combat Bias

To combat these various forms of bias, it is imperative that systems are developed whereby

there is a form of bias mitigation at every stage of the process. An argument can be made

that as historical bias is one of the more prominent forms of bias affecting ML algorithms,

attention should only be directed towards identifying and neutralizing these biases in

the data before they are used to train models. And they would be correct, to a degree.

However, a lack of in-built bias mitigation in terms of a regulariser or a fairness module

can result in unforeseen biases to persist or even be amplified by the training process.

In addition, biases hidden within the dataset can be made apparent during the training

process. For example, an individual’s address being used as a proxy variable to infer the

religion or race of the individual, such as discussed in measurement biases in Section 2.1.1.

We should not view bias mitigation and fair models as a one-time correction, but as an

ongoing process that accompanies the model throughout its entire life-cycle. Integrating

fairness techniques directly into the model architecture or training algorithm, such as

fairness constraints and regularisers, ensures that the model actively works to counteract

bias. As this is the case, we are keen to state that we intend to contribute to development

of a piece of the system, rather than designing the entire system.

2.2 Defining Fairness

To measure and then improve fairness in a ML system based on a notion of fairness, it

must first be clearly defined what it means to make a fair decision. This is where most

complexity and issues arise in literature, as there is no strict objective definition of what

it means to be “fair”. After all, what qualifies as fair can vary between contexts and
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remains somewhat subjective. The problem of defining fairness stems from sociology and

philosophy; it is not a problem found only in computer science. Thus the solution hinges

on the developments made in those fields. That being said, broad general definitions

still exist within ML literature. As explained in our introduction, the definitions can be

categorised into two main types: group fairness and individual fairness. We will explore

these definitions by giving an overview of both and discussing their attributes. We will

then briefly discuss the future and apparent difficulties of defining fairness, as well as

explore the trade-off between fairness and accuracy.

2.2.1 Group Fairness

Group fairness, or better known as statistical parity, is a umbrella term encapsulating

a few different mathematical definitions of fairness. These definitions primarily focus

on ensuring that minority members should be treated at approximately the same rate

as the majority members [59][6]. Definitions, such as equal opportunity and treatment

equality, require that statistical properties remain the same across protected and non-

protected groups [6][18]. Equal opportunity, for example, states that individuals part of

the protected or unprotected groups should have equal true positive rates. Treatment

equality, on the other hand, states that the ratio of false negatives and false positives is

the same for both protected groups.

In current literature, group fairness is the most widely adopted notion of fairness.

There are various methods for both verifying [4][59][7] and improving [27] [57] [56] group

fairness for deterministic neural networks. There are some methods for controlling group

fairness for BNNs [67] and Bayesian classifiers [27], but more methods still need to be

developed for the former. With that said, in this paper we will be devising a method for

improving individual fairness in BNNs as opposed to group fairness.

Group fairness appears desirable in many instances, but there are some drawbacks to

the definitions. For instance, a system that is fair under statistical parity can produce
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outcomes that are blatantly unfair from the individual’s point of view. Such a system

would also produce reduced utility and still allow targeting of subsets of individuals while

maintaining fairness [18]. A problem often raised with group fairness definitions is that

they are also often suited only for coarse-grained protected groups. Group fairness does

not account for biased outcomes against individuals who are at the intersection of multiple

types of discrimination or are a part of groups which are not (yet) defined that may need

protecting [10]. It, in essence, does not enforce that individuals that are similar by all

means except the protected attributes receive similar outcomes by the system.

2.2.2 Individual Fairness

Individual fairness encapsulates fairness definitions that ensure individuals who are ‘sim-

ilar’ with respect to the classification task receive similar outcomes [18][10]. The most

demanding aspect of this definition is to define what it means for individuals to be ‘simi-

lar’. Most utilise a similarity or distance metric that is calculated on pairs of individuals.

In the case of a primitive distance metric, a pair of individuals are considered similar

if their distance from each other is within a specified threshold. If this is the case, you

would expect the outputs by a given fair model to also be similar; that is, the distances

between their outputs are also within a specified threshold. If the model violates this

expectation, then we consider the model unfair. In most contexts, it is challenging to

define the similarity metric due to the lack of availability of or access to such a metric.

Similarity metrics and their definitions are discussed later in Section 2.3.1.

Individual fairness appears very desirable, as enforcing it can create fair decisions

for individuals and avoid the problems related to that of group fairness [18]. However,

the major pitfall of individual fairness is that even if a perfect task-relevant similarity

mapping over the individuals is obtained for a training set, there is a lack of a way of

generalising to a new, unseen set of individuals. This problem was even noted by the

authors of [18], who initially formulated individual fairness. The context-specific nature
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of individual fairness also requires a policymaker with domain-specific knowledge to define

the similarity or distance metrics, unlike group fairness which can be applied easily to

most models. It is also generally computationally infeasible to calculate the similarity

metric over all pairings of individuals and their outcomes in a dataset, especially if the

dataset is large. These problems have hindered the practical application of individual

fairness measures, despite their theoretical appeal over group fairness. Researchers have

noted their regret that individual fairness has been neglected in favour of group fairness,

because of how individual fairness is “intuitive and captures aspects that group fairness

does not handle” [39].

Fairness, and what it means to be fair, is a very complex and nuanced concept that

has been subject to debate by philosophers and other humanities scholars for millennia.

From a philosophical background, the flattening of a nuanced, complex moral concept

to a small cluster of statistical definitions may seem worrying. It would be in this case

arguable that having task-specific metrics that are derived from some informed domain-

specific policy maker is preferable; that maybe the context-nature of individual fairness

is not a hindrance, but a necessity. As such, as well as given the strengths previously

outlined, we are motivated in this paper to contribute to the pursuit of making the

definition more practical through our devised methods.

2.2.3 Progressing the Definition of Fairness

In current literature, there is a general notion that there is an inherent conflict between

that of group and individual fairness definitions. New literature investigating this has

suggested that this apparent conflict is actually a misconception that stems from the

conflict of specific variants within each definition [10]. The literature argues that specific

combinations of variants of each definition can reverse the apparent conflict, such as a

group-adjusted variant of individual fairness. The general notions of fairness defined in ML

literature is dissected in great detail, investigating whether there is a distinct difference

13



in principle of the two definitions and analysing their attributes that are a part of ideas

and theories found within various philosophies. We encourage the interested reader to

read the paper [10] as it provides critical analyses of fairness definitions in ML.

2.2.4 Trade Offs Between Fairness and Accuracy

As models are optimised to make the most accurate predictions possible, they may inad-

vertently utilise and perpetuate biases present in the training data to increase prediction

accuracy against test sets. Explicitly defining fairness constraints on models will restrict

them from fully leveraging all available information in the data, biased or unbiased, re-

ducing potential accuracy. The trade-off highlights a fundamental problem in machine

learning; balancing the pursuit of high predictive performance with the moral and ethical

responsibility to treat individuals and groups equitably.

The research into this fundamental trade-off is substantial [45]. Multi-objective frame-

works have been constructed to optimise both (group) fairness and accuracy in logistic

regression and decision tree classifiers [62][63], as well as “learning to defer” methods for

deterministic neural networks [42]. We outline this trade-off as a “keep-in-mind” for the

reader, since we will be mainly focusing on the effect of our fair training method on the

fairness of a BNN. However, we will outline parameters in our methods that are able to

adjust the model between fairness and accuracy.

2.3 Measuring Individual Fairness

In this section, we examine the methods for measuring individual fairness. We begin

first by defining similarity metrics used within literature and the established methods

for evaluating. We then explore the link between individual fairness and adversarial

robustness and discuss how it is utilised for measuring fairness in BNNs.
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2.3.1 Similarity Metric

As previously discussed, to measure individual fairness a similarity or distance metric is

utilised. A similarity metric quantifies the degree of similarity between two individuals

or inputs based on their attributes. Similarity metrics are task-specific and should be

well-defined enough that they reflect meaningful comparisons between the inputs. For

instance, in a hiring algorithm, the similarity metric might consider attributes such as

skills, experience, and education level to determine how similar two job applicants are.

The metric will also include a sensitivity to the protected attributes, such as gender or

race, to ensure that it does not inadvertently perpetuate bias.

Various similarity metrics have been proposed within literature. A simple metric is

that of a Lipschitz condition, which bounds the decision-making function with a Lipschitz

constant with respect to a task-specific distance metric [18]. It is a metric that follows

that of the individual fairness definition; the distance metric tending to be geometric

distances, such as a ℓp metric. The disadvantage to this is that the metric may not cap-

ture complex relationships between protected and non-protected attributes. In contrast,

the Mahalanobis Distance is a metric that considers the covariance among variables to

measure the distance between two points in a multidimensional space, which is effective

for when protected and non-protected attributes are correlated [66]. It is, however, more

complicated in nature.

More novel approaches include that of learning a similarity metric through a causality-

based approach to fairness [37], where a decision is considered fair if it is the same in

both the actual world and a counterfactual world where the individual belonged to a

different demographic group. One approach approximates a similarity metric using human

judgements [29]; a model that assumes that it has access to a human arbiter, who can

answer a limited set of queries concerning similarity of individuals for a particular task.

This, however, assumes that the arbiter is “free of explicit biases”, which may not be

sufficient as implicit biases can still have a significant effect on decisions [19].
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2.3.2 Established Methods

In current literature, there are various approaches to measuring and verifying individual

fairness for deterministic NNs. Certifair [9], proposes a method to certify individual

fairness of feed-forward NNs using a range of metrics, including the Mahalanobis distance.

More novel approaches include RobustFair [40], which introduces a fairness evaluation

technique in deep neural networks using a fairness confusion matrix guided by adversarial

perturbation. For full insight into the established methods for measuring fairness we

encourage the interested reader to explore [44], as it gives a comprehensive view of fairness

definitions and methods to improve them in machine learning models. These methods,

however, are all for deterministic networks and are inapplicable to BNNs, which we will be

investigating in this paper. We build upon the research of [17], who outlines an adversarial

approach to measuring individual fairness in BNNs.

2.3.3 Measuring Using Adversarial Robustness

When examining the definition of individual fairness, it is not hard to draw comparisons

to that of adversarial robustness. Adversarial robustness refers to the verification that

small perpetuations to a correctly-classified input does not cause a model to misclassify

the input [34]. Individual fairness, in a similar manner, examines that the changing of a

sensitive attribute for an input does not cause misclassification. The definitions differ in

that of their scopes; adversarial robustness methods tend to analyse local robustness of a

singular input, while individual fairness examines an equivalent to global robustness (i.e.

robustness of all inputs). Adversarial robustness also considers average perpetuations in

the input, while individual fairness considers the worst case change.

This similarity allows for the adaptation of methods designed to measure and enhance

adversarial robustness for use in promoting individual fairness. Recent works have be-

gun exploring and exploiting this similarity; such as developing statistical inferences on

individual fairness using adversarial attacks [43] or adapting smoothing techniques from
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robustness to improve individual fairness for a deterministic model [65].

The authors of [17] utilise this parallel by introducing the Fair-FGSM algorithm, an

adaptation of the FGSM algorithm [24]. Fair-FGSM, like FGSM, produces an adversarial

example for a given individual. However, the pair can be conceptualised as similar inputs

in respect to some similarity metric, in which the adversary attempts to maximise the

difference in prediction outcome compared to the original input. If the difference in

prediction outcome exceeds that of a defined threshold, the prediction is deemed unfair.

Through this algorithm and the proposed methods we can evalulate the individual fairness

of a deterministic and non-deterministic model. We introduce this formally and describe

measuring individual fairness for BNNs in-depth later in Section 3.3.2.

2.4 Improving Individual Fairness

In this section we will discuss proposed methods for improving individual fairness in NNs,

as well as the type of procedures they can be categorised into. We will then briefly outline

the literature motivating us to take an adversarial robustness approach to improving

fairness in BNNs.

2.4.1 Established Methods

As mentioned in Section 2.3.2, there are numerous methods for measuring individual fair-

ness in deterministic NNs. Most papers establishing measuring techniques, such as Certi-

Fair, also outline ways of improving fairness. The methods employed can take vastly differ-

ent approaches, and can be categorised into three processing procedures. Pre-processing

procedures manipulate the data before being given to the model, in-processing manipu-

lates the model itself, and post-processing enforces fairness after prediction time [44]. As

stated in Section 2.1.3, a full fairness system would incorporate some form of all three

types of processes to ensure fairness.

Pre-processing procedures in literature tend to focus on mitigating biases found within
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datasets due to decisions made by the data curator. Some general techniques have been

proposed, such as having labels for data, like having nutrition labels for food, that outline

what task the data should be categorised into [26]. Others include preferential sampling, a

type of sampling scheme, for making the data discrimination free [32]. Although effective,

these methods can be cumbersome and may be impractical in some cases, especially if

the dataset is a live dataset.

In-processing and post-processing procedures tend to leverage the individual fairness

constraints to ensure fairness. For instance, [9] introduces an in-processing method to

compute individual fairness guarantees by over-approximating bounds enforced by metric

constraints through encoding the problem as a MLP problem, yielding fairer neural net-

works. Other methods include fairness regularisers [33] and joint-optimisers to optimise

for both fairness and accuracy [22]. However, there still exists methods to ensure fairness

without explicitly utilising these bounds. FETA [47], for instance, introduces a counter-

example guided post-processing technique to enforce fairness at prediction time, as well

as an in-processing technique that uses fairness as an inductive bias during the learning

process.

Unfortunately, most devised methods for improving fairness are for deterministic net-

works and are inapplicable to BNNs, which we intend to inspect. As mentioned, this

project will build upon individual fairness methods that adapt adversarial robustness

techniques.

2.4.2 Adversarial Methods

As adversarial robustness procedures were originally devised to lower the sensitivity of

networks against malicious inputs, as well as the previously discussed link to individual

fairness, their procedures offer a good blueprint for mechanisms for improving fairness.

Smoothing techniques akin to adversarial robustness have already been adapted for im-

proving fairness in deterministic models [65]. We are motivated by this connection to
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adapt the adversarial training method of deep neural networks outlined in [24] alongside

with [17]’s Fair-FGSM to create a fairness training algorithm of our own. We discuss and

provide experimental results of the fair training method developed from this adaptation

in Chapters 4 and 5.

2.5 Summary

In this chapter, we provided an overview of the existing literature pertaining to our project.

We gave a brief synopsis of the various forms of bias found in data and algorithms and

highlighted the significant appeals within both literature and society for action to reduce

these biases. We then introduced the two main definitions of fairness within ML literature,

group fairness and individual fairness. A dissection of each definition was given, where

we outlined the advantages and pitfalls of each. Importantly, however, we highlighted

the intuitive nature and advantages individual fairness has over group fairness. More

specifically, how group fairness fails to ensure fair decisions in certain contexts whereby

individual fairness does not. We then argued that the context-specific nature of individual

fairness is not a hindrance but a necessity, and underscored literature that analyses ML

fairness in-depth from a philosophical standpoint and provides insights on how to improve

our definitions.

We then explored established methods for measuring individual fairness and the sim-

ilarity metrics utilised. The intrinsic connection between adversarial robustness and in-

dividual fairness was also introduced, as well as the Fair-FGSM algorithm, which is a

fundamental component to our devised methods.

Finally, we explored established methods for improving individual fairness in neural

networks, as well as the type of procedures they can be categorised into. We also un-

derscored how they are generally inapplicable to BNNs. We then finished by outlining

how the connection between individual fairness and adversarial robustness lends us viable

blueprints for mechanisms to improve fairness. This, coupled with the lack of research
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into individual fairness for BNNs, serves as the primary motivations for this paper.
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Chapter 3

Formalisation of Preliminaries

In this chapter, we will introduce and formalise the core concepts essential to our con-

structed fairness mechanism, which we introduce in Chapter 4. We start by defining the

fundamentals of a basic deterministic neural network, followed by an exploration of how

BNNs differ from them. In this discussion, we will give an overview of Bayesian inference

and briefly outline the inference method employed in our paper. Lastly, we will delve into

how we define individual fairness within the context of BNNs and the methodology we

adopt to assess it.

3.1 Neural Networks

Advancements in the field of ML have led to the rise of neural networks (NNs), the

cornerstone of modern ML algorithms. NNs have the ability to learn complex relationships

in data and produce highly accurate models, compared to more standard algorithms.

Their structure draws inspiration from the biological neural networks seen within human

and animal brains, and as such, they attempt to mimic the ability to recognise patterns

and relationships in the world that is reminiscent of human cognition.

NNs are comprised of interconnected nodes, typically referred to as neurons, in a series

of layers. A neuron can be viewed as a function with an associated weight and bias, by
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Figure 3.1: Structure of a neural network. Note the mathematical symbols we use do not
align with the ones shown. Credit to Tex.com.

which its output is then used as the input in the following layer. The level of influence or

strength of the neuron has on the following layer is determined by its weight. The output

is controlled by an activation function, which applies a threshold. If the output exceeds

this threshold, it is “activated” and its output will propagate to the next layer.

The value of the weight of a neuron is adjusted through a process known as learning,

which is typically achieved through backpropagation or gradient descent [23]. During this

learning phase the model’s performance is calculated using a loss function, referring to the

difference or ‘loss’ between the model’s predictions and true values of the test set. The

values of the weights are then adjusted accordingly in order to minimise the loss function

until a local, or more ideally global, minimum is reached.

An example of the structure of a neural network is given in Figure 3.1. The number

of layers in a NN can be referred to as its depth, while the number of neurons per layer

as its width. The first layer is generally referred to as the input layer and the last as the

output layer. The layers in between are subsequently referred to as the “hidden” layers.

Generally, most NNs are feed-forward NNs. This refers to the fact that the neuron
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signals are outputted in one direction towards the output layer and do not influence layers

preceding the neuron or the neuron itself. Neural networks with this type of feed back

loop are known as recurrent NNs [23]. For the purposes of this paper, we only investigate

feed-foward NNs.

3.1.1 Formalising

To formalise NNs as a whole, we first define the transformation from input to output for

a layer as

yh = g(whxh + bh) (3.1)

whereby wh is the weight vector, bh is the bias, g the hidden layer activation function and

xh is the input vector for a specified layer h s.t. h ∈ L = [1, 2, 3, ..., N − 1] for a neural

network with width N . The activation function g in most modern neural networks is the

rectified linear unit or ReLU for short [23].

The output layer, i.e. h = N , can therefore be defined in a similar manner, substituting

out g for go.

yN = go(wNxN + bN) (3.2)

The key difference here being that the activation function for the output layer can

be altered depending on the context. In most cases, such as for classification tasks, the

sigmoid function is used when a probability output (0, 1) is needed. In this paper, we will

be utilising the Softmax activation function [23]. Formally, this is defined as

α(zk) =
ezk∑K
k=1 e

zk
(3.3)

whereby α : RC −→ (0, 1)C , vector z = wnxN + bN and C being the number of classes

the input space can be classified into. Thus, the softmax function allows us to classify the

output into multiple classes depending on which attains the highest probability outputted
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by the network. Although not entirely necessary for this paper, as we use only a single

binary classification, it allows us to extend our methods to multi-classification networks.

With this in mind, we can now fully define a trained feed-foward NN simply as a

function mapping f with an associated weights matrix W ∈ Rz such that fW : X −→ Y .

Where X ⊆ Rn and Y ⊆ RC , n being the number of inputs and z being the number

of weights. Thus, for some input x ∈ X, fW (x) represents the probabilities of it being

attributed to a certain class.

3.2 Bayesian Neural Networks

So far, we have been discussing the structure of deterministic NNs. The values assigned

to weights and outputs are concrete scalar values and do not atone for uncertainty in

their predictions. Uncertainty can arise from uncertainty already included in the data or

uncertainty in the predictions due to the lack of expressiveness and/or transparency of a

NN’s inference model. Deterministic NNs do not deliver any means of quantifying their

certainty and suffer from under or over confidence in their predictions. For this reason,

researchers have developed methods for quantifying and embedding uncertainty into deep

learning algorithms; one such method being the application of Bayesian inference.

3.2.1 Bayesian Inference

In section 3.1, we chose scalar values for our model’s weights which were adjusted through

the use of a learning algorithm such as backpropagation. In contrast, a Bayesian NN infers

posterior distributions over the weights w and applies Baye’s Theorem:

P (w|X) =
P (X|w)P (w)

P (X)
=

P (X,w)∫
w
P (X,w′)dw′ ∝ P (X|w)P (w) (3.4)

where P (w|X) is the probability of attaining weight w given evidence of X (posterior

distribution), P (w|X) is the probability of X given weight w (likelihood), P (w) is the
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Figure 3.2: DNN vs BNN. (a) is a simple DNN and (b) is a BNN with stochastic weights.

prior likelihood of the weight (prior distribution), and P (X) is the prior likelihood of

evidence X (the marginal distribution). In our case, the evidence X can be our training

dataset D = {(xi, yi)}Mi=1 for a given size M. We should note that Bayesian NNs can

include assigning prior distributions to any of the model’s parameters, not being limited

to just the weights. We can therefore learn from the dataset by iteratively applying Bayes

theorem to the posterior distributions for a given parameter θ, such as the weights, as

more evidence is discovered through the training data. The difference between a DNN

and a BNN is illustrated in Figure 3.2.

Once these posterior distributions are estimated, we can predict an output y∗ for a

unseen input x∗ using Full Bayesian Analysis:

P (y∗|x∗, D) =

∫
P (y∗|x∗, θ)P (θ|D)dθ (3.5)

Applying Bayesian inference over the network’s parameters allows us to obtain a good
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Figure 3.3: VOGN Algorithm. Note this has a few changes from the original outlined
in [36], such as parallelisation, which is shown on the right. Bottom right table displays
VOGN hyper parameters. Credit to [53], who designed this distributed version of VOGN.

idea of the uncertainty associated with the underlying processes in predicting outcomes.

We can achieve this by comparing the predictions of multiple sampled model parameterisa-

tions of θ. If the differences between models is low, uncertainty is low, and if the difference

is high, uncertainty is high [31]. Through this, we can make more accurate predictions

even with an average performing BNN, as it is known that aggregating the predictions of

a collection of average, yet independent, models can lead to better predictions than the

predictions from a single high performance model [12].

3.2.2 Inference Algorithms

As previously stated, learning in BNNs is essentially establishing a posterior distribution

from which we can sample from and then make a prediction. This however is easier said

than done; although most aspects of Equation 3.4 are easy to compute, computing the

integral for the evidence is generally computationally infeasible [31]. It is for this reason

that most utilise specialised algorithms. The most common found are that of Markov

chain Monte Carlo (MCMC) methods or approximate variational inference (VI). MCMC
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methods sample from the exact posterior, which can provide more accurate results, but

suffer from high variance and long computation time. Variation inference, on the other

hand, is faster in computation and is more suitable for large scale networks [68], although

providing less accurate samples. For these reasons, we utilise the VI method Variational

Online Gauss-Newton (VOGN), which approximates the posterior distribution using a

Gaussian distribution [36].

3.2.3 VOGN and Regularisation

As we will be implementing a regularisation method to improve individual fairness, we

must note that the posterior distributions are often considered to be soft constraints

on the model, making them analogous to regulariation in traditional deterministic NNs.

As this is the case, to impose a fairness constraint at training time we just need to

manipulate VOGN’s computation of estimating the posterior. More specifically, we will

be manipulating the prediction made from the model just before the calculation of the

loss. Calculation of the loss is shown in line 10 of Figure 3.3. We should note that

the algorithm displayed has a few changes compared to the original VOGN algorithm

described in [36], but it gives a good idea of the functioning of the algorithm. Details of

how the fairness regularisation is conceived and implemented is outlined in Chapter 4.

3.2.4 Predictive Posterior Distribution

As one might expect, the outputs of a BNN are also distributions, as noted in Equation

3.5. We can observe this in Figure 3.2. We can re-write the Equation 3.5 to include the

Softmax activation function α in order to formalise the predictive posterior distribution

of our BNN.

π(x) =

∫
α(fW (x),W )P (W |D)dW (3.6)

where fW is our function mapping, W is our weights vector, D is our training dataset
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and x ∈ X. From here, we will refer to the predictive posterior distribution of our BNN

as π.

3.2.5 Key Points on BNNs

Before moving on, we must note that almost any deterministic NN can be used as the

functional model fW for a BNN [31]. BNNs, or more generally stochastic deep learning

models, are not stand alone separate models compared to DNNs. They are considered

more of a ‘wrapper’ around the main functional model used in DNNs in order to give an

ability to quantify uncertainity. It allows them to say “I don’t know” about a prediction

with the ability to give confidences in their answers. This not only helps us from a fairness

standpoint, as this uncertainty has led to BNNs to be fairer compared to DNNs [17], but

allows us to create more flexible and reliable models that can work well with even small

datasets. The ability to work well on small, noisy datasets where uncertainty needs to be

quantified is particularly effective for many sectors of society, especially in the medical

field. Bayesian methods including BNNs have found use in medical imaging tasks, clinical

signal processing, and electronic health records [3].

3.3 Individual Fairness

Previously in Section 2.2.2 we discussed the definition of individual fairness (IF) and its

attributes. To recap, IF can be defined as a term that “encapsulates fairness definitions

that ensure individuals who are ‘similar’ with respect to the classification task receive

similar outcomes”. We can interpret this as meaning that “the distributions assigned

to similar people are similar” [18]. By [18], we can formalise this as a general Lipschitz

mapping for our BNN function mapping fW
B : X −→ Y , such that

D(fW
B (x), fW

B (x′)) ≤ d(x, x′) (3.7)
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for an output metric D, input metric d and any pair of inputs x, x′ ∈ X.

As this is quite general, we can rewrite this equation for two distance metrics with

associated thresholds [30]. We will denote ϵ for the threshold to define similar inputs

and δ for the threshold that their outputs must not exceed. Therefore, our model can be

considered individually fair for a given value of ϵ and δ s.t. ϵ ≥ 0, δ ≥ 0 if and only if

d(x, x′) ≤ ϵ =⇒ D(fW
B (x), fW

B (x′)) ≤ δ ∀x, x′ ∈ X (3.8)

3.3.1 Similarity Metric

What we classify as similar inputs is at our discretion through how we define d. As we

are interested in defining similar individuals based on all aspects except their protected

attributes (race, gender, etc.), we must define a way to account for both protected and

non-protected attributes. As noted in [30], we can intuitively split up our input attributes

into disjoint sets S1, ..., St with corresponding ϵ values ϵ1, ..., ϵt ≥ 0. We can therefore

assign protected attributes a threshold of∞, which implies a pair of individuals can differ

in any way in their protected attributes and will be considered similar. Non-protected

attributes (such as home address, education, etc.) can then be assigned a context specific

threshold for what we define to be similar, 0 implying they will be classified as dissimilar

if they are different in any way.

With this in hand, we can define our similarity metric d in a similar manner. As we

build this paper off [18], we define our similarity metric ζ as a weighted ℓp metric such

that

ζ(x, x′) = p

√√√√ t∑
i=1

θi|xi − x′|p (3.9)

where t is the number of input attributes, θ is the weight of the distance, and p

denoting the ℓp in use. Through this we assign protected attributes a weighting θ = 0

and non-protected attributes weights depending on their correlation with the sensitive

attribute, if any. This captures the fact that the distance between two individuals should
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not be influenced by the distance between their sensitive attributes.

The choice of the ℓp metric will significantly affect the distance calculated. A common

and well-known choice would be the ℓ2 metric, which is the Euclidean distance between

two points (i.e. straight line distance). ℓ∞, on the other hand, measures the maximum

absolute difference between the coordinates of a pair of points. It captures the single

largest difference among all dimensions.

3.3.2 Measuring Individual Fairness

As mentioned in Section 2.4.2 we will be utilising the methods outlined in [17] to measure

IF in our BNNs. We will also be adapting the Fair-FGSM method to create a fair training

mechanism. Fair-FGSM is defined as

x′ = x+ ϵfair · sign(EP (W |D)[∇xL(x,W )] (3.10)

where ϵfair denotes our set of ϵ’s and L is the loss function. Including our set of ϵ’s

allows us to generate an input x′ for our model that is similar to an input x with regards

to its non-protected attributes, but dissimilar in any manner in regards to its protected

attributes. We choose the values of ϵfair by correlating it with the distance weightings

defined in the similarity metric in Equation 3.9.

Based on our definition of IF in Equation 3.8 we are only concerned with finding one

pair of inputs that produce dissimilar outputs. If one such pair exists then the model

is considered unfair. The authors of [17] devise a method using Fair-FGSM to find the

worst-case change in the model’s output when all similar pairs are considered by solving

equation 3.11.

δ∗ = max
x∈X
|π(x)− π(x′)| (3.11)

Figure 3.4 shows us the measuring of fairness in algorithmic form. As δ∗ represents

the maximum difference between two similar individuals for a model, we can consider
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Figure 3.4: Measuring fairness algorithm. Lines 4-12 encapsulate the main procedure for
measuring fairness for a BNN. Credit to [17].

this as a metric for measuring the fairness of our model. However, later in Section 4.3

we construct a simple metric, the Threshold-Fairness metric, that takes into account the

similarity threshold for the output δ.

Thus we can reformulate our definition of fairness for our BNN model as

max
x∈X
|π(x)− π(x′)| ≤ δ (3.12)

or more simply δ∗ ≤ δ for some context-specific output similarity threshold δ. This, in

essence, states that if the maximum of the differences between the outputs of inputs and

their respective generated similar inputs is greater than our defined threshold δ, then the

model is considered unfair.
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Chapter 4

Methodology

In this chapter, we will describe the methodology behind the development of our fair

training regulariser. We will also describe our devised fairness metric, the Threshold-

Fairness score, designed to provide a clearer insight into fairness levels in relation to a

specified similarity threshold δ.

4.1 Definitions

Firstly, we will revisit and fully encapsulate our definition of fairness within the context

of a BNN with our similarity metric.

Definition 4.1.1 (ϵ − δ Individual Fairness.). A BNN fW with predictive posterior dis-

tribution π is said to be individually fair with respect to a given value of ϵ and δ s.t.

ϵ ≥ 0, δ ≥ 0 iff:

ζ(x, x′) ≤ ϵ =⇒ |π(x)− π(x′)| ≤ δ ∀x, x′ ∈ X (4.1)

the ζ function being our similarity metric defined in Equation 3.9.

As noted before, from observing the definition we can see we are only concerned with

finding a single pair of ϵ-similar inputs that do not generate δ-similar outputs for us to

classify the model as unfair. Fair-FGSM allows us to generate a similar input for every

input, which we will refer to as a fair example. By getting the maximum of the differences
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of the predictive distributions of the inputs (x) and their respective fair examples (x′),

we can assert if a model is fair or not. If the maximum difference is over the threshold δ,

then the model is unfair.

Definition 4.1.2 (ϵ− δ Individual Fairness with respect to maximum difference).

Individually fair ⇐⇒ δ∗ ≤ δ s.t. (4.2)

δ∗ = max
x∈X
|π(x)− π(x′)|

We can also use this maximum difference, δ∗, as a measurement for how fair our model

is. The question now is how to improve the fairness of a given model, or more simply,

lower the maximum difference between predictive distributions of pairs of similar inputs.

A possible solution to lowering the difference would be to simply pre-process the

training dataset to include the fair examples. This, however, would be cumbersome, as

a fair example would be needed to be generated for the entire dataset and then stored,

doubling memory usage. It would also only guide the adjustment of parameters to account

for fairness once, rather than continuously guiding the parameters throughout the training

process, as a regulariser does. Additionally, it would not be able to handle new, unseen

data as it would have no built-in functionality to ensure fairness. It is for these reasons that

we devise and investigate a fairness regulariser by adapting adversarial learning methods.

4.2 Fairness Regularisation

To devise a method of fair training, we will be adapting the work of adversarial regulari-

sation on deep NNs outlined in [24], the authors of FGSM. As stated before, adversarial

examples are defined as examples that are only slightly different from correctly classified

inputs but cause the model to completely misclassify them [24]. It was found that an
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adversarial objective function based on FGSM to produce adversarial examples was an

effective regulariser for making a DNN more resistant to adversarial examples, given by

the equation

L∗ = β · L(θ, x, y) + (1− β) · L(θ, x+ ϵ · sign(∇xL(θ, x, y)) (4.3)

where L∗ is the loss, L is the loss function, x, y, the input and output respectively, and θ

is a model parameter.

It is clear that β controls the strength of the regulariser; higher β values would indicate

that the original prediction’s loss would be favoured over the adversarial example’s and

vice-versa for lower values.

Given our focus is on BNNs, we must manipulate the inference method of our stochas-

tic model, VOGN, to include a preference for the distribution of our fair example. VOGN

approximates the posterior distribution as a Gaussian distribution due to the infeasibility

of computing the exact posterior. The algorithm attempts to minimise the loss between

the posterior distribution and the true distribution by computing the natural gradient

and taking the step in the steepest direction, similar to conventional optimisation proce-

dures. The natural gradient, however, takes into account the geometry of the parameter

space opposed to conventional Euclidean gradients, which can lead to better posterior

approximations. We refer the reader to [36] for details on VOGN and the computation of

natural gradients, as well as to the algorithm in Figure 3.3 on the exact computational

steps it takes. The computation of the component gradient for a given mini-batch i ∈M

of a training dataset is given by

g
(k)
i ←− ∇wℓ(yi, f

w
(k)(xi)) (4.4)

where k is the current iteration of VOGN, w is the weights, ℓ is the loss function,

fw
(k)(xi) is our current model’s predictive distribution for training data xi, and yi is the

target (i.e. true) value. This can be seen in line 10 of Figure 3.3.
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We can now manipulate this to include the combined predictive distributions of both

xi and xi’s fair example with a strength parameter βfair.

g
(k)
i ←− ∇wℓ(yi, z) s.t. (4.5)

z ←− βfair · fw
(k)(xi) + (1− βfair) · fw

(k)(xi + ϵfair · sign(EP (w|D)))

where efair is our set of epsilons dictating what inputs we consider to be similar. It

is not hard to see the similarity between Equation 4.5 and the adversarial regularisation

Equation 4.3. The inclusion of the strength parameter βfair allows us to control how strict

we want our model to prefer the distributions of the fair examples over the predictions.

Although it would be natural to want to set this to 0, i.e. always prefer the fair example

distribution, it would be ill-advised due to the fairness-accuracy trade-off outlined in

Section 2.2.4. A preference for such distributions may lead to a fair model but would

heavily impede its accuracy, as for a given input it will generate a predictive distribution

that is most appropriate for its fair example, rather than the input itself. It is key to

note that the generated predictive distributions for a fair example are not guaranteed to

be the same as the distributions of the original input. A good balance between the two

is advisable, as we are looking for a fair model that is also highly accurate.

A key aspect that should be noted of our devised regulariser is that it is attempting to

lower the average difference between outputs of inputs and their respective fair examples

across the entire model. The lowering of the average is a key difference compared to

measuring fairness; when measuring fairness, we are observing the maximum difference

produced, as outlined in Section 3.3.2. Hence, our aim is to reduce the maximum difference

by effectively lowering the average difference between inputs and their fair examples.
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4.3 Threshold-Fairness Metric

Before discussing the implementation of our regulariser and experiment methods, we

will first outline a simple metric devised to measure fairness that is related to a given

output similarity threshold. Although using maximum difference between similar pairs

in a training set δ∗ is a good way of measuring fairness, it has no relation to our defined

output similarity threshold δ. There is little to say about how fair a model is compared

to another if only observing the maximum output differences for similar pairs; one value

of δ∗ may be within the similarity threshold for one model but not for another. Hence we

devise the Threshold-Fairness metric.

Definition 4.3.1 (Threshold-Fairness). Given a similarity threshold δ and a maximum

difference δ∗, the threshold-fairness score is:

Threshold-Fairness =
δ − δ∗

δ
(4.6)

This captures measuring fairness in an intuitive manner; higher values indicate that

the maximum difference between outputs of similar input pairs is much lower relative to

the defined threshold to consider outputs similar. The higher the threshold-fairness, the

less the model was influenced by a protected attribute, thus the more fair the model is.

Negative threshold-fairness scores would also indicate that the model is unfair. We can

thus compare the fairness of models that have different output similarity thresholds. For

example, suppose we have a model m1 with threshold δ = 0.8 and maximum difference

δ∗ = 0.6 and another model, m2, with threshold δ = 0.7 and maximum difference δ∗ = 0.3.

We can compute their respective threshold-fairness scores, m1 with a score of 0.25 and m2

with 0.57. We can thus conclude that the model m2 is fairer relative to its own threshold

compared to m1.

We acknowledge that whether this is an appropriate comparison is up for debate,

as different thresholds would indicate that definitions of similarity may be different for
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each model. We advise that this metric is only comparable for models attempting to

model the same classification task. Outside of this, we enter the blurred lines between

machine learning and sociology, as the definitions of fairness and similarity utilised come

into question. With that said, we think it is a useful metric in our context for observing

the fairness of our models.
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Chapter 5

Experiments

We will now describe how we tested our fair training regularisation mechanism. We will

first outline how we constructed a BNN with and without our regularisation method,

enabling us to compare their respective levels of fairness under varying architectures and

non-protected epsilon values. We will then proceed to outline the metrics collected and

then conclude with the difficulties faced during the experiments. All code for this project

was conducted using Python 3.8.10.

5.1 Setup

To give us a full scope of the effectiveness of our regularisation method, we decided to

run ten trials of an experiment comparing the levels of fairness of a BNN trained with

the regularisation method against a standard BNN. These comparisons were made under

various similarity metric parameters and model architectures. We will outline the details

of the experiment as follows.

Database For the purposes of our experiment, we utilised the Adult database, a com-

monly used and certified database for ML fairness research [8]. The task of the database

is to predict whether an individual will attain income that exceeds $50K/yr based on
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14 attributes, which includes protected attributes such as gender, race and age. For our

experiments, we utilise an 80-20 training-test split. All categorical features, such as oc-

cupation, are one-hot encoded. As standard for neural networks, we normalise the inputs

to the range of [0,1]. This has the benefit of speeding up the learning process.

BNN Architecture We test our regulariser under a range of different hidden layer

widths (number of neurons per layer) and depths (number of layers). We vary the depth

between 1 to 5, testing a width range of 2 to 64 at each depth. To put more accurately,

for each depth [1,2,3,4,5] we test the fairness levels for each width [2,4,8,16,32,64]. The

rest of the listed parameters are used across all architectures. We use a batch size of 128

and a maximum of 15 epochs. For the loss function we use categorical cross entropy, a

standard loss function for BNN classification tasks. For the inference method, we use the

aforementioned VOGN optimiser. The hidden layers utilise a typical RELU activation

function and a Softmax function for the output layer, as outlined in Section 3.1.1. By

testing a wide range of architecture sizes, we hope to capture the scalability of our fair

training method.

Similarity metric - ϵ For our similarity metric, we will utilise only gender as our

protected attribute. We will set the epsilon value for this protected attribute for maxi-

mum variability, as outlined in Section 3.3.1, ϵp =∞. In practice, this will be set to 1, as

we are standardising the inputs. We then test the fair training regularisation method on a

range of values for the set of epsilon values for our non-protected attributes. Specifically,

we test the set of values [0.0, 0.05, 0.1, 0.15, 0.2]. This implies that by having a value of

0 non-protected attributes of individuals are only considered to be similar if there is no

difference in their values, and if the value is 0.2, attributes of individuals are considered

similar if their differences are within 0.2 of each other. Realistically, we would set this

value based on prior research indicating the correlation between non-protected attributes

and protected attributes, but here we are merely testing whether it has an affect on the
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fairness level outputted by a fair trained BNN. However, we note that we can extend

this to include more protected attributes. Our objective of testing a wide range of non-

protected ϵ values is to evaluate its role on the effectiveness of our fair training method.

Similarity metric - δ As we are interested in exploring how our devised fair training

method effects the fairness levels of a BNN, rather than determining when a model is

exactly unfair, we will set this to δ =∞. Again, as the inputs are standardised, this will

be set in practice as δ = 1.

Fairness Regularisation - β For our strength parameter, we will do a 50/50 split

(β = 0.5) between accuracy and fairness for a given input, in accordance with what we

outlined in Section 4.2.

Computer architecture We ran our experiments on two Microsoft Azure virtual

machine with a Linux kernel, 2 virtual CPUs, x64 architecture and 4 GiB of RAM. This

was implemented due to the considerable time required to train and evaluate the models

under different architectures.

5.1.1 Trials

The following pseudocode describes a high level view of the sequence of operations for a

single trial.

1 x_train , x_test , y_train , y_test = preprocess_data ()

2

3 def run_trial ():

4 # Initialise our parameters

5 delta = 1 # Output threshold delta

6 eps = [0.00, 0.05, 0.10, 0.15, 0.20] # Non -protected epsilon values

7 layers = [1, 2, 3, 4, 5] #Number of hidden layers in the model
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8 neurons = [64, 32, 16, 8, 4, 2] #Number of neurons per hidden layer

in the model

9

10 for epsilon in eps:

11 for neuron_num in neurons:

12 for layer_num in layers:

13 # Setting our epsilons

14 epsilons = [epsilon for i in range(0,

number_of_attributes)]

15 epsilons[protected_attribute] = 1.0

16

17 # Get our standard BNN and its training time

18 BNN , time_BNN = trainBNNModel(neuron_num , layer_num ,

x_train , y_train , x_test , y_test , fairness_regularisation=False)

19 # Get its metrics , including fairness levels using Fair -

FGSM

20 BNN_metrics = get_results(BNN , x_test , y_test , epsilon ,

delta)

21

22 #Get our fair trained BNN and its training time

23 BNN_fair_trained , time_fair_trained_BNN = trainBNNModel(

neuron_num , layer_num , x_train , y_train , x_test , y_test , epsilons ,

fairness_regularisation=True)

24 # Get its metrics , including fairness levels using Fair -

FGSM

25 BNN_fair_trained_metrics = get_results(BNN_fair_trained ,

x_test , y_test , epsilon , delta)

26

27 # Store the results

28 store_results(BNN_metrics , BNN_fair_trained_metrics ,

epsilon , delta , layer_num , neuron_num)

Listing 5.1: Python pseudocode for a single trial.
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The mean of the metrics of 10 trials for each epsilon value was then calculated. Note

that some trivial details, such as how the metrics are stored and computed, are omitted.

5.1.2 Packages Used

The implementation of this project relied on the use of several packages. For data stor-

age, vector and matrix calculations the widely popular data analysis packages NumPy

and Pandas were used. Scikit-learn, a popular ML package, was used for the train-test

splitting of the dataset. For constructing our BNNs, we use DeepBayes, an extension of

the industry standard deep learning toolkit Keras (which is subsequently an extension

of the ML platform package Tensorflow). Keras unfortunately does not have in-built

functionality to support the construction of BNNs, hence we must rely on DeepBayes.

DeepBayes implements various basic BNN analysis including probabilistic safety, certi-

fiable adversarial robustness and adversarial attacks such as FGSM. It also implements

various optimisers such as VOGN. We extend this optimiser to include our fair train-

ing mechanism alongside Fair-FGSM. Full code of our implementation can be viewed

at https://github.com/tstephen22/Fairness-Through-Uncertainty. For visualising

the results of our experiments, we use a combination of the popular Python visualisation

package Matplotlib and the data visualisation software Tableau.

5.1.3 Code Implementation

BNN

The following python pseudo-code describes how we implement our standard BNN and a

fair trained BNN. It’s important to mention that this omits some minor data manipula-

tions for simplification, but the core concept remains the same.

1 def trainBNNModel(neurons , layers , x_train , y_train , x_test , y_test ,

epsilons =[], fairness_regularisation=False):

2 input_shape = x_train.shape [1]
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3 num_classes = y_train.shape [1]

4

5 # Define our sequential (feed forward) neural network

6 model_BNN = keras.Sequential ()

7 model_BNN.add(keras.Input(shape=input_shape))

8

9 # Add our layers of neurons with RELU activation function

10 for x in range(layers):

11 model_BNN.add(keras.layers.Dense(neurons , activation="relu")

)

12

13 # Add our output layer with Softmax function

14 model_BNN.add(keras.layers.Dense(

15 num_classes , activation="softmax"))

16

17 # Initialise our loss function - categorical cross entropy

18 loss = keras.losses.CategoricalCrossentropy ()

19

20 # Intialise our VOGN optimiser using DeepBayes

21 optimizer = optimizers.VariationalOnlineGuassNewton ()

22

23 # Parameters

24 batch_size = 128

25 epochs = 15

26

27 # Finally compile our BNN with DeepBayes

28 bayes_model = optimizer.compile(

29 BNN_model , loss_fn=loss , batch_size=batch_size , epochs=

epochs ,

30 # train with fairness regularisation (which is 5 in the

optimisers list) if set to true

31 rob_lam =0.5, # our beta value

32 robust_train= 5 if fair_regularisation else 0,
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33 fair_epsilons=epsilons)

34

35 # Train our model

36 bayes_model.train(x_train , y_train , x_test , y_test)

37

38 return bayes_model

Listing 5.2: Python pseudocode for the construction of a BNN with and without fairness

regularisation.

Fairness Regularisation and Fair-FGSM

To implement our fairness regularisation, we rely on the code implementation of Fair-

FGSM supplied by [17] to create our fair examples using our set of epsilons. Our regular-

isation is implemented as follows in the VOGN optimiser of DeepBayes.

1 ...

2 # Fair -FGSM training

3 elif(int(self.robust_train) == 5):

4 output = tf.zeros(predictions.shape)

5 # Generate our fair example

6 fair_example = BNN_FAIR_FGSM(self , features [0], self.attack_loss

, eps=self.fair_epsilons)

7 # Get the predictive distribution of the fair example

8 fair_example_dist = self.model(fair_example)

9 # This (below) is the equalivalent of our equation 4.5, robust.

lambda being our strength parameter

10 output = (self.robust_lambda * predictions) + ((1-self.

robust_lambda) * fair_example_dist)

11 loss = self.loss_func(labels , output)

12 ...

Listing 5.3: Python code for fairness regularisation.
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5.2 Metrics

In this section we detail and give a brief discussion of the metrics we gathered to fully

understand the impact of our proposed fair training method. For each metric, we will be

taking the mean over the 10 trials as outlined.

5.2.1 Max Difference

This is one of the primary metrics for measuring the level of fairness of a BNN. It describes

the maximum difference found between the predictive distribution of similar pairs in the

input space, as described in Equation 3.11. To do this, for a given model we generate a

fair example for every input in the test set. We then feed every pair into the model and

compute their differences; the maximum difference found being our measure of fairness.

As our predictive distributions are Softmax outputs, and we are dealing with a binary

classification, we take the absolute difference of the two probabilities of an input belonging

to the first class. Note that this could also be done with the second class; the value would

remain the same. A value closer to 0 means that the model’s prediction was not influenced

by the input’s protected features (gender), while a value closer to 1 means the model’s

prediction was more heavily influenced by a protected attribute [17]. We note that we

collect this metric and visualise it in heat maps for completeness, but we do not provide

an analysis of it as we will primarily focus on the threshold-fairness score.

5.2.2 Threshold-Fairness

We also calculate the threshold-fairness score as described in Section 4.3. As our δ is 1,

the threshold-fairness score is simply an inverse of the maximum difference; values closer

to 1 mean the model was not heavily influenced by a protected attribute (i.e. more fair)

while values closer to 0 means the model was more heavily influenced by a protected

attribute (i.e. less fair). This will be the primary metric we will observe in our results.

We are thus looking to increase this value with our fairness regulariser.
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5.2.3 Average Difference

We calculate and collect the average difference in a model’s prediction distributions for

pairs of similar inputs. The reason for this is our regularisation method will account for

the difference between individual pairs, rather than accounting for the largest difference

in the entire input space. To evaluate that our method is working, we would hope that the

average difference is lower after our regularisation. For a number of pairs N, the average

difference is

Average Difference :

∑N
i=1 |π(x)− π(x

′
)|

N
(5.1)

5.2.4 Time

As standard with evaluating new regularisation methods, we collect and measure the time

it takes to train with and without our method. We do not expect it to increase drastically

as the complexity of Fair-FGSM, irrespective of the model’s complexity, is O(n) where n is

the number of elements in the input. Fair-FGSM and the original FGSM method is quite

fast compared to other adversarial computation methods which generally use iterative

steps.

5.2.5 Accuracy, Precision, Recall

Given we are manipulating the inference method of our BNN, we compute and collect

the accuracy, precision and recall of the models to see if our method has any effect on

them. For context, True positives (TP) are the number of inputs classified correctly as

the first class and false positives (FP) are the number of inputs incorrectly classified as

the first class. True negatives (TN) are the number of inputs correctly classified as the

second class and false negatives (FN) are inputs incorrectly classified as the second class.

These metrics are computed as follows.
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Accuracy :
TP + TN

TP + TN + FN + FP
(5.2)

Precision :
TP

TP + FP
(5.3)

Recall :
TP

TP + FN
(5.4)

5.2.6 Predictive Entropy

For completeness, we will calculate and collect the predictive entropy of the mean of the

predictive distributions outputs of our BNNs. Entropy of the predictive distributions

outputted by a BNN quantifies the level of uncertainty of the model’s predictions [38].

For our classification task, if a BNN gives the predictive distributions over C classes for

a given input as p1, p2, ..., pC then the predictive entropy is calculated as

Predictive Entropy : −
C∑
c=1

pclog(pc) (5.5)

Higher levels of predictive entropy indicate high uncertainty in the model’s predictions

(i.e. a high level of surprise in the predictions) for the given input. Low values indicate

higher confidence. We use DeepBaye’s built-in analyser to compute this for our models.

5.3 Difficulties

A number of issues were raised throughout both the experimentation setup and execution

phase. For one, the number of architectures and non-protected ϵ values to be evaluated

was significant. The number of models to evaluate over all is the number of trials (10) ×

the number of ϵ values (5) × number of layer values (5) × the number of neuron values

(6) × with and without fair training (2) = 3000 models. If we take a rough estimate

of 400 seconds to evaluate one model, it takes roughly 1,200,000 seconds to complete all

trials, or roughly 2 weeks. It was for this reason that the trials were split between two
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identical Azure VMs, each completing 5 trials overall. Originally, we had planned to only

do 5 trials overall given the significant amount of time. Fortunately, however, we found

ourselves with additional time, so we extended the number of trials to 10. This allowed

us to obtain a more precise assessment of the overall performance.

Another difficulty faced was devising the strength parameter β. Initially, a slightly

different implementation of the regulariser was taken, such that there was no strength

parameter. In this implementation, the regulariser would restrict the model to always

balance for fairness over accuracy, essentially having β = 0. Although the regulariser did

improve fairness levels to a very high degree, it penalised accuracy heavily and to such

an extent that it would achieve a lower bound accuracy no matter the architecture. After

observing this, we decided to adapt our methodology and implementation to allow the

ability to balance between fairness and accuracy, thus including the parameter β in our

regulariser. Given our objective was to investigate the base performance of the regulariser,

we set our regulariser to balance between accuracy and fairness evenly.
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Chapter 6

Results

In this chapter, we will present and discuss the results of our experiments outlined in

Chapter 5. As we have experimented across a high number of architectures and non-

protected ϵ values, we will primarily focus on the results and graphs of ϵ = 0.1, while

referring to general trends seen in other values. All graphs produced and discussed

for every metric and ϵ value evaluated for our experiments can be viewed in the Ap-

pendix A of this paper. As mentioned previously, we have experimented on a total of

three thousand models. The results for every model, as well as additional graphs such

as visualisations of the maximum difference, can be viewed at https://github.com/

tstephen22/Fairness-Through-Uncertainty. We assess the performance and impact

of our proposed method on three key aspects of BNNs; fairness, predictive performance,

and training duration.

6.1 Fairness

6.1.1 General Performance

We will now evaluate the general effectiveness of our devised method in improving the

fairness of a BNN. From observation, we can provide several insights on the method’s

performance. We visualise the Threshold-Fairness scores produced by our experiments
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Figure 6.1: Heatmap of Threshold-Fairness score for BNN (left) vs BNN with fair training
(right), ϵ = 0

Figure 6.2: Heatmap of Threshold-Fairness score for BNN (left) vs BNN with fair training
(right), ϵ = 0.05

Figure 6.3: Heatmap of Threshold-Fairness score for BNN (left) vs BNN with fair training
(right), ϵ = 0.10

Figure 6.4: Heatmap of Threshold-Fairness score for BNN (left) vs BNN with fair training
(right), ϵ = 0.15
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Figure 6.5: Heatmap of Threshold-Fairness score for BNN (left) vs BNN with fair training
(right), ϵ = 0.2

Figure 6.6: Threshold-Fairness Score against architecture for BNN (red) vs BNN with
fair training (blue), ϵ = 0.1. Constant lines indicate the average value over the layer size.
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for each epsilon value in the heatmaps in Figures 6.1 - 6.5. We can observe a general

pattern of our fair training method being quite effective for improving fairness levels of

narrow architectures, but has a negligible or even a reducing effect on the fairness of

wide architectures. On closer inspection of the fairness levels for ϵ = 0.1 in Figure 6.6,

it becomes evident that for every depth (layer) there is an average increase in fairness

after fair training. This trend can be observed in the corresponding Threshold-Fairness

graphs for other ϵ values. As well as that, the decline in fairness levels as the number

of neurons increase is more noticeable. This can largely be explained by the fairness-

accuracy trade off as mentioned. Accuracy increases as the model tends to become more

precise and detailed with a greater number of neurons, reducing fairness as it employs

additional ways to distinguish between individuals who are considered similar - effecting

both a standard BNN and a fair trained BNN. Our fair training method does improve

the fairness levels in some instances of high number of neurons (such as a 5 layer network

with 64 neurons per layer, as seen in Figure 6.6), but generally it tends to decrease it for

ϵ values < 0.1.

6.1.2 Effect of ϵ

An observable trend in the performance of the fair training method is that it improves as

the ϵ values increase. When ϵ is below 0.1, such as ϵ = 0 or ϵ = 0.05, the regularisation

tends to reduce fairness levels, sometimes even drastically, as observable in Fig 6.7. This

trend can be further observed in graphs in ϵ plots for different architectures, such as in

Figure 6.8 for a model with 4 layers and 64 neurons each. At values at and above 0.1 for

ϵ the fair training method tends to improve fairness levels across all architectures.

There are several potential explanations for this effect. Firstly, low ϵ values can con-

strain the model heavily, as it essentially means there is little to no range for the non-

protected attributes to be considered similar in their distances. Although this does imply

the fair example is only different in the protected attribute, training the model on this
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Figure 6.7: Threshold Fairness vs Architecture for BNN (red) and BNN with fair training
(blue), ϵ = 0. Constant lines indicate the average value over the layer size.
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Figure 6.8: Example plot of Threshold-Fairness Score vs ϵ for a BNN (top) and a BNN
with fair training (bottom). The model has 4 layers with 64 neurons each.
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fair example could result in an excessive focus towards minimizing the differences strictly

based on the non-protected attributes. It is key to note that the output generated by

a BNN is a probability distribution, which is rarely the exact same for multiple outputs

given the same input. As a result, the model might achieve high similarity in the outputs

of inputs and their fair examples for non-protected attributes, but at the expense of not

adequately addressing fairness concerning protected attributes.

A second potential explanation follows from this; BNNs thrive on the intricate vari-

ability in data, and by training the model on generated outputs that have very little

difference from their real counterparts, we are in effect constraining the model. Setting

ϵ = 0 essentially doubles the data point given to the model and places an overemphasis on

its outcome, potentially over-fitting the model to it. Although setting ϵ = 0 for measuring

fairness for a given model is acceptable, doing so for training would be naive given the

complexities of both fairness and the inference methods of BNNs.

On the other hand, high ϵ values, particularly those at or above 0.2, are generally

not recommended, unless the specific task of the model justifies such a substantial degree

of variability in the differences for individuals to be considered similar. Such a high

band would imply perturbations in the fair examples that are significant for the model,

hindering its accuracy as it is not getting accurate data.

If anything, this illustrates the importance of a precise and carefully considered method-

ology for determining the ϵ values for non-protected attributes for the fair training regu-

lariser. From our observations, we can provide the insight that our devised method works

most appropriate for non-protected ϵ values at around 0.1 or 0.15, but this of course is

context-specific to the model and fairness task.

6.1.3 Average Difference

As mentioned in Section 4.2, our devised regulariser’s objective is lowering the maximum

difference between inputs and their respective fair examples by lowering the average dif-
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Figure 6.9: Average Difference against architecture for BNN (red) and BNN with fair
training (blue), ϵ = 0.1.
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ference. Observing the average difference graphs, such as for ϵ = 0.1 in Figure 6.9, we

can safely conclude it is effectively completing this task. It is still, however, subjected

to the effect of ϵ when viewing similar results for lower (< 0.05) non-protected ϵ values;

increasing the average difference when ϵ = 0.

6.2 Predictive Performance

When evaluating the performance of any regulariser, there must be consideration for its

impact on the predictive performance of the model. We evaluate the predictive perfor-

mance of the BNNs by observing the accuracy, precision and recall of the model. We then

evaluate the potential impact on the stochastic nature of BNNs by observing the mean

predictive entropy across architectures.

6.2.1 Accuracy

Observing the accuracy graphs such as in Figure 6.10, we can see that the increase in fair-

ness has limited the maximum accuracy achievable of the model. Generally, the standard

BNN reaches an average maximum accuracy of ≈ 0.84 (≈ 84%), while the fair trained

BNN reaches an average maximum accuracy of ≈ 0.82 (≈ 82%) and at best an accuracy of

≈ 0.829 (≈ 82.9%) across architectures and ϵ values. This is expected, given the fairness-

accuracy trade-off. From observation of ϵ values > 0.1, we can see some indication of the

accuracy dropping by at least 0.01 (1%) for every architecture. We can observe an exam-

ple of this small fluctuation in Figure 6.11 for a model with 4 layers and 64 neurons each.

We could attribute this to the threshold for similar outputs being too large, implying the

model is balancing true inputs and fair examples with significant perturbations to their

non-protected attributes. However, this isn’t a significant enough drop for us to draw a

relationship between ϵ and accuracy, as there could be other factors at play. There is also

only a certain amount of accuracy achievable with a given benchmark dataset, such as the

Adult dataset, so we can’t draw any conclusive insights about the effect of non-protected
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Figure 6.10: Accuracy and Threshold-Fairness Score against architecture for BNN and
BNN with fair training, ϵ = 0.1. Coloured bands indicate the range between the maximum
and minimum accuracy over the layer size.
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Figure 6.11: Example plot of Accuracy vs ϵ for a BNN (top) and a BNN with fair training
(bottom). The model has 4 layers with 64 neurons each.
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ϵ values on the accuracy. We can, however, confirm that the accuracy drops as fairness

increases, as expected.

6.2.2 Precision and Recall

As precision and recall are generally analysed together, we will discuss the impact of the

fair training method on both here. In a similar manner to accuracy, there is a potential

trade-off between precision and recall with fairness. This is evident in our results across

non-protected ϵ values. An example of precision and recall values for ϵ = 0.1 can be viewed

in Figure 6.12. For the fair trained model, precision tends to be much lower compared

to a standard BNN as the number of neurons increase. Although it does increase as the

number of neurons increases, it does not reach the same maximum precision as a standard

BNN, which is ≈ 0.79.

The same can be observed for recall; it is generally much lower for the fair trained

BNN compared to a standard BNN across different widths and ϵ values. There can be

several factors contributing to this, such as the stochaistic nature of BNNs, which implies

that each test essentially evaluates slightly different models. However, the general trend

can be attributed to the increase in fairness. As the model ensures fairness across its

predictions, it will inadvertently lower its accuracy in identifying true positives (leading

to lower recall) and correctly classifying negatives (leading to lower precision) compared

to the true values of the training data.

6.2.3 Predictive Entropy

From the mean predictive entropy across non-protected ϵ values, we can observe that a

fair trained BNN’s uncertainty in its predictions tends to fluctuate more across model

architectures compared to a standard BNN. However, when the width of the architecture

is at or above 32 neurons it is less uncertain in its predictions compared to a standard

BNN; the predictive entropy is lower, implying a lower level of “surprise” in its predictions.
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Figure 6.12: Precision (top) and Recall (bottom) with Threshold-Fairness against archi-
tecture, ϵ = 0.1.
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Figure 6.13: Mean Predictive Entropy and Threshold-Fairness score against architecture,
ϵ = 0.1.
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This is observable in Figure 6.13. For a single layer with 64 neurons, the predictive entropy

for a BNN with fair training is 0.2928 while for the standard BNN it is 0.3464. This can

be shown likewise for 2, 3 and 4 layers. From observation, we can also assert that the

increase in ϵ values has little effect on the predictive entropy. Across a majority of the

trials for each ϵ value, the predictive entropy remains within the interval of [0.29, 0.52].

We could attribute this increase in confidence of the model’s predictions to the fairness

constraint. By design, we are trying to homogenise the predictions made across groups

of individuals. This would naturally lead to a decrease in the level of surprise in outputs,

as they become less variable and more predictable under our fairness guided training

methodology. We, however, make these observations with caution, as predictive entropy

is not an all encompassing measure of uncertainty.

6.3 Training Time

As described in Section 5.2.4, we expect an increase in training time as we are implement-

ing an additional regulariser. Strictly speaking, we would expect an increase of O(N) to

the model’s training method as we are using Fair-FGSM, where N is the dimensionality

of the input. We can clearly see this overall linear increase in Figure 6.14; the training

time increases by ≈ 100 - 200 seconds. Outliers in the data can be associated with the

methods Azure employs for handling long-running Virtual Machines over time, resulting

in slightly inconsistent run times. Generally, our method is very fast and adds negligible

time to the training time of a BNN.

6.4 Overall Performance

Based on our analysis of the results, we can conclude that our devised fairness regulariser

measurably improves individual fairness levels for BNNs under suitable parameter val-

ues. The regulariser has a small impact on predictive performance, lowering the BNN
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Figure 6.14: Training time against architecture for BNN and BNN with fair training,
ϵ = 0.1. Constant lines represent averages.
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accuracy, precision and recall. This, however, is expected for any method with an objec-

tive to improve fairness. There is some indication that our method improves the model’s

confidence in its outputs, but we can not definitively say without further testing of the

model’s uncertainty. From our observations, it is clear that there is an inherent relation-

ship between the values for the set of non-protected ϵ values and the effectiveness of the

regulariser. For ϵ < 0.1, the regulariser can be ineffective or detrimental to the fairness

level of a BNN. As a result, we make the general recommendation to use non-protected

ϵ values at or above 0.1 for the regulariser. However, this is not a rigid requirement; the

values selected depend on the model’s specific task and the context of the fairness scenario

relevant to the user.
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Chapter 7

Evaluation and Limitations

In this chapter, we will evaluate the findings of the paper as well as discuss its limitations.

7.1 Evaluation of Findings

As we concluded in Section 6.4, our fairness regulariser performs fast, effectively and

reliably at improving individual fairness in BNNs when given non-protected ϵ values above

0.1. We can also empirically conclude that the non-protected ϵ values play a major role

in determining the effectiveness of the regulariser. Unfortunately, we can not compare

this to any method or benchmark for improving individual fairness in BNNs as this work

is the first of its kind. However, as we have tested our regulariser on a high number of

models with varying architecture sizes and taking the average over 10 trials, evaluating

a total of 3000 models, we can conclude on the effectiveness and observed trends with

confidence.

7.2 Limitations

In this section, we will discuss the primary limitations of our experiment.
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7.2.1 Role of Strength Parameter β

In our experiments, we thoroughly tested multiple non-protected ϵ values, a key parameter

for our regulariser. However, we did not investigate the role of the strength parameter β,

which plays the role of balancing between accuracy and fairness. As outlined in Section

4.2, we set this to β = 0.5, implying an even balance between accuracy and fairness.

Although valid, an argument can be made that the strict setting of this parameter is

naive, as there may be scenarios where fairness would be preferred over accuracy (or vice-

versa) for a specific input. For example, in hiring practices using ML, placing a higher

emphasis on fairness may be more critical than achieving the highest accuracy, especially

when considering candidates from underrepresented groups. In such cases, a higher weight

on fairness could help mitigate biases and promote equal opportunities, despite potentially

sacrificing some accuracy in the model’s predictions. In retrospect, investigating the role

of the strength parameter on the effectiveness of the regulariser by using a range of values

would be beneficial. However, we think it would be more beneficial if this parameter was

dynamically adapted based on the input received by the model.

7.2.2 Testing of Proxies

As noted in Section 3.3.1, we can account for correlations between non-protected and

protected attributes by setting the similarity threshold (ϵ) for the non-protected attributes

accordingly. For example, if there is a correlation between the ethnicity (protected) and

home address (non-protected) of an individual for a hiring algorithm, we set the ϵ value for

the home address accordingly such that the threshold to consider another home address

as similar is much larger. Although we note this feature, we do not test the regulariser

on various non-protected ϵ values for a single input, but rather use a single uniform value

for all non-protected attributes. While ideally exploring its effectiveness in these types

of scenarios would have been beneficial, our primary focus was to assess the foundational

performance of the regulariser using uniform ϵ values across all non-protected attributes.
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7.2.3 Testing of Multiple Protected Attributes

Similarly to the limitation in Section 7.2.2, we only evaluate the effectiveness of the

regulariser when there is only a single protected attribute, which was gender. It would be

beneficial to establish the regulariser’s performance with multiple protected attributes,

such as gender and race. As our work is the first of its kind for BNNs, our primary

focus was to establish the foundational performance of the regulariser, hence we did

not investigate this area. With that said, we posit that it would have a comparable

performance if more protective attributes were specified. This lays grounds for future work

to investigate as to whether multiple protected attributes has an effect on the regulariser.

7.2.4 Effectiveness on Deterministic NNs

Given the effectiveness observed for BNNs, we would be interested in seeing the per-

formance of the regulariser when adapted for deterministic NNs. This would not be a

difficult adaptation, given that Fair-FGSM can be used on deterministic NNs [17] and

the adversarial training method outlined in [24] can be used as guidance, such as we have

done. Although it is of our interest, we did not investigate this given our time constraints.

7.3 Review

Although with some limitations, our findings suggest there is a lot of value in our de-

vised method. Additionally, it illustrates that the similarity between the definitions of

individual fairness and adversarial robustness can be utilised and leveraged practically to

enhance the fairness of BNNs, as well as other machine learning models. As our method

is relatively simple and fast to compute, we are hopeful that it can act as a starting point

to be developed and expanded upon. We are optimistic that with further development, it

will evolve into a more rigorous and flexible regulariser, adaptable to a variety of scenarios

where improving individual fairness is of high importance.
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Chapter 8

Conclusions and Future Work

In this work, we have presented a simple fair training regulariser to improve the individual

fairness of a Bayesian neural network (BNN) during training time; the first of its kind. Our

motivation for the construction of this training method stems from the increasing need to

effectively address and mitigate biases present in ML models. In addition to this, we were

motivated to fill the gap in current research of methodologies for enhancing individual

fairness for BNNs. BNNs are powerful machine learning models, with the potential to

deliver substantial advancements to various fields of society, such as medicine, finance and

security. As such, we saw it to be vital to develop a mechanism that serves as a starting

point for counteracting biases and improving fairness within these models.

To achieve this objective, we explored the link between individual fairness and ad-

versarial robustness. We transferred techniques from adversarial robustness training pro-

cedures into our context of individual fairness. We expanded on existing research that

measures individual fairness in BNNs, embedding the Fair-FGSM algorithm directly into

our regulariser’s development. With this integration in hand, we developed a regulariser

that can be applied during training to enhance the individual fairness of a BNN.

We then rigorously tested our developed regulariser across numerous experiment tri-

als, testing various architecture sizes and parameter values, as well as collecting various

metrics. In total, our experiments encompassed three thousand BNN models. Given this,
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we are confident in our findings. We can attest that our regulariser has a foundational

performance of being fast and effective at improving individual fairness for a BNN, but

does come at a slight degradation of model accuracy. We also found that the set of non-

protected ϵ values chosen is influential to the overall performance of the regulariser. It

is therefore our general recommendation to choose these parameters in a well-informed

and correct manner, and ideally to use ϵ values at or greater than 0.1. However, we do

outline that this is not a strict requirement, and that values should be set depending on

the specific context the regulariser is being employed.

As stated before, we find that our work illustrates there is a lot of value to be gained

from the similarity between the definitions of individual fairness and adversarial robustness

in their definitions. Although there are some limitations to our work, we hope it will offer

grounds for the construction of future work, which we will outline in the proceeding

section. In conclusion, we hope that our developed regulariser and our empirical findings

serve as a foundational piece in the investigation and development of individual fairness

in BNNs.

8.1 Future Work

In this section, we will describe the possible avenues for future research in the area of

individual fairness for BNNs.

8.1.1 Development of Fairness-Enhancing Mechanisms for Bayesian

Neural Networks

As we have stated, to the best of our knowledge this is the first regulariser devised for

BNNs to improve individual fairness. BNNs are increasingly being adopted in prominent

areas in society, such as the medical field, to aid in making critical decisions where uncer-

tainty needs to be correctly quantified. As such, we find it crucial that these models have
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tools in place to ensure that they are not only making accurate but fair decisions. We are

aware that our devised regulariser is simplistic in nature, and may not capture complex

qualities of fairness and what it means to be ‘fair’, but as it is the first of its kind we

intend for it to act as a starting point for more complex and rigorous tools to be developed

in the future. One potential development is to make the strength parameter β dynamic,

allowing it to adjust based on the input and its respective fair example. This adapta-

tion could enhance the regulariser’s responsiveness and effectiveness in different scenarios.

With this in mind, we emphasise the need for further research into the development of

mechanisms that enhance individual fairness in BNNs going forward.

8.1.2 Testing of Regulariser in Complex Scenarios

As outlined in our limitations in Section 7.2, we do not test our regulariser with non-

protected ϵ sets with various values, but rather a single uniform value for all non-protected

attributes. We also do not test the effect of having multiple protected attributes. This

was the case as we were interested in investigating and establishing the base performance

of the regulariser. With that said, the performance of the regulariser on such scenarios

where there are multiple protected attributes and various non-protected ϵ values would be

highly insightful and beneficial; such scenarios are far more realistic anyway, as individuals

can be part of multiple protected groups in the real world. We also noted that there is

a relationship between non-protected ϵ values and the effectiveness of the regulariser at

improving individual fairness, so further investigation into this relationship, such as when

there is a set of non-protected ϵ values with various values above and below 0.1, would be

quite insightful.
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8.1.3 Adapting the Regulariser to Improve Individual Fairness

on Deterministic Neural Networks

From our findings we can attest that the regulariser works well at improving individual

fairness in BNNs. However, minimal adaptations are needed to integrate the regulariser

into deterministic NNs. Given the extensive time required for our experimental setup,

exploring this integration was beyond our current scope. Nevertheless, it presents an

interesting area for future work.

8.1.4 The Relationship Between Fairness and Uncertainty

A limitation of our work was that we could not give a full comprehensive observation of

the effect of the regulariser’s on the uncertainty of the BNN, as it was out of our scope.

We do make the observation that it may improve confidence in the model’s predictions,

as we are making the predictions of similar individuals more homogeneous, but we can’t

say it with complete certainty without more rigorous testing. Additionally, the work of

[17] suggests that the uncertainty of BNNs results in them being fairer in their decisions

compared to deterministic NNs. This, coupled with our small insight, opens up an area

for further investigation into the relationship between uncertainty and individual fairness

in deep learning models such as BNNs.
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8.2 Reflection

As this paper develops the first individual fairness regulariser for BNNs, we are pleased

to contribute a foundational piece to this area of research. The importance of ensuring

deep learning models, such as BNNs, are fair in their decision making is becoming an ever

increasing issue in society, especially as these models are deployed in critical areas of our

lives. We are grateful that we had the opportunity to contribute to the advancement of

this important endeavour.

On a personal note, the author would like to express that he is especially grateful to

be given such an opportunity to not only learn about this important research area, but

to also be able to contribute to it.
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Declaration of AI Usage

We would like to state that the use of AI, such as ChatGPT, was used in parts of the

writing of this paper to aid in sentence structure and phrasing.
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Jovanović. Fair: Fair adversarial instance re-weighting. Neurocomputing, 476:14–37,

2022.

[57] Yuji Roh, Kangwook Lee, Steven Whang, and Changho Suh. Sample selection for fair

and robust training. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and

J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,

volume 34, pages 815–827. Curran Associates, Inc., 2021.

80



[58] Markus Schedl. Deep learning in music recommendation systems. Frontiers in Ap-

plied Mathematics and Statistics, 5, 2019.

[59] Bing Sun, Jun Sun, Ting Dai, and Lijun Zhang. Probabilistic verification of neural

networks against group fairness, 2021.

[60] Harini Suresh and John Guttag. A framework for understanding sources of harm

throughout the machine learning life cycle. In Equity and Access in Algorithms,

Mechanisms, and Optimization, EAAMO ’21. ACM, October 2021.

[61] Shubhi Upadhyay. Algorithmic bias and its impact on society. Medium, Feb. 2023.

[62] Ana Valdivia, Javier Sánchez-Monedero, and Jorge Casillas. How fair can we go in

machine learning? assessing the boundaries of accuracy and fairness. International

Journal of Intelligent Systems, 36(4):1619–1643, 2021.

[63] Yuyan Wang, Xuezhi Wang, Alex Beutel, Flavien Prost, Jilin Chen, and Ed H.

Chi. Understanding and improving fairness-accuracy trade-offs in multi-task learning.

In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &

Data Mining, KDD ’21, page 1748–1757, New York, NY, USA, 2021. Association for

Computing Machinery.

[64] Zachary B. Wolf. Ai can be racist, sexist and creepy. what should we do about it?

CNN, March 2023.

[65] Samuel Yeom and Matt Fredrikson. Individual fairness revisited: Transferring tech-

niques from adversarial robustness, 2020.

[66] Mikhail Yurochkin, Amanda Bower, and Yuekai Sun. Training individually fair ml

models with sensitive subspace robustness, 2020.

[67] Xianli Zeng, Edgar Dobriban, and Guang Cheng. Bayes-optimal classifiers under

group fairness, 2022.

81



[68] Hua Zhong, Lin Liu, and Shicheng Liao. A survey on bayesian neural networks.

Advances in Computer, Signals and Systems, 2022.

82



Appendix A

Graphs of Results

The following pages contain the graphs for each measured metric for each ϵ tested. All

metrics are averages over 10 trials, as outlined in Section 5.1. The graphs go in order

of increasing ϵ value - 0 to 0.2. Note we do not include the individual ϵ plots for every

architecture, such as in Figure 6.8, as there too many. All graphs, including the ϵ plots,

can be viewed at https://github.com/tstephen22/Fairness-Through-Uncertainty.

83

https://github.com/tstephen22/Fairness-Through-Uncertainty


Figure A.1: Fairness metrics for ϵfair = 0. Constant lines represent averages and bands
represent min-max range.
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Figure A.2: Accuracy and Predictive Entropy metrics for ϵfair = 0. Constant lines
represent averages and bands represent min-max range.
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Figure A.3: Precision and Recall metrics for ϵfair = 0. Constant lines represent averages
and bands represent min-max range.
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Figure A.4: Training time for ϵfair = 0. Constant lines represent averages and bands
represent min-max range.
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Figure A.5: Fairness metrics for ϵfair = 0.05. Constant lines represent averages and bands
represent min-max range.
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Figure A.6: Accuracy and Predictive Entropy metrics for ϵfair = 0.05. Constant lines
represent averages and bands represent min-max range.
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Figure A.7: Precision and Recall metrics for ϵfair = 0.05. Constant lines represent aver-
ages and bands represent min-max range.
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Figure A.8: Training time for ϵfair = 0.05. Constant lines represent averages and bands
represent min-max range.
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Figure A.9: Fairness metrics for ϵfair = 0.1. Constant lines represent averages and bands
represent min-max range.
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Figure A.10: Accuracy and Predictive Entropy metrics for ϵfair = 0.1. Constant lines
represent averages and bands represent min-max range.
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Figure A.11: Precision and Recall metrics for ϵfair = 0.1. Constant lines represent aver-
ages and bands represent min-max range.
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Figure A.12: Training time for ϵfair = 0.1. Constant lines represent averages and bands
represent min-max range.
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Figure A.13: Fairness metrics for ϵfair = 0.15. Constant lines represent averages and
bands represent min-max range.
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Figure A.14: Accuracy and Predictive Entropy metrics for ϵfair = 0.15. Constant lines
represent averages and bands represent min-max range.
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Figure A.15: Precision and Recall metrics for ϵfair = 0.15. Constant lines represent
averages and bands represent min-max range.
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Figure A.16: Training time for ϵfair = 0.15. Constant lines represent averages and bands
represent min-max range.
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Figure A.17: Fairness metrics for ϵfair = 0.2. Constant lines represent averages and bands
represent min-max range.
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Figure A.18: Accuracy and Predictive Entropy metrics for ϵfair = 0.2. Constant lines
represent averages and bands represent min-max range.
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Figure A.19: Precision and Recall metrics for ϵfair = 0.2. Constant lines represent aver-
ages and bands represent min-max range.
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Figure A.20: Training time for ϵfair = 0.2. Constant lines represent averages and bands
represent min-max range.
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