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Abstract 
Case-based reasoning (CBR) is among the most influential paradigms in modern machine 
learning.  It advocates a strategy of storing specific experiences in the form of cases, and 
solving new problems by re-using solutions from similar past cases.  The most difficult aspect 
of CBR is deciding how to adapt past solutions to precisely match the circumstances of new 
problems.  No generally applicable method of doing this has been found; different domains and 
tasks have their own individual characteristics, and successful adaptation has usually relied on 
the presence of explicit, hand-coded domain knowledge.  Such knowledge is usually difficult 
both to acquire and maintain.  For this reason, most CBR systems in operation today are 
‘retrieval only’ in that they do not attempt to adapt the solutions of past cases to solve new 
problems. 

For certain machine learning tasks, however, customisation of old solutions can be 
performed using only knowledge contained within the set of stored cases.  One such task is 
regression (i.e. predicting the value of a numeric variable).  Regression is among the oldest 
machine learning tasks, dating back to Francis Galton’s work on predicting the heights of 
parents and their children in nineteenth century England.  A modern example would be to 
predict tomorrow’s stock market prices based on today’s financial data.  Many different 
approaches to solving regression problems have been developed over the years, for example,  
k-NN, locally weighted linear regression and artificial neural networks. 

The aim of this thesis is to apply CBR to the problem of regression.  It begins by analysing 
previous attempts to do this, paying particular attention to those aspects that might be 
improved.  One CBR-based approach from the mid-1990’s is examined in considerable detail.  
It works by finding the differences between a new problem and a similar past problem, then 
searching for a pair of stored cases with the same differences between them.  These stored 
cases indicate the effect of the differences on the solution.  This ‘case differences’ approach has 
much to recommend it.  In particular, the knowledge needed to solve new problems is 
automatically generated from stored cases—no additional external knowledge must be added.  
Unfortunately, it also suffers from some theoretical limitations that greatly restrict its use. 

This thesis presents two new CBR-based regression algorithms that build on the strengths of 
previous approaches while addressing their limitations.  One is a minor variant of the 
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traditional k-NN algorithm, while the other uses the case differences approach and is more 
sophisticated.  The main contribution of the second algorithm is that it uses locally weighted 
linear regression as a guide to help choose past cases that are likely to be useful for solving new 
problems.  It also takes steps to increase robustness when basing predictions on noisy datasets.  
An experimental evaluation of the new techniques shows that they perform well relative to 
standard regression algorithms on a range of datasets. 
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Chapter 1 
  

Introduction 
The field of Machine Learning looks at ways in which computer systems can learn from past 
experiences [Mitchell 1997, p. xv].  Most computer systems do not display this ability, but 
instead have their behaviour fully defined before they enter operation.  All knowledge 
necessary for carrying out their tasks is pre-programmed; situations not catered for are viewed 
as specification and/or design failures, to be remedied by corrections in which the missing 
functionality is added.  This approach is appropriate in circumstances where a system’s inputs, 
outputs, and operating environment can be fully specified in advance.  Imagine, for example, a 
system that accepts the votes from an election in a particular format, counts them according to a 
defined set of rules, and outputs a set of results.  Assuming that everything is designed 
correctly, the system will display 100% competence in its task from the moment of 
deployment. 

Unfortunately, a complete specification of this kind is not always available (or possible).  
Suppose, for example, that we are asked to construct an online customer support system that 
helps customers find solutions to problems they encounter while attempting to assemble an 
item of furniture.  The range of problems that may arise cannot be fully specified in advance.  
What is needed is a system that initially offers assistance for what are anticipated to be the most 
common problems, and that expands its expertise based on the range of problems presented by 
users over time.  This can be achieved by regular updates to the system by its human designers.  
Alternatively, the system can update itself by incorporating a machine learning element that 
learns from its experiences in some way.  This element might accept discrete user sessions in a 
pre-defined format and use them to improve the system’s response when faced with similar 
situations in the future. 

In this example, a machine learning element embedded in a larger computer system monitors 
the system’s performance with a view to improving it.  This architecture is common to all 
machine learning systems [Russell and Norvig, pp. 51–54], but each system’s task is likely to 
be unique.  In order to study machine learning in isolation, therefore, the system task is often 
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assumed to be one of a number of standard Artificial Intelligence tasks.  Regression (i.e., 
predicting the value of a numeric variable) is among the most fundamental of these, both in its 
own right and as a sub-component of more complex tasks [Campbell at al. 2000].  Sample 
regression applications include predicting tomorrow’s temperature based on today’s 
meteorological data, or predicting a person’s blood pressure based on lifestyle details. 

This thesis focuses on the problem of regression in machine learning.  It describes a generic 
framework for accepting prior experiences and using them to predict the value of some numeric 
variable.  In principle, these prior experiences can take any form.  In practice, however, they 
can usually be represented as a set of records in a database, each containing a number of well-
defined fields.  We will assume that prior experiences are available in this form, and that at 
least one data field has a numeric type.  The two primary technologies used to construct this 
framework are case-based reasoning [Aamodt and Plaza 1994; Kolodner 1992] and locally 
weighted linear regression [Atkeson at al. 1996]. 

1.1   Case-Based Reasoning 
In case-based reasoning (CBR) systems, prior experiences are stored as a set of cases in a case 
base (CB).  New problems are solved by re-using solutions from similar, previously solved 
cases.  Each case generally has a problem part that describes the problem to be solved, and a 
solution part that details the solution eventually applied.  In this thesis, the problem part is 
assumed to consist of a set of problem attributes (at least one of which is numeric), with the 
solution part comprising a single numeric solution attribute. 

A new case to be solved is often called a query case.  Given values for its problem attributes, 
the system’s task is to predict the value for its solution attribute (also referred to as the target 
value).  The problem solving process involves retrieving prior cases that are similar to the 
query, and re-using their solutions in some way. 

CBR systems have been described as lazy and local—lazy in that the process of generalizing 
from past experiences is deferred until a query is received, and local in that only those cases 
most similar to the query are used to provide a solution.  This approach contrasts with that of 
eager, global learners such as neural networks, where all prior experiences are compiled into a 
global model during an initial training phase and this model is then used to predict solutions for 
new problems. 

Case-based reasoning is described in greater detail in Chapter 3. 
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1.2   Locally Weighted Linear Regression 
Locally weighted linear regression (LWLR) is another lazy, local approach to regression.  Each 
problem is represented as a set of numeric attributes.  When a new problem is received, similar 
past problems are retrieved and used to construct a linear model in multi-dimensional domain 
space.  This model is than used to predict a solution. 

LWLR is one of a number of standard algorithms that are commonly used to tackle 
regression problems.  Although computationally expensive, it tends to perform well in domains 
where all relevant aspects of a problem can be represented by numeric attributes.  Chapter 2 
describes LWLR in greater detail. 

1.3   Problem Statement 
Regression is among the most important problems in machine learning.  CBR is among the 
most important techniques in modern Artificial Intelligence [Aha 1998].  The goal of this 
research is to combine the two by using CBR to solve regression problems.  In particular, it 
aims to develop a regression system that demonstrates the following capabilities: 

 Prior experiences are stored as a set of cases, where each case is represented by a set of 
problem attributes—at least one of which is numeric—and a numeric solution attribute. 

 New query cases are solved by retrieving similar past cases and re-using their 
solutions. 

 Prediction accuracy matches or exceeds that of alternative regression techniques on a 
range of standard real-world datasets. 

The aim of this research can be summed up as follows: 

Design a regression system using CBR that provides effective, robust performance 
across different problem domains. 
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1.4   Contributions of this Thesis 
The principal contributions of this thesis are as follows: 

1. Previous research into the use of CBR for regression is critically analysed.  
Shortcomings in previous approaches are identified and discussed, and inform the 
requirements for an improved approach. 

2. Two new CBR-based regression algorithms are presented.  The first is a minor variant 
of k-NN in which diversity among nearest neighbours is preferred.  The second aims to 
address the limitations of previous approaches and is more complex and robust. 

3. A working CBR-based prototype is implemented that provides accurate, robust 
performance. 

1.4.1   Analysis of previous research 
The traditional approach to solving regression problems using CBR has been to apply a 
modified k-NN algorithm (for an introduction to k-NN, see [Mitchell 1997, Chapter 8]); 
predictions are made by taking the weighted average of solutions from past cases similar to the 
query.  An alternative approach that uses the differences between stored cases to generate a set 
of adaptation rules was proposed in the late 1990’s [Hanney and Keane 1996, 1997; McSherry 
1998].  This approach contained much that was promising, but was hampered by theoretical 
limitations that made it unsuitable for use in real-world domains.  Evaluations of the technique 
were therefore restricted to artificial datasets. 

This thesis examines these previous approaches to performing regression using CBR.  It 
looks in detail at the algorithm proposed by Hanney and Keane, at its limitations and the 
attempts made to solve them.  These limitations lead directly to a set of requirements for an 
improved approach. 

1.4.2   Presentation of new CBR-based regression algorithms 
Two new regression algorithms based on CBR are presented.  The first extends k-NN by 
aiming for diversity among the set of past cases used to make predictions.  The second 
constitutes the main contribution of this thesis.  It builds on previous research by Hanney and 
Keane, McSheery, and others, and is based on the idea that the gap between a query and a 
similar past case can be bridged by looking at similar pairs of cases stored in the CB.  LWLR is 
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used as a heuristic to determine which stored cases are most likely to be useful for solving each 
individual query. 

1.4.3   Implementation and evaluation of a prototype system 
The two new regression algorithms were fully implemented and evaluated on a number of 
standard datasets.  Results show that they perform well relative to alternative regression 
techniques. 

1.5   Publications Related to this Thesis 
 McDonnell, N. and Cunningham, P.:  2006, A Knowledge-Light Approach to 

Regression using Case-Based Reasoning, Proceedings of the 8th European Conference 
on Case-Based Reasoning (ECCBR 2006), pp. 91–105, Springer. 

 
 McDonnell, N. and Cunningham, P.:  2005, Using Case Differences for Regression in 

CBR Systems, Proceedings of the 25th Annual International Conference of the BCS 
SGAI (AI-2005), pp. 219–232, Springer. 

1.6   Summary and Structure of this Thesis 
In brief: 

Chapter 2 examines the problem of regression and some traditional approaches to solving it.  
Chapter 3 introduces CBR and describes its characteristics and problem solving methodology.  
Chapter 4 shows how CBR can be applied to regression, and introduces a new algorithm that is 
a variant of k-NN.  Chapter 5 introduces a second new algorithm for performing regression 
using CBR.  Chapter 6 describes the implementation of the two new algorithms, and Chapter 7 
evaluates their performance relative to alternative approaches.  Chapter 8 finishes by presenting 
some conclusions and possibilities for future work. 

 
In more detail: 

Chapter 2 considers the problem of regression, the machine learning task that is the focus of 
this thesis.  It examines some traditional and current approaches to regression, focusing on 
linear regression, k-NN, and locally weighted linear regression (LWLR).  k-NN and LWLR lie 
at the heart of the new algorithms described in Chapters 4 and 5. 
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Chapter 3 begins with a presentation of the principles of CBR, the primary technology 
underlying this research.  The process of constructing and operating a CBR system is examined 
in detail, and the different types of knowledge contained within a CBR system are identified. 

Chapter 4 looks at three different ways in which CBR can be used to solve regression 
problems.  The first makes predictions by taking the weighted average of solutions to past cases 
similar to the query.  The second is a new variant that aims for diversity among the cases used 
for each prediction.  The third is that taken in [Hanney and Keane 1996, 1997], and involves 
generating adaptation rules from the differences between past cases.  The limitations of this 
approach motivate the new algorithm described in Chapter 5. 

Chapter 5 constitutes the central part of this thesis.  It takes a bottom-up approach to 
describing a new algorithm for performing regression using CBR.  The basic ideas are 
presented first, then enhancements and modifications are made until the final algorithm is 
complete.  The chapter concludes by examining some potential enhancements to the algorithm 
that failed to provide improved performance in practice. 

Chapter 6 looks at the implementation of a prototype CBR system that includes the 
regression algorithms described in Chapters 4 and 5.  

Chapter 7 evaluates the performance of the two new regression algorithms relative to 
alternative techniques. 

Chapter 8 discusses some conclusions arising out of this research, and briefly outlines some 
possibilities for future work. 
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Chapter 2 
  

Regression 
All computer systems have a particular task and a set of technologies for achieving it.  This 
research involves constructing a system whose task is regression (i.e., predicting the value of a 
real-valued numeric variable).  The term ‘regression’ was first used by Francis Galton in the 
nineteenth century [Galton 1886].  He found that the heights of children with exceptionally tall 
or short parents tended towards the societal mean, and referred to this phenomenon as 
‘regression towards mediocrity’.  Graphing the mean heights of parents and children produced 
a straight line.  This became known as a regression line, and the process of fitting data to such 
lines as regression [Bland and Altman 1994]. 

 A straight line graph of two numeric variables can also be thought of as a linear model of 
the relationship between them.  Given the value of one, the model can be used to predict a 
value for the other.  Over time, the term ‘regression’ came to be applied more generally to the 
task of modelling the relationships between any number of numeric variables and using these 
models to make predictions.  Where relationships among variables are linear (as in Galton’s 
example), this process is known as linear regression.  Where relationships are non-linear, the 
task is called non-linear regression.  Examples of both are shown in Figure 2.1.  The graph on 
the left is a linear model fitted to Galton’s original data.  The graph on the right is a non-linear 
model showing counts per minute (CPM) versus hormone concentration in a medical domain.   
This model also shows how regression models are used to make predictions: given a sample 
with CPM=1200, the model predicts a hormone concentration of 0.236 micromolar. 
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Figure 2.1:   Examples of linear and non-linear regression models 
(linear model from [Bland and Altman 1994]; non-linear model  
from [Motulsky1999]) 

Many different approaches to the regression task have been used over the years (see [Uysal 
and Güvenir 1999] for an overview).  The earliest (beginning with Galton) involved fitting data 
to a simple linear model; this will henceforth be referred to as linear regression.  Other 
approaches include the possibility of modelling non-linear as well as linear relationships.  
These include non-linear regression [Seber and Wild 1989], locally weighted linear regression, 
k-NN, neural networks [Lippmann 1987], radial basis function networks [Orr 1996], regression 
trees [Breiman et al. 1984], and model trees.  Those that have direct relevance for this research 
are linear regression, k-NN, and locally weighted linear regression. 

2.1   Linear Regression 
Linear regression estimates the expected value of one numeric variable given the values of one 
or more others [Draper and Smith 1998].  Many different terms are used for these variables; we 
will refer to them as the solution and problem attributes respectively.  Linear regression is 
‘linear’ in that solution y is assumed to be a linear combination of problem attributes  
a1, a2, …, an: 

  naaay ...21    
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where   is the intercept and   is a random error*.  Given problem attribute values  
(v1, v2, …, vn) for a new problem, a linear model can be used to predict its target value ŷ : 

nvvvy   ...ˆ 21  (2.1) 
The values of parameters  ...,,,,  are estimated by the method of least squares [Harter 

1983].  Given a set of cases in the form (a1, a2, …, an, y), this method finds parameters that 
minimize the total squared difference between actual and predicted solutions.  This can be 
expressed as an error function E: 

2)ˆ( cc
CBc

yyE     

One way to minimize the value of E would be to use an iterative gradient descent algorithm.  
Numerical optimization methods are not needed for linear regression, however—analytical 
techniques are available that estimate the parameters of a linear model much more efficiently 
(e.g., QR decomposition [Gentle 1998]).  Even for databases of several thousand cases, each 
with dozens of problem attributes, a linear regression model can be constructed in a fraction of 
a second.  (For non-linear regression models, on the other hand, error functions cannot 
generally be minimized using algebra and brute force optimization algorithms must be applied.) 

Linear regression models are the most widely used of all regression models, and for good 
reason: they are simple to construct, easy to use, and easy to understand.  The theory behind 
them is well understood, and a range of statistics known as ‘regression diagnostics’ have been 
developed to provide the user with information about a regression model.  Linear models also 
perform well with small datasets.  As a means of modelling data, they are to be preferred over 
alternative methods when the relationship between problem attributes and the solution is 
roughly linear. 

On the downside, linear regression models are often sensitive to outliers in the data.  More 
importantly, they assume that the target domain can be accurately represented by a linear 
model.  (That is, they assume that the unknown target function that maps problem attributes to 
solutions is a linear function.)  This assumption holds in a surprisingly high proportion of real-
world domains, but where it does not, alternative regression techniques must be used. 

Linear regression is an example of an eager learning algorithm: it accepts a set of historical 
cases stored as vectors of numerical values, and uses them to construct a global (linear) model 
that is used to predict solutions for new cases.  The two regression algorithms examined below, 
k-NN and LWLR, are both lazy, instance-based approaches.  Old cases are not used to 
construct a global model, but instead are simply stored together in a case base (CB).  When a 

                                                      
* Throughout this thesis, scalars are represented in italics (x, y, z) and vectors in bold (x, y, z). 
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new query case is received, a local approximation to the global target function is constructed in 
the area of domain space surrounding the query.  This is then used to predict the target value.   

Eager approaches perform most processing during an initial training phase during which a 
global model is constructed.  Predictions based on this global model can then be made very 
quickly.  Lazy approaches, on the other hand, are computationally expensive each time a query 
is received (this is becoming less of a problem as the cost of computation declines).  They have 
two compensating advantages, however: first, learning is extremely straightforward in that it 
simply involves storing new cases, and second, the query itself can be taken into consideration 
when the target function is being approximated.  This allows the problem solving process to be 
tailored to the precise needs of each individual query. 

2.2   k-Nearest-Neighbour (k-NN) 
The k-nearest-neighbour (k-NN) algorithm is the simplest instance-based approach to 
regression (for an introduction to k-NN, see [Aha at al. 1991]).  It is also one of the oldest and 
best understood algorithms in machine learning, dating back at least to the mid-1950s (early 
results are presented in [Duda and Hart 1973]).  In common with linear regression, it assumes 
that all cases are represented as a set of numeric problem attributes A and a single numeric 
solution y.  If all cases are plotted as points in multi-dimensional domain space ℜn, the 
Euclidean distance between any two cases τ and ρ can be calculated as 

 
Aa

aad 2)(),( ρτ  (2.2) 

When presented with a new query case, the k-NN algorithm predicts its target value as follows: 
1. The k nearest neighbours to the query are retrieved, where nearest neighbours are those 

cases whose Euclidean distance to the query is shortest; 
2. The predicted target value for the query, ŷ , is calculated as the mean of the solutions 

among neighbouring cases: 

k
y

y NNsc
cˆ  

(2.3) 

where NNs is the set of k nearest neighbours to the query. 
Different metrics have been used to calculate the distance between cases.  The Manhattan 
distance is a popular alternative to the Euclidean distance: 

 
Aa

aaabsd )(),( ρτ   
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The choice of distance function usually makes little difference, and the Euclidean distance is 
used in experiments involving k-NN in Chapter 7. 

Obviously, the accuracy of predictions depends critically on the value assigned to k.  Typical 
values used in practice are 1, 3 and 5.  1-NN is a very simple algorithm in which a query is 
assigned the solution of its nearest neighbour.  It serves as a useful baseline when comparing 
the performance of different regression algorithms.  Performance usually improves with higher 
values of k, reaching a peak at a particular value before declining again [Duda and Hart 1973].  
Using values greater than 1 adds diversity to the problem solving process and helps to smooth 
the impact of noisy cases.  In the experiments in Chapter 7, a suitable value of k for each 
dataset is found using cross-validation. 

As presented above, the algorithm assigns equal importance to the contribution from each of 
the query’s neighbours.  Results are often improved, however, if the contribution from each 
case is weighted by its distance from the query so that cases closest to the query have greatest 
influence.  This is achieved by assigning a weight to each neighbouring case using a weighting 
function (also called a kernel function).  Many different weighting functions have been used—a 
number of them are shown graphically in [Atkeson et al. 1996].  The following are among the 
most common: 

),(
1

ρτdw   Inverse distance weighting  

2),(
1
ρτdw   Inverse squared-distance weighting  

2),( ρτdew   Gaussian weighting   
The optimal weighting function can be found for a particular problem domain using cross-
validation [Howe and Cardie 1997].  (See [Wettschereck et al. 1997] for a survey of different 
attribute weighting methods.)  Gaussian weighting generally performs well in all domains, 
particularly in the presence of noisy data; for this reason, it is used in all experiments involving 
k-NN in Chapter 7. 

Equation 2.3 can be modified to take the weights of neighbouring cases into account when 
predicting the target value for a query: 






NNsc

c
NNsc

cc

w
yw

ŷ  
(2.4) 

Note that the k-NN algorithm relies on the assumption that cases whose problem attributes 
are similar are likely to have similar solutions.  This is known as the similarity assumption (also 
referred to as the similarity hypothesis in [Rendell 1986]), and is shared by case-based 
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reasoning.  In domain space ℜn, the assumption holds if the target function is continuous and if 
domain space is reasonably smooth in the area surrounding any particular case.  Assumptions 
such as these are referred to as inductive bias—they allow machine learning algorithms to 
generalize beyond the specific training examples they are given [Mitchell 1997, Section 2.7].  
Linear regression, for example, has as its inductive bias the assumption that the target domain 
can be accurately represented as a linear model.  Locally weighted linear regression (described 
below) has a similar inductive bias to k-NN—it assumes a continuous target function that is 
reasonably smooth in local areas of domain space.  

Note also that the accuracy of a prediction depends on the retrieval of stored cases that are 
most similar to the query case.  Similarity is calculated using the distance formula in Equation 
2.2, which simply adds together the differences between pairs of problem attribute values.  If 
each case contains problem attributes that are not correlated with the target attribute in some 
way, the distance function will be misled and will retrieve cases that are not very predictive.  
We might re-define ‘nearest neighbours’ to mean those cases most similar in the attributes that 
are most useful for predicting target values.  One solution to the problem of irrelevant attributes 
is to remove them using an attribute selection algorithm [Kohavi and John 1997a].  An 
alternative solution is to weight each attribute by its predictive ability, so that less predictive 
attributes receive lower weights.   The set of weights can be optimized for any particular 
dataset using, for example, a genetic algorithm.  This approach can be problematic because it 
tends to overfit the training data.  Choosing each attribute’s weight from a reduced set of 
discrete values (e.g., {0, 0.5, 1}) may yield better performance on unseen data than allowing 
weights to take any real value [Kohavi et al. 1997b].  See [Aha 1992] for further discussion on 
the topic of dealing with problematic attributes. 

A simple example of k-NN in action is shown in Figure 2.2.  Here, solution y is a function of 
a single problem attribute a.  Parameter k is set to 3, and a Gaussian weighting function is being 
used.  When presented with query Q, the algorithm first retrieves its 3 nearest neighbours (i.e., 
those 3 cases whose values for a are closest to that of Q).  It then predicts a solution for Q using 
Equation 2.4. 
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3 nearest neighboursx
prediction

Solution y

Problem Attribute  a

Gaussian weighting function

 
Figure 2.2:   Predicting a numeric value using k-NN 

As a prediction algorithm, k-NN has several advantages.  Chief among them is that fact that 
it makes no assumptions about the form of the underlying target function, and so is suitable for 
use in domains where the target function is complex; linear regression and k-NN complement 
one another in this respect.  (Algorithms utilizing models that make no assumptions about the 
statistical distribution underlying a dataset are referred to as nonparametric [Noether 1984].)   
k-NN is also simple to use and understand.  Its main disadvantage is that it assumes that cases 
quite similar to the query can always be retrieved—this will not apply if data is sparse.  Other 
potential disadvantages have already been discussed: it can be computationally expensive to 
solve each query, and the algorithm is sensitive to irrelevant problem attributes.  Sufficient 
processing capacity and appropriate attribute selection may alleviate these, however. 

2.3   Locally Weighted Linear Regression (LWLR) 
Locally weighted linear regression (LWLR) offers an alternative instance-based approach to 
regression [Atkeson at al. 1996; Fan and Gijbels 1996].  LWLR can be seen as a combination 
of linear regression and k-NN.  It is based on the idea that even highly non-linear target 
functions can be approximated locally by linear models, in the same way that any curve can be 
approximated by a series of short line segments joined together.  Fitting polynomial functions 
to local subsets of a dataset dates back to the beginning of the 20th Century [Cleveland and 
Loader 1995].  More recently, the technique has been implemented in the LOESS (or 
LOWESS) algorithm [Cleveland 1979; Cleveland and Devlin 1988], which allows the user to 
specify the degree of polynomial to fit to a set of data.  Here, we are only concerned with 
polynomials of degree one (i.e., linear models)—these are most widely used in practice. 
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When presented with a query case, LWLR predicts its target value as follows: 
1. A set of nearest neighbours to the query is retrieved; 
2. A local linear model is constructed from these cases, where the contribution from each 

neighbour is weighted by its distance from the query. 
3. The linear model is used to predict a target value for the query. 

The number of neighbours (k) to retrieve and the behaviour of the distance weighting 
function are closely related to one another, since there is no need to retrieve cases beyond a 
distance where they cease to have a significant influence on the linear model produced.  The 
weighting function often incorporates a smoothing parameter (λ) that determines how rapidly a 
case’s weight declines with distance from the query.  This parameter is particularly important 
for weighting functions that reduce weights to zero (or close to zero) after a short distance, 
since incorrect values may yield too few (or even no) cases with which to construct an accurate 
local linear model.  For example, the triangular kernel assigns zero weight to all cases whose 
distance from the query is greater than or equal to 1: 

otherwise
difdw 1

0
1 

   Triangular weighting  

A smoothing parameter can be introduced to change the distance at which weights reach zero: 
 otherwise

difdw  

  0  

Parameter λ may be assigned any value that improves predictive performance.  One approach is 
to set λ equal to the distance to the kth nearest neighbour—this is called nearest neighbour 
bandwidth, and has the advantage that the radius of the weighting function decreases 
automatically as the number of cases in the CB increases.  A simpler approach is to assign a 
fixed value to λ—this is referred to as a fixed bandwidth [Fan and Marron 1993].  When using 
triangular weighting, for example, λ may be set to the maximum theoretical distance between 
cases, so that weights decline linearly with distance from the query but never reach zero (this is 
called similarity weighting in the Weka machine learning program [Witten and Frank 2000]). 

Several other factors also influence the choice of k.  In more highly non-linear domains, a 
lower value may help avoid excessive smoothing and give better results.  Noisy datasets, on the 
other hand, may benefit from greater smoothing and a higher value for k.  The number of 
problem attributes is also relevant.  For a dataset with 10 problem attributes, for example, each 
linear model will have 11 parameters and at least this many neighbours will be required to 
assign a unique value to each.  In the experiments involving LWLR in Chapter 7, the value of k 
is set by cross-validation for each dataset, and the Gaussian weighting function (described in 
Section 2.2) is used with a fixed bandwidth.  



 

15 

Constructing a linear model involves finding parameters for the model given in Equation 2.1.  
The method of weighted least squares is used for this purpose [Carroll and Rupport 1988].  
This is an analytical method that operates very efficiently; its goal is to minimize the total 
squared difference between actual and predicted solutions, where each case is weighted by 
distance so that the best fit is provided for cases closest to the query.  As with linear regression, 
this amounts to minimizing the value of an error function E: 

ccc
NNsc

wyyE 2)ˆ(     

Once the parameters for a local linear model have been estimated, the query’s target value is 
predicted using Equation 2.1.  The linear model is specific to the query in question, and so is 
discarded once it has yielded a prediction.  A new model is built for each new query that is 
received. 

The operation of LWLR is shown in Figure 2.3.  As before, solution y is a function of a 
single problem attribute a.  The number of nearest neighbours to retrieve (k) is set to 5, and a 
Gaussian distance weighting function is being used.  Upon receiving query Q, the algorithm 
begins by retrieving its 5 nearest neighbours.  It uses the method of weighted least squares to 
construct a local linear model, and uses this model to predict a solution for Q. 

nearest neighbours

Problem Attribute  a

Gaussian weighting function linear model

prediction

x

Target Value ySolution y

 
Figure 2.3:   Predicting a numeric value using LWLR 

LWLR shares the advantages of k-NN as a regression technique.  It is suitable for use in 
domains where the target function is too complex to be represented by a simple model (e.g., a 
global linear regression model).  It is also straightforward to use and understand, and excellent 
implementations such as LOCFIT [Loader 1999] are publicly available on the Internet.  LWLR 
also shares some of k-NN’s disadvantages: it is even more computationally expensive, and 
doesn’t work well with sparse datasets. 
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2.4   Which Regression Algorithm to Use? 
All three algorithms described above—linear regression, k-NN, and LWLR—are state-of-the-
art regression algorithms that are widely used for data mining.  The optimal choice for any 
domain will depend on a number of factors; the following are among the most important: 

 Can the target function be modelled by a simple linear model?  If so, linear regression 
is the preferred choice; otherwise, k-NN or LWLR may perform better. 

 Are there plenty of historical cases to reason from?  If not, linear regression is again the 
preferred choice, since it works well with limited data. 

 What computational resources are available for each prediction?  With linear 
regression, predictions can be made by hand once the model parameters have been 
estimated.  LWLR and k-NN have become more popular in recent years as the 
considerable processing capability required for each prediction has become more 
widely available. 

Each learning algorithm has its own bias, and will perform well in domains that conform to 
that bias.  This is expressed in the ‘no free lunch’ theorem [Wolpert and Macready 1997], 
which states that for any algorithm, an elevated performance over one class of problems is 
offset by reduced performance over another class.  In other words, no single algorithm will 
perform best in all problem domains.  When testing regression techniques in Chapter 7, 
therefore, a number of datasets with different characteristics are used to give a balanced view of 
each algorithm’s performance in different conditions. 

2.5   Use of Regression Algorithms in this Thesis 
The algorithms described above re-appear in the following contexts in this thesis: 

 k-NN provides the basis for case-based reasoning (CBR), which is described in 
Chapter 3.  CBR systems traditionally perform regression on the same basis as k-NN, 
that is, by taking the (weighted) mean of solutions from the query’s nearest neighbours.  
This approach will be referred to as CBR-Basic (abbreviated to CBR-B), and is 
described in Chapter 4 together with two alternative ways to use CBR for regression.  
The first of these is a new approach that aims to maximize diversity when choosing a 
set of nearest neighbours; this is referred to as CBR-Diverse (CBR-D).  The second 
takes a multi-strategy approach by combining k-NN with a rule induction algorithm 
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[Hanney and Keane 1996, 1997].  This will be referred to as CBR-AdaptationRules 
(CBR-AR). 

 LWLR lies at the heart of the new regression algorithm (described in Chapter 5) that is 
the primary contribution of this thesis.  This algorithm is based on CBR and is referred 
to as CBR-CaseDifferences (CBR-CD).  In addition, LWLR is one of a number of 
algorithms that are experimentally compared in Chapter 7. 

 Linear regression provides the theoretical basis for LWLR, and also appears in 
experiments in Chapter 7. 

One further regression algorithm appears in the experimental evaluation: model trees [Wang 
and Witten 1997; Quinlan 1992] extend decision trees so that they apply to regression tasks and 
are described below. 

Figure 2.4 shows the regression algorithms listed above and the relationships between them.  
Those with a shaded background are relevant to this thesis, while those with a textured 
background (i.e., CBR-D and CBR-CD) are new. 

k-NN linear regression decision tree

CBR-B model treeLWLR

CBR-CDCBR-D

rule induction

CBR-AR

k-NN linear regression decision tree

CBR-B model treeLWLR

CBR-CDCBR-D

rule induction

CBR-AR  
Figure 2.4:   Regression algorithms used in this thesis 

2.5.1   Model trees 
Decision trees have been used for classification for many years [Breiman et al. 1984; Quinlan 
1993].  Despite the sophistication of the mechanisms employed during decision tree 
construction for branching, pruning, etc., completed decision trees are extremely easy to use 
and understand.  They also provide a useful insight into the global structure of a problem 
domain by decomposing it in a top-down manner.  Decision trees cannot be used directly for 
regression tasks, however—with a real-valued solution attribute, each historical case will likely 
have a unique solution.  Straightforward application of the decision tree algorithm therefore 
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produces a tree with a leaf node for each case, resulting in an overlarge tree with no inductive 
bias.  

Regression trees and model trees take a common approach to addressing this problem.  Their 
basic tree construction algorithm is as follows: branch on problem attributes in the upper part of 
the tree, and end with a constant or linear regression formula at the leaves.  Branching points in 
the upper tree are chosen to maximize the reduction in standard deviation among solutions on 
the two sides of the split.  In other words, cases with similar solutions end up on the same 
branch.  After a certain number of branching points have been created, the remaining cases’ 
solutions on any branch will all be quite similar.  This is the stage at which regression trees and 
model trees differ.  Regression trees end with a leaf node that contains the mean solution for the 
remaining cases.  Model trees end with a leaf node containing a linear model in the remaining 
attributes for the remaining cases’ solutions.    Figure 2.5 shows an example of a model tree for 
the Servo dataset, one of those used in experiments in Chapter 7. 

 
Figure 2.5:   Model tree and linear models for the Servo dataset 
(from [Wang and Witten 1997]) 

Model trees share many of the benefits of decision trees.  A model tree represents a global 
model of the target domain that is simple enough to be applied by hand if necessary.  The target 
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domain is partitioned into different regions, each represented by a linear model—this allows the 
technique to be used in domains that are not globally linear.  Model trees can be thought of as 
an eager version of LWLR, where linear models are created based on the characteristics of the 
training data rather than those of the query.  Chapter 7 uses the M5′ implementation of model 
trees [Witten and Frank 2000, pp. 201–208]. 

2.6   Summary 
This chapter looked at some standard approaches to predicting the value of a numeric variable 
(i.e., regression): 
Linear Regression:  A single linear model is fitted to a set of numeric data points and used to 

predict solutions for new instances. 
k-NN:  For each new data instance, a number of similar stored instances are retrieved and their 

solutions averaged to make a prediction. 
LWLR:  A combination of linear regression and k-NN.  For each new data instance, a local 

linear model is constructed from a set of similar instances and used to make a 
prediction. 

Model Trees:  A combination of decision trees and linear regression.  A tree is produced for 
each dataset with local linear models at its leaves instead of classification labels. 

Linear regression and model trees are eager approaches in that domain models are 
constructed during an initial training phase.  The other two are described as lazy because they 
defer problem solving until a new problem is received.  Each algorithm has its advantages and 
disadvantages and none is best in all circumstances; the optimal approach will depend on the 
characteristics of the domain and the dataset, as well as other requirements such as usability 
and efficiency.  Of the algorithms examined, k-NN and LWLR are most relevant to this 
research as they provide the basis for the CBR-based regression algorithms described in 
Chapters 4 and 5. 
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Chapter 3 
  

Case-Based Reasoning 
The goal of this research is to construct an effective regression system using case-based 
reasoning (CBR).  As a technology, CBR is a relatively recent invention.  As a means of 
solving problems, however, it is among the oldest and most intuitive types of reasoning.  The 
basic underlying idea is simple: given a new problem to solve, find a similar problem that was 
solved in the past and reuse its solution.  Many researchers have explored this from a cognitive 
science perspective, and have argued that it constitutes a plausible model of the human 
reasoning process [Schank 1982; Kolodner 1993].  Most people solve new problems by 
remembering similar problems from the past and then re-applying an old solution that meets 
current needs (perhaps with some alteration).  The importance of prior examples has been 
demonstrated in all domains of human reasoning from the simplest to the most sophisticated, 
including mathematics [Faries and Schlossberg 1994] and medicine [Schmidt et al. 1990]. 

Early research into CBR arose out of a desire to represent this reasoning process in a 
computer model.  The cognitive roots of CBR were explored at Yale University by Roger 
Schank and his colleagues [Schank and Abelson 1977; Riesbeck and Schank 1989].  
Researchers in the AI community built on this research to develop CBR as a practical problem 
solving methodology (e.g., [Aamodt and Plaza 1994]).  CBR has been implemented in a 
multitude of different systems with an enormous variety of system tasks and technologies.  
Underlying all of them is the simple idea of directly reusing past experiences to solve new 
problems.  The effectiveness of this approach is based on the idea that ‘similar problems have 
similar solutions’ [Leake 1996].  As discussed in Section 2.2, this has been called the similarity 
assumption and is equivalent to saying that the world is regular.  In the context of numerical 
regression domains that are the target of this research, it means that domains are assumed to be 
continuous and not overly non-linear in local regions.  This assumption constitutes the 
inductive bias of CBR: when solving a new problem, the solutions from similar past problems 
should provide a useful starting point. 
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Simplicity is only one of several advantages that have contributed to CBR’s popularity over 
the past twenty-five years, and a number of others are presented in the following section.  The 
new regression algorithms presented in Chapters 4 and 5 benefit from these advantages and are 
implemented as pure CBR systems. 

3.1   Advantages of CBR 
CBR’s advantages over alternative AI problem solving techniques can be summed up as 
follows: 

CBR systems are easier to construct and maintain, and offer improved performance 
during operation. 

These two aspects of CBR systems are discussed below. 

3.1.1   Simpler system construction and maintenance 
Traditional problem solving systems in AI have relied on the presence of explicit, domain 
dependent knowledge that is acted upon by a separate reasoning element.  This broad 
architecture for intelligent systems is among those proposed in [Turing 1950], and systems built 
along these lines are known as knowledge-based systems [Aamodt 1993].  The importance of 
specific domain knowledge, often explicitly represented in symbolic form, is encapsulated in 
the ‘Knowledge Principle’: 

A system exhibits intelligent understanding and action at a high level of competence 
primarily because of the specific knowledge that it can bring to bear: the concepts, 
facts, representations, methods, models, metaphors, and heuristics about its domain of 
endeavour.  [Lenat and Feigenbaum 1991] 

This principle is in tune with one’s intuition that in order to speak sensibly on a given topic, 
some knowledge of the topic is highly desirable.  Acquiring knowledge is a difficult and time-
consuming process for humans.  Some computer systems operate in environments where 
knowledge may be easier to come by; a system controlling a physical process such as a 
production line, for example, can continuously monitor its status through sensors.  However, 
most AI systems operate in domains that require an expert level of human-like knowledge; 
examples include decision support systems in the high-tech or medical domains.  The explicit 
domain knowledge required by these systems has traditionally been acquired in two stages: 
first, knowledge engineers obtain it from domain experts; second, it is converted into a 
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machine-readable format (e.g., a PROLOG rule-base).  This process is fraught with difficulties, 
among them the following: 

 Is the system’s level of knowledge adequate to allow it to perform its task to the 
standard required?  And how can this question be answered satisfactorily? 

 Is the knowledge accurate and consistent?  Domain experts may make erroneous and 
contradictory statements, and mistakes can occur during both stages of the knowledge 
transformation process.  Again, ascertaining the answer to this question is problematic 
because domain experts are often not qualified to inspect or edit the knowledge in its 
machine-readable form. 

 Can an expert’s experiences be conveniently represented in an explicit form such as a 
set of rules?  Doctors, for example, rely on their many years’ experience when making 
decisions and often cannot list all the factors involved or the precise reasoning process 
followed.  ‘Instinct’, ‘intuition’, ‘gut feeling’—these may play a crucial part in 
distinguishing expert from non-expert levels of decision making, yet representing them 
explicitly may be difficult or impossible. 

 Once knowledge has been acquired and the system constructed, how easy is it to 
maintain?  All real-world computer systems must be continuously updated or become 
obsolete [Lehman 1985].  In a knowledge-based system, faulty or out-of-date 
knowledge must be removed and new knowledge added on an ongoing basis.  Does 
this require regular iterations of the knowledge acquisition process, with knowledge 
engineers and domain experts performing a full audit of the system’s knowledge store?  
Such an onerous maintenance process would not be viable for most decision-support 
systems. 

Summing up, then, knowledge elicitation is a difficult and uncertain process for knowledge-
based systems (see [Forsythe and Buchanan 1989] for further discussion on this topic).  
Perhaps the chief advantage of CBR is that it can ease both the acquisition and maintenance of 
domain knowledge. 
Knowledge acquisition during system construction:  CBR systems reason from complete 

cases, where each case encapsulates a single problem solving experience.  In many 
domains, knowledge is already stored as a set of prior examples (i.e., cases) or can 
readily be converted to this format through a process of case engineering.  In the 
medical domain, for example, prior cases may already be available as patient records.  
Instead of asking doctors exactly how they reach their decisions, it may be easier 
simply to work from a set of cases where correct decisions were made.  Two caveats 
apply here: first, a case format may not be suitable for some domains (e.g., where 
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knowledge is available only in natural language); second, CBR systems need additional 
retrieval and adaptation knowledge to operate successfully (see Section 3.3).  Even 
taking these into account, however, CBR’s approach to storing knowledge in cases 
often simplifies knowledge acquisition considerably.  

Knowledge maintenance during system operation:  Most knowledge in a CBR system is 
contained in the set of prior cases stored together in a case base (CB), where each case 
contains details of a single past problem and its solution.  It is a straightforward matter 
for a domain expert to examine such a case and determine whether the problem 
description is inconsistent or the solution inappropriate.  This accessibility allows users 
of a CBR system to remove faulty cases and add new ones without the aid of a 
knowledge engineer.  This not only makes routine maintenance much easier, but also 
allows systems to be deployed with a minimal set of initial seed cases; additional cases 
can then be added by users as they become available.  Note that routine removal of 
obsolete cases and addition of new ones allow CBR systems to adapt naturally in the 
presence of concept drift, a characteristic of some domains whereby the types of cases 
encountered changes over time [Widmer and Kubat 1996].  One domain subject to 
concept drift for which CBR is a natural fit is the filtering of spam email [Cunningham 
et al. 2003a]. 

3.1.2   Improved performance during operation 
Ease of construction and maintenance are excellent characteristics for any AI system, but 
problem solving abilities are at least as important.  After all, the simplest system to deploy and 
maintain will be useless if it offers poor performance in operation.  Three criteria can be used to 
judge the quality of the solution offered by an AI system in response to a problem: 

1. How close is the solution to the optimal solution that would be found by a committee 
of domain experts, or by a computer system that performed an exhaustive search? 

2. How efficiently is the solution found?  The level of efficiency required will vary with 
the application domain.  For example, a helpdesk operator may need a response within 
a few seconds, whereas a computer chip designer may be prepared to wait overnight for 
a better response according to criterion 1. 

3. Is the solution trusted and accepted by the user?  Again, the importance of this factor 
will depend on the problem domain.  Some users may simply accept an answer from 
the system and apply it without further thought.  Such users/systems are the exception 
rather than the norm, however.  AI systems are generally deployed in a supporting role 
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to human users, and if their conclusions are not trusted, they will (not unreasonably) be 
ignored.  Trust may be established in two ways: 

 The process by which a solution is found can be laid bare to allow the user to 
verify that the reasoning process is sound; 

 Alternatively, a reasonable explanation or justification for a solution can be 
presented to the user. 

The first approach is taken by expert systems that present users with the rules used to 
solve a problem.  The chain of reasoning used is not always convincing (or even 
comprehensible) to the user, however [Moore 1994, p. 31; Barlizay et al. 1998].  The 
second approach may be taken if the problem-solver uses a reasoning process that is 
simply not accessible to humans (e.g., an artificial neural network).  Once the solution 
has been arrived at, a second process is initiated to find an explanation that convinces 
the user that it is correct.  This explanation may be presented as a set of rules, for 
example [Andrews et al. 1995]. 
 

The nature of CBR allows it to perform well according to all three of these performance 
criteria: 

 
High quality solutions:  In certain domains, reasoning from cases offers a distinct advantage 

over more abstract reasoning.  It has already been pointed out that some domains may 
be extremely difficult to model using formal knowledge representations such as rule-
sets.  Domains in which relationships between important concepts are uncertain are 
known as weak-theory domains [Porter 1989].  Uncertainty may be due to the fact that 
some parts of the domain are not observable, or because aspects of the domain change 
over time or in response to certain events.  Examples of weak-theory domains include 
medicine and law.  Where rules are inadequate to model complex and uncertain 
domains, reasoning from cases may offer better solutions than logical inference from 
generalized models [Porter et al. 1990].  Presented with a new problem, a CBR system 
will retrieve stored cases that show precisely how similar problems were solved in the 
past.  These past solutions may be presented directly to the user, or may provide the 
starting point for generating a solution that more closely fits the circumstances of the 
new problem. 

Efficient problem solving:  As discussed above, CBR systems begin problem solving by 
retrieving cases similar to the problem being tackled.  Problem solving therefore does 
not proceed from first principles, but builds on instances of successful problem solving 
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from the past.  This allows CBR to be used in complex domains where finding a 
solution from first principles may be NP-hard, for example, solving planning problems 
[Spalazzi 2001] or synthesising new drugs [Craw 2001]. 

Convincing explanations:  Any computer system not trusted by its users will almost certainly 
fail.  CBR systems have a natural advantage in instilling trust in that they can 
accompany each solution with the actual past cases used to derive it.  Users can verify 
for themselves the degree of similarity between these past cases and the current one.  If 
they are convinced that past and current problems are similar, they are likely to accept a 
solution similar to and derived from the solutions to these past cases.  If they do not 
accept that the retrieved and current problems are similar, they are free to reject the 
proposed solution or treat it with some caution.  Either way, presenting past cases to 
users gives a high degree of insight into the problem solving process and allows people 
to decide their own level of confidence in each solution [Cunningham et al. 2003b].  
This is particularly useful when the suggested solution is uncertain, perhaps because 
similar past cases contain contradictory solutions.  In this case, the user can evaluate 
the available evidence and decide what to do. 

Two additional aspects of presenting cases as explanations are interesting to note: 
 Cases may be used to provide explanations for solutions found using black-box 

systems such as neural networks or support vector machines [Nugent and 
Cunningham 2004].  CBR is then used as an explanation system rather than a 
problem-solver. 

 Cases that are most convincing to the user may not be those most similar to the 
new case.  In classification tasks, for example, cases between the new case and 
the decision surface may prove most compelling [Doyle et al. 2004]. 

3.1.3   When to use CBR 
It was mentioned in Section 2.4 that all problem-solvers have a bias that makes them more 
suitable for certain types of problems than others.  Listing the advantages of CBR serves to 
highlight the characteristics of those domains where CBR can most usefully be applied: 

 
Complex, weak-theory domains:  CBR is most suited to complex domains in which the 

relationships between concepts are uncertain.  Where a domain can be completely 
represented by a generalized model, alternative approaches may perform better. 
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Incomplete knowledge at time of construction, and ongoing learning required:  CBR 
systems can be deployed with a minimal set of cases, and can learn incrementally by 
acquiring new cases during operation.  Where a domain can be fully specified during 
construction, this advantage is nullified. 

Users’ trust in the system is important:  The ability to provide concrete examples by way of 
explanation may be CBR’s most significant advantage.  It makes CBR particularly 
well-suited to tasks that require complete transparency in the reasoning process, for 
example, decision support systems that suggest medical diagnoses based on patients’ 
symptoms [Schmidt and Gierl 2001]. 

CBR is a flexible approach that can accommodate many different problem tasks and 
domains; [Bartsch-Spörl et al. 1999] and [Aamodt and Plaza 1994] survey some of them.  One 
application that has seen extensive growth in recent years is the use of CBR in recommender 
systems on the World Wide Web [Lorenzi and Ricci 2005].  Typical system tasks include 
assisting users in their choice of books, music, flights, restaurants, etc.  Conversational 
recommender systems use user feedback to iteratively narrow down the search for a 
satisfactory product.  The problem domain (i.e., human users choosing goods and services) 
matches all of the characteristics listed above, and provides an excellent example of where 
CBR is most useful.  It is a complex, weak-theory domain in that users’ preferences cannot be 
precisely modelled, and indeed may change over time.  The case base can be initialized with a 
preliminary set of products, and updated continuously as new items are introduced and others 
become out of date.  Finally, trust is important because users will not use a recommender 
system unless they believe that its suggestions are helpful and unbiased. 

3.2   CBR Problem Solving Methodology 
CBR solves new problems by re-using solutions from similar past cases.  It takes a lazy 
approach to problem solving in that it does not generalize beyond the specific cases in the CB 
until asked to solve a new problem (this new problem is known as a query case).  In particular, 
CBR demonstrates the following behaviour that is characteristic of all lazy problem-solvers 
[Aha 1997]: 
Deferred problem solving:  CBR systems delay processing of their inputs (i.e., new and past 

cases) until a query case is received. 
Data-driven problem solving:  Query cases are solved by combining solutions from prior 

cases. 
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Temporary results are discarded:  Temporary results created while solving a query case are 
discarded—problem solving is tailored to the individual needs of each new query. 

Eager systems take an alternative approach.  They do not work directly with past examples 
to solve new problems, but instead compile these experiences into a global model during an 
initial training phase.  Examples of eager problem-solvers include neural networks, decision 
trees, rule-sets, and linear regression models.  Lazy and eager systems have complementary 
advantages and disadvantages, and many of the advantages of CBR presented in Section 3.1.2 
are due to its lazy nature. 

Having looked at the high-level motivations behind CBR, its advantages and appropriateness 
for different domains, we turn now to the mechanics of actually constructing and using a CBR 
system.  This is fundamentally an engineering problem that can be tackled in many different 
ways.  Based on researchers’ experience of CBR over the years, however, the process has been 
distilled into a series of logical steps (see Figure 3.1).  These can usefully be divided into two 
broad phases: 
Construction phase:  Comprises all of the actions needed to bring a CBR system into service. 
Operation phase:  The process that is followed to solve each new problem (this is referred to 

as the ‘problem solving cycle’ in [Aamodt and Plaza 1994]). 
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Figure 3.1:   Construction and operation of a CBR system 
(problem solving cycle from [Aamodt and Plaza 1994]) 

3.2.1   Construction phase 
CBR’s problem solving process was summarized above as follows: “CBR solves new problems 
by re-using solutions from similar past cases”.  This sentence immediately suggests a number 
of mechanisms that must be in place before a CBR system enters operation: 

 Case representation 
 Initial set of cases 
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 Similarity metric and retrieval strategy 
 Adaptation process 

These aspects of CBR system construction are examined in the following sub-sections. 

3.2.1.1   Acquisition of domain knowledge 
Design of a CBR system begins with a detailed examination of the problem domain.  The 
system task must be clearly specified and CBR’s suitability for achieving it confirmed.  
Domain experts may be interviewed to ascertain how problem solving was carried out in the 
past.  Historical data based on existing, perhaps manual, systems must be collected and 
analysed. 

We will not examine this aspect of system construction in detail, since it is common to all 
knowledge-based systems.  The output of this phase is a clear idea of the system’s task and a 
rough idea of the knowledge that will be required to support it.  Sufficient historical data should 
also have been collected to enable the assembly of an initial set of cases. 

3.2.1.2   Case representation 
Deciding exactly what to store in each case may involve considerable case engineering effort.  
Each case generally comprises two parts: a problem part containing a description of a single 
past problem, and a solution part containing the solution that was eventually applied.  The 
problem part should contain all relevant information about the past situation.  It should be 
sufficient to enable the solution to be arrived at by a process of reasoning, so that a human 
expert would arrive at the same or a very similar solution.  Both problem and solution parts are 
often represented as a set of case features or attributes, where each attribute has a particular 
type (e.g., numeric, string, Boolean, nominal).  More complex attribute types are also possible; 
a quadratic-equation attribute might be represented as a set of three parameters, for example, or 
a graph attribute as a set of nodes and edges.  ([Aha and Wettschereck 1997] describes a 
number of different case representation approaches.)  Problem and solution attributes together 
constitute a case structure that is represented in software as a data structure or data type.  Each 
case is then stored as an instance of this type. 

Potential attributes are often evaluated by a process of attribute (or feature) selection [John 
et al. 1994] to determine which are most useful in reasoning towards the solution.  Eliminating 
irrelevant attributes serves the dual purpose of minimizing case size and maximizing the 
applicability of stored cases to new problems.  Note that the optimal set of attributes must be 
sufficient but not necessary for a solution to be found.  It should have minimal size while also 
containing attributes that make sense to users (in order to maximize confidence in the system’s 
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operation).  The relationship between problem attributes and the solution is one of correlation 
rather than causation—changes in problem attributes should correspond to changes in the 
solution without necessarily causing them.  The hypothetical target function f that maps 
problem attributes ai to a solution y (i.e., )...,,,( 21 naaafy   ) is surjective because each valid 
set of problem attribute values maps to a single solution and different sets of attribute values 
can share the same solution. 

Once a suitable case representation has been arrived at, the case base can be populated with 
an initial set of cases.  These can be used as a test-set to help tune the retrieval and adaptation 
strategies and to confirm that they meet their performance requirements. 

3.2.1.3   Similarity metric and retrieval strategy 
Solving a new query begins with the retrieval of similar past cases.  The retrieval process has 
two components: first, past cases must be assessed to determine their similarity to the query; 
second, similar cases must be located in a timely and efficient manner.  The first component 
involves defining a similarity metric, that is, a function that determines the distance between 
any two cases.  Armed with a suitable metric, a CBR system can retrieve past cases most 
similar to a query—these are referred to as the query’s nearest neighbours.  The second 
component entails deciding on a suitable storage structure for the CB, and a suitable search 
strategy for locating cases similar to the query. 

Designing a good similarity metric involves answering the following question: What does it 
mean to say that two cases are similar?  For our purposes, the answer is that a stored case is 
similar to the query if its solution can easily be adapted to solve the query [Leake 1995; 
Bergmann et al. 2001].  Retrieving past cases based on their adaptability has been called 
‘adaptation-guided retrieval’ [Smyth and Keane 1998].  The difficulty with this approach is that 
since the query’s solution is unknown, how can a case’s adaptability be determined without 
actually trying to adapt its solution and seeing how much effort is required to fit it to the query?  
This problem is generally resolved by recourse to the similarity assumption: similar problems 
are assumed to have similar solutions, and similar solutions are assumed to be easily adaptable 
from one to another.  So cases most similar to the query are taken to be those with problem 
parts most similar to the query.  Determining the similarity between two cases’ problem parts 
can be accomplished using a similarity function [Althoff and Richter 2001].  One common 
approach is to take the global similarity between two cases τ  and ρ  as the sum of the local 
similarities between each pair of problem attribute values: 


Aa

aaa simwSim ),(),( ρτ  (3.1) 

where A is the set of all problem attributes and wa is the weight of attribute a. 
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The local similarity function ),( aasim   (also known as a comparator) can be tailored to 
the requirements of each individual attribute.  For commonly occurring nominal and numeric 
attributes, the following function is often used: 
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(3.2) 

The first part of this similarity function is used for nominal attributes in the experimental 
evaluation in Chapter 7.  For continuous (numeric) attributes, an alternative local similarity 
measure is used in which Gaussian distance weighting is applied.  To calculate the similarity 
between two attribute values, the distance between them is first normalized by converting it to a 
z-score (i.e., a multiple of the attribute’s standard deviation sa [Runyon and Haber 1991, p. 
167]).  The similarity score is then the (two-tailed) proportion of the standard normal 
distribution beyond this z-score: 

),( aasim  proportion of standard normal distribution beyond 
a

aa
s
  ,  

a continuous. 

(3.3) 

This value is most conveniently read from a lookup table rather than computed from scratch for 
each similarity calculation. 

Note that Equation 3.1 also includes a weight wa for each problem attribute.  An attribute’s 
weight can be set to reflect its relevance; those attributes most useful/least useful in arriving at 
a solution can be assigned the highest and lowest weights respectively (weight values typically 
lie in the range 0–1).  Weights may be set by a human expert with knowledge of the domain, or 
may be set automatically using an optimization algorithm that minimizes the mean solution 
error [Wettschereck et al. 1997; Gabel and Stahl 2004].  The setting of global attribute weights 
is a difficult problem because in complex domains, the relevance of attributes often varies 
throughout domain space.  Optimization algorithms also run the risk of overfitting weight 
values for each particular dataset, thereby increasing the system’s bias and reducing its 
applicability to new problems [Loughrey and Cunningham 2005].  For this reason, attribute 
selection is often used instead of attribute weighting to eliminate irrelevant attributes.  Indeed, 
attribute selection can be thought of as a weighting process in which only weight values 0 and 1 
are considered.  Practical approaches to attribute selection and weighting include filter methods 
that only consider the statistical characteristics of each dataset (e.g., RELIEF [Kira and Rendell 
1992]), and wrapper methods that also take the bias of the problem-solver into account when 
choosing attributes/weights [Kohavi et al. 1997a]. 
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The second component of successful case retrieval involves designing the system in such a 
way that the most useful cases can be found in a timely manner.  Cases may be organized with 
some indexing structure that enables rapid retrieval; early systems such as CYRUS [Kolodner 
1983] used a structure based on Schank’s cognitively inspired dynamic memory model [Schank 
1982].  More recent analysis has identified three conditions that should be met by a case 
retrieval mechanism [Lenz and Burkhard 1996]: 
Efficiency:  cases should be retrieved in a timely manner, ideally without examining every case 

in the CB; 
Completeness:  the same cases should be retrieved as would be found using an exhaustive 

search; 
Flexibility:  retrieval should be possible even when the query case is incomplete. 
The case retrieval net indexing strategy was designed to meet these criteria [Lenz 1999].  It is a 
highly efficient search algorithm for large CBs, but for smaller CBs, a simple sequential search 
is often sufficient. 

3.2.1.4   Adaptation strategy 
Having decided on a suitable case representation and a retrieval strategy, the next step is to 
decide how retrieved cases should be used to solve new query cases.  The process of reusing 
old cases to solve new problems is called adaptation.  On the surface, it might appear a minor 
matter to make small modifications to a retrieved solution to match it to a query.  In practice, 
the adaptation process is often the most difficult part of a CBR system to design, and its 
complexity generally increases with that of the system’s problem solving task.  The adaptation 
process can be viewed as a separate problem-solver embedded within the overall CBR system.  
As such, it processes a set of inputs (query and retrieved cases) to produce an output (proposed 
solution for a query). 
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Figure 3.2:   The CBR adaptation process 
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As Figure 3.2 shows, three different approaches can be taken to the adaptation task [Wilke 
and Bergmann 1998]:  

 
Null Adaptation:  Solutions to one or more past cases are reused without modification.  This 

may be because no alterations are necessary; in a classification task, for example, the 
most commonly occurring solution among a query’s neighbours can be proposed as the 
solution.  Alternatively, null adaptation may be used because the process of modifying 
past solutions is too difficult to attempt.  In a medical diagnosis task, for example, the 
doctor may be presented with past cases and left to evaluate and modify their solutions 
manually [Schmidt and Gierl 2001].  Null adaptation is the simplest approach to 
adaptation, and is also the most common among commercial systems [Fuchs and Mille 
1999]. 
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Figure 3.3:   Null adaptation 

Transformational Adaptation:  A second approach to adaptation involves modifying the 
solution of a past case (or cases) to fit the circumstances of the query more precisely.  
This modification is normally carried out using a domain-dependent rule-based system 
[Leake et al. 1995].  The nature of the transformation applied to retrieved solutions will 
vary with the structure of the solution. In regression tasks, for example, 
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transformational adaptation simply involves altering the value of a real-valued variable.  
With structured solutions such as plans or artefact designs and configurations, 
adaptation may involve adding, deleting, or modifying aspects of the retrieved 
solutions [Smyth and Keane 1996].  The challenge when using transformational 
adaptation is to acquire the set of rules needed to alter retrieved solutions appropriately.  
As noted in Section 3.3, CBR is often used in circumstances where a strong domain 
model is not available.  Fortunately, transformational adaptation does not require a 
complete domain model since it only involves reasoning within the solution space and 
not within the entire domain space [Bergmann and Wilke 1998].  For this reason, 
transformational adaptation is generally preferred to generative adaptation (described 
below). 
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Figure 3.4:   Transformational adaptation 

Generative Adaptation:  The final approach to adaptation is very different from those 
preceding it.  Generative adaptation requires the adaptation part of a CBR system to 
incorporate a full problem-solver capable of solving queries from scratch.  Given the 
existence of such a problem-solver, one might ask why CBR is required at all.  The 
answer is that solving queries from first principles may yield poor quality solutions and 
may be computationally intractable.  A trace of the reasoning process used to solve 
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similar problems in the past can provide a skeleton on which to build a new solution.  
Differences between old and new problems will mean that certain parts of the problem 
solving process will have to be repeated.  Nevertheless, the general framework of past 
reasoning traces may be directly applicable to the query, and solutions to some specific 
sub-problems may be immediately reusable.  Because it involves applying a similar 
problem solving process to similar problems, generative adaptation has also been called 
derivational analogy [Carbonell 1983].  It is the least widely used approach to 
adaptation because from-scratch problem-solvers are most difficult to construct in those 
domains most amenable to CBR (see Section 3.3). 
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Figure 3.5:   Generative adaptation 

3.2.1.5   System evaluation 
Before a CBR system enters service, it must be evaluated to confirm that it meets its various 
requirements.  These will include ‘soft’ requirements (e.g., is it easy to use?  Is it visually 
appealing?) as well as ‘hard’ requirements (e.g., does it perform its task to the specified level of 
accuracy?  Are answers returned within a certain time?  Does it behave reasonably when 
presented with an unrealistic query, or one that it does not have sufficient knowledge to 
answer?).  Based on the outcome of this evaluation, some re-engineering of the system is 
usually necessary.  There may be an insufficient number of initial cases in the CB.  Case 
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structure may contain irrelevant attributes, may store data inefficiently, or may not contain 
enough information for effective problem solving.  The retrieval and adaptation mechanisms 
may not provide an acceptable level of efficiency or accuracy.  A return to the knowledge 
acquisition stage is generally required to gather new data and improve understanding of the 
domain and system task.  Several iterations of the system construction cycle (shown in Figure 
3.1) are typically required before a CBR system is ready for live operation. 

3.2.2   Operation phase 
By the end of the construction phase, a suitable data structure has been found to represent past 
problems and their solutions, an initial set of cases has been collected, and appropriate retrieval 
and adaptation mechanisms have been put in place.  The system now enters its operation phase 
during which new problems are received and solved.  As shown in Figure 3.1, the procedure 
followed each time a query is received has been formalized as a problem solving cycle with 
four distinct steps: 
 
Retrieve:  The case or cases most similar to the query are retrieved.  As discussed in Section 

3.2.1.3, these are cases with problem parts similar to the query. 
Reuse:  The solutions to retrieved cases are reused through a process of adaptation (see Section 

3.2.1.4).  The output from this step is a proposed solution that is presented to the user. 
Revise:  The quality of the proposed solution is assessed.  This step may be performed 

automatically or by a human user, and involves subjecting the solution to a set of 
external criteria (e.g., Does it work?  Is it aesthetically pleasing?).  The solution may be 
accepted without modification, accepted with some modifications, or rejected entirely. 

Retain:  Once a query has been solved it becomes a candidate for being added to the CB.  As 
discussed in Section 3.1.1, CBR systems learn by accumulating new cases.  The 
decision about whether to add a case to the CB hinges on whether the case is likely to 
improve the system’s problem solving ability in the future.  One approach is to add 
cases whose solutions were modified or rejected during the Revise step—this has been 
called failure-driven learning [Leake 1996].  Adding such cases may enable the system 
to correctly solve similar problems in the future.  Another approach is to add cases that 
increase the coverage of the CB, that is, that extend the range of possible problems that 
the system can solve [Smyth and Keane 1995; Smyth and McKenna 2001].  A third 
approach is simply to add all cases that are solved successfully, on the basis that this 
increases CB density in those areas of domain space where queries most typically occur 
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and consequently where problem solving needs to be most accurate.  Addition and 
deletion of cases are issues of CB maintenance that have grown in importance as more 
CBR systems enter commercial operation [Leake and Wilson 1998].  Where elements 
of the retrieval and adaptation processes were optimized using the initial CB, adding 
new cases may also trigger a re-tuning of these mechanisms [Roth-Berghofer and 
Iglezakis 2001]. 

3.3   Knowledge Contained Within a CBR System 
Section 3.1.1 described CBR as a knowledge-based approach because it relies on domain-
specific knowledge to solve new problems.  It is useful to look at exactly where this domain 
knowledge is stored.  [Richter 1995, 1998] proposed dividing a typical CBR system’s 
knowledge into four knowledge containers, each closely linked to one of the steps in CBR 
system construction (see Figure 3.1): 
Vocabulary:  This is equivalent to case representation.  As discussed in Section 3.2.1.2, past 

problems must be represented in a data structure that includes all relevant information 
while omitting irrelevant and unreliable information.  A great deal of effort and 
expertise may be required to decide on a suitable case structure and to select the 
optimal set of problem attributes.  This expertise is embodied in the vocabulary 
knowledge container. 

Similarity knowledge:  This container stores the knowledge necessary for retrieving past cases 
similar to the query.  As discussed in Section 3.2.1.3, this includes the ability of the 
system to determine the degree of similarity between two cases, as well as knowledge 
about how to retrieve these cases in an efficient manner.  

Adaptation knowledge:  The knowledge used to adapt past cases to solve new queries is 
stored in this container.  Section 3.2.1.4 pointed out that adaptation is often carried out 
using an embedded rule-based system.  This embedded system will have its own 
knowledge containers—a traditional rule-based system has three containers, for 
example: facts, rules, and an inference engine.  The complexity of the problem domain 
(and the ambition of the adaptation process) will determine the level of knowledge in 
the adaptation container—a great deal of external data may be needed for effective 
problem solving in weak theory domains [Aamodt 1994]. 



 

38 

Case base:  The set of prior cases stored in the CB completes the knowledge of a CBR system.  
Each case contains one successful problem solving experience from the past.  The 
addition of new cases is the principal means by which CBR systems learn. 

Note that the first three containers are usually filled during construction of the system, while 
the fourth is partially filled prior to deployment and updated during operation.  As discussed 
previously, one of the key advantages of CBR is that knowledge can easily be added by users in 
the form of new cases. 

The ‘knowledge container’ view of CBR offers the following useful, complementary 
insights: 

 CBR knowledge containers are largely independent of one another in that the 
knowledge in one can be altered with little effect on the others.  For example, cases can 
be added or removed from the CB or the similarity metric tweaked at any time.  This 
decoupling of components eases maintenance of the overall system. 

 The knowledge in each container is not static.  Knowledge can be moved between 
containers, and indeed, any one container can store almost all the knowledge of the 
entire system.  For example, if there is a stored case for all possible scenarios that 
might arise in the future, then retrieval is sufficient to solve new problems and no 
adaptation is necessary.  Alternatively, if the adaptation process is capable of adapting 
the solution of any past case to solve a query, then the CB need only contain a single 
case and the retrieval strategy is trivial. 

 
A useful distinction can also been drawn between knowledge-intensive and knowledge-light 

systems [Wilke et al. 1997].  This distinction largely rests on the distribution of knowledge 
between the CB and adaptation containers.  Where most domain-specific knowledge lies in the 
CB, systems are referred to as knowledge-light.  Complex problem domains may necessitate 
extensive rule-based adaptation processes.  Systems in which the adaptation container contains 
large amounts of explicitly coded domain knowledge are referred to as knowledge-intensive.  It 
is important to note that both are knowledge-based systems as defined in Section 3.1.1; the 
distinction lies in the form that the domain knowledge takes.  Most commercial CBR systems 
in operation today are knowledge-light.  Two reasons can be given for this.  First, it can be 
argued that storing domain knowledge as a set of cases is most natural for CBR systems, and 
indeed constitutes the primary advantage of CBR as a technology.  Second, complex domain-
specific rule-sets are difficult to construct and maintain from a practical point of view, and are 
therefore not suitable (or necessary) for most ordinary CBR applications. 
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3.4   Case Study: CBR-CD 
This chapter opened by stating that the goal of this research is to construct an effective 
regression system using CBR.  Details of a new CBR-based system (CBR-CD) are contained in 
Chapter 5, but it is useful at this stage to examine its outline within the general CBR framework 
developed above: 
 
System task and domain:  CBR-CD has the task of predicting the value of a numeric variable 

(i.e., regression).  It is immediately applicable to any domain where case attributes have 
numeric and nominal types, and can be extended to work in domains with more 
complex attribute types. 

System construction:  Following the steps described in Section 3.2.1: 
Initial cases:  The experimental evaluation described in Chapter 7 is performed over a 

number of standard datasets that provide the initial cases for the CB. 
Case representation:  Each case is represented as a vector of attribute values. 
Similarity metric and retrieval strategy:  Similarity between cases is calculated using 

Equations 3.1, 3.2 and 3.3.  In Equation 3.1, the attribute weighting parameter 
wa is not used (i.e., it is set to 1 for all attributes).  Additional similarity 
functions can be added for attribute types other that numeric and nominal.  
Retrieval is performed using a simple sequential search—this is adequate for 
the experimental domains used, and is guaranteed to find those cases most 
similar to any query. 

Adaptation strategy:  Adaptation is the primary focus of this thesis.  Figure 3.2 shows 
that the adaptation process can be modelled as a separate problem-solver in its 
own right.  CBR-CD uses a second, embedded CBR system as its adaptation 
problem-solver whose case representation and similarity metrics are borrowed 
from the main system and whose CB is constructed from the differences 
between cases.  Transformational adaptation in the main system is then 
performed using a null adaptation (i.e., retrieval-only) strategy within this 
embedded system. 

System operation:  The system only operates within an experimental environment, and so does 
not undergo the full range of system operation tasks: 
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Retrieve:  Retrieval is performed as described above.  The appropriate number of cases 
to retrieve varies with the dataset used, and is set using cross validation. 

Reuse:  Adaptation is performed using the embedded CBR system described above.  
Within this, a number of adaptation strategies are possible; the best strategy for 
any particular dataset is again found using cross validation.  

Revise:  Numeric predictions are presented to the user as output from the system.  The 
experimental evaluation proceeds by comparing actual with predicted values to 
measure the accuracy of the system on test datasets.  During live operation, the 
‘revise’ step would involve an assessment of the probable accuracy of each 
prediction.  To assist the user with this task, the system also outputs case data 
from the adaptation process to show how the predicted solution was arrived at. 

Retain:  This step is not performed by the system; no additional cases are added to the 
CB beyond the initial test cases supplied. 

System knowledge:  Knowledge in CBR-CD is distributed between Richter’s four knowledge 
containers as follows: 
Vocabulary:  The domain knowledge needed to decide on the most appropriate case 

attributes and attribute types is embedded within the experimental datasets 
used. 

Similarity knowledge:  Similarity knowledge for numeric and nominal attributes is built 
into system itself.  If other attribute types were used, custom similarity metrics 
would be needed to accommodate them. 

Adaptation knowledge:  The knowledge required for successful adaptation is 
automatically generated from the vocabulary, similarity and CB containers. 

Case base:  All case knowledge is supplied by the experimental test-sets used. 
Knowledge-intensive vs. knowledge-light:  As indicated in the title to this thesis, a 

knowledge-light approach is taken to the regression task.  This is because the 
adaptation process does not require additional domain knowledge in the form 
of rule-sets or other explicit structures.  Section 3.3 discussed the idea of 
moving system knowledge between the four containers.  CBR-CD provides an 
example of this: the adaptation container is automatically filled with 
knowledge from the other three.  This makes it easier to construct and maintain 
regression systems for new problem domains. 
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3.5   Summary 
This chapter introduced case-based reasoning (CBR), a form of problem solving in which new 
problems are addressed by re-using the solutions to similar past problems.  CBR was initially 
designed to model problem solving in humans, but has grown from its cognitive science roots 
to become one of the major paradigms of modern machine learning.  Its chief advantage is its 
simplicity—CBR systems are generally easier to construct, maintain, and use than alternative 
knowledge-based systems.  CBR is especially useful in weak-theory domains that cannot be 
accurately modelled by static rule-sets; for example, recommending products to users on the 
Internet. 

Construction of new CBR systems is an iterative process that begins with a study of the 
application domain and the collection of relevant historical data.  From this knowledge, the 
system designer fashions a case structure to hold relevant details of past problems and their 
solutions, a retrieval mechanism capable of recalling relevant past cases to memory, and an 
adaptation mechanism for modifying the solutions of past cases to suit the particular 
circumstances of each new case.  A CBR system can enter operation with a small initial set of 
past cases, and then incrementally improve its performance (i.e., learn) by adding new cases 
over time.  The different parts of a CBR system (i.e., case representation, set of past cases, 
similarity and adaptation mechanisms) have been described as knowledge containers that 
embody the system’s knowledge store; like other knowledge-based approaches, CBR’s 
usefulness depends on the effective utilization of relevant, high quality, domain-specific 
knowledge.  As a case study, the chapter concluded with an examination of the CBR-CD 
regression system that is described in detail in Chapter 5. 
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Chapter 4 
  

Using CBR for Regression 
CBR is among the most widely used problem solving approaches in modern AI, and regression 
is among the most important and fundamental tasks in machine learning.  This chapter 
combines the two by looking at how CBR can be used for regression.  Several different 
approaches are possible, but all utilize the basic CBR methodology described in Chapter 3.  
That is, a query case is always solved by retrieving its nearest neighbours (NNs) and re-using 
their solutions.  The various approaches differ from one another in their adaptation processes—
they re-use the solutions from past cases in different ways. 

Four different approaches to performing regression using CBR will be examined; they are 
summarized in Table 4.1 below.  The first three, CBR-B, CBR-D and CBR-AR, are described 
in the remainder of this chapter.  CBR-CD is the main contribution of this thesis and is 
described in detail in Chapter 5. 

Table 4.1:   CBR-based regression algorithms 
Regression Algorithm Abbrev. Summary of problem solving methodology 

CBR-Basic CBR-B Take the weighted average of solutions for k-NNs 

CBR-Diverse CBR-D Take the weighted average of solutions for k diverse 
neighbours 

CBR-AdaptationRules CBR-AR Bridge the gap between the query and an NN using 
adaptation rules derived from the CB 

CBR-CaseDifferences CBR-CD Bridge the gap between the query and its NN using 
difference-cases generated from the CB 
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The following sections will refer to a simple example domain where the task is to predict the 
value of a house based on its number of bedrooms and location: 

housePrice = f(numBedrooms, location). 
Problem attributes numBedrooms and location have range 1–6, with location 1 generally 
considered least desirable.  Each stored case has structure 

(numBedrooms, location, housePrice) 
and the existence of a CB containing multiple (e.g., 20) such cases is assumed. 

4.1   CBR-B Algorithm 
The simplest approach to performing regression using CBR is to retrieve a query’s nearest 
neighbours and take the weighted average of their solutions. 

4.1.1   Problem solving methodology 
CBR-B is identical to k-NN except that any attribute type is allowed (recall from Section 2.2 
that k-NN is restricted to numeric attributes).  The distance between two cases C and Q, 

),( QCd , cannot be calculated with the Euclidean distance function used by k-NN (Equation 
2.2).  Instead, it is based on the CBR similarity function given by Equation 3.1: 


Aa

aa CQsimASimSimd ),(),(),( max QCQC  (4.1) 

where A is the set of all problem attributes, and local similarity function ),( aa CQsim  has range 
0–1.  The nearest neighbours to a query are those closest to it (i.e., those that minimize this 
distance function). 

For cases containing only nominal and numeric attributes, ),( aa CQsim  is given by 
Equations 3.2 and 3.3 (see Section 3.2.1.3).  The contribution from each neighbour to the 
predicted target value is weighted by distance from the query using a Gaussian weighting 
function: 

2),( CQC dew   (4.2) 
Note that from a maximum value of 1, the rate at which weights decline is related to the 
number of problem attributes.  An alternative approach would be to divide the distance function 
d(C, Q) by a smoothing parameter λ that is optimized for each individual problem domain 
[Atkeson and Schaal 1996].  This is omitted to preserve the generality of the algorithm 
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described here, but it is useful to be aware that performance in any particular domain can be 
improved by adding a smoothing parameter and tuning the weighting function wC.  (Another 
view of the approach taken here is that the same fixed bandwidth with λ = 1 is used for all 
datasets.  See Section 2.3 for more about smoothing parameter λ.) 

The final step in predicting the query’s target value is to take the weighted average of its 
neighbours’ solutions: 






NNs

NNs
w

yw
y

C
C

C
CC

ˆ  
(4.3) 

The accuracy of predictions made using CBR-B will depend on the value chosen for k (i.e., 
the number of neighbours whose solutions are averaged).  Larger values of k can offset the ill-
effects of noisy cases in real-world datasets.  On the other hand, smaller values mean that each 
prediction only uses cases most similar to the query with solutions likely to be most relevant.  
The optimal choice of k varies with the problem domain, and is generally found using cross-
validation during an initial training phase. 

The problem solving methodology for CBR-B is summarized in Figure 4.1. 

- Query
- k-NNs

Inputs
Predicted 

target 
value

Output

Adaptation Process

Training Phase

Take weighted average of solutions for k-NNs.

Problem-Solving Phase

Find optimal value for k.

 
Figure 4.1:   Adaptation process for CBR-B 

4.1.2   Advantages and limitations 
CBR-B shares many of the advantages and disadvantages of the k-NN algorithm.  Its 
advantages can be summed up as follows: 

 
No assumptions about target function:  CBR-B is nonparametric in that it makes no 

assumptions about the underlying target function.  It is therefore suitable for use in 
domains where the target function is complex. 
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Simplicity:  CBR-B is simple to use and understand.  It is also easy to apply in new problem 
domains—if a set of cases is available with numeric and nominal attributes, the only 
step required to construct a working CBR-B system is to choose a suitable value for k. 

The first three disadvantages of CBR-B are shared by all CBR systems: CBR-B is 
computationally expensive, sensitive to irrelevant problem attributes, and relies on adequate 
case coverage.  These aspects of lazy, instance-based problem solving have already been 
examined.  The first, high processing requirements, is largely redundant thanks to today’s 
availability of cheap computing power.  The second, sensitivity to irrelevant attributes, can be 
avoided by careful selection of attributes by human experts or by applying a range of 
automatic, widely available attribute selection algorithms.  Finally, the need for adequate case 
knowledge is simply a restatement of the principle underlying all knowledge-based systems: 
problem solving in a particular domain relies on the presence of domain-specific knowledge.  
Only in the simplest domains can an accurate model be inductively generated using minimal 
domain-specific knowledge. 

The remaining two disadvantages apply specifically to CBR-B.  It is these disadvantages that 
alternative CBR-based approaches (i.e., CBR-D, CBR-AR and CBR-CD) seek to alleviate in 
their different ways. 

 
Relative positions of the query and its neighbours in domain space are not considered:  

Each predicted target value will always be bounded by the highest and lowest solution 
values among the query’s NNs.  The relative positions of the query and its NNs in 
domain space are ignored, and so the prediction may not always be accurate.  For 
example, suppose a query in the housing domain has numBedrooms=5 and its two NNs 
have numBedrooms=4 and 3.  Using CBR-B, the predicted housePrice will be between 
those of the NNs when it should in fact be higher.  This is illustrated in Figure 4.2.  
Ideally, we would like to take the relative positions of the query and its NNs into 
account when making predictions.  In domains where all problem attributes are 
numeric, this can be achieved by constructing a local model (e.g., using locally-
weighted linear regression).  Unfortunately, this approach isn’t possible where 
important aspects of the problem domain are represented by nominal or more structured 
attribute types. 
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Figure 4.2:   Inability of CBR-B to take case positions into account 

Only the query’s neighbours influence each prediction:  Only those cases most similar to 
the query have some input into the predicted target value.  However, a great deal of 
implicit domain knowledge is contained in the remainder of the CB that is potentially 
useful for adaptation.  Ideally, we would like to extract and apply this knowledge to 
supplement local problem solving. 

4.2   CBR-D Algorithm 
CBR-D is a new algorithm that is a variation of CBR-B.  It seeks to address the problem that 
the relative positions of the query and its neighbours in domain space are not taken into 
account.  It differs from CBR-B in that each prediction is based not on a query’s most 
immediate neighbours but on a diverse set of neighbouring cases.  Taking the average of 
solutions from a set of NNs with the query at its centre should yield a better prediction than 
using a set of NNs uniformly offset from the query in one particular direction.  In Figure 4.2, 
for example, a prediction based on NNs with numBedrooms=4 and 6 would likely be more 
accurate than one using the NNs shown. 

The idea of introducing diversity to a set of nearest neighbours has been considered in 
previous research.  [Jain et al. 2003] looked at adding diversity to a simple database 
application.  When presented with a query, a set of instances was returned with the property 
that instances were similar to the query but different from one another.  A restaurant domain 
was used to demonstrate the value of this: recommending different types of restaurants in 
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response to a query made the system more useful for the user.  In a related area, [McGinty and 
Smyth 2003] examined the role of diversity in CBR-based conversational recommender 
systems. 

Nearest neighbour diversity for regression tasks has also been explored by [Zhang et al. 
1997] and [Hüllermeier 2005].  Zhang et al. introduced a variation of the k-NN algorithm called 
k-SN (k surrounding neighbour).  The idea behind k-SN is the same as that of Jain et al.: cases 
used for a prediction should be similar to the query but different from each other.  The retrieval 
algorithm iteratively chooses pairs of cases to add to the set of NNs such that 

 The first case is close to the query, and  
 The second is further from the first than from the query, and closer to the query than 

any case not already in the set. 
That is, cases are added in diverse pairs with one offsetting the other.  The diversity between 
each pair of cases and those pairs added before and after it is not considered. 

Hüllermeier took a different approach, and assessed the quality of a set of cases by using a 
Choquet integral to aggregate the contributions of the individual cases.  A non-additive 
measure is used so that high similarity between member cases reduces the overall value of the 
set.  The algorithm (referred to as Cho-k-NN) is therefore capable of assessing the overall 
diversity of a set of cases.  Both k-SN and Cho-k-NN share the underlying principle that 
diversity is a measure of the distance (i.e., pairwise dissimilarity) between entire cases.   
CBR-D takes a different approach and measures diversity at the level of individual attributes. 

4.2.1   Problem solving methodology 
The problem solving process adopted by CBR-D is shown in Figure 4.3.  It differs from that of 
CBR-B only in the selection of neighbouring cases: the adaptation process receives 3k NNs as 
input from the retrieval process and selects a diverse set of k cases from among them.  (Note 
that this could also be modelled as a modification of the retrieval algorithm.) 



 

48 

- Query
- 3k-NNs

Inputs

Adaptation Process

Training Phase

Select k diverse NNs from among the 3k
received as input.
Take weighted average of solutions for k
diverse NNs.

Problem-Solving Phase

Find optimal value for k.

Predicted 
target 
value

Output

 
Figure 4.3:   Adaptation process for CBR-D 

Selecting k diverse neighbours from a larger set is performed using a greedy search 
algorithm: 

1. Begin by seeding the set of diverse neighbours with the case most similar to the query. 
2. Add additional neighbours one by one so that the diversity of the overall set is 

maximized at each stage.  The diversity of the overall set is calculated as the sum of 
diversities for each individual problem attribute.  Each attribute type has its own 
diversity function that accepts the following input: the query, a set of existing attribute 
values, and a new potential value.  A diversity score in the range 0–1 is returned, with 
scores closer to 1 indicating that the new attribute value makes a positive contribution 
to the set.  CBR-D has inbuilt support for nominal and numeric attribute types, and 
their diversity functions operate as follows: 
Nominal attribute:  NNs with the same attribute value as the query are preferred.  

Otherwise, NNs are chosen to maximize entropy among the attribute’s 
values—diversity is calculated as the values’ entropy divided by the maximum 
possible entropy for the set.  (Entropy is a concept in information theory first 
introduced in [Shannon 1948].  Basically, entropy is maximized by having the 
highest number of different nominal values and roughly similar numbers of 
each.) 

Numeric attribute:  NNs are chosen so that the mean value for the attribute among the 
set of diverse NNs is close to that of the query; the aim is to balance values 
about the query’s value. 

Other attribute types can be supported by the definition of custom diversity functions. 
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An NN may score well on some attributes and badly on others.  If attributes are assigned 
weights that reflect their relevance, these weights can be multiplied by diversity scores so that 
diversity is prioritized for more important attributes (attribute weights are not used for CBR-D 
in the experimental evaluation in Chapter 7). 

CBR-D differs from k-SN and Cho-k-NN in that diversity is defined on the level of 
individual attributes rather then entire cases.  The motivation for this is to avoid the loss of 
information that comes from measuring diversity among cases by the simple pairwise distances 
between them.  This problem can be demonstrated with a simple example (depicted in Figure 
4.4).  Suppose the following query is received in the housing domain: 

 Q = (4, 3, ?),   i.e., numBedrooms=4 and location=3. 
Retrieving a sample nearest neighbour and calculating the distance between the two (using the 
usual CBR approach of summing individual attribute distances): 

 NN = (3, 3, €250,000), d(Q, NN) = 0.2 (from Equation 4.1). 
Now suppose the following two cases are also stored in the CB: 

 C1 = (5, 3, €350,000), d(Q, C1) = 0.2,  d(NN, C1) = 0.4; 
 C2 = (4, 2, €260,000), d(Q, C2) = 0.2,  d(NN, C2) = 0.4. 

Cases C1 and C2 are equidistant from Q, and also equidistant from NN.  (Note that in this 
simple example, NN, C1 and C2 are all equidistant from Q and so the choice of NN as the 
nearest neighbour is somewhat arbitrary.  This doesn’t affect the conclusion drawn.)  If a set of 
diverse neighbours is assembled starting with NN, then C1 or C2 would contribute equally to 
the diversity of the set when considered as entire cases.  Yet looking at the attribute values of 
C1 and C2, we can see that C1 would actually be more useful—it has the same value for 
location as Q and NN, and its value for numBedrooms neatly counterbalances that of NN.  That 
is, the set of diverse cases {NN, C1} has Q at its centre whereas {NN, C2} does not.  This 
example shows that considering diversity at attribute rather than case level can lead to a choice 
of cases more likely to give an accurate prediction. 
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Figure 4.4:   Advantage of considering diversity at attribute level 

Once a set of k diverse neighbours has been chosen from the initial 3k, problem solving 
proceeds as for CBR-B.  The predicted target value for the query is calculated as the distance-
weighted average of solutions for the set of diverse neighbours using Equation 4.3.  Note that 
CBR-D is another demonstration of adaptation-guided retrieval: a set of diverse cases is chosen 
with the aim of maximizing their combined usefulness during adaptation rather than their 
individual similarities to the query. 

4.2.2   Advantages and limitations 
CBR-D inherits the advantages of CBR-B in that it is quite straightforward to use and does not 
make any assumptions about the form of the underlying target function.  In addition, it has the 
following advantage of its own: 

 
Relative positions of the query and its neighbours in domain space are considered:  

Diversity is preferred among the NNs used for each prediction.  The goal is to have the 
query at the centre of its NNs in problem space, so that the weighted average of their 
solutions is likely to give a more accurate prediction.  Diversity is considered at the 
level of individual attributes, avoiding the loss of information that results from 
considering only the pairwise distance between entire cases. 

As might be expected, CBR-D also comes with its own limitations: 
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More complex and computationally expensive than CBR-B:  Calculating diversity for a set 

of NNs requires a diversity function for each attribute type.  Predicting a target value 
also involves extra computation because the diversity among NNs must be assessed 
repeatedly.  Neither problem is especially serious, however; defining diversity is quite 
simple for common attribute types and the additional computation has proved to have a 
negligible impact on performance in practice. 

Performance may be poor in non-linear domains:  Choosing neighbours on the basis of 
diversity means choosing cases more distant from the query than its most immediate 
neighbours.  In highly non-linear domains or in scenarios where case coverage is 
sparse, the benefits of a diverse set of NNs may be more than offset by the fact that 
more distant cases are a lot less useful.  This problem is lessened by the fact that the 
contribution from each NN is distance-weighted in Equation 4.2. 

4.3   CBR-AR Algorithm 
The third CBR-based regression algorithm, CBR-AR, takes a different approach to adaptation 
than those described above.  It does not predict a query’s target value by taking the weighted 
average of solutions from a (diverse) set of neighbouring cases.  Instead, it generates a set of 
adaptation rules during an initial training phase, and when a query is received, assembles a 
sequence of rules to bridge the gap between it and a nearest neighbour. 

The CBR-AR algorithm was originally proposed in [Hanney and Keane 1996, 1997].  
Embedded rule-based systems constitute the standard approach to adaptation, and CBR-AR 
offers the possibility of generating an adaptation rule-set automatically from differences 
between cases in the CB.  In doing so it addresses both of the limitations of CBR-B listed in 
Section 4.1.  When solving a query case, it takes the relative positions of the query and its 
nearest neighbour into account by constructing a custom path from one to the other.  If a 
different neighbour equally distant from the query was used, a different path between the two 
cases would result.  CBR-AR also supplements local knowledge from close to the query (i.e., 
the query’s NN) with global adaptation knowledge mined from all parts of domain space (i.e., 
adaptation rules).  Tapping into adaptation knowledge implicitly stored in the CB increases the 
amount of relevant domain knowledge that is brought to bear during problem solving, and as in 
any knowledge-based system, this is likely to improve performance. 

Section 4.3.1 describes how an adaptation rule-set can be generated and used for a regression 
task in the example housing domain (this domain was also used in the original research). 



 

52 

4.3.1   Problem solving methodology 
The problem solving methodology adopted by CBR-AR has two parts: generation of adaptation 
rules during an initial training phase, and use of these rules during operation.  This section also 
examines ways in which adaptation rules can be altered to extend the range of possible 
problems they can be applied to. 

4.3.1.1   Generating a set of adaptation rules 
CBR-AR automatically generates adaptation rules by comparing each case in the CB with all 
other cases.  Suppose the first case in the CB is called Case_1.  Since we know the solution to 
this case, comparison with other cases can be used to construct a set of rules as follows: 

IF (problem changes from Case_2_problem → Case_1_problem) THEN 
 (solution changes from Case_2_solution → Case_1_solution) 

IF (problem changes from Case_3_problem → Case_1_problem) THEN 
 (solution changes from Case_3_solution → Case_1_solution) 
… 

For example, 
Rule 1 
IF (numBedrooms changes from 1 → 2 and location from 3 → 4) THEN 
 (housePrice changes from €200,000 → €400,000) 
Rule 2 
IF (numBedrooms changes from 3 → 4 and location from 4 → 4) THEN 

(housePrice changes from €550,000 → €680,000) 
Each rule contains the difference between two cases and the consequent change in solution.  

Note that both problem attributes change value in Rule 1, while only one changes in Rule 2.  In 
general, changing attribute values constitute the differences covered by the rule and unchanged 
values provide the rule’s context. 

Generating a full set of rules for a CB of size n would result in n x (n–1) rules.  To reduce 
storage requirements, each case may be compared with only a limited number of other cases.  
For example, comparing each case with its 10 NNs produces a rule-set with size n x 10. 
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4.3.1.2   Using adaptation rules to make a prediction 
Most rule-based systems take the following approach to problem solving: starting from an 
initial state, search for one or more rules that create a path to the specified goal state [Thagard 
2005].  This is precisely how adaptation rules are applied to solve new problems: the query 
constitutes the goal state, its NN the initial state, and adaptation rules create a path between 
them.  When presented with a new query, CBR-AR predicts its target value with the following 
sequence of actions: 

1. Retrieve the query’s NN. 
2. Calculate the differences between the two cases’ problem parts. 
3. Search for one or more rules matching the set of differences—these rules predict the 

change in solution resulting from the problem differences. 
4. Make a prediction by adding together the solution from the NN and the solution 

changes in the matching rules. 
This process can be explained more easily with an example.  Suppose the following query is 

received:  Q = (numBedrooms=5, location=1).  Then housePrice is predicted as follows: 
1. Retrieve the query’s NN: (numBedrooms=3, location=2, housePrice=€350,000) 
2. Calculate the differences between NN and Q: 

Δ(NN, Q) = (numBedrooms: 3 → 5, location: 2 → 1) 
3. Find rules to account for these differences: 

 IF (numBedrooms changes from 3 → 5) THEN 
  (housePrice changes from €300,000 → €450,000) 
 IF (location changes from 2 → 1) THEN 
  (housePrice changes from €300,000 → €270,000) 

4. Predict housePrice for Q:  €350,000 + €150,000 – €30,000 = €470,000 
Here, two rules bridge the gap between the query and its NN.  They indicate what effect the 

differences in numBedrooms and location have on housePrice.  Note that the context of each 
rule (i.e., the values of unchanging attributes) is not shown—the reason that context is 
sometimes omitted is explained below. 

The problem solving process followed by CBR-AR is summarized in Figure 4.5. 
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Figure 4.5:   Adaptation process for CBR-AR 

4.3.1.3   Extending the applicability of adaptation rules 
Adaptation rules specify the impact that particular differences between cases have on the 
solution, thereby codifying the adaptation knowledge implicitly contained in the CB.  This 
knowledge is highly specific, however, depending as it does on the precise set of cases 
available. 

The limited scope of the knowledge contained in adaptation rules can be seen by considering 
a domain with 5 numeric problem attributes, each with 100 possible values.  This domain has 
1005 (= 1010) possible combinations of attribute values, so that a relatively well-stocked CB of 
1000 cases will still contain only 0.000001 of all possible cases.  Problem solving remains 
possible in domains such as this because cases tend to be clustered in those areas of domain 
space where query cases typically occur.  Even allowing for this, however, it is highly unlikely 
that a rule-base will contain rules to cover the differences between a particular query case and 
its NN while also respecting the query’s context. 

The technique of using adaptation rules to solve new cases needs a problem solving bias that 
allows it to broaden the range of problems it can tackle.  CBR-AR introduces this bias in two 
ways.  The first extends the set of attribute differences handled by a rule, while the second 
extends the context in which a rule may be applied.  Both increase the applicability of 
individual rules to give them greater problem solving potential. 

 
Strategy 1: Combine adaptation rules to create generalised rules that cover a range of values 

for a problem attribute. 
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For example, combine rules 
IF (numBedrooms changes from 2 → 3 and location from 4 → 4) THEN 
 (housePrice changes from €400,000 → €500,000) 
IF (numBedrooms changes from 5 → 6 and location from 4 → 4) THEN 
 (housePrice changes from €800,000 → €900,000) 

to create a generalised rule: 
IF (numBedrooms changes by 1 in range 2–6 and location from 4 → 4) 
THEN 
 (housePrice increases by €100,000) 

 
This strategy is based on Michalski’s closing interval rule [Michalski 1983], which states 

that if two rules differ only in the value of one linear descriptor, they can be replaced by a 
single rule covering the interval between the values. 

 
Strategy 2:  Relax the context in which adaptation rules may be applied. 
For example, replace rule 

IF (numBedrooms changes from 1 → 2 and location from 4 → 4) THEN 
 (housePrice changes from €250,000 → €380,000) 

with a context-free rule: 
IF (numBedrooms changes from 1 → 2) THEN 
 (housePrice changes from €250,000 → €380,000) 

In the example in Section 4.3.1.2 above, Strategy 2 was applied to create rules that depend 
only on attribute differences and not on context. 

4.3.2   Advantages and limitations 
The CBR-AR algorithm is now complete.  We have seen how adaptation rules can be created 
from the differences between stored cases and used to solve regression problems by forming a 
path from an NN to the query.  Adaptation rules based on raw differences between cases have 
been shown to have insufficient problem solving bias to be really useful, and two strategies 
designed to address this issue have been examined. 

All in all, the idea of mining adaptation knowledge from the CB is a good one and CBR-AR 
has several significant advantages over alternative approaches: 
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Knowledge-light approach to adaptation:  As previously stated, embedded rule-based 
systems are the standard approach to adaptation for most problem domains and system 
tasks.  CBR-AR extracts an adaptation rule-set from knowledge implicitly stored in the 
CB, thereby eliminating the knowledge elicitation bottleneck associated with manually 
constructing a set of rules.  In terms of Richter’s four knowledge containers, this 
amounts to populating the adaptation container with knowledge from the other three: 
the structure of adaptation rules is derived from the vocabulary container, the rules 
themselves are generated from the CB container, and the process of comparing each 
case with its k-NNs relies on knowledge from the similarity container. 

The original research ([Hanney and Keane 1996]) demonstrated the operation of 
CBR-AR in a synthetic regression domain (i.e., the housing domain).  It is interesting 
to note, however, that the underlying methodology was envisaged as a generic 
adaptation framework that could be applied to any system task.  In principle, adaptation 
knowledge can be mined from a CB in any domain for any task; in practice, the amount 
of implicit adaptation knowledge in a CB is generally insufficient for more complex 
tasks such as design and planning.  The reason is that the search space of potential 
paths from an NN to a query increases exponentially with task complexity, and it 
becomes increasingly unlikely that the differences between two prior cases can be 
directly used to bridge the gap between them.  We return to this theme in Chapter 8. 

Local and global domain knowledge is combined during problem solving:  Instance-based 
algorithms such as CBR and k-NN base their problem solving abilities on the similarity 
assumption that similar problems have similar solutions.  CBR-AR maintains this bias 
by taking an NN and its solution as the starting point for solving new queries.  
However, the problem solving process supplements this local knowledge with global 
knowledge from other parts of domain space (in the form of adaptation rules).  As 
already noted, maximizing the amount of relevant domain knowledge that is brought to 
bear during problem solving is likely to maximize the quality of solutions in a 
knowledge-based system. 

Predictions can be accompanied by good explanations:  Among the advantages of CBR 
listed in Section 3.1.2 is the fact that each prediction can be accompanied by the 
concrete cases used to derive it; these can be used by the user to assess the likely 
quality of the solution.  CBR-AR can not only present the user with a neighbouring 
case similar to the query, but can also show how the gap between the two was bridged.  
The user can verify that the NN is indeed similar to the query, and that its solution is 
reasonable and likely to be close to the query’s.  The rules used to account for the 
difference between the two cases can also be examined and assessed.  Presenting a 
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fully transparent explanation of how the target value was obtained allows the user to 
make an informed decision about how much confidence to place in it. 

Balancing these advantages are a number of limitations that impair CBR-AR’s performance 
in real-world domains.  One fundamental problem with adaptation rules is that when global 
domain knowledge is used to supplement local problem solving, how can we be sure that this 
global knowledge is actually relevant?  After all, instance-based algorithms rely on local 
knowledge precisely because cases from more distant parts of domain space are dissimilar to 
the query and so unlikely to be useful in solving it.  The first three limitations listed below 
describe how inappropriate use of global knowledge will make predictions worse, not better.  
The final two are of a more practical nature, and relate to the manner in which adaptation rules 
are chained together to bridge the gap between a query and its NN. 

 
Failure to account for interacting attributes:  Section 4.3.1.2 showed a simple example of 

adaptation rules in action.  Two rules bridged the gap between a query and its NN, each 
dealing with one of two attribute differences.  Where two or more attributes interact 
with one another, however, this approach will not work.  For example, the effect of 
increasing numBedrooms by 2 and decreasing location by 1 may be less than the 
impact of these changes individually.  One can also imagine domains in which 
combining attribute differences increases their influence.  In short, using a combination 
of simple rules to handle multiple attribute differences is only valid when there is no 
interaction between the attributes.  Hanney and Keane proposed using expert 
knowledge to edit the rule-base to take account of these interactions.  But there may be 
interactions between several attributes, and their strength may vary in different parts of 
the attributes’ ranges.  In these circumstances, editing the rule-base manually becomes 
an impossible task. 

Failure to account for variable attribute relevance:  Generalised rules created using Strategy 
1 (see Section 4.3.1.3) are not always valid because the strong assumption is made that 
the solution’s response to changes in the problem attribute is linear.  The example used 
to illustrate Strategy 1 makes the assumption that changes in numBedrooms from 2→3, 
3→4, 4→5 and 5→6 will result in the same change to housePrice.  Clearly this may 
not be the case; changing numBedrooms from 1→2, for example, may have a greater 
impact on housePrice than changing from 3→4 (or vice versa).  Strategy 1 cannot be 
applied where attributes have variable relevance through their range.  Again, Hanney 
and Keane suggested using expert knowledge to take attribute relevance into account 
during rule-base construction. 
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Failure to allow for contextual dependencies:  Strategy 2 (see Section 4.3.1.3) relaxes the 
context in which rules may be applied.  Although the resulting rules have wider 
applicability than their predecessors, it is often the case that a rule’s correctness is 
inextricably linked to its context; ignoring the context invalidates the rule.  For 
example, the effect of changing numBedrooms from 1→2 will very probably be 
different in location 1 than in location 4.  Where there are contextual dependencies of 
this type, Strategy 2 cannot be applied.  Hanney and Keane suggest using expert 
knowledge to manually identify and account for these dependencies. 

Additive solution errors when more than one adaptation rule is used:  In noisy domains, 
solutions to cases in the CB will not always be accurate.  Let us assume that solutions 
are distributed normally about their true values with variance v2.  Let us also assume 
that errors are independent of problem attribute values (i.e., the error function is 
homoschedastic).  When two cases are used to construct an adaptation rule, the rule’s 
solution difference will have error variance equal to 2 x v2 (subtracting one normal 
variable from another results in a distribution whose variance is the sum of the 
individual variances [Upton and Cook 2002]).  If r adaptation rules are used to cover 
the differences between a query and its NN, the predicted solution is calculated by 
adding the solution difference in each rule to the NN’s solution.  This prediction has 
error variance of  v2 + r x (2 x v2) (the initial v2 is the error in the NN’s solution).  
Where predictions are made using ‘adaptation paths’ made up of several adaptation 
rules, results will exhibit a high error variance.  This will result in poor performance in 
noisy real-world domains where v2 is high. 

Problem solving is too brittle:  To succeed in solving a query, CBR-AR must chain together 
rules that account for all of the attribute differences between the query and an NN.  
With linear, noise-free datasets and sufficient numbers of adaptation rules to cover 
every possible set of attribute differences, this strategy will return a perfect solution 
every time.  With real-world datasets subject to uncertainty and noise, perfect solutions 
are simply impossible to find.  Making predictions is a process of educated guesswork, 
and the best that can be hoped for in any domain is that estimated solutions 
approximate the true values with an acceptable statistical error.  CBR-AR is therefore 
overly ambitious in attempting to find perfect solutions in imperfect domains.  Failing 
to account for all attribute differences should not cause problem solving to fail when a 
less exacting approach would probably yield equally good results. 
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These limitations can be amalgamated into two fundamental difficulties: 
1. CBR-AR will only work correctly in linear domains (i.e., domains that can be 

accurately represented by a linear model).  Many real-world domains do not exhibit 
global linearity, including the real-world housing domain.  Sources of non-linearity 
include attributes interacting with one another and attributes whose relevance varies 
throughout their range. 

2. Problem solving with CBR-AR is not robust.  Adaptation rules derived from real cases 
are noisy and error-prone.  Chaining rules together to cover all differences between a 
query and its NN compounds the error in the resulting solution and aims for a level of 
accuracy that is not achievable. 

4.3.3   Prior research on using case differences for adaptation 
Mining adaptation knowledge from the CB is clearly a good idea despite the fact that using it to 
supplement local problem solving is not straightforward in practice.  Given that the underlying 
idea is sound, it is not surprising that a number of researchers have explored different variants 
of CBR-AR. 

The research described in [McSherry 1998] is most closely analogous to Hanney and 
Keane’s in that it also considers the problem of automatically learning adaptation knowledge 
for regression (and also uses an artificial housing domain for demonstration purposes).  Where 
a query and its NN differ in a single attribute, the impact of this difference on the solution is 
found by examining its effect on two stored cases; this technique is referred to as the difference 
heuristic.  The problem of applying case differences in non-linear problem domains is 
explicitly recognized, and partially avoided by insisting that all cases involved in problem 
solving (including the query) have exactly the same values for all but one of the set of 
interacting attributes.  Application of the difference heuristic also requires that all cases in the 
CB strictly dominate one another (i.e., cases are ordered in such a way that each case’s attribute 
values are greater than or equal to those of its predecessors)—this condition does not hold in 
real-world datasets. 

[Jarmulak et al. 2001] and [Wiratunga et al. 2002] looked at the introspective learning of 
adaptation knowledge for a design task (tablet formulation).  Differences between stored cases 
are stored together with contextual information in adaptation cases that contain similar 
information to Hanney and Keane’s adaptation rules.  Attribute interactions and constraints are 
also mined automatically from the case base.  This research addressed the problem of non-
linearity in problem domains by proposing that adaptation cases generated from cases close to 
the query should be preferred to those generated from more distant cases.  This strategy makes 
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the implicit assumption that the area of domain space around the query is locally linear; 
limiting the search for difference-cases to this region therefore avoids the problem. 

The difficulty with these attempts to avoid non-linearity is that they greatly reduce the search 
space for cases to use for problem solving.  Furthermore, the restrictions imposed are inflexible 
in that they do not take into account the individual characteristics of different domains and 
queries.  With the approach of Jarmulak et al., there may be many cases outside the immediate 
vicinity of the query whose differences are applicable to the query and its NN.  For example, 
the difference in housePrice resulting from an increase in numBedrooms from 1→2 may very 
well be the same (on average) as that resulting from an increase from 5→6.  A similar 
narrowing of the search space occurs with the McSherry approach; attempting to hold 
interacting attributes’ values constant will most likely result in a failure to find any applicable 
case differences in domains where there are several such attributes. 

A more recent variation on the Hanney and Keane approach was proposed in [d’Aquin at al. 
2006].  This suggested replacing each problem attribute by a set of Boolean attributes, and then 
searching the differences between cases for frequent itemsets.  Adaptation rules are not derived 
from pairs of concrete cases, but instead contain sets of differences that enjoy a certain level of 
support in the CB.  These are higher level, more generalized rules than those in CBR-AR, 
where rules consist of the raw differences between actual cases or minor generalizations of 
them.  The assumption is that since a rule holds true for a certain proportion of the CB, it will 
probably hold for new query cases too.  This approach appears to ignore the specific adaptation 
needs of individual queries, but no experimental evaluation was carried out and so its 
effectiveness is unknown. 

4.4   Discussion 
This chapter has described three different ways of performing regression using CBR.  The first, 
CBR-B, predicts the target value for a query by simply taking the weighted average of solution 
values among its NNs.  As shown in Table 4.2, this algorithm has two shortcomings that the 
other algorithms, CBR-D and CBR-AR, seek to address. 

Table 4.2:   Problem solving capabilities of CBR-based regression algorithms 

Algorithm Takes relative positions of cases in 
domain space into account 

Supplements local problem solving 
with global adaptation knowledge 

CBR-B   
CBR-D   
CBR-AR   
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CBR-D takes the relative positions of cases into account by attempting to find a set of NNs 
with the query at its centre.  These cases should give better quality predictions than the query’s 
immediate neighbours (this is borne out in the experimental results in Chapter 7).  CBR-AR 
considers the precise differences between the query and its NN and attempts to account for 
these differences using one or more adaptation rules.  This approach takes the exact positions of 
the two cases into account, but unfortunately it is not robust for the reasons given at the end of 
Section 4.3.2. 

CBR-D solves each new query using only knowledge from its local neighbourhood.  In 
theory, bringing additional relevant domain knowledge to bear should improve the quality of 
predictions.  CBR-AR attempts to do this by applying adaptation rules derived from cases in all 
parts of domain space.  As pointed out in Section 4.3.2, however, inappropriate use of global 
domain knowledge is likely to make predictions worse, not better.  In particular, CBR-AR’s use 
of adaptation rules is only directly applicable in linear problem domains—the original research 
called for expert knowledge to be manually added if the technique was to be used in non-linear 
domains. 

This analysis leads to a clarification of the requirements for a more effective regression 
system based on CBR—these are shown in Table 4.3. 

Table 4.3:   Requirements for a new CBR-based regression system 

Requirement Description 

Accuracy Prediction accuracy should exceed that of alternative CBR-based 
approaches on a range of datasets. 

Robustness System should perform well in noisy, real-world domains. 

Simplicity System should minimize the need for explicit expert domain knowledge.  
Predictions should also be easily explainable to users. 

The CBR-CD algorithm was developed to meet these requirements.  It is based on CBR-AR 
in the important respect that it bridges the gap between a query and its neighbours using 
adaptation knowledge mined from the CB.  It shares the advantages of this approach in taking 
the relative positions of cases into account and supplementing local problem solving with 
global knowledge.  However, it also systematically addresses the limitations of CBR-AR to 
give greater accuracy and robustness.  In particular, it takes a greater degree of care to ensure 
the quality and relevance of the global knowledge used to bridge the gap between a query and 
its neighbour.  This is achieved by using LWLR as a heuristic to guide the search for cases used 
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in problem solving.  Robustness is also improved by averaging several intermediate predictions 
to make a final prediction, thereby reducing the overall error variance. 

4.5   Summary 
This chapter looked at how CBR can be used for regression.  Three different approaches were 
described in detail: 
CBR-Basic (CBR-B):  This is the simplest approach.  A query’s solution is predicted by taking 

the weighted average of solutions from a number of its NNs. 
CBR-Diverse (CBR-D):  This is a modified version of CBR-B.  It tries to address the problem 

that a query’s NNs may be unevenly distributed around it, resulting in a prediction that 
is biased in a particular direction.  The solution is to aim for a diverse set of NNs with 
the query at their centre. 

CBR-AdaptationRules (CBR-AR):  This algorithm takes a traditional CBR approach to 
adaptation: it predicts a query’s solution by using a set of rules to adapt the solution 
from a neighbouring case.  This rule-set is automatically generated from the differences 
between pairs of stored cases during an initial training phase.  Despite being an 
intuitive and appealing approach to regression, CBR-AR suffers from two fundamental 
problems: it will only work correctly in linear domains, and it is not robust in the 
presence of noisy data. 

Prior research into the generation of adaptation knowledge from case differences has failed 
to address the problems inherent in CBR-AR.  This thesis therefore proposes a new algorithm, 
CBR-CD, that builds on the strengths of previous approaches while avoiding their 
shortcomings. 
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Chapter 5 
  

Case-Differences Regression 
Algorithm (CBR-CD) 

CBR-CD is a new CBR-based regression algorithm.  Its goal, as set out in Section 4.4, is 
simply to provide effective and robust performance across different problem domains.  The 
primary idea underlying CBR-CD is to use adaptation knowledge mined from the differences 
between stored cases to bridge the gap between queries and their neighbours.  In this respect it 
builds on earlier research, particularly that proposed by Hanney and Keane [Hanney and Keane 
1996, 1997] and embodied in CBR-AR.  However, it differs significantly from CBR-AR in its 
treatment of case differences and in its approach to adaptation.  In particular, its adaptation 
process uses a second, embedded CBR system instead of a more traditional rule-based system.  
This mechanism allows CBR-CD to avoid the limitations of CBR-AR (listed in Section 4.3.2) 
and to operate effectively and robustly in noisy, non-linear problem domains. 

5.1   Introduction to Case Differences 
This section looks at how adaptation knowledge can be mined from the differences between 
stored cases.  It also shows how case differences can be applied to solve regression problems in 
a simple domain.  This ‘first attempt’ at using case differences is subject to a number of 
limitations that must be overcome before the technique can be applied in real-world domains.  
These limitations are discussed, and solutions proposed in Section 5.2. 
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5.1.1   Constructing an embedded CBR system to use for adaptation 
Let us assume for the moment that each case is stored as a vector of numeric attributes.  The 
difference between any two cases can then be calculated simply by subtracting one from the 
other. 

Returning to the simple artificial housing domain introduced in Chapter 4, recall that the 
value of a house is a function of its number of bedrooms and location: 

 housePrice = f(numBedrooms, location) 
where problem attributes numBedrooms and location have range 1–6.  Given two sample cases 
of form (numBedrooms, location, housePrice), 

 C1 = (4, 1, 320000), 
 C2 = (3, 2, 300000), 

the differences between them can be calculated and stored in a difference-case: 
 Δ(C1, C2) = C1 – C2 = (1, –1, 20000). 
This difference-case states that an increase of 1 in numBedrooms and a decrease of 1 in 

location results in an increase of 20000 in housePrice.  It encapsulates specific adaptation 
knowledge that may be applied to solve new problems.  (It is equivalent to a context-free 
adaptation rule in CBR-AR—see Section 4.3.1.1.)  A difference-case can be generated from 
each pair of cases in the CB, Ci – Cj.  All difference-cases can then be stored together in their 
own Difference-CB.  As with CBR-AR, storage requirements can be reduced by only 
comparing each case with a limited number of neighbours; for a CB of size n, comparing each 
case with its 10 NNs produces a Difference-CB with size n x 10.  Note that although this 
reduces the problem solving capability of the Difference-CB, the adverse effect is minimal 
provided that the CB is representative of the cases typically encountered during operation.  

The Difference-CB constitutes the heart of the embedded CBR system that is used for 
adaptation.  Each difference-case has the same structure (i.e., the same attributes) as cases in 
the original CB; vocabulary knowledge is therefore transferred directly from the original to the 
Difference-CB.  Because of this, the mechanism for assessing similarity in the original CB also 
works for the Difference-CB, and it too can be appropriated directly.  This only leaves the 
question of adaptation to be resolved: how does the embedded system adapt the solutions of 
retrieved difference-cases?  The answer is that it doesn’t—the embedded system performs null 
adaptation (i.e., it is retrieval-only).  Figure 5.1 shows the overall structure of a CBR-CD 
system and the sources of knowledge for its constituent parts. 
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Figure 5.1:   Structure of a CBR-CD system 

5.1.2   First attempt at using case differences to make a prediction 
Case differences can be used to solve a new query problem as follows: calculate the differences 
between the query and a neighbouring case, then account for these differences using a stored 
difference-case. 

Let us take an example from the housing domain: suppose we receive a query case 
 Q = (4, 2, ?), 

so that our task is to predict the value of a house with 4 bedrooms in location 2.  The problem 
solving process then proceeds as follows (see Figure 5.2): 

1. Retrieve the nearest neighbour to Q:  NN = (5, 1, 350000) 
2. Find the difference between their problem descriptions:  Δ(NN, Q) = (1, –1) 
3. Retrieve a difference-case from the Difference-CB to account for these differences:  

Δ(C1, C2) = (1, –1, 20000)  for some C1, C2 in the original CB 
4. Predict the target value for Q:  350000 – 20000 = €330,000 
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Figure 5.2:   Solving a query using case differences 

The problem solving process involves calculating the differences between Q and NN, then 
using a difference-case to predict the effect that these differences will have on the solution.  We 
will refer to the three cases used for each prediction, (NN, C1, C2), as an adaptation triple.  
(These cases are referred to as an ‘estimation triple’ in [McSherry 1998].) 

Figure 5.3 shows the flow of information within the system during the problem solving 
process; circled numbers 1–4 refer to the four steps in Figure 5.2.  The important point to note 
is that transformational adaptation in the main CBR system is achieved by performing retrieval 
and null adaptation in the embedded system.  This is a simple form of recursive CBR [Stahl and 
Bergmann 2000]: the original problem (predicting the target value for Q) is reduced to the sub-
problem of predicting the impact that Δ(NN, Q) will have on the solution, and this sub-problem 
is solved using an embedded CBR system. 
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Figure 5.3:   Flow of data through a simplified CBR-CD system during problem solving 

5.1.3   Problems associated with naïve application of case differences 
The basic principles and structures of CBR-CD are now in place.  Differences between stored 
cases are used to generate a Difference-CB that forms the core of an embedded CBR system 
used for adaptation.  As presented above, however, the algorithm is subject to the same 
drawbacks as CBR-AR: it will only work correctly in linear domains, and it is not robust in 
noisy domains. 

It has already been noted that many real-world domains do not exhibit global linearity; non-
linearity can be caused by interactions between attributes and by variable relevance throughout 
an attribute’s range.  The simple algorithm presented above makes the strong assumption that 
the target domain is linear—it assumes that the differences between any pair of stored cases can 
be used to account for the differences between the query and a neighbouring case.  This 
limitation restricts the applicability of the algorithm, and must be addressed if CBR-CD is to 
fulfil its goal of operating successfully in all regression domains.  Previous research involving 
case differences has suggested taking steps to avoid the problem of non-linearity by restricting 
the search for adaptations cases to the region of domain space close to the query.  As pointed 
out in Section 4.3.3, this approach greatly reduces the search space for adaptation knowledge in 
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an inflexible way that fails to take account of the individual properties of either the domain or 
query.  What is needed is some way of dealing with non-linearity that maximizes the number of 
difference-cases that can be considered when searching for solutions, and that adapts 
automatically to the topology of the problem domain and the specific characteristics of the 
query. 

Lack of robustness is also a problem because each prediction is calculated from three stored 
cases in such a way that the total error variance among predictions is three times the error 
variance among cases (more on this later in Section 5.2.2).  This will result in poor 
performance when predictions are based on cases from noisy datasets.  (Note that the problem 
is not as severe as for CBR-AR, which chains together adaptation rules to make a prediction—
see Section 5.3.2.)  Again, this limitation has to be addressed if CBR-CD is to achieve its goal 
of performing well on real-world datasets. 

5.2   Problem Solving Methodology of CBR-CD 
Difference-cases have been shown to provide a simple method for performing regression using 
CBR.  Unfortunately, their naïve application may not perform well in non-linear domains, 
because differences between cases in one part of domain space may not have the same effect on 
the solution as differences in another. 

Having calculated the differences between the query and a neighbour, then, our aim is to find 
a difference-case that correctly accounts for these differences while also taking non-linearity in 
the problem domain into account.  Locally weighted linear regression (LWLR) can help us 
achieve this goal.  LWLR can act as a useful heuristic in two ways: 

1. LWLR can identify those difference-cases most likely to be useful for solving any 
particular query; 

2. LWLR can reduce prediction error by helping to avoid noisy cases. 
Sections 5.2.1 and 5.2.2 discuss each of these aspects in turn.  Section 5.2.3 describes how 
overall prediction error can be reduced by combining several predictions.  Section 5.2.4 
completes the description of CBR-CD by looking at how non-numeric attributes can be 
accommodated in the problem solving process. 

5.2.1   Using LWLR to help choose difference-cases 
Let us begin by re-examining the example used in Section 5.1.2.  The differences between 
query Q and neighbouring case NN were calculated as 
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Δ(NN, Q) = (1, –1). 
A difference-case was found to predict the effect of these differences on housePrice: 

Δ(C1, C2) = (1, –1, 20000). 
The question is, Should this difference-case actually be applied here?  Logically, the answer 

is that it applies if the impact that changes in numBedrooms and location have on housePrice is 
the same in the area of domain space around Q as in the area around C1 and C2.  More 
generally, difference-cases can be applied to solve a query if the cases used in their 
construction come from an area of domain space similar to that around the query, where 
similar areas of domain space are those where changes in problem attributes have similar 
impact on the solution. 

That is, similar areas of domain space have similar rates of change of solution with respect to 
each problem attribute. 

Suppose the problem domain has numeric problem attributes a1, a2,…, an and solution y, i.e.  
y = f(a1, a2, …, an).  Each case then occupies a particular point in domain space given by its 
vector of attribute and solution values (a1, a2, …, an, y), and f represents a scalar field mapping 
ℜn to ℜ.  At any point, the rate of change of f with respect to each problem attribute ai is 
defined as the gradient of f: 
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This vector cannot be calculated precisely because the actual form of the target function is 
unknown.  However, since the gradient is defined as the best linear approximation to f at any 
particular point in ℜn, it can be approximated at any point by constructing a local linear model 
using LWLR and taking the slope for each problem attribute.  So local linear modelling allows 
us to estimate the gradient of the target function at any point, and gradients help us to choose 
difference-cases that are likely to be applicable to the query. 

Calculating the gradient at a particular point P involves retrieving a number of nearby cases 
and fitting a local linear model to them as closely as possible.  Cases are weighted by distance 
so that the closest fit is provided for cases closest to P.  The linear model has the form shown in 
Equation 2.1: nvvvy   ...ˆ 21 .  Parameters β, γ, δ in this equation give the slope of 
each problem attribute and can be combined in a vector to give the gradient at P: 

)...,,,()(  Pf .  Note that the optimal number of cases to use when constructing the 
linear model will vary with the dataset concerned—in the experiments in Chapter 7, 5%–20% 
of the cases in each dataset were used.  (See Section 2.3 for more information on LWLR.) 
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The principle behind this approach is demonstrated in Figure 5.4, which shows a simple 
domain in which solution y is a function of a single problem attribute, a.  Local linear models 
L1, L2 and L3 are constructed from cases in areas A1, A2 and A3 respectively.  (Note that 
linear models are lines in simple two-dimensional domains, planes in three-dimensional 
domains, and hyperplanes in domains of higher dimension.)  Difference-cases derived from 
cases in A1 are likely to be useful in solving query Q because they come from its immediate 
vicinity where a degree of local linearity exists.  Difference-cases derived from cases in A3 are 
also likely to be useful because they come from a region of domain space where changes in a 
have a similar effect on y as in A1; this is shown by the fact that the slopes of L1 and L3 are 
similar.  Cases from A2, on the other hand, are unlikely to be useful because the slopes of L1 
and L2 are dissimilar. 

Solution
y

Problem Attribute  aQ

Difference-cases derived from
cases in these regions are

likely to be useful in solving Q

L1

L3

L2

A1

A2

A3

Difference-cases derived from
cases in this region are

unlikely to be useful in solving Q

 
Figure 5.4:   Using gradients to help find a useful difference-case (Approach 2) 

This simple domain is globally non-linear, but also contains three distinct regions that are 
approximately linear.  Previous algorithms based on case differences have used two alternative 
approaches to solving Q: 

1. Assume the entire domain is linear, and use the closest matching difference-case 
derived from any pair of cases; 

2. Recognize that the domain is non-linear, and only use difference-cases derived from 
cases close to the query in area A1. 

Using gradients to guide the search for difference-cases allows CBR-CD to be used in 
problem domains with any topology.  In linear domains, all areas will have a similar gradient 
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and difference-cases from anywhere can be used effectively.  As non-linearity increases in the 
problem domain, the area of domain space where applicable difference-cases may be found 
gradually reduces in size. 

Similarly, the query may come from an area with a similar gradient to many others, in which 
case the search for difference-cases will be conducted throughout broad regions of domain 
space.  If, on the other hand, the query is located in an area whose gradient is unique, the search 
will largely be restricted to its immediate neighbourhood. 

These properties of CBR-CD ensure that the maximum number of difference-cases is 
considered for each individual query and problem domain; this is the flexibility that was called 
for in Section 5.1.3.  The algorithm takes care to ensure that when global adaptation knowledge 
derived from cases some distance from the query is used, it is actually applicable to the 
problem at hand. 

The updated problem solving process can be summarized as follows: 
To solve a query case, use a difference-case from an area of domain space with similar 
gradient to that around the query, where gradients are approximated using LWLR. 

The gradient in those regions of domain space containing Δ(NN, Q) and Δ(C1, C2) can be 
approximated by taking the gradient at points Q and C2 respectively.  

This section has outlined the rationale for including gradients in the search for difference-
cases.  It has also introduced a practical algorithm that involves searching for difference-cases 
whose gradients match that around the query.  This is the simplest way to incorporate gradients 
into the search process, and is described in greater detail in Section 5.2.1.2.  More sophisticated 
approaches to choosing difference-cases are also possible in which difference-cases and 
gradients are combined during the search; these are described in Sections 5.2.1.3 and 5.2.1.4.  
Section 5.2.1.1 specifies a basic variant of CBR-CD that does not consider gradients at all; this 
approach serves as a theoretical basis for the others and as a useful benchmark during the 
experimental evaluation in Chapter 7. 

5.2.1.1   Approach 1: gradients not considered at all 
Although many real-world domains are non-linear, many others are roughly linear and can be 
tackled using the basic case-differences algorithm described in Section 5.1.2. 

Let us present this algorithm a little more formally.  Given query Q, the problem solving 
process involves two search steps and an adaptation step: 

1. A neighbouring case to the query, NN,  is found in the original CB; 
2. A difference-case Δ(C1, C2) matching Δ(NN, Q) is found in the Difference-CB for 

some C1, C2  in the original CB; 
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3. Solutions from NN, C1 and C2 are used to predict a target value for Q. 
Steps 1 and 2 involve searches in the original and Difference-CBs, during which a search 

case is compared with each stored case to find the most similar.  Both CBs have the same set of 
problem attributes, A.  The similarity between any two cases τ and ρ in either CB can be 
calculated as follows: 


Aa

aasimSim ),(),( ρτ  (5.1) 

This similarity function is commonly used in CBR; it differs from Equation 3.1 only in that 
global attribute weights are not used (or equivalently, all weights are set to 1). 

Taken together, steps 1 and 2 constitute a twin-objective search where the optimal adaptation 
triple (NN, C1, C2) for solving a particular query Q simultaneously maximizes the similarity 
between 

 Cases: NN and Q 
 Difference-cases:  Δ(NN, Q) and Δ(C1, C2). 

These objectives can be incorporated into a score for each potential triple: 
)),(),,((),(1 21 CCΔQNNΔQNN SimSimScore   (5.2) 

In Step 3, the adaptation triple with the highest score is used to predict the target value for 
the query, Qŷ : 

)(ˆ 21 CCNNQ yyyy   (5.3) 

This approach to choosing difference-cases can be summed up as follows: 
The optimal difference-case is most similar to the difference between the query 
 and an NN. 

Looking at Figure 5.4, the difference-case used to solve Q can come from any part of 
domain space; it will be derived from two cases which differ in their values for attribute a by 
the same extent as Q and its NN. 

Note that once the highest-scoring adaptation triple (NN, C1, C2) has been found, the three 
cases’ solutions are combined in a simple formula (Equation 5.3) to produce a prediction for Q: 
NN gives a good starting point, and C1 and C2 provide an adjustment to allow for the 
differences between NN and Q.  Approaches 2–4 below use different score formulae for 
finding the best adaptation triple, but once found, the predicted solution is always calculated in 
the same way.  That is, CBR-CD always produces a prediction using only the solutions from 
three retrieved cases. 
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5.2.1.2   Approach 2: difference-cases and gradients considered separately 
In arbitrary domains not known to be globally linear, performance is likely to be improved if 
difference-cases are chosen from areas of domain space with similar gradients to that around 
the query.  Finding the optimal adaptation triple (NN, C1, C2) then involves a multi-objective 
search with three objectives: maximize the similarity between 

 Cases: NN and Q 
 Difference-cases: Δ(NN, Q) and Δ(C1, C2) 
 Gradients:  )(Qf and )( 2Cf . 

As previously discussed, each gradient is a vector that contains the slope of each problem 
attribute at a particular point.  The similarity between two gradients can therefore be calculated 
as the sum of the local similarities between each pair of attribute slopes.  For the gradients at 
points Q and C2, 

 





Aa ii a
y

a
ysimffSim ),())(),((

2CQ
2CQ   

where 
Qia

y

 and 

2Cia
y


  are the slopes of attribute ia  at points Q and C2 respectively, and local 

similarity function  sim(slope1, slope2)  is that shown in Equation 3.3 in Section 3.2.1.3. 
This strategy can be supported by adding an additional term to Equation 5.2: 

))(),((12 2CQ ffSimScoreScore   (5.4) 

This is the simplest approach to incorporating the gradient into the search for the optimal 
difference-case; it is the approach described in Section 5.2.1 and shown in Figure 5.4.  As 
mentioned previously, Equation 5.4 defaults to Equation 5.2 in linear domains where all 
gradients are very similar.  As non-linearity increases, the area of domain space where 
applicable difference-cases may be found gradually gets smaller.  The search strategy can be 
summed up as follows: 

The optimal difference-case is similar to the difference between the query and an NN, 
and comes from an area of domain space with similar gradient to that around the 
query. 

This approach increases the search space for difference-cases over previous algorithms based 
on case differences.  The two approaches described below increase the search space further by 
considering difference-cases and gradients together. 
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5.2.1.3   Approach 3: difference-cases and gradients combined in a vector 
Looking more closely at difference-cases and gradients, it can be seen that the two are 
intimately related to one another.  Figure 5.5, for example, shows two pairs of cases in two-
dimensional space: (C1, C2) and (C3, C4).  Differences between the problem parts of these two 
pairs are the same: Δ(C1, C2) = Δ(C3, C4).  Because of different variances in both regions of 
domain space, however, differences between solutions are not the same: ),(),( 4321 yyyy ΔΔ  . 

Solution
y

Problem Attribute  a

Different variances mean that equal 
differences between problem parts
result in unequal differences between 
solution partsC1

C2

C4C3

Δ(C1, C2) Δ(C3, C4)

Δ(y1, y2)

Δ(y3, y4)

 
Figure 5.5:   Relationship between difference-cases and gradients 

More generally, suppose we achieve a perfect match between Δ(NN, Q) and DC = Δ(C1, C2) 
for some query Q and neighbouring case NN.  If the gradient at C2 is higher than that at Q for 
each attribute, then DC is likely to overestimate the effect of attribute differences at Q on the 
solution.  If it is lower, DC is likely to underestimate their impact. 

From this we can see that difference-cases and gradients may offset one another, so that even 
if DC has smaller attribute differences than those in Δ(NN, Q), it may still yield a correct 
prediction if the gradient at C2 is higher than that at Q.  It therefore makes sense to consider 
difference-cases and gradients together when searching for the optimal adaptation triple. 

As already described, each difference-case simply contains the attribute differences between 
two cases.  For two arbitrary cases τ and ρ, this can be represented as follows: 

)...,,,()...,,,( ,,2,12211 ρτρτρτ ΔΔΔρ)Δ(τ, nnn aaa    
The predicted change in solution y resulting from each attribute difference can be calculated 

from the linear model constructed using LWLR by multiplying attribute differences by attribute 
slopes.  Predicted changes in y can be assembled into a vector: 
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)ˆ...,,ˆ,ˆ(ˆ ,n,2,1 ρτρτρτρτ, ΔΔΔyΔ yyy   

where ρτ
ρ

ρτ ,, .ˆ i
i

i aa
yy 
 ,  and 

ρia
y


  is the slope of attribute ia  at point ρ . 

In looking for the optimal adaptation triple (NN, C1, C2), the search process again has two 
objectives: maximize the similarity between 

 Cases:   NN and Q 
 Predicted changes in solution resulting from differences in each problem attribute: 

QNN,yΔ ˆ  and 21 C,CyΔ ˆ  (these two vectors combine difference-cases and gradients). 
Once again, these objectives can be combined in a score for each potential adaptation triple: 

)ˆ,ˆ(),(3 21 C,CQNN, yΔyΔQNN SimSimScore   (5.5) 

This strategy can be summed up as follows: 
The optimal difference-case is one where each of its attribute differences has the same 
predicted impact on the solution as each of the attribute differences in Δ(NN, Q). 

The effect of this strategy is to further increase the size of the search space for difference-
cases.  For a given query and NN, Approach 2 searched for matching difference-cases in areas 
with a matching gradient.  Difference-cases meeting both criteria may be difficult to find in 
practice.  Approach 3 awards high scores to all difference-cases that received high scores under 
Approach 2, but also considers difference-cases from areas of domain space with very different 
gradients to that around the query.  By increasing the size of the search space, Approach 3 
improves the likelihood of finding a good solution. 

This is illustrated in Figure 5.6.  The predicted changes in solution resulting from changes in 
attribute a are similar for Δ(NN, Q), Δ(C1, C2) and Δ(C3, C4).  (Note that the vertical axis 
shows predictions from linear models in attribute a, not actual solution values.)  Difference-
cases Δ(C1, C2) and Δ(C3, C4) are therefore equally useful for solving Q even though they 
come from areas of domain space with different gradients (shown by the slopes of lines L2 and 
L3).  Approach 2 would only have considered applying Δ(C3, C4), which comes from an area 
with similar slope to the query. 
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aŷΔ
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Figure 5.6:   Approach 3: combining difference-cases and gradients in a vector 

It is interesting to note that Approach 3 caters for arbitrary non-linear domains, whereas 
Approach 2 is theoretically limited in the range of domains in can operate in.  Consider, for 
example, the simple domain shown in Figure 5.7.  Here the target function f(a) increases 
exponentially with problem attribute a.  This situation is not uncommon in real-world domains; 
in the housing domain, for example, house price may increase exponentially with location so 
that upgrading at the more exclusive end of the market commands a bigger premium than 
upgrading at the lower end.  Using Approach 2 is problematic because in an exponential 
domain, no two areas of domain space will have the same gradient.  This strongly biases the 
search for difference-cases to the region surrounding the query.  With Approach 3, however, 
difference-cases from any part of domain space may be applied because changes in gradient 
can be offset by changes in attribute differences.  In Figure 5.7, for example, difference-cases  
Δ(C1, C2) and Δ(C3, C4) are equally useful for problem solving despite coming from areas with 
different gradients.  Note that in practice, Approach 2 may still be applicable in domains such 
as this—gradients only provide a heuristic to help in the search for difference-cases, and only 
constitute one element in a multi-objective search for the optimal adaptation triple. 
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Problem Attribute  a

Difference-cases Δ(C1, C2) and Δ(C3, C4) are equally useful for problem solving 
because they give the same predicted 
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Predicted change in solution
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aŷΔ

f(a)

 
Figure 5.7:   Validity of Approach 3 for arbitrary target functions 

5.2.1.4   Approach 4: difference-cases and gradients combined in a scalar 
Let us restate the objective of our search: given query Q and neighbour NN, we are looking for 
a difference-case Δ(C1, C2) that correctly predicts the impact of Δ(NN, Q) on the solution.   

One way to estimate the overall impact that Δ(NN, Q) will have on the solution is to make a 
prediction using the local linear model constructed around Q.  Similarly, the impact of each 
difference-case Δ(C1, C2) can be predicted from the linear model constructed around C2.  If a 
difference-case can be found that has the same predicted impact as Δ(NN, Q), then the actual 
difference in solution given by 21 CC yy   can be used to solve Q (using Equation 5.3). 

For any two cases τ and ρ, the impact of a difference in attribute ai on solution y was 
predicted in Section 5.2.1.3 as 

ρ
ρτρτ

i
ii a

yay 
 .ˆ ,,  (i.e., the attribute difference multiplied by 

the slope of the attribute at ρ).  The overall impact on the solution from all attribute differences 
can be predicted simply by summing their individual contributions: 

 


Aa i
itot fa

yay )(,.ˆ ,, ρρ)(τΔΔ
ρ

ρτρτ   

(Note that this sum is equivalent to the scalar product of  Δ(τ, ρ) and the gradient of the target 
function at ρ.) 
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The search for the optimal adaptation triple again has two objectives: maximize the 
similarity between 

 Cases:   NN and Q 
 Overall predicted changes in solution resulting from Δ(NN, Q) and Δ(C1, C2): 

QNN,Δ totŷ  and 21 C,CΔ totŷ  (these two scalars combine difference-cases and gradients). 
Combining these objectives in a score formula for each potential adaptation triple: 

)ˆ,ˆ(),( ,,4 21 CCQNN ΔΔQNN tottot yySimSimScore   (5.6) 

This approach can be summed up as follows: 
The optimal difference-case has the same predicted overall impact on the solution  
as Δ(NN, Q). 

This is illustrated in Figure 5.8.  Problem attribute changes in Δ(NN, Q), Δ(C1, C2) and 
Δ(C3, C4) result in similar predicted changes in solution y.  Difference-cases Δ(C1, C2) and 
Δ(C3, C4) are therefore equally applicable for solving Q.  Note that as with Approach 3, the 
search space for difference-cases includes areas with different gradients from the query and 
from each other.  For this reason, Approach 4 can also be used in arbitrary non-linear domains 
including those with an exponential target function. 

Problem Attribute  a

L1

L2

Difference-cases Δ(C1, C2) and Δ(C3, C4) 
are equally useful for solving Q because 
they have the same predicted impact on 
the solution as Δ(NN, Q).

NN

C2
C1

Δ(NN, Q) Δ(C1, C2)

L3

C3

C4

Δ(C3, C4)

QNNΔ ,ˆtoty

21 CCΔ ,ˆtoty

43 CCΔ ,ˆtoty

Predicted overall change 
in solution

totŷΔ

Q

 
Figure 5.8:   Approach 4: combining difference-cases and gradients in a scalar 
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Indeed, the search space considered under Approach 4 is wider than that of Approach 2 or 
Approach 3.  Although difficult to visualize in two dimensions, it can be easily demonstrated 
with a three-dimensional example from the housing domain.  Suppose we have a query and NN 
with the following characteristics: 
 Q = (4, 2, ?),   NN = (5, 1, 350000)  

 Δ(NN, Q) = (1, –1),   )40000,50000()(  Qf ;  QNN,Δ totŷ  = (1 x 50000) + (–1 x 40000) 
  = 10000 
That is, for this particular query, increasing numBedrooms by 1 and decreasing location by 1 is 
likely to produce an increase of approximately €10,000 in housePrice. 

Now suppose all difference-cases are assessed using Equation 5.6 and the following two 
achieve the highest scores: 

 Δ(C1, C2) = (2, –2), )( 2Cf  = (25000, 20000); 21 C,CΔ totŷ  = 10000 
 Δ(C3, C4) = (0, 4), )( 4Cf  = (5000, 2500);    43 C,CΔ totŷ  = 10000 

Despite having dissimilar attribute differences and gradients to the query and to each other, 
both difference-cases have the same overall predicted impact on housePrice as Δ(NN, Q).  
Because of this, Approach 4 considers both to be equally applicable for solving Q.  This is 
illustrated in Figure 5.9: Δ(NN, Q) (in the centre) has a predicted impact of 10000 on the 
solution, and so do Δ(C1, C2) and Δ(C3, C4) to either side. 

QNN,Δ totŷ21 C,CΔ totŷ 43 C,CΔ totŷ
 

Figure 5.9:   Assessing difference-cases using Approach 4 

It is instructive to consider how Approaches 2 and 3 would have scored these two difference-
cases.  Approach 3 differs from Approach 4 in that the predicted impact from each attribute 
difference is considered separately.  For query Q and its neighbour NN, 

Δ(NN, Q) = (1, –1), )(Qf  = (50000, 40000);   QNN,yΔ ˆ  = ( (1 x 50000), (–1 x 40000) ) 
         = (50000, –40000) 
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That is, differences of 1 and –1 in numBedrooms and location are predicted to cause changes in 
housePrice of 50000 and –40000 respectively.  Difference-cases Δ(C1, C2) and Δ(C3, C4)  
scored equally well under Approach 4, but this is not the case under Approach 3: 

Δ(C1, C2) = (2, –2), )( 2Cf  = (25000, 20000); 21 C,CyΔ ˆ  = (50000, –40000) 
Δ(C3, C4) = (0, 4), )( 4Cf  = (5000, 2500);    43 C,CyΔ ˆ  = (0, 10000) 

Each attribute difference in Δ(C1, C2) can be seen to have the same predicted impact on 
housePrice as each difference in Δ(NN, Q)—this difference-case would therefore be awarded a 
high score.  As shown in Figure 5.10, however, individual attribute differences in Δ(C3, C4) 
have very different predicted impacts on housePrice than those in Δ(NN, Q) (i.e., 50000 vs. 0 
for numBedrooms, –40000 vs. 10000 for location).  This difference-case would therefore 
receive a low score under Approach 3. 

QNN,yΔ ˆ 43 C,CyΔ ˆ21 C,CyΔ ˆ

 
Figure 5.10:   Assessing difference-cases using Approach 3 

Approach 2 also uses gradients to assess the potential usefulness of cases, but takes a simpler 
approach that involves comparing difference-cases and gradients separately.  In this example, 

Δ(NN, Q) = (1, –1)  Δ(C1, C2) = (2, –2)   Δ(C3, C4) = (0, 4) 
)(Qf  = (50000, 40000) )( 2Cf  = (25000, 20000) )( 4Cf  = (5000, 2500) 

It can clearly be seen in Figure 5.11 that all three difference-cases are dissimilar, and all three 
gradients are also dissimilar.  For this reason, Approach 2 would assign a low score to both 
difference-cases. 
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Figure 5.11:   Assessing difference-cases using Approach 2 

5.2.1.5   Discussion 
The preceding subsections describe four different ways to consider gradients when searching 
for the optimal adaptation triple to solve a query; which one works best will depend on the 
nature of the problem domain.  Approach 1 is simplest and is adequate in linear domains.  
Constructing a traditional linear regression model is even simpler, however, and is to be 
preferred when working with domains known to be globally linear. 

Approaches 2, 3 and 4 take the gradient of domain space into account, and are likely to give 
better results in non-linear domains.  They differ in the extent to which gradients are integrated 
into the search for the optimal difference-case.  Approach 2 keeps the two separate and tries to 
find a matching difference-case in an area with a matching gradient.  Approach 3 tries to match 
difference-cases and gradients together on a per attribute basis, while Approach 4 matches 
difference-cases and gradients together on a whole case basis.  Approaches 3 and 4 take into 
account the fact that an attribute’s slope is only relevant if there are differences in that attribute 
between two cases.  They ignore an attribute’s slope if there is no actual difference to account 
for, and allow the influence of the slope to increase with the size of the difference.  Approach 2, 
on the other hand, always gives equal importance to all attributes’ slopes even if there are no 
(or very small) actual differences between cases for some attributes. 

Overall, Approaches 2, 3 and 4 progressively increase the size of the search space for 
difference-cases, while simultaneously increasing the algorithm’s reliance on the gradient 
heuristic.  The appropriateness of each approach will therefore depend on the applicability of 
this heuristic: 
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Approach 2:  Likely to perform best in highly non-linear or noisy domains, where gradients 
may offer only limited assistance in choosing difference-cases.  These are domains 
where k-NN has also been shown to perform well. 

Approach 4:  Designed to perform well in domains that exhibit strong local linearity.  These 
are domains where LWLR is also likely to perform well as a prediction algorithm.   

Approach 3:  Takes a middle path between 2 and 4, and is probably the best general-purpose 
approach for most problem domains. 

The following points regarding the operation of CBR-CD are also interesting to note: 
 When gradients are used to help find adaptation triples (in Approaches 2, 3 and 4), the 

similarity function used to compare cases does not need to use global attribute weights 
or scaling factors (see Equation 5.1).  Attributes’ influence on the solution may vary 
throughout domain space, and the algorithm correctly accounts for this. 

 Approach 3 compares difference-cases and gradients on a per attribute basis, while 
Approach 4 performs comparisons on a whole case basis.  This is strongly reminiscent 
of the difference between CBR-D and alternative approaches to diversity described in 
Section 4.2.  Approach 4 loses attribute-level information in the process of increasing 
the search space; whether this trade-off diminishes performance will depend on the 
domain. 

 In the best-scoring adaptation triple (NN, C1, C2), case NN may not be the nearest 
neighbour to the query.  Instead, NN, C1 and C2 are chosen together so as to maximize 
their likely usefulness in solving a particular query Q.  This is another example of 
adaptation-guided retrieval [Smyth and Keane 1998]—the adaptability of neighbouring 
cases is considered in addition to their proximity to the query. 

 Approaches 2, 3 and 4 perform a multi-objective search for adaptation triples by 
combining different objectives in a single linear score formula.  Most multi-objective 
optimization problems are solved by minimizing a linear cost function 

i
n

i
i Objective1

 , where weights 10  i  are chosen to reflect the relative 

importance of each objective [Eschenauer et al. 1990].  Different sets of values for i  
produce different minima that are known individually as Pareto optimal points and 
collectively as a Pareto set.  Plotting these points in a Pareto curve allows the optimal 
set of weights to be found for any particular domain—these weights give best overall 
performance and express the optimal trade-off between objectives. 
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In Approaches 2, 3 and 4, all objectives are given equal importance—weight 
parameters are not present in the score formulae nor are they used in experiments in 
Chapter 7.  While it is important to be aware of the possibility of optimizing 
performance for each individual problem domain, the intention in this thesis is to 
present CBR-CD as a general-purpose regression algorithm that performs well without 
the need for extensive domain-specific tuning. 

The basic CBR-CD algorithm is now complete.  For any given query, an adaptation triple 
can be found to predict its target value while taking the characteristics of domain space into 
account.  The first of CBR-AR’s two limitations (listed at the end of Section 4.3.2) has 
therefore been addressed: CBR-CD will work correctly in non-linear domains.  The second 
limitation of CBR-AR, lack of robustness, is addressed below in Sections 5.2.2 and 5.2.3. 

5.2.2   Using LWLR to reduce prediction error 
Theoretically, CBR-CD will provide good predictive performance in domains with any 
topology.  In practice, however, it suffers from the same robustness problems that beset  
CBR-AR (see Section 4.3.2).  These must be addressed if CBR-CD is to be used with real-
world datasets where noise is an unavoidable fact of life. 

Let us suppose that we are working with a dataset in which solution errors are distributed 
normally about their true values with variance v2.  Let us also assume that the error function is 
homoschedastic (i.e., errors are independent of problem attribute values).  As shown in 
Equation 5.3, each prediction uses solutions from three stored cases: NN, C1 and C2.  Since 
each has error variance v2, the prediction error has variance 23 v .  If we can reduce the error 
among these three cases, variance in prediction error will be reduced threefold. 

Equation 5.3 shows that the prediction mechanism in CBR-CD is highly local in that each 
prediction is based on only three cases.  But in using LWLR to help choose difference-cases, 
the algorithm also assumes some degree of local linearity in the problem domain.  This local 
linearity can act as a useful guide when choosing cases NN, C1 and C2.  Recall from Section 
5.2.1 that estimating the gradient at each case involves using LWLR to construct a local linear 
model at that point in domain space.  This local model can be thought of as an approximation 
of the target function’s mean throughout that area of domain space.  Cases lying further from 
the linear model are more likely to be noisy than those close to it.  This provides a simple 
heuristic: 

When choosing (NN, C1, C2), prefer cases that lie closer to the local linear model 
constructed around them. 



 

84 

Variance is reduced by biasing the choice of cases towards the local mean. 
The basic idea behind this approach is summed up in [Bergmann and Wilke 1998, p. 4]: 

“applying sound adaptation knowledge to a sound case leads to a sound solution”.  Here, cases 
are statistically more likely to be sound if they lie close to the mean solution in their local areas 
of domain space. 

Integrating this strategy into the CBR-CD algorithm is straightforward.  For any case τ, the 
normalized residual τr  is a measure of its closeness to the local linear model constructed 
around it: 

)(/)ˆ( minmax yyyyr  τττ   
where 

τy is the actual solution value in τ, 
τŷ  is the solution predicted using LWLR, 
maxy  and miny  are the maximum and minimum solutions values in the CB (used to 

normalize τr  to the range –1 to +1). 
In CBR-CD, we want to avoid noisy cases when choosing NN, C1 and C2.  NN is a 

standalone case, and is less likely to be noisy if it has a low residual NNr .  This is depicted in 
Figure 5.12, where selecting NN from among the solid points is more likely to result in an 
accurate prediction because these points lie closer to the local linear model constructed around 
Q. 

Local linear model
Solution

y

Problem Attribute  aQ

Solid points are closer to the 
linear model constructed 
around Q, and therefore less 
likely to be noisy.

Residuals )ˆ( yy

 
Figure 5.12:   Using LWLR to avoid noisy cases 

Cases C1 and C2, on the other hand, occur as a pair in domain space, so that if both are offset 
from their local linear model by the same distance, their predictive quality will not be affected.  
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For this reason, C1 and C2 are likely to give an accurate prediction when the difference of their 
residuals, )( 21 CC rr  , is minimized. 

Each of the score formulae for Approaches 1–4 in Equations 5.2, 5.4, 5.5 and 5.6 can be 
altered to take case quality into account: 

)))()((3( 21 CCNN rrabsrabsScoreScore ii    
As before, the adaptation triple with the highest score is used to predict the target value for Q. 

This completes LWLR’s contribution to the CBR-CD algorithm.  Previous sections have 
shown that it plays a key role as a heuristic in guiding the search for applicable difference-
cases.  This section has shown its usefulness in improving robustness by helping to avoid noisy 
cases. 

5.2.3   Combining multiple predictions to reduce prediction error 
When presented with a query case, CBR-CD conducts a search for the highest scoring 
adaptation triple and uses it to make a prediction.  But there may be several adaptation triples 
with scores almost as high as the one chosen.  This raises an opportunity for CBR-CD to 
increase robustness: make n predictions using the best n triples, and produce an overall 
prediction from their weighted average. 

If all triples were of equally high quality, averaging the first n predictions would reduce the 
overall variance of the prediction error from v2 to n

v2 .  This gain is not in fact achieved because 
the first prediction uses the highest scoring adaptation triple; predictions based on subsequent 
triples will, in general, have higher error.  The optimal value for n will vary with the problem 
domain—cross validation can be used to choose a value that minimizes overall prediction error. 

In terms of implementation, it is a simple matter to alter the search for the optimal adaptation 
triple so that a list of triples ordered by score is maintained instead.  Equation 5.3 can then be 
modified so that the overall prediction is an average of n individual predictions, each weighted 
by its score: 


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5.2.4   Adding support for non-numeric attributes 
So far, CBR-CD has assumed that cases are represented as vectors of numeric values.  Many 
practical datasets include non-numeric attributes, however.  Nominal attributes that take a 
number of discrete values, each equally dissimilar to all others, are especially common.   
CBR-CD can theoretically be extended to accommodate attributes of any type, although it 
operates best when there is at least one numeric problem attribute. 

Let us begin be examining the changes necessary to support unordered nominal (including 
Boolean) attributes.  The first change that is required is in the construction of the Difference-
CB.  The difference between any two numeric values is found by simply subtracting one from 
the other.  For nominal attributes, the difference between any two values v1 and v2 is calculated 
as follows: 








21
21

21
21 ,

,
''
''),( vv

vv
vv

uvv  (5.8) 

In other words, equal nominal values are replaced by the character ‘u’, and unequal values are 
concatenated with the symbol ‘’ between them. 

For example, given two cases C1 and C2 with numeric and nominal attribute values, 
C1 = (‘a’, 3, ‘True’, 50),  C2 = (‘a’, 5, ‘False’, 30), 

the difference between them is 
Δ(C1, C2) = (‘u’, –2, ‘TrueFalse’, 20). 

Note that the system task is still regression and so the solution remains numeric. 
Once the Difference-CB has been constructed, the operation of the prediction algorithm is 

largely unaffected by the presence of nominal problem attributes.  The most basic version of 
CBR-CD (called ‘Approach 1’ in preceding sections) does not use gradients to guide the search 
for difference-cases or avoid noisy cases.  Adapting Approach 1 to support nominal attributes 
simply requires new comparators for comparing nominal values during retrieval in the original 
and Difference-CBs: 

1. Given query Q, a neighbouring case NN is found using Equation 5.1 as before.  
Nominal attributes may have their own custom comparators, or may be treated more 
simply (e.g., sim=1 for equal values, sim=0 for unequal values). 

2. Δ(NN, Q) is calculated using Equation 5.8, and matching difference-case Δ(C1, C2) is 
found using Equation 5.1.  The embedded CBR system uses a simple formula for 
comparing two nominal values: sim=1 for equal values, sim=0 for unequal values. 

3. A prediction is made using solution values from NN, C1 and C2 as before. 
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Support can be added for an arbitrary non-numeric attribute by defining custom comparators 
for the original and Difference-CBs and a function to calculate the difference between two of 
the attribute’s values.  For example, suppose the original CB has a matrix attribute where each 
value is an (n x m) table of numbers.  Retrieving an NN for a given query requires a comparator 
to calculate the similarity between two matrices: call it matrixCompFn.  The difference 
between two matrices can be calculated by subtracting one from the other—this requires a 
custom difference function analogous to Equation 5.8.  Finally, retrieving a difference-case to 
match Δ(NN, Q) re-uses matrixCompFn to compare differences between matrices.  It is often 
the case that the difference between two values of a particular type is also a value of that type 
(i.e., the set of possible attribute values is closed under subtraction), and where this occurs, the 
comparator function can be re-used in this way. 

 
But what of the many improvements that have been made to the basic algorithm to improve 

accuracy and robustness?  Can these still be used in the presence of non-numeric attributes?  
The answer is that they can, with one minor change required when dealing with gradients. 
Using gradients to choose applicable difference-cases (Section 5.2.1):  Gradients are 

calculated by constructing a local linear model around each case in domain space.  
Since LWLR only works with numeric values, non-numeric attributes are simply 
ignored and local linear models are constructed using only those attributes that are 
numeric.  This approach is reasonable because local linear models are not used directly 
to make predictions.  They merely guide the search for cases (NN, C1, C2), and 
continue to perform a useful role even when they are constructed using only a subset of 
problem attributes.  This is borne out in the experimental results in Chapter 7. 

Using gradients to avoid noisy cases (Section 5.2.2):  Again, the only impact is that non-
numeric attributes are excluded from gradients. 

Averaging several predictions for an overall prediction (Section 5.2.3):  This aspect of 
CBR-CD is not affected by non-numeric attributes at all. 

This section opened by stating that CBR-CD works best when at least one problem attribute 
remains numeric.  The reason for this is now clear: one or more numeric attributes are needed if 
the gradient heuristic is to be used for choosing difference-cases and avoiding noisy cases.  In 
theory, Approach 1 (which doesn’t use gradients) can be used for datasets without any numeric 
problem attributes although this would eliminate one of the algorithm’s principal strengths. 
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5.2.5   Making a prediction using CBR-CD 
We are now in a position to describe the full problem solving process of the CBR-CD 
algorithm, taking into consideration the many improvements that have been made since our 
first attempt in Section 5.1.2.  Let us re-examine the housing example from that section: 
suppose we receive the query case 

 Q = (4, 2, ?), 
so that the task is to predict the value of a house with 4 bedrooms in location 2.  The full 
problem solving process proceeds as follows (see Figure 5.13): 

1. The k nearest neighbours to Q are retrieved.  In this example, let k=2: 
NN1 = (4, 3, 370000),  NN2 = (5, 1, 350000) 

2. The differences between Q and each of its NNs is found: 
Δ(NN1, Q) = (0, 1),  Δ(NN2, Q) = (1, –1) 

3. The best n adaptation triples for solving Q are found.  Gradients may be used to select 
difference-cases (using Approaches 2–4) and to assess the quality of each potential 
adaptation triple (by avoiding cases distant from their local linear model).  Note that 
because each NN’s usefulness is always assessed in the context of an adaptation triple, 
each NN may appear in several of the best n triples or in none.  As an implementation 
issue, Figure 5.13 also shows that gradients can conveniently be stored in their own CB 
and compared using a standard numeric comparator.)  For our example, let us suppose 
that Approach 2 is being used with parameter n=2, so that scores are calculated using 
Equation 5.4.  (Note that the scores shown below are for demonstration purposes only; 
as discussed in Sections 5.2.1.1 and 5.2.1.2, actual scores would be found using local 
similarity functions for cases, difference-cases and gradients, and the operation of these 
functions would in turn be determined by the statistical properties of the entire CB.) 

i. The gradient at Q is estimated by constructing a local linear model: 
)(Qf  = (50000, 35000) 

ii. The Difference-CB is searched for the best n difference-cases Δ(Ca, Cb) 
matching any of Δ(NNi, Q) where gradients at Q and Cb also match: 

Δ(C1, C2) = (0, 1, 30000), )( 2Cf  = (46000, 32000), 211 CCNN ,,Score = 5.7 
Δ(C3, C4) = (1, –1, 20000), )( 4Cf  = (51000, 30000), 432 ,, CCNNScore = 5.3 

for some C1, C2, C3, C4 in the original CB. 
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4. The target value for Q is found using Equation 5.7, that is, by taking the weighted 
average of n individual predictions, each made using Equation 5.3: 

Prediction 1: )( 21 CCNN1 yyy   = 370000 – 30000 = €340,000 
Prediction 2: )( 43 CCNN2 yyy   = 350000 – 20000 = €330,000 
Overall Prediction: Qŷ  = ((5.7 x €340,000) + (5.3 x €330,000)) / 11 = €335,182 
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Figure 5.13:   Making a prediction using CBR-CD 

Most of the processing occurs in Step 3 where the optimal set of adaptation triples is found.  
This reflects the fact that the various improvements to CBR-CD have had the effect of making 
the adaptation process more complex.  Adaptation is performed using an embedded CBR 
system that itself performs null adaptation; increased complexity in the adaptation process 
therefore equates to more complex retrieval in the Difference-CB.  The basic problem solving 
methodology has remained unchanged, however: predictions are still made using pairs of stored 
cases to bridge the gap between the query and its neighbours.  CBR-CD’s contribution has been 
to ensure that the adaptation knowledge used to solve a query is actually applicable and of high 
quality. 
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5.3   Advantages and Limitations of CBR-CD 
CBR-CD set out to solve new problems by utilizing the differences between stored cases.  It 
also aimed to avoid the limitations of previous approaches, particularly those of CBR-AR 
(listed in Section 4.3.2).  By achieving these goals, CBR-CD can be said to have the following 
advantages as a problem solving methodology: 
Works correctly in arbitrary non-linear domains:  CBR-CD can be used to perform 

regression in linear or non-linear problem domains.  The gradient heuristic ensures that 
difference-cases used to bridge the gap between the query and its neighbours are 
applicable to the problem at hand.  A number of different approaches to using gradients 
are possible, and the optimal one can be selected for each individual domain. 

Offers robust performance in real-world domains:  CBR-CD is designed to perform well in 
noisy, real-world problem domains.  It uses the gradient heuristic to avoid noisy cases 
(i.e., cases that are distant from the local linear models constructed around them), and 
reduces error by averaging several individual prediction to make an overall prediction. 

Knowledge-light approach to adaptation:  CBR-CD does not require the addition of explicit 
expert domain knowledge.  Adaptation knowledge is automatically generated from 
stored cases—from their differences and from their gradients. 

Local and global domain knowledge is combined during problem solving:  Each prediction 
uses local knowledge from the vicinity of the query (i.e., the gradient in that region of 
domain space and a list of the query’s NNs) and global knowledge derived from the 
differences between cases elsewhere in domain space. 

CBR-based approach to adaptation:  The adaptation process uses an embedded CBR system 
to store and retrieve difference-cases.  Adaptation therefore integrates neatly into the 
main CBR system, with the same case representation and retrieval mechanisms used 
for both. 

Predictions can be accompanied by good explanations:  Users can be provided with an 
intelligible explanation for each prediction, allowing them to judge the quality of the 
result for themselves.  All predictions are made using the solutions to actual stored 
cases.  Given a query Q, the following explanation can accompany the predicted 
solution:  

Case NN is very similar to Q and has solution s.  The differences between the 
two cases are (d1, d2, …).  A similar pair of cases, C1 and C2, have (almost) the 
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same differences between them.  The difference between their solutions is ds, 
therefore the predicted solution for Q is (s + ds). 

Where predictions from two or more adaptation triples are averaged to produce an 
overall prediction, each constituent can be explained in this way.  The problem solving 
process is therefore fully transparent to the user, with complete visibility into the actual 
cases involved and the way in which they are used. 

No problem solving methodology is without its limitations, and CBR-CD is no exception: 
Relatively complex and computationally expensive:  CBR-CD systems require a training 

phase during which the differences between stored cases are calculated and the gradient 
at each case is estimated.  Solving a query involves calculating the gradient in its region 
of domain space and conducting a computationally expensive search for the optimal 
adaptation triple.  Both construction and operation of a CBR-CD system are therefore 
more complex and computationally expensive than simpler approaches such as CBR-B.  
(But note that the complexity of the search algorithm is not visible to the user—each 
prediction and its associated explanation are entirely based on a set of concrete cases.) 

Gradient heuristic relies on presence of at least one numeric attribute:  Although CBR-CD 
can operate in domains with no numeric problem attributes, the value of the gradient 
heuristic declines as the number of numeric attributes decreases.  This will have a 
deleterious effect on system performance. 

5.4   Possible Extensions to CBR-CD 
This section describes two extensions to CBR-CD that appear to offer the potential for 
improved predictive accuracy but fail to deliver this in practice.  Despite their disappointing 
performance, it is instructive to examine them briefly and to consider the reasons for their 
failure. 

5.4.1   Constructing adaptation paths from several difference-cases 
The first potential enhancement to CBR-CD is to use more than one difference-case to solve a 
query.  The principle behind this approach is shown in Figure 5.14, which depicts a query and 
its NN from the example housing domain.  The Difference-CB does not contain a difference-
case to bridge the gap between the two cases.  However, a pair of difference-cases can be 
found that each cover part of the gap and together cover all of it.  A set of difference-cases that 
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combine to cover the difference between the query and an NN will be referred to as an 
adaptation path from NN to Q.  Two such paths are shown in the figure:  
{Δ(C1, C2), Δ(C3, C4)} and {Δ(C5, C6), Δ(C7, C8)} for some C1…C8 in the original CB. 

numBedrooms1 532 4 61 532 4 6

location

1

Q

6

5

4

3

2
NN

Adaptation Path 2: {Δ(C5,C6), Δ(C7,C8)}

Δ(C3,C4)

Δ(C1,C2)

Δ(C7,C8)

Δ(C5,C6)

Adaptation Path 1: {Δ(C1,C2), Δ(C3,C4)}

 
Figure 5.14:   Using adaptation paths to bridge the gap between the query and an NN 

Predicting the target value for a query involves extending Equation 5.3 to accommodate the 
extra cases used: 

 
ji

ji yyyy
,

)(ˆ CCNNQ   

Note that an adaptation path is not limited to two difference-cases but may comprise any 
number (including just one). 

The quality of an adaptation path may be judged by how completely it bridges the gap 
between the query and its NN.  As Adaptation Path 2 in Figure 5.14 shows, an adaptation path 
may actually move further away from the query before moving back towards it.  This suggests 
that an exhaustive search of the Difference-CB may be necessary to find the best adaptation 
path.  Unfortunately, this approach is not practical for computational reasons.  A CB of 1000 
cases, for example, would yield a Difference-CB of 10000 cases; finding the best path of length 
2 would then involve checking an unreasonable 100002 (= 1010) possible paths. 

A more practical search algorithm might begin by setting a maximum length for adaptation 
paths (e.g., 2).  It might then find the best n adaptation triples as before, and use them to seed n 
adaptation paths with a single difference-case.  A greedy search could then be performed 
whereby a difference-case is only appended to an adaptation path if it reduces the remaining 
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distance to the query by at least 50%.  This strategy was implemented and tested on the datasets 
used for the experimental evaluation in Chapter 7.  A significant improvement in performance 
would be needed to justify the extra complexity involved.  As it turned out, predictive results 
for all test sets were actually worse than those obtained using a single difference-case. 

Using adaptation paths composed of several difference-cases to bridge the gap between the 
query and an NN is clearly analogous to the idea of chaining together adaptation rules in  
CBR-AR.  Both are conceptually sound but suffer from a serious problem when applied to real-
world datasets: solution errors accumulate with each additional difference-case used, so that the 
benefit of bridging the gap between the query and an NN more precisely is more than offset by 
increased error in the solution.  As was the case for CBR-AR, it is counterproductive to try to 
be too precise when reasoning from noisy cases—better to accept that each prediction is just an 
estimate and try to minimize the overall statistical error.  Additive solutions such as those 
derived from adaptation paths will always increase error rates and uncertainty and are generally 
best avoided in real-world domains.  (These problems are discussed in greater detail in Section 
4.3.2 under the headings ‘Additive solution errors when more than one adaptation rule is used’ 
and ‘Problem solving is too brittle’.) 

5.4.2   Normalizing numeric difference vectors 
The second potential extension to CBR-CD is specific to datasets with numeric attributes and is 
intended for use with Approaches 1 and 2 (recall that in Approach 1, gradients are not used at 
all, while in Approach 2, difference-cases and gradients are matched separately).  The basic 
idea is to normalize difference-cases to the same length so that differences of scale are 
eliminated.  This should increase the range of problems that each difference-case can be used to 
solve. 
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Figure 5.15:   Equivalent difference-cases of different length 

Figure 5.15 shows a simplified housing domain in which housePrice is a function of only 
one problem attribute, numBedrooms.  A query and its NN are shown, and it can be seen that 
Δ(NN, Q) = 1.  Two difference-cases are also shown; the first, Δ(C1, C2), suggests that 
increasing numBedrooms by 1 increases housePrice by €100,000, while the second, Δ(C3, C4), 
suggests that increasing numBedrooms by 2 increases housePrice by €200,000.  It is clear that 
these two difference-cases make equivalent statements concerning the effect of numBedrooms 
on housePrice, and that the second is simply a scaled-up version of the first. 

The range of problems that difference-cases can be used to solve can therefore be increased 
by normalizing the length of their problem parts to 1.  Each attribute value is then a direction 
cosine [Stroud 2001] and each normalized difference-case indicates the effect that a particular 
unit vector in problem space has on the solution.  To solve a query Q, vector Δ(NN, Q) is first 
normalized and then matched with a normalized difference-case Δ(C1, C2).  This matching 
process can be performed by taking the dot product of Δ(NN, Q) and every possible 
(normalized) difference-case—the most similar difference-case will form the smallest angle 
with Δ(NN, Q) and hence produce the highest dot product (this is referred to as the dot product 
similarity [Plate 1994]).  Solution difference )( 21 CC yy   is then scaled up or down to match 
the original length of Δ(NN, Q).  In Figure 5.15, for example, Δ(C3, C4) would be normalized 
from (2, 200000) to (1, 100000), and  Δ(C1, C2) and Δ(C3, C4) would then be equally 
applicable for solving Q.  If Δ(NN, Q) = 2 or 3 instead of 1, the predicted changes in 
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housePrice )( 21 CC yy   and )( 43 CC yy   would be doubled or tripled to scale them to the 
appropriate level. 

Solving problems with normalized difference-cases increases the complexity of the 
algorithm and reduces the usefulness of explanations that accompany predictions.  The 
technique is also restricted to numeric datasets where difference-cases can be reduced to unit 
vectors, and cannot be used with Approaches 3 and 4 where gradients and difference-cases are 
considered together.  As with adaptation paths, the improvement in performance needed to 
justify these limitations did not materialize in practice—predictive accuracy was roughly 
equivalent to that of non-normalized difference-cases for Approaches 1 and 2.  This is probably 
due to the fact that the advantage of increasing the applicability of difference-cases is offset by 
the loss of information inherent in the normalization process.  The effect that a small difference 
between two cases has on the solution does not necessarily scale up to larger differences, and 
the effect of large differences does not necessarily scale down.  Best results are likely to be 
obtained when the cases C1 and C2 used to provide a solution are genuinely similar to the query 
and its NN. 

5.5   Summary 
This chapter introduced a new CBR-based regression algorithm called CBR-CD.  This 
algorithm solves a query case by calculating the differences between it and an NN, then 
estimating the effect of these differences on the solution by looking at two stored cases with 
similar differences between them.  Care must be taken to ensure that the two stored cases are of 
high quality and are actually applicable to the query at hand.  To this end, a gradient heuristic 
was introduced to help guide the search for suitable cases.  The gradient of domain space in the 
area around a case can be estimated by constructing a local linear model using LWLR.  
Integrating gradients into the search for problem-solving cases improves the relevance of 
retrieved cases with a consequent improvement in prediction accuracy.  (This claim is verified 
in the experimental evaluation of Chapter 7.) 

Issues of robustness were also addressed to ensure that CBR-CD performs well on noisy, 
real-world datasets.  The algorithm incorporates two measures for this purpose: cases lying 
close to the local mean of the target function are preferred, and a weighted average of several 
individual predictions is taken to reduce error variance.  The algorithm was also extended to 
deal with datasets possessing non-numeric problem attributes.  Overall, CBR-CD was shown to 
possess several advantages: it is designed to perform robustly in arbitrary non-linear domains, it 
is CBR-based and knowledge-light, and each prediction can be accompanied by a useful 
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explanation.  Its principal downside is that it is relatively complex and computationally 
expensive. 

Two possible extensions to CBR-CD were examined.  The first looked at the possibility of 
using several pairs of stored cases to bridge the gap between the query and its NN.  A second 
involved normalizing the differences between pairs of cases to increase their applicability.  
Both were found to increase complexity and decrease transparency for the user without offering 
improved performance in return. 
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Chapter 6 
  

Implementation of CBR-CD 
In previous chapters, we examined theoretical aspects of a number of regression algorithms.  
Standard approaches such as k-NN and LWLR were presented in Chapter 2.  CBR-based 
algorithms CBR-B and CBR-AR were described in Chapter 4, together with new algorithm 
CBR-D.  An analysis of the shortcomings of CBR-AR led to a set of requirements for a second 
new algorithm, CBR-CD, which was then described in Chapter 5.  Advantages and 
disadvantages have been proffered for each one of these.  But while some advantages may be 
more important in some operating situations than others (e.g., efficiency and plausibility), one 
measure of a regression algorithm that is always desirable is a high level of accuracy.  CBR-D 
counts among its disadvantages the fact that it is a little more complex and computationally 
expensive than CBR-B, and CBR-CD is in a similar situation vis-à-vis CBR-AR.  To find out 
whether they compensate for this with improved predictive performance, it is necessary to 
implement and test CBR-D and CBR-CD and compare their results with those of other 
algorithms. 

This chapter describes the implementation of a general purpose CBR system.  Five 
regression algorithms are supported within it: linear regression, LWLR, CBR-B, CBR-D and 
CBR-CD.  Section 6.1 describes the overall architecture of the system, while Section 6.2 
focuses on the implementation of CBR-CD in more detail.  Chapter 7 uses this implementation 
to test and assess the relative performance of the various regression algorithms. 

6.1   Architecture of CBR System 
A general purpose CBR framework was implemented within an object-oriented structure using 
the Python programming language.  Python is an ideal language for prototyping machine 
learning systems [Norvig 2000].  It is extremely easy to use, read and modify—completed code 
is often as concise and easy to read as the equivalent pseudocode.  It has built-in support for list 
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and dictionary data types, which together with dynamic typing, make it very easy to assemble 
and manipulate datasets with attributes of any type.  Because Python is an interpreted language, 
code can be tested interactively during development without the need for recompilation.  The 
downside of this is that Python usually runs slower than alternatives such as C/C++.  This 
limits its usefulness for computationally intensive applications, but does not present a problem 
for test systems such as that described here. 

The class structure of the system is very simple; all classes are shown in Figure 6.1 together 
with their public operations.  The main responsibilities of each class are as follows: 

Dataset:  The Dataset base class implements basic functionality for working with datasets.  
It reads and writes files in the CSV (‘comma-separated values’) and ARFF (‘attribute-
relation file format’ used for datasets in Weka [Witten and Frank 2000]) formats, as 
well as serialized (or pickled) Python objects.  It also supports a standard range of 
operations for manipulating datasets, including sampling and filtering instances 
according to user-defined criteria. 

Cbr:  The Cbr class is derived from Dataset.  It provides operations for constructing and 
operating a CBR system of the type described in Chapter 3.  It is capable of retrieving a 
set of NNs for a given query and using them to make a prediction; for simplicity, 
retrieval is performed with a simple sequential search through the set of stored cases.  
Built-in support is provided for classification and regression tasks, and the system can 
be extended to handle more complex tasks if necessary. 

Numeric and nominal attribute types are automatically catered for, and support for 
others can easily be added.  Operations are provided to define difference-similarity 
graphs (by a set of points) and similarity tables (by a two-dimensional array of values) 
(see [Stahl and Gabel 2003] for an introduction to these local similarity functions).  An 
arbitrary comparator for any attribute can also be defined at runtime by passing a 
Python function to Cbr.setComparator as a string—this is dynamically compiled 
and used for subsequent similarity calculations. 

To assist with the task of tuning a CBR system during operation, methods are 
provided to find suitable values for CBR parameters such as k (i.e., number of NNs to 
use for a prediction) and attribute weights, and for performing cross-validation, leave-
one-out, and standard training set/test set testing.  From a regression perspective, class 
Cbr implements the CBR-B and CBR-D algorithms described in Chapter 4. 
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CbrNp:  The CbrNp class is derived from Cbr and provides additional functionality for 
regression (the ‘Np’ in CbrNp stands for ‘numeric prediction’).  It adds support for 
two standard regression algorithms: linear regression (see Section 2.1) and LWLR (see 
Section 2.3).  Linear regression is performed analytically using the numarray 
numerical Python package*.  LWLR’s local linear models are also derived analytically 
using function  lm  from the R statistical system [R Core Development Team 2005].  
As well as these standard algorithms, CbrNp implements the CBR-CD algorithm 
described in Chapter 5, and provides functions for testing all three regression 
algorithms. 

Folds:  The Folds class divides a dataset’s instances into a number of folds.  These can then 
be used by Cbr and CbrNp objects for cross validation testing. 

6.2   CBR-CD Implementation Notes 
This section looks at the implementation of CBR-CD in greater detail.  This algorithm can be 
divided into two parts: 

1. A construction phase during which the Difference-CB is constructed and the gradient at 
each case is estimated. 

2. An operation phase during which queries’ numeric target values are predicted.  For 
each query, 

i. The k most similar stored cases (i.e., NNs) are retrieved; 
ii. n adaptation triples are found using one of four possible problem solving 

approaches and their solutions are averaged to give a final prediction. 
The behaviour of each of the two phases is governed by a number of potentially tuneable 
parameters that are described in the following sub-sections.  Some parameters are assigned 
default values, some are set automatically, and some must be set by the user. 

6.2.1   Parameters for the construction phase 
This section discusses parameters that are relevant to the construction phase of CBR-CD.  Most 
have already been examined in previous chapters.  All of them are either set to default values or 

                                                      
* numarray is a product of the Space Telescope Science Institute, which is operated by AURA for 

NASA. 
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set automatically by the system.  Since the user’s involvement is not required during the 
training phase, setup of a new CBR-CD system is straightforward. 
Number of cases in the Difference-CB:  Set to default value 

To construct the Difference-CB, each stored case is compared with a number of others.  
For a CB of size  n, comparing each case with all others in the CB would result in a 
Difference-CB of size  n x (n – 1).  Storage requirements are reduced in CBR-CD by 
comparing each case with its 10 NNs so that the Difference-CB contains  (n x 10)  
difference-cases.  The choice of the number 10 is arbitrary. 

Distance formula used for retrieval of a case’s NNs:  Set to default 
The distance between pairs to cases is calculated using the standard formula shown in 
Equation 4.1.  As discussed in Section 4.1.1, this formula can be tuned in various ways 
to improve performance in individual domains.  CBR-CD does not attempt to optimize 
the distance formula for different datasets, but always uses the same values: 

 A Gaussian weighting function (shown in Equation 4.2) is used without a 
smoothing parameter. 

 Attribute weights that reflect the global relevance of individual problem 
attributes are not used.  The reasons for this are discussed in Sections 
3.2.1.3 and 5.2.1.5. 

Number of cases used to estimate gradients in domain space:  Set automatically 
The gradient around a particular case is estimated by using LWLR to construct a local 
linear model.  The proportion of the CB used for constructing linear models is chosen 
from the set {0.05, 0.1, 0.15, 0.2} to minimize cross-validation error for each dataset.  
The contribution of each case is weighted by distance using the Gaussian weighting 
function shown in Equation 4.2.  Linear models constructed in this way not only 
provide gradients for the CBR-CD algorithm, but also provide LWLR predictions for 
experiments in Chapter 7. 

6.2.2   Parameters for the operation phase 
This section looks at parameters that govern the behaviour of CBR-CD in its operation phase.  
Again, it summarizes decisions that have been discussed in previous chapters.  All but one of 
the parameters receive default values or are set automatically by the system during an initial 
training phase.  One parameter that determines how gradients are used during problem solving 
must be set manually by the user.  The primary reason for this is to allow all four possible 
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approaches to be tested; it would of course have been possible to configure the system to 
automatically use the approach that gave the lowest cross-validation error. 
Number of matching NNs to retrieve for a query (k):  Set to default value 

This is set to the arbitrary value 10.  This is high enough to allow the algorithm some 
freedom in selecting NNs for adaptation triples, but low enough to exclude NNs that 
are unlikely to be useful. 

Approach to gradients:  Set manually by the user 
Sections 5.2.1.1–5.2.1.4 describe four different approaches to using gradients during 
the search for adaptation triples.  (Approach 1 does not use gradients at all, Approach 2 
considers gradients and difference-cases separately, and Approaches 3 and 4 consider 
the two together.)  As discussed in Section 5.2.1.5, the best-performing approach is 
likely to vary with the problem domain.  In the experiments of Chapter 7, all four 
approaches are tested for each dataset. 

Regardless of the approach used, finding suitable difference-cases involves a multi-
objective search in which case triples receive an overall score that reflects their 
applicability.  As discussed in Section 5.2.1.5, predictive performance might be 
improved by weighting the different objectives with parameter i .  In the 
implementation of CBR-CD, this approach is not used and all objectives are assigned 
equal importance. 

Number of matching difference-cases to retrieve for Δ(NN, Q):  Set to default value 
Difference-cases, gradients, nearest neighbours—all are considered together in the 
score formulae used to assess adaptation triples.  To limit computational complexity, 
only the 10 closest-matching difference-cases are considered for each (NN, Q) pair.  
Since k = 10, this means that the algorithm will always assess a total of 100 adaptation 
triples for each query.  The choice of the number 10 is arbitrary. 

Number of adaptation triples to use for a prediction (n):  Set automatically 
The value of  n  from range 1–10 that yields the lowest cross-validation error is used 
for each dataset.  So if n = 5, for example, a total of 100 adaptation triples will be 
considered and predictions from the highest-scoring 5 will be averaged to produce an 
overall prediction. 
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6.3   Summary 
This chapter described the implementation of a simple CBR framework in the Python 
programming language.  Constructed using an object-oriented architecture, this framework 
comprises four classes that provide all of the normal functionality expected in a CBR system.  
Implementations are also included for a number of regression algorithms that will be tested in 
Chapter 7: CBR-B, CBR-D, CBR-CD, linear regression, and LWLR. 

As the most sophisticated of the regression algorithms described in this thesis, CBR-CD has 
a number of parameters that govern its behaviour.  All but one of these receive default values or 
are set automatically during system construction and training.  This simplifies the deployment 
of new CBR-CD-based applications. 
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Chapter 7 
  

Experimental Evaluation 
This thesis has introduced two new CBR-based regression algorithms.  The first, CBR-D, 
predicts a query’s target value by retrieving a diverse set of neighbouring cases and taking the 
weighted average of their solutions.  The second, CBR-CD, is more substantial and attempts to 
solve new cases using the differences between stored cases.  This chapter evaluates these 
algorithms by comparing their predictive performance with that of several standard algorithms.   

7.1   Datasets Used for Experimental Evaluation 
Five datasets from the UCI [Hettich et al. 1998] and StatLib* repositories were used for the 
experimental evaluation.  They were chosen on the basis that they represent a reasonable cross-
section of the sort of regression problems that are encountered in practice.  They cover five 
different problem domains with target functions of varying degrees of linearity.  They have 
varying numbers and types of problem attributes, numbers of instances, and levels of noise.  As 
discussed in Section 2.4, different algorithms can be expected to perform better on some 
datasets than others.  Evaluating the different regression algorithms on a number of contrasting 
datasets should therefore provide a good overall assessment of their capabilities. 

The five datasets are summarized in Table 7.1. 
 

                                                      
* StatLib dataset archive is hosted by the Department of Statistics at Carnegie Mellon University, 

URL: http://lib.stat.cmu.edu/. 
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Table 7.1:   Datasets used for experimental evaluation 
Dataset Description Problem Att.s 

(Num + Nom) 
No. Instances 
(Train + Test) 

Source 

Boston 
Housing 

Predicting housing prices in suburbs 
of Boston 

13 + 0 506 UCI 

Tecator Predicting the fat content of meat 
samples* 

10 + 0 195 StatLib 

Abalone Predicting the age of abalone from 
physical measurements 

7 + 1 4177 
(3759 + 418) 

UCI 

CPU Predicting CPU performance from 
PC characteristics 

7 + 1 209 UCI 

Servo Predicting the rise time of a 
servomechanism 

2 + 2 167 UCI 

 
Two sets of factors influenced the choice of datasets, the first pertaining to the problem 

domains dealt with: 
 
Contrasting problem domains.  As seen in Table 7.1, the five datasets represent five very 

different problem domains ranging from housing to servomechanisms.  Knowledge-
light regression algorithms such as those tested in this chapter should be capable of 
adapting easily to different domains while maintaining a consistently high level of 
predictive accuracy. 

Varying degrees of linearity.  When discussing different problem domains, it is useful to 
assume the existence of an unknown target function that accurately maps problem 
attributes to solutions.  The goal of regression algorithms is then to approximate this 
function as closely as possible, either globally (e.g., in a neural network) or locally 
(e.g., using k-NN).  One measure of the complexity of a domain’s target function is its 
degree of global linearity, that is, how accurately it can be approximated by a linear 

                                                      
* Tecator dataset was originally compiled by Hans Henrik Thodberg, Danish Meat Research Institute, 

Maglegaardsvej 2, Postboks 57, DK-4000 Roskilde, Denmark.  Available from StatLib at 
http://lib.stat.cmu.edu/datasets/tecator.  Dataset contains 100 numeric problem attributes (absorbency 
levels for different infrared frequencies).  The most important 22 (found using principal component 
analysis) are also listed, and the first 10 of these are used in the experimental evaluation described here. 
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regression model.  The more non-linear the target function, the more complex it can be 
considered to be. 

A related measure of a target function’s complexity is its degree of local linearity.  If 
the solution changes smoothly with respect to problem attributes over local areas of 
domain space, it may be approximated well by local linear models in those regions.  
Such target functions are less complex than those that are highly non-linear even in 
local sub-sections of domain space. 

The five datasets chosen for the experimental evaluation have different degrees of 
global and local linearity.  This is shown in the Experimental Setup (Section 7.3.1), and 
also in the results obtained for global and local linear modelling in Experiment 2 
(Section 7.4.2).  Varying levels of linearity among target functions tests the versatility 
of the different algorithms in coping with problem domains with different 
characteristics. 

 
The second set of factors influencing the choice of datasets relate to the characteristics of the 

datasets themselves: 
No missing values.  Linear regression and LWLR do not work in the presence of missing 

values.  CBR-CD uses LWLR as a heuristic during problem solving, and so it doesn’t 
work with missing values either.  These algorithms can only be used with incomplete 
datasets following imputation of missing data (i.e., filling in missing data with 
plausible values).  Multiple imputation (MI) [Rubin 1996] is one of a number of 
standard algorithms used for this purpose. 

Varying number and types of problem attributes.  The number of problem attributes among 
the datasets varies from 4 to 14.  All datasets contain at least one numeric problem 
attribute; this is necessary to allow linear regression, LWLR, and the full CBR-CD 
algorithm to be used.  Three of the five datasets also contain one or more nominal 
attributes.  This allows CBR-CD’s support for non-numeric attributes to be tested. 

Varying numbers of instances.  The chosen datasets vary in size from 167 up to 4177 
instances to test how algorithms respond to different levels of case coverage.  Note that 
the implementation of the various regression algorithms (as described in Chapter 6) is 
not optimized for computational efficiency; it is intended as a prototype rather than an 
operational system and is not designed to support very large datasets. 

Varying levels of noise.  All real-world datasets are subject to noise, and all real-world 
regression algorithms must therefore deal with it.  Noise may be caused by inaccurate 
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measurement (or recording) of problem attributes or solutions.  Alternatively, it may be 
caused by problem attributes that have some affect on the solution but that are not 
included in the dataset.  In medical domains, for example, full details of a patient’s 
physiological characteristics and medical history cannot possibly be included in any 
dataset.  There is therefore an inevitable degree of uncertainty involved in mapping 
problem attributes to solutions, and this is reflected in a certain level of ‘noise’ within 
each dataset. 

All five datasets represent real-world problem domains and possess moderate to high 
levels of noise.  The Abalone dataset is particularly noisy, reflecting the fact that it is 
difficult to predict the age of an adult mollusc on the basis of a few physical 
measurements. 

Freely available and widely used.  All datasets are publicly available, and so all results can be 
benchmarked against those obtained with alternative implementations or algorithms if 
necessary. 

7.2   Overview of Experiments 
Two sets of experiments are presented here.  The first set focuses on the algorithm that is the 
primary contribution of this thesis, CBR-CD.  It comprises an ablation study in which different 
variants of the algorithm are compared to show how improvements in performance are related 
to different parts of the algorithm.  The second set of experiments compares the performance of 
several regression techniques, paying particular attention to the relative performance of the two 
new algorithms, CBR-D and CBR-CD. 

The following points are relevant to the conduct of both sets of experiments: 
 All numeric solutions and problem attributes are normalized to the range 0–1 for all 

datasets.  This makes them easier to work with and allows more meaningful 
comparison of results for different algorithms and datasets. 

 Leave-one-out cross validation is used for all testing, with the exception of the Abalone 
dataset where a 90%/10% training/test split is made. 
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7.3   Experiment 1—Comparing Different Variants of CBR-CD 
This experiment involves an ablation study of the CBR-CD algorithm.  In an ablation study, 
different parts of an algorithm are systematically removed to see which result in a substantial 
reduction in performance.  This makes it possible to identify which aspects of the algorithm are 
responsible for its predictive power, and which can potentially be dispensed with without 
adversely affecting it.  In this experiment, the ablation study assesses the merit of the different 
ways to use gradients and to improve robustness within CBR-CD. 

7.3.1   Experiment 1: Experimental setup 
The behaviour of the CBR-CD algorithm is governed by a number of parameters.  As discussed 
in Section 6.2, two of these parameters are automatically set to values that minimize cross-
validation error over each dataset.  They are n (i.e., the number of adaptation triples whose 
predictions are averaged to produce a final prediction), and the proportion of each dataset used 
to construct local linear models.  The values assigned to these parameters for each dataset are 
shown in Table 7.2. 

Table 7.2:   Values of parameters set automatically in CBR-CD 
Dataset n % of dataset used for local linear models*  

Boston Housing 5 10% 
Tecator 5 20% 
Abalone 10 10% 
CPU 5 10% 
Servo 2 5% 

 
Note that the well-populated but noisy Abalone dataset received the maximum value of 10 

for parameter n—averaging a large number of predictions reduced error variance.  On the other 
hand, n is set to 2 for the highly non-linear Servo dataset—the benefits of averaging predictions 
from lower-scoring adaptation triples was more than offset by their reduced applicability.  A 
high degree of non-linearity also explains the relatively low number of cases used to construct 
local linear models for Servo. 

                                                      
* These values are also used for the LWLR algorithm in Experiment 2. 
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Six different variants of CBR-CD are compared in this experiment.  Each is defined by a 
particular approach to using gradients (Approach 1–4) and by whether or not LWLR and 
weighted averaging are used to increase robustness: 

1. Approach 1.  This is the most basic version of CBR-CD (see Section 5.2.1.1).  A 
single adaptation triple is used for each prediction, and difference-case Δ(C1, C2) is 
chosen from any part of domain space to provide the closest match to Δ(NN, Q). 

2. Approach 1 with NN Heuristic.  This is similar to the basic algorithm except that 
cases from close to the query are preferred when choosing difference-case Δ(C1, C2).  
This ‘nearest-neighbour heuristic’ has been suggested in prior research and serves as a 
useful baseline for comparison (see Section 4.3.3). 

3. Approach 1 + Increased Robustness.  Predictions from several adaptation triples are 
averaged for each prediction (see Section 5.2.3).  The number used for each dataset is 
listed in Table 7.2.  In a second variation of this experiment, LWLR is also used to 
avoid noisy cases (see Section 5.2.2). 

4. Approach 2 + Increased Robustness.  As 3, but with a preference for difference-cases 
from areas of domain space with a gradient similar to that around the query (see 
Section 5.2.1.2). 

5. Approach 3 + Increased Robustness.  As 3, but with gradients and difference-cases 
combined in a vector and considered together during the search for adaptation triples 
(see Section 5.2.1.3). 

6. Approach 4 + Increased Robustness.  As 3, but with gradients and difference-cases 
combined in a scalar and considered together during the search for adaptation triples 
(see Section 5.2.1.4). 

7.3.2   Experiment 1: Results 
Each variant of CBR-CD was tested on each of the five datasets.  Results were then aggregated 
to show the overall performance of each variant relative to the basic algorithm (variant 1).  
Results are shown in Figures 7.1–7.6, with the six variants shown left to right in each chart. 
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Figure 7.3:   Experiment 1—Results for Abalone dataset 
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Figure 7.4:   Experiment 1—Results for CPU dataset 
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Figure 7.6:   Experiment 1—Aggregated Results 

7.3.3   Experiment 1: Conclusions 
The following conclusions may be drawn from Experiment 1: 

1. The NN Heuristic did not improve results over the basic CBR-CD algorithm.  As 
discussed in Section 4.3.3, the benefit of choosing difference-cases from close to the 
query was more than offset by the reduction in search space for these cases. 
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2. All enhancements to the basic algorithm described in Section 5.2 improved results over 
the basic algorithm: 

 Using gradients to guide the search for difference-cases (i.e., using Approaches 
2–4 instead of Approach 1); 

 Increasing robustness by using LWLR to avoid noisy cases; 
 Increasing robustness by averaging predictions from several adaptation triples 

to produce a final prediction. 
3. The best approach to using gradients depended on the dataset concerned: Approaches 

2, 3 and 4 were best twice, twice and once for the five datasets.  Overall, the best-
performing was Approach 3 (described in Section 5.2.1.3).  It is not surprising that 
different approaches are more appropriate for some datasets than for others; as 
discussed in Sections 2.4 and 5.2.1.5, no algorithm is universally better than all others 
in all circumstances.  It is for this reason that CBR-CD was designed with the 
flexibility to vary its approach to suit the particular characteristics of each individual 
dataset. 

7.4   Experiment 2—Comparing Different Regression Algorithms 
The second set of experiments assesses the performance of CBR-D and CBR-CD relative to a 
number of standard regression techniques.  As discussed at the beginning of Chapter 6,  
CBR-CD is more computationally intensive than some alternative approaches and needs to 
justify this with good predictive performance.  Similarly, CBR-D is a little more elaborate than 
CBR-B and should compensate for this with improved accuracy. 

7.4.1   Experiment 2: Experimental setup 
The following regression algorithms are tested in Experiment 2: 
CBR-B, k = 1:  Each query is solved by simply copying the solution from its nearest 

neighbour.  This is the simplest instance-based algorithm, and serves as a useful 
baseline for comparing predictive performance. 

CBR-B:  Each query is solved by taking the weighted average of solutions from its k-NNs (see 
Section 4.1).  The value of k that minimizes cross-validation error is used for each 
dataset.  The contribution from each neighbour is weighted by distance from the query 
using a Gaussian weighting function (shown in Equation 4.2). 
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Linear Regression:  A single linear model is constructed over the entire dataset and used to 
make predictions for new cases (see Section 2.1).  Linear regression only works with 
numeric attributes, and so the algorithm was run twice for the three datasets with 
nominal attributes: once with nominal attributes removed, and once with each nominal 
attribute replaced by an ordered set of synthetic binary attributes [Witten and Frank 
2000, p. 204].  The better of the two results is shown in the Results section below. 

LWLR:  Local linear models fitted to each query’s NNs are used to make predictions (see 
Section 2.3).  The number of cases used in their construction varies with the dataset, 
and is chosen to minimize cross-validation error.  Gaussian distance weighting reduces 
the influence of cases more distant from the query.  LWLR does not support non-
numeric attributes, and so nominal attributes are treated as for linear regression. 

M5′ (M5P):  This algorithm produces model trees with linear regression equations at the leaves 
(see Section 2.5.1).  The Weka implementation is used with default parameter settings 
[Witten and Frank 2000, pp. 202–208]. 

CBR-D:  Queries are solved by taking the weighted average of solutions from k diverse cases 
chosen from among a larger set of NNs (see Section 4.2).  As with CBR-B, the value of 
k is set by minimizing cross-validation error over each dataset and Gaussian distance 
weighting is used. 

CBR-CD:  Queries are solved using case differences as described in Chapter 5.  All variants of 
CBR-CD in Experiment 2 use the two robustness measures discussed in Section 5.2 
(i.e., LWLR is used to help avoid noisy cases, and the weighted average of predictions 
from several adaptation triples is taken).  For each dataset, three results are shown for 
CBR-CD that reflect different approaches to choosing adaptation triples: 

1. Diffs—No Grad.  Gradients are not used to guide the search for adaptation triples 
(i.e., Approach 1 is used). 

2. Diffs—Mean Grad.  The three gradient-based approaches to selecting adaptation 
triples (i.e., Approaches 2–4) are used and their results averaged. 

3. Diffs—Best Grad.  The best performing of the three gradient-based approaches 
to choosing adaptation triples is used.  (The best approach for any particular 
dataset can be found by performing cross-validation testing on a subset of cases.) 

Four of these algorithms, CBR-B, LWLR, CBR-D and CBR-CD have parameters that are 
automatically set during an initial training phase.  Parameter values for LWLR and CBR-CD 
are shown in Table 7.2.  The values of k used by CBR-B and CBR-D are shown in Table 7.3. 
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Table 7.3:   Values of  k  used by CBR-B and CBR-D 
Dataset k  (CBR-B) k  (CBR-D) 

Boston Housing 3 4 
Tecator 3 5 
Abalone 10 10 

CPU 6 5 
Servo 1 1 

 
These parameter values reflect the nature of the different datasets.  Abalone is well-populated 
but very noisy; best results are therefore obtained by averaging solutions from a high number of 
NNs.  Servo is extremely non-linear, and so the usefulness of neighbouring cases declines 
rapidly with distance from the query—hence the low values for k.  The other datasets lie 
between these two extremes. 

7.4.2   Experiment 2: Results 
Each regression algorithm was tested on each of the five datasets.  Results for all datasets were 
then aggregated to show the overall performance of each algorithm relative to 1-NN.  Results 
are shown in Figures 7.7–7.12. 
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Figure 7.7:   Experiment 2—Results for Boston Housing dataset 
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Figure 7.8:   Experiment 2—Results for Tecator dataset 
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Figure 7.9:   Experiment 2—Results for Abalone dataset 
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Figure 7.10:   Experiment 2—Results for CPU dataset 
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Figure 7.11:   Experiment 2—Results for Servo dataset 
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Figure 7.12:   Experiment 2—Aggregated Results 

7.4.3   Experiment 2: Conclusions 
The following conclusions may be drawn from Experiment 2: 

1. CBR-D significantly outperformed CBR-B on two of the five datasets tested, and 
performed at a statistically equivalent level on the other three.  Note that the high level 
of non-linearity in the Servo dataset meant that using a single NN gave best—and 
equal—results for both CBR-B and CBR-D.  These results are summarized in Table 
7.4.  (The Significant? column indicates whether one outperformed the other to a 
statistically significant degree on a one-tailed t-Test with P < 0.01.) 

Table 7.4:   CBR-D vs. CBR-B 
Dataset Best Significant? 

Boston Housing CBR-D Yes 
Tecator CBR-D No 
Abalone CBR-B No 
CPU CBR-D Yes 
Servo = No 

Overall, these results suggest that CBR-D’s strategy of aiming for diversity among the 
query’s NNs does improve the accuracy of predictions. 
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2. One of the central propositions of this thesis is that CBR-CD improves on previous 
case-differences-based algorithms by using gradients to guide the search for difference-
cases.  Figure 7.12 shows that substantially better results are obtained using gradients 
than without them (Diffs—Mean Grad vs. Diffs—No Grad).  This demonstrates the 
merit of employing gradients as a search heuristic, regardless of the detail of how they 
are actually used (i.e., which of Approaches 2–4 is taken).  It can also be seen that the 
best of the three gradient-based approaches for each dataset (Diffs—Best Grad) 
outperformed the mean (Diffs—Mean Grad); this shows the benefit of choosing the 
correct approach prior to problem solving. 

3. CBR-CD performed well relative to other regression techniques on the datasets tested.  
It was statistically best-performing on one of the five datasets and statistically joint best 
on three others (LWLR was best performing on the fifth).  These results are shown in 
Table 7.5 (again, the Significant? column indicates the result of a one-tailed t-Test with 
P < 0.01). 

Table 7.5:   CBR-CD vs. Other Algorithms 
Dataset Best 2nd Best Significant? 

Boston Housing CBR-CD LWLR Yes 
Tecator LWLR CBR-CD No 
Abalone CBR-CD CBR-B No 
CPU LWLR CBR-CD Yes 
Servo M5′ CBR-CD No 

As already noted, it is to be expected that some algorithms will perform better in some 
circumstances than others.  Overall, however, these results show CBR-CD’s 
performance to be competitive with that of alternative state-of-the-art algorithms. 

The results of Experiment 2 also highlight some general points of interest: 
 The ‘no free lunch’ theorem, introduced in Section 2.4, states that different regression 

algorithms can be expected to have variable performance across different problem 
domains.  This is clearly demonstrated in Experiment 2.  LWLR, for example, performs 
best on Tecator and CPU but badly on Abalone, while CBR-B shows an opposite bias by 
performing relatively well on Abalone but badly on Tecator and CPU.  This underlines 
the difficulty of comparing regression algorithms with one another: the optimal 
algorithm to use in any situation will always depend on the nature of the problem domain 
and the dataset describing it.  M5', for example, is best performing on Servo and 
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therefore the algorithm of choice in this domain.  The fact that it is worst performing on 
Abalone has no bearing on this decision.  With this in mind, the ‘Aggregated Results’ 
graph in Figure 7.12 should be interpreted as a measure of the different algorithms’ 
consistency across different domains, not a measure of their overall worth. 

 Chapter 2 discussed the notion that more complex regression algorithms are often 
needed to achieve good predictive performance in more complex domains.  All five 
datasets used in Experiment 2 have target functions that are globally non-linear.  For this 
reason, simple linear regression does not perform particularly well.  The next simplest 
algorithm, CBR-B (which is equivalent to k-NN), also has relatively poor results.  The 
more complex algorithms LWLR and CBR-CD, on the other hand, perform relatively 
better.  This highlights the trade-off that often exists between simplicity and 
performance: more complex algorithms may be preferred where accuracy is of 
paramount importance, while greater transparency and slightly lower levels of accuracy 
may be more appropriate in other circumstances. 

7.4   Discussion 
Experiments 1 and 2 concentrated on assessing the performance of CBR-CD, as befits its 
central place in this thesis.  They have shown that the complete CBR-CD algorithm performs 
well relative to other regression techniques.   The question, posed at the beginning of Chapter 
6, is whether this performance justifies its computational intensiveness.  The answer must be 
that it depends on the application at hand.  Good predictive performance is not the be-all and 
end-all for machine learning algorithms, but it is a most desirable characteristic.  It is also the 
first of the three requirements that were placed on CBR-CD in Table 4.3; the other two being 
robustness (i.e., the ability to perform well in noisy domains) and simplicity (i.e., ease of 
construction and maintenance for new CBR-CD systems, and results that can be easily 
explained to users).  Having described the operation and performance of CBR-CD, we are in a 
position to assess it against these three requirements: 
Accuracy:  Experiment 2 showed that CBR-CD provided good predictive performance across 

the datasets tested.  Part of the reason for this may be due to its flexibility.  It includes 
both ‘lazy’ and ‘eager’ elements: difference-cases and gradients are calculated in 
advance, but most of the problem solving process is delayed until a query is received.  
It also incorporates local and global elements: it is highly local in that each prediction 
is ultimately based on only a few cases, but global in that difference-cases may come 
from any part of domain space. 
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Robustness:  The five datasets used in the experimental evaluation contrast with one another in 
several ways: number and type of attributes, number of instances, level of noise, degree 
of non-linearity in the target function, etc.  The performance of most algorithms in 
Experiment 2 can be seen to vary across the datasets; LWLR, for example, is best-
performing on the CPU dataset but among the worst on Abalone.  CBR-CD, on the 
other hand, was either statistically best or second best on all five datasets.  This 
consistency is an important point in its favour: applying CBR-CD to a new dataset is 
likely to give good performance regardless of the problem domain. 

Simplicity:  CBR-CD systems undergo an initial training period during which parameters are 
automatically set to suitable values.  (The only parameter set manually is the approach 
taken to using gradients, but as stated previously, it would be a straightforward matter 
to automatically set this too.)  New CBR-CD systems are therefore simple to construct.  
Although not a focus of this research, each prediction could also be accompanied by 
the cases used to generate it.  The prediction process uses only the solution values of 
stored cases and is entirely transparent; much of the algorithm’s complexity comes 
from the search process for applicable, non-noisy cases, and this process is not visible 
to users.  (See Section 5.3 for more on user explanations in CBR-CD.) 

In short, the CBR-CD algorithm was designed to place CBR at the centre of an accurate, robust 
regression system.  The overall assessment must be that it successfully meets these design 
requirements. 

Experiment 2 also assessed the performance of the second new CBR-based algorithm,  
CBR-D.  This was shown to significantly outperform CBR-B on the datasets tested, thereby 
demonstrated the benefit of aiming for diversity among a query’s NNs.  The improvement 
shown was in line with expectations arising out of the theoretical discussion in Section 4.2, and 
would seem to justify the algorithm’s modest increase in complexity over CBR-B. 

7.5   Summary 
This chapter presented the results of an experimental evaluation of the CBR-D and CBR-CD 
regression algorithms.  Two sets of experiments were conducted.  The first, Experiment 1, 
tested different variants of CBR-CD and found that performance was improved by all of the 
enhancements to the basic algorithm described in Chapter 5.  The second, Experiment 2, 
compared the performance of CBR-D and CBR-CD against that of a number of standard 
regression algorithms.  CBR-D was found to outperform CBR-B, confirming the value of 
encouraging diversity among a query’s NNs.  CBD-CD performed competitively relative to all 
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other algorithms, with a high degree of consistency across different datasets.  An assessment of 
CBR-CD found that it meets the requirements set down for it at the end of Chapter 4: it 
successfully applies CBR to regression in a manner that achieves accurate, robust performance 
in diverse domains. 
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Chapter 8 
  

Conclusions and Future Work 
The purpose of this research has been to apply case-based reasoning (CBR) to regression, that 
is, to bring one of the principal paradigms of modern machine learning to bear on one of the 
primary tasks in computational modelling.  The account contained in this thesis has been 
presented in four parts: 

1. A description of the regression task and the CBR approach to problem solving; 
2. An analysis of previous approaches to using CBR for regression; 
3. The proposal of two new CBR-based algorithms that address some of the limitations of 

previous approaches; 
4. An account of the implementation and evaluation of these algorithms to determine 

whether or not they constitute an improvement over what came before. 
These four parts are briefly summarised in the following section. The thesis then concludes 
with a short discussion and some possible ideas for future work. 

8.1   Thesis Summary 

8.1.1   Introduction to regression and CBR (Chapters 2 & 3) 
The regression task simply involves predicting the value of a numeric variable, for example, 
predicting the value of a house given its location and number of bedrooms.  Regression has 
been an active area of research since the late nineteenth century, when Francis Galton found 
that the heights (and intelligence levels) of parents were linearly correlated with those of their 
children.  By graphing the heights of parents and children in a linear regression model, the 
height of a parent could be predicted from the height of its child (and vice versa).  Many more 
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sophisticated approaches to numeric prediction have since been developed, among them k-NN, 
locally-weighted linear regression (LWLR) and model trees.  These algorithms often involve a 
trade-off whereby improved predictive accuracy is achieved at the expense of greater 
complexity and a need for larger amounts of training data. 

Case-based reasoning, the approach taken to regression in this thesis, involves solving new 
problems by re-using the solutions to similar past problems.  It was originally investigated as a 
model of human problem solving—people often tackle new problems by recalling how they 
dealt with similar situations in the past.  As a machine learning paradigm, CBR is characterised 
by an instance-based approach whereby old problems (and their solutions) are stored as a set of 
cases in a case base.  When a new problem arrives, one or more similar past problems are 
retrieved.  Their solutions may be applied directly to the new problem, or may need to be 
adapted to fit it more precisely.  CBR systems have a number of advantages over alternative 
approaches, chief among them the fact that they are often relatively simple to construct, use and 
understand.  As a technology, CBR has been widely adopted for applications such as help-desk 
support and web-based recommender systems. 

8.1.2   Previous approaches to using CBR for regression (Chapter 4) 
The simplest way to use CBR for regression is referred to as CBR-B (CBR-Basic) in this thesis.  
Given a new problem (or query case to use CBR terminology), this algorithm retrieves a 
number of similar past cases and takes the weighted average of their solutions.  A distance 
weighting function is used so that cases most similar to the query have the greatest influence on 
the predicted solution. 

A more complex alternative approach was proposed in the 1990’s by Kathleen Hanney and 
Mark Keane.  Problem solving starts by finding the differences between the query and a similar 
past case.  A search is then conducted for pairs of stored cases with the same differences 
between them; these cases indicate the effect that these differences have on the solution.  For 
example, suppose we want to predict the value of a house that differs from the most similar 
stored case by a single bedroom.  Suppose too that the case base contains a pair of cases that 
also differ by a single bedroom, and that this resulted in a price increase of €50,000.  The 
query’s value can then be predicted by taking the price of the most similar case and adding 
€50,000 to account for the difference between them. 

Hanney and Keane proposed converting the differences between stored cases into a set of 
adaptation rules during an initial training phase.  Their approach is referred to as CBR-AR 
(CBR-AdaptationRules) in this thesis. 
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8.1.3   New CBR-based regression algorithms (Chapters 4 & 5) 
Both prior approaches to using CBR for regression have much to recommend them, but 
unfortunately, they also suffer from a number of drawbacks.  CBR-B’s principal problem is that 
the cases used to generate a solution may all be offset from the query in a particular direction.  
Suppose, for example, that we want to predict the value of a house with five bedrooms.  If all of 
the retrieved cases have three or four bedrooms, then the predicted house price is likely to be 
too low.  The solution is to try to choose a diverse set of similar cases with the query at their 
centre.  This is the approach taken by CBR-D (CBR-Diverse), the first of the two new 
regression algorithms presented in this thesis. 

The second new approach, referred to as CBR-CD (CBR-CaseDifferences), builds on the 
principles underlying CBR-AR and is more substantial.  In common with its predecessor, it 
solves a query by looking at how it differs from a similar past case and then using a pair of 
stored cases to account for these differences.  Its primary contribution lies in recognising that 
not all stored cases are useful for solving each particular query.  In the housing example in 
Section 8.1.2 above, for example, it is not enough to know that the difference between two 
houses is a single bedroom.  The impact of this difference on house price will depend on the 
location of the property as well as on the precise number of bedrooms involved (a change from 
one to two bedrooms may have a very different impact on house price than a change from five 
to six, for example).  To address this problem, CBR-CD uses a second regression algorithm, 
LWLR, as a heuristic to guide the search for cases that are likely to be useful for solving each 
individual query.  It also takes steps to ensure robust performance when predictions are based 
on noisy, real-world datasets. 

8.1.4   Implementation and evaluation of new algorithms (Chapters 6 & 7) 
A working CBR system was constructed that implemented several of the regression algorithms 
mentioned above: linear regression, LWLR, CBR-B, CBR-D, and CBR-CD.  The system was 
designed in a simple object-oriented framework using the Python programming language. 

Based on this implementation, an experimental evaluation was conducted to find out how the 
two new CBR-based regression algorithms—CBR-D and CBR-CD—perform in practice.  Two 
sets of experiments were performed, each using five contrasting, publicly available datasets.  
The first looked at different variations of the CBR-CD algorithm and showed that each of its 
constituent parts makes a contribution towards improving predictive performance.  The second 
compared CBR-D and CBR-CD with the following standard algorithms: linear regression, 
LWLR, CBR-B, and model trees (the Weka implementation of M5′ model trees was used).  
Good results were achieved for both: CBR-D provided an improvement over CBR-B, and 
CBR-CD performed well relative to all other algorithms.  The overall conclusion from these 
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experiments was that the two algorithms lived up to theoretical expectations and fulfilled the 
requirements set down for them. 

8.2   Conclusions 
The aim of this thesis was summed up in the Introduction: 

Design a regression system using CBR that provides effective, robust performance 
across different problem domains. 

This aim has been met with two new algorithms, CBR-D and CBR-CD.  The latter, in 
particular, demonstrated good performance relative to alternative algorithms and holds out the 
promise of being a useful general-purpose approach to regression. 

Designing a new algorithm that outperforms all existing regression algorithms was not the 
primary goal of this research, however.  Several innovative new algorithms have been 
developed over the past few decades; two that were mentioned in Chapter 2 are neural 
networks and radial basis function networks.  There is no doubt that in many (and perhaps 
most) domains, these or other algorithms would yield more accurate results than CBR-D and 
CBR-CD.  No, the value of this research is that an effective regression system was constructed 
using case-based reasoning, an approach that solves each new problem by retrieving similar 
past cases and re-using their solutions.  There are two reasons why this approach is a useful one 
to take. 

First, a regression system founded on case-based reasoning will inherit all of the advantages 
that have contributed to CBR’s success in recent years.  Chapter 3 discussed these advantages 
in some detail.  CBR systems are often straightforward to construct and maintain since their 
main repository of knowledge is a set of historical cases.  That is, CBR systems are generally 
knowledge-light.  A second advantage is that CBR systems offer excellent performance during 
operation because each prediction is based on specific past cases rather than on a generalized 
model.  These cases can also be presented to users to show how the solution was arrived at, 
making the problem solving process more transparent and allowing users to assess the quality 
of each proposed solution for themselves.  Ease of construction and maintenance, good 
performance, transparent problem solving—these are all characteristics of the two new 
regression algorithms proposed in this thesis, CBR-D and CBR-CD. 

The second reason that applying CBR to the problem of regression is useful is to 
demonstrate the viability of this approach.  CBR systems have traditionally performed 
regression by retrieving some old cases similar to the new problem and taking the (weighted) 
average of their solutions.  This approach is referred to as CBR-B in this thesis, and as shown 
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in the experimental evaluation in Chapter 7, it does not perform particularly well.  An 
alternative approach based on case differences was proposed by various researchers in the late 
1990s.  Unfortunately, this approach (referred to as CBR-AR in Chapter 4) suffered from a 
number of theoretical limitations that rendered it unsuitable for use in real-world domains.  For 
this reason, the only evaluations of its performance that were carried out were based on 
artificial linear datasets.  But as shown in the description and evaluation of CBR-CD in 
Chapters 5 and 7, these limitations can be overcome to produce an algorithm that provides 
robust, competitive performance on real-world datasets.  Moreover, CBR-CD achieves good 
results without abandoning the core values of CBR, and in particular, without eschewing the 
knowledge-light approach that endows CBR with its chief advantage: simplicity.  Domain 
knowledge contained within the CB is too often overlooked when knowledge-intensive 
approaches (i.e., those that advocate the addition of domain-specific, rule-based adaptation 
knowledge) are proposed as the only means of achieving good performance for more complex 
system tasks and domains.  CBR-CD demonstrates that there is a great deal of implicit 
adaptation knowledge in the CB that, when properly harnessed, can improve the quality of 
predictions over pure local learning.  Its problem-solving approach is straightforward: given the 
difference between the query and a neighbouring case, what can we learn from similar pairs of 
cases about how to bridge this gap?  This approach is also applicable beyond regression, and 
more complex system tasks could be tackled along similar lines. 

The majority of CBR applications in operation today are simple, retrieval-only systems.  The 
case-differences approach described in this thesis and exemplified in CBR-CD shows CBR’s 
potential for tackling a wider range of problems, and for doing so in a knowledge-light manner.  
Therein lies the primary contribution of this research. 

8.4   Future Work 
This thesis has introduced a practical, working CBR system that uses case differences for 
regression.  As suggested above, the underlying principle might usefully be applied to more 
complex tasks such as planning and synthesis.  Recent research has supported the idea that 
CBR may constitute a viable approach to solving planning problems [Kuchibatla and Muñoz-
Avila 2006].  This suggests a promising direction for future research: assess whether or not 
case differences can be used for more complex forms of adaptation, and if so, build a working 
prototype system.  A useful starting point for investigations in this direction might be provided 
by Section 5.4.1, which proposed bridging the gap between the query and a neighbouring case 
in several discrete steps.  This approach did not work well for regression, but might prove more 
useful for planning and synthesis tasks where possible solutions can be verified for correctness. 
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