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Abstract 
This thesis presents an investigation of the effect of machine learning algorithms on the 

Quality of Experience (QoE) for users when downloading or streaming video to network 

connected devices such as PCs, Mobile phones, game consoles and smart TVs while 

optimizing network load  

Building on Scalable Video Coding (SVC) as the mechanism to maximize intrinsic video 

quality within the constraints of network bandwidth and device capability, cognitive 

algorithms have been evaluated to determine their ability to maximize QoE whilst 

maintaining a minimum network load.  

The environments evaluated are based on peer-to-peer or client server networks where the 

final user is on a home network with wired and wireless devices competing for bandwidth. 

Consequently, there is congestion in both the backbone (internet) and access (home) 

networks and uncertainty as users and peers connect and disconnect from the network. 

Methods of objectively estimating QoE in real time are investigated and key influencing 

parameters are identified. These parameters are used to evaluate cognitive algorithms in a 

simulation environment.  
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1 Introduction 

1.1 Problem	Statement	

From a technology perspective the modern family home constitutes a heterogeneous network 

of devices accessing many and varied content from the World Wide Web. The home network 

is invariably connected to the internet via a router provided by an internet service provider 

(ISP) and/or a satellite TV provider. The content accessed typically includes simple text 

files, audio files and video files.  

At the time of writing the availability of video content, its quality, and the demand for it, is 

increasing rapidly (Zambelli, 2013). Whilst broadband connection speeds are increasing – 

currently, up to 200Mbs bandwidth is available via optical fibre in the Dublin area (UPC, 

2015) – the quality and therefore file size of the video content is also increasing: HD video 

file sizes range from 1 to 5 GBytes. Consequently, the competition for home network 

bandwidth is high despite improving broadband speeds. In a family of 3 teenage children 

and 2 working parents it is not unusual to find all family members individually and 

concurrently downloading or streaming large files to different devices. 

Such a family usually accesses content via Wi-Fi which effectively limits the maximum 

available bandwidth to 100Mbs (IEEE Standards Authorty, 2012). In reality, this is usually 

reduced to less than 50 MBs due to competition for the radio frequency with other devices, 

such as remote controls and wireless surround sound, and the physical architecture of the 

home in question. Due to the fact that 8011 protocol demands that all users remain connected 

and device bandwidth is stepped down to satisfy this requirement (IEEE Standards Authorty, 

2012), each user will experience an actual bandwidth much lower than 50Mbs. As a result 

the quality of video steaming and the rate of download is often less than satisfactory. 

When considering the different types of content (movie, sport, news) and the different 

devices (iPad, HDTV, laptop and so on) drops in performance have a different effect on the 

quality of experience (QoE) for different users. For example, a user experiencing buffering 

whilst watching a HD movie on a 55inch wide screen TV will be far more dissatisfied than 

a user experiencing pixilation watching a news item on their iPhone. Thus, the question 

arises; how is it possible to seamlessly optimise the QoE for all users in a network where 

devices are connecting and accessing content in an ad hoc manner? 
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1.2 Research	Question		

The research question investigated in this thesis is to what extent can cognitive algorithms1 

support the optimisation of Quality of Experience (QoE)2 and bandwidth utilisation for users 

when downloading or streaming video to connected devices (such as PCs, Mobile phones, 

game consoles and smart TVs), in a resource contended network 3? Furthermore, how 

effectively can such algorithms cope with the uncertainty4 of the quality on the device 

generated due to corruption5 or interruption6?  

Exploring these questions the research seeks to address some of the following: 

• Can QoE be used to optimise content delivery in near real-time7? 

• Can QoE be estimated from simple indicative parameters? 

• Can devices be self-aware8 with respect to the content they receive and the QoE they 

deliver? 

• Can networks be optimised with respect to QoE and network load in real time? 

• Can this be achieved using distributed cognitive algorithms with minimal reliance on 

central policy? 

Building on Scalable Video Coding (SVC) (Schwarz, et al., 2007) as the mechanism to 

maximize intrinsic video quality within the constraints of network bandwidth and device 

capability, cognitive algorithms will be evaluated to determine their ability to maximize QoE 

whilst maintaining a minimum network load. It is intended to investigate the possibility to 

deploy such algorithms at the device level such that the devices be self-aware (in terms of 

QoE capability and bandwidth consumption) and content aware (in terms of video category 

such as sport, news, movie and so on). In addition, it is necessary to evaluate the ability to 

                                                

1 Cognitive Algorithms are processes that model some degree of human reasoning based on storing and using information 
to affect a change (Russell & Norvig, 2010) 
2 Quality of Experience is human subjective and objective quality needs and experiences arising from the interaction of a 
person with technology (Laghari & Connelly, 2012) 
3 Resource contended network is a collection of connected devices that share common resources such as bandwidth. When 
demand for the resource exceeds supply the network is said to be contended  
4 Uncertainty of quality refers to the unpredictable nature of the network in question where devices may join or leave and 
data streams may vary in quality, speed and availability 
5 Video data may be damaged in a such a way as to make it unreadable 
6 Video streams may be interrupted due to device failure or network communication failure 
7 The delay introduced, by automated data processing, between the occurrence of an event and the use of the processed 
data, e.g., for display or feedback and control purposes. (Telecommunications Industry Association, 2015) 
8 Self-Aware in the context of a connected device means that an Artificial Intelligence agent has access to data regarding 
the device, content and the environment 
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cope with the uncertainty of devices being added to or removed from the network, and 

variable prevailing bandwidth.  

Resource contended network scenarios include content delivery via peer to peer or client 

server networks where the final users are in a home network with wired and wireless devices 

competing for bandwidth. Consequently, there will be congestion in the access (home) 

network and uncertainty as users and peers connect and disconnect form the network. 

Methods of objectively estimating QoE in real time will be established and key influencing 

parameters will be identified. These parameters will be used to evaluate cognitive algorithms 

in a simulation or test bed environment. It is intended that the actual QoE is perceived and 

acted upon at device level. This type of solution is considered preferable to a central policy 

derived solution based on intelligent routing for example (Strassner, 2003). 

1.3 Impact	Summary	

The results of the research will provide mechanisms that home users could use to optimise 

video streaming quality at minimum network load. In addition, the methodologies developed 

could be extended to encompass all content (flat file, video and audio) competing for 

bandwidth in a multi device/user environment. Furthermore, it is envisaged that the solutions 

could be applicable in commercial contended networks such as corporate LANs. 

Researchers in network management will benefit from the results. Mapping of objective 

measures to subjective estimates of QoE will be of particular benefit to researchers in video 

quality domains. 

In order to maximise the impact, the research will be published as widely as possible, 

beginning with the International Workshop on Design of Reliable Communication 

Networks9.  In addition, industrial contacts will be exploited with a view to developing 

commercial prototypes. 

1.4 Thesis	Structure	

The study comprised two broad streams of activity: a literature survey and a technical study. 

The study was undertaken part-time, as the author of the thesis is employed full-time.  The 

initial exploratory research phase was completed during the first 6 months of the study, the 

                                                

9 International Workshop on Design of Reliable Communication Networks – March 14th-March 17th 2016, Paris 
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outcome of which was a target research area. The subsequent 12 months was dedicated to 

literature review and continuing refinement of the research question. The final period of 

study was dedicated to developing the simulation experiments. This began with the proof of 

concept based on an Excel model of a home network and concluded with a computer 

simulation model that was used to analyse the effect of the chosen algorithms on QoE.  

This thesis comprises two main elements, the Literature Review and the Technical 

Approach. The former describes the state of the current research literature with respect to 

the research objective and the latter describes the experimentation performed to address the 

research questions and relevant findings. The thesis is completed with conclusions and 

recommendations for further work. The document structure: 

• Section 2 – Literature Review – provides a discussion of the relevant studies  

o Approach 

o video streaming,  

o Quality of Experience, 

o Artificial Intelligence and network management 

• Section 3 -  Methodology – describes the experimental approach and simulation 

architecture 

• Section 4 – Implementation  -  describes the experiments and findings from 

network simulation 

• Section 5 – Conclusions – provides a discussion of the findings of both the 

literature review and technical study and suggests areas of further investigation 

that could build on this study 
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2 Literature Review 
This section constitutes the review of literature relevant to research in the three main domains 

pertinent to the research question; Quality of Experience (QoE) for users obtaining and 

viewing video content via the internet, video streaming technology, and the use of artificial 

intelligence in the management of content delivery over networks. The body of knowledge 

relevant to this study was analysed and the findings are given in this section. The review was 

performed in the context of technology, theory and application to video streaming and 

comprised the study of seminal books, textbooks, and academic papers. Trinity College 

library resources, physical and on-line, were utilised to discover and analyse works by key 

contributors in both the academic and commercial spheres. The most important online 

databases consulted are described below (EBSCO Industries, 2014) 

§ Academic Search Complete  

o 8,500 full-text periodicals 

o 7,300 peer-reviewed journals with full text articles 

o Abstracts for a further 12,500  

o PDF content going back as far as 1887 

§ Business Source Complete 

o abstracts and full text back as far as 1886 

o more than 1,300 journals 

§ Business Abstracts with Full Text 

o full text of articles from 510 key publications  

o PDF content going back as far as 1995 

§ Social Sciences Full Text 

o 625 periodicals  

o PDF content going back as far as 1983 

2.1 Approach	to	Literature	Review	

The review is an attempt to establish and report on the key concepts in the field of artificial 

intelligence and its application in the delivery of QoE for consumers of video streaming over 

networks.  

The field of artificial intelligence is large and has been the subject of research since the 

1950s. So a general review of the broad concepts has been undertaken to establish a context 
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for the review. This was followed by a deeper exploration of the application of machine 

learning techniques in the area of telecommunications and data network management.  

Work in the area of QoE for video is relatively immature. QoE is by definition subjective 

but for real-time adaptation of video service over networks some objective methods of 

estimating QoE must be applied. As a result, much focus has been given to the state of the 

art with respect to objective models and mapping to subjective evaluation of QoE.  

Delivery of video over the internet has grown significantly over recent years (Zambelli, 

2013) and much work has been undertaken in development of methods to efficiently deliver 

content. This work has been reviewed through the lens of user perceived quality and 

consumption of network resources with particular emphasis on Scalable Video Coding 

(SVC) and Dynamic Adaptive Steaming over HTTP (DASH). 

The structure of the literature review was formed around seminal books and academic 

articles (Sections 2.1.1 and 2.1.2). The results of the literature review are presented as a 

semi-structured progression: beginning with a review of the core concepts of video delivery 

(Section 2.2); progressing to a discussion of issues related to Quality of Experience (Section 

2.3), and closing with a review of artificial intelligence and network management (Section 

2.4). However, given the complexity of interdependencies and cross-linkages between these 

themes it was not possible to examine each in isolation.  

2.1.1 Core Texts 

Artificial Intelligence: A Modern Approach (Norvig & Russel, 2003)  

2.1.2 Other Sources 

1. IEEE Communications Magazine 

2. IEEE Transactions on Wireless Communications 

3. Annual Joint Conference of the IEEE Computer and Communications Societies 

(INFOCOM) 

4. ACM SIGCOMM Conference 

5. IEEE Transactions on Vehicular Technology 

6. IEEE Journal on Selected Areas in Communications 

7. IEEE Communications Surveys and Tutorials 

8. IEEE Transactions on Communications 

9. IEEE/ACM Transactions on Networking (TON) 
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10. IEEE Transactions on Mobile Computing 

11. Computer Networks 

12. Internet Measurement Conference 

13. Annual International Conference on Mobile computing and networking 

14. arXiv Networking and Internet Architecture (cs.NI) 

15. IEEE Wireless Communications 

16. IEEE GLOBECOM Workshops 

17. IEEE International Conference on Communications 

18. Computer Communications 

19. Ad Hoc Networks 

2.2 Video	Delivery	over	the	internet	

Video delivery over the Internet has been of serious interest since the proliferation of 

computers in the home, and growth of online video: CISCO predict one million minutes of 

video content will be transmitted over the internet every second by 2018 (The Economist, 

2014). It was not until the 2000s that the capabilities of the hardware, with respect to CPU10 

power and network bandwidth, were sufficient to support downloading in reasonable time 

for subsequent play back. Later still, when the bandwidth of the last mile finally reached 

multiple megabits per second, real time streaming was possible.  

2.2.1 Mechanisms and Protocols 

A video stream is a composite of audio and video streams. The original source is compressed 

using a compression mechanism called a codec (Gantenbein & Robinson, 2008). The audio 

stream is compressed using an audio codec such as MP3 and the video stream is compressed 

using a video codec such as H.264. The encoded audio and video streams are assembled in 

a container bit stream such as MP4. The bit stream is delivered from a streaming server to a 

streaming client using a transport protocol, such as MMS11 or RTP12. Newer technologies 

such as HLS, Microsoft's Smooth Streaming, Adobe's HDS and finally MPEG-DASH have 

emerged to enable adaptive bitrate streaming over HTTP as an alternative to using 

proprietary transport protocols. 

                                                

10 Central Processing Unit 
11 Multimedia Message Service 
12 Real Time Transport Protocol 
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Video compression for subsequent transmission began in the mid-1980s with the definition 

of the ITU (International Telecommunications Union) H.120 digital coding standard (Jacobs 

& Probell, 2007). Practical video compression really began in 1990 with the ITU H.261 

standard targeted for transmission at 64kb/s over ISDN with CIF13 resolution. Shortly after 

this, Motion JPEG (MPEG) began to be used for video streams because it offered editing 

efficiency. This led to the MPEG-1 standard of 1992 aiming to achieve acceptable quality at 

1.5Mb/s and CIF resolution. In the following year MPEG-2/H.262 standard was developed 

jointly by ISO and ITU. This became the standard for “Standard Definition” (SD) video, 

720x576 pixels at 3 to 10 Mb/s. In 1993 the practical limit of the access network was far less 

than 3 Mb/s with ISDN 128kb/s being the highest available bandwidth, this was often 

referred to as the “last mile problem” (Tucker & Westereveld, 2015).  

Development of the now ubiquitous MPEG-4 codec began in 1995. Over the next decade 

development continued to improve resolution and quality, and take advantage of the 

improving bandwidth in the access network. This culminated in the development of the 

Advanced Video Coding (AVC) standard; H.264/MPEG4/AVC (Wiegand, et al., 2003). 

H.264/AVC is the basis for high definition (HD) video delivery we enjoy over the broadband 

access network today. 

The contribution to video streaming of developments in video coding cannot be considered 

in isolation. The transport mechanism is equally important. In the early days of video 

streaming many proprietary mechanisms were prevalent, each using different approaches to 

deliver content to the users. 

In the mid-2000s the vast majority of the Internet traffic was HTTP-based and content 

delivery networks (CDNs) were increasingly being used to ensure delivery of popular 

content to large audiences. (Zambelli, 2013). In the early days, streaming media was mostly 

based on UDP14. However, in 2007 HTTP-based adaptive streaming was introduced by a 

company named Move Networks. They used the dominant HTTP protocol to deliver media 

in small file chunks that could be sequenced for playback at the device level. In addition, the 

device player application could be used to monitor download speeds and request chunks of 

varying quality (size) in response to changing network conditions and caching could be 

                                                

13 352x288-pixel resolution 
14 User Datagram Protocol 
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employed to improve efficiency. The technology had a huge impact because it allowed 

streaming media to be distributed using Content Delivery Networks (CDNs).  

This first method of delivery became known as progressive video. (Sandvine, 2015). In this 

case the large file is pushed onto the network regardless of available bandwidth. The user 

determines the quality of video desired, usually in coarsely defined resolution options; HD, 

SD and so on. In effect, users watching at different quality levels are accessing different files 

from different sources (servers or nodes). Progressive video streams contain the video and 

audio codec files and some information that can be used for QoE assessment: 

• IP information: Subscriber, CDN 

• Subscriber information: physical location on network, service plan, device type 

• TCP information: transport layer information - not of relevance to QoE 

• HTTP information: asset (used to link multiple chunks together), duration, stall 

information (transport quality) 

• Container information: codec, resolution, bit rate (display quality), CDN 

• Elementary stream: bytes transferred 

HTTP-based adaptive streaming solutions (Stockhammer, 2011) followed: adaptive video 

protocols effectively modulate the display quality based on the network’s available transport 

capacity (i.e., bandwidth). It achieves this by breaking the video file into “chunks” and 

transmitting the chunks of the video in a piecemeal fashion. Figure 2-1 represents the 

adaptive streaming process. At each stage of playback the chunk is chosen such that the 

playback is at the maximum deliverable display quality for the prevailing network conditions 

at that time. The process begins with the client device’s video playback application 

requesting the first chunk. Once the chunk is decoded playing commences. However, if the 

first chunk takes too long to deliver, then the next chunk will be requested at lower display 

quality; conversely, if this initial chunk delivered especially quickly, exceeding some 

delivery rate parameter, then the next chunk will be requested at a higher display quality. In 

this way the system iterates to the maximum video quality. Of course, changes in available 

bandwidth at the client can occur dynamically and QoE may be affected by perceived 

changes in quality due to adaptation and, in severe, cases buffer run out. 
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1920x1080	@	4Mbps

1280x720	@	2.5Mbps

848x480	@	1.6Mbps

Video	sent	by	server Video	in	buffer Video	playing

 

FIGURE 2-1 - ADAPTIVE VIDEO STREAMING 

Once again the adaptive stream contains information about the quality of the video and its 

delivery: 

• IP information: Subscriber information, CDN 

• Subscriber information: physical location on network, service plan, device type 

• TCP information: transport layer information - not of relevance to QoE 

• HTTP information: asset (used to link multiple chunks together), ‘protocol’, CDN 

• Protocol information: duration, stall information (transport quality) 

• Container information: codec, resolution, bitrate (display quality) 

• Elementary stream: bytes transferred 

Adaptive streaming began around 2008 when Microsoft launched its Smooth Streaming 

technology (Zambelli, 2013). In the same year Netflix developed its own technology to 

power its Watch Instantly streaming service. Apple soon followed in 2009 with HTTP Live 

Streaming (HLS) designed for delivery to iOS devices - Mac, iPad, iPhone. Adobe released 

its version of HTTP Dynamic Streaming (HDS) in 2010. HTTP-based adaptive streaming 

soon became the medium of choice for high-profile live streaming events (London 

Olympics, Wimbledon and similar). HTTP adaptive streaming now forms the transmission 

model for all premium on-demand services (Netflix, LoveFilm, Amazon Instant Video and 

so on).  

Over this relatively short period it became evident that a large number of different 

proprietary protocols for HTTP steaming was a threat to the stability of an emerging 
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entertainment industry. Consequently, efforts to establish industry wide standards for 

streaming protocols began. In 2009 the 3rd Generation Partnership Project (3GPP) began 

work on a new industry standard for adaptive streaming (3rd Generation Partnership Project, 

2015). Early 3GPP standardisation work was absorbed into the International Standards 

Organisation (ISO) MPEG working groups in 2010. Work on the standards was completed 

relatively quickly. Proposals based on the 3GPP work were moved through draft to ratified 

status by 2012. The new standard was named Dynamic Adaptive Streaming over HTTP, 

more commonly referred to as MPEG-DASH. 

Zambelli (2013) asserts that the original specification for MPEG-DASH suffered from 

excessive ambiguity and, as a result, the majority of the companies involved in MPEG-

DASH formed a DASH Industry Forum with the goal of promoting DASH adoption and 

establishing a well-defined set of interoperability constraints. In 2013 the DASH-IF 

published a draft (version 0.9) of its DASH264 Implementation Guidelines (DSH-IF, 2015). 

The DASH264 guidelines provide important interoperability requirements such as support 

for the H.264 video codec (Sodagar & Giladi, 2015). DASH264 defines other essential 

interoperability requirements such as support for HE-AAC v2 audio codec, ISO base media 

file format, SMPTE-TT subtitle format, and MPEG Common Encryption for content 

protection (DRM15). The forum continues to publish guidelines as new complementary 

developments arise. These guidelines are open for community review. DASH264 provides 

the details needed for adoption of MPEG-DASH. 

Significantly, Zambelli (2013) elaborates the quality gap that is the major hurdle facing 

streaming media industry. In a short space of time streaming media technology has 

progressed from less than SD video to 720p HD video, but the quality of even the best video-

on-demand still falls short of broadcast television and Blu-ray quality. While most HD video 

delivered over satellite is 1080i video H.264-compressed at 17-37 Mbps (DVB Standatds 

Organisation, 2014), most HD streamed video is only 720p, encoded at a modest 3-4 Mbps. 

Broadcast television is always delivered at 50Hz in Europe, whereas streaming video is 

nearly always delivered at half the frame rate – 25Hz. Finally, broadcast audio is typically 

mixed and delivered in 5.1 surround (Dolby, 2014) whereas streaming audio is still largely 

simple stereo. Zambelli considers this quality gap to be a barrier that streaming media 

                                                

15 Digital rights management 
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companies must overcome to compete with traditional media delivery. However, the 

staggering growth of Netflix subscribers would suggest that this barrier has been breached. 

According to a Forbes report (Forbes, 2015), Netflix had gathered 57.4 million subscribers 

by the end of 2014.  

Video streaming quality is primarily dependent on bandwidth and the method of increasing 

quality is by increasing the bandwidth and/or by improving the compression efficiency. 

Increasing available bandwidth is dependent on the “last mile” (access network) and 

subscriber (in the home) infrastructure. Currently, improved codec technologies are 

delivering higher quality video over the existing infrastructure (Gitman, et al., 2015) (Ceglie, 

et al., 2014). The latest ISO/IEC collaboration has resulted in the H.265 codec. This allows 

delivery of 1080p (Full HD) video at the same 3-4 Mbps currently used for 720p video 

delivery, or increased frame rate to 50/60Hz without requiring a proportional increase in 

bandwidth. 

Video delivery mechanisms have grown from the traditional client server architecture, where 

the source of the bit stream is the provider’s server and the consumer’s device is the client. 

In the late 1990s an alternative delivery mechanism was created. MP3 file sharing was 

promoted by Napster and Gnutella for music file distribution (Carlsson & Gustavsson, 

2001). This became known as peer-to-peer (P2P) file sharing and the network is referred to 

as the P2P network, where each peer or node, is the client and the server. With improvements 

in network bandwidth P2P file sharing became used for video content as well as audio 

content. 

According to Steinmetz and Wehrle (2005), a P2P system is “a self-organising system of 

equal, autonomous entities which aims for the shared usage of distributed resources in a 

networked environment avoiding central services”.  Clearly, some central resource must be 

the source of the original file that is shared among the peers. Of course, when a small number 

of peers hold copies of the source file then P2P sharing is possible.  

P2P networks rely on a peer’s ability to identify other peers, determine the files that other 

peers have available for sharing, and decide from which peers to download content. 

Distributed Hash Tables (DHTs) are used to enable peers to query each other (Harren, et al., 

2002). A DHT is a table of keys derived via a hash function from data about the peer. Each 

peer publishes its key on the network. A peer can query the network by examining the keys 
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and using them to determine efficient routing paths between peers. A peer can then maintain 

a routing table which is a description of the peer’s links to neighbouring peers in its network. 

A peer-to-peer network is an example of an overlay network in which a node (peer) chooses 

its neighbours according to the DHT topology. This is achieved by use of a greedy algorithm 

where the peer choses the neighbours based on the goal of the shortest routing path (Zhang 

& Hassanein, 2012). This means that a peer obtains content from another peer over the 

lowest possible number of routing steps based on the key values in the routing tables. The 

peer searches for a neighbour with a key value that represents the desired separation 

minimum distance between the peers and a route is established for content transmission. If 

no such neighbour exists the peer will search for the next closest neighbour that has the 

desired key value and so on. In addition to selecting neighbours for routing in a P2P overlay 

network, greedy algorithms have also been employed to determine chunk selection in video 

file sharing P2P networks (Zhou, et al., 2011). 

2.2.2 Conclusions 

The access network bandwidth reached a level that could sustain real time streaming of HD 

video content in about 2010/2011. This coincided with coding developments that led to true 

HD codecs that are intrinsically adaptive such as MPEG-DASH 

By 2014 HD (720p) video could be streamed at 4Mb/s at 25Hz frame rates but full HD 

(1080p) at current HDTV framerates (50Hz or 100Hz) still requires much higher bandwidth; 

for example, 720p at 100Hz would need approximately 16Mb/s. When considering the 

current 4k HD available from Netflix the demand for bandwidth is higher still.  Even though 

access network bandwidth of 100Mb/s plus are now common, the practical limit to wireless 

home networks is approximately 50Mb/s. Thus, contention for bandwidth in the modern 

home is still an issue.  

Adaptive steaming facilitates some degree of quality control. By buffering different layers 

of content chucks, with differing quality levels, real-time adaptation of video steam quality 

to changes in bandwidth is possible. In addition, adaptive streaming protocols necessitate 

the inclusion of data about the content within the packet containing the video file. This data 

could be queried to obtain information relevant to QoE in almost real-time. Consequently, it 

should be possible to make decisions about chunk and layer selection based on QoE related 

parameters also in near real-time. 
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2.3 Video	Quality	of	Experience	

2.3.1 Background 

In the late 1990s the internet was perceived as providing only a best efforts service (Xiao, 

1999). Traditional telecommunication network performance measures have focused on 

Quality of Service (QoS). From the late 1990s QoS metrics began to be applied to internet 

services. QoS parameters are objective and easily quantifiable, such as packet loss, time outs 

etc. However, in the context of video on demand (VoD) there may not necessarily be a direct 

correlation between QoS and the service quality perceived by the user, the Quality of 

Experience (QoE) 

A definition of QoE is “the overall acceptability of an application or service, as perceived 

subjectively by the end-user.” (Stankiewicz & Jajszczyk, 2011). QoE for video is a 

subjective estimate for the perceived quality of the user when accessing video content over 

a network and is a function of two components; obtaining and watching. Factors influencing 

QoE when obtaining video content include delay in starting, ease of sourcing and the 

network architecture. There are three major factors influencing QoE whilst watching video 

content; intrinsic quality, device capability, and network effects: 

• Intrinsic quality – Temporal (frame rate), Spatial (Resolution), and fidelity (original 

coding quality – Mpeg3, Mpeg4 etc.) 

• Device capability – available bandwidth, buffer size, and device resolution 

• Network effects – all QoS parameters that may affect streaming capability (packet 

loss, bandwidth, routing protocols), topology (P2P, Client server and all architectural 

implications), and local congestion (home network competition for bandwidth) 

Research in video streaming QoE is relatively new. The earliest papers found date back to 

2003. The subjective nature of QoE necessarily means it is difficult to measure directly 

(Lindeberg, et al., 2011). There is a body of work on video QoE consisting of user surveys 

and subsequent interpretation of their results. In such studies video clips of varying quality 

are presented to viewers and their perception of quality is assigned some arbitrary score. (Fu, 

et al., 2010) The QoE for a video clip is then inferred from the Mean Observation Score 

(MOS).  
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2.3.2 Objective Estimation of QoE 

Clearly, it is a significant challenge to adapt devices or networks in real time to subjective 

measures of QoE and some work has been done on mapping of QoE to objective (QoS) 

parameters that can be measured in real time (Alreshoodi & Woods, 2013). In addition, 

studies have been performed to determine the relative influence of different QoS parameters 

on QoE. Venkataraman & Chatterjee (2011) propose a model for the subjective assessment 

of QoE using QoS parameters. A good correlation between the model and survey results is 

demonstrated. Furthermore, the model was used to develop a framework for measuring real 

time QoE for video streaming over a network and suggests a method for adaptation of key 

parameters to optimise QoE. The outcome of this work suggests internet service providers 

(ISPs) potentially have the option to affect QoE at the application layer by controlling QoS 

parameters at the network layer. 

In general, objective quality assessment methodologies can be categorized into five types. 

(NTT Network Technology Laboratories, 2015). These are media-layer models, parametric 

packet-layer models, parametric planning models, bit stream layer models, and hybrid 

models as shown in Figure 2-2. 

Media-layer models use video signals to predict QoE. They do not require knowledge about 

the system under test, such as QoS parameters like codec type or packet loss. Therefore, they 

can be applied to the evaluation of unknown systems for the purpose of optimisation.  

Parametric packet-layer models predict QoE from packet-header information. Such models 

are limited because they do not read the payload information. Therefore, these models cannot 

evaluate the content dependence of QoE. 

Parametric planning models use quality planning parameters for networks as inputs. As such 

a priori information is required about the system under evaluation. Such models are more 

prevalent in fixed and mobile telephone network planning. 

Bit stream-layer models are a combination of media-layer models and parametric packet-

layer models. They read encoded bit stream information and packet-layer information so that 

they can incorporate the content-dependent quality evaluation characteristics.  
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The fifth model is the hybrid model, which is a combination of the previous models. Hybrid 

models are perhaps the most powerful models since they evaluate as much information as 

possible to estimate QoE. Necessarily, this comes with a computational overhead. 

 

FIGURE 2-2 - DIFFERENT OBJECTIVE MODELS FOR QOE (LIAO & CHEN, 2011) 

The choice of model lies with the researcher and, in the context of assessing a QoE, the most 

important task is to validate the model against subjective studies (Li & Lee, 2015) (Hoßfeld, 

et al., 2015). When using multi-layer models the task of identifying the most effective QoS 

parameter adaptation to optimise QoE is the key one. Statistical models for mapping QoS to 

QoE have been used as a basis for control parameter policy setting in “QoE-aware QoS 

management” (Agboma & Liotta, 2008). In this study a modelling technique is employed 

which correlates QoS parameters with estimates of QoE perceptions and identifies the degree 

of influence of each QoS parameter on the user perception. It is proposed that this 

methodology is applied towards QoE-aware QoS management for networks. 

There are intrinsic video quality parameters that directly affect QoE (Ljubojevic, et al., 

2014). The basic fidelity of the video and the resolution of the display are key parameters 

(Joskowicz & Ardao, 2010). Clearly, a high definition video codec (e.g. MPEG-4) has a 

higher intrinsic quality than a standard definition codec (e.g. MPEG-2). Joskowicz & Ardao 

(2010) propose a model for real time assessment of QoE for different codecs, bit rates, and 

display formats. Using subjective assessment of 1500 processed video clips (coded in 

MPEG-2 and H.264/AVC, in bit rate ranges from 50 kb/s to 12Mb/s, in SD, VGA, CIF and 

QCIF display formats) a MOS was derived for each clip viewed at different bit rates.  The 

videos chosen represented 3 levels of movement; low, medium and high. It was shown that 

for all codecs and resolutions that a MOS of greater than 4. 5 on a scale of 0-5, was achieved 
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at bit rates of 4Mb/s. Further, the rate of change in MOS declines rapidly after 5 Mb/s. This 

is illustrated in Figure 2-3 and Figure 2-4 

 

FIGURE 2-3 - MOS FOR ALL STANDARD DEFINITION CLIPS (JOSKOWICZ & ARDAO, 2010) 

 

FIGURE 2-4 - MOS FOR HIGH MOVEMENT CLIP IN 4 CODECS (JOSKOWICZ & ARDAO, 2010) 

By establishing a model using coefficients based on codec type, video display format, key 

frame interval, and video display size Joskowicz & Ardao (2010) were able to replicate the 

MOS scores derived subjectively.  The proposed model  builds on established standards for 
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modelling video quality, such as  ITU-T G1070,  and allows real time estimation of QoE 

based on QoS parameters and content based coefficients: 

𝑉𝑞 = 1 + 4𝑘 1 −
1

1 + 𝑎𝑏 𝑣, -.
 

Where   Vq is the Video Quality Metric,  

b is the bit rate, in Mb/s,  

a is related to the display format, 

v4 and v5 are coefficients related to the movement content,  

k is the Codec Enhancement Factor based on coefficients k1 and k2,  

k = 1 for MPEG-2, 

k = 1+k1.e −k
2
.a.b  for H.264. 

Native video quality alone is not enough to guarantee QoE; slow loading and buffer run-out 

will lead to a reduced QoE regardless of the codec or resolution. However, if some basic 

information about video content is known (codec, content type, display resolution) and 

delivery bit rate can be derived then it is possible to determine the QoE of video streams 

without subjective assessment. Clearly, this is potentially quite powerful and if one could 

control the bit rate for an individual stream, one could control QoE. Furthermore, regardless 

of the codec quality, resolution, and level of movement in the video, it appears that 

satisfactory QoE can be achieved at relatively modest bit rates. 

2.3.3 Adapting QoE 

As discussed in Section 2.2.1, current video delivery mechanisms include some form of 

adaptation, the most prevalent being MPEG-DASH. The adaptation is essentially a method 

of maximising the quality of video (in terms of resolution and frame rate) within the 

prevailing available bandwidth. MPEG-DASH is a more sophisticated adaptive mechanism 

than that shown in Figure 2-1 and is represented in Figure 2-5. It provides a method of 

maximising the quality of video playback for a single device during streaming by adapting 

to fluctuations in available network bandwidth. 
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FIGURE 2-5 - MPEG-DASH (THANG, ET AL., 2012) 

The video content is stored on a HTTP server in 2 parts. (Thang, et al., 2012). The first part, 

Media Presentation Description (MPD), describes the available content and characteristics. 

The second part contains the media segments which are the actual multimedia bit stream 

files in the form of chunks. The playback device hosts the DASH client which first obtains 

and parses the MPD so the device learns the content characteristics; availability, media types, 

resolutions, minimum and maximum bandwidths, the existence of encoded alternatives of 

multimedia components, accessibility features, digital rights management (DRM), and 

locations on the network. 

The DASH client selects the appropriate media file and starts streaming the content by 

fetching the segments using HTTP GET requests. After initial buffering, the client obtains 

the subsequent segments and monitors the network bandwidth fluctuations. Depending on 

bandwidth, the client adapts by fetching segments of different alternatives (with lower or 

higher bitrates) to maintain an adequate buffer based on the measured TCP throughput of 

recent chunks. The DASH client chooses a quality level that has a lower bit rate than the 

measured throughput. In this way buffer run out is avoided because the download rate is 

always higher than the playback rate.  

From a QoE perspective, the assumption that underpins MPEG-DASH is that the user is 

satisfied with quality on the basis that buffer run outs are minimised or eliminated. However, 

this assumption relies on the user being satisfied with lower framerate and resolution for 

some portions of playback and is not concerned with the transitions between quality levels 

as the bandwidth fluctuates. Key factors here are the prevailing bandwidth, the rate of 
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fluctuation, and the speed of transition between quality levels. If the bandwidth is large and 

stable and transition rates high enough to be imperceptible then it follows that QoE will be 

high. The converse is also true. 

A QoE aware DASH system has been proposed in order to address the issue of perceptible 

transition between intrinsic video quality levels (Frame rate and resolution) (Mok, et al., 

2012). The principle of DASH and other adaptation schemes is to select the most suitable 

quality based on the received bit rate as measured by TCP throughput. The streamed video 

clips are divided into chunks that are effectively files consisting of groups of pictures. The 

chunk size usually represents between two to ten seconds of video. QDASH works by 

reducing the choice of chunk download rate. This accelerates the selection process making 

QDASH more sensitive to the change in available bandwidth. QoE was estimated using a 

small survey and it was found that users perceived higher QoE with QDASH than with other 

adaptation schemes. Mok et al (2012) suggest that the algorithm could be adapted such that 

download rate may be adjusted to match the available bandwidth and device buffer rate 

according to the intermediate quality levels preferred by the users surveyed. However, this 

is based on a very small sample size (19 users) and the algorithm would have to be re-

configured by repeat subjective assessment. 

Scalable video coding (SVC) is another scheme for adapting playback quality to available 

bandwidth (Huysegems, et al., 2012). It is the Annex G extension to the H.264/AVC coding 

standard (Schwarz, et al., 2007). The objective of SVC is encoding of a high-quality video 

bit stream that also contains one or more subset bit streams of lower quality. Subset video 

streams are derived from the high quality stream by dropping packets, this reduces the 

bandwidth required for the subset bit stream. The subset bit stream comprises a combination 

of one or more reduced dimensions; a lower spatial dimension (lower resolution), a lower 

temporal dimension (lower frame rate), and/or a lower quality video signal (higher PSNR 

etc.). Any combination of these dimensions corresponds to a “layer” and it is a fundamental 

assumption that layers may be mapped to QoE. SVC is based on the delivery of a base layer 

that conforms to H.264/AVC and the addition of improved layers when bandwidth allows. 

In Figure 2-6 the base layer is represented by the block in the bottom left corner. Each block 

above, to the right, and to the rear represents a layer of higher quality than the base datum. 

Each higher quality layer consumes greater bandwidth. 
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FIGURE 2-6 - SVC LAYER MODEL 

Like DASH, SVC is based on the transmission of video files by breaking them into partial 

bit streams or chunks where the chunks have different levels of the three quality dimensions. 

This enables functionalities such as graceful degradation in “lossy” transmission 

environments i.e. the quality of the video stream may be reduced to adapt to inconsistent 

network conditions without suffering catastrophic QoE degradation such as buffer run-out. 

According to Schwarz (2007) “SVC has achieved significant improvements in coding 

efficiency with an increased degree of supported scalability relative to the scalable profiles 

of prior video coding standards.” In addition, SVC has been found to improve the QoE of 

real-time video streaming over wireless networks because it robust in terms of network 

environment changes and transmission errors. (Schierl, et al., 2007) 

Also like DASH, SVC uses layers of chunks of video at varying quality and is based on the 

assumption maximising quality of video via adaptation to varying bandwidth equates with 

improved QoE. Using streamed layers for adapting to bandwidth was proposed as early as 

2000 (Rejaie, et al.) SVC and DASH are the current popular standards for real-time 

adaptation.  
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As with other video systems, measurement of QoE is a challenge for SVC. Subjective 

assessment of QoE is of no benefit to adaptation and objective real time estimation of QoE 

may not correlate well with perceived video quality. Recently however, attempts have been 

made to develop models of objective QoE estimation that could be used to adapt SVC 

streaming to optimal QoE. Using a hybrid subjective/objective assessment tool, PSQA 

(Pseudo Subjective Quality Assessment tool), Singh et al (2011) produced an accurate model 

for QoE estimation which could be used for real time QoE feedback for layer switching 

adaptation. The model is based on a Random Neural Network (RNN) algorithm used to map 

QoS and network parameters to QoE. In doing so the most influential parameters on QoE 

were identified, the chief influence being packet loss. In SVC the video transport packet, 

NALU (Network Abstraction Layer Unit), can only carry information relevant to a single 

layer of SVC. Unsurprisingly, it was found that loss of a base layer NALU had a larger 

impact on QoE than loss of a NALU from higher layers, since loss of a base layer NALU is 

propagated throughout all other higher quality layers. The successful use of RNN to model 

subjective assessment does pose a challenge to real time adaptation; it is unclear how the 

initial algorithm “training” period would be accommodated in real-time, nor whether 

training would be required for each stream. 

In the development of Scalable Video Delivery system using Peer-to-Peer Networks 

(SVDN) (Qiao, et al., 2015) it has been demonstrated that devices can be made to adapt QoE 

by SVC layer selection appropriate to the prevailing network conditions. Using peer-to-peer 

networks, algorithms were designed to improve the efficiency of chunk selection and 

packetisation16. SVDN was shown to reduce the overhead associated with packetisation 

prevalent in SVC systems from the typical 9 to 15% down to virtually zero. Whilst this does 

not specifically adapt to QoE any differently to SVC, it frees up resources that facilitate less 

perceptible layer switching so QoE is maintained during active adaptation. 

In further work on SVC in the peer-to-peer environment it has been shown that it is possible 

to use QoE estimation for real-time adaptation decision making (Ruckert, et al., 2012). In 

this work the combination of application of centralised QoE policy and distributed 

adaptation algorithms was used to adapt SVC layer selection based on the maximum QoE 

achievable at the device node. Periodic monitoring of the parameters affecting QoE took 

                                                

16 Division of the video stream in to discrete chunks containing video files and packet headers 
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place during video streaming and algorithms were employed to decide on layer switching 

implementation. 

DASH, SVC, and the adaptive derivatives described above, base adaptation on video stream 

quality parameters for one device within the constraints of network parameters. An 

alternative QoE adaptation approach, for network management with multi devices and video 

streams, is to adapt based on content. From a network management perspective the goal is 

to optimise QoE at the lowest possible network cost. In effect, this means that the aim of the 

network manager is to deliver video stream of a quality that just matches each users different 

requirement, so maximising the network capacity for streaming. To satisfy the network 

manager Agboma and Liotta (2008) propose a QoE aware QoS management framework. 

After determination of the QoS parameters that influence QoE for different content types, 

movie, news etc., they devise a method of degrading the quality of a video stream to match 

the user expectation at the minimum bandwidth consumption. This resulted in a 15% 

reduction of network resource consumption overall and significantly more for some content 

types as illustrated in Figure 2-7. 

 

FIGURE 2-7 - THE EFFECT OF QOE AWARE NETWORK MANAGEMENT (AGBOMA & LIOTTA, 2008) 

Solutions discussed thus far are based on adapting the video quality to the prevailing network 

conditions. The QoS parameter that has a major detrimental influence on QoE is packet loss 

or error. An interesting alternative approach to adapting to measure QoE is to detect and 

repair the errors as they occur. (Asghar, et al., 2009). It was found that the streaming IPTV 

encounters access network (last mile) challenges; network congestion, bit errors on access 
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lines, slow channel change times, and limited ability to monitor per-subscriber video quality. 

By using a model for subjective QoE assessment it was possible to improve quality by 

deploying intelligence at device level. In this case, between the aggregation networks and IP 

set-top box (STB) to repair packet losses and speed up channel change times. 

2.3.4 Conclusions 

In the context of this study, Quality of Experience (QoE) is a subjective assessment of the 

user perceived quality of video playback during the steaming process. QoE from an objective 

standpoint is an assessment of quality that extends to factors beyond the native quality of the 

video clip to encompass other quality parameters. 

QoE can be objectively estimated using models based on native video quality and 

transmission QoS parameters. Many models have been proposed and developed for the 

estimation of QoE in real-time and the best of these have been shown to map well to the 

subjective QoE assessment. 

It has been generally shown that the most influential QoS parameter is bit rate which 

translates to available bandwidth with which to deliver the video. For SVC the most 

influential QoE parameter is loss of SVC base layer NALU which propagates through all 

higher SVC layers. 

Algorithms have been developed and used to adapt QoE during playback. Many of these 

algorithms are based on adapting the download rate to the available bandwidth by selecting 

chunks with video quality (resolution and frame rate) appropriate to the bandwidth 

Random Neural Network (RNN) algorithms have been shown to be successful in real time 

estimation of QoE. For SVC the PSQA model has been shown to be the most accurate. 

Using Bitrate, packet layer and codec information it is possible to produce objective models 

of QoE. Thus if a device can be made “aware” of this information it is possible to define a 

set of expected QoE (MOS) scores for the device any given matrix of causal parameters; 

bitrate, content, codec, frame rate and so forth. A bit stream-layer model can be used to 

accurately estimate QoE based on both encoded bit stream information and packet-layer 

information such that the content-dependent quality evaluation characteristics are taken into 

account 
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Options for adaptation include single device video stream adaptation or multi device network 

management. In both cases AI algorithms are employed to model QoE and, in the case of 

network management algorithms, they are employed to detect network conditions and adapt 

or repair the video stream. 

Work on P2P streaming has shown that SVC layer section algorithms can be used to adapt 

QoE to prevailing network conditions and that it is possible to combine such adaptation with 

device QoE capability policy rules 

2.4 Artificial	Intelligence	and	Network	Management	

Thus far consideration has been given to video delivery mechanisms and their influence on 

quality of experience. In this section the ability to control QoE from a network parameter 

perspective is examined.  

The concept of network management is founded on the network manager’s need to control 

cost whilst providing a service to a level that satisfies consumers of network services 

(Boutaba & Xiao, 2009). From this perspective, user QoE targets are subservient to 

maximising the use of network resources, i.e. the network manager tries to degrade the 

quality of the service provided to a minimum acceptable level and thus make the most 

efficient use of bandwidth. Of course, there are other considerations for the network manager 

such as fault detection and repair. Over the last decade there has been a growth in the use of 

technology to create self-managing (self-monitoring, self-detecting, and self-repairing) 

networks (Boutaba & Xiao, 2009). 

In 2001 Paul Horne of IBM stated that autonomic computing “is the single most important 

challenge facing the IT industry” (Ganek & Corbi, 2003). Autonomic computing is defined 

as “computer systems that regulate themselves much in the same way as our autonomic 

nervous system” (Nguengang, 2011). This concept of self-regulation was beginning to be 

applied to communications networks in 2004. Figure 2-8 shows how research in this area 

has matured quickly with significant FP6, FP7 and EU research projects being undertaken 

from 2006 to the present (Kuklinski, 2012). 
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FIGURE 2-8 - GROWTH OF AUTONOMIC NETWORK MANAGEMENT (NGUENGANG, 2011) 

A key feature of autonomic networks is the application of policy that controls the behaviour 

of the network in response to prevailing conditions and changes to those conditions. 

Changing the behaviour of the network is achieved by reconfiguring network parameters by 

using control loops (Kephart & Chess, 2003).  

Policy will determine what the target KPIs (Key Performance Indicators) are for the network 

and what to do when they are breached. Traditionally, the KPIs are based on network 

parameters that influence QoS. The challenge for autonomic networks is implementing 

central policies across a distributed network with many different network and end user 

devices – network elements. One solution to this challenge is the closed control loop applied 

to each network element as shown in Figure 2-9 (Kuklinski, 2012).  The control loop consists 

of a 3 components; sensing, acting and knowledge. The sensing part detects changes to the 

network parameters, “knowledge” of the systems is used to analyse the changes and 

implement policy decisions, the acting part of the loop implements the decisions by 

reconfiguration. 
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FIGURE 2-9 - AUTONOMIC NETWORK ELEMENT MANAGEMENT (KUKLINSKI, 2012) 

There is a contrast between the role of the adaptation algorithm and the role of the learning 

algorithm in the context of network management. Adaptation agents, whether deployed 

centrally, locally or hybrid fashion are based on application of policy to affect changes based 

on measured conditions (Russell & Norvig, 2010). Leaning algorithms can be employed to 

measure the effect of adaptation and change the rules in order to improve adaptation 

(Kuklinski, 2012). There have been a number of recent collaborative studies focused on the 

application of machine learning to network management (Celtic Plus, 2014) (Univerself, 

2015). These studies have proposed learning algorithms for future telecommunications 

networks and demonstrate the ability to cope with network uncertainties, such as nodes 

dropping in and out of service or incomplete sensor data, and still perform positive 

adaptation functions. 

In complete contrast to the network management approach, P2P content sharing networks 

focus entirely on distributed agents to affect adaptation. Work on P2P networks has an 

increasing focus on QoE based adaptation and design. Learning algorithms have been 

proposed for QoE based P2P video content optimisation (Menkovski, et al., 2010). Ruckert 

et al (2012) have extended the algorithm for chunk selection to include QoE based agent 

decision making and claim improvements on QoE at little or no bandwidth cost. QoE has 

even been proposed as the driver for design of P2P video streaming networks (Couto da 

Silva, et al., 2008) 

The layer selection process proposed by Ruckert et al (2012) is significant because it 

potentially conveys efficiencies in the process. Currently, SVC single device adaptation is 

based on “the goal to maximize the bandwidth utilization at the peers and chooses the layer, 

out of the compatible ones, that has the highest bit rate.” This strategy is implicitly QoE 

dependent since it is reasonably assumed that higher bit rate equates to higher quality. 
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However, Ruckert et al (2012) propose a 2 step strategy: The first step enables the selection 

of the SVC layer at the start of the steaming session. The SVC layer chosen is based on prior 

knowledge of QoE associated with each layer. This knowledge is the result of previous QoE 

assessment experiments and is applied at the server that is the source of the video stream. 

This enables layer selection based on device capability such as resolution and available 

bandwidth. Once streaming starts the second adaptation step takes over and the available 

resources at the device are sampled and layer changes are applied accordingly. In order to 

smooth the transition from one SVC layer to another, and minimise the impact on QoE 

during transition, switching is not performed in a single step. Rather the switching is 

performed in a series of steps by implementing the Dijkstra algorithm to produce an SVC 

graph and calculate the target layers for each step required for transition that have the least 

disruption on QoE (Cormen, et al., 2009). It was found that it was necessary to limit the 

number of steps per transition and 3 seconds was chosen per switch with a total adaptation 

interval of 10 seconds; allowing three steps per adaptation. 

In both P2P and client server architectures examples discussed, the adaptation of QoE either 

by policy application, local device adaptation or a combination of both, relies on some form 

of artificial intelligence. The intelligence is implemented by one or more machine learning 

algorithms. 

2.4.1 Comparison of Learning Algorithms 

This section presents an overview of common machine learning algorithms and the situations 

in which they are applicable. Particular attention is given to those algorithms applicable to 

network management and adaptation. At the time of writing there are many machine learning 

algorithms in use today and they can be grouped into learning categories based on the desired 

outcome of the algorithm and/or the type and structure of input data.  

There are the four common learning classifications; supervised learning, unsupervised 

learning, semi-supervised learning, and reinforcement learning (Russell & Norvig, 2010). 

When analysing data to model business processes supervised and unsupervised learning 

methods are employed. Currently, Big Data is an area of high research activity and semi-

supervised learning methods are employed; for example, satellite image classification where 

there are large datasets with very few labelled examples (European Space Agency, 2014). 

Reinforcement learning is more likely used in system control and robotics and is most 

applicable to network management scenarios.  
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Selecting the algorithm classification that most fits the problem is the first step to choosing 

the correct algorithm. In this section machine learning algorithms are associated with the 

learning type and are explained in terms of their functionality 

2.4.1.1 Supervised	Learning	

Supervised learning algorithms are trained on labelled data i.e. input data has a known result 

(label) such as SVC layer or network QoS parameter. The supervised learning algorithm 

attempts to create a general function or mapping from inputs to outputs which can then be 

used to generate an output for new inputs. The algorithm creates a model via a training 

process. During training the model is fed with training data in the form of input-output pairs. 

The model is then updated based on the accuracy of the outputs until the model achieves a 

desired level of accuracy (Russel & Norvig, 2010): 

Given a training set of N example input-output pairs: 

𝑥0, 𝑦0 , 𝑥3, 𝑦3 , … . 𝑥6, 𝑦6  

Where each 𝑦7 was generated by an unknown function 𝑦 = 𝑓 𝑥  

Discover the function h that approximates to the true function f 

When the outputs are Boolean values the learning problem is one of Classification, when the 

outputs are numbers the problem is one of Regression. 

Regression is concerned with solving a problem by establishing an average value of the 

output y by using a measure of error in the predictions made by the model. Estimation of a 

the equation for a straight line is using the Ordinary Least Squares method is probably the 

best known regression algorithm (Moore, et al., 2012): 

The equation for the straight line: 

𝑦 = 𝑎 + 𝑏𝑥9 

Where: 

 𝑦 is the predicted value of dependent variable 𝑦9 

a is the intercept on the y axis when x = 0 

b is coefficient that represents the slope of the line 

𝑥9 is the observed value of the independent variable for the ith case. 
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The OLS method of calculating slope b is based on mean values of x and y: 

𝑏 = 	
𝑥9 − 𝑥 𝑦9 − 𝑦

𝑥9 − 𝑥 3  

and intercept a; 

𝑎 = 	𝑦 − 𝑏𝑥 

Other examples of regression algorithms include: 

• Logistic Regression -  which is used to solve problems of classification, essentially 

by defining a boundary between binary classification options (Penga, et al., 2002) 

• Multivariate Adaptive Regression Splines (MARS) – which is a regression method 

used to predict output values for data with non-linear relationships between input-

output variables. The non-linearity is expressed as a “hinge” between two contiguous 

best fit lines (Friedman, 1991). 

• Locally Estimated Scatterplot Smoothing (LOESS) – which is used to model 

complex processes for which no theoretical models exist (Cleveland & Devlin, 

1988).  

Instance based learning model a decision problem with instances or examples of training 

data that are deemed important to the model. They are examples of non-parametric models; 

models that cannot be characterised by a bounded set of parameters (Russel & Norvig, 

2010). In contrast, the models discussed previously are parametric models where the 

parameters are known; for example x and y for linear regression. Instance based learning 

methods typically build up a database of examples and compare new data to the database 

using a similarity measure in order to find the best match and make a prediction. A simple 

example is classification based on a look-up table where for a value x the corresponding 

value x in the table relates to a value y which is returned. A disadvantage of the look up table 

is that if x does not exist in the table then no value of y can be returned. Examples of 

algorithms that improve on the look up table are: 

• k-Nearest Neighbour (kNN) – which improves on classification by using not only 

the look up value but other values close to it. Regression is applied to improve the 

classification prediction (Guo, et al., 2003) 
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• Learning Vector Quantization (LVQ) – which is used to model pattern recognition 

based classification (Kohonen, 1995) 

Decision tree methods are the simplest and most successful machine learning processes 

(Russel & Norvig, 2010). Decision trees are models that use a range of input attributes to 

return a single output value, the decision. Decision trees are trained on data for classification 

and regression problems and there are many variants: 

• Classification and Regression Tree (CART) (Berk, 2008) 

• Iterative Dichotomiser 3 (ID3) (Quinlan, 1986) 

• Random Forest (Breiman, 2001) 

• Multivariate Adaptive Regression Splines (MARS) (Friedman, 1991) 

• Gradient Boosting Machines (GBM) (Friedman, 2002) 

• Bayesian methods – which are regression and classification algorithms where the 

predictions are weighted based on Bayesian probabilities (Russel & Norvig, 2010) 

Kernel Methods, sometimes referred to as Kernel tricks (Russel & Norvig, 2010), are 

methods that aid classification and regression by mapping input data that is not easily 

separated or correlated, into a higher dimensional space where some classification or 

regression problems are easier to model. 

• Support Vector Machines (SVM) – very useful methods if there is no specialist prior 

knowledge about the problem domain (Hearst, et al., 2002) 

• Linear Discriminant Analysis (LDA) - methods of classification based on a linear 

combination of data attributes (Natha, et al., 1992) 

• Radial Basis Function (RBF) – methods of determining classification based on 

separation distances from some centre point and the basis of learning networks 

(Broomhead & Lowe, 1988) 

Artificial Neural Networks are models that are mathematical interpretations of brain 

neurons. They are a class of pattern matching that are commonly used for regression and 

classification problems. The networks simulate the neuron by combination of an input 

function and an activation function. The activation function is only implemented when the 

weight of inputs exceeds a threshold. Neurons in the network are connected by input and 

output links (Russel & Norvig, 2010). Some popular methods include: 
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• Perceptron – An early classification network (Rosenblatt, 1958) 

• Back-Propagation (Reidmiller, 1994) 

• Hopfield Network (Behl, et al., 2013) 

• Self-Organizing Map (SOM) (Kohonen, 1995) 

• Learning Vector Quantization (LVQ) (Kohonen, 1995) 

A difficulty with all algorithms is model selection. Some algorithms will under-fit the 

training data and some will over-fit the training data. The challenge is selecting the model 

that provides optimum fit with the training data (Russel & Norvig, 2010). Regularization 

Methods are a set of algorithms (typically regression methods) that help decide on the 

optimum model. They operate by penalising models based on their complexity and favouring 

simpler models. Regularisation methods are generally modifications made to other methods. 

• Ridge Regression (Hoerla & Kennard, 1970) 

• Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996) 

• Elastic Net (Zou & Hastie, 2005) 

2.4.1.2 Unsupervised	learning		

Unsupervised learning algorithms operate on unlabelled data and learn patterns in the input 

data without feedback. The desired outcome is to discover some groupings and relations in 

the data (Russel & Norvig, 2010). Example problems are association rule learning and 

clustering. 

Clustering methods are typically organized by the modelling approaches, such as centroid-

based and hierarchal models. They are chiefly concerned with using the inherent data 

structures to organize the input data into groups of maximum commonality such that the 

output are classifications based on commonality. (Russel & Norvig, 2010) 

• k-Means (Wong, 1979) 

• Expectation Maximisation (EM) (North & Blake, 1998) 

Dimensionality Reduction methods are like clustering methods, in that they seek out and 

exploit the inherent structure in the data to summarise or describe data using less 

information. This can be useful to visualize dimensional data or to simplify data which can 

then be used in a supervised learning method. (Russel & Norvig, 2010) 

• Principal Component Analysis (PCA) (Mackiewicz & Ratajczak, 1993) 
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• Sammon Mapping (Sammon, 1969) 

• Self-Organizing Map (SOM) (Kohonen, 1995) 

2.4.1.3 Semi-supervised	learning		

Semi-supervised learning methods combine both labelled and unlabelled inputs to generate 

an appropriate function. A desired outcome exists but the data structures must be learned in 

order to organize the data so that predictions can be made. As with supervised and 

unsupervised learning, the algorithms rely on classification and regression functions. 

Assumptions are made about how to model the unlabelled data and training outcomes are 

based on some derivation of labelled input data (Russel & Norvig, 2010). Algorithms tend 

to be extensions to other methods discussed in the previous 2 sections. 

Deep Learning methods are updated methods based on Artificial Neural Network. They 

are concerned with building much larger and more complex neural networks. Many methods 

are concerned with semi-supervised learning problems where large datasets contain very 

little labelled data (Deng & Yu, 2014). 

• Restricted Boltzmann Machine (RBM) (Salakhutdinov, et al., 2007) 

• Deep Belief Networks (DBN) (Lopes & Ribeiro, 2015) 

2.4.1.4 Reinforcement	learning		

Reinforcement learning consists of methods where the outcome of the algorithm is defined 

in terms of reward or punishments. Feedback is not the result of a training process but as 

punishments and rewards in the environment. The agent performs actions which cause the 

observable state of the environment to change. Through a sequence of actions, the agent 

reinforces its knowledge about how the environment responds to its actions. Finally, the 

agent will select the sequence of actions that maximises a cumulative reward (Russel & 

Norvig, 2010).  

Markov Decision Process (MDP) methods are the most well-known reinforcement learning 

algorithms (Szepesvari, 2009) where transitional probabilities are calculated to estimate the 

rework at each state. Markov Decision Processes are a tool for modelling sequential decision 

making problems where a decision maker interacts with a system in a sequential fashion. 

Monte Carlo methods (or Monte Carlo experiments) are a class of computational 

algorithms that rely on repeated random sampling to obtain numerical results. Simulations 

are performed many times in order to obtain the distribution of an unknown probabilistic 



P a g e  43 | 91 

 

entity (Gentle, 2003). The name comes from the resemblance of the technique to the act of 

playing and recording your results in a real gambling casino. They are often used in physical 

and mathematical problems when it is difficult or impossible to obtain an analytical 

expression, or to apply a deterministic algorithm. Monte Carlo methods are useful in solving 

optimisation problems. 

Temporal difference (TD) learning is a prediction method that resembles a Monte Carlo 

method because it learns by sampling the environment according to some policy. TD 

approximates an estimate of utility at each state transition using a learning rate parameter to 

update the estimate at each stage. The learning rate parameter is derived from previously 

learned estimates (Russel & Norvig, 2010). TD is a dynamic prediction method; a prediction 

is made and when a new observation is available, the prediction is adjusted to better match 

the new observation. 

Q-learning is a reinforcement learning technique that can be used to find an optimal action-

selection policy for any given (finite) Markov Decision Process (MDP) (Watkins & Dayan, 

1992). It works by learning an action-value function that will produce the expected utility of 

a given action in a given state. Q-learning then applies the learned optimal policy thereafter. 

When such an action-value function is learned, the optimal policy can be constructed by 

simply selecting the action with the highest utility value in each state.  

SARSA (State-Action-Reward-State-Action) is an algorithm for learning a Markov 

Decision Process policy and is similar to Q-Learning. However, it differs in a subtle way 

(Russel & Norvig, 2010); Q-Learning is an off-policy algorithm whereas SARSA is an on-

policy learning algorithm where the agent will interact with the environment and update the 

policy based on actions taken. 

2.4.1.5 Comparison	of	Reinforcement	learning	Algorithms	

The advantages of Monte Carlo Methods (Denning, 2012) are as follows: 

• Complexity: Simulation often gives better physical visibility of a complex system analysis 

than a set of equations, aiding interpretation of the output. 

• Scope: For example, complex policies are easier to deal with in simulations than 

analytical models. 
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• Accuracy: Although analytical models are deterministic, they usually involve simplifying 

assumptions to make the model analytically tractable. Such assumptions have to be 

justified. 

• Future development: If a model is likely to be further refined and developed, an initial 

model that may be initially tractable analytically may not be so when further 

development requirements are placed. A simulation model may therefore be appropriate 

from the start. 

• Application: For quick look analysis, analytical models may be preferred, because of 

their speed of execution. The repeated running involved in Monte-Carlo simulation can 

cause long execution times before estimates of system parameters of interest are 

obtained. 

According to Denning (2012) the disadvantages of Monte Carlo Methods are as follows: 

• Processing: Usually requires a computer. 

• Calculations: Can take much longer than analytical models.  

• Precision and accuracy: Solutions are not exact, but depend on the number of repeated 

runs used to produce the output statistics. That is, all outputs are estimates. 

One of the strengths of Q-learning is that it is able to compare the expected utility of the 

available actions without requiring a model of the environment (Chris Gaskett, 2005). 

Additionally, Q-learning can handle problems with stochastic transitions and rewards, 

without requiring any adaptations. Gaskett et al  (2005) suggest that the main advantage of 

Q-Learning is exploration insensitivity; the ability to learn without necessarily following the 

current policy. Q-learning is the reinforcement learning algorithm most widely used for 

addressing the control problem because of its off-policy update, which makes convergence 

control easier (Woergoetter, 2008). It has been proven that for any finite MDP, Q-learning 

will converge to the optimal policy if all state-action pairs are visited infinitely often. 

The disadvantages of Q-Learning (Gaskett, et al., 2005) is generally considered in the case 

that states and actions are both discrete. In some real world situations, and especially in 

control, it is advantageous to treat both states and actions as continuous variables. 

TD-learning will converge to the final value function assigning to each state its final value, 

if all states have been visited "often enough". This can, however, lead to very slow 
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convergence if the state space is large. (Woergoetter, 2008) For large state spaces and/or 

sparse rewards convergence may require many steps and can be very slow (Barto, 1983) 

2.4.2 Conclusions 

When trying to make predictions with known (labelled) data it is best to use supervised 

learning algorithms. When dealing with big data or unknown (unlabelled) data the 

unsupervised algorithms are best suited to discover data structure and associations. In the 

cases of control systems or robotic systems reinforcement learning is the best approach.  

For network management problems a key driver is latency of the feedback loop when sensing 

the environment and triggering actuation (Kuklinski, 2012). Both Monte Carlo methods and 

Q-Learning are ideal for network control and management. In network environments that 

have distributed or hybrid agent structure the discrete states of the network nodes and 

environment make Q Learning or SARSA the most useful algorithms. This is on the basis 

that the utility of each state could be set as a target QoE. The initial policy could be reinforced 

during a video streaming session with sampling of the environment providing observations 

with which to update the policy. 

The Ruckert (2012) model of QoE based adaptation could be modified for use in simulation 

of QoE aware device adaptation in a resource contended home network. Their method of 

layer selection is based on application of prior mapping of QoE to SVC layer. This could be 

altered to make use of assumptions regarding device state mapping to a QoE capability 

(Resolution, available bandwidth, content type and so forth) as measured during streaming. 

For simulations of SVC layer selection, instance based algorithms may be suitable for 

learning. Given the dynamic nature of network environment and the potential inaccuracies 

of QoE estimation in real-time, it may be possible to utilise k-nearest neighbour algorithms 

to look up target SVC layers for streaming at optimum QoE. 

2.5 Conclusions	from	the	literature	review	

Demand for video streaming is increasing rapidly and is being supplied by large commercial 

enterprises such as Netflix and Amazon. As a medium of entertainment, video streaming is 

now a serious competitor to traditional broadcast media. Access network and subscriber 

(Home) networks are improving with respect to bandwidth, which is one of the key 

constraints on video QoE. However, the suppliers continue to strive to improve quality in 

terms of video definition, such as 4k HD from Netflix thus the demand for bandwidth is also 
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increasing.  With more family members connecting simultaneously to the internet, 

contention for bandwidth in the modern home is still an issue.  

Video QoE is a subjective assessment of the user perceived quality of video playback during 

the steaming process but QoE can be objectively estimated using models based on native 

video quality and transmission QoS parameters. Adaptive steaming allows a degree of 

quality control in a dynamically changing network environment and real-time adaptation of 

video steam quality to changes in bandwidth is possible. In addition, adaptive streaming 

protocols necessitate the inclusion of data about the content within the packet containing the 

video file. This data could be queried to obtain information relevant to QoE in almost real-

time. Consequently, it should be possible to make decisions about chunk and layer selection 

based on QoE related parameters also in near real-time 

The Ruckert model of QoE based adaptation could be modified for use in simulation of QoE 

aware device adaptation in a resource contended home network. Their layer selection 

algorithms can be used to adapt QoE to prevailing home network conditions and it is possible 

to combine such adaptation with device QoE capability policy rules. For simulations of SVC 

layer selection, instance based algorithms may also be suitable for learning. It may be 

possible to utilise k-nearest neighbour algorithms to look up target SVC layers for streaming 

at optimum QoE. 

Both Monte Carlo methods and Q Learning are ideal for network control and management. 

In network environments that have distributed or hybrid agent structure the discrete states of 

the network nodes and environment make Q Learning or SARSA the most useful algorithms. 

These algorithms could be investigated as potential solutions to policy adaptation during 

streaming as devices connect/disconnect from the network. 
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3 Methodology  
Recalling the research question: 

“To what extent can cognitive algorithms support the optimisation of Quality of Experience 

(QoE) and bandwidth utilisation for users when downloading or streaming video to 

connected devices in a resource contended network?” 

It has been shown in the literature review that QoE can be estimated from measurable 

parameters associated with network conditions, QoS, and intrinsic video quality parameters. 

It has also been shown that such parameters can be measured in near real-time. Further, it 

has been shown that modern video streaming mechanisms can be adaptive, leading to some 

optimisation of video quality parameters in response to bandwidth constraints.  

3.1 Quantitative	Method	Strategy	

When the research question was first posed the instinctive philosophical approach was 

positivist; an attempt was to be made to determine the effect on device level QoE by the 

implementation of algorithms using the simulation of a resource contended home network, 

through the use of a controlled experiment. 

The quantitative approach was based on the production of home network environment 

simulators within which device level agents could be used to implement algorithms designed 

to optimise device level QoE. A baseline of QoE would be established via simulation 

experiments for several different device and video content combinations. Agent algorithms 

would then be employed and the simulation experiment would be repeated. The differences 

between the baseline and the repeat experiments would be analysed to quantify the 

effectiveness of the algorithms in optimising QoE. 

3.2 Architecture	

This section describes the logical design of a device manager agent (section 3.2.1) for use in 

simulation and/or experiment testbeds and the physical architecture (section 3.2.2) in which 

such an agent could be deployed. The logical design includes the descriptions of the 

environment (section 3.2.1.1), the device manager agent (section 3.2.1.2), and the high level 

adaptation algorithm (section 3.2.1.3). 
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3.2.1 Logical Design 

In this section the logical design of the experiment is described. This design is proposed as 

the basis of both simulation and any further experiment implementation. 

3.2.1.1 Task Environment 

In order to characterise the environment the approach of Russell and Norvig is adopted 

(Russell & Norvig, 2010) and the summary description is given in Table 3-1. 

TABLE 3-1 - TASK ENVIRONMENT DESCRIPTION 

Agent Performance 

Measure 

Environment Actuators Sensors 

Device 
Manager 
 

Device QoE  
 
Maximised 
Device Bandwidth 
consumption  
 
Minimised 
For all connected 
devices 
 

Home Network 
 
Multiple device 
types 
 
Multiple video 
streams 
 
Other network 
traffic 

SVC Layer 
selector 
 

Device QoE 
capability monitor. 
 
SVC layer detector 
 
Content descriptor 
 
Bandwidth detector 

 

The environment is partially observable by the device manager agent, because the agent 

cannot perceive the number or type of other devices connected to the network, nor can it 

detect the type of content delivered to, or bandwidth “consumed” by other devices. Since 

every device connected to the network will have a device manager the environment can be 

described as multi-agent and competitive. This is desirable for the overall goal is satisfaction 

for all users by achieving optimum QoE at each device.  

There is a degree of uncertainty in the home network environment, such as total available 

bandwidth (fluctuating due to ISP contention), connection/disconnection of devices, and 

type and quantity of other data transfer over the network. As such, the environment may be 

said to be nondeterministic because the subsequent environment states depend on factors 

other than the current state and the agent actions.  

Furthermore, the environment is episodic due to the fact that the device manager actions are 

not dependent on previous actions nor do they influence future actions; for example, there is 

no sequence of actions for the device manager, it must simply perceive the QoE layer, device 
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capability, content, and available bandwidth then select the appropriate QoE layer: this is 

independent of previous selection actions. 

Key to the operation of the device manager is the fact that the environment is dynamic and 

the state can change during the device manager decision making process. This dynamism is 

continuous and there are no discrete states because bandwidth consumption by all competing 

devices is continually changing. 

The environment characteristics are summarised as follows: 

• Partially Observable 

• Multi-agent 

• Nondeterministic 

• Episodic 

• Dynamic 

• Continuous 

3.2.1.2 The Device Manager Agent 

The device manager is a model based, reflex agent represented in Figure 3-1. The Device 

Manager Agent (DVM) must be capable of sensing the device resolution capability, the 

video quality, content type, and the available bandwidth. The DVM receives this as sensing 

data. 
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FIGURE 3-1 - DEVICE MANAGER AGENT 

The agent is based on the closed control loop as described in Figure 2-9. At a point in time, 

the actual values of the sensing parameters define the device state relative to a desired QoE 

target state. The agent must then make changes based on the current state and rules defined 

relative to target QoE. Action is defined by the local implementation of policy rules which 

are based on a SVC layer selection algorithm which will enable adaptation of QoE by 

changing the SVC layers that are downloaded. The DVM must be able to record the 

sensing/acting decisions in a knowledge base such that future actions could be defined by 

reference to the knowledge base and policy. In this way the DVM could learn to respond 

more efficiently and potentially adapt the policy rules. 

The DVM rules that follow have been developed based on a baseline device QoE capability 

- QC. In order to simulate QC, the following assumptions have been made: 

QC is a function of the device maximum resolution - RC, the total bandwidth capability of 

the device network interface card (NIC) - BC, and the quality of the content being streamed 

to the device - CC: 

Equation 1. 𝑄𝑐 = 𝑓 𝑅𝑐, 𝐵𝑐, 𝐶𝑐  
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During streaming the device state will be measured and can be defined in terms of QoE. The 

actual QoE - QA is a function of the resolution of the video clip – RA, the actual bandwidth 

consumed by the download – BA, and the actual content quality – CA: 

Equation 2. QA = f (RA, BA, CA) 

The baseline state of the device can be expressed as actual QoE as a simple proportion of 

the device capability: 

Equation 3. Device State = QA / QC 

From a SVC perspective, the actual SVC layer LA is a function of 3 dimensions; resolution, 

frame rate and native video quality, so; 

Equation 4. QA = f (RA, BA, CA) = f (LA) 

Furthermore, as each dimension is increased, the file size (clip chunk) increases. Thus the 

consumption of bandwidth increases and bandwidth consumption – WA is proportional to 

the actual SVC layer LA: 

Equation 5. WA α LA α QA 

Similarly, the maximum bandwidth consumed by a device is function of the device 

capabilities so that; 

Equation 6. WC α LC α QC 

Therefore the device state could be expressed as; 

Equation 7. Device State = QA / QC = LA / LC 

It follows that the actual QoE for the user could be estimated from the actual SVC layer 

being streamed. This layer could be inferred by the DVM based on the bandwidth being 

consumed and decisions could be made to consume more or less layers as a function of the 

device capability and content 

3.2.1.3 High level Algorithm 

Following on from the assumptions in section 3.2.1.2, it is possible to derive a simple layer 

selection algorithm for the DVM. At the basic level the DVM for a single device will grab 

chunks of video as SVC layers based on this simple algorithm: If the actual QoE of the 
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device is less than its capability, download the next highest SVC level. Repeat this until the 

maximum device QoE capability is reached:  

• If LA < LC,  

• Then select next highest LA layer 

• Do until LA = LC  

In essence this is a simple statement of SVC adaptation for a device. For SVC the device 

capability changes as a function of available bandwidth. As more bandwidth becomes 

available higher quality SVC layers are streamed and vice versa. 

Central to the research question is the ability to optimise QoE for each device in a network 

when more than one device is competing for resources. If the SVC based algorithm above is 

implemented by DVMs for each device in the network each device would grab video chunks 

at the same rate until the total available bandwidth was consumed. Such a scenario could 

result in a paradoxical situation where the user watching low quality video in a low capability 

device perceives higher QoE than the user steaming high quality video on a high capability 

device. For example, if we assume we have 2 devices connected to a network with total 

available bandwidth of x Mb each device will consume 0.5x Mb. Further, we can assume x 

Mb equates to y SVC layers so each device would stream 0.5y SVC layers. If device 1 has 

a SVC layer capability of y and device 2 is higher quality device of capability 2y then the 

device states would be: 

• Device 1 (low quality) = LA / LC  = 0.5y/y = 50% 

• Device 2 (high quality) = LA / LC  = 0.5y/2y = 25% 

When we consider user expectation, the device 2 user would be unhappy with the quality of 

the video and his/her real QoE would be low. For instance, if user 2 was watching a movie 

on a HDTV set and user 1 is watching a news clip on a mobile device then the DVMs fail to 

achieve the desired optimum QoE for the users. In order to address this paradox the DVM 

must implement policy rules that reflect the user expectation in terms of content and device 

capability. Building on a layer selection algorithm the DVM can implement file/chunk 

grabbing at a device level based on a hierarchy of device capability and content quality. This 

could be expressed as SVC layer grabbing where the device of higher resolution, streaming 

content of higher quality grabs more SVC layers than a device of lower capability and/or 

streaming content of lower quality. 
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At a high level the DVM algorithm can be broken into to three distinct areas: Sensor action, 

policy application and actuator action: 

• Sensor action 

o Establish device capability 

§ Determine device resolution range 

§ Determine connection type 

§ Determine NIC maximum bandwidth 

o Detect content type 

§ Query tags or chunk packet headers 

o Detect available bandwidth 

§ Sample NIC every x seconds 

o Determine device state 

§ Calculate maximum svc quality layer capability 

§ Measure actual SVC layer capability 

• Sample every x seconds 

• Policy application 

o Read SVC layer selection rules 

§ Set content priority 

§ Set device type priority 

• Actuator action 

o Set bandwidth GRAB priority ranking 

o Stream video at maximum capability 

§ Read device history 

§ Set target SVC layer 

§ Stop at max capability SVC layer (capping bandwidth) 

§ If insufficient bandwidth to achieve max svc layer then grab 

maximum bandwidth available to achieve highest possible SVC layer 

according to selection priority 

§ Update device policy knowledgebase 

• Repeat sensing 
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3.2.2 Design of Simulated Physical Architecture 

The platform for the evaluation is a simulator designed to replicate a resource contended 

home network with multiple users connected. The typical Irish home has at least four devices 

on line (Eircom, 2014). The example home network is heterogeneous with respect to content 

delivery protocols combining both 802.11N WIFI via access points with fixed line 

1000Base-T Ethernet over Category 5e cable. The network topology is shown in Figure 3-2. 

 

100Mb	Category	5e	Ethernet	cable

ADSLModem

Apple	iPhone	4s

100Mb	802.11N	WiFi

Apple	ipad

I5	Multicore	
16GB	RAM

AMD	A6	quad	core
8GB	RAM
HD	LCD

HD	LCD	TV

 

FIGURE 3-2 – NETWORK TOPOLOGY 

The users can access content via different devices connected to the home network. Each user 

can stream video content of differing type. The simulator would be set up to represent 

streaming of video to devices selected from the actual devices in an example home network 

as shown in Table 3-2. Studies have shown that user perceived QoE is influenced by 

expectation based on content type (Agboma & Liotta, 2008). Three different content types 

were simulated, Movie, News, and Sport. 
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TABLE 3-2 - HOME NETWORK DEVICES 

Device Description Access 

Type 

Resolution SAR Pixels 

Tablet iPad (3rd 

Generation) 

QXGA 

WIFI 2048 x 1536 4:3 3145728 

HDTV HDTV Ethernet 1920 x 1080 16:9 2073600 

desktop PC 900p Monitor Ethernet 1600 x 900 16:9 1440000 

Laptop 720p/1080i 

displays Windows 

8 netbooks 

WIFI 1366 x 768 683:384 1049088 

Smart phone Apple iPhone WIFI 480 x 380 3:2 153600 
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4 Implementation 
The goal of simulation was to establish that a device could adapt QoE based on available 

resources and device capability. Furthermore, simulation should demonstrate that multiple 

devices could adapt their QoE when competing for resources. The intention to simulate SVC 

layer selection was based on the fact that it was possible to correlate QoE to the layer being 

delivered to the device using the relation developed in section 3.2.1.2. This simple measure 

of device state as expressed as a proportion of the device QoE capability would be the metric 

used to compare the effectiveness of the adaptation algorithm. 

Simulation would be performed in two phases; a proof of concept using an iterative Excel 

model and a simulator based on a Java program. Each phase would include a baseline 

evaluation, where each device competes for resources on an equal basis, and an evaluation 

of the implementation of the DVM layer selection algorithm described in section 3.2.1.3. In 

this way the effectiveness of the DVM algorithm could be evaluated. 

4.1 Excel	Proof	of	Concept	

This section describes a proof of concept (PoC) that was performed in order to test the 

feasibility of optimising perceived QoE in a home network of contended bandwidth. The 

PoC was designed to demonstrate the ability to measure QoE and implement a simple 

distributed algorithm that could enforce a policy of differential bandwidth consumption 

based on device type and video content hierarchies.  

The PoC was based on simple model of SVC video streaming where a key assumption was 

that there is a linear relationship between QoE and the SVC layer being played by the 

receiving device. This is a safe assumption since SVC layers comprise 3 fundamental QoE 

parameter types, temporal (frame rate), spatial (resolution), and video quality (SNR). Each 

of these groups represent a measurable set of parameters related to bandwidth (temporal), 

device (spatial) and content (video quality). As such, it is not necessary to measure the 

parameters but simply infer the quality on the basis that the higher the layer, the greater the 

QoE. 

The goal of the PoC was to demonstrate that a simple layer selection algorithm could be 

employed at device level allowing devices of higher resolution, that were streaming content 

of higher intrinsic quality, to secure a greater share of available bandwidth than those devices 

of lower resolution and video quality. 
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A Microsoft Excel model was constructed to simulate a home network of restricted 

bandwidth with 3 devices connected. Three DVM agents were constructed to represent each 

device. Figure 4-1 shows the simulated sensing part of the DVM. The device type can be 

selected from a dropdown list and the maximum capability of the device is calculated.  

 

FIGURE 4-1 - EXCEL DVM FROM PROOF OF CONCEPT 

Max Resolution – This value is read from the table of devices when the device type is 

selected and is shown as the number of pixels 

Connection type – This value is read from the table of devices when the device type is 

selected  

Max Bandwidth (NIC) – This value is read from the table of devices when the device type 

is selected and is shown as the number of Mbs. If Ethernet is shown the maximum bandwidth 

available to the device is 100Mb; if WiFi is selected the maximum bandwidth available is 

limited to 40Mbs 

Max SVC Layer - An SVC layer capability is expressed as the “Max SVC Layer” index. 

This is a value based on a combination of resolution, maximum bandwidth, and content type. 

The layer is selected from a 3D matrix of spatial, temporal and content quality values (Figure 

4-2). An arbitrary value of 0.3mb was chosen to represent the packet size of a single SVC 

layer. The total network bandwidth is read from environment variables 

Content sensor – The user can chose the content type from a drop down menu of News, 

Movie or Sport 
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Quality (PSNR) Index – is a value assigned to content type that is used to determine the 

SVC layer selection from the SVC matrix (Figure 4-2) 

Bandwidth Sensor – shows the total network bandwidth, read from the environment 

variables in the 3 dimensional SVC layer table shown in Figure 4-3, and the bandwidth 

available to the device. The latter value is calculated based on the total network bandwidth 

minus the bandwidth consumed by other devices. 

 

FIGURE 4-2 - 3D SVC LAYER MATRIX 

The model is an iterative one based on the assumption that each device starts accessing 

content by downloading one SVC layer at time until either the device capability is reached 

or the bandwidth available to the device is exhausted.  In this way basic SVC adaptation is 

modelled; each device accesses SVC layers of increasing quality until bandwidth is 

exhausted using a simple instance based algorithm where the SCV layer is obtained from 

look-ups from the 3 dimensional SVC table in Figure 4-2 according to three input 

parameters: 

• Device resolution 

• Available bandwidth  

• Content type 
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The baseline algorithm is a conditional one of the general form: 

Let device capability = n SVC layers 

Do until actual SVC layer = n, or available bandwidth = 0 

If resolution = x and if content = y then return SVC layer z 

Available bandwidth = Starting bandwidth – f(z) 

Device State = z/n 

In the PoC f(z) = 2 x count (z) 

The environment screen allows the user to set the total network bandwidth and initiate the 

test by setting the reset value to “0”. After the test the results are cleared by setting the reset 

value to “1”. To run a simulation three DVMs were configured with the desired device and 

content choices and the environment variables were set. The dashboard that represents the 

simulated home environment is shown in Figure 4-3. 

 

FIGURE 4-3 - SIMULATED HOME NETWORK ENVIRONMENT 

During the test the device state for each DVM is updated at each iteration. This is shown in 

Figure 4-4Error! Reference source not found. . Here the device state shows the effective 

capability expressed as the maximum SVC layer achievable, in this example layer 73 

represents 24.5% of the device QoE capability. This value is calculated based on the 

available bandwidth and the bandwidth consumed by each layer. During a test the effective 
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capability of the device decreases during each iteration as the available bandwidth reduces 

due to consumption by each of the three devices. 

 

FIGURE 4-4 - DVM DEVICE STATE 

In order to complete the proof of concept a series of tests were run with different 

device/content configurations in baseline mode. The tests were then repeated applying the 

DVM layer selection algorithm and differences were analysed. 

The DVM layer selection algorithm rules were constructed to represent a hierarchy of device 

type and content type. The content type is representative of native video quality: 

• Tablet > HDTV > desktop > Laptop > Smart phone 

• Movie > Sport > News 

The algorithm is a simplification of the SVC selection algorithm proposed by Ruckert et al.,   

(2012) in which they propose SVC layer selection based on a priori mapping of QoE 

capability to the SVC layers. In the PoC streaming is represented by iterative layer selection 

starting at layer one and sequentially increasing layers with each iteration. In order to 

simulate QoE based layer selection policy rules are applied where the higher QoE capability 

combinations select higher numbers of SVC layers with each iteration according to the rules 

in Table 4-1. 

The DVM layer selection algorithm is a conditional one of the general form: 

Let device capability = n SVC layers 

Let QoE coefficient of layer selection = p 

Let the device type = a 

Let the content type = b 
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Do until actual SVC layer = n, or available bandwidth = 0 

 For a, b look up p and look up z 

 Return p.count (z) 

Available bandwidth = Starting bandwidth – f(p.count (z)) 

Device State = (pz)/n 

In the PoC f(z) = 2 p.count (z) 

This simplification is a sound one: Ruckert et al., propose selection of the layer most 

appropriate to QoE capability in one initial streaming step which consumes bandwidth 

commensurate with the quality of the layer. In the POC, the iterative consumption of 

bandwidth based on stepwise layer selection arrives at a similar adaptation end state in terms 

of bandwidth consumption. 

TABLE 4-1 - LAYER SELECTION RULES 

Selection	Rules	
	 Number	of	SVC	layers	accessed	per	iteration	

	Device/Content	 Movie	 Sport	 News	
HDTV	 5	 4	 3	
Desktop	 4	 3	 2	
iPad	 3	 2	 1	
Laptop	 2	 1	 1	
iPhone	 1	 1	 1	

 

4.1.1 PoC Null Hypothesis 

At a basic level the first objective is to demonstrate that QoE can be measured at the devices 

and that some change can be affected based on the measured level of QoE.  On this basis the 

simple null hypothesis may be expressed as follows: 

H0 = No measurable effect on QoE can be detected following the implementation of the 

network layer selection algorithms. Of course, with a simulation there is no statistical method 

of establishing support for the null hypothesis because each repeat test gave exactly the same 

result. Hence no confidence limits can be estimated for any differences demonstrated. 
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4.1.2 Results 

To set a baseline a network with 3 devices was configured with device parameters that define 

the maximum resolution and bandwidth capability as shown in Table 4-2. The total network 

bandwidth was set to 50Mb/s. Three connected devices were chosen to limit the number of 

possible experimental combinations. 

TABLE 4-2 - POC DEVICE PARAMETERS 

Device Access Type Max bandwidth capability  (Mb/s) Resolution (Pixels) 

iPad WIFI 40 3145728 

HDTV Ethernet 100 2073600 

Desktop Ethernet 100 1440000 

Laptop WIFI 40 1049088 

iPhone WIFI 40 153600 

 

4.1.2.1 Experiment	1		

The objective of the experiment was to demonstrate the ability of the simulator to model the 

consumption of bandwidth as SVC layers are downloaded with predictable results for shared 

bandwidth without the application of the layer selection algorithm. The four tests shown in 

Table 4-3 were performed. In each case each of the three connected devices were of the same 

type and each device was accessing the same content. 

TABLE 4-3 - POC EXPERIMENT 1: TEST MATRIX 

Test Device 1 Content1 Device 2 Content2 Device 3 Content3 

1.1 iPad Movie iPad Movie iPad Movie 

1.2 Desktop Movie Desktop Movie Desktop Movie 

1.3 HDTV Movie HDTV Movie HDTV Movie 

1.4 Laptop Movie Laptop Movie Laptop Movie 

 

The results of experiment are shown in Figure 4-5. The device state is recorded when the 

available bandwidth is exhausted. This represents the proportion of the device QoE attained.  

It is clear that the bandwidth is shared evenly between each device as expected. The device 

state of higher resolution devices is lower than that of the lower resolution devices. This 

provides an index of user satisfaction and indicates users watching the content on a high 

capability device would be likely to be less satisfied than those watching the same content 

on a low capability device. This is a reasonable model of user QoE based on expectation; a 
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user would expect high quality when watching a movie on a HDTV but would be satisfied 

with lower quality when watching on a laptop. 

 

FIGURE 4-5 - POC - EXPERIMENT 1 RESULTS 

4.1.2.2 Experiment	2		

The objective of the experiment was to show the effect of different content on the device 

state without the layer selection algorithm, i.e. when each device accesses content at the 

same rate. The test matrix is shown in Table 4-4. 

TABLE 4-4 - POC EXPERIMENT 2: DEVICE CONTENT MATRIX 

Test Device 1 Content1 Device 2 Content2 Device 3 Content3 

2.1 iPad Movie iPad Movie iPad Movie 

2.2 iPad Movie iPad Sport iPad News 

 

The results of experiment are shown in Figure 4-6. The effect of lower quality content can 

be seen. It is manifest as much higher QoE% because the maximum capability for the 

device/content combination is much lower. So without the application of the layer selection 

algorithm the user watching the higher quality content is likely to be dissatisfied. 

Paradoxically the user watching low quality content will be likely to be satisfied. However, 

it is possible that such users would be equally satisfied with lower QoE% due to lower 

expectations. 
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FIGURE 4-6 - POC - EXPERIMENT 2 RESULTS 

4.1.2.3 Experiment	3	

The objective of the experiment was to demonstrate the effect of the application of a simple 

layer selection algorithm to facilitate favourable SVC layer grabbing by higher capability 

devices accessing higher quality content. 

• iPad > HDTV > desktop > Laptop > iPhone 

• Movie > Sport > News 

For the PoC the algorithm was modelled by each device/content combination grabbing 

different numbers of SVC layers per iteration as shown in Figure 4-7 

  

FIGURE 4-7 - LAYER GRABBING SELECTION RULES 

The device/content combinations shown in Table 4-5 were selected to demonstrate the 

change is device state due to the application of the layer selection algorithm selection rules. 
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The goal of the function is to improve the device state for the higher quality device/content 

combinations. 

TABLE 4-5 - POC EXPERIMENT 3: DEVICE CONTENT MATRIX 

Test Layer 
selection 
algorithm 

Device1 Content1 Device2 Content2 Device3 Content3 

3.1 No iPad Movie HDTV Movie Laptop Movie 

3.2 Yes iPad Movie HDTV Movie Laptop Movie 

3.3 No iPad Movie Desktop Sport HDTV News 

3.4 Yes iPad Movie Desktop Sport HDTV News 

 

The results of experiment are shown in Figure 4-8. The result is a significant improvement 

in the iPad device state at the expense of the other two devices. This coarse adaptation across 

the three devices could be improved by application of learning; if a reasonable measure of 

user satisfaction was the length of time of a single streaming session of a content type 

(assuming users would stop watching the poorer QoE video sooner) then the size of the layer 

selection parameters could be refined to further optimise the device state across the 

connected devices. 

 

FIGURE 4-8 - POC EXPERIMENT 3 - CONSTANT CONTENT 

The results shown in Figure 4-9 clearly demonstrate the effect of the weighting applied to 

content type. Without the Layer selection algorithm the maximum capability of both the 

desktop and HDTV is reached which allows the iPad to grab the remaining available 
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bandwidth and achieve a device state of over 60%. Consequently, the improvement to the 

iPad device state on application of the function is relatively modest 

 

 

FIGURE 4-9 - POC - EXPERIMENT 3 – MULTI DEVICE/CONTENT COMBINATIONS 

4.1.3 Conclusions 

The proof of concept was successful in as far as it was possible to demonstrate the tangible 

effect of the application of an SVC layer selection rules based algorithm. The device state 

provides an index of user satisfaction. Improvements in the device state of the high quality 

device/content combinations come at the expense of the other two devices. Without the 

application of the layer selection algorithm the user watching the higher quality content is 

likely to be dissatisfied. Paradoxically the user watching low quality content will be likely 

to be satisfied. However, it is possible that such users would be equally satisfied with lower 

QoE% due to lower expectations. 

4.2 Java	Simulator	

Having satisfied the basic goal of the PoC; to demonstrate an appreciable change due to the 

application of the Layer selection algorithm, the next step was to create a simulator that 

could be configured with sensing parameters that would map to parameters that would be 

measured by an operational device manger agent: 
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Sensing Parameters 

• Available network bandwidth 

• Connection type 

• Device type - from which device capability is derived 

• Content type – from which content quality is derived 

The simulator was coded in Java using the NetBeans IDE version 8.01. The Java 

development kit was jdk1.7.0_67 with Java Runtime Environment JRE 7. Java was chosen 

as the coding language because Java is device environment independent, due to the fact that 

code is executed in the Java Virtual Machine, JVM. In the event that the simulation proved 

encouraging, the code could be deployed in home network devices with maximum code re-

use. The generalised class model for the simulator is shown in Figure 4-10. 

Device	State

deviceConsumption
unusedDeviceBandwidth
deviceQoE%
final	Capacity
getAvilableBandwidth:	integer
getResolution:	integer
getMaxSVCLayer:	integer
getContent:	string

Actuator

SVCapability:	Integer
currentLayer:	Integer
State
getSensorData:	Array
setCurrent	Layer:	Integer
calcSVCcapability:	Integer

Device	HistoryQoE	Rules

Device

resolution:	integer
connectionType:	string
NIC:	string
NICBandwidth:	integer
Device
setResolution:	integer
setConnectionType:	string
setNIC:	string
setNICBandwidth:	integer
getMaxSVCLayer:	integer

NetworkManger

networkBandwidth
deviceName
deviceYype,	
connectionType
contentType
getDeviceConsumption
getUnusedDeviceBandwidth
getDeviceQoE%
getFinal	Capacity

Content

content:	string
Content
setContent:	string

 

FIGURE 4-10 - SIMULATOR JAVA CLASS MODEL 

Network and device parameters were entered via a text editor. The network manager was 

designed to configure as many devices as possible. However, the number of devices per 
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experiment was limited to three to minimise the experimental permutations. The experiment 

configuration dialogue was as follows: 

run: 

Enter network capacity (total bandwidth for streaming) 

50 

Network Capacity is 50.0Mbps 

**************************************************** 

Enter Device name 

My TV 

Enter Device type,  

HDTV 

Enter connection Type, 'WiFi' or 'Ethernet' 

Ethernet 

Enter Content Type, 'Movie', 'Sport' or 'News' 

Movie 

After the device is configured the following calls are made to the device object: 

DeviceMapPolicy device1 = new DeviceMapPolicy(); 

          device1.mapDevice(content, deviceType, connection); 

          System.out.println("Device 1 NIC bandwidth is " + device1.getMaxBandwidth()); 

          System.out.println("Device 1 is playing " + device1.getContent() + " with PSNR Index 
" + device1.getPSNRIndex()); 

          System.out.println("Device 1 Resolution is " + device1.getResolution()); 

          System.out.println("Device 1 Max SVC Layer is " + device1.getLayer()); 

          System.out.println("Device 1 Effective device bandwidth is " + 
Math.min(device1.getMaxEffectiveBandwidth(),device1.getMaxBandwidth())); 

          System.out.println("Device 1 is playing " + device1.getContent()); 

A confirmation message is generated thus: 

Device 1 is My TV 

Device 1 is a(n) HDTV 
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Device 1 NIC bandwidth is 100.0 

Device 1 is playing Movie with PSNR Index 3.0 

Device 1 Resolution is 2073600.0 

Device 1 Max SVC Layer is 139.968 

Device 1 Effective device bandwidth is 34.992 

Device 1 is playing Movie 

After configuring 3 devices the program can be run. A starting value of 1 is entered and the 

simulator iterates through each DVM simultaneously until bandwidth is exhausted: 

double remainingCapacity = capacity; 

         int layer = in.nextInt(); 

         while(remainingCapacity>0 && layer <500){ 

       
device1.BandwidthConsumption(device1.getContent(),device1.getResolution(),Math.min(d
evice1.getMaxEffectiveBandwidth(),device1.getMaxBandwidth()),device1.getLayer(),layer)
; 

        
device2.BandwidthConsumption(device2.getContent(),device2.getResolution(),Math.min(d
evice2.getMaxEffectiveBandwidth(),device2.getMaxBandwidth()),device2.getLayer(),layer)
; 

         
device3.BandwidthConsumption(device3.getContent(),device3.getResolution(),Math.min(d
evice3.getMaxEffectiveBandwidth(),device3.getMaxBandwidth()),device3.getLayer(),layer)
; 

         //remainingCapacity = capacity - (device1.getConsumption()+ 
device2.getConsumption()); 

         remainingCapacity = networkCapacity(capacity,(device1.getConsumption()+ 
device2.getConsumption()+ device3.getConsumption())); 

         layer ++; 

         } 

         // Get QoE as percent of potential layers for a device object 

         System.out.println("Device 1 consumption is "  + device1.getConsumption()); 

          System.out.println("Device 1 Unused device Bandwidth is "  + 
(device1.getMaxBandwidth() - device1.getConsumption())); 

          //System.out.println("Device 1 Actual SVC Layer is " + device1.getActualLayer()); 
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          //layer++; 

          System.out.println("Device 1 QoE % " + device1.getQoE()); 

            // Get QoE as percent of potential layers for a device object 

          System.out.println("Device 2 consumption is "  + device2.getConsumption()); 

         System.out.println("Device 2 Unused device Bandwidth is "  + 
(device2.getMaxBandwidth() - device2.getConsumption())); 

         //System.out.println("Device 2 Actual SVC Layer is " + device2.getActualLayer()); 

         System.out.println("Device 2 QoE % " + device2.getQoE()); 

           System.out.println("Device 3 consumption is "  + device3.getConsumption()); 

         System.out.println("Device 3 Unused device Bandwidth is "  + 
(device3.getMaxBandwidth() - device3.getConsumption())); 

         //System.out.println("Device 2 Actual SVC Layer is " + device2.getActualLayer()); 

         System.out.println("Device 3 QoE % " + device3.getQoE()); 

         System.out.println("Final Capacity " + remainingCapacity); 

 

The results are displayed as follows: 

Device 1 consumption is 22.5 

Device 1 Unused device Bandwidth is 17.5 

Device 1 QoE % 42.38 

Device 2 consumption is 22.5 

Device 2 Unused device Bandwidth is 17.5 

Device 2 QoE % 42.38 

Device 3 consumption is 15.0 

Device 3 Unused device Bandwidth is 25.0 

Device 3 QoE % 63.57 

Final Capacity -1.03 

BUILD SUCCESSFUL (total time: 53 seconds) 

For each device the device state (QoE%), the bandwidth consumed and the unused device 

bandwidth is shown. In addition the final network capacity, expressed as unused bandwidth, 

is shown. It should be noted that this is sometimes negative. This is because each SVC layer 



P a g e  71 | 91 

 

consumes a fixed bandwidth and the program terminates when the final capacity falls to zero 

or below. In order to compare results with and without application of the algorithm the results 

are normalised to a concluding value of zero remaining bandwidth 

A number of experiments were conducted as paired configurations, i.e. three device content 

configurations were repeated with and without the layer selection algorithm employed. The 

pairings were grouped into experiments to determine the changes in QoE% due to the Layer 

selection algorithm with the following focus: 

• Change in lowest quality device regardless of content 

• Change in high quality device with highest quality content 

• Change in in device state based on content type 

Where those devices achieved 100% QoE the results were ignored as the change was capped 

by device capability and would give a false estimation of the change. 

4.2.1 Results 

4.2.1.1 Experiment	1	

The first experiment was designed as a control. Each device content combination was 

identical before and after applying the function as shown in Table 4-6. 

TABLE 4-6 - EXPERIMENT1 TEST MATRIX 

Device 1 Content1 Device 2 Content2 Device 3 Content3 
Layer selection 

algorithm 

Desktop Movie Desktop Movie Desktop Movie - 

Desktop Movie Desktop Movie Desktop Movie + 

HDTV Movie HDTV Movie HDTV Movie - 

HDTV Movie HDTV Movie HDTV Movie + 

iPad Movie iPad Movie iPad Movie - 

iPad Movie iPad Movie iPad Movie + 

 

Device state change in high quality device regardless of content  = -0.883 

Device state change in lowest quality device regardless of content  = -0.883 

Device state change in high quality device with highest quality content = -0.883 
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No change in device state should be expected after application of the layer selection 

algorithm. The fact that there is a change is a result of the method of calculation of the SVC 

layer at each iteration when applying using the layer selection algorithm. For all other 

experiments these values were subtracted from the changes measured. 

4.2.1.2 Experiment	2	

The second experiment, shown in Table 4-7, was designed to show the effect of the Layer 

selection algorithm on the device states of a network with two high quality devices and one 

lower quality device all access the same content type: 

TABLE 4-7 - EXPERIMENT 2 TEST MATRIX 

Device 1 Content1 Device 2 Content2 Device 3 Content3 Layer selection 

algorithm 

iPad Movie iPad Movie iPhone Movie - 

iPad Movie iPad Movie iPhone Movie + 

iPad Movie iPad Movie Laptop Movie - 

iPad Movie iPad Movie Laptop Movie + 

iPad Movie iPad Movie HDTV Movie - 

iPad Movie iPad Movie HDTV Movie + 

iPad Movie iPad Movie Desktop Movie - 

iPad Movie iPad Movie Desktop Movie + 

 

Change in lowest quality device regardless of content = -29.990 - (-0.833) = - 29.157 

Change in high quality device with highest quality content = 5.027 – (-0.833) = 5.860 

There was a positive change in the device state for the highest quality device of 5.027 QoE%. 

The null hypothesis was that there was no significant change due to the application of the 

Layer selection algorithm 

H0 : mean difference = 0 

HA : mean difference > 0 

Using the paired test with 3 degrees of freedom for the highest quality device: 

t = 2.417 

t from table = 4.541 at 99% confidence limit 
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Similarly for the lowest quality device: 

t = 2.768 

t from table = 4.541 at 99% confidence limit 

On this basis there is no reason so reject H0 and therefore the layer selection algorithm has 

no real effect. This may be explained mainly by the small sample size, the fact that all devices 

access the same content, and that device 1 and 2 “share” the increased bandwidth provided 

by the action of the Layer selection algorithm.  

4.2.1.3 Experiment	3	

The third experiment was designed to show the effect of the Layer selection algorithm on 

the device states of a network with one high quality device/content combination, one high 

quality device with a mix of content, and a lower quality with a mix of content. The 

experiment design is given in Table 4-8. 

TABLE 4-8 - EXPERIMENT 3 TEST MATRIX 

Device 1 Content1 Device 2 Content2 Device 3 Content3 Layer selection 

algorithm 

iPad Movie iPad Sport HDTV News - 

iPad Movie iPad Sport HDTV News + 

iPad Movie iPad Sport iPhone News - 

iPad Movie iPad Sport iPhone News + 

iPad Movie iPad Sport Laptop News - 

iPad Movie iPad Sport Laptop News + 

iPad Movie iPad Sport Desktop News - 

iPad Movie iPad Sport Desktop News + 

iPad Movie iPad Movie Desktop Sport - 

iPad Movie iPad Movie Desktop Sport + 

iPad Movie iPad Sport iPhone Movie - 

iPad Movie iPad Sport iPhone Movie + 

iPad Movie iPad News iPhone Sport - 

iPad Movie iPad News iPhone Sport + 

iPad Movie iPad Sport Desktop Movie - 

iPad Movie iPad Sport Desktop Movie + 

iPad Movie iPad Sport Laptop Movie - 

iPad Movie iPad Sport Laptop Movie + 

iPad Movie iPad News Laptop Sport - 
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Device 1 Content1 Device 2 Content2 Device 3 Content3 Layer selection 

algorithm 

iPad Movie iPad News Laptop Sport + 

iPad Movie iPad News Desktop Sport - 

iPad Movie iPad News Desktop Sport + 

iPad Movie iPad Sport HDTV Movie - 

iPad Movie iPad Sport HDTV Movie + 

iPad Movie iPad News HDTV Sport - 

iPad Movie iPad News HDTV Sport + 

 

Change in lowest quality device regardless of content = -12.652-(-0.833) = -11.819 

Change in high quality device with highest quality content = 8.614-(-0.833) = 9.473 

There was a positive change in the device state for the highest quality device of 9.473 QoE%. 

The null hypothesis was that there was no significant change due to the application of the 

layer selection algorithm 

H0 : mean difference = 0 

HA : mean difference > 0 

Using the paired test with 12 degrees of freedom for the highest quality device: 

t = 3.711 

t from table = 2.681 at 99% confidence limit 

Similarly for the lowest quality device: 

t = 2.649 

t from table = 2.681 at 99% confidence limit 

On this basis there is evidence of the positive effect of the layer selection algorithm on the 

QoE for the high quality device/content combination. There is weaker evidence for the 

reduction in QoE for the lowest quality device. This may be explained by the mix of quality 

of the content for this device; the better content will consume more bandwidth, thus the 

average change will be reduced.  
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4.2.1.4 Experiment	4	

The fourth experiment was designed to show the effect of the layer selection algorithm on 

the device states of a network with one high quality device/content combination and a mix 

of other lower quality device and content types. The test matrix for this experiment contained 

46 pairs and can be summarised as shown in Table 4-9. 

TABLE 4-9 - EXPERIMENT 4 TEST MATRIX 

Device 1 Content1 Device 2 Content2 Device 3 Content3 Layer 

selection 

algorithm 

iPad Movie All 

combinations 

except iPad 

All 

combinations 

All 

combinations 

except iPad 

All 

combinations 

- 

iPad Movie All 

combinations 

except iPad 

All 

combinations 

All 

combinations 

except iPad 

All 

combinations 

+ 

 

Change in lowest quality device regardless of content = -21.787-(-0.833) = -20.994 

Change in high quality device with highest quality content = 11.559-(-0.833) = 12.392 

There was a positive change in the device state for the highest quality device of 12.392 

QoE%. The null hypothesis was that there was no significant change due to the application 

of the layer selection algorithm 

H0 : mean difference = 0 

HA : mean difference > 0 

Using the paired test with 45 degrees of freedom for the highest quality device: 

t = 9.561 

t from table = 2.423 at 99% confidence limit 

Similarly for the lowest quality device: 

t = 8.850 

t from table = 2.423 at 99% confidence limit 
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On this basis there is a strong positive effect of the Layer selection algorithm on the QoE for 

the high quality device/content combination, in this case the iPad with Movie. This 

demonstrates the strong bias of the algorithm towards the high quality device type. Equally, 

there is a strong bias against the lower quality device types regardless of the content being 

played 

4.2.1.5 Experiment	5	

The fifth experiment was designed to show the effect of the layer selection algorithm on the 

content type. Tests were made with 3 devices of the same type each with different content. 

The test matrix for this experiment is shown in Table 4-10. 

TABLE 4-10 - EXPERIMENT 5 TEST MATRIX 

Device 1 Content1 Device 2 Content2 Device 3 Content3 Layer selection 

algorithm 

iPad Movie iPad Sport iPad News - 

iPad Movie iPad Sport iPad News + 

HDTV Movie HDTV Sport HDTV News - 

HDTV Movie HDTV Sport HDTV News + 

Desktop Movie Desktop Sport Desktop News - 

Desktop Movie Desktop Sport Desktop News + 

Laptop Movie Laptop Sport Laptop News - 

Laptop Movie Laptop Sport Laptop News + 

iPhone Movie iPhone Sport iPhone News - 

iPhone Movie iPhone Sport iPhone News + 

 

Change in high quality content = 7.900 - (-0.833) = 8.733 

Change in lowest content  = -18.494- (-0.833) = 19.327 

Change in mid quality content = -6.794 - (-0.833) = 5.961 

The null hypothesis was that there was no significant change due to the application of the 

Layer selection algorithm 

H0 : mean difference = 0 

HA : mean difference > 0 

Using the paired test with 4 degrees of freedom for the highest quality content: 
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t = 19.42 

t from table = 3·747 at 99% confidence limit 

Similarly for the mid quality content: 

t = 3.947 

t from table = 3·747 at 99% confidence limit 

Similarly for the low quality content: 

t = 23.21 

t from table = 3·747 at 99% confidence limit 

On this basis there is a strong positive effect of the layer selection algorithm on the QoE for 

the high quality content. Equally, there is a strong negative effect for the lowest quality 

content. There is also a significant negative effect on the mid quality content. This 

demonstrates the strong bias of the algorithm towards the high quality content type at the 

expense of QoE for other content types. 

4.2.2 Conclusions 

The experiment results demonstrate the ability of the DVM to simulate the effect of the layer 

selection algorithm on QoE for devices accessing SVC video content. The DVM improves 

the QoE for high quality device and content combinations by reducing the QoE for lower 

quality combinations. There is a small error when the layer selection algorithm is applied. 

The error was quantified as 0.88% of the maximum achievable QoE for a device. An offset 

correction could be applied to all simulations to compensate for the error. 

When simulating a network with two highest quality device/content combinations the layer 

selection algorithm had no statistically significant effect. This was due, in part, to the small 

sample size. Also, the fact that all devices accessed the same content means that there was 

no change affected due to content type. More importantly, two highest quality device/content 

effectively “share” the increased bandwidth provided to them by the action of the layer 

selection algorithm. Thus the potential improvement in QoE is divided between the two 

devices.  
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When the network was configured with just two high quality devices, only one of which 

accessed the highest quality content, the effect of the layer selection algorithm was clearly 

demonstrated. There was a positive effect on the QoE for the high quality device/content 

combination and a reduction in QoE for the lowest quality device. Although the scale of the 

reduction in QoE% was less significant because, for some combinations, high quality content 

compensated for the low quality device. 

When just one highest quality device content combination was examined in networks with 

all other combinations. The effect of the layer selection algorithm was most dramatic with a 

12% improvement of the high quality device state and a 20% reduction in the lowest quality 

device state. 

There is a strong positive effect of the layer selection algorithm on the QoE for the high 

quality content. Equally, there is a strong negative effect for the lowest quality content. There 

is also a significant negative effect on the mid quality content. This demonstrates the strong 

bias of the algorithm towards the high quality content type at the expense of QoE for other 

content types 
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5 Conclusions 
The research question was “to what extent can cognitive algorithms support the optimisation 

of Quality of Experience and bandwidth utilisation for users when downloading or streaming 

video to connected devices in a resource contended network?” The question was prompted 

by personal experience of poor QoE when accessing video content in a home network with 

many connected devices. Despite the fact that access network bandwidth reached a level that 

could sustain real time streaming of HD video content in about 2010/2011, advances in 

device technology have seen the advent of high definition display capability that puts more 

demand on the network capacity due to the need to stream ever larger files. 

The first challenge in this study was to understand the various video streaming delivery 

mechanisms and discover what scope there was for influencing QoE. It became apparent that 

the modern delivery methods such as DASH and SVC were designed with quality adaptation 

in mind. However, the quality in question for these protocols is limited to picture and sound 

quality and not the entire user experience. In considering QoE other factors must be taken 

into account, such as loading rate, transitions between picture quality states, buffer run out, 

pixilation and so on. Such factors are a function not of the video file or the delivery 

mechanism, but of the environment; specifically the network state. 

Thus the second challenge was to determine if QoE could be estimated from indicative 

parameters based on the video file, the delivery mechanism, and the network state. To meet 

this challenge it was necessary to investigate methods of estimating QoE. It was clear that 

QoE is subjective assessment of a user’s perception of the experience in question. 

Fortunately, much work had been done in establishing objective measures of QoE for video 

streaming. Many researchers have demonstrated that subjective QoE assessment could be 

mapped to objective parameters with some degree of accuracy. 

So, the question became focused on whether QoE could be used to optimise content delivery 

in near real-time. The adaptive steaming protocols such as SVC showed that real-time 

adaptation of video steam quality to changes in bandwidth is possible. Therefore, it should 

be possible to make decisions about SVC chunk and layer selection based on QoE related 

parameters also in near real-time. During the study it became apparent that a combination of 

two types of algorithm would be required to optimise QoE. The first would be an adaptation 

algorithm that would be capable of measuring key parameters and affecting some change on 
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the video stream that influences QoE. The second would be a cognitive algorithm that was 

capable of changing the adaptation algorithm on the basis of learning from previous 

adaptations. 

Researchers have also demonstrated that algorithms can be used to adapt QoE during 

playback. Many of these algorithms are based on adapting the download rate to the available 

bandwidth by selecting chunks with video quality appropriate to the bandwidth. Using bit 

rate, packet layer and codec information it is possible to produce objective models of QoE. 

Thus if a device can be made “aware” of this information it is possible to adapt playback to 

optimise QoE.  

The proof of concept and simulation were successful in as far as it was possible to 

demonstrate the tangible effect of the application of an SVC layer selection rules based 

algorithm. The device state provides an index of user satisfaction. The experiment results 

demonstrate the ability of the DVM to simulate the effect of the layer selection algorithm on 

QoE for devices accessing SVC video content. The DVM improves the QoE for high quality 

device and content combinations by reducing the QoE for lower quality combinations.  

Thus, adaptation based on QoE is possible based on the application of policy based 

algorithms at the device level. Research suggests that learning algorithms could be 

developed to adapt the policy algorithm in order to optimise QoE for the device users. Both 

Monte Carlo methods and Q Learning are ideal for network control and management. In 

network environments that have distributed or hybrid agent structure the discrete states of 

the network nodes and environment make Q Learning potentially the most useful algorithm. 

5.1 Future	Work	

The simulator exhibits relatively coarse adaptation across the connected devices. This could 

be improved by application of learning algorithms such as Q learning. For example, if a 

reasonable measure of user satisfaction was the length of time of a single streaming session 

of a content type (assuming users would stop watching the poorer QoE video sooner) then 

the size of the layer selection parameters could be refined to further optimise the device state 

across the connected devices. Furthermore it would be valuable to examine the effect of 

sudden changes to available bandwidth; using learning to determine responses based on 

accumulated device knowledge could improve the efficiency of layer selection. 
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The next step would be to produce a home network testbed with real time parameter sensing. 

SVC video streams would be set up such that QoE% could be calculated. Methods of 

determining available bandwidth and device parameters would have to be established. QoE 

data for the content type could be derived from packet data. Attempts should then be made 

to repeat the simulation experiments and compare the calculated QoE% to the simulation 

results.  It would be valuable to then repeat the test bed experiments with subjective QoE 

assessment and map MOS to calculated QoE%. 

Researchers studying content delivery, network management, and quality of experience 

could find this work useful when considering the challenges of balancing QoE with limited 

network resources.  The content could be any file types and the network could be any 

network. The work could be of particular interest to those managing enterprise networks 

with many connected devices accessing many types of content. 

5.2 Closing	Remarks	

This work demonstrates the potential to optimise QoE for users accessing video content in a 

resource contented network. Device awareness, in terms of content and capability, is 

fundamental to the successful application of the algorithms. When considering the Internet 

of Things (IOT) it is easy to imagine a modern home with tens of connected devices all 

competing for bandwidth. It should be possible to make all these devices self-aware with 

respect to their function, environment and capability. On that basis it should be possible to 

implement distributed agents that facilitate cross-network optimisation of functionality and 

resource consumption with low computational overhead. In this scenario, when any device 

is connected to a network it could know what it is, what it does, and learn where it fits in the 

hierarchy of demand for resources. Thus, in the world of IOT, artificial intelligence could 

increase utility at minimum resource cost. 
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Appendix 
The accompanying resource DVD contains 

• The Excel models used in the proof of concept 

• The source code for the simulator 

• The simulator output files 

• The simulation results tables 


