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Abstract 
 

 

 

The ultimate objective of traffic control is to optimize the flow of traffic throughout the transport 

network. Optimized traffic flow leads to reduced traffic congestion and consequently reduced travel 

times, accidents, noise and air pollution. Approaches to traffic control must be adaptive so as to be able to 

learn how to optimize for traffic flow levels which range from light to heavy or that change significantly 

from one minute to the next. These approaches must also be able to optimize traffic flow within transport 

networks that range in size from a single individual intersection to networks containing hundreds of 

connected intersections. Coordination of traffic signal controllers along busy traffic corridors enables the 

establishment of progressive signal systems. These systems create “green waves” of traffic such that 

vehicles traveling along the main traffic corridors of the network are unlikely to have to stop at any red 

lights. Establishing progressive signal systems is not a trivial task. In order to do so the traffic light 

sequences of intersections along a traffic corridor must have their start time offset from each other. The 

appropriate offset is traditionally calculated based upon the distances between the intersections and the 

average speed of vehicles traveling between the intersections. It is the time consuming and error prone 

job of a traffic engineer to manually specify these variables for each individual intersection. Further 

complications are introduced by the fact that traffic flow within a transport network is dynamic by nature. 

For example the reversal of traffic flow direction between morning traffic peak and evening traffic peak 

would require a complete reversal of the progressive signal system. Such traffic flow patterns may change 

over time as the urban environment continues to develop. Another example arises in the event of road 

closure, which could lead to short-term diversions in the path of a traffic corridor. Whereas long-term 

alterations can be dealt with by regular maintenance visits from a traffic engineer it is often not possible 

to foresee and handle short-term changes.  

We theorize that intersection agents within multi-agent transport networks can automatically create 

dynamic progressive signal systems using Reinforcement Learning (RL) techniques. 

In this thesis we present a learning based approach to signal coordination that we refer to as 

Qoordination. This approach uses an RL technique named Q-Learning. Qoordination automates the 

establishment and maintenance of dynamic progressive signal systems. It does this by firstly detecting 
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key intersections within the network. Key intersections are those through which relatively high traffic 

flows enter the network. All non-key intersections base some of their signal timing changes on the signal 

timings of adjacent upstream neighbor intersections so as to maintain coordination. The offsets of all non-

key intersections are adjusted so as to minimize their local vehicle queue lengths. As queue lengths are 

minimized throughout the network progressive signal systems begin to automatically emerge along the 

main traffic corridors. The paths and directions of these progressive signal systems adjust themselves 

automatically as traffic flow changes. Each intersection can then use any one of a number of different 

traffic control methods to optimize their own local throughput. Such traffic control methods include 

Round Robin, SAT, or even other learning based methods.  

In this thesis we also introduce a Multi-Layer Hashing (MLH) method of function approximation that 

is ideal for use in RL algorithms. This technique enables rapid learning in large dynamic multi-agent 

environments such as the transport networks addressed in this thesis. This rapid learning is achieved 

through generalization and abstraction in a way that is intuitive and straightforward to implement and that 

allows for the extension of RL algorithms without significantly altering them. 

Qoordination is evaluated using an evaluation platform into which the industry standard VISSIM 

microscopic simulator is integrated. Evaluation simulations are performed with both static and dynamic 

traffic loads. These simulations are also performed with both static and dynamic traffic corridor paths. 

We evaluate the scalability of different Qoordinated and non-Qoordinated approaches to traffic control in 

a novel fashion by executing them within simulated transport networks of incrementally increasing size.  

Our results show that for a variety of traffic control methods Qoordination leads to significant 

improvements in network traffic flow in terms of vehicle queue lengths and average vehicle waiting 

times. The level of improvement seen is proportional to the network size, the traffic flow level, and the 

complexity of the main traffic corridors within the transport network. In our evaluation experiments 

Qoordination leads to reductions in average vehicle waiting times of up to 61% under light traffic flow 

levels when compared to uncoordinated control. This figure is increased to 76% under heavy traffic flow. 

This figure is further increased to 83% with increased complexity in the path of the main traffic corridor. 
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Chapter 1 

 

 

Introduction  
 

 

 

This chapter introduces the domain of traffic control and gives a brief description of Reinforcement 

Learning (RL). The research questions that this thesis addresses are then introduced, as are the principal 

contribution of this work. This chapter then concludes by giving an overview for the remainder of this 

thesis. 

1.1 Traffic Control 

With constantly increasing numbers of road users traffic congestion is a significant problem that is 

steadily worsening. Negative effects of traffic congestion include increased commuter travel times, 

increased fuel consumption, increased risk of road accidents, and increased noise and air pollution levels.  

In a study carried out within 437 urban areas within the USA it was found that congestion costs 

increased from $14.9 billion to $78.2 billion between 1982 and 2005 (Schrank & Lomax, 2007). Within 

this time these same areas also saw travel delay increase from 0.8 billion hours to 4.2 billion hours as well 

as “wasted” fuel increase from 0.5 billion gallons to 2.9 billion gallons. By 2005 it was estimated that 

traffic signal coordination alone had saved $451 million in congestion costs and had reduced delay by 21 

million hours within these urban areas. In this same study it was also estimated that if signal coordination 

were implemented on all roads within the studied area then commuter travel delay could have been 

reduced by a further 34.5 million hours.  

A variety of traffic control methods are available that range in their effectiveness and their 

complexity. These methods also range in their ability to adapt to changing traffic flow levels and their 
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ability to establish coordination among intersections. The most common method of traffic control is 

called pre-timed control (Roess, Prassas, & McShane, 2011). Traffic controllers that implement pre-timed 

control change their traffic light timings based upon the time of day and day of week. These timing plan 

schedules are configured by traffic engineers, typically by entering historical traffic flow data for the 

intersection into traffic flow optimization software such as TRANSYT (Robertson, 1969). Timing plans 

can also be made for multiple intersections that are to operate in coordination with each other. In these 

situations the offset variables are also optimized. This can result in progressive signal system 

establishment within main traffic corridors whose characteristics are regular i.e. they form at the same 

time each day, following the same path, and moving in the same direction. Pre-timed traffic control 

cannot however dynamically adapt to unanticipated changes in either traffic flow levels or traffic corridor 

course or direction. In this thesis we refer to uncoordinated pre-timed traffic control as the Round Robin 

method. One of the major benefits of pre-timed traffic control is its cost effectiveness and reliability due 

to its lack of reliance on sensors.  

Another common method of traffic control is that of actuated control (Roess, Prassas, & McShane, 

2011). Traffic controllers that implement actuated control change their traffic light timings dynamically 

based upon real-time actuator readings. Sensors are typically embedded in the road just upstream of the 

intersection. Actuation based intersection controllers typically cannot coordinate their actions to establish 

progressive signal systems along main traffic corridors due to the dynamic nature of their traffic light 

timing plans. For this reason actuated traffic control is typically used at isolated intersections.  

Methods that have higher computing requirements than pre-timed and actuated control are referred to 

as adaptive traffic control methods (Roess, Prassas, & McShane, 2011). A number of different methods 

have been suggested for adaptive traffic control. Early methods required traffic engineers to specify the 

signal timing plans to be applied in a variety of different situations (Sims & Dobinson, 1980). These 

timing plans are then activated based upon sensor readings as opposed to time of day. The process of 

generating accurate timing plans is both error-prone and costly. Unforeseen circumstances such as local 

music events or road closure cannot typically be adapted to using these methods. Later adaptive methods 

apply Artificial Intelligence (AI) techniques to traffic control. These traffic control systems range in 

architecture from centralized (Tomforde et al., 2008) to hierarchical (Srinivasan, Choy, & Cheu, 2006) to 

fully decentralized (Xie, 2007). Although decentralizing the architecture alleviates issues of scalability 

and single points of failure it also makes it more difficult to achieve coordination between multiple 

intersections. Agent-based architecture is a decentralized AI approach where each intersection controller 

is modeled as an autonomous intelligent agent (Bazzan, 2009). RL is an agent-based technique that has 

shown particular promise in the area of traffic flow optimization. This is due to the fact that it does not 

require a predefined model of the traffic network environment. RL also has the benefit of being able to 

take into account both short-term and long-term rewards of intersection agent actions. In its original 
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single-agent form RL can be used to effectively optimize traffic flow through a single intersection 

(Thorpe, 1997). Coordination of intersection actions is not typically taken into account in such systems. 

Multi-agent techniques can be used to take coordination into account when optimizing traffic flow 

through multiple intersections (Roess, Prassas, & McShane, 2011) (Salkham, Cunningham, Garg, & 

Cahill, 2008). An area of research that has not of yet received attention is the use of RL techniques in 

establishing the coordination of multiple intersection agents that each implements one of a variety of 

different methods of traffic control. Such is the topic of this thesis. 

1.2 Reinforcement Learning 

RL is an AI technique that, analogous to natural intelligence, learns over time through trial and error 

interaction with the surrounding environment (Watkins & Dayan, 1992) (Sutton & Barto, 1998) (Russell 

& Norvig, 2010). RL is an unsupervised learning technique and as such, does not require the tutelage of 

an instructing domain expert. Instead, an RL agent autonomously explores its surrounding environment. 

The RL agent firstly senses the current state of the environment. It then chooses and executes an action or 

a sequence of actions that are available to it. It then receives a numerical feedback called a reward from 

the environment for the actions that it has performed. Over time the RL agent uses these rewards to build 

up a utility function. This process of an RL agent learning through interaction with its environment is 

illustrated in Figure 1.  

 

Figure 1. Process of RL agent learning through interaction with its environment (Sutton & Barto, 1998) 

A utility is a numerical representation of the sequence of rewards that the agent can expect to receive 

when executing a series of actions starting with a given action being taken from a given state. An action’s 

utility can thus be seen as its long term reward. The RL function known as the policy is used to decide 

which action is to be taken from the current state. Explorative actions can be chosen to be executed so as 

to increase the accuracy of the agent’s utility function. Exploitative actions can also be selected for 

execution. These actions exploit the utility function’s knowledge and are typically actions that lead to the 

highest long term reward when executed from the agent’s current state.  
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In its original form RL is a single-agent algorithm. A single RL agent operates on a local level, 

gaining an understanding of the local effects of its own local actions. Multi-agent algorithms however 

also exist that enable multiple agents to work together to yield higher global utility values (Shoham & 

Leyton-Brown, 2008) (Vlassis, 2007) (Claus & Boutilier, 1998) (Weiss, 2013).  

1.3 Research Questions 

Research Question RQ1: How can autonomous intersection agents learn to coordinate their 

actions so as to create dynamic progressive signal systems within dynamic transport 

networks? Automated coordination of traffic control agents within a transport network is a non-

trivial task (Guestrin, Lagoudakis, & Parr, 2002). Automatic formation and maintenance of 

progressive signal systems is particularly challenging due to the dynamic nature of traffic flow. 

This dynamic nature is made manifest as traffic flow levels change significantly not only from 

hour to hour but also from month to month and from year to year. It is also made manifest by 

fluctuation in both the direction and the course of many main traffic corridors running through 

transport networks. Course changes in main traffic corridors can be short term, such as occur due 

to road closures and diversions. They can also be long term, as can occur due to expansion of the 

transport infrastructure. We theorize that intersection agents within multi-agent transport 

networks can automatically create dynamic progressive signal systems using Reinforcement 

Learning (RL) techniques. Further, we theorize that not only does coordination of traffic control 

lead to improved transport network performance (with regard to vehicle waiting times and queue 

lengths) but that the improvement in performance is directly related to the network’s size. Thus 

the larger the network is the greater the benefit of coordinating traffic control within it. We 

expect that the establishment of coordinated traffic control within a transport network will lead 

to traffic congestion being kept to the outside of the coordinated area while within the 

coordinated area traffic will be much more free flowing.  

Research Question RQ2: How can RL agents learn accurate utility functions within dynamic 

multi-agent environments? Learning within a multi-agent transport network is a non-trivial 

task. This is particularly due to the dynamic nature of such an environment and to the 

interdependencies that exist between the highly coupled adjacent intersection agents. An 

appropriate RL utility function would need to be able to cater for the non-static nature of traffic 

flow levels. Due to the interdependencies of intersection agents certain state variables need also 

be used in neighboring agent state spaces. This can result in relatively large state spaces for 

agents with many neighboring intersections. This increase in state space size can result in overly 

long training times. An appropriate utility function should thus be able to generalize previously 
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acquired information to unseen circumstances. Efficient generalization reduces agent learning 

times (Ponsen, Taylor, & Tuyls, 2010). Intersection agents are not always dependent on all of 

their adjacent neighbor intersections. A utility function that can take this into account through 

abstraction can further reduce state space size and in turn again reduce learning times (Ponsen, 

Taylor, & Tuyls, 2010). More advanced utility function representations, which are commonly 

referred to as function approximators often add significant complexity and in turn typically 

necessitate major modifications to RL algorithms (Sutton & Barto, 1998) (Dayan, 1992) 

(Tsitsiklis & Van Roy, 1997). In this thesis we seek to discover an appropriate function 

approximation method that can efficiently perform generalization and abstraction on stochastic 

input in a way that can be easily adapted to RL algorithms.  

1.4 Principal Contributions 

Contribution C1: Qoordination. Qoordination is a novel Q-Learning based approach to 

coordinating traffic control agent actions. Qoordination enables the creation and maintenance of 

progressive signal systems along main traffic corridors that run through transport networks. Due 

to the dynamic nature of traffic flow both the direction and course of these traffic corridors can 

change over time, as has been identified in Research Question RQ1. Qoordination works by 

firstly detecting intersections through which relatively high traffic flows enter the network. 

These are referred to as key intersections. All non-key intersections base some of their signal 

timing changes, namely their cycle length, which will be discussed in the next chapter, on the 

signal timings of adjacent upstream neighbor intersections so as to maintain coordination. All 

non-key intersections then adjust their offsets so as to minimize their own local vehicle queue 

lengths. As queue lengths are minimized throughout the network progressive signal systems 

begin to automatically emerge along the main traffic corridors. The direction and course of each 

progressive signal system adjusts itself automatically as traffic flow through the corridor 

changes. Qoordination can establish progressive signal systems across arterials of intersections 

that each employs one of a number of different traffic control methods. These traffic control 

methods employ different techniques to optimize their intersections own local throughput. Such 

traffic control methods include Round Robin, SAT, or even other learning based methods.  

 Contribution C2: Multi-Layer Hashing (MLH) function approximation method. MLH is a 

novel locality-sensitive hashing inspired technique for rapid learning. It has been designed as a 

method of function approximation that is ideal for use in RL algorithms. MLH enables rapid 

learning in large dynamic multi-agent environments such as the transport networks addressed in 

this thesis. MLH’s overlapping layers enable generalization such that expected utility values can 
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be predicted from states that have not yet been visited. Over time these generalizations are 

refined and replaced with utility values of performing the different actions from increasingly 

specific states. This is done in a way that is intuitive and straightforward to implement and that 

allows for the extension of RL algorithms without significantly altering them. MLH allows for 

further increases in learning times by abstracting away irrelevant information during the learning 

process. For example, if the state of intersection A’s downstream neighbor, intersection B, is 

detected to have little or no bearing on A’s reward then it can be weighted in A’s MLH utility 

function to reflect this. This removes a dimension from A’s MLH utility function and thus 

increases A’s learning rate. 

 Contribution C3: Solid Evaluation Method. Qoordination is evaluated using a novel traffic 

control evaluation platform. The industry standard VISSIM microscopic simulator (Fellendorf & 

Vortisch, 2010) is fully integrated into this novel platform so as to ensure accurate and reliable 

results. This platform evaluates the effects of coordination on various traffic control approaches 

in a novel fashion. This is done by automatically generating numerous simulated transport 

networks of incrementally increasing size. Various methods of traffic control are then run within 

these networks both with and without Qoordination. These methods of traffic control are as 

follows: Round Robin (Salkham & Cahill, 2010), a basic SCATS (Sims & Dobinson, 1980) 

based adaptive approach to traffic control named SAT (Richter, 2006), and a single-agent Q-

Learning based traffic control method. Simulations are performed under a variety of traffic loads 

as well as in situations in which the direction of the main traffic corridors are changed. The 

evaluation platform manages the non-trivial task of fully automating the entire evaluation 

process from generating the simulated transport networks, to running the simulations under 

various traffic loads, to organizing and compiling the evaluation results for all traffic control 

approaches.  

1.5 Thesis Overview 

The remainder of this thesis is organized as follows. Chapter 2 presents theoretic background 

information and related research in the field of RL. This chapter also introduces the domain of traffic 

engineering and reviews existing approaches to traffic control. Chapter 3 describes in detail our 

Qoordination approach to traffic controller coordination. Special emphasis is given to Qoordination’s 

novel MLH utility function. Chapter 4 describes our simulation-based evaluation platform and our 

Qoordination agent implementation. A description of our evaluation experiments and an analysis of the 

results obtained are given in chapter 5. Chapter 6 presents the conclusions of this thesis and discusses 

possible future work.  
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Chapter 2 

 

 

Background and Related Research 
 

 

 

In this chapter we introduce the background information necessary for understanding our approach to 

learning based traffic coordination. We also discuss related research that will help to put our approach 

into perspective. We describe in detail agent based learning techniques with particular emphasis on 

Reinforcement Learning (RL) techniques. We introduce concepts in traffic control and explain the 

meaning of relevant traffic engineering terminology. We then review different classical approaches to 

traffic control. This is then followed by a review of a variety of Artificial Intelligence (AI) based traffic 

control systems, with a focus on RL agent based systems. 

2.1 Intelligent Rational Agents 

An agent is any entity that can perceive its environment using sensors and that can act upon that 

environment using actuators. This concept is illustrated in Figure 2.  
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Figure 2. Agent interacting with environment (Russell & Norvig, 2010) 

For example, a human agent perceives the surrounding environment using biological sensors such as 

eyes and ears and then acts upon that environment using biological actuators such as hands and feet. A 

robotic agent uses mechanical sensors such as a camera or an audio input device to perceive its 

environment. It can then act upon that environment using mechanical actuators such as wheels or 

mechanical arms. Agents need not be tangible as were the previous two examples but could also simply 

consist of software components. These agents can perceive their environment through received input such 

as network packets or user input and can then act upon their environment by sending network packets or 

messages to be displayed to the user. Within the area of traffic control there can be a number of different 

types of agents. The main two types of agents that are usually modeled in a traffic control system are 

vehicular agents and traffic light controller agents. A vehicular agent perceives its environment using 

sensors such as GPS receiver, infra-red receiver, proximity detector, camera, etc. It can then act upon its 

environment by sending messages to the driver, by sending messages over a connected network, or even 

by directly controlling the vehicle itself, depending on the level of automation of the actual vehicle. 

Traffic light controller agents perceive the environment using embedded sensors such as induction loops, 

radar detectors, or video cameras. These agents then act on their environment by changing the sequencing 

and timing of the traffic light signals. In this thesis only traffic light controller agents are modeled and it 

is assumed that all vehicles are under the complete and independent control of their human driver. 

Each agent must process the perceptual inputs (percepts) received from its sensors, in which process it 

derives the current state of the environment. Note that the state that is derived from the percepts is that of 

the environment and not of the agent. The agent then receives a performance measure (reward) from the 

environment that evaluates the transition in environment state between the previous and current time 

steps. How this reward is calculated is a crucial factor to a successful agent design. The environment state 
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transition occurs as a result of (or at least partially as a result of) the action that the agent has most 

recently performed. The agent can thus learn to estimate the reward that it can expect to receive for its 

performance of any action from any given state. Since the derived environment state is represented and 

not an arbitrary agent state the learned mapping ensures that the agent does not delude itself into 

believing that it is doing well when it actually isn’t. An agent is said to be rational if it selects actions that 

it expects will maximize its reward, given the current environment state and its understanding of how its 

environment works. This can even include random action selection in situations where the agent believes 

that this will lead to a higher reward. In situations where an agent is unable to calculate an expected 

reward for a given state and action pair then it is obliged to explore its options through experimentation.  

Rational agent structures range in complexity from simple reflex agents, to much more complex goal 

and utility based agents. Reflex agents make rapid action selection decisions based solely on the current 

state of the environment. Although the rapidity of action selection for these agents is of great benefit they 

can be quite limited when it comes to learning in stochastic and partially observable environments (which 

will be explained shortly) due to excessive state and action space sizes. Goal based agents base their 

action selection decisions on not only the current state of the environment but also upon the goal that they 

are currently trying to accomplish. The agent thus maintains information regarding what it is actually 

trying to accomplish and can then learn the paths to achieving this goal. A utility based agent can further 

distinguish how good each of these paths are with respect to the performance measure i.e. the path’s 

‘utility’, and can then choose which path is best. Figure 3 illustrates the workings of a utility based agent. 

 

Figure 3. Utility based agent design (Russell & Norvig, 2010) 

One of the single most important factors to be taken into consideration when designing an intelligent 

agent is the definition of the environment in which the agent will reside. There are a number of important 

properties to be taken into account when specifying this definition. We will now outline a list of these 
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properties as identified by Russell and Norvig in their seminal book “Artificial Intelligence, a modern 

approach” (Russell & Norvig, 2010, p40): 

Single agent vs. multi-agent. In a single agent system the agent that inhabits the environment 

considers that all changes to the environment state over time come as a result of either that agent’s own 

actions, the workings of the environment, or random variances. An agent within a multi-agent system 

however must also take into account both how the environment state is affected by the actions of other 

agents, and how their perceptions of the environment state change as a result of its actions. This matter is 

further complicated by the fact that these agents are all learning simultaneously, and so their behaviors 

change in response to the changing behaviors of the other neighbors in the environment. The environment 

thus becomes quite a dynamic abode in which to learn. 

Fully observable vs. partially observable. An environment is fully observable if the agent’s sensors 

can detect all aspects of the environment that are relevant for the agent to choose the appropriate action to 

take. Thus the agent is fully informed of the environment state. Noisy or missing sensor data leads to 

partial observability of an environment.  

Deterministic vs. stochastic. A deterministic environment is one in which there is no random 

variance in transitioning from one state to another. Thus the next environment state can be completely 

determined by the current one. Stochastic environments on the other hand have an element of randomness 

to their state transitions. Partially observable environments and those that are inhabited by multiple agents 

often appear to be stochastic. 

Epsodic vs. sequential. In episodic environments the transition from one state to another is not 

dependent on the action taken by the agent. The agent is thus presented with a series of atomic situations, 

or episodes, in which it is presented with precepts, selects an action, and then receives a reward for the 

action performed. The next episode to be presented to that agent is not dependent on the chosen action. 

Sequential environments however present an agent with sequences of situations wherein the action 

decisions of the agent will have a direct effect on the next situation presented to it. Thus the agent’s 

sequential actions directly influence the environment state transitions. 

Discrete vs. continuous. An environment’s state space is said to be discrete if there is a finite number 

of possible states. Likewise, the agent’s action space is said to be discrete if there is a finite number of 

actions for the agent to choose from. Continuous environments have an infinite range of states or actions 

and often use decimal representation for such. Whereas a chess playing agent lives within a discrete 

environment one that controls a robot (for which the angles at which its actuators can be placed or the 

force with which its actuators can be applied are continuous) would reside in a continuous environment. 

Static vs. dynamic. A static environment is one which does not change over time without the 

interaction of the agent. Dynamic environments on the other hand will change one way or another with or 

without an agent performing an action. 
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Known vs unknown. In a known environment the agent already has an understanding of what the 

outcomes of its actions are going to be. In an unknown environment the agent must explore through 

experimentation to gain such knowledge. 

The approach taken in this thesis is to model the environment as a multi-agent, fully observable, 

stochastic, sequential, discrete, dynamic, unknown environment (see section 3.2.3). 

2.2 Agent Based Learning 

In this section we will discuss concepts and techniques essential to agent based learning. 

2.2.1 Markov Decision Processes 

The challenge of learning to optimize an agent’s utility over the course of a set of sequential decisions 

can be efficiently addressed by modelling the problem as a Markov Decision Process (MDP) (Howard, 

1960). An MDP can be defined as a discrete time stochastic control process, which provides a 

mathematical framework for decision-making. An MDP is characterized by the following: 

 S: State space, which consists of a set of states that the process may be in 

 A(s): Action space, which consists of a set of possible actions that can be taken from state s 

 P(s’|s,a): Transition function, which gives the probability that performing action a will lead the 

process to transition from state s to state s’ 

 R(s): Reward function, which returns the short term reward from the environment for being in 

state s 

Figure 4 gives an example of a simple MDP that has three states (s) and three actions (a). Each arrow 

leading from an action to a resulting state is labeled by the transition probability (P). The reward for being 

in any given state S is represented by the letter R.   
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Figure 4 Example of a simple MDP 

As an MDP is a stochastic process the outcomes of the actions taken are partly random, and thus not 

fully under the control of the decision maker. The probability of transitioning to state s’ is dependent on 

the current state s and the action a being performed and is conditionally independent of all previous states 

and actions taken. This attribute of an MDP transition function is known as the Markov property. 

An essential concept in understanding MDPs is that of the policy π. A policy specifies the action that 

will be chosen to be performed from any given state e.g. π(s) represents the action to be taken when in 

state s. A policy can thus be looked upon as one possible solution to the MDP. To solve a problem 

modeled as an MDP one must find its optimal policy π*. This optimal policy essentially maps process 

states to the best possible actions that can be taken from these states i.e. the action with the highest utility 

from that state.  

The utility function Uπ(s) returns a value that numerically represents the long term reward of being in 

state s and following policy π thereafter. The utility of a sequence of states can be calculated in a number 

of ways. The first approach is to simply sum the short term rewards of each state within the sequence. 

Agents that use this approach are said to use additive rewards. The second approach is to use discounted 

rewards. Discounting rewards is a method of mathematically representing the increasing uncertainty in 

increasingly distant future rewards. A discount factor 𝛾 (between 0 and 1) sets the agent’s confidence in 

current rewards over future rewards. A discount factor of 1 would give full confidence in future rewards 

(which is essentially equivalent to additive rewards) while a discount factor of 0 gives confidence only to 
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the most recently received rewards. Equation (1) illustrates discounted rewarding over a sequence of 

states. 

  

𝑈([𝑠0, 𝑠1, 𝑠2]) =  𝑅(𝑠0) + 𝛾𝑅(𝑠1) + 𝛾2𝑅(𝑠0) + ⋯ 

 

 

(1) 

 

This leads to the following equation: 

  

𝑈([𝑠0, 𝑠1, 𝑠2]) = ∑ 𝛾𝑡𝑅(𝑠𝑡)

∞

𝑡=0

= 𝛾 ∑ 𝑅(𝑠𝑡)

∞

𝑡=0

 

 

 

(2) 

 

Taking into account the probabilities associated with the different states s’ that can be transferred into, 

which is essential in stochastic environments, the utility of being in state s can now be calculated using 

equation (3). 

 

 

𝑈𝜋(𝑠) =  𝑅(𝑠) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝜋(𝑠))𝑈𝜋(𝑠′)

𝑠′

 

 

 

(3) 

 

The optimal policy π* can be calculated by selecting the action for each state that maximizes the 

expected utility. This principle is illustrated below:  

 

 

𝜋∗(𝑠) =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑎 ∈ 𝐴(𝑠)
∑ 𝑃(𝑠′|𝑠, 𝑎)𝑈(𝑠′)

𝑠′

 

 

 

(4) 

 

This equation combines with equation (3) to lead us to the following method of calculating the 

optimal action to be taken from state s: 

 

 

𝜋∗(𝑠) =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑎 ∈ 𝐴(𝑠)
𝑅(𝑠) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑈(𝑠′)

𝑠′

 

 

 

(5) 

 

When brought back into equation (3) we get the following optimal policy based utility function: 

 

 

𝑈𝜋∗(𝑠) =  𝑅(𝑠) + 𝛾
𝑚𝑎𝑥

𝑎 ∈ 𝐴(𝑠)
∑ 𝑃(𝑠′|𝑠, 𝑎)𝑈(𝑠′)

𝑠′

 

or 

𝑈𝜋∗(𝑠) =  𝑅(𝑠) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝜋∗(𝑠))𝑈(𝑠′)

𝑠′

 

 

(6) 

 

 

(7) 
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 This is known as a Bellman equation for utility. For MDPs a Bellman equation (named after the applied 

mathematician Richard E. Bellman) refers to a recursion of expected rewards.  

2.2.2 Learning Algorithms 

2.2.2.1 Dynamic Programming 

Dynamic Programming (DP) (Sutton & Barto, 1998) refers to a set of algorithms that solve complex 

problems by breaking them down into simpler sub-problems. Each of these sub-problems is solved and 

their results are combined to give an overall solution. Each sub-problem can often be repeated multiple 

times in calculating the final solution. Benefits of this approach over other possible approaches are speed 

and simplicity. DP is a common approach to calculating the optimal policy of an MDP modeled control 

problem. In this subsection we will introduce the two main DP approaches used in MDP resolution, 

namely value iteration and policy iteration. These approaches are based upon DP Bellman equations such 

as those introduced in the previous section. 

2.2.2.1.1 Value Iteration 
Value iteration (Russell & Norvig, 2010) algorithms begin by finding the utility of each state within 

the state space. The simultaneous equations necessary to achieve this goal are however nonlinear and 

cannot be calculated using linear algebra. The most common alternative is to iteratively apply a Bellman 

equation to each state until convergence is achieved. Each iterative step is called a Bellman update. This 

update is performed on all states within the state space simultaneously. The Bellman update based upon 

equation (7) is given below: 

 

 

𝑈𝑡+1(𝑠) ← 𝑅(𝑠) + 𝛾
𝑚𝑎𝑥

𝑎 ∈ 𝐴(𝑠)
∑ 𝑃(𝑠′|𝑠, 𝑎)𝑈𝑡(𝑠′)

𝑠′

 

 

 

(8) 

 

Equilibrium is guaranteed if the update is applied to the state space an infinite number of times. Once 

this iterative process has been applied the optimal policy 𝜋∗(𝑠) can be calculated using equation (5). 

Assuming a perfect environment model (given by P(s’|s,a) and R(s) or R(s’|s)) this approach guarantees 

finding the optimal policy. The value iteration algorithm is given below. 

Initialize U arbitrarily, e.g. U(s) = 0 for all s ∈ S 

repeat 

 U ← U’; 𝛿 ← 0 

 For each state s ∈ S 

  𝑈𝑡+1(𝑠) ← 𝑅(𝑠) + 𝛾 𝑚𝑎𝑥
𝑎∈𝐴(𝑠)

∑ 𝑃(𝑠′|𝑠, 𝑎)𝑈𝑡(𝑠′)𝑠′  
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  If((𝑈𝑡+1(𝑠) − 𝑈𝑡+1(𝑠)) > 𝛿) 

   𝛿 ← 𝑈𝑡+1(𝑠) − 𝑈𝑡(𝑠) 

until 𝛿 < some small threshold value 

return U 

Figure 5 Value iteration algorithm  

2.2.2.1.2 Policy Iteration 
Although the value iteration algorithm is guaranteed to find the optimal policy 𝜋∗ it can be quite 

inefficient because of the fact that not every state needs to have a highly accurate utility value. For 

example if in one state a specific action is clearly better than the others then the accuracy of the utility 

value need not be exact. The Policy iteration algorithm (Russell & Norvig, 2010) maximizes on this 

principal. The Policy iteration algorithm iteratively alternates between two steps to improve a policy to 

the point that it is optimal. The first step is policy evaluation and the second is policy improvement. The 

algorithm begins with a random policy. The policy evaluation process evaluates this policy by calculating 

the utility of each state in the state space using equation (3). Because the policy fixes the action to be 

selected it turns out that this step is much simpler than solving the regular Bellman equations that need to 

be solved by the value iteration algorithm. This is because unlike the Bellman equations these are linear 

and can be solved using standard linear algebra. The policy improvement process then adjusts and 

improves the policy using hill climbing or one-step look-ahead based on equation (4). The algorithm 

terminates when the policy improvement process stops making changes to the policy. As shown in 

equation (9), this process continues iterating until an optimal policy is converged upon. 

 

 

𝜋0
𝐸

⟶
𝑈𝜋0

𝐼

⟶
𝜋1

𝐸

⟶
𝑈𝜋1

𝐼

⟶
 … 

𝐼

⟶
𝜋∗

𝐸

⟶
𝑈𝜋∗ 

 

 

(9) 

 

where: 

 
𝐸

⟶
 represents a policy evaluation process 

 
𝐼

⟶
 represents a policy improvement process 

The policy iteration algorithm is given below. 

Initialize 𝜋 randomly and U arbitrarily, e.g. U(s) = 0 for all s ∈ S 

repeat 

// Policy Evaluation 

 repeat  

 𝛿 ← 0 

  for each state s ∈ S 
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   𝑢 ← 𝑈𝜋(𝑠) 

   𝑈𝜋(𝑠) ← 𝑅(𝑠) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝜋(𝑠))𝑈𝜋(𝑠′)𝑠′  

   𝛿 ← max (𝛿, 𝑢 − 𝑈𝜋(𝑠)) 

 until 𝛿 > some small threshold value 

// Policy Improvement 

 unchanged ←true 

 for each state s ∈ S 

  if(
𝑚𝑎𝑥

𝑎∈𝐴(𝑠)
∑ 𝑃(𝑠′|𝑠, 𝑎)𝑈(𝑠′)𝑠′  > ∑ 𝑃(𝑠′|𝑠, 𝜋(𝑠))𝑈(𝑠′)𝑠′ ) 

   𝜋(𝑠) ← 𝑚𝑎𝑥
𝑎∈𝐴(𝑠)

∑ 𝑃(𝑠′|𝑠, 𝑎)𝑈(𝑠′)𝑠′  

   unchanged ←false 

until unchanged 

return 𝜋 

Figure 6 Policy iteration algorithm  

2.2.2.1.3 Challenges 
DP algorithms have the important quality of being able to guarantee finding the optimal policy 𝜋∗ and 

thus solve a problem modeled as an MDP. There are however two main challenges that limit their use in 

real world applications. The first of these challenges is the fact that DP algorithms require a perfect model 

of the environment in order to perform their calculations. This environment model takes the form of the 

transition function P(s’|s,a) and reward function R(s) or R(s’|s). In practice it can be extremely difficult 

and often impossible to obtain such an environment model in advance. This is particularly true of 

environments that are stochastic, dynamic, multi-agent, partially observable, or unknown. The second 

challenge stems from the fact that DP algorithms base their calculations on iteratively navigating through 

an environment model i.e. they are model based. Model based algorithms can be much more 

computationally expensive than alternative approaches. DPs are however very important theoretically. 

Other approaches to solving MDPs attempt to approximate DP solutions, while not relying on perfect 

models of the environment and while using less computationally expensive algorithms.  

2.2.2.2 Adaptive Dynamic Programming 

Adaptive Dynamic Programming (ADP) (Russell & Norvig, 2010) algorithms overcome one of the 

major challenges of regular DP algorithms by learning the actual environment model. An ADP agent can 

thus be introduced to an environment with little or no model of the environment and over time it will 

build up a transition model and an expected reward model. When the model of the environment has been 

learned the ADP agent can then solve the corresponding MDP using regular dynamic programming 
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methods. Because the model is learned through observation of the environment over time it can be seen 

as a dynamic model. This enables it to adapt to dynamic changes within environments that might be 

stochastic, dynamic, or inhabited by multiple agents. The following algorithm shows how an ADP agent 

can learn the environment model over time. 

increment N(s’) 

Ɽ(𝑠′) ← Ɽ(𝑠′) + 𝑟′ 

𝑅(𝑠′)  ← Ɽ(𝑠′)/𝑁(𝑠′)  

if(s is not null) 

increment N(s,a) and N(s’|s,a) 

for(each s’ where P(s’|s,a) is non zero) 

 P(s’|s,a) ← N(s’|s,a)/ N(s,a) 

Figure 7 Environment model learning algorithm 

where: 

 Ɽ(𝑠) is the sum of short term rewards received for being in state s 

 r is the short term reward received for being in state s 

 N(s) is the number of times the agent has been in state s 

 N(s, a) is the number of times action a was taken from state s 

 N(s’|s,a) is the number of times action a led to a transition from state s to state s’ 

When traditional representations are used for the state space, such as a lookup table, ADP becomes 

inept as the state space size increases. This is because as the number of states in the state space increases 

it becomes less likely that the agent will visit them enough times to estimate an accurate transition 

probability or expected short term reward. We will discuss methods of addressing this challenge in 

section 2.2.3. 

2.2.2.3 Temporal Difference Learning 

Up to this point we have been looking at solving problems modeled as MDPs by using DP algorithms. 

In summary, DP algorithms iteratively apply a Bellman equation in calculating the utility values for each 

state of an MDP’s state space. They then use these utility values to determine the MDP’s optimal policy 

𝜋∗, and thus solve the MDP. An alternative approach to solving an MDP is by using Temporal Difference 

(TD) learning algorithms (Sutton & Barto, 1998) (Russell & Norvig, 2010). Instead of iteratively 

calculating the utility values of each state at each time step TD algorithms update these values using the 

difference in utilities between successive states. Thus instead of adjusting a state’s utility value to agree 

with all successive states it is adjusted to agree simply with the single next successive state. Over time, as 

the number of observed transitions increases, the TD utilities resemble more and more to ADP utilities. 
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Thus the TD utilities approximate ADP utilities. TD utilities require much less calculations per time step 

but they are slower to converge to their true values than ADP utilities. TD learning is more formally 

defined in the algorithm below: 

 

 

𝑈𝜋(𝑠) =  𝑈𝜋(𝑠)+∝ (𝑅(𝑠) + 𝛾𝑈𝜋(𝑠′) − 𝑈𝜋(𝑠)) 

 

 

(10) 

 

where: 

 ∝ is the learning rate parameter 

Notice that the TD algorithm does not require a transition function 𝑃(𝑠′|𝑠, 𝑎) to perform its updates. 

TD algorithms are thus referred to as model free algorithms. 

There are a number of distinct TD algorithms. We will now describe three of the major ones, namely 

Q-Learning, SARSA, and Actor-Critic Reinforcement Learning (ACRL).  

2.2.2.3.1 Q-Learning 
Instead of learning a utility function U(s) Q-Learning (Watkins & Dayan, 1992) learns an action-

utility function Q(s,a). The stored values are referred to as Q-Values as opposed to utility values. 

Traditionally these values would be stored in a lookup table referred to as a Q-Table. The two utility 

based functions are related as shown below. 

 

 

𝑈(𝑠) =  
𝑚𝑎𝑥

𝑎 ∈ 𝐴(𝑠)
𝑄(𝑠, 𝑎) 

 

 

(11) 

 

The Q-Learning update rule is given by equation (12). 

 

 

𝑄(𝑠, 𝑎) =  𝑄(𝑠, 𝑎) + 𝛼(𝑅(𝑠) + 𝛾
𝑚𝑎𝑥

𝑎′ ∈ 𝐴(𝑠′)
𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)) 

 

 

(12) 

 

This equation is calculated whenever taking action a results in a transition from state s to state s’. This 

updates a single Q-Value within the Q-Table. As the number of process iterations nears infinity the Q-

function Q(s,a) converges to optimality i.e. 𝑄∗(𝑠, 𝑎). The optimal policy 𝜋∗(𝑠) can then be read directly 

from the Q-Table. In performing this update the Q-Learning algorithm learns relative to the actions that 

yield the maximum Q-Values i.e. 
𝑚𝑎𝑥

𝑎′∈𝐴(𝑠′) 𝑄(𝑠′, 𝑎′). Q-Learning thus learns relative to a greedy policy i.e. 

one that always chooses the action that yields the highest reward, even if the agent is not following a 

greedy policy. Q-Learning is thus referred to as being an off-policy algorithm. This approach has the 

benefits of being flexible enough to be able to learn the best actions to take even when being led by a 

random policy.  



 

 

 

Chapter 2 Background and Related Research   

 

 
 
 
 
 

19 

2.2.2.3.2 SARSA 
The State-Action-Reward-State-Action (SARSA) algorithm (Sutton & Barto, 1998) has an update 

equation that is quite similar to that of Q-Learning, with the notable exception of the fact that SARSA 

learns relative to the agent’s current policy. Thus SARSA is an on-policy algorithm. This can be clearly 

seen in SARSA’s update algorithm shown below by the lack of the  
𝑚𝑎𝑥

𝑎′∈𝐴(𝑠′)
 statement.  

 

 

𝑄(𝑠, 𝑎) =  𝑄(𝑠, 𝑎) + 𝛼(𝑅(𝑠) + 𝛾𝑄(𝑠′, 𝜋(𝑠′)) − 𝑄(𝑠, 𝑎)) 

 

 

(13) 

 

This rule is applied at the end of the pattern s, a, r, s’, a’, which explains the algorithm’s name. 

Whereas Q-Learning excels when the policy includes elements of randomness SARSA can learn quicker 

and more accurately than Q-Learning when the policy does not. 

2.2.2.3.3 Actor-Critic Reinforcement Learning 
Actor-Critic Reinforcement Learning (ACRL) (Sutton & Barto, 1998) has a more complicated 

structure than the TD methods heretofore discussed. Q-Learning and SARSA extract the optimal policy 

from their action utility functions by selecting the actions that have the highest action utilities. ACRL 

however stores its policy separately from its utility function. The policy is maintained by a component 

that is called the Actor. It is given this title because its function is to select which actions are to be 

performed. The utility function is maintained by a component that is called the Critic. It is given this title 

because its function is to criticize the actor’s actions. ACRL thus has the flexibility of being able to 

implement actor and critic using separate technologies, such as fuzzy logic and neural networks. Like 

SARSA, ACRL is an on-policy algorithm. ACRL’s on-policy approach is necessary so that the critic can 

learn about and critique the policy that the actor is currently using. The critique is represented by a TD 

error. This TD error is then used to update the utility function, as is done with the other TD algorithms 

that we have looked at. ACRL also uses the TD error to directly update the policy i.e. the actor, as can be 

seen in Figure 8.  
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Figure 8 Actor Critic Reinforcement Learning (ACRL) architecture (Sutton & Barto, 1998) 

Following the performance of an action the critic uses equation (14) to calculate the TD error, thus 

determining if the executed action had better or worse consequences than expected.  

 

 

𝛿𝑡 =  𝑟𝑡+1 + 𝛾𝑈(𝑠𝑡+1) − 𝑈(𝑠𝑡) 

 

 

(14) 

 

where: 

 𝛿𝑡 is the TD error at time step t 

The actor’s preference for selecting that action in the future is then reinforced by that TD error value 

by using an equation similar to that given by equation (15).  

 

 

𝑃(𝑠𝑡 , 𝑎𝑡) =  𝑃(𝑠𝑡 , 𝑎𝑡) + 𝛽𝛿𝑡 

 

 

(15) 

 

where: 

 𝛽 is a positive parameter similar to learning rate 

One major benefit of ACRL is that of its low cost action selection. In systems where action values are 

continuous, such as robotics for example, the possible set of specific actions to choose from may be 

infinite. Other TD algorithms would have to calculate an action-utility value for each action within this 

set before making a selection. These efforts can be avoided if the policy is stored explicitly. 
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2.2.3 Policy Definition  

Solving a problem modeled as an MDP is achieved by discovering which actions should be selected 

for execution from any state within the state space so as to maximize the agent’s utility or long term 

reward i.e. by discovering the MDP’s optimal policy π*. A policy can be defined in various different 

ways depending upon characteristics of the actions that can be taken and also upon characteristics of the 

reward being optimized. In this section we discuss some of these aspects of policy definition that are of 

relevance to this thesis. 

2.2.3.1 Policy Representation 

In anticipation to section 2.2.6’s discussion on techniques that can be used to represent a policy this 

section addresses the question of whether or not the policy should be explicitly represented in the first 

place. The following two subsections discuss implied and explicit policies and factors that would give 

preference to one being used as opposed to the other. 

2.2.3.1.1 Implicit Policies 
An implied policy is one that is read directly from the utility or action-utility function (Russell & 

Norvig, 2010). For example, when a traditional Q-Learner agent needs to know the Q-Value for taking a 

particular action from a given state it reads the value directly from its Q-Table. It first finds the Q-Table 

row that corresponds to the given state and then finds the Q-Table column that corresponds to the specific 

action. The Q-Value is stored in the cell at the intersection of this row and column. Although the policy is 

a distinct component of this type of agent it is clear to see that it is an implied component, as opposed to 

being explicitly represented. Agents that have action spaces consisting of very few actions that each have 

a discreet set of possible action values are often very good candidates for this approach. In the case of 

traffic control an example of this would be an intersection agent whose action space consisted of 

increasing or decreasing the phase lengths of any of its phases by a specific number of seconds e.g. by 

five seconds. If the intersection agent has only four phases then it has a total choice of at most eight 

possible actions from any state.  

A problem can begin to arise however when the number of actions that can be taken grows and when 

the action values become more granular or even continuous. In our traffic control example this might be 

the equivalent of a larger intersection agent that has ten phases and that can either increase or decrease the 

phase length by three, five, seven, ten, thirteen, or fifteen seconds. The agent now has a choice of at most 

one hundred and twenty possible actions from any one state. The number of possible choices further 

increases when it is possible for the agent to modify its offset or cycle length or when multiple actions 

can be taken during a single time step i.e. joint actions. When selecting the optimal action to be 

performed from a given state the agent must look up the Q-Value for each of the possible actions that can 
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be taken from that state and select the action associated with the highest value. With utility or action-

utility functions being represented using function approximators, which will be discussed in section 2.2.4, 

more complex calculations than a simple lookup are required for each value to be retrieved. With 

increasing action space size this approach becomes impractical. One possible solution to this challenge is 

to cut down on the number of possible actions or action values within the action space, thus reducing its 

dimensionality and size. When done manually this requires expertise, experience, time, costs, etc. It also 

has the drawback of providing less flexibility than the system designer may have originally hoped for. 

Another solution is to use explicit policy representation, which will be discussed in the following 

subsection. Value iteration, Q-Learning, and SARSA each use implicit policies. 

2.2.3.1.2 Explicit Policies 
As the number of actions that can be taken grows and as the granularity of their action values 

approaches continuous levels it can become necessary to explicitly represent the policy. An explicit 

policy can be represented similarly to the utility or action-utility function, or even the environment model 

(Russell & Norvig, 2010). The different ways in which these can be represented will be discussed in 

section 2.2.4. In a simple and traditional approach a policy can be represented using a lookup table that 

contains a row corresponding to each possible state in the state space and then one single column. The 

cells of this table contain representations of the actions to be taken from the associated states. Each cell 

contains a single action representation that has a single action value. During the action selection process 

only one lookup, or calculation, is required as opposed to the potentially infinite number required using 

the implicit policy approach. This is regardless of the number of actions that can be taken or of their 

action value granularity. Agents that implement explicit policies thus have the reflexive agent benefits of 

rapid action selection. The policy iteration DP algorithm and the ACRL TD algorithm are examples of 

algorithms that we have looked at so far that explicitly represent their policies.  

2.2.3.1.2.1 Local Search Algorithms 

Having an explicit policy in place the challenge is then to discover which actions and action values 

should be contained within the policy. This can be looked upon as a local search problem within the 

action space (Russell & Norvig, 2010). Local search algorithms that can be used to solve such a problem 

include methods inspired by statistical physics (simulated annealing) and evolutionary biology (genetic 

algorithms). Local search algorithms operate using a single current solution, or policy in our case, and 

generally move only to the neighbors of that solution in their search of the optimal solution. These 

approaches also have the advantage of very small memory requirements as well as being able to find a 

reasonable estimate of the optimal policy within a potentially infinite action space.  
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2.2.3.1.2.1.1 Hill-Climbing Algorithm 
One of the more basic local search algorithms is called the hill-climbing algorithm (Russell & Norvig, 

2010). To better explain how it works we will look at finding the optimal action for a single state, 

although in practice the process that we describe will be applied to all states represented within the policy 

simultaneously. The current policy is randomly initialized so a random action a and random action value 

v is assigned to the entry that represents state s within the policy. When the agent finds itself in state s it 

evaluates this random assignment av by executing the corresponding action a with the specified action 

value v. This evaluation of the assigned action av may be performed over a number of time steps to take 

into account the stochastic and dynamic nature of the environment. The policy is then modified by 

slightly altering the action value v. This new assignment av is then evaluated and further modified, 

leading into an iterative evaluation-modification process. As this process progresses the agent begins to 

get a view of the one dimensional action-value landscape for action a taken from state s. This landscape is 

represented below: 

 

Figure 9 One dimensional action-value landscape for action a taken from state s 

The aim of the algorithm is to find the global maximum within this landscape for action a in state s. 

Thus the modifications made to action value v should always be in the direction of the global maximum. 

The algorithm however does not have a complete view of the landscape but only has a local view of the 

current action value and values immediately adjacent to it. Thus the algorithm can observe the current 

slope but not whether or not it is at the highest point within the landscape. Constantly adjusting the action 

value in the direction of increasing reward i.e. uphill, is what gives the hill-climbing search algorithm its 

name. This algorithm stops when a peak is reached. The hill-climbing algorithm is the inverse of the 

gradient descent search algorithm which aims at finding the local minimum in a value landscape.  

2.2.3.1.2.1.2 Simulated Annealing 
The hill-climbing algorithm is however unfortunately susceptible to getting stuck on local maxima or 

on plateaus. In order to overcome this drawback a technique called simulated annealing may be used 
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(Russell & Norvig, 2010). In materials science annealing refers to a process of heating a material to a 

very high temperature and then gradually cooling it so as to alter its physical or chemical properties. 

Whereas hill-climbing always chooses to adjust the action value in the direction of increasing reward the 

simulated annealing algorithm always chooses to adjust the action value in a random direction. If the 

chosen direction is uphill then the adjustment will be made with a probability of 1 i.e. it will be made. If 

however the chosen direction is downhill and will decrease the reward then the adjustment will be made 

with some probability less than 1. This probability decreases exponentially with the expected decrease in 

expected reward ∆𝐸 i.e. it is less likely to descend steep slopes. The probability also decreases as the 

temperature variable T decreases. T starts with a high value close to 1 and decreases over time. If T 

decreases slowly enough then the algorithm becomes much more likely to find the global maximum. The 

simulated annealing algorithm is given below: 

Current ← random value 

for( t ← 1; ∞; t++) 

T ← timeReduction(t) 

if(T == 0) 

 return Current 

Next ← Current randomly + or - Step 

∆𝐸 ← reward(Next) - reward(Current) 

if(∆𝐸 > 0) 

 Current ← Next 

else 

Current ← Next with probability 𝑒∆𝐸/𝑇  

Figure 10 Simulated annealing algorithm 

where: 

 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑁𝑒𝑥𝑡 are the current and next action values respectively 

 Step is a random step size by which the action value is incremented or decremented 

Up to this point we have assumed that although the action value v is modified over time the actual 

random action a that was chosen during initialization remains the same. During each time step however a 

new random action should be selected with a probability less than T.  

An approach named local beam search is similar to simulated annealing with the exception that it 

keeps track of a number (k) of policies instead of just one. These policies communicate their results with 

each other so that they all begin to converge to the most fruitful area of the action space. 
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2.2.3.1.2.1.3 Genetic Algorithms 
Genetic Algorithms (GA) (Russell & Norvig, 2010) maintain a population of k policies similar to the 

local beam search algorithm. With the algorithms described so far we have said that a policy is modified 

by changing its actions and action values. This can also be looked upon as a new policy being generated 

from an evaluated one and then the evaluated one being discarded. GAs generate new policies based upon 

parent pairs of evaluated policies. Policies that perform better have a higher chance of generating child 

policies i.e. a better chance of procreation. Thus GAs allow for the survival of the fittest policy in the 

search for the most fit solution i.e. the optimal policy. For two policies to combine a random percentage P 

of the action values of one (which are looked on as being analogous to chromosomes within a parent’s 

genes) and 1-P percent of the action values of the other parent policy are used in the initialization of the 

offspring policy. This random percentage is referred to as the crossover point. Some random action values 

are also inserted into the child policy to allow for mutation and variance within the population.   

2.2.3.2 Multiple Policies 

In defining a policy one must also take into consideration characteristics of the reward being 

optimized. Of particular interest to the discussion within this section is the number of rewards being 

optimized. Whereas RL is traditionally a single-policy algorithm i.e. one that optimizes on a single 

reward, there have been numerous multi-policy extensions to allow for optimization across a number of 

rewards. To solidify this concept we will apply it to a traffic control scenario. A common approach to 

reward calculation for an intersection agent is to use either vehicle throughput, waiting time, or queue 

length, or some combination of two or more of these. This works fine when all vehicles are equal, but 

what is to be done when public transport vehicles like busses are to be given a higher priority? In this 

situation two rewards can be potentially calculated at each time step, one based on vehicles in general and 

the other based on public transport vehicles. This could lead to either a single combined policy or two 

separate policies (multi-policy). The question to be addressed in this section is how multiple policies can 

be handled by learning agents. 

2.2.3.2.1 Combined Policy 
One approach to handling multi-policy optimization is to combine all policies into one (Barrett & 

Narayanan, 2008). This single policy is then a product of the others. Within this product policy each of 

the component policies can be assigned a weight in accordance with their importance. In our traffic 

control example a single public transport vehicle could be given a weight that would make it the 

equivalent of ten regular vehicles, thus giving a much higher priority to approaches that have public 

transport vehicles on them as they return much higher rewards. The weights assigned to the different 

rewards can remain constant (Gábor, Kalmár, & Szepesvári, 1998) or they can change over time 

(Natarajan & Tadepalli, 2005). It is also possible to navigate a policy subspace through consideration of 
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all combinations of reward weights (Hiraoka, Yoshida, & Mishima, 2008), however this approach must 

be able to handle state space explosion appropriately. Combining multiple policies into one is an 

approach that can be quite effective when the number of policies being combined is relatively small. This 

approach however does not scale well as adding policies to the combination increases the learning time 

exponentially (Cuayáhuitl, Renals, Lemon, & Shimodaira, 2006). 

2.2.3.2.2 Arbitration Based Approaches 
A second approach to handling multi-policy optimization is to have each policy represented separately 

and then have some form of arbitrator decide which action to choose based upon the suggestions of these 

policies and weights assigned to them. The arbitrator could either choose one of the suggested actions 

(Brooks, 1991) (Gadanho & Hallam, 2001) or perhaps even a compromise action (Rosenblatt, 2000) 

(Russell & Zimdars, 2003).  

2.2.3.2.2.1 W-Learning 

W-learning (Humphrys, 1998) is an arbitration based approach which learns the weights to be 

assigned to each policy in each state as opposed to relying on manual predefinition of the weights. W-

learning maintains a separate Q-Learning process for each implicit policy. At each time step each of these 

policies suggests which action should be taken. Each Q-Learning process then observes the resulting 

reward, regardless of whether or not its suggested action was executed, thus learning what happens when 

its suggestions are either executed or ignored. Based upon these observations the agent can learn a 

weight, or W-value, that reflects the importance of the suggested actions for each policy from each state. 

These W-values are learned relative to the other policies simultaneously deployed and are thus not 

absolute values. For example a policy’s W-value for a particular state could be relatively high if its 

suggested action is in conflict with the actions suggested by the other policies, or it could be relatively 

low if the actions suggested by some of the other policies are as suitable as its own suggested action. The 

W-value update equation is given below: 

 

 

𝑊𝑖(𝑠) = (1 − 𝛼)𝑊𝑖(𝑠) + 𝛼(𝑄𝑖(𝑠, 𝑎𝑖) − (𝑅(𝑠) + 𝛾
𝑚𝑎𝑥

𝑎𝑖
′ ∈ 𝐴𝑖(𝑠′)

𝑄𝑖(𝑠′, 𝑎𝑖
′))) 

 

 

(16) 

 

where: 

 ai is the action suggested by policy i 

At each time step, once each of the policies has suggested which action should be performed the 

action to be actually executed can be selected using one of a number of different individual or group 

methods. Individual methods select which action to execute based on some criteria of a single policy, for 

example the policy could be selected that has the highest W-value for that state and thus the one that is 

going to suffer the most if its suggested action is not performed (Humphrys, 1998). Group methods take 
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into account all policies, for example the action that satisfies the most amount of policies will be selected 

for execution. The rewards returned to each policy should be designed in such a way so as to reflect the 

policy’s priority i.e. a policy of higher priority should receive higher rewards than one of lower priority. 

When this is observed policies with higher priorities will be given a higher preference during action 

selection time due to their magnified W-values. Policies of lower priority will however still have a chance 

of having their actions selected during action selection time if their actions are of high importance to them 

while policies of higher priority are in a state for which they have assigned a low importance. Only the 

policies whose action suggestions were not performed will have their W-values updated so as to ensure 

that no policy gets neglected for an extended period of time. Dusparic et al. (Dusparic & Cahill, 2010) 

have performed a significant volume of research with a focus on applying W-learning to traffic control. 

2.2.4 Representation 

In the previous subsections we have looked at two main approaches to learning, i.e. DP and TD 

learning (Russell & Norvig, 2010). Where the former learns an environment model and a utility function 

the latter learns an action-utility function with no environment model. The question now arises as to how 

these functions, as well as an explicit policy, can be represented. In this section we will look at a range of 

function representations ranging from the traditional lookup table to other parametric and non-parametric 

approaches. Every function representation in RL that is not a lookup table is referred to as a function 

approximator. 

2.2.4.1 Lookup Tables 

Traditionally utility functions and action-utility functions were assumed to be represented in tabular 

form referred to as a lookup table (Russell & Norvig, 2010), or specifically as a Q-Table in the case of Q-

Learning (Watkins & Dayan, 1992). Using a Q-Table for example, the Q-Value of performing a specific 

action from a given state is determined by finding the Q-Table row that corresponds to the given state, 

finding the Q-Table column that corresponds to the specific action, and then finding the Q-Value that is 

stored in the cell at the intersection of the two. This approach thus has the benefit of simplicity. With only 

one state variable a lookup table can be represented as a simple two dimensional table as illustrated in the 

example below.  

States \ Actions 
Extend Phase 

Length 
Maintain Phase 

Length 

Vehicles 
Present 

0.9 0.2 

Vehicles 
Absent 

0.2 0.8 

Table 1. Lookup table example 
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In this example of basic actuated traffic control (see section 2.3.2.2) we can see that when vehicles are 

present the agent can achieve a utility of 0.9 if it extends the phase length but only a utility of 0.2 if it 

maintains the phase length. In this example there is only one state variable i.e. whether vehicles are 

present or absent. The state however may not be that simple in practice e.g. it might be important to know 

which approach of the intersection the vehicles are present on and how many vehicles are present. In this 

case more state variables must be added to the table, and thus more dimensions. Our sample state variable 

(vehicle presence) represents a boolean variable, yet some state variables may have multiple values 

(discrete state variables) or even an infinite number of values (continuous state variables). As the number 

of dimensions as well as their sizes increase the size of the Q-Table increases exponentially. As the size 

of the Q-Table increases so does the length of time taken to populate it i.e. to learn, and in many instances 

it could even take an infinite amount of time. As each state needs to be visited an infinite number of times 

in order to converge to the correct utility value or Q-Value we can see that lookup tables soon become 

unable to achieve their purpose. The traditional approach to addressing this issue is to be wise in the 

definition of state variables with regards to their number and size. Thus keeping the lookup table size as 

small as possible. In situations where this is possible the agent may continue to benefit from the 

simplicity of lookup tables. Ponsen et al. (Ponsen et al., 2010) propose an abstraction technique that 

reduces the size of a state space by filtering out irrelevant state variables. Ponsen et al. also describe a 

generalization technique in that same study, which allows an agent to apply knowledge from one part of 

the state space to other, similar yet separate parts of the state space. These concepts have recently 

received significant attention in the machine learning research community. Although abstraction increases 

speed and efficiency in rooting out the least significant state variables it does not take into account the 

fact that some state variables are only significant under certain conditions e.g. an intersection might be 

heavily dependent on a neighboring downstream intersection during periods of extremely high congestion 

and not at all dependent on it during periods of low congestion. 

2.2.4.2 Function Approximation 

In many instances it is simply not possible to keep a lookup table small enough to allow it to perform 

efficiently. In these instances other function representations need be investigated. In the context of agent 

learning any function representation besides of a lookup table is referred to as a function approximator 

(Sutton & Barto, 1998). A key benefit of function approximation is that it facilitates the concise 

representation of utility functions that have very large state spaces. Another extremely important benefit 

of function approximation is that it allows a learning agent to generalize from states it has visited to states 

that it has not visited. The values returned by a function approximator are however only an approximation 

to the true value that might be obtained using a lookup table over an infinite amount of time. Also, as 

lookup tables were originally used in the development of learning algorithms, such as the DP and TD 
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algorithms that we have looked at so far, these algorithms tend to require modification in order to cope 

with the integration of function approximators. Papavassiliou and Russell (Papavassiliou and Russell, 

1999) alternatively present a different type of reinforcement learning that converges using any form of 

function approximation, so long as a best-fit approximation can be found for the underlying data. 

Function approximation is also very useful for learning and representing environment models for 

algorithms such as ADP. In this section we will look at a number of different parametric and non-

parametric approaches to function approximation. 

2.2.4.2.1 Parametric Models 
A parametric function approximator is a learning model that summarizes data with a fixed set of 

parameters. The number of parameters required to represent the underlying data does not change 

regardless of the amount of data points that have been used to train it. It will thus maintain its original 

size regardless of how much data it represents. 

2.2.4.2.1.1 Linear Models 

Many state spaces can be represented using simple linear functions (Russell & Norvig, 2010), as in 

the illustration below:  

  

Figure 11 Linearly separable state space (Stanford OpenClassroom accessed 06/04/2015) 
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When this is the case the approximate utility of being in state s Ū(𝑠) can be calculated with the state 

variable values 𝑠1 − 𝑠𝑁 (N representing the total number of state variables) and the parameters 𝜃0 − 𝜃𝑁 

using the following equation: 

 

 

Ū𝜃(𝑠) =  𝜃0 + 𝜃1𝑠1 + 𝜃𝑛𝑠𝑛 + ⋯ 𝜃𝑁𝑠𝑁 

 

 

(17) 

 

At each time step in the learning process we update the parameters by reducing the temporal 

difference between successive states. This can be done by drawing upon the TD and Q-Learning 

equations given as (10) and (12) to define the following parameter update equations. 

 

 

𝜃𝑛 =  𝜃𝑛+∝ (𝑅(𝑠) + 𝛾Ū𝜃(𝑠′) − Ū𝜃(𝑠))
ϑŪ𝜃(𝑠)

𝜗𝜃𝑛

 

 

𝜃𝑛 =  𝜃𝑛+∝ (𝑅(𝑠) + 𝛾
𝑚𝑎𝑥

𝑎′ ∈ 𝐴(𝑠′)
Ǭ𝜃(𝑠′, 𝑎′) − Ǭ𝜃(𝑠, 𝑎))

ϑǬ𝜃(𝑠, 𝑎)

𝜗𝜃𝑛

 

 

 

(18) 

 

(19) 

 

where: 

 
ϑŪ𝜃(𝑠,𝑎)

𝜗𝜃𝑛
 is the rate of change of the error with respect to parameter 𝜃𝑛 

A number of studies have demonstrated the use of linear function approximators for DP and TD 

learning (Sutton, 1988) (Dayan, 1992) (Tsitsiklis and Van Roy, 1997). 

2.2.4.2.1.2 Artificial Neural Networks 

Many state spaces cannot be linearly divided, as illustrated below, and can thus be modeled using 

non-linear techniques (Russell & Norvig, 2010). 
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Figure 12 Non-linearly separable state space (Stanford OpenClassroom accessed on 06/04/2015) 

A classic example of this is the XOR operator, whose state space, unlike other operators like AND 

and OR, cannot be linearly divided, as can be seen in the following illustration: 

 

 

  

Figure 13 The (non)linear separability of the OR, AND, and XOR operators 

Artificial Neural Networks (ANNs) (Russell & Norvig, 2010) are an excellent example of non-linear 

parametric algorithms that are commonly used for function approximation. ANNs are composed of 

groups of highly interconnected neurons, which are programmed software components that simulate the 
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properties of biological neurons. These artificial neurons learn over time by adjusting the weights 

associated with the connections between them. In a multi-layer ANN the first layer, or input layer, 

contains an input node for each state variable. The network also contains an inner hidden layer, or 

possibly multiple hidden layers, that consist of multiple hidden artificial neurons. The final layer, or 

output layer, contains one output node for each output value. Each node in a layer i within the ANN is 

directly connected to each node in the next layer j, thus each input node 𝐼𝑛 is directly connected to each 

node 𝐻𝑚 within the hidden layer, and each node 𝐻𝑚 within the hidden layer is directly connected to each 

output node 𝑂𝑘.  Each connection has a numeric weight 𝑤𝑗
𝑖  associated with it that determines the strength 

of the connection. Each node within the hidden and output layers also have a bias input (with a constant 

value of 1) with an associated bias weight 𝑤𝑗
0. This ANN architecture is illustrated below: 

 

Figure 14 Artificial Neural Network (ANN) architecture 
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Each node within the ANN receives as input a the output values of the nodes within the preceding 

layer. On receiving these values each neuron calculates the weighted sum in of values using the following 

equation: 

 

 

𝑖𝑛𝑗 = ∑ 𝑤𝑗
𝑖𝑎𝑖

𝑀 𝑜𝑟 𝐾

𝑖=0

 

 

 

(20) 

 

Each node then applies an activation function g to this sum in to derive the node output i.e. 𝑎𝑗 =

𝑔(𝑖𝑛𝑗). This activation function is usually a sigmoid function, or in the case of the network being a simple 

perceptron a basic threshold approach is used. This process of calculating the node output is illustrated 

below: 

 

Figure 15 Basic mathematical model of a neuron (Russell & Norvig, 2010, p728) 

In a feed-forward ANN training is achieved by generating an error value each time the network is 

used and back propagating it through the network to adjust the weights, thus either strengthening or 

weakening the neural connections. The first step in back propagating this error value is to calculate the 

individual error a.k.a. the delta ∆, of each output node using the following equation: 

 

 

∆𝑗= 𝑔(𝑖𝑛𝑗)(𝑦𝑗 − 𝑎𝑗) 

 

 

(21) 

 

where: 

 𝑦𝑗 is the value that 𝑎𝑗 should have been 

The delta ∆ for each node in the hidden layer can now be calculated using the following equation: 

 

 

∆𝑖= 𝑔(𝑖𝑛𝑖) ∑ 𝑤𝑗
𝑖∆𝑗

𝑗

 

 

 

(22) 
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Once these delta values have been calculated the ANN weights can be updated using the following 

update rule: 

 

 

𝑤𝑗
𝑖 = 𝑤𝑗

𝑖 + 𝛼𝑎𝑖∆𝑗 

 

 

(23) 

 

where: 

 𝛼 is the learning rate [0…1] 

The back propagation ANN algorithm is given below. 

repeat 

 for(each weight 𝑤𝑗
𝑖  in network) 

  𝑤𝑗
𝑖  = a small random number 

 for(each datapoint in training set) 

  // Forward propagation of inputs to compute outputs 

  for(each node i in input layer) 

   𝑎𝑖 = 𝑖𝑛𝑝𝑢𝑡𝑖 

  for(each layer l other than the input layer) 

   for(each node j in layer l) 

    𝑖𝑛𝑗 = ∑ 𝑤𝑗
𝑖

𝑖 𝑎𝑖  

    𝑎𝑗 = 𝑔(𝑖𝑛𝑗) 

  // Back propagate error to update weights 

  for(each node j in output layer) 

   ∆𝑗= 𝑔(𝑖𝑛𝑗)(𝑦𝑗 − 𝑎𝑗) 

  for(each hidden layer l)  

   for(each node i in layer l) 

    ∆𝑖= 𝑔(𝑖𝑛𝑖) ∑ 𝑤𝑗
𝑖

𝑗 ∆𝑗 

  for(each weight 𝑤𝑗
𝑖  in network) 

   𝑤𝑗
𝑖 = 𝑤𝑗

𝑖 + 𝛼𝑎𝑖∆𝑗 

until termination criteria is met 

Figure 16 Back propagation ANN learning algorithm 

One very important aspect of ANNs is having the correct network structure i.e. the number of hidden 

layers and the number of hidden nodes within each layer. If a network is too large for its purposes then it 

will become over-fitted to the training data and will not be able to generalize well to inputs that it has not 
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seen before. A common approach in choosing the best network structure is to create a number of various 

network structures and then keeping the best one.  

A very well-known example of an ANN being used as a function approximator is TD-Gammon 

(Tesauro, 1992, 1995). The use of ANNs as function approximators is however regarded as somewhat of 

a delicate art. One of the major deterrents in using an ANN function approximator is the complexity of 

integrating it into traditional lookup table based Reinforcement Learning algorithms. Another significant 

issue is that its network structure is quite static after its initial training phase, whereas as an agent learns 

over time using DP or TD algorithms the state space may change significantly, requiring a more dynamic 

network structure. ANN-based TD learners also tend to forget earlier experiences, particularly those that 

occur in areas of the state space that are not often visited again once the ANN has been trained. This can 

result in recurring failures when the agent finds itself in these uncommon states. Instance based function 

approximators can help avoid this issue (Ormoneit and Sen, 2002) (Forbes, 2002). 

2.2.4.2.2 Non-Parametric Models 
Unlike the parametric approach, non-parametric function approximation (Russell & Norvig, 2010) 

does not use a fixed set of parameters to represent the utility or action-utility function. This leads to a 

correlation between the state space size and the size of the model. For example, data points representing 

each state ever visited could be stored within the model and then utilized in making utility estimations on 

subsequent states. Thus the size of the model grows with the number of states visited. This approach to 

learning is similar to the idea of a lookup table, with the exception that it contains additional functionality 

that enables the generalization required to deal with large state spaces.  

2.2.4.2.2.1 Clustering 

Many clustering algorithms exist that can improve upon the lookup table approach by giving it 

generalization functionality. Some such models include: centroid models e.g. k-means algorithm (Lloyd, 

1982), connectivity models (Karypis et al., 1999), and density models e.g. DBSCAN (Ester, Kriegel, 

Sander, & Xu, 1996). We will look at the k-nearest neighbor clustering algorithm as an example. When 

an agent is in state s0 this clustering algorithm firstly retrieves the stored utility values that were received 

when the agent was in the states s1-K most similar to s0 in the past. Similarity between states is usually 

measured with a Minkowski distance Lp defined below: 

 

 

𝐿𝑝(𝑠0, 𝑠𝑘) = (∑(𝑠0
𝑖 − 𝑠𝑘

𝑖 )
𝑝

)

𝑖

1 𝑝⁄

 

 

 

(24) 

 

where: 

 i is a state variable 
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 p is a specified variable 

With p equal to 2 this equation gives the Euclidean distance (straight line between the two points) 

while with p equal to 1 it gives the Manhattan distance (sum of straight lines along the axes between two 

points e.g. Travelling between two points in Manhattan can typically not be done by following a single 

straight line but must take into account street corners within the transport grid). Having retrieved the 

utility values that were received in the K states i.e. s1-K, that are most similar to state s0 i.e. its K nearest 

neighbors, the algorithm can now calculate their mean, median, or some other calculable value as an 

estimate of the utility that will be received when in state s0.  

As the number of state variables taken into consideration increases however a number of issues 

become apparent (Kriegel, Kröger, & Zimek, 2009), namely: 

 The state space size increases exponentially i.e. the curse of dimensionality 

 The concept of distance i.e. similarity, between two data points becomes meaningless 

 The relevance of certain state variables may differ in different clusters a.k.a. the local feature 

relevance problem 

 Clusters may exist in arbitrarily oriented affine subspaces 

Multiple algorithms exist that attempt to perform clustering with high dimensional data. Among the 

more popular methods are subspace clustering and projected clustering. Subspace clustering algorithms 

e.g. SUBCLU (Kailing, Kriegel, & Kröger, 2004) detects clusters that exist within all possible subspaces 

within the state space, each subspace being made up of a unique combination of state variables. Projected 

clustering algorithms e.g. PreDeCon (Bohm, Railing, Kriegel, & Kroger, 2004) use a distance function to 

amplify the distance along dimensions of less relevant variables. Once the distance function has been 

applied then other clustering algorithms e.g. DBSCAN can be used for cluster detection.  

2.2.4.2.2.2 Locality-Sensitive Hashing 

A hash table is a data structure that implements an associative array, which is a structure that can map 

keys to values. It uses a hash function to compute an index into an array of buckets from which a desired 

value can be found. Hash tables have the potential to provide much faster lookup than regular lookup 

tables or even binary trees. Hash tables rely on exact matching as the allocation of bin space is done 

randomly e.g. a bin containing a utility value for state s0 will not necessarily be located anywhere close to 

the bin containing a utility value for state s1, which is the nearest neighbor of state s0. To allow for 

generalization however a function approximator needs to be able to find states that are similar to the 

current state, requiring some form of organized storage. Thus in order to use hash mapping for function 

approximation states that are similar to each other have to group their utility values into the same bin, 

making the hash function locality-sensitive. Locality-Sensitive Hashing (LSH) (Gionis et al., 1999) 

(Russell & Norvig, 2010) rapidly retrieves the approximate set of nearest neighbors 𝑠’1−𝐾  to state s0. In 

order to accomplish this LSH requires a hash function g(s) that for any two states s and s’ the probability 
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is high that they will be assigned the same hash key if they are within distance cr of each other, where c is 

a specified parameter for the algorithm and r is a specified threshold radius value. Similarly, the 

probability is low that they will be assigned the same hash key if they are not within distance cr of each 

other. This hash function g(s) relies on the concept that if two states within an n-dimensional state space 

are similar then they will also be similar when projected down onto a one-dimensional state space i.e. a 

line. Thus all state variables in the state space are collapsed except a small subset, which subset is used to 

judge the distance or similarity between the two states. Although this groups states together that are 

similar to each other there will also be multiple states included into bins that are quite dissimilar with 

regards to some of the collapsed states. Thus in one dimension the states will be close together yet in 

another they may be quite far apart. To increase the probability of finding the actual nearest neighbor 

states 𝑠1−𝐾 multiple such hash tables are maintained, each one being projected onto a different random 

subset of state variables. When the agent is in state s0 LSH uses s0’s hash key in looking up the associated 

bucket from each of the hash tables being maintained. The nearest neighbor states s1-K have a high 

probability of being contained within all of the referenced bins. The actual distances are calculated 

between state s0 and each of the states within the union subset of states contained within these buckets, 

thus leading LSH to the approximate set of nearest neighbors 𝑠’1−𝐾 . One excellent example of LSH being 

used in a real world problem is Torralba et al.’s use of LSH in finding nearest neighbor images within a 

data set of 13 million web images (Torralba et al., 2008). LSH only had to examine a few thousand 

images before finding the nearest neighbor images, thus speeding up the search a thousand fold when 

compared to other algorithms. 

2.2.4.3 Conclusion 

In this section we have described a number of methods that can be used in representing utility 

functions, action-utility functions, environment models, and even explicit policies. These methods define 

the learning capabilities of such components. The second of the two research questions that we address in 

this thesis (RQ2) focuses on the detection of a method of representing an RL agent’s utility function that 

is well suited to the non-static nature of a dynamic transport network. This utility function representation 

must be able to perform generalization and abstraction so as to increase efficiency and reduce learning 

times. This enables the learning agent to learn effectively in such an environment. The utility function 

representation must also be intuitive with regards to RL equations such that they can be implemented 

using this representation without requiring major modification themselves. In this section we have looked 

at a range of function representations ranging from the traditional lookup table to other parametric and 

non-parametric approaches. Every function representation in RL that is not a lookup table is referred to as 

a function approximator. The question remains as to the suitability of each of these methods as adequate 
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solutions to RQ2. In order to assess the suitability of each approach we have composed the following 

table, which we will now discuss in more detail.  

Method Generalization Abstraction 
Memory 

Requirements 
Processing 

Requirements 
Integration 
Complexity 

Has 
Been 

Applied 
to RL 

Lookup 
Table 

No No Low Low - Yes 

Linear 
Model 

Yes No Low Low Complex Yes 

Artificial 
Neural 

Network 
Yes Yes Low Low Complex Yes 

Cluster 
Space 

Yes Yes High High Medium Yes 

Locality 
Sensitive 
Hashing 

Yes Yes Low/Medium Low - No 

Table 2. Representation method comparison 

In Table 2 we can observe the following information for each method of representation.  

 Their ability to perform generalization and abstraction as described in this section 

 Their memory and processing requirements relative to each other 

 The relative complexity of the necessary RL equation modifications 

 Whether the methods have been applied to RL within current literature 

Traditionally utility functions were designed so as to be represented by lookup tables. These tables do 

not provide generalization or abstraction functionality. This means that they would not be a suitable 

method in environments that are represented by high dimensional state spaces. In these situations learning 

would simply take too long. Lookup tables do however have a number of benefits. They do not take up 

much space in memory and they have low processing requirements. RL equations have been initially 

designed to work with lookup tables and thus the two are integrated by design. 

Using linear models allows for generalization at the cost of complex changes being required in the RL 

equations. Linear models do not however facilitate abstraction in learning. Linear models are also quite 

limited in the data that they represent due to the fact that they represent regions within the state space 

using straight lines or planes, and can thus not identify non-convex regions. This drawback could be 

overcome by using Support Vector Machines as a linear model, at the cost of even further complex RL 

equation modifications. Similar to lookup tables, linear models have low memory and processing 

requirements and they have been used for RL in current literature.  
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Artificial Neural Networks are quite popular in current literature for use as RL utility functions. This 

is not only because they enable generalization and abstraction but also because they can represent non-

convex regions of the state space. This makes them incredibly useful when compared to lookup tables and 

linear models. ANNs also have small memory and processing requirements. A major drawback of ANNs 

is that they require significantly complex adjustments to the RL equations in order to be implemented as a 

utility function. Both linear models and ANNs are also somewhat of an art to model, requiring significant 

expertise to decide on such considerations as a suitable number of hidden layers or number of hidden 

nodes.  

Cluster spaces are a form of RL utility function representation that allow for generalization and, 

thanks to high dimensional clustering equations in particular, also abstraction. This form of representation 

has been applied to RL equations in current literature and do not require as complex modifications to 

these equations as parametric approaches such as ANN. The major drawback to cluster based utility 

functions is that they have very high memory and processing requirements. This is because each data 

point used to train the representation needs to be stored in memory and then many of them need to be 

accessed when the model is in use. The longer the model is trained the bigger and slower it becomes. This 

renders cluster based representation as an unsuitable approach for our purposes. 

Locality sensitive hashing is an approach that has not received any consideration for application to RL 

in the current literature that we are aware of. It has thus up to this point not been used as a RL utility 

function to the best of our knowledge. It does however have a lot of potential to be used for such a 

purpose. It enables both generalization and abstraction. As multiple hash maps need to be stored its 

memory requirements are slightly higher than that of lookup tables. Using a hash map has lower 

processing requirements than using a lookup table, so even though multiple hash maps are referenced at 

once the total processing requirements are still kept low. Because locality sensitive hashing has not been 

used as a RL utility function in current literature we cannot confirm how complex the required 

modifications to the RL equations would be. Based upon our experiences we would however assume that 

the required modifications would actually be quite low. 

From Table 2 and the discussion that followed we can see that there are no obvious solutions to RQ2. 

Although locality based hashing provides both generalization and abstraction with reasonable memory 

requirements and low processing requirements it has not been used before as an RL utility function. This 

means that we cannot be sure of the extent to which the RL equations would need to be altered to enable 

its integration. In this thesis we present a representation method (Multi-Layer Hashing) that is based upon 

locality sensitive hashing. This method has all of the benefits of locality sensitive hashing presented in 

Table 2. We apply this method to RL as a utility function and find that the equational modifications 

required are really quite small. Thus the MLH method that we present in this thesis addresses RQ2 while 

filling a significant gap in the current literature. 
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2.2.5 Exploration 

The assumption that we have made thus far is that an agent’s sole factor in determining which action 

to select for execution is based upon the long term rewards that the agent will receive as a result of the 

selected action being executed. The actions taken do more however than influence the returned rewards 

according to the current utility function and model. They also contribute to learning the true utility 

function and model by affecting which state transitions and rewards are observed (Russell & Norvig, 

2010). This aspect of action selection is vital for the agent’s long term wellbeing. Action selection based 

solely on the maximization of long term rewards is referred to as exploitation, as the agent is exploiting 

its current knowledge to its own benefit. Action selection based solely upon the learning of the true utility 

function and model is referred to as exploration, as the agent is exploring different areas of the state and 

action space so as to improve its knowledge of the environment. An agent that focuses solely on 

exploitation may never have a full enough understanding of its environment to truly maximize its utility. 

Thus in focusing too much on its goal of utility maximization it ensures that it will never truly achieve it. 

An agent that focuses solely on exploration will maintain a true understanding of its environment but will 

never use this knowledge to maximize its utility, rendering the agent irrational and ultimately of little 

worth. An agent must therefore balance between exploitation and exploration activities if it is to truly 

prosper within its environment. There are various approaches to balancing between exploitation and 

exploration action selection. In this section we now discuss a number of these approaches. 

2.2.5.1 Greedy 

We mentioned earlier the extremity of focusing solely on exploitation action selection at the expense 

of exploration. An agent that takes this approach to action selection is referred to as a greedy agent 

(Russell & Norvig, 2010). A greedy agent will seldom truly maximize its utility. This is particularly true 

within deterministic, static environments as they do not vary from one time step to the next. In stochastic, 

dynamic environments greedy action selection, although still quite weak, fares a little better. This is 

because of the fact that the variations in returned rewards may alter the utility of the agent’s actions from 

one time step to the next, which may have a knock on effect on which action is deemed the rational 

choice. For example, if action a0 has the highest utility value from state s, then a greedy agent will always 

select it for execution. If however, due to stochasticity or a dynamic change in the environment the utility 

of action a0 drops below the utility of any of its competing actions a1-A then the greedy agent will no 

longer select it, but will turn its attention to the action with the next highest utility value. As this process 

occurs over time the greedy agent unintentionally explores the actions that have what it thinks are the 

highest utility values. 
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2.2.5.2 𝜖-Greedy 

Unlike greedy action selection the 𝜖-Greedy approach explicitly performs exploration(Sutton & Barto, 

1998). The simple mechanism that the 𝜖-Greedy algorithm provides for this purpose is to select a random 

action with probability 𝜖 (a variable value ranging from 0 to 1) and to follow the greedy policy otherwise 

i.e. with probability 1 – 𝜖.  

The following diagram, taken from Sutton and Barto’s pivotal book on RL (Sutton & Barto, 1998), 

illustrates the performance of the 𝜖-Greedy algorithm with various values of 𝜖 when applied to a 10-

armed bandit problem. This data used for the diagram was averaged over 2000 experimental iterations. 

  

Figure 17 𝜖-Greedy performance, various values of 𝜖 in 10-armed bandit problem (Sutton & Barto, 1998) 

The value of 𝜖  can also vary over time. This can enable an agent to perform more exploration 

immediately after initialization and then focus more on exploitation as time goes on. Besides of varying 𝜖 

over time it is also possible to modify 𝜖 based upon some form of triggering event, such as error levels 

dropping below a threshold value, thus forcing the agent to reconsider its understanding of the 

environment. Although the 𝜖-Greedy is a considerable improvement to the simple greedy approach it can 

still be quite slow. One reason for this is that it explores the environment unevenly; meaning that some 

areas in the state space will be explored more than necessary while others are not explored enough. A 

solution to this problem is to assign a separate 𝜖 value to each state, ensuring that exploitation is done 

when the agent finds itself in an area of the state space that it is quite familiar with already, while also 

exploring areas of the state space that it is not yet familiar with. This approach however is aimed at agents 

that use lookup tables or other similar approaches to represent the utility function and model. It does not 

carry over as well to agents using function approximation.  
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2.2.5.3 Boltzmann 

Boltzmann a.k.a. softmax, action selection is another popular approach that balances exploration and 

exploitation throughout the life of the learning agent (Sutton & Barto, 1998). As opposed to 𝜖-greedy 

action selection, in which all actions have an equal chance of being selected during an exploration step, 

Boltzmann action selection assigns a higher probability of selection P(s,a) to actions that have higher 

action-utility values. Boltzmann action selection is defined in equation (25).  

 

 

𝑃(𝑠, 𝑎) =  
exp

𝑄(𝑠, 𝑎)
𝜏

∑ exp
𝑄(𝑠, 𝑖)

𝜏𝑖∈𝐴(𝑠)

 

 

 

(25) 

 

where: 

 𝜏 is the temperature variable 

A high temperature 𝜏  signifies that all actions are equally probable of being selected during an 

exploration step. This is equivalent to 𝜖-Greedy action selection. A low temperature 𝜏 means that actions 

with higher action-utility values are more likely to be selected. This is equivalent to greedy action 

selection. As with 𝜖-Greedy’s 𝜖 variable the temperature 𝜏 variable value can be modified over time or as 

a result of some triggering event. 

2.2.6 Coordination Graphs 

The coordination graph framework was introduced to assist in large scale coordinated action selection 

(Guestrin et al., 2002). Within a coordination graph agents must determine a jointly optimal action 

without explicitly considering every possible action in their joint action space. Agents within a 

coordination graph do not coordinate their actions with all other agents within the system but rather with 

a subset of agents that have influence on or that are influenced by the agent. The set of state variables and 

actions that influence the agent are referred to as its scope. The agent thus does not maintain global joint 

state or action spaces but rather significantly smaller observable state space and relevant action space. In 

Guestrin’s original presentation of the coordination graph framework it was assumed that each agent’s 

scope is known in advance. This was later extended to enable the learning of interdependencies among 

cooperative agents (Kok, Jan't Hoen, Bakker, & Vlassis, 2005).  

We will use the small four-agent system illustrated below as an example upon which we can base our 

explanation of action selection within a coordination graph. 
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Figure 18 A four-agent coordination graph 

The coordination graph framework divides a coordination game into a number of sub-games, each 

involving a subset of the total set of agents within the environment. Each subset consists of agents that are 

within each other’s scopes. This approach assumes that the global reward function can be written as a 

linear combination of local reward functions, each involving a small number of agents. In the area of 

traffic control an intersection agent might for example only be concerned about the actions of its 

immediate neighbor agents while in robotic soccer an agent might only be concerned with a dynamic set 

of agents that are within its immediate vicinity. In our four-agent system, in which the action-utility 

function Q of each agent is only dependent on its own actions and that of its upstream neighbor we can 

write this as follows: 

 

 

𝑄(𝑎1, 𝑎2, 𝑎3, 𝑎4) = 𝑄1(𝑎1, 𝑎4) + 𝑄2(𝑎2, 𝑎1) + 𝑄3(𝑎3, 𝑎2) + 𝑄4(𝑎4, 𝑎3) 

 

 

(26) 

 

State s is held constant in this example and is thus omitted from the equations. Our objective here is to 

find the following: 

 

 

𝑎𝑟𝑔𝑚𝑎𝑥

𝑎1, 𝑎2, 𝑎3, 𝑎4

𝑄1(𝑎1, 𝑎4) + 𝑄2(𝑎2, 𝑎1) + 𝑄3(𝑎3, 𝑎2) + 𝑄4(𝑎4, 𝑎3) 

 

 

(27) 

 

We can now apply Guestrin’s variable elimination algorithm to optimize the agents action choices one 

at a time. We will begin by eliminating agent 1. We firstly group all functions that are dependent on agent 

1’s actions, getting: 

 

 

𝑎𝑟𝑔𝑚𝑎𝑥

 𝑎2, 𝑎3, 𝑎4

𝑄3(𝑎3, 𝑎2) + 𝑄4(𝑎4, 𝑎3) +
𝑎𝑟𝑔𝑚𝑎𝑥

𝑎1

[𝑄1(𝑎1, 𝑎4) + 𝑄2(𝑎2, 𝑎1)] 

 

 

(28) 

 

For agent 1 to choose an optimal action it must know actions 𝑎2 and 𝑎4. Agent 1 must thus compute a 

conditional strategy 𝑒1 as given below: 
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𝑒1(𝑎2, 𝑎4) =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑎1

[𝑄1(𝑎1, 𝑎4) + 𝑄2(𝑎2, 𝑎1)] 

 

 

(29) 

 

Agent 1 has now been eliminated from the equation, leaving us with the following: 

 

 

𝑎𝑟𝑔𝑚𝑎𝑥

 𝑎2, 𝑎3, 𝑎4

𝑄3(𝑎3, 𝑎2) + 𝑄4(𝑎4, 𝑎3) + 𝑒1(𝑎2, 𝑎4) 

 

 

(30) 

 

We now move on to eliminate agent 2 in much the same way as we eliminated agent 1. 

 

 

𝑎𝑟𝑔𝑚𝑎𝑥

 𝑎3, 𝑎4

𝑄4(𝑎4, 𝑎3) + 𝑒2(𝑎3, 𝑎4) 

 

 

(31) 

 

We now eliminate agent 3 following the same process: 

 

 

𝑒4 =
𝑎𝑟𝑔𝑚𝑎𝑥

 𝑎4

𝑒3( 𝑎4) 

 

 

(32) 

 

Agent 4 is now free to choose an action 𝑎4
∗  that maximizes 𝑒3. Agents 3, 2, and 1 are now obliged to 

perform the actions that they committed to that lead to the maximization of 𝑎4
∗ . The process so far 

however has only given the optimal action 𝑎4
∗  while all other actions are only conditional actions. In order 

to compute the optimal actions for the other agents we must run the algorithm again with a different agent 

being the last to be eliminated and with plugging action 𝑎4
∗  into the equation as agent 4’s conditional 

action. Following this procedure all optimal actions can be obtained, regardless of the initial order that the 

agents were eliminated in. The execution time however increases exponentially with the increasing width 

of the coordination graph. This challenge has been noted and efforts have been made to address it, for 

example the max-plus algorithm for coordination graphs (Kok & Vlassis, 2006).  

2.3 Traffic Control 

In this section we introduce the author to the traffic engineering concepts and terminology relevant to 

this thesis. We then describe classical approaches to traffic control that are commonly implemented 

throughout the world. We then describe a selection of AI based traffic control systems with a focus on RL 

agent based systems.   
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2.3.1 Traffic Engineering Concepts and Terminology 

A transport network consists of a potentially very large number of uncontrolled and signalized 

intersections that are interlinked by means of roadways. Whereas an uncontrolled intersection is 

managed by traffic rules a signalized intersection is managed by a traffic signal controller. This signal 

controller is a combination of software and hardware that is usually contained within a metal box in close 

proximity to the intersection. This signal controller implements a set of signal timing plans that dictate 

the order and timing of the intersection’s traffic lights. These lights inform vehicles on all of the 

intersection’s approaches whether or not they have the right to pass through the intersection. For the 

interval of time that a traffic light turns green for any given approach the vehicles on that approach have 

right of way to proceed through the intersection. This is known as a green interval. A red interval 

denies vehicles on an approach access to the intersection. A change interval, indicated by an amber 

traffic light, indicates a change from a green interval to a red interval (In this thesis we assume Irish rules 

of the road and traffic light sequencing in which vehicles are driven on the left of the road and change 

intervals follow green intervals and not red ones). During a change interval vehicles that are approaching 

the intersection should stop if safe to do so. This interval generally lasts for about three seconds in 

practice. A clearance or all-red interval occurs when vehicles on all approaches of the intersection are 

prohibited from proceeding. This is a short interval, typically lasting one or two seconds, that occurs for 

safety purposes just after any change interval. A phase consists of a combined set of non-conflicting 

green intervals followed by a change interval and a clearance interval. During this time any intersection 

approaches that do not have a green interval experience a red interval. The duration of a phase is referred 

to as the phase length. Phases occur in sequence and one full rotation of a sequence of phases is referred 

to as a cycle. The duration of one complete cycle is called the cycle time. The offset between two 

intersections is defined as the time difference between the start of their respective cycles. Signal timing 

plans, also known as phase plans, can be illustrated using phase diagrams or using ring diagrams. One 

possible phase plan for the intersection illustrated in Figure 19 is represented using the phase diagram in 

Figure 20 and also the ring diagram in Figure 21.  
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Figure 19 Intersection layout 

 

Figure 20 Phase diagram 
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Figure 21 Ring diagram 

When cycle times, phase lengths, and offsets of signal controllers along a traffic corridor or arterial 

are set correctly a progressive signal system can be established that creates “green waves” of traffic. An 

essential element of establishing and maintaining progressive signal systems is for each intersection along 

the traffic corridor to have the same cycle length, or multiples of the same cycle length. The time 

difference between the first and last vehicles that pass through the arterial without stopping is called the 

bandwidth. The time space diagram presented in Figure 22 illustrates a progressive signal system.  
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Figure 22 A progressive signal system 

Where there is little traffic congestion, traffic controllers along a main arterial will give a green signal 

just before a platoon of vehicles arrives. This is referred to as forward progression. This is the type of 

progression established in Figure 22 along the traffic corridor from intersections 1-5. In congested 

conditions the traffic corridor’s upstream traffic controllers begin their green phases first so as to clear 

congested traffic before letting any more vehicles into the arterial. This is referred to as reverse 

progression. When intersections are located at a very short distance from each other it may be more 

appropriate to have all traffic controllers begin their green intervals at the same time. This is referred to as 

simultaneous progression and is the easiest form of progression to achieve. Flexible progression refers 

to when different forms of signal progression are activated at different times of the day or under various 

traffic conditions. 

Establishment and maintenance of progressive signal systems is much more complex in transport 

networks where traffic flow is dynamic. Dynamics can lead to the direction of the main flow of traffic 

along a traffic corridor to reverse within a matter of hours. It can also lead to changes in the course of a 

traffic corridor. These course changes can be temporary, such as those that might be caused by road 

closures. They can also be permanent, such as those that might be caused by permanent alterations to the 

transport network topology. 

Establishing progressive signal systems also becomes much more complex in two directional traffic 

corridors. In these scenarios progression in one direction may decrease the amount of possible 

progression in the opposite direction. This can be seen in Figure 23, where forward progression has been 

established along the traffic corridor running from intersections 1-5 and no such progression has been 

established along the same traffic corridor running from intersections 5-1. 
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Figure 23 Challenge with progression in a two directional traffic corridor 

Traditional solutions to this problem include designing the transport network with suitable distances 

between intersections to enable signal progression in both directions, as seen in Figure 24, or establishing 

progression in the direction that has a significantly higher flow of traffic.  

 

Figure 24 Two-way progression 

There are three main levels of scope in which a traffic controller may act. The most basic and easiest 

to achieve of these levels of scope is isolated scope, in which the traffic controller functions 

independently of any other traffic controllers. Within this scope no consideration is given to offset, 
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coordination, or progressive signal systems. Actuated traffic controllers (see section 2.3.2.2) generally 

function within this scope. The next level of scope that a traffic controller may act in is that of arterial 

scope. Within this scope traffic controllers generally coordinate with upstream and downstream traffic 

controllers along a traffic corridor. The third and final scope in which a traffic controller may act is that of 

grid scope. To coordinate within a grid network each intersection increases its scope so as to take into 

account upstream and downstream traffic controllers in multiple directions. Traditionally coordination 

within a grid network is dealt with by logically dividing the network into non-overlapping arterial 

segments in which no loops exist (Roess, Prassas, & McShane, 2011, p 695). This process requires time, 

effort, and expert knowledge but prevents the problem from becoming excessively computationally 

expensive. Essentially this approach extends the idea of coordination within an arterial scope. 

Optimization software such as TRANSYT (Roess, Prassas, & McShane, 2011, p 718) and PASSER 

(Roess, Prassas, & McShane, 2011, p 718) are typically used to aid traffic engineers through this process. 

Another approach to coordination within a grid scope would be to design the physical grid network with 

suitable distances between intersections to enable signal progression.  

Traffic signal controllers are often connected to sensors that are embedded within the traffic network. 

These sensors enable the signal controller to detect vehicles as they approach the intersection. Different 

types of traffic detectors include ultrasonic detectors, magnetic detectors, microloop detectors, cameras, 

and inductive loop detectors. Inductive loop detectors are the most popular of these as they are relatively 

cheap yet quite reliable. An inductive loop is installed by laying an electrically conductive cable into a 

shallow saw cut in the road and then refilling the cut with an epoxy sealant. The saw cut tends to be a 

square, rectangle, or trapezoid. The loop is connected to a low-grade electrical source, which creates an 

electromagnet that can detect whenever a metallic object e.g. a vehicle, moves over it. Figure 25 shows a 

typical induction loop detector installation. 

  

Figure 25 Typical induction loop detector installation 
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2.3.2 Classical Approaches to Traffic Control 

Traffic signal controller operation is usually divided into the following categories: pre-timed, 

actuated, and adaptive. These approaches differ to each other with regards to complexity, flexibility in 

their phase plans, as well as with regards to the amount of information observed from sensors and how 

this information is used. We will now discuss each of these approaches to traffic control in turn. 

2.3.2.1 Pre-timed 

Pre-timed traffic control (Roess, Prassas, & McShane, 2011) is the most basic traffic control method 

and is the most common in practice due to the fact that it does not require any sensors or means of 

communication between traffic signals. It is thus relatively cheap to install and is particularly dependable 

in situations where traffic patterns do not change significantly over time. This method fixes the cycle 

lengths and phase lengths, and subsequently offsets, over set periods of time. These fixed timing plans 

can be optimized offline based on observed or historical traffic flow volumes. This optimization can be 

achieved using algorithms such as Webster’s algorithm (Webster, 1958) or using software such as 

TRANSYT (Robertson, 1969). Signals can be optimized for different levels of traffic flow and then at 

particular times of the day the signal plans can be changed. Thus pre-timed traffic control can handle 

predictable changes in traffic flow such as weekday peak traffic times. Pre-timed control cannot however 

dynamically adapt to changes in traffic flow and must be regularly reprogrammed to handle evolving 

traffic patterns. This can be time consuming for a traffic engineer. Multiple pre-timed traffic controllers 

can be programmed to work in coordination so as to establish a progressive signal system. This is 

achieved by setting appropriate offset times between adjacent intersections.  

2.3.2.2 Actuated 

Actuated traffic control (Roess, Prassas, & McShane, 2011) is achieved when traffic controllers set 

phase lengths based upon sensor vehicle detections known as actuations, as opposed to setting pre-timed 

phase plans. Although the signal controller still cycles through a specified sequence of phases the phase 

durations are not fixed. A phase can even be skipped if no traffic is detected on its associated approaches. 

Initially, a minimum green time is allocated to each phase. When a vehicle is detected on one of the 

phase’s approaches nearing the end of the phase duration then the phase duration can be incremented by a 

specified extension time. When a vehicle is detected on an approach assigned to another phase then a 

limit is set on the current green time. Through this process phases are given green time in proportion to 

their current traffic flows. An actuated phase is illustrated in Figure 26. 
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Figure 26 Actuated phase 

During heavy traffic conditions an actuated traffic controller will essentially reduce to a pretimed 

traffic controller that assigns the maximum green time to each phase. Actuated traffic control does not 

require any form of communications between traffic controllers, which reduces costs but also means that 

no coordination is possible. This form of traffic control is thus mainly suitable for more isolated 

intersections that have low to medium traffic flow levels. 

2.3.2.3 Adaptive 

Adaptive traffic control (Roess, Prassas, & McShane, 2011) is the most complex and expensive of the 

three forms of traffic control and can require multiple sensors at each intersection as well as 

communications between intersections. Forms of communication between intersections range from cables 

such as ADSL or fiber optic cables to wireless communications such as Wi-Fi. Adaptive controllers use 

the data that they detect from their local sensors as well as data communicated to them from other traffic 

controllers to adapt to changes in traffic flow. This gives this approach the potential to adaptively 

optimize traffic flow across multiple intersections. Varied approaches have been proposed that strive to 

achieve efficient adaptive traffic control. In this section we will review some of the more mature and 

widely deployed approaches before looking into more advanced and experimental approaches. 

2.3.2.3.1 Sydney Coordinated Adaptive Traffic System (SCATS) 
SCATS (Sims & Dobinson, 1980) is an adaptive traffic control system that was developed in the early 

1980s in Sydney, Australia by the New South Wales roads and traffic authority. It is currently deployed 
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in 27 countries worldwide controlling more than 37,000 intersections (www.scats.com.au, accessed on 

06/04/2015). In traffic networks in which SCATS is to be implemented a traffic engineer will divide the 

network up into multiple regions. Each local traffic controller within a region receives instructions from a 

regional master controller. Each regional master controller within the system reports to a control center, 

which is mainly used for administration purposes. SCATS thus has a hierarchical architecture that is 

illustrated in Figure 27.  

  

Figure 27 SCATS architecture 

Traffic engineers must predefine the traffic signal timing plans for each region within the network. 

These plans give the best phase durations and offsets for local controllers within the region based on 

specific traffic flow conditions. Traffic sensors detect the regional traffic flow conditions and the 

appropriate plans are employed. Thus SCATS can establish coordination within a region and can also 

adapt to changing traffic conditions. The process of designing the timing plans for each region in the 

traffic network can be quite tedious and prone to error.  

2.3.2.3.2 Split, Cycle and Offset Optimization Technique (SCOOT) 
SCOOT (Hunt, 1981) is an adaptive traffic control system that was developed in the early 1980s in the 

UK at the British Transport and Road Research Laboratory (TRRL). SCOOT is implemented in over 200 

cities throughout the world, but most predominantly in the UK (www.scoot-utc.com, accessed on 

06/04/2015). SCOOT has been shown to reduce traffic delay by approximately 11% under peak 

conditions and 16% under off peak conditions (Klein, 2001). It has been shown though that SCOOT’s 

performance begins to degrade under saturated traffic conditions (Papageorgiou, Kiakaki, Dinopoulou, 

Kotsialos, & Yibing Wang, 2003). SCOOT can be looked on as an online version of TRANSYT (Klein, 

2001), which as we mentioned in section 2.3.2.1 is used to optimize pre-timed timing plans (Robertson, 

1969). SCOOT has a centralized architecture, where a central computer receives remote traffic sensor 

data, optimizes the signal timings, and then sends any changes out to the local signal controllers. SCOOT 

minimizes the average sum of vehicle queues in an area as well as the number of times vehicles need to 

stop. Minimizing the number of times vehicles need to stop is done by optimizing the bandwidth within 
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green waves. SCOOT’s optimization routine consists of a split optimizer, offset optimizer, and cycle 

optimizer, which each decide once every five minutes whether or not to modify the split (ratio of each 

phase length to the cycle length), offset, or cycle length respectively by a few seconds. Similar to SCATS, 

transport networks that implement SCOOT need to be divided up into regions by a traffic engineer. Each 

traffic controller within a region maintains a common cycle length. Coordination can be established 

within each region. Unlike SCATS however SCOOT does not merely implement different predefined 

plans in response to changing traffic conditions.  

2.3.3 Artificial Intelligence Based Traffic Control  

The literature regarding AI based approaches to traffic control is extensive and quite diverse. It is 

beyond the scope of this thesis to review such a vast range of literature. The purpose of this subsection is 

thus to review a representative selection of AI based traffic control systems that are relevant to this 

research. These approaches are varied in architecture ranging from centralized to single-agent or multi-

agent control. They are also varied in the technologies that they employ. Examples of different 

technologies employed in AI based traffic control systems include fuzzy logic (L. Zhang, Li, & 

Prevedouros, 2012), neural networks (Srinivasan et al., 2006), ant colony optimization (Putha & 

Quadrifoglio, 2010), swarm intelligence (de Oliveira, Ferreira, Bazzan, & Klügl, 2004), constraint 

optimization (de Oliveira, Bazzan, & Lesser, 2005), genetic algorithms (Girianna & Benekohal, 2004), 

organic computing (Prothmann et al., 2008), dynamic programming (Porche & Lafortune, 1997), Q-

Learning (Abdulhai, Pringle, & Karakoulas, 2003). We then review traffic control approaches that 

specifically focus on MDP based learning techniques such as the ones that we describe in sections 2.2 and 

i.e. DP, SARSA, Q-Learning, and ACRL. 

2.3.3.1 Centralized 

Centralized traffic control systems consider the entire transport network as a single complex system. 

Any computation or memory requirements are the responsibility of a central processing device. This 

contrasts with the distributed agent based approach that we focus on in this thesis. Centralized systems 

tend to suffer from state space explosion as well as other issues such as bottlenecking, over dependency 

on communications, scalability issues, etc.  

Girianna and Benekohal (Girianna & Benekohal, 2004) have proposed a centralized traffic control 

method that can establish coordination between intersections within an oversaturated transport network. 

This algorithm specifically coordinates signal timing plans along traffic corridors that overlap each other 

within a grid network. Traffic corridors that carry equal levels of traffic are assigned an equal priority 

while saturated traffic corridors are given higher priority than those crossed along their paths. The 

proposed algorithm models the network signal coordination problem as a large combinatorial 
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optimization problem. It then uses a micro Genetic Algorithm (μGA) to solve the problem. The 

evaluation of this system was carried out using 20 simulated intersections, but to reduce scalability issues 

and complexity a number of limitations were put in place. Such limitations include: each intersection only 

had two phases, no turning movements were permitted at any intersection, all arterials were one-way 

streets, all arterials were considered to be oversaturated i.e. no adaptation to changing traffic conditions, 

and coordinated corridors had to be defined by the user (predetermined coordination within an arterial 

scope). As well as these limitations the algorithm could only handle one single arterial that crosses 

multiple parallel arterials that run perpendicular to it. Thus loops are never present in the network. 

Despite these limitations this study is very useful as it is one of the few attempts at coordination of 

multiple corridors within a grid network.  

2.3.3.2 Independent Agents 

As opposed to the centralized approach described in the previous section the agent based approach 

distributes the processing and memory requirements of the traffic control system among a dispersed set of 

software agents. This approach is scalable, robust, and flexible. A common approach to agent based 

traffic control systems is to model each intersection as a single agent that assumes complete independence 

from any other intersection within the transportation network. This is a fully distributed approach to 

traffic control. This has the benefits of having significantly reduced state space size and comparatively 

low computation and memory requirements. It also has no need of communications between agents 

within the system. It does however ignore the complex interdependencies of agents within the system. 

Bull et al. (Bull et al., 2004) propose an independent agent traffic control that uses a Learning 

Classifier System (LCS). Using this approach each intersection within the transport network is modeled 

as an independent agent. The agent’s goal is to find the optimal phase lengths given a predefined set of 

traffic flow levels. The algorithm was tested on an intersection with four approaches and only two phases 

i.e. a north-south phase and a west-east phase as illustrated below: 

  

Figure 28 Two phase plan 
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The algorithm was then tested with various combinations of state variables, LCS rewards, and actions. 

It was also tested with a more detailed intersection layout. It was found that in some cases and with some 

setting specifications the LCS approach outperformed standard control, indicating the approaches 

potential application to traffic control. 

An early example of applying fuzzy logic to traffic control is given by Pappis and Mumdani (Pappis 

& Mumdani, 1977). Similar to the example above a simple two phase intersection was used for testing. In 

this approach however an actuated traffic control technique was used in which the agent must decide 

every ten seconds whether or not to extend the current phase’s length depending on current traffic 

volumes on all of the intersection’s approaches. Sazi Murat et al. (Murat & Gedizlioglu, 2005) later 

extend this idea to more complex intersections (more approaches, more lanes, more phases, and two-way 

traffic) and also enable the agent to modify the phase sequences. Results showed an improved 

performance of between 15% and 50% when compared to traditional actuated traffic control. 

2.3.3.3 Coordinated Agents 

As opposed to the independent approach to agent based traffic control described in the previous 

subsection this section describes approaches in which agents coordinate their traffic control efforts. This 

is an approach whose agents recognize that there are complex interdependencies between themselves and 

other agents within the system. 

Organic Computing was suggested as the base of a coordinated agent traffic control system proposed 

by Tomforde et al. (Tomforde et al., 2008). This decentralized approach adaptively coordinates traffic 

along a traffic corridor. Prioritized traffic corridors are not user defined but are discovered automatically 

based on the traffic flow levels travelling along them. It is assumed that all controllers within a 

coordinated traffic corridor have the same cycle length and that distances and average speeds between 

intersections are known. The traffic corridors are optimized in one direction, though this direction or even 

the arterials path may change, if the weight of traffic flow shifts. As an Organic Computing system this 

proposed system uses a microscopic traffic simulator to optimize traffic light controller parameters off-

line. Evolutionary Algorithms (EA) are used in optimizing these parameters. Optimized parameters can 

then be selected in real time. A drawback to this approach is that the system needs to accurately model 

the transport network in a microscopic traffic simulator. This leads to significant requirements of time, 

expertise, processing power, and memory.  

Srinivasan et al. (Srinivasan et al., 2006) present a hierarchical agent based approach to traffic control 

in which a number of AI techniques, particularly Artificial Neural Networks (ANN), are used to optimize 

the flow of traffic within a transport network. Of particular note in this research is the complexity of the 

evaluation in terms of the transport network size and detail and also the fluctuating traffic flow levels. 
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The evaluation was done using the PARAMICS industry standard microscopic simulator. Results showed 

that this algorithm had an impressive reduced delay of up to 78% when compared to the SCATS system. 

Kosonen (Kosonen, 2003) introduces a multi-agent approach to traffic control using fuzzy inference 

techniques. Kosonen’s approach to traffic control is to have each of an intersection’s phases modeled as a 

separate agent. Agents coordinate to decide the duration of phase lengths as well as which phase has 

rights to the green interval. Decisions are made based upon traffic volumes on the intersection’s 

approaches. Thus intra-intersection coordination is more of a focus than the more common approach to 

inter-intersection coordination. Although it is mentioned in Kosonen’s work that inter-intersection 

coordination is possible the details of such additional functionality are not described. 

The final example that we will look at (Bazzan, 2005) is a slight exception to agent coordination in 

that the agents themselves are in fact independent agents that do not explicitly communicate with each 

other to share information in any way. Coordination is however established within the transport network 

given one particular assumption, that the reward that each agent is individually optimizing is in fact a 

single shared global reward. This approach is thus a coordination game being played among the 

intersection agents. Evolutionary game theory principles are used by the agents in selecting from among a 

predefined set of phase plans. This approach is demonstrated in a scenario of a ten intersection arterial. 

Each agent must choose which direction through its intersection is to be favored. Coordination is then 

implicitly established when all intersections along the arterial optimize the same direction.  

2.3.3.4 Reinforcement Learning Based Approaches 

This section reviews approaches to traffic control that specifically focus on RL based techniques such 

as the ones that are described in sections 2.2 i.e. DP, SARSA, Q-Learning, and ACRL.  

2.3.3.4.1 Centralized Learning 
Centralized approaches to learning in a traffic control system tend to be highly dimensional as the 

number of state variables increases exponentially with each additional intersection. Due to this fact some 

form of function approximation would need to be used to represent the composite utility function. Such is 

the case with the centralized traffic control system proposed by Prashanth and Bhatnagar (Prashanth & 

Bhatnagar, 2011). In this approach all intersections within the transport network are modeled using a 

single MDP. This approach was evaluated on a grid transport network of 333 intersections. 

2.3.3.4.2 Independent Learning Agents 
Independent traffic control learning agents can be considered single-agents and as such can potentially 

use any of the single-agent learning algorithms that are described in section 2.2.  

The Adaptive Limited Lookahead Optimization of Network Signals – Decentralized (ALLONS-D) 

(Porche & Lafortune, 1997) is a DP approach to traffic control. ALLONS-D uses vehicle arrival 



 

 

 

Chapter 2 Background and Related Research   

 

 
 
 
 
 

58 

information from upstream sensors when choosing which phase should be assigned the current green 

interval. ALLONS-D optimizes for minimum delay. ALLONS-D agents do not explicitly coordinate with 

each other however implicit coordination is assumed due to the fact that the data being used is taken from 

upstream sensors. A hierarchical version of ALLONS-D does exist that does explicitly establish 

coordination. 

An early application of RL to traffic control is that of Thorpe’s SARSA based approach (Thorpe, 

1997). In this approach the signal controller can decide whether to let pass either the north bound vehicles 

or south bound vehicles on a four approach intersection. The decision is made based upon queue lengths 

and the time since the previous phase change. The SARSA agent controlled intersection thus aims to 

reduce queue lengths as much as possible. An interesting aspect of this research is the differentiation 

between learning difficulty of agents at intersections in different areas within the grid network. For 

example it was shown that learning results were better on intersections in the center of a 4x4 grid than 

those on edge intersections, which were in turn better than those on corner intersections.  

Q-Learning has proven to be a very popular approach to independent learning agent traffic controllers. 

Camponogara and Kraus (Camponogara & Kraus, 2003) take such an approach. In this system queue 

lengths are used as state variables within the state space and the agent can perform phase length 

modification actions. The reward used is inversely proportional to the queue length. It was found that Q-

Learning lead to higher improvements in waiting time when neighboring intersections also implemented 

Q-Learning, thus illustrating implicit learning. 

Abdulhai et al. (Abdulhai et al., 2003) also implemented independent agent traffic control using Q-

Learning. They found that this approach performs as well or better than pre-timed control under constant 

traffic conditions but also that it outperforms pre-timed control by 38% - 44% in fluctuating traffic flow 

conditions. As opposed to pre-timed control’s cyclic approach this approach is more of an actuation based 

approach, which is naturally more adept at handling fluctuating traffic conditions. In this approach the 

agent must choose whether to continue with the current phase or change to the next one. Queue lengths as 

well as elapsed phase times are used as state variables within the state space. The reward is coded as the 

inverse of the average delay. 

Weiring (Wiering, 2000) presents a model-based RL approach to traffic control within a small grid 

network. The traffic controller agents goal is to minimize vehicle waiting times within the transportation 

network. An interesting aspect of this research is that although the intersections are modeled as the agents 

within the MAS the state variables within the state space are based upon the waiting times of individual 

vehicles. 

Neuro-Fuzzy Actor-Critic Reinforcement Learning (NFACRL) (Jouffe, 1996) was proposed for use in 

a traffic control system in a study conducted by Zhang et al. (Y. Zhang, Xie, & Ye, 2007). As discussed 

in section 2.2.2.3.3 ACRL has the advantage of being able to use various different technologies to 

implement the utility function, model, and even policy. This method takes advantage of this by 
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implementing the value function as a neuro-fuzzy network. This was to assist in handling large state 

spaces. Zhang et al. implemented two NFACRL based traffic control systems. One used a fixed phase 

sequence, while the other used a variable phase sequence. Both approaches were applied to both an 

isolated intersection and to an arterial of intersections. In both cases the agents used were independent 

agents that did not explicitly communicate with each other. Evaluation of these systems found that the 

system with phase sequence selection constantly outperformed the system with fixed phase sequences in 

isolated intersections. Unsurprisingly, the system with variable phase sequences did not perform well 

along the arterial of intersections. This is unsuprising as cycle lengths were not consistant across all 

intersections along the arterial and thus coordination is impossible.  

2.3.3.4.3 Coordinated Learning Agents 
This subsection reviews a selection of literature regarding coordinated learning agent based traffic 

control that is most similar to the vein of research investigated in this thesis. These approaches to traffic 

control model intersections as learning agents that coordinate with each other during their action selection 

and learning processes. 

Salkham et al. (Salkham & Cahill, 2010) use a technique named Collaborative Reinforcement 

Learning (CRL) as a basis for a traffic control system named Adaptive Round Robin (ARR-CRL). CRL is 

a form of Q-Learning that allows collaboration between CRL agents. CRL Agents collaborate by 

exchanging remote policies with their neighbours. These policies are then taken into account, as well as 

an agent’s local policy, when making decisions as to what actions should be taken next. ARR rewards are 

based upong queue length and vehicular throughput while intersection agent actions allow for setting 

phase time durations as well as the ability to skip a phase entirely. Agents periodically exchange reward 

information with their immediately adjacent neighbors and incorporate this information into their own 

reward. As an agent’s neighbors reward has an influence on the agent’s actual reward then the agent is 

encouraged to perform actions that are good for both. ARR was evaluated on a large scale simulation 

(60+ intersections) using a custom microscopic simulator and performed well when compared to the 

performance of Round Robin control and the SCATS based algorithm named SAT.   

W-learning (see section 2.2.3.2.2.1) was applied to traffic control in a doctoral thesis presented by 

Dusparic (Dusparic, 2010). This approach is thus a multi-policy multi-agent form of learning for traffic 

control. Results showed an improvement in average vehicle waiting times of up to 73% and 88% when 

compared against Round Robin and SAT algorithm. Results also showed that if policies are conflicting 

the performance of higher priority policies will be improved with only small negative effects on the 

performance of lower priority policies. 

Bazzan et al. (Bazzan, de Oliveira, & da Silva, 2010) propose a team learning based approach to 

traffic control. Using this method agents are organized into teams of limited size so as to reduce their 

action space sizes. Each agent learns its own optimal policy but within each group a supervisor agent 
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maintains a broader view of the actions and their effects within the team as a whole. Thus coordination is 

established within the teams by the supervisor agents making suggestions of alternate actions that can 

lead to more global reward optimization. This approach is however vulnerable to a single point of failure 

within each team. If a supervisor agent does fail then the agents within the group revert to independent Q-

Learning. 

Richter et al. (Richter, Aberdeen, & Yu, 2007) propose a traffic control system based on Natural 

Actor-Critic (NAC) RL (Peters, Vijayakumar, & Schaal, 2005). This approach optimizes vehicle 

throughput at each intersection within a grid network composed of four phase signal controllers. Agents 

communicate with their immediate neighbors in order to establish coordination. Evaluation of this 

method was done on a number of different traffic patterns and on a grid network of up to 10x10 

intersections. It was found that the algorithm could outperfom the SAT algorithm but needed to learn for 

approximately three days of real world time before being able to do this, as an intersection only begins to 

learn usefull information after its downstream neighbours have already converged on optimal policies. 

Kuyer et al. (Kuyer, Whiteson, Bakker, & Vlassis, 2008) propose a coordinated traffic control system 

based upon coordination graphs (see section 2.2.6 for details on coordination graphs). This approach 

focuses on neighboring signal controller agents collaboratively agreeing on which actions should be 

taken. This approach assumes that dependencies exist only between direct neighbor agents as the 

algorithm would suffer from state and action space explosion otherwise. Kuyer’s approach uses the max-

plus algorithm in solving the coordination graph as opposed to the variable elimination algorithm (see 

section 2.2.6) so as to reduce the impact of higher levels of network scale. 

2.3.4 Conclusion 

In this section we have described a wide variety of traffic control methods. These methods range from 

classical, to AI based, to specifically RL based. They vary in their architectures, their abilities to establish 

progressive signal systems, their abilities to learn, etc. The first of the two research questions that we 

address in this thesis (RQ1) focuses on the detection of a method of intersection coordination that can 

automatically create dynamic progressive signal systems within a multi-agent transport network using 

learning techniques, Reinforcement Learning techniques in particular. In this section the question remains 

to be answered as to the suitability of each of the traffic control methods presented as adequate solutions 

to RQ1. In order to assess the suitability of each method we have composed the following table, which 

we will now discuss in more detail.   
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Traffic Control 
Method 

Coordination 

Establishes 
Progressive 

Signal 
System 

Architecture Adaptive Learning Setup 

Pre-Timed No Yes Distributed No None Complex 

Actuated No No Distributed Yes None Easy 

SCATS Yes Yes Hierarchical Yes None Complex 

SCOOT Yes Yes Centralized Yes None Easy 

Girianna Yes Yes Centralized No Genetic Complex 

Bull No No Distributed Yes LCS Easy 

Pappis No No Distributed Yes Fuzzy Logic Easy 

Organic Yes Yes Distributed Yes Organic Complex 

Srinivasan Yes Yes Hierarchical Yes ANN Complex 

Kosonen Yes No Distributed Yes Fuzzy Logic Easy 

Bazzan (2005) No Yes Distributed Yes 
Evolutionary 

Game 
Complex 

Prashanth No No Centralized Yes RL Easy 

Allons-D No No Distributed Yes DP Easy 

Thorpe No No Distributed Yes SARSA Easy 

Camponogara No No Distributed Yes Q-Learning Easy 

Abdulhai No No Distributed Yes Q-Learning Easy 

Weiring No No Distributed Yes MBRL Easy 

Zhang No No Distributed Yes NFACRL Easy 

Salkham Yes No Distributed Yes CRL Easy 

Dusparic Yes No Distributed Yes CRL Easy 

Bazzan (2010) Yes No Hierarchical Yes 
Stochastic 

Game 
Complex 

Richter Yes No Distributed Yes NACRL Easy 

Kuyer Yes No Distributed Yes 
Coordination 

Graph 
Easy 

Table 3. Traffic control method comparison 

In Table 3 each traffic control method that we presented in this section is represented by a row, in 

whose first cell is either the method’s name, or in the cases of control methods’ whose names are unclear, 

the name of the first author of the academic paper describing the method. Table 3 also presents the 

following information for each traffic control method discussed.  

 The control method’s ability to coordinate actions between intersection controller agents 

 Whether it enable progressive signal systems to be established within the transport network 

 The control method architecture types 
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 Whether the method can dynamically adapt to changing traffic flow conditions 

 The learning method being implemented 

 How complex it is to set up the traffic controllers. For example, if an expert traffic engineer is 

needed to come out and perform analysis on an intersections traffic flow patterns over a matter 

of days in order to set up or update a traffic controller, as is the case with pre-timed control and 

SCATS, then this would be looked on as complex. 

With regards to RQ1 the most important categories of Table 3 are “Establishes Progressive Signal 

Systems” and “Learning” as these directly address the question. The other categories have been added 

however as they are also important to be taken into consideration. For example, we must consider 

carefully if we would really consider implementing a centralized approach that is very complex to set up.  

The first traffic control method presented in Table 3 is that of pre-timed control (Roess, Prassas, & 

McShane, 2011). This method is one of the most commonly implemented methods of traffic control 

throughout the world. One major reason for this is that it does not require expensive sensors in order to 

function. This however leads to it being unable to dynamically adapt to changes in traffic flow levels. 

Although traffic controllers using this method do not have any means of communicating and coordinating 

their actions with one another they are able to establish progressive signal systems throughout the 

network. This ability to establish progressive signal systems is made possible by expert traffic engineers 

who analyze the network’s traffic flow levels and patterns and use the information gained to carefully 

design phase sequences that enable such systems. Thus pre-timed control is complex to set up. Due to its 

complexity in setting up, its inability to learn or to even adapt to dynamic changes in traffic flow patterns 

it is not a suitable solution to RQ1. 

The next traffic control method discussed is that of actuated control (Roess, Prassas, & McShane, 

2011). This method is quite popular in practice due to the fact that it is relatively simple to set up and 

once set up the actuated traffic controllers are able to adapt to dynamic changes in traffic flow levels and 

patterns. Adaptive controllers do not coordinate their actions with each other. This means that they are 

quite limited in that they do not enable the creation of progressive signal systems. For this reason, and for 

the fact that actuated control does not have the ability to learn, we deem it an unfit solution to RQ1. 

SCATS (Sims & Dobinson, 1980) and SCOOT (Hunt, 1981) are both traffic control methods that 

have been popular adaptive methods of traffic control since the early 1980s. This is because they enable 

the establishment of progressive signal systems as well as enabling the ability to adapt to dynamic 

changes in traffic flow levels and patterns. Whereas SCATS is more complex to set up SCOOT is not. 

Both methods however have less robust architecture to failure as they depend on more central machines 

for analyses and action selection. In these hierarchical and centralized systems the failure of a global or 

perhaps regional machine would disable a number of intersection controllers. These two systems also lack 
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the ability to learn. Thus as long term traffic patterns change over time traffic engineers need to be called 

out to reprogram the systems.  

With Girianna and Benekohal’s traffic control method (Girianna & Benekohal, 2004) we are 

introduced to the first method that is able to establish progressive signal systems and has the ability to 

learn. This approach however is designed to establish progressive signal systems in over saturated 

networks and the paths of the possible paths of the progressive signal systems throughout the network had 

to be defined by an expert. Thus the system is relatively complex to set up and it cannot adapt to dynamic 

changes in traffic flow levels or patterns. Its centralized architecture also reduces its robustness to failure. 

We thus do not consider it a suitable solution to SQ1. 

The methods developed by Bull et al. (Bull et al., 2004) and Pappis and Mumdani (Pappis & 

Mumdani, 1977) are easy to setup and can both learn over time and adapt to dynamic changes in traffic 

flow levels and patterns. Neither method however enables the creation of progressive signal systems. 

Both of these approaches are somewhat similar to the actuated method, only that these methods can learn 

over time. 

The Organic Computing method (Tomforde et al., 2008) developed by Tomforde et al. is a very 

interesting case with regards to RQ1. It has the ability to create progressive signal systems throughout the 

transport network that can adapt to changing traffic flow levels and patterns. It also has the ability to learn 

over time and has a robust distributed architecture. The paths of the progressive signal systems do not 

have to be set up by an expert but chan change dynamically. The issue with this method however is that 

in order for it to work it needs to have a microscopic simulator set up per intersection that has an accurate 

model of the transport network being controlled. This not only makes for a very complex set up process 

but also insinuates quite high memory and processing requirements for the devices on which the traffic 

controllers are running. This unfortunatly is somewhat too steep a requirement for our needs and is thus 

not considered a suitable solution to RQ1. 

Srinivasan et al. present a ANN learning based method (Srinivasan et al., 2006) of traffic control that 

is able to create progressive signal systems throughout the transport network through coordination 

between the intersection agents. This system can also adapt to changes in traffic flow levels and patterns. 

This method however has a hierarchical architecture which reduces its robustness to failure. This 

architecture also makes it more complex to set up as the hierarchy of agents needs to be specified and the 

network needs to thus be manually devided into regions in which local intersection agents report to agents 

that are more senior in the hierarchy. This type of system also has more complexity in coding as the 

supervisor agents and the local intersection agents need to be coded separately. Thus this method is not 

suitable as a solution to RQ1. 

Kosonen presents a traffic control method (Kosonen, 2003) that learns using fuzzy logic and that is 

able to adapt to dynamically changing traffic patterns. It is relatively easy to set up and has a robust 
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distributed architecture. It enables coordination between intersections yet it does not enable the explicit 

establishment of progressive signal systems. Without this ability it is not a suitable solution to RQ1. 

The method developed by Bazzan (Bazzan, 2005) is an interesting example as it enables the 

establishment of progressive signal systems yet it does not require communication or coordination 

between the intersection agents. It is able to achieve this by using the unrealistic assumption that each 

intersection agent receives a global reward as opposed to a local reward. Thus the agents have the ability 

to know how the affects that their actions have on the transport network as a whole. This implicitly leads 

to progressive signal systems that can adapt to dynamic changes in traffic flow patterns. The assumption 

that all agents have access to a global reward however is unrealistic in real life, meaning that this method 

too is unsuitable as a solution to RQ1. 

The next seven traffic control methods presented in Table 3 (Prashanth & Bhatnagar, 2011) (Porche & 

Lafortune, 1997) (Thorpe, 1997) (Camponogara & Kraus, 2003) (Abdulhai et al., 2003) (Wiering, 2000) 

(Y. Zhang, Xie, & Ye, 2007) rate very similarly with regards to our requirements but have been included 

in this thesis to show the variety of RL methods that have been applied to traffic control. Each of these 

methods learn over time using RL algorithms, can adapt to changes in traffic flow, are relatively easy to 

set up, and have distributed architectures (with the exception of Prashanth and Bhatnagar which has a 

centralized architecture). None of these methods however take coordination into account and none of 

them can establish progressive signal systems. Thus none of these methods are suitable as solutions to 

RQ1. 

The remaining five methods presented in Table 3 (Salkham & Cahill, 2010) (Dusparic, 2010) 

(Bazzan, de Oliveira, & da Silva, 2010) (Richter, Aberdeen, & Yu, 2007) (Kuyer, Whiteson, Bakker, & 

Vlassis, 2008) again rate very similarly with regards to our requirements. They learn using RL based 

algorithms and can all adapt to changing traffic conditions. All have distributed architectures and are 

relatively easy to set up (with the exception of Bazzan et al. which has a hierarchical architecture and is 

more complex to set up). None of these methods explicitly take into account the establishment of 

progressive signal systems. Many of the traffic control methods that we have presented, such as these 5, 

are not able to establish progressive signal systems despite the fact that they allow intersection agents to 

coordinate their actions with each other. One major telltale sign that these works that do not explicitly 

address progressive signal systems cannot establish such systems implicitly is when cycle lengths vary 

from one intersection to another. Thus if the agent is able to change its phase lengths independently of its 

neighbors, resulting in varied cycle lengths throughout the network, then a progressive signal system 

cannot be established except by chance. Phase skipping is also a telltale sign of lack of the ability to 

create progressive signal systems throughout the network, even if the agents coordinate their actions with 

each other. 

In conclusion we have found that although we have investigated a wide variety of traffic control 

methods, and although some of them can establish progressive signal systems and can learn over time, 
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none are suitable solutions to RQ1. The method that we have investigated and discussed that perhaps 

comes closest to fulfilling our requirements is perhaps the Organic Computing method developed by 

Tomforde et al. (Tomforde et al., 2008). Even this method however has limitations that render it 

unsuitable as a solution to RQ1. It thus becomes our task to develop a method, namely Qoordination, that 

enables the creation of progressive signal systems within a transport network through coordination. This 

method must be able to adapt to dynamically changing traffic flow levels and patterns. It must also have a 

robust distributed architecture and be relatively easy to set up. Thus Qoordination bridges a significant 

gap in the current literature. In the next chapter we describe in detail the design of such a system.  

2.4 Summary 

In this chapter we have introduced the reader to the background information and research relevant to 

put the work of this thesis into context. We have introduced the concept of intelligent rational agents and 

have described the elements of agent based learning that are most relevant to this thesis. We then 

presented relevant traffic engineering concepts and terminology. After having described a number of 

classical approaches to traffic control we presented a selection of AI based traffic control methods. 

Particular emphasis was put on methods of traffic control that are based upon the learning based methods 

presented earlier in this chapter. We have also discussed the positioning of our research that is presented 

in this thesis within the context of the background information and other relevant research. 
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In this chapter we present the Qoordination approach to traffic controller coordination. Qoordination 

models intersections within a transport network as individual Q-Learning agents that can each optimize 

their own local traffic flow using any one of a variety of different traffic control methods. Such methods 

include Round Robin, SAT, and other learning based optimization methods. Qoordination establishes and 

maintains dynamic progressive signal systems along the main traffic corridors that run through the 

transport network. 

This chapter is organized as follows. We begin by describing a set of requirements to be satisfied by 

an efficient learning based approach to intersection agent coordination. We then present the motivations 

behind the Qoordination design decisions. We then give a detailed description of Qoordination and of its 

unique Multi-Layer Hashing (MLH) utility function. 

3.1 Requirements 

Through analysis of the information presented in the previous chapter a number of requirements have 

been identified that act as guidelines in the design of our learning based approach to intersection agent 

coordination. These identified design requirements are as follows: 

 Requirement 1 (Req1): Coordinated – this approach must be able to establish coordination 

among intersections in such a way as to establish progressive signal systems along the main 

traffic corridors that run through the transport network. 
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 Requirement 2 (Req2): Adaptive – this approach must be able to maintain these progressive 

signal systems despite changes in traffic flow levels and dynamic changes in the direction and 

course of the main flows of traffic. An expert traffic engineer should not need to be called out to 

recalibrate the system whenever traffic patterns change.  

 Requirement 3 (Req3): Rapid Learning – this approach must be able to learn rapidly in order 

to keep up with such a dynamic environment. A function approximation technique is required 

that can perform generalization as well as abstraction so as to allow for rapid learning. 

 Requirement 4 (Req4): Autonomous – this approach must enable the autonomous emergence 

of such progressive signal systems based upon the actions taken by autonomous intersection 

agents in response to current flows of traffic. The progressive signal systems should not need to 

be manually specified by an expert traffic engineer. 

 Requirement 5 (Req5): Flexible - this approach must allow for ease of expansion and 

modification of the transport network topology.  

 Requirement 6 (Req6): Robust - this approach must be robust to noisy sensor readings such as 

are unavoidable with traffic sensors like induction loops. It must also be robust to 

communication failures and avoid single points of failure and data bottlenecks. 

 Requirement 7 (Req7): Scalable - this approach must be able to be scaled up from use in a 

simple two intersection arterial up to use within very large transport networks.  

In the remainder of this chapter we present the design of the Qoordination approach to intersection 

agent coordination. We then analyze how this design fulfills the requirements specified above.  

3.2 Motivations 

In this section we explain the motivations behind the choices made when faced with decisions 

throughout the design process. Many of these design decisions have an obvious choice due to 

observations from the research that has been reviewed in the previous chapter. Other decisions do not 

have an obvious choice as previous research has not provided a suitable option. In these situations new 

and innovative solutions are required. 

3.2.1 Architecture 

The architecture of a traffic intersection coordination system can be centralized, hierarchical, or fully 

distributed. A centralized approach has the benefits of ease of management and a global view of the entire 

system from a central controller. Although this approach has high computation and memory requirements 

on some central machine this can be overcome with current advances in hardware and cloud computing. 



 

 

 

Chapter 3 Qoordination   

 

 
 
 
 
 

68 

This approach however does have the drawback of over dependence on communication with a single 

point of failure. This approach is thus not robust to communication failures or even to communication 

latency. A hierarchical approach significantly reduces this issue by grouping the intersection controllers 

into areas, each area having a single processing unit that supervises the area’s intersection controllers. 

This hierarchical approach removes dependence on a single point of failure, which sidesteps the network 

wide failure that can occur when the central processing unit goes down. It does however still present a 

point of failure within each area. Another issue that we remarked with this approach was that in all 

likelihood each area needs to be manually defined by an expert. Inter-area coordination is also an 

additional challenge. It is likely that a separate set of software algorithms needs to be designed for the 

supervisor functionality to those designed for the controller functionality. A fully distributed architecture 

on the other hand has the potential for the autonomy required to fulfill our project requirements thus far. 

Each intersection within the transportation network can be modeled as an individual autonomous agent. 

Autonomous agents need not be manually grouped by their area but have flexibility in deciding which 

other agents within the network to rely on. Each agent can also be run on the same set of software 

algorithms. An autonomous intersection architecture is thus robust, and flexible.  

3.2.2 Technology 

Having chosen a fully distributed, agent architecture our next challenge was to investigate the 

different technologies that could be used to coordinate the agents. As has been shown in section 2.3.3 

many different technologies have been applied to traffic control in efforts to enable adaptability to 

changes in traffic flow. Some of these approaches include fuzzy logic (L. Zhang et al., 2012), neural 

networks (Srinivasan et al., 2006), ant colony optimization (Putha & Quadrifoglio, 2010), swarm 

intelligence (de Oliveira et al., 2004), constraint optimization (de Oliveira et al., 2005), genetic 

algorithms (Girianna & Benekohal, 2004), organic computing (Prothmann et al., 2008), and RL 

(Camponogara & Kraus, 2003) (Salkham et al., 2008). Wheras these approaches focus on the 

optimization of traffic flow the work of this thesis focuses on the coordination of agent actions so as to 

form progressive signal systems across arterials of intersections, which in turn has a positive effect on 

traffic flow opitimization. The intersections within Qoordinated arterials may be implementing a variety 

of different traffic flow optimization methods, potentially including some of the ones just mentioned. Of 

the technologies that we researched we found that RL is the most suited to the purposes of Qoordination 

agents. An RL agent has the ability to be initialized without any knowledge or model of its environment 

and then learn through interacting with that environment how to maximize some long term reward. An 

RL agent has the ability to adapt from an initially blank state to one in which it understands how the 

environment works and how its own actions affect the environment. This was indicative that RL had the 
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potential to satisfy our derived requirements of robustness to failure and latency, flexibility for expansion 

and modification, and adaptability to changing traffic patterns over time.  

3.2.3 Environment 

The next challenge is to model the agent’s environment. The different variables to take into 

consideration when modeling the agent’s environment are given in section 2.1. The approach that we took 

was to model the agent’s environment as a multi-agent, fully observable, stochastic, sequential, discrete, 

dynamic, unknown environment.  

Transport networks are multi-agent environments due to the fact that adjacent intersections can be 

highly coupled. Actions taken by one intersection agent can have a major influence on the rewards 

received by downstream intersections in light to medium traffic flow levels, or can even have a major 

influence on the rewards received by upstream intersections in heavy and saturated traffic flow levels. 

We assume that the agent’s environment is fully observable. An environment is fully observable if 

the agent’s sensors can detect all aspects of the environment that are relevant for the agent to choose the 

appropriate action to take. In the case of our intersection agents this means that the agent knows when a 

vehicle has arrived on an approach to the intersection and also that the agent knows which neighboring 

agents are adjacent to it. Although we do assume that the agent knows when a vehicle has arrived on an 

approach to the intersection this is not fully possible in reality. In practice a sensor is embedded a few 

meters (e.g. about five meters) before the traffic light with potentially an additional sensor embedded 

about 30 meters upstream. This means that the agent can detect approximately five average length 

vehicles at a standstill on any one of the intersection’s approaches. Any more vehicles than five that 

arrive on that approach will go undetected. For an intersection agent to be partially observable it could 

have an approach that does not have a functioning traffic sensor or it could have an uncontrolled 

intersection as an adjacent neighbor.  This leads to traffic patterns that can be perceived as random, as 

dynamic, or as errors, but that would be correctly interpreted if the agent could observe their cause. 

Although partial observability within MDP based systems is a challenge that is receiving significant 

attention within scientific literature we omitted it from our approach because it is not within the scope of 

this research. In order to make our assumption of full observability we simply insure that all intersection 

approaches have functioning sensors and that the evaluation is done within a grid network consisting 

uniquely of controlled intersections as is common among simulation based traffic control system 

evaluations.  

Traffic by nature is stochastic. Just because we reduce the length of a phase and observe a specific 

reduction in queue lengths as a result does not necessarily mean that we will observe the exact same 

reduction in queue lengths the next time the action is performed from the same state. Random variances 

are thus expected within the environment and the coordination approach should be designed so as to 
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handle this. RL handles stochasticity quite well by implementing a learning rate variable (see equation 

12). This ensures that utility values do not change too quickly with stochastic readings but that they settle 

on more stable average values. 

The transport network environment is by its nature a sequential process as the transition from one 

state to another is dependent on the action taken by the agent. Thus an agent can observe temporally 

discounted rewards over time which is not possible in an episodic environment. 

With regards to the design decision of whether to model the state and action spaces as discrete or as 

continuous variables the answer was not immediately apparent, as it might be within a robotics system for 

example. Traditional RL state and action spaces are modeled using a lookup table, which has a discrete 

set of possible states and actions. We had initially hoped however to model the state space using 

continuous variables. This would have required a function approximation mechanism that enabled such 

functionality. The state variables that are commonly used within coordinated traffic control systems 

include average waiting times, vehicle throughput, and queue lengths. Each of these are easily bounded 

between maximum and minimum values. As it turns out, the difference between an average waiting time 

of 6 seconds and an average waiting time of 6.4 seconds is not that significant within a stochastic traffic 

networks. The state variables being used thus do not require the level of detail afforded them by 

continuous representation. We had also initially wanted to represent the action space using continuous 

values. As an example of this an agent’s actions could have included extending a particular offset by 2.5, 

3, 3.5, 4, 4.5, or 5 seconds. After much experimentation we discovered that the level of detail given by 

continuous representation of the actions did not make a significant difference when compared to discrete 

representation. In fact even changes of one or two seconds do not make too much of a difference within 

such a stochastic environment. Thus we found that our initial assumption that continuous representation 

of state and action space was in fact unnecessarily complicating an approach that could work even more 

effectively using discrete representation. We go into further detail on this particular design decision in 

subsection 3.2.6. 

The agent’s environment is modeled as a dynamic environment because not only do traffic conditions 

change regularly even without an agent’s interaction e.g. morning and evening peak time traffic, but also 

longer term traffic patterns change over time. Such changes include alterations in a main traffic corridor’s 

course and direction. Adaptation to these types of changes fulfill the initial requirements stated in section 

3.1. 

We assume that the agent’s environment is initially unknown i.e. that the agent does not have a pre-

defined model of how the environment works and how the agent’s actions affect the environment. This 

assumption is made because otherwise a pre-defined model would have to be created for each of the 

individual agent intersections. This would make scaling to a large transport network quite a tedious and 

error prone process.  
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3.2.4 Learning Algorithm 

The environemnt in which the Qoordinated intersection agent will reside has now been defined, the 

next step is to decide which algorithm to use for learning. The ‘unknown’ characteristic of the 

environment definition in the previous sub-section rules out Dynamic Programming (DP) approaches as 

they require accurate predefined models of the environment (see section 2.2.2). We are thus essentially 

left with a choice between Adaptive Dynamic Programming (ADP) or Temporal Difference (TD) 

algorithms (see section 2.2.2). Although the more popular approach among the two is currently TD 

algorithms the decision is not an easy one to make. Both approaches have both advantages and 

disadvantages with regards to the environment that we have now defined. TD approaches tend to be more 

popular because of their lack of dependancy on a model of the system. This reduces complexity as well as 

memory requirements because a transition model of the environmnet need not be maintained at all.  This 

also reduces computational requirements during the action selection and learning processes as explained 

in section 2.2.2.3. One often overlooked aspect of TD however is that although it is less complex, more 

easily maintainable, and more concise, it is slower to learn than ADP. In dynamic environments, 

including environments that appear to be dynamic due to their being populated by multiple learning 

agents, rapid adaptation to change can be a critical factor. The question to be asked is thus whether or not 

this fact is relevant to our Qoordination approach. Results obtained from our initial experiments (Fagan & 

Meier, 2014) would suggest that it is. In these initial experiments we applied both ADP and TD learning 

approaches to an ACRL traffic flow optimization agent within a basic traffic ballancing simulator. When 

executed within a single agent environment the difference between their performances was negligable, 

with ADP performing just over 1% better than the TD approach, as can be seen in Figure 29. 

  

Figure 29 Initial evaluative comparison between ADP and TD approaches in single-agent environment 

When executed within a multi-agent environment the difference between their performances was quite 

substantial, with ADP performing almost 20% better than the TD approach, as shown below. 
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Figure 30 Initial evaluative comparison between ADP and TD approaches in multi-agent environment 

These experiments however were conducted within the author’s own basic traffic ballancing simulator 

and it is not immediately clear as to whether a similar effect would take effect within a realistic 

evaluation. Such findings would be quite significant however an implementation and comparison of both 

approaches is beyond the scope of this thesis. Although research into ADP based traffic controller 

coordination warrants research we have decided to incorporate TD learning into our design because of its 

simplicity, lack of dependance on a model, and lower processing requirements. An implementation of 

ADP based coordination as well as its comparison to TD based coordination is thus left for future 

research. 

3.2.5 Policy Definition 

The next design decisions that we were faced with was whether the learning algorithm should be on-

policy or off-policy (see section 2.2.2.3.1) and whether the policy should be implicit or made explicit (see 

section 2.2.3.1). On-policy approaches learn relative to the current policy and have the benefit of fast and 

accurate learning. Off-policy approaches learn relative to a greedy policy, even if the current policy is not 

greedy, thus having the flexibility of being able to learn which actions yield the highest long term rewards 

even when following explorative actions. Explicit policies have the benefit of being able to handle very 

large and even continuous action spaces by essentially tranforming the agent into a reflex agent (see 

section 2.1) that can perform rapid action selection. Learning to optimize an explicit policy however is a 

longer process than learning to optimize an implicit one (Fagan & Meier, 2014). SARSA (see section 

2.2.2.3.2) and ACRL (see section 2.2.2.3.3) are both on-policy approaches. While SARSA has an implicit 

policy ACRL makes its policy explicit. Q-Learning (see section 2.2.2.3.1) is an off-policy TD algorithm 

with an implicit policy.  
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As our Qoordination approach needs to be sufficiently flexible to learn how to minimize vehicle 

queues even during exploration and when being led by non-optimal policies we have chosen to pursue an 

off-policy approach. 

The decision as to whether or not to make the policy explicit was not a trivial one to make. As we 

mentioned in section 3.2.3 we had initially intended the action space to have a continuous form of 

representation. We performed experiments within a basic traffic balancing simulator (Fagan & Meier, 

2014) and found that having an explicit policy could lead to higher rewards. This is particularly true 

because of the high probability of introduced inacuracies in setting discrete action values in the implicit 

representation e.g. having a granularity of three seconds for action values when the true optimal action 

value is not a multiple of three. Learning to achieve these higher rewards however has a temporal cost, as 

can be seen in Figure 31 where it takes approximately 20,000 time steps before ACRL begins to achieve 

high rewards. 

  

Figure 31 Initial evaluative comparison between TD learning approaches in single-agent environment 

We found through our initial experimentation that when executed within a multi-agent environment 

this increase in learning time actually led to the explicit policy approach achieving lower rewards than the 

implicit policy approaches, as can be seen in Figure 32. 
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Figure 32 Initial evaluative comparison between TD learning approaches in multi-agent environment 

These initial results lead us to speculate that the extra learning time required by explicit policy 

representation might not be as suited for a multi-agent environment as the implicit policy approach. As 

mentioned in section 3.2.3 we eventually decided to use a discrete form of representation, which further 

reduced the need to make the policy explicit. Even using a discrete representation the state space can get 

quite large in a multi-agent system. As we will cover in sub-section 3.2.8 our approach uses an 

abstraction method that significantly decreases the state space size. Thus we decided to benefit from the 

more rapid leaning abilities of implicit policy representation as our action space size is concise enough to 

benefit very little from the reflex like action selection speed of explicit policy representation. 

As the learning algorithm that is to be used by our coordinated agents is to be an off-policy algorithm 

with implicit policies we can see that the algorithm that will be used will be Q-Learning. 

3.2.6 Representation 

One of the first major challenges that we identified while reviewing state of the art literature is the fact 

that RL agent state spaces grow exponentially as the number of agents with whom they coordinate 

increases.  

In order to continue representing utility functions with lookup tables within a multi-agent environment 

some major abstraction have to take place (Ponsen et al., 2010), eliminating all state variables that do not 

have a significant impact on the agent’s ability to make the right decisions. This approach has the benefit 

of requiring very few alterations in the single agent learning algorithms presented in sections 2.2.2.  

3.2.6.1 Particle Filtering 

Our first attempt at discovering a suitable representation for utility function involved using particle 

filtering to discover the relative importance of each state variable for an agent to select an appropriate 
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action. Another of our objectives with this method was to investigate the integration of uncontrolled 

intersections into the system, modeling them as hidden nodes within a hidden Markov Model. This would 

have modeled the environment as a partially observable environment. We soon found however that this 

approach was unsuitable in our situation due to the extreme rate of state space expansion with increased 

network sizes. It was at this point that we decided to consider only controlled intersections and to model 

the environment as being fully observable. 

3.2.6.2 Neuro-Fuzzy Network 

From lessons learned in our first attempt we decided that the representation of the utility function 

should be concise and be able to generalize well. Parametric function approximators (see section 

2.2.4.2.1) are very concise and are well able to generalize to situations that they have not yet encountered. 

Our second attempt at discovering a suitable utility function representation thus utilized a Neuro-Fuzzy 

Network (Xie, 2007). This approach to function approximation combines fuzzy logic with Artificial 

Neural Networks (ANN) in an attempt to concisely represent a utility function in a scalable fashion. We 

found during our implementation of this approach that it was quite complex and required many 

parameters to be set manually. For this approach the ANN topology needs to be tailored for each 

intersection agent. As discussed in section 2.2.4.2.1.2 this can be potentially accomplished by training the 

agents at each intersection a number of times and then selecting the best outputted network. This however 

does not scale well as it requires an expert to oversee the initialization of the function approximator for 

each of the individual intersection agents. This can be an error prone and costly process. The fuzzy 

parameters also need to be set either manually or by some additional training process. This approach also 

requires major modifications to the single agent learning algorithms presented in sections 2.2.2. We also 

found that the addition of fuzzy logic to the ANN did not increase the systems scalability as much as we 

would have hoped for. Our overall outtake to this approach was that it was overly complex and required 

too much manual intervention. We also found that it was not scalable enough to be considered a suitable 

approach for our needs. 

3.2.6.3 Artificial Neural Network 

After seemingly fruitless experimentation with the previously mentioned Neuro-Fuzzy approach we 

decided to simplify matters by implementing a more traditional ANN. We based our ANN 

implementation upon the Encog machine learning framework (http://www.heatonresearch.com/encog 

accessed on 06/04/2015). This approach took significantly less time to implement than the previous 

approach. Although this approach did not require the setting of fuzzy parameters it still did require 

calibration of the network topology, which would need to be done individually for each intersection 

agent. It also still required significant modifications to the learning algorithms presented in sections 2.2.2. 
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An optimal approach for our purposes should require little or no manual parameter setting, calibration, or 

intervention in training. 

3.2.6.4 High Dimensional Clustering 

Our next attempt at representing the utility function took a non-parametric approach. Unlike the 

previous attempts it was hoped that this approach would not require significant modifications to the 

learning algorithms presented in sections 2.2.2. The specific approach that we took was that of High-

Dimensional Clustering (see section 2.2.4.2.2.1). This approach enabled the calculation of the relative 

importance of each state variable in an agent’s ability to choose an appropriate action. The state variables 

were then weighted appropriately and these weights were used in calculating the expected reward for any 

given action. This approach allowed for a more intuitive extension of the learning algorithms important to 

our Qoordination approach than the parametric attempts. We found however that this approach was 

limited in its ability to scale in large state spaces. Each additional state variable included required more 

calculations to be made for each action selection operation. Also, as a separate record was created and 

stored at each time step this would eventually lead to significantly large storage and processing 

requirements. Thus although this approach was more intuitive to implement as a function approximator it 

did not scale well enough for us to consider it as suitable for our needs. 

3.2.6.5 Multi-Layer Hashing 

In Russell and Norvig’s book “Artificial Intelligence, a modern approach” (Russell & Norvig, 2010), 

a description of the Locality-Sensitive Hashing technique that is described in section 2.2.4.2.2.2. With 

this technique as an inspiration and basis we developed a hash based function approximator that fulfills 

all of our requirements. It is a non-parametric approach which allows for the intuitive extension of the 

learning algorithms important to our Qoordination approach. It enables generalization and very few 

calculations for its roles in learning and action selection. It also enables automatic weighting of state 

variables in accordance to their importance to agent’s ability to choose an appropriate action. This allows 

for abstraction. The details of this hash based method of function approximation, which we refer to as 

Multi-Layer Hashing (MLH), will be given in section 3.3. 

3.2.6.6 Summary 

Having experimented with a number of methods of function approximation we found that a method of 

representing the utility function that was suitable to our needs was not available. We thus developed the 

hash-based MLH method. 
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3.2.7 Reward Scope 

Whereas many approaches reviewed in Chapter 2 illustrate agents optimizing local rewards i.e. selfish 

behavior (Camponogara & Kraus, 2003) (Abdulhai et al., 2003), others optimize global rewards i.e. 

selfless behavior (Bazzan, 2005). Our Qoordination agents calculate local rewards based upon the vehicle 

queue length information that is available to them. One particular question that arose during Qoordination 

design was whether it would be beneficial to combine adjacent neighbor rewards with the agents’ local 

reward. In order to answer this question we implemented Qoordination agents that maintained a separate 

utility function for each of their adjacent neighbors as well as for themselves. Thus an agent was aware of 

how its actions affect itself and each of its neighbors. It was not however aware of any of the effects of 

any of its neighbors’ actions. Each utility function was then used for a separate implicit policy. Having 

multiple policies the agents then used an arbitration based multi-policy approach to choose the actions 

that would lead to the highest negative effect if they were not chosen. This arbitration approach is similar 

to W-Learning (see section 2.2.3.2.2). We found that each agent could accurately distinguish how to act 

so as to optimize either their own rewards or those of any of their neighbors. We also found that they 

could choose whether it was more important to optimize their own reward or to optimize the reward of 

one of their neighbors from any given state. We found however that each agent’s constant change from 

selfish to selfless behavior lead to confusion in the interdependent learning processes. Learning times 

were thus increased dramatically. We found that consistently selecting selfish actions i.e. ones that 

optimized an agent’s own local reward lead to much more reliable results and much faster learning times. 

It is important to note that our Qoordination approach consists of agents that are not only non-

competitive i.e. they are not designed to benefit from the loss of any other agent, but that are cooperative. 

Thus they are not deceptive in the information that they share with neighbor agents or with the actions 

that they perform.  

3.2.8 Irrelevant Agent Abstraction 

High coupling of intersection agents can result in exponential increase in state space sizes with every 

additional adjacent agent. This does not scale well. One solution to this is to use a suitable function 

approximator to handle the increasing dimensionality (Prashanth & Bhatnagar, 2011). This is scalable to 

a certain extent but does have limits. Another approach is to use abstraction techniques (Ponsen et al., 

2010) to reduce the number of other agents that an agent is aware of in its environment and hence reduce 

the state variables being included. We decided to abstract away other agents within the network in a 

similar fashion as is done with coordination graphs (see section 2.2.6). This is done by having agents 

coordinate exclusively with other agents that are directly influenced by their actions or whose actions 

directly influence them. We have decided that intersection agents will only communicate with their 

immediately adjacent neighbor intersection agents. This implies that an intersection is directly influenced 
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by and directly influences adjacent intersections. This drastically reduces the size of an agent’s state 

space. A Qoordination agent’s state space will thus consist of state variables that require only local data 

and data from the intersection’s immediate neighbor intersections. This also means that agents do not 

need to be divided into regions or groups but that they each belong to a set of overlapping one-hop 

groups, as is illustrated in Figure 33, with controller agents at intersections A and B participating in a 

total of five separate groups each. 

  

Figure 33 Example of overlapping one-hop neighbor groups 

Not every intersection is dependent on all of its adjacent neighbor intersections. For example, in low 

to medium traffic flow levels an intersection will not be effected by the actions of downstream neighbor 

intersections. Learning times can be reduced if non-essential adjacent intersection agent data is removed 

from consideration. Irrelevant state variables can be abstracted from the agent’s state space using the 

MLH function approximator that we describe in section 3.3.  

3.2.9 Exploration Scheme 

An appropriate exploration scheme is essential for a learning agent’s long term benefit (see section 

2.2.5 for exploration scheme examples). Exploration enhances an agent’s performance by providing it 

with a more complete and more updated understanding of its environment and the effects of its actions 

within this environment. Throughout the course of our design and development process we experimented 
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with many forms of exploration schemes including greedy, 𝜖 -Greedy, Boltzmann, and various 

combinations of these algorithms. Exploration schemes tend to start with a high likelihood of selecting 

explorative actions. This likelihood is reduced over time as the utility function’s accuracy increases. We 

have found that in multi-agent environments such as transport networks this approach to exploration is 

not efficient. This is because interdependent agents learn relative to the actions of the agents on whom 

they depend. If all agents begin by selecting relatively high numbers of random actions then each one 

only learns the utility of performing actions relative to neighbor actions that do not actually optimize the 

neighbors’ rewards. This tends to lead to confusion. We have thus designed a novel approach to 

exploration within multi-agent environments that takes this relative learning into account. This novel 

exploration scheme is initialized with a very low 𝜖 value. This value is slowly increased until it reaches a 

maximum threshold level or until a random action has been selected for execution. Once a random action 

has been selected the 𝜖 value is again reduced to its low initial state. This process of slowly increasing the 

𝜖 and then dramatically reducing it to its low initial state continues throughout the learning process. 

3.2.10 State 

Qoordination aims to find the offsets between adjacent intersections that enable the establishment of 

progressive signal systems along the main traffic corridors that run through the transport network. It 

stands to reason that the offset values between the intersection and its adjacent neighbor intersections are 

included as variables in the state space. These offset values are calculated by the agent requesting from its 

adjacent neighbors to know how many seconds remain until the start of their next cycle. The time 

remaining until the start of the intersection’s own cycle is subtracted from this and if the result is a 

negative number then the neighbor intersection’s cycle length is added to it.  

A second variable that is to be taken into consideration for a Qoordination agent’s state is that of the 

main direction of traffic flow. This can be easily calculated by comparing the vehicular throughputs of 

each of the intersections approaches. Possible directions are North, North West, West, South West, South, 

South East, East, and North East. Thus optimal offsets can be set for each possible traffic flow direction. 

Another variable that one would consider would be that of vehicular throughput or some other 

variable that measures traffic congestion at an intersection. Such a variable would be important to 

distinguish between normal traffic flow and congested / over saturated traffic flow. We have found that 

optimal offset values along a traffic corridor remain the same through light, medium, and heavy traffic 

flows. Only in the case of fully congested conditions would we need to switch from forward progression 

to reverse progression. Traffic congestion stand stills tend to occur when the traffic flowing into an 

approach is more than what can flow out. This could happen if an upstream intersection has a higher 

phase length than the phase length that lets the released traffic through the intersection. It could also 

happen if multiple upstream intersections feed into a single approach via an un-signalized intersection. 
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These situations are not taken into account in our evaluations and thus a measure of the traffic flow levels 

is not included as a Qoordination state space variable. 

3.2.11 Action 

Qoordination is a method of coordinating the actions of intersection agents along dynamic traffic 

corridors such that they form and maintain a progressive signal system. This is done by adjusting the 

agents’ offset values. Adaptation of other parameters such as phase lengths and cycle length are dealt 

with by the different traffic control methods being implemented by the intersection agents. Qoordination 

deals expressly with coordination and thus only modifies the offsets between intersections. A 

Qoordination agent’s choice of actions is to either do nothing or to increase or decrease its own offset to 

its neighbor intersections. It can modify its offset to its neighbor intersections by either increasing or 

decreasing its cycle length for the duration of one full cycle. This temporary adjustment is spread out 

evenly among each phase so that they are uniformly increased or decreased in length for that cycle alone. 

A Qoordination agent can thus only modify its offset to all of its adjacent neighbors at once and cannot 

modify its offset to any one of them individually. Offset adjustment sizes are a fixed duration that is a 

multiple of the intersection’s number of phases. In our evaluation scenarios each intersection has six 

phases and the intersection agent can modify its offset values by 12 seconds at a time. We found that 

modifications of 6 seconds were often too small to register a significant change in state once the offset 

modification actions had been performed. 

3.2.12 Reward 

Possible options for Qoordination rewards include: increased throughput, increased average vehicle 

speeds, decreased vehicle waiting times, decreased queue lengths, or some combination of these 

variables. All rewards considered are averaged over the course of the cycle or specified number of cycles 

between updates (see section 4.2.2.2). These immediate rewards are then applied to the update algorithm 

(see section 3.3.7) at the end of the time-step in which they are calculated.  

3.2.12.1 Throughput 

Throughput optimization attempts to get as many vehicles through the intersection as possible. This 

however can come at the cost of long queue lengths. An agent using this form of reward does not 

appreciate having an intersection void of traffic, but seems to rather have traffic queues present to 

increase throughput rate. The goal of Qoordination is to establish and maintain dynamic progressive 

signal systems along the main traffic corridors that run through a transport network. It is thus not 

explicitly of concern to Qoordination how many vehicles pass through the network but just that the 

vehicles stop as little as possible from the time they enter the network to the time they leave it. 
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3.2.12.2 Vehicle Speed 

Detecting vehicle speeds is one of the more inaccurate and difficult options to achieve. This is simply 

due to the nature of the induction loop sensors. This inaccuracy can be reflected in rewards based upon 

such a variable. 

3.2.12.3 Vehicle Waiting Time 

Vehicle waiting time is the sum amount of time that vehicles that are waiting at an intersection have 

been waiting there for. Caution should be taken when calculating the waiting time as otherwise some 

unexpected results may arise. For example, an approach that has two vehicles in the queue which have 

been waiting there for 4 and 6 seconds has an average waiting time of 5 seconds. In the next time step 

another vehicle joins the queue and so the waiting times are 0, 5, and 7. The average waiting time now 

becomes 4 seconds while if no additional vehicle would have joined the queue then the average waiting 

time would have been 6. We would have hoped however that the reverse would have happened by having 

the reward express a worse state with three vehicles in the queue than two. Summing the individual 

vehicle waiting times per approach does however behave in the way that we would hope. Vehicle waiting 

time is limited to the number of vehicles that can be detected as sensors can usually only detect the 

presence of approximately five average length vehicles (see section 3.2.3). Using vehicle waiting times as 

a reward has an unforeseen drawback. If given the choice between having vehicles arriving too early at an 

intersection or risking have them arrive too late this variable will select to have them arrive too early. 

Qoordination agents using this form of reward thus tend to have all vehicles wait for a small amount of 

time at each intersection so as to not risk any of these vehicles being left behind when the light turns red. 

This goes against the concept of progressive signal systems.  

3.2.12.4 Queue Length 

Queue length optimization is also quite limited as a variable to be used as a reward. This is again due 

to the fact that the maximum length of a queue that can be detected on any one approach is approximately 

five average length vehicles. Thus one might think that queue length based rewards would work quite 

well under light traffic flow levels but would lose their effectiveness under medium to heavy traffic flow 

levels. This limitation however can be overcome by RL’s ability to take into account long term rewards. 

From a state of having full traffic queues actions are given preference that can lead to empty queues, even 

if that means that another few actions need to be taken before the agent gets to that state. Thus RL’s far 

sightedness overcomes the weaknesses of using queue length as a reward value. Unlike agents that use 

vehicle waiting time rewards, if given the choice between having vehicles arriving too early at an 

intersection or risking have them arrive too late intersection agents using queue length rewards tend to 
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risk having the vehicles arrive too late. A traffic corridor whose intersections minimize queue lengths 

thus aims to establish progressive signal systems.  

3.3 Multi-Layer Hashing 

In this section we describe in detail our Multi-Layer Hashing (MLH) approach to function 

approximation.  

3.3.1 Hashing 

As stated in section 2.2.4.2.2.2, a hash table is a data structure that maps hash function generated keys 

to buckets containing values. These structures provide much faster access to stored values than regular 

lookup tables. In order to generalize data a function approximator needs to be able to find states that are 

similar to a given one. This requires some form of organized storage whereas hash tables allocate bin 

space randomly within memory and thus rely on exact key-bin matching. In order for a hash map based 

function approximator to be sensitive to state similarity its hash function should place utility values of 

states that are similar to each other into the same bins.  

3.3.1.1 State Variable Hashing 

Our MLH function approximator calculates the hash value h for state variable i by integer dividing (\) 

the state variable value x by a specified coarseness value c as shown below.  

 

 

ℎ𝑖 = 𝑥𝑖\c𝑖 

 

 

(33) 

 

The hash value for a state variable with a specified coarseness value of 2 and any state variable value 

ranging between 4.0 and 5.9̇ (where 5.9̇ represents 5.999… with 9 going on through to infinity) is thus 2. 

A state variable with a coarseness value of 10 and a state variable value between 30 and 39.9̇ will have a 

hash value of 3 returned. Following this logic, when the coarseness value is set above the maximum value 

a state variable can have i.e. that state variable’s upper limit, then assuming that the state variable value is 

always positive, which assumption we make on all state variable values, the hash function will always 

return a hash value of 0.  

3.3.1.2 State Hashing 

A state is comprised of a set of state variables, thus the state’s hash key sh is comprised of a 

combination of the set of its state variable hash values. The hash function must ensure that this 
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combination of state variable hash values is non-commutative e.g. 𝑠ℎ(0,3,0) ≠ 𝑠ℎ(0,0,3). It should also 

ensure that the state variable hash values are unique for the given coarseness values e.g. 

𝑠ℎ(0𝑐1
1
, 3𝑐2

1
, 0𝑐3

1
) ≠ 𝑠ℎ(0𝑐1

2
, 3𝑐2

2
, 0𝑐3

2
), where 𝑐1 ≠ 𝑐2 . With coarseness values set above the maximum 

values that state variables can have the hash function will return the same hash key for all states, 

regardless of their values, thus assigning them all to the same bucket. With coarseness values set very low 

the hash function will group only very similar states into the same buckets. 

3.3.2 Layers of Granularity 

The MLH approach gets its name from the fact that it maintains a separate hash table for multiple sets 

of coarseness values. These coarseness values can be either discrete or continuous values. Minimum and 

maximum coarseness value are specified, with the minimum being any small positive value, and the 

maximum being just above the maximum values that the state variables can have i.e. just above the state 

variable upper limits. The coarseness values for a specified number of layers are then linearly distributed 

between the maximum and minimum coarseness values.  

We will illustrate this with an example. Let us say that we have an intersection with three single lane 

approaches and a timing plan that consists of two phases. The state space could consist of the queue 

lengths on each of the three approaches as well as the phase durations of the two phases. The highest 

queue length that we can measure is that of five vehicles so we can set the maximum and minimum 

coarseness values for each of the queue length state variables to 5.01 and 0.01 respectively. We can set 

the maximum coarseness values of the phase length state variables to some high threshold value, such as 

100.01 seconds, while the minimum coarseness values for these state variables can be set just above a 

minimum allowable phase length of 10 seconds i.e. 10.01. This gives us the following set of minimum 

coarseness values 𝑐1  = [0.01, 0.01, 0.01, 10.01, 10.01] and the following set of maximum coarseness 

values 𝑐4 = [5.01, 5.01, 5.01, 100.01, 100.01]. If we decide to have a total of four sets of coarseness 

values then the two additional sets of coarseness values created are thus 𝑐2 = [1.67, 1.67, 1.67, 40.01, 

40.01] and 𝑐3 = [3.34, 3.34, 3.34, 70.01, 70.01]. All states that have 𝑐4 applied will thus be grouped into 

the same bucket, while states that have 𝑐1 applied will be grouped into buckets with other states that are 

very similar to them.  

This multi-layer hashing method is illustrated below. In this illustration the state consists of only two 

state variables (to allow us to visually represent the hash table as a two dimensional table) and has ten 

levels of coarseness. 
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Figure 34 Multiple hash table layers 

A state is assigned to exactly one bucket per layer. The reward received for performing an action from 

a given state updates the values within the state’s assigned bucket on each of the MLH layers. This is 

illustrated in Figure 35.  

  

Figure 35 State’s single bucket assignment on multiple hash table layers 

3.3.3 Inner Action Hash Tables 

If each bucket contained a single value then this approach would be suitable for maintaining utility 

values for only a single action. In order to deal with multiple actions we need to add an additional layer of 

storage. Within each MLH bucket is thus contained another hash table structure that maps the possible 
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actions to the stored utility values. The hash keys generated for each action are based upon the action type 

and the action value, thus modifying a phase length by 5 seconds will generate a different hash key to 

modifying the same phase length by 10 seconds or modifying a different phase length by 5 seconds. The 

buckets within this inner action hash table contain not only the action-state utility values but can also 

contain additional values such as: the expected immediate reward, a counter value to keep track of how 

many times this particular utility value has been update i.e. an update counter, an error value, or even a 

transition function for an environment model.  

3.3.4 Exploration 

The update counter can be quite useful for the purposes of exploration and exploitation balancing. The 

upper MLH layer update counters increment relatively rapidly and one possibility is to take explorative 

actions if the update counters are below a threshold level in one of the lower MLH layers. A MLH layer 

can be considered fully explored when each bucket within each of the layers inner action hash tables has 

an update counter value above a certain threshold value. This will happen quite rapidly with the upper 

most MLH layers and will then gradually happen to the increasingly granular MLH layers.  

3.3.5 Error 

The error value within each inner action hash table bucket represents how accurate the values being 

stored in that bucket actually are. This error value 𝛿 can be calculated using the following equation: 

 

 

𝛿 = 𝛿 + 𝜇(max(𝑟, 𝑟𝑒) − min(𝑟, 𝑟𝑒) − 𝛿) 

 

 

(34) 

 

where: 

 𝜇 is an error learning rate 

 𝑟 is the reward being used to update the MLH approximator 

 𝑟𝑒  is the reward that the MLH approximator would have expected to be returned, usually an 

average or the most recent of past rewards used to update this bucket’s values  

This error value will be relatively high for MLH layers that are either too granular or too coarse. In a 

deterministic environment the lowest MLH layer will have the lowest error rate. In stochastic 

environments this is not particularly true as stochasticity can make the lowest layers susceptible to 

outliers. In stochastic environments this error rate thus helps us to identify the granularity level that 

results in the most accurate values. When the MLH structure is being queried for the utility value of a 

given state and action the utility for each layer is firstly found. In relatively unexplored MLH 

approximators a null value will often be returned for a number of the lower layers. The final action-utility 
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value returned however either can be the most granular non-null value i.e. the value from the lowest layer 

that does not return a null value, or it could be the value that is associated with the lowest error rate. 

3.3.6 Action Selection 

The basic MLH action selection algorithm is given below. 

Given state s 

var finalChosenAction=null 

var lowestError=max value 

for each layer l 

 for each state variable i 

  ℎ𝑖 = 𝑥𝑖\𝑐𝑖
𝑙 

 𝑠ℎ = 𝑠𝑡𝑎𝑡𝑒𝐻𝑎𝑠ℎ(ℎ1
𝑐1

𝑙

, … , ℎ𝑖

𝑐𝑖
𝑙

, … , ℎ𝐻

𝑐𝐻
𝑙

) 

 

 var chosenAction=null 

var highestUtility = −1 

 for each action a 

   ah=actionHash(a) 

  if getUpdateCounter(sh,ah)>1 

   𝑄𝑙(𝑠, 𝑎) =lookupUtility(sh,ah)  

   if 𝑄𝑙(𝑠, 𝑎)>highestUtility 

    highestUtility=𝑄𝑙(𝑠, 𝑎) 

    𝛿𝑙=lookupError(sh,ah) 

    chosenAction=a 

 else if l>thresholdValue 

  return a 

 

// We can leave out the second half of the following if statement if we want to return the action 

// associated with the most granular layer as opposed to the most accurate layer, assuming that  

// the layers are ordered by descending coarseness values 

if chosenAction!=null && 𝛿𝑙< lowestError 

 lowestError=𝛿𝑙 

 finalChosenAction=chosenAction 

return finalChosenAction 

Figure 36 MLH action selection algorithm  
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The basics of this algorithm can be described using the following equation: 

 

 

𝜋(𝑠) =
𝑚𝑖𝑛𝐸𝑟𝑟𝑜𝑟

𝑙

𝑎𝑟𝑔𝑚𝑎𝑥

𝑎 ∈ 𝐴(𝑠)
𝑄𝑙(𝑠, 𝑎) 

 

 

(35) 

 

Or if we are to use the utility value given from the most granular layer that does not return a null value 

we would use this equation: 

 

 

𝜋(𝑠) =
𝑚𝑜𝑠𝑡𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟

𝑙

𝑎𝑟𝑔𝑚𝑎𝑥

𝑎 ∈ 𝐴(𝑠)
𝑄𝑙(𝑠, 𝑎) 

 

 

(36) 

 

This is the equivalent of the following traditional Q-Learning equation: 

 

 

𝜋(𝑠) =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑎 ∈ 𝐴(𝑠)
𝑄(𝑠, 𝑎) 

 

 

(37) 

 

3.3.7 Update Algorithm 

The MLH update algorithm is given below.  
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Given previoiusState s, currentState s’, action a, and reward r 

for each layer l 

 for each state variable i of state s’ 

  ℎ′𝑖 = 𝑥𝑖\𝑐𝑖
𝑙 

 𝑠ℎ′ = 𝑠𝑡𝑎𝑡𝑒𝐻𝑎𝑠ℎ(ℎ′1
𝑐1

𝑙

, … , ℎ′𝑖

𝑐𝑖
𝑙

, … , ℎ′𝐻

𝑐𝐻
𝑙

) 

 

 var highestNextUtility = −1 

 for each action a’ 

   ah’=actionHash(a’) 

  𝑄𝑙(𝑠′, 𝑎′) =lookupUtility(sh’,ah’)  

  if 𝑄𝑙(𝑠′, 𝑎′)>highestNextUtility 

   highestNextUtility=𝑄𝑙(𝑠′, 𝑎′) 

  

for each state variable i of state s 

  ℎ𝑖 = 𝑥𝑖\𝑐𝑖
𝑙 

 𝑠ℎ = 𝑠𝑡𝑎𝑡𝑒𝐻𝑎𝑠ℎ(ℎ1
𝑐1

𝑙

, … , ℎ𝑖

𝑐𝑖
𝑙

, … , ℎ𝐻

𝑐𝐻
𝑙

) 

 ah=actionHash(a) 

 updateCounter(sh,ah)++ 

 

 𝑄𝑙(𝑠, 𝑎) =lookupUtility(sh,ah)  

 var updatedUtility=𝑄𝑙(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑁𝑒𝑥𝑡𝑈𝑡𝑖𝑙𝑖𝑡𝑦 − 𝑄𝑙(𝑠, 𝑎)) 

 updateUtility(sh,ah,updatedUtility) 

   

 var 𝑟𝑠𝑡𝑜𝑟𝑒𝑑=lookupReward(sh,ah) 

 updatedReward=𝑟𝑠𝑡𝑜𝑟𝑒𝑑+ 𝛼(r-𝑟𝑠𝑡𝑜𝑟𝑒𝑑) 

 updateReward(sh,ah,updatedReward) 

 

𝛿𝑙=lookupError(sh,ah) 

updatedError=𝛿𝑙 + 𝜇(max(𝑟, 𝑟𝑠𝑡𝑜𝑟𝑒𝑑) − min(𝑟, 𝑟𝑠𝑡𝑜𝑟𝑒𝑑) − 𝛿𝑙 

updateError(sh,ah,updatedError) 

Figure 37 MLH update algorithm  
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Notice how the action-utility update equation used in this algorithm updates the action-utility using 

the same Q-Learning equation given as equation 12. This equation is given again below for the reader’s 

convenience: 

 

 

𝑄𝑙(𝑠, 𝑎) =  𝑄𝑙(𝑠, 𝑎) + 𝛼(𝑅(𝑠) + 𝛾
𝑚𝑎𝑥

𝑎′ ∈ 𝐴(𝑠′)
𝑄𝑙(𝑠′, 𝑎′) − 𝑄𝑙(𝑠, 𝑎)) 

 

 

(38) 

 

3.3.8 Layer Abstraction 

A fully explored layer is one in which all actions have been performed from within all states in the 

layer a specified number of times. The least granular layer, which has only one state, becomes fully 

explored quite rapidly, assuming that all actions are performed at least the specified amount of times. 

When a layer has been fully explored it becomes possible to remove any fully explored layers above it 

from the MLH structure. The MLH always returns the utility value of the most granular layer that did not 

return a null value or of the layer that returns the utility value with the lowest error value. When the 

second least granular layer has been fully explored as well as the most granular layer, assuming that the 

second least granular layer utility values all have lower error values than those of the least granular layer 

then the utility values of the least granular layer will never be returned. The least granular layer can thus 

be removed. When the third least granular layer is fully explored if the error values are not being used or 

if all of the error values associated with its utility values are lower than those associated with the utility 

values of the second least granular layer then the second least granular layer can be removed, and so on. 

Thus as the environment becomes more fully understood through exploration MLH computation and 

memory requirements can be reduced. If error values are being used then it is important to consult the 

error values within each layer during the process of layer removal as the layers that have the lowest error 

values should not be removed.  

3.3.9 Layer Parameter Space Searching 

To this point we have presented a MLH function approximator that can handle environments where 

each state variable is of equal importance. This is not always the case. This can lead to reduced learning 

speeds and accuracy due to the added complexity of included irrelevant or less-relevant state variables. 

For example, a non-busy traffic intersection may be heavily dependent on the traffic flow coming from its 

upstream intersection neighbor, but is perhaps not so dependent on a downstream intersection. In order to 

accommodate for this the MLH function approximator can identify the relative importance of the 

different state variables. To this point we have assumed that the initial coarseness values are calculated 

linearly from given maximum and minimum values for each state variable. The higher the coarseness 
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values the less relevant are the state variables. Thus with maximum coarseness values set the values of all 

state variables are irrelevant and are all put into the same bucket. With minimum coarseness values set the 

values of all state variables become fully relevant. MLH can also however initialize a set of coarseness 

value sets with random numbers that lie in the range between their maximum and minimum values 

instead of initializing them linearly. These random coarseness sets are then added into the MLH as 

individual layers. These randomized layers can then be evaluated by averaging the error values contained 

within them. Although it is possible to create a layer for each possible combination of coarseness values 

this would lead to unacceptable processing and memory requirements with increasing numbers of state 

space variables. A better approach is to randomly initialize a number of MLH layers and then use one of 

the local search algorithms described in section 2.2.3.1.2.1 to find the layers that have the lowest error 

rates. With their basic representation i.e. an array of coarseness values, and a suitable evaluation function 

genetic algorithms could be easily applied to find the most suitable layers to be used. We have found that 

the simulated annealing algorithm works well in discovering which layers are best discarded and which 

are best kept. The most accurate layers will assign higher coarseness values to state variables of low 

importance and lower coarseness values to state variables of higher importance. After a period of training 

the most accurate layers can be selected for retention and a process of abstraction (see section 3.2.8) can 

occur in which the state variables that have consistently been assigned coarseness values above a 

threshold value can be completely removed from consideration.  

3.3.10 Conclusion 

The MLH function approximator that we have presented in this section has the capability of efficient 

generalization so as to allow for rapid learning. MLH also identifies the importance of each state variable 

in maintaining accurate data and can automatically abstract away irrelevant state variables so as to 

increase learning speed and accuracy. Additionally the MLH function approximator can automatically 

discover the most accurate state variable parameter settings that usually require manual definition. Thus 

MLH requires much less parameters to be set than other parametric methods of function approximation 

e.g. manual setting of thresholds to state whether a traffic queue is long, medium, or short, while also 

requiring no manual topological adjustments that are common in parametric models e.g. how many 

parameters, nodes, layers, etc. are necessary to represent the data. This approach also allows us to use the 

RL algorithms such as those described in section 2.2.2 without major modification. 
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3.4 Process of Qoordination  

Qoordination aims to establish and maintain dynamic progressive signal systems along the main 

traffic corridors that run through a transport network. We will explain such a progressive signal system 

with an example that is illustrated in the diagram below: 

  

Figure 38 Progressive signal system along a main traffic corridor 

In the above diagram the stream of traffic running through this network that has the highest traffic 

flow levels run along the highlighted path. This path is thus the main traffic corridor that runs through the 

network. In order to establish a progressive signal system under light to heavy traffic flow levels the 

traffic lights of the labeled intersections need to turn green in the sequence A, B, C, D, E, F, G, H, I, J. 

Traffic that is released through intersection A should then be able to progress along the main traffic 

corridor through to intersection J without having to stop for a red light at any of the intersections along 

the highlighted path. For the progressive signal system to be dynamic the sequence with which the lights 

turn green should reverse if the main flow of traffic reverses and begins flowing from intersection J 

through to intersection A. If the path of the main traffic corridor changes this should also be reflected in 

the sequence in which the traffic lights turn green. 
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3.4.1 Detect Key Intersection 

The first step in achieving a Qoordinated progressive system is to detect key intersections in the 

transport network. Key intersections are those through which relatively high traffic flows enter the 

network. Detecting key intersections within the network would be a trivial process if it could be done in a 

centralized fashion. In this fashion traffic flows passing through an intersection could be compared to 

traffic flows passing through any other intersection in the transport network. As Qoordination is a 

distributed approach to signal coordination the detection of key intersections must be achieved in a 

distributed fashion. This means that no intersection agent should be required to consider any intersection 

in the network to which it is not adjacent. As each agent is only aware of itself and its directly adjacent 

neighbors there will be many agents that do not know about the intersection that is the real key 

intersection. For example, in Figure 38 intersection agent J does not know about intersection A, which is 

the real key intersection. A Qoordination agent must thus determine whether it itself is more likely to be 

controlling the key intersection or whether one of its adjacent intersections is more likely to be 

controlling the key intersection. In Figure 38 agent J will determine that agent I is more likely to be 

controlling the key intersection than it is. Agent I will then determine that agent H is more likely to be 

controlling the key intersection than it is and so on until agent A determines that it is more likely to be 

controlling the key intersection than any of its immediate neighbors. To achieve this each agent must first 

create a mapping between its neighbor intersections and its local approaches. The agent thus needs to 

know where the traffic on each of its approaches is coming from. The agent then determines that its 

neighbor that is the source of the highest amount of vehicles flowing through it is most likely the key 

intersection. If the agent’s local approach that has the highest throughput (compared to its other local 

approach throughputs) has no neighbor mapped to it then the intersection itself must be at the edge of the 

transport network and the agent itself is most likely to be controlling the key intersection. The major 

challenge with this method of determining the key intersection is mapping the intersection’s approaches 

with the neighbor intersections from which the traffic on these approach flow. This task can be greatly 

simplified if the intersection is given specific information beforehand. For example, when an agent knows 

that it is part of a grid network, such as the ones that we use for our evaluations, it is a trivial matter to 

map each intersections north most approach with the adjacent intersection to the north. In practice 

however this information is generally not available and even if it were it would not allow for flexibility in 

change in network topology. There is however an alternative approach to mapping an intersection’s 

approaches with their corresponding neighbor source intersections. For this approach each intersection 

agent maintains a MLH utility function not only based upon their own rewards but also a separate MLH 

utility function based upon the rewards of each of their adjacent neighbor intersection agents. These 

utility functions are formed by requesting adjacent intersection agent rewards during each update. Thus 

neighboring agents must share reward information among each other. Each intersection agent can now be 
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aware of the effects of its actions not only on itself but also on each of its adjacent intersection agent 

neighbors. The agent queries each of the MLH utility functions that it maintains for its adjacent neighbors 

and discovers for each one the minimum utility value or immediate reward that the neighbors can be 

expected to receive from any of its actions. These values represent the effect the agent has on its 

neighbors. The intersection agent then requests from each of its adjacent neighbors to know their effects 

on it. If the intersection agent has a greater effect on a neighbor than the neighbor has on it then the traffic 

flow is moving from the intersection to that neighbor. The reverse is also true. This process of calculating 

the direction of traffic flow between adjacent intersection agents i and j is shown in the equation given 

below: 

 

 

𝑑𝑖𝑟 =
𝑚𝑖𝑛

𝑎𝑖 ∈ 𝐴𝑖(𝑠𝑖)
𝑄𝑖

𝑗(𝑠𝑖 , 𝑎𝑖) >
𝑚𝑖𝑛

𝑎𝑗 ∈ 𝐴𝑗(𝑠𝑗)
𝑄𝑗

𝑖 (𝑠𝑗 , 𝑎𝑗) 

 

 

(39) 

 

where: 

 𝑑𝑖𝑟 is a boolean representing the direction. 1 represents traffic flowing from agent i to agent j 

while 0 represents the reverse. 

 𝑄𝑖
𝑗
 is the utility function that agent i maintains for agent j 

If all traffic flows are moving away from the intersection then it is most likely to be controlling the 

key intersection. Otherwise, the neighbor that has the highest minimum utility for the intersection agent is 

more likely to be controlling the key intersection. These calculations are performed at every time step so 

if there is any change in traffic flow direction an agent can change status from being most likely to be 

controlling the key intersection to having one of its neighbors as being more likely to be controlling the 

key intersection or vice versa. There are two main differences between an agent that considers itself to be 

controlling the key intersection and an agent that considers one of its neighbors as being more likely to be 

controlling the key intersection i.e. a non-key agent. An agent that considers itself to be most likely to be 

controlling the key intersection will not adjust its offset. It will also be the agent that defines the cycle 

length that will be used along the traffic corridor.  

As transport networks are stochastic environments the throughput of any of an intersection’s 

approaches will vary randomly. This results in noisy data. This could lead to difficulties in an agent 

determining whether it is more likely to be controlling the key intersection than any of its neighbors at 

any one point in time. In order to address this challenge Qoordination agents use the average throughput 

of each of their approaches that has been observed over the past cycle or a specified number of cycles. 

This averaging of the throughputs gives a much more steady result in the presence stochastically 

fluctuating traffic flow levels but also means that it takes a small number of cycles in order to detect a 

change in the main direction of traffic flow.  
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3.4.2 Phase Length Modifications 

Each agent within the network can change phase lengths in accordance with whatever traffic control 

method they are implementing e.g. SAT. It is not required that all intersection agents within the transport 

network implement the same traffic control method. All non-key agents however must keep their cycle 

length the same as their neighbor intersection that they consider most likely to be controlling the key 

intersection. In this manner cycle lengths are decided upon by key intersection agents and these cycle 

lengths are cascaded through the network from intersection agents to their adjacent neighbors to whom 

the flow of traffic is moving. Progressive signal systems are not confined to single traffic corridors but 

can be dynamically branched out depending on the current flow of traffic. As all intersections along the 

traffic corridors now share the same cycle length their cycles are in sync such that coordination is 

possible.  

3.4.3 Offset Modifications 

The next step is to adjust the offset times such that a progressive signal system is established. As was 

discussed in the previous sub-sections Qoordination actions consist uniquely of offset adjustment actions. 

Qoordination rewards are based upon the minimization of queue lengths. The Qoordination agent’s MLH 

utility function can calculate which offset adjustment actions are necessary for minimizing queue lengths. 

With minimizing queue lengths progressive signal systems emerge. Different offsets however are 

necessary in the event of a change of traffic flow direction. To take this into account Qoordination agents 

maintain a separate MLH utility function for each possible direction of traffic flow i.e. North, North 

West, West, South West, South, South East, East, and North East. The current direction of traffic flow is 

simply calculated based upon the approach with the highest throughput. For intersections with different 

layouts to those used in our evaluations the number of directions might be different. The number of 

directions can still however be calculated based upon an intersection’s non-opposing approaches. The 

only MLH utility function that should be updated or queried during any time step is the one that is 

associated with the current traffic flow direction. Thus Qoordination agents learn how to establish 

progressive signal systems that can dynamically change direction or course. This approach of switching 

MLH according to dominant traffic flow direction is particularly suitable for transport networks that have 

a single dominant traffic flow direction at any one time. An agent only creates a MLH for a given 

direction once that direction has been detected as the main traffic flow direction. In our experiments each 

intersection only had one or two directions that were ever detected as the main direction so only one or 

two of a possible eight directional MLHs per agent were ever created. This approach is thus particularly 

scalable for intersection agents that experience few main directions of traffic flow. It is however not as 

suited to situations where there is no clear main traffic corridor i.e. where traffic flows equally in all 

directions. In this situation the all directional MLHs will be created and the MLHs being queried and 
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updated will continually switch. These continually switching MLHs will likely resemble each other more 

and more as time goes by. In this situation a more appropriate solution would be to have a single MLH. 

This would significantly cut down on memory requirements and would increase the agent’s rate of 

learning.  

3.4.4 Agent Abstraction 

Most intersections do not depend on the offsets of all of their adjacent intersections to learn an 

accurate utility function. For example an intersection will tend to not be dependent on downstream 

adjacent intersections at most traffic flow levels, oversaturation being the exception. Qoordination agents 

can increase their learning rate by abstracting away unnecessary offset state variables from their MLH 

utility functions. Abstraction in MLH is achieved by simply adjusting the coarseness values. When it is 

known that a state variable is irrelevant then it can have its coarseness value set to a maximum. With the 

intersection agents used in our evaluation networks abstraction could be a trivial process of setting 

maximum coarseness values on all downstream intersections of the specific MLH direction. Thus an 

intersection agent’s north-bound MLH utility function can rule out all neighbor offsets except for the 

adjacent intersection that is south of it. In our evaluation networks an agent can easily discover which 

adjacent intersection is to its north, south, east, or west, based upon their identification numbers and the 

total number of intersections in the network. In other networks this information is not as easy to obtain. In 

these situations a number of other processes can be followed in order to abstract irrelevant neighbor 

offsets. One approach is to search the MLH parameter space as has been described in section 3.3.9. 

Another similar approach is to cache or save to file a number of SARS tuples i.e. State, Action, Reward, 

State. A percentage of these tuples are fed into a number of initial MLH utility functions on initialization. 

This is a method of repopulating a MLH with information that it has previously learned so that it does not 

have to learn from scratch each time it is initialized. As each MLH only processes tuples that have 

resulted from its own previous experiences it cannot be comparable to transfer learning approaches that 

would allow agents to learn from the experiences of other agents (Taylor & Stone, 2009). In a transport 

network scenario like the one that we consider transfer learning is only potentially possible if an agent is 

fed tuples that have been experienced by another intersection agent that has identical characteristics e.g. 

number of approaches and number of neighboring agents, and that experiences close to identical patterns 

in traffic flow. Each initial MLH utility function is assigned a separate set of coarseness values. Thus one 

MLH may rule out one neighbor while another rules out another neighbor. The remainder of the cached 

tuples can be used to test the accuracy of the individual MLHs. The MLH that is most accurately able to 

estimate the immediate reward that is to be expected when performing a given action from a given state is 

the one that should be used. All others can be dropped. This process can even occur at regular intervals 

for each directional MLH utility function so as to ensure that no relevant neighbor offsets are being ruled 
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out. Ruling out of a relevant neighbor offset will have a negative effect on the agent’s learning and action 

selection process. Initializing Qoordination agents’ MLH utility functions in this way also ensures that 

they do not have to undergo a cold start. 

3.5 Summary 

In this chapter we have presented the requirements for a learning based approach to traffic intersection 

coordination. Based upon these requirements we have designed such an approach, namely Qoordination. 

This chapter describes the Qoordination design that meets the specified requirements. A detailed 

description was also given of Qoordination’s novel MLH utility function. 
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Implementation and Simulation-Based 

Evaluation Platform 
 

 

 

In this chapter we describe in detail our simulation-based platform for evaluation of traffic control 

methods. This platform has a particular focus on the evaluation of the effects of coordination on traffic 

control methods. This evaluation platform is based upon the industry standard PTV VISSIM microscopic 

simulator (Fellendorf & Vortisch, 2010). We begin this chapter by giving a brief description of the 

VISSIM microscopic simulator and a description of how a custom written traffic control program can 

interface with it. We then detail the automated process of simulated network generation. We describe the 

platform’s automated report generation functionality and then conclude with a description of the overall 

automated evaluation process. 

This chapter also describes the implementation of a generic traffic control framework that was used 

for the development of Qoordination agents. This framework allows for flexibility to experiment with 

traffic controller agent types and their components. A description of our implementation of Qoordination 

agents and their integration into the simulation-based evaluation platform is then given.  

4.1 Evaluation Platform 

4.1.1 VISSIM Microscopic Simulator 

PTV VISSIM is a leading industry standard microscopic traffic simulator that realistically models a 

variety of different road user types using scientifically sound models. Different road user types include 
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car, heavy goods vehicle, bus, tram, bike, and even pedestrian. VISSIM has the advantage of ease of 

configuring a simulated transportation network model. A user can import an image obtained from a 

mapping service such as Google Maps, and then overlay this image with links and connectors 

representing the road network. Other elements of the road network can then be added to this road 

infrastructure including but not limited to: speed restrictions, priority rules, stop and yield signs for 

uncontrolled intersections, routing decisions, vehicle inputs, scheduled public transport lines, signal 

controllers, and induction loops. These elements provide considerable flexibility in traffic flow levels, 

traffic patterns, and intersection control. A number of signal controller methods are also included with 

VISSIM. The main two signal controller methods are Vissig and VAP. Vissig implements pre-timed 

cyclic signal control (see section 2.3.2.1) while VAP implements actuated signal control (see section 

2.3.2.2). An essential aspect of VISSIM that enables us to use it as a base for our evaluation platform in 

this thesis is its programming interfaces that provide seamless integration with custom written signal 

control logic. The first programming interface is the DriverModel.DLL interface which allows for the 

implementation of custom car-following and lane changing models that overwrite the standard driving 

behavior. In this thesis as we do not model vehicular agents so we are not as interested in this interface as 

we are in the second interface, namely the SignalControl.DLL interface. The SignalControl.DLL interface 

allows for integration of user-defined signal control logic, as illustrated below.  

  

Figure 39 The VISSIM signal controller programming interface 

It is using this interface that we integrate our traffic control methods into the VISSIM simulations. 

VISSIM provides comprehensive analysis options, reinforcing its suitability as a base for our evaluation 

platform. VISSIM also provides a COM interface for running simulations programmatically. This is of 

high importance for automation of the evaluation process. We use VISSIM version 5.20 for our 

evaluation platform. 
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4.1.2 Network Generation  

In evaluating the effects of coordination on a traffic control method we begin by evaluating its 

performance on a simulated model of a single intersection. We then perform the same evaluation but on a 

2x2 intersection grid network, then on a 3x3 grid, then on a 4x4 grid, and thus the grid networks continue 

to incrementally grow for each subsequent evaluation step up to a specified maximum grid size e.g. a 

100x100 grid network. The grid network is a common transport network topology in practice e.g. in cities 

such as Manhattan in the USA. The grid network is also a configuration that is commonly used in 

evaluating traffic control systems (see examples in section 2.3.3). Although setting up a simulated 

network in VISSIM is not difficult the process of setting up a grid network consisting of 1,000 

intersections would be tedious and error prone. For this reason this evaluation platform automates the 

generation of simulated traffic networks.  

VISSIM network models are stored as human-readable ASCII .inp files. The parameters for each 

element within a simulated network are thus contained within its .inp file in an intuitive, well organized, 

categorical fashion. In order to automate the process of network generation we must programmatically 

create valid .inp files. The first step to doing this is to model a single ideal intersection in VISSIM that 

has all necessary approaches, lanes, priority rules, communication channels, detectors, and traffic lights. 

The next step is to programmatically clone this intersection a number of times and reposition and connect 

the intersection instances in a specified order to form the desired transport network. The specifications for 

the network size and topology, traffic flow levels, traffic patterns, etc. are read from a parameter file.  

In the remainder of this section we give a detailed description of this automated network generation 

process.  

4.1.2.1 Single Intersection  

As mentioned above, the first step in the process of automated simulated transport network generation 

is to model a single ideal intersection in VISSIM that has all necessary approaches, lanes, priority rules, 

communication channels, detectors, and traffic lights. As shown in Figure 40, the intersection layout that 

we modeled is the same as is illustrated in Figure 19. 
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Figure 40 Single simulated intersection 

In this model the vehicles drive on the left side of the road. The intersection has four arms, each one 

having three inbound lanes and two outbound lanes. The inbound lanes allow for vehicles to take left and 

right turns as well as to continue straight through the intersection. The rightmost lane on each approach 

allows for dedicated right turns and no straight through movements. The priority rules are set up so that 

vehicles turning right give way to vehicles going straight through the intersection. Vehicles also do not 

enter the intersection if their exit from the intersection is not clear, thus avoiding unnecessary congestion 

and gridlock. With these priority rules in place, as well as various others, vehicles can safely navigate 

through the intersection even when it is uncontrolled. Traffic lights are placed on each lane of each 

approach to the intersection. Detectors are also placed on each lane of each approach at distances of 5 

meters and 30 meters from the intersection, as seen in Figure 41. 
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Figure 41 Detector placement at intersection 

These detectors are named according to a convention that allows them to be programmatically 

identified by approach, lane, and distance to intersection. Communication channels are then set up in such 

a way that the intersection has one single output channel and one input channel for each approach. This is 

to eventually allow the intersection agent to receive information from each of its neighbor intersection 

agents individually and to send information to them as a group. The decision to send information to them 

as a group comes from the fact that when a vehicle exits the intersection we do not know to which of the 

neighboring intersections it is actually going, e.g. we do not know whether a vehicle in the left lane of an 

approach will be turning left or going straight through the intersection. We do know however which 

neighbor intersections the arriving vehicles are coming from, hence the individual input communication 

channels. These input channels are also named according to conventions to allow for programmatic 

management. The final step in setting up the single intersection is to put the traffic lights into a signal 

group and to set the name of the DLL interface file that this signal group is to use. We set the interface to 

SignalControl.DLL, which we can then modify to implement our traffic control logic (see section 4.2.1). 

4.1.2.2 Multiple Intersections 

Now that a single intersection has been modeled we can programmatically clone it a number of times 

and relocate the clones within the model by adjusting variable values within the .inp file. The next step is 

to connect the outgoing lanes to the incoming lanes of adjacent intersection instances. This is facilitated 

by organized naming conventions of intersections and roads. The distances between intersections are 

defined by adjustable variables, allowing for a greater variety in network topology. 

On each lane that leads into the transportation network we set speed limits and vehicle inputs. Speed 

limits of 50 kilometers per hour were set as is common in urban areas. A vehicle input depicts how many 

vehicles are to enter the network from the lane on which it is set. The input volumes are controlled 

programmatically by manipulating the .inp file and can even vary throughout the duration of a simulation 



 

 

 

Chapter 4 Implementation  

 

 
 
 
 
 

102 

evaluation. We can also easily stop all traffic from coming from a specified direction, enabling us to 

easily simplify the traffic flow patterns for purposes of development and evaluation. 

Routing decisions are then set from each incoming road to each outgoing road. Only one route is 

plotted for each entrance-exit pair as opposed to plotting an exhaustive set of routes. Traffic flows within 

the transport network are thus specified using Origin-Destination (OD) pairs implemented as routing 

decisions as opposed to being specified using turning probabilities. Main traffic flows can thus be set by 

increasing the vehicle input for the desired OD pair. As the plotting of these routes is done 

programmatically it becomes easy to state whether left or right turns are allowed within the network, 

which again enables us to easily simplify the traffic flow patterns for purposes of development and 

evaluation. Figure 42 illustrates one of the automatically generated routes through a multi-intersection 

grid network that has various distances between intersection columns and rows. 

  

Figure 42 Automatically generated route through a simulated grid network 

4.1.2.3 Parameter File  

Having now the ability to programmatically generate a simulated transport model we set up an ASCII 

parameter file to define the appropriate network properties. This file contains the following parameters. 

 Simulation duration 

 Number of times to run the simulation 

 Distances between each row and column of intersections within the grid network 

 The traffic flow levels from each direction 

 The ratio of vehicles per source direction that will be turning left, right, or going straight through 

the network 

 The range of iterative network size increments 
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Of these parameters it is perhaps the last one that requires an explanation, which will be done in the 

following sub-section. 

4.1.2.4 Incremental Network Size Increase  

We have now seen that the specifications of the simulated transport network to be generated can be 

set in the parameter file. If we wish to generate a number of networks, each one being incrementally 

bigger than the last, then a separate parameter file would need to be defined for each one. This approach 

can be tedious and error prone if the number of networks is large. To overcome this challenge an iterative 

network size increment range can be set in the parameter file. This sets the minimum network size, the 

maximum network size, and the increment size. For example, if a minimum network size of 1 is set and a 

maximum network size of 10, with an increment size of 2, then the following network sizes will be 

generated: 1x1, 3x3, 5x5, 7x7, and 9x9. Besides of network size the other parameters specified remain the 

same for each network. Below is shown an example of a 5x5 and a 20x20 simulated transport network 

generated using the same parameter file. 

       

Figure 43 Automatically generated 5x5 and 20x20 simulated grid networks 

4.1.3 Report Generation  

As mentioned in section 4.1.1, VISSIM provides comprehensive analysis options allowing us to 

evaluate the performance of a traffic control method over the course of a simulation. The main evaluation 

type that VISSIM provides that we are interested in is the vehicle record. A number of parameters can be 

set in the vehicle record, including simulation time, vehicle number,  route number, distance traveled in 
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network, queue time, number of stops, and vehicle speed. These variables give us valuable information 

that we cannot gather from the detectors alone, whereas the traffic controller logic that we implement in 

the DLL file only has available to it the information that can be gathered from the detectors. VISSIM 

exports the vehicle record to a .fzp file. This file contains thousands of entries, one for each vehicle at 

each time step e.g. each second, of the simulation. Our evaluation platform compiles these results 

automatically to generate a report for each simulation that shows: accurate vehicle speeds, vehicle 

throughput, traffic volume, average queue time, average number of stops, etc. If the simulation is run 

numerous times for a single network size then the results of all of these simulation runs are averaged out, 

allowing us to see performance patterns clearer by reducing erratic results that are associated with such a 

stochastic environment. Stochasticity of the environment is represented in VISSIM by fluctuating the rate 

at which vehicles are introduced into the network through the vehicle input nodes. Although the average 

over the course of an hour may stay fairly consistent the first ten minutes of that hour may see more 

vehicles introduced than the second ten minutes of the hour. The randomness of the rate of introduction 

of vehicles into the network through the vehicle input nodes is affected by a seed variable. Each time a 

simulation is run we increment this seed variable so that the results of a sequence of simulation runs will 

all be different. It is because the simulation results vary significantly that we average them over a number 

of simulation runs. These evaluation variables give us a good understanding of how the traffic control 

logic performs per network size, yet at times we will wish to analyze performance at the level of the 

intersections. To do this we print out variables for the individual intersections such as waiting time, queue 

length, throughput, and reward. At each time step of the simulation a “calculate” callback method is 

called in the SignalControl.DLL code with the signal controller number of an intersection given as a 

parameter. This callback method gives the intersections controlling agent the opportunity to call any 

methods necessary to update its state and perform any actions. This also gives us the opportunity to print 

out these evaluation variable values. These variables are also averaged across intersections and 

simulations and put into a report file. It is also however possible to see how a specific intersection is 

performing. This can be important when analyzing the different performances of intersections based upon 

their location in the network, or along a specific traffic corridor. Individual route performance can also be 

seen in the evaluation report. 

When a report file has been generated the results are programmatically entered into a Microsoft Excel 

spreadsheet using Excel’s COM interface. Separate graphs are generated within this document to allow 

for easy comparison of traffic control algorithms in different sized networks. 

4.1.4 Automated Evaluation  

Our evaluation platform automates the evaluation process of different traffic control algorithms. A 

parameter file is defined in which is stored the evaluation specific settings. For each algorithm to be 
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tested this file firstly states the range of iterative network size increments. It then states the duration of the 

simulation and the number of times the simulation is to be run. A separate number of training simulations 

can be run beforehand for learning algorithms, which allow agents to build up their models and utility 

functions but does not include the results in the final report. The parameter file then states whether or not 

the evaluation should be done on a per route or a per intersection basis or if it should simply be averaged 

over the entire network. The former have an obvious temporal cost, particularly in larger networks. The 

granularity of the resulting graphs can also be set so as to allow for smoothing or a more detailed view. 

Each traffic control algorithm can be evaluated using a number of different traffic flow levels, or even 

using a varying traffic flow level. The settings for these traffic flow levels are all set in the parameter file. 

The final entries in the parameter file state the traffic control algorithms to be evaluated. The output from 

the automated evaluation is an Excel spreadsheet diagrammatically depicting each algorithm’s 

performance.  

4.2 Traffic Control Framework 

The traffic control framework developed as part of this thesis offers flexibility and structure in 

experimenting with different RL and traffic control based design elements such as agent type, learning 

algorithm, function approximator, environment representation, reward model, state space, and action 

space. Within this framework the agent and the traffic controller components are decoupled. The reason 

for this decoupling is that we wanted to reserve the ability to integrate our Agent implementation with 

other environments that are unrelated to traffic control with a minimum of required alterations to the 

Agent code. For this reason the agent and traffic controller components have been implemented quite 

independently. This has led to some duplication of class names between components that could have been 

avoided had a more tightly integrated design been considered. A high level class diagram of the traffic 

control framework is presented in Figure 44.  

We now describe how this framework integrates into the evaluation platform. The remainder of this 

sub-section then describes the component pieces of the framework. 
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Figure 44 Traffic control framework high-level class diagram 

4.2.1 Integration with Evaluation Platform 

As illustrated in Figure 44 the VISSIM microscopic traffic simulator interacts with the signal 

controller logic via the SignalControl.DLL interface. The DLL interface is coded in the C++ 

programming language and provides a set of callback methods that are called for each traffic controller 

during each time step. Custom functionality can then be placed inside these callback methods. This 

functionality can call upon some of the functions provided by the API to discover the state of the traffic 

network e.g. to discover the number of vehicles that have passed over a given traffic detector within the 

past time step, or to discover the current state of a given signal group (e.g. green, amber, or red). The 

functions provided by the API also allow for the state of the signal controllers to be updated. The updated 

states of the signal controllers are then passed back to the VISSIM simulation. We include the following 

list of variables and methods to illustrate the functionality that is provided by the VISSIM API. 
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/*=========================== General functions ============================*/ 
double Sim_Time(void); // Returns the simulation time at the end of the current 
time step in VISSIM in seconds. 
char *Sim_Time_of_Day(void); // Returns the simulation time at the end of the 
current time step in VISSIM as string in the form hh:mm:ss.s. 
long Sim_Start_Date(void); // Returns the start date of the simulation as defined 
by the user in the VISSIM Simulation Parameters in the format YYYYMMDD. 
 
 
/*======================= Signal controller functions ======================*/ 
double  SC_CycleSecond (unsigned long sc_no); // Returns the current cycle second 
[in seconds, >0 <=SC_CycleTime()] of controller no. <sc_no>. 
 
double  SC_CycleTime (unsigned long sc_no); // Returns the cycle time (in 
seconds) of controller no. <sc_no> (as defined in VISSIM). 
long  SC_ReadInputChannel (unsigned long sc_no, long ch_no); // Returns the last 
value sent from the controller output channel connected to input channel <ch_no> 
of controller no. <sc_no>. 
int  SC_SetOutputChannel (unsigned long sc_no, long ch_no, long value); // Sets 
the output channel <ch_no> of controller no. <sc_no> to <value>. 
 
/*========================= Signal group functions =========================*/ 
// State definitions 
#define SG_STATE_UNDEFINED            0 
#define SG_STATE_GREEN                1 
#define SG_STATE_RED                  2 
#define SG_STATE_OFF                  4 
#define SG_STATE_RED_AMBER            7 
#define SG_STATE_AMBER                8 
#define SG_STATE_AMBER_FLASHING       9 
#define SG_STATE_RED_FLASHING        10 
#define SG_STATE_GREEN_FLASHING      11 
#define SG_STATE_RED_GREEN_FLASHING  12 
#define SG_STATE_GREEN_AMBER         13 
 
sg_iterator SignalGroups (void); // Returns an iterator containing all 
SignalGroup objects. 
int SGIdFromName (unsigned long sc_no, const std::string & name); // Gets the id 
of the signal group with the given name. 
std::string SG_Name(unsigned long sc_no, unsigned long det_no); // Gets the name 
of the signal group with the given id. 
int  SG_SetState (unsigned long sc_no, unsigned long sg_no, int state, int 
transition); // Set signal group no. <sg_no> of controller no. <sc_no> to <state> 
(see state definitions above). 
int  SG_CurrentState (unsigned long sc_no, unsigned long sg_no); // Returns the 
current state of signal group no. <sg_no> of controller no. <sc_no> (see state 
definitions above).  
double  SG_CurrentDuration (unsigned long sc_no, unsigned long sg_no); // Returns 
the elapsed time (in seconds) since signal group no. <sg_no> of controller no. 
<sc_no> was set to its current state. 
double  SG_MinimumRed (unsigned long sc_no, unsigned long sg_no); // Returns the 
minimum red time of signal group no. <sg_no> of controller no. <sc_no> (in 
seconds, as defined in VISSIM). 
double  SG_MinimumGreen (unsigned long sc_no, unsigned long sg_no); // Returns 
the minimum green time of signal group no. <sg_no> of controller no. <sc_no> (in 
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seconds, as defined in VISSIM). 
double  SG_AmberPeriod (unsigned long sc_no, unsigned long sg_no); // Returns the 
amber time of signal group no. <sg_no> of controller no. <sc_no> (in seconds, as 
defined in VISSIM). 
double  SG_RedAmberPeriod (unsigned long sc_no, unsigned long sg_no); // Returns 
the red/amber time of signal group no. <sg_no> of controller no. <sc_no> (in 
seconds, as defined in VISSIM).  
 
/*=========================== Detector functions ===========================*/ 
detector_iterator Detectors (void); // Returns an iterator containing all 
detector objects. 
std::string Det_Name (unsigned long sc_no, unsigned long det_no); // Gets the 
name of the detector with the given id. 
int  Det_Detection (unsigned long sc_no, unsigned long det_no); // Returns 1 if 
there is or was a vehicle on detector <det_no> of controller no. <sc_no> since 
the previous controller time step, else 0.  
int  Det_Presence (unsigned long sc_no, unsigned long det_no); // Returns 1 if 
there is a vehicle on detector <det_no> of controller no. <sc_no> at the end of 
the current simulation time step, else 0. 
 
int  Det_FrontEnds (unsigned long sc_no, unsigned long det_no); // Returns the 
number of detected vehicle front ends on detector <det_no> of controller no. 
<sc_no> since the previous controller time step. (If a vehicle moves onto the 
detector while another one is still there, no new front end will be detected!) 
int  Det_RearEnds (unsigned long sc_no, unsigned long det_no); // Returns the 
number of detected vehicle rear ends on detector <det_no> of controller no. 
<sc_no> since the previous controller time step. (If a vehicle leaves the 
detector while another one is already on the detector, no new rear end will be 
detected!) 
double  Det_FrontEndTime (unsigned long sc_no, unsigned long det_no, int k); // 
Returns the time in s between the start of the current controller time step and 
the detection of the <k>-th vehicle front end during this controller time step. 
[1 <= k <= Det_FrontEnds (sc_no, det_no)] 
double  Det_RearEndTime (unsigned long sc_no, unsigned long det_no, int k); // 
Returns the time in s between the start of the current controller time step and 
the detection of the <k>-th vehicle rear end during this controller time step. [1 
<= k <= Det_RearEnds (sc_no, det_no)]  
double  Det_OccupancyTime (unsigned long sc_no, unsigned long det_no); // Returns 
the current occupancy time on detector <det_no> of controller no. <sc_no>: 0.0 if 
no vehicle is present at the end of the current simulation time step, else the 
time elapsed since its arrival in s. 
double Det_OccupancyRate (unsigned long sc_no, unsigned long det_no); // Returns 
the current occupancy rate of detector <det_no> of controller no. <sc_no> in % 
[0.0..100.0], i.e. the occupancy percentage since the last controller time step.   
double Det_OccupancyRateSmoothed (unsigned long sc_no, unsigned long det_no); // 
Returns the exponentially smoothed occupancy rate of detector <det_no> of 
controller no. <sc_no> in % [0.0..100.0], i.e. the occupancy percentage since the 
last controller time step, smoothed exponentially with the smoothing factors 
entered for this detector in VISSIM. 
double  Det_GapTime (unsigned long sc_no, unsigned long det_no); // Returns the 
exponentially smoothed occupancy rate of detector <det_no> of controller no. 
<sc_no> in % [0.0..100.0], i.e. the occupancy percentage since the last 
controller time step, smoothed exponentially with the smoothing factors entered 
for this detector in VISSIM. 
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double  Det_VehSpeed (unsigned long sc_no, unsigned long det_no); // Returns the 
current vehicle speed on detector <det_no> of controller no. <sc_no>: 0.0 if no 
vehicle was detected since the last controller time step, else the speed of the 
last vehicle detected in m/s. 
double  Det_VehLength (unsigned long sc_no, unsigned long det_no); // Returns the 
current vehicle length on detector <det_no> of controller no. <sc_no>: 0.0 if no 
vehicle was detected since the last controller time step, else the length of the 
last vehicle detected in m. 
int DetIdFromName (unsigned long sc_no, const std::string & name); // Gets the id 
of the detector with the given name. 
short Det_Type (unsigned long sc_no, unsigned long det_no); // Returns the 
detector type. With use of type it is possible to differ between detectors for 
pedestrians and detectors for the traffic. 

 

4.2.2 Signal Controller 

Each Signal Controller object represents a separate intersection signal controller within the simulated 

VISSIM model. These objects have access to the current sensor readings and methods for performing 

actions on their associated VISSIM intersections. This traffic controller aspect of the framework is 

decoupled from the agent based learning aspect of the framework. 

4.2.2.1 Initialization 

When the Signal Controller object is first initialized it instantiates the appropriate State, Neighbor, 

Approach, and Detector objects. Signal Controllers are aware of which intersections in the network are 

adjacent to them as the communications channels are automatically set up between adjacent intersections 

when the simulated network model is generated. Alternatively, Signal Controllers are made aware of 

which intersections are adjacent to them in the network by directly accessing the Signal Controllers array. 

The approaches leading in to each intersection are given by VISSIM under the name of Signal Groups. 

Using signal group identifiers the Signal Controller can discover the current state of the traffic lights on 

each individual approach. It can also use these identifiers in changing the traffic lights on any approach. 

Using the Approach identifier the Signal Controller can also discover any detectors located on the 

approach. Two detectors are located on each approach of each intersection in each of our generated 

VISSIM networks. These detectors are located at 5 and 30 meters from the intersection. Using this 

information the Signal Controller can instantiate Detector objects that are assigned appropriate detector 

identification numbers. These detector identification numbers are used to discover how many vehicles 

have passed over the associated detector. Other methods that can be called using the approach identifier 

and the detector identifier are given in the list of methods on the previous page. Using the combination of 

the two detectors the Signal Controller can calculate the vehicle queue length on each approach. 

Once the appropriate Approach and Detector objects have been instantiated the Signal Controller 

initializes the phases. Phases are implemented as arrays of Approach references. All approaches whose 
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traffic lights are to receive green time are grouped together in one of these arrays. As references to the 

Approaches are used a single approach can be included in multiple phases, allowing for overlapping 

phases such as those shown in Figure 21. Our implementation defines a six phase cycle. This is to allow 

for dedicated right turns so as to decrease the risk of congestion in case of heavy traffic for pre-timed 

control. Once the phases have been established then the appropriate Action objects can be instantiated. 

This generic framework allows for the development of multiple types of Signal Controller logic. For 

example, our Qoordinated agents only require three actions i.e. increasing offset, decreasing offset, and 

performing no action whereas the Q-Learning based agents that we use in our evaluations require three 

actions for each phase i.e. a phase increase modification, a phase decrease modification action, and an 

action where no modifications are made to the specified phase length. 

4.2.2.2 Update 

When an update message is received from the simulated signal controller each Detector object updates 

its variables in accordance with the information contained within the update message. The Approach 

objects are then able to observe how many vehicles have arrived in the queue i.e. how many have passed 

the detector at 30 meters within the past time step, and how many have left the queue i.e. how many have 

passed the detector at 5 meters within the past time step. Using this information the Approach objects can 

not only maintain accurate queue length information but also waiting time information. Each Approach 

object maintains a history of these variables as well as a history of the traffic lights state as obtained from 

the update messages. Using these histories the Approach object is able to calculate their averages over the 

course of a cycle length, or even over a given number of cycle lengths. These averaged values can then be 

fed into the appropriate Agent State Variables.  

The Signal Controller object keeps track of the cycle time expired so far and also the current phase 

time expired so far. When a phase is nearing its end (about 4 seconds before it ends) its approach’s traffic 

lights are set to amber. For the last second of the phase the traffic lights are set to red. This concludes the 

phase’s change and clearance intervals. On the first time step of the next phase the traffic lights of the 

approaches that are included in that next phase are turned to green. If an approach is included in two 

consecutive phases then it stays green during its change and clearance intervals. If a phase has a phase 

length of zero then its green, change, and clearance intervals are skipped.  

4.2.2.3 Action Performance 

Cyclic Signal Controllers can perform actions at the start of a cycle. Phase length modification actions 

are performed simply by reducing or increasing the length variable value for the specified phase by a 

specified amount. Phase length modifications are a fixed 6 second duration. Thus agents that adjust phase 

lengths cannot adjust them by any more or less than 6 seconds at a time. Offset modification actions are 
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performed by reducing or increasing the cycle length for the duration of one full cycle. This temporary 

adjustment is spread out evenly among each phase so that their times are uniformly increased or 

decreased just for the duration of that cycle. An agent can thus only modify its offset to all of its adjacent 

neighbors at once and cannot modify its offset to any one of them individually. Offset adjustment sizes 

are a fixed duration that is a multiple of the intersection’s number of phases. In our evaluation scenarios 

each intersection has six phases and the intersection agent can modify its offset values by 12 seconds. 

Having six phases allows for dedicated right turns in all directions so as to decrease the risk of congestion 

in case of heavy traffic for pre-timed control. 

4.2.3 Agent  

The Agent object represents the learning aspect of the framework and is decoupled from the traffic 

controller based aspect of the framework. Agents within the traffic control framework can have the 

following components: exploration strategy, learning algorithm, utility function, policy, model, state, and 

a set of actions.  

4.2.3.1 State and Actions 

The Agent State and Actions represent the State and Action objects maintained by the Agent’s 

corresponding Signal Controller. Each Action simply contains a value and an identification that links it to 

its Signal Controller counterpart. The action value represents the increase or decrease in the specified 

offset or phase length. Each State Variable also contains a value and an identification that links it to an 

element of the Signal Controller’s State, such as average queue lengths, waiting times, or phase lengths. 

These values are obtained from the corresponding Signal Controller State after an update has occurred. 

Neither Actions nor State Variables have any concept of the variables that they represent and simply act 

as their proxies within the learning section of the framework. This allows for decoupling between agent 

and traffic controller.  

4.2.3.2 Abstract Classes 

Abstract Exploration Strategy, Learning Algorithm, and Function Approximator elements facilitate 

experimentation with different potential design components. Different Exploration Strategies such as 

Greedy, E-Greedy, and Boltzmann, have been implemented (see section 3.2.9), as well as combinations 

of these. During the action selection process the Agent calls a getNextAction method on the Exploration 

Strategy, which decides whether to perform an explorative action or whether to return the exploitative 

action obtained by calling the Policy’s getNextAction method. The agent’s utility function, policy, and 

environment model are all represented using a function approximator. Where an implicit policy is desired 

the Policy object’s getNextAction method simply consults the Utility Function and returns the Action 
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with the highest utility. Not every Learning Algorithm type will make use of the Model e.g. Q-Learning. 

These are model free algorithms. Implemented Function Approximators include: Lookup Table, High 

Dimensional Clustering, Artificial Neural Network, and Multi-Layer Hashing. Learning algorithms that 

have been implemented include Q-Learning, SARSA, ACRL, and ADP. The agent itself can be either a 

Multi-Agent Agent or a Single-Agent Agent. Single Agents do not communicate with any of their 

neighbor intersection agents and remain unaware of the states, actions, and rewards of their neighbors, to 

the point of being unaware that there are even any other agents within the system.  

4.2.3.3 Initialization 

During the initialization process a new Agent object is instantiated for each Signal Controller. A 

parameter file is set up that defines the different design elements that are to be incorporated into the 

instantiated Agent. Initialization from a parameter file is done so as to facilitate automated evaluation of 

different agent types. If a simple pre-timed or actuated agent is being instantiated i.e. no learning element 

is involved, then a shell of an Agent object is created that performs no processing and whose 

getNextAction method consistently returns the “perform no action” action. When a learning Agent is 

being instantiated it reads a file containing saved experiences from previously run simulations that that 

particular agent participated in. Each entry contains a State, the Action that had been selected, the reward 

that was received after the action had been performed, and the resulting state. This initialization allows 

the Agent to avoid a cold start and provides the Agent with an established function approximator at the 

time of its instantiation. As the initialization files are specific to not only the signal controller but also the 

network size, learning algorithm, and traffic flow levels, a number of initialization files are maintained to 

significantly decrease development and testing times. This is also helpful for automated evaluation. 

4.2.3.4 Update 

The simulated signal controller sends an update at every time step of the simulation. This is roughly 

once per second. This update information is used to update the Signal Controller object. This update rate 

is too high for a learning agent as it does not give enough time to evaluate the effects of the performed 

actions.  The agent must thus wait a number of cycles so that the effects of the performed actions become 

apparent. The number of cycles that we have found appropriate is two. The reward is calculated from data 

averaged over the past cycle.  

The Agent thus receives an update at the first time step of every second cycle. This update begins by 

updating the Agent’s State Variables from the values within the Signal Controller’s State. What happens 

next in the update is specific to whichever learning algorithm is being followed. The learning algorithms 

generally update the Policy, Utility Function, Model, and perhaps even the Exploration Strategy at this 

point, although many algorithms simply update the Utility Function. We will give a detailed description 
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of Qoordination agent learning in the next section. Once the update process has been completed the 

process of action selection begins. This process begins when the Agent calls a getNextAction method on 

the Exploration Strategy, which decides whether to perform an explorative action or whether to return the 

exploitative action obtained by calling the Policy’s getNextAction method. The Policy can either suggest 

the action that has the highest utility as defined by the utility function (implicit policy) or it can perform 

processing of its own in a search to become the optimal policy (explicit policy). Our Qoordination agent 

implementation uses the implicit policy functionality based upon a MLH utility function. MLH 

implementation will be described in greater detail in section 4.3. Once the action to be performed has 

been chosen it is returned to Signal Controller object which performs the action via SignalControl.DLL 

methods. The state, action, reward, state tuple is then saved to file. 

4.3 Qoordination Agents 

Qoordination Agents are Multi-Agent Agents that implement the Q-Learning Algorithm, a Multi-

Layer Hashing Utility Function, no explicit Policy, no Model, and an Exploration Strategy whose 

functionality has been described in section 3.2.9. Qoordination agents contain State Variables that 

represent the intersection’s offset to each adjacent intersection. Only three Action objects are required for 

a Qoordination agent. These represent actions for increasing or decreasing the intersection’s offset to its 

neighbor intersections, and one Action to represent the absence of an action i.e. the offsets are kept 

steady. 

Qoordination agents use an MLH function approximator to represent their Q-Learning utility function. 

The MLH function approximator implementation is illustrated using the class diagram that can be seen in 

Figure 45, 
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Figure 45 MLH class diagram 

Qoordination agents maintain a MLH utility function not only for themselves but also for each of their 

neighbors. Thus a Qoordination agent is aware of how its own actions affect not only itself but also each 

of its neighbors individually. Further, Qoordination agents maintain separate MLH utility functions for 

each possible direction of traffic flow. The reason why this approach was taken as opposed to storing all 

of this information in the same MLH utility function was that during the process of abstraction different 

traffic flow directions require the abstraction of different neighbor offsets. For example, when traffic is 

flowing north the offset of the intersection to the north is typically abstracted and when the traffic is 

flowing south the offset of the intersection to the south is typically abstracted. 

4.3.1 Initialization 

This function approximator is initialized by first having a number of MLHs that are generated with 

different sets of coarseness values. In larger systems random sets of coarseness values can be used, 

followed by a process of simulated annealing as described in section 3.3.9. As the number of adjacent 

neighbor intersections is quite small an exhaustive set of coarseness value combinations is used. Each of 



 

 

 

Chapter 4 Implementation  

 

 
 
 
 
 

115 

these utility functions are initialized using a percentage (in our case using 50%) of the SARS tuples i.e. 

State, Action, Reward, State, that have been saved to file during previous simulations. The remaining 

percentage of these tuples are used to test the accuracy of each utility function. The utility function that is 

able to most accurately estimate the immediate reward to be received for performing a given action from 

a given state is kept while all other utility functions are dropped. 

Qoordination agents require a utility function for both themselves and for each of their neighbors. A 

separate MLH is thus created for each of these. Using these a Qoordination agent can be aware of the 

effects of its actions on both itself and on each of its adjacent neighbors individually. Further, each agent 

is to maintain a separate set of MLH utility functions for each direction of traffic flow. As Qoordination 

agents only update and access utility functions for the current traffic flow direction they typically do not 

create sets of utility functions for directions in which the traffic does not flow. In our experiments 

Qoordination agents typically only have to create sets of MLH utility functions for one or two directions 

as only one or two main traffic flow directions are investigated at a time. This solution is particularly 

scalable in situations such as those presented in our experiments i.e. where the number of neighbor agents 

is quite small (4) and where there are only one or two main directions of traffic flow per intersection. This 

solution is not as scalable in situations where there are higher numbers of neighboring agents and where 

the number of main directions of traffic flow are high e.g. where traffic flows equally in all directions. 

When the Qoordination agents have been initialized for the first time they must perform each of their 

three possible actions a number of times without any other relevant agents in the network performing any 

actions. This is to allow the agents to know the effects of their actions alone, as opposed to their actions 

when they are joined with other agents’ actions. Sets of agents that are not effected by each others actions 

thus take turns to perform their actions a set number of times on initialization. In a grid network of any 

size a maximum of 6 separate sets of agents whose actions do not effect each other exist, thus at most six 

of these initialization turns need be taken on initialization. Due to the fact that SARS tuples are saved to 

file this process really only need take place the first time the particular simulation is ever run. During this 

initialization phase learning rates are set to an initial high value of 0.9 and utility values are initialized to 

the value of the immediate reward. When the SARS tuples are being read from file from here on out this 

initial set of tuples have a learning rate of 0.9 while all other SARS tuples have a learning rate of 0.2. The 

lower learning rate is to reduce the effects of outlier data as commonly occur in such a stochastic 

environment. 

4.3.2 Get Value 

When the MLH Function Approximator getValue method is called the first step is to calculate the 

hash code for the state. This is done by firstly entering the State Variables into a MLH State Variable 

Array List. Once the State Variables have been entered the MLH State Variable Array List calls the 
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hashCode method of each State Variable and then arranges this sequence of hash codes into one single 

state hash code. The action hash codes are then calculated by calling the Action’s hashCode method. 

Once the State and Action hash codes have been calculated then an ArrayList of Values can easily be 

retrieved from the values hash map of each Layer. This ArrayList contains one Value for each spatial 

discount factor. Of the set of Values returned, one per layer, the final Value to be returned can be either 

the one with the lowest error or the one with the highest granularity, usually being the one from the Layer 

that is closest to the end of the MLH function approximator’s layers array list. In our implementation we 

use the Value that is associated with the most granular layer as opposed to the one with the lowest error. 

This is because we set up the MLH so that the most granular layer would be the most accurate layer i.e. 

our MLH does not have redundant overly granular layers. 

4.3.3 Update Values 

When the MLH function approximator’s updateValue method is called then it in turn calls the 

updateValue method of each Layer. For each Layer the state and action hash codes are calculated as 

described in the previous subsection. If no ArrayList object entry exists in the Layer’s values array for 

those hash codes then a new one is created. For each Value in the ArrayList an immediateReward of the 

corresponding given rewards, a utility of the same value, an updateCount of 1, and an error of 

Double.MAX_VALUE. If a MLH Value entry does exist then its updateCount is incremented and the 

error and immediateReward values are updated. The utility values can then be updated according to the 

Learning Algorithm type being implemented.  

4.3.4 Action Selection  

The Qoordination Agent’s action selection process begins at the conclusion of an update by the Agent 

calling the Exploration Strategy’s getNextAction method. This method determines if a random action 

should be performed or if the Policy should select the action to be performed. Random actions do not 

include the action to be chosen if the agent were to follow the policy. Once this decision has been made 

the Exploration Strategy’s 𝜖 value is incremented by a set amount. Calling the Policy’s getNextAction 

method simply returns the action associated with the highest utility value. To do this the MLH Utility 

Function is consulted. The MLH Function Approximator retrieves a set of utility values for the state. The 

action associated with the highest utility value indicates which action should be chosen. 

4.4 Conclusion 

In this chapter we have described the implementation of three separate components of our research. 
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The first component of our research whose implementation we have described in this chapter is our 

simulation based evaluation platform. This evaluation platform is a separate component to Qoordination. 

This platform is based upon the PTV VISSIM microscopic traffic simulator, which is a popular and 

dependable method of traffic control evaluation in both academia and industry. With this platform we can 

evaluate traffic control methods, with a particular focus on evaluating how these control methods are 

affected by coordination. The platform generates a series of simulated transport networks of increasing 

size. Generation of these simulated networks is an automated process, as is the process of running the 

simulations and generating evaluation reports.  

The second component of our research whose implementation we have described in this chapter is the 

generic framework used to develop Qoordination. This framework is not Qoordination but was used to 

develop the Qoordination agent design and algorithms. The framework was implemented in java. It is 

flexible because it allows us to experiment with different agent components such as learning algorithm, 

function approximation method, and exploration strategy. We experimented a lot using this framework 

and it was invaluable in the development of the final Qoordination design. We experimented a lot with 

different exploration strategies before we discovered that starting off with a low exploration value and 

gradually increasing it until an action was performed was actually a much more suitable method of 

exploration than any other one present in current literature (see section 3.2.9). We experimented a lot with 

different learning algorithms until we came to the conclusion that Q-Learning would be best for 

Qoordination as opposed to ADP (see section 3.2.4). We particularly experimented a lot with different 

function approximators, taking months to finally develop the MLH - using this framework (see section 

3.2.6). Much of section 3.2 describes design decisions made when developing Qoordination that were 

made using the generic framework. Using this framework we could easily modify the design or come up 

with a new one such as a SARSA agent that uses lookup tables and e-Greedy exploration. 

The third component of our research whose implementation we have described in this chapter is the 

Qoordination agents themselves. The Qoordination agent design was developed using the generic 

framework but once the design itself was complete they were re-coded in C++ so that they could be 

directly integrated into the evaluation platform (see section 4.2.1). This is purely a reimplementation of 

the design that was developed using the framework presented in this chapter. 
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Evaluation and Analysis 
 

 

 

This chapter presents an in depth evaluation of the Qoordination approach to traffic controller 

coordination. This evaluation is performed on the simulation-based evaluation platform described in 

Chapter 4. This chapter begins by presenting the objectives of the evaluation as well as the metrics that 

have been chosen to measure the performance. A description is then given of the experiments used in the 

evaluation, which is followed by an in depth analysis of the results obtained from these experiments. 

5.1 Objectives 

The goal of the evaluation presented in this chapter is to establish how well Qoordination addresses 

the requirements defined in section 3.1. The ultimate goal of these requirements is to address our research 

questions that were defined in section 1.3. We have thus set the following objectives for this evaluation: 

 Objective 1: Assess how well Qoordination agents can coordinate their actions and establish 

progressive signal systems throughout the main traffic corridors of the transport network. This 

addresses requirement Req1. 

 Objective 2: Assess how well Qoordination agents can adapt to dynamic changes in traffic flow 

levels as well as to the direction of traffic flow. This addresses requirement Req2. 

 Objective 3: Analyze the learning functionality of the Multi-Layer Hashing (MLH) function 

approximator to ensure that it functions as it was designed to. This addresses requirement Req3.  
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 Objective 4: Assess how well Qoordination scales i.e. how well it improves network 

performance as network size increases. This addresses requirement Req7. 

 Objective 5: Assess Qoordination of intersection controllers that implement various methods of 

traffic control such as Round Robin, SAT, and a Q-Learning based method.   

The reader will note that there are less objectives given here than there are requirements in section 

3.1. The reason for this is that a number of the defined requirements were directly addressed through the 

actual Qoordination design decisions given in Chapter 3. For example, the requirement for robustness to 

single points of failure is addressed by Qoordination’s fully distributed agent based architecture. In 

unforeseen circumstances such as a number of agents failing due to a power failure the agents that do not 

lose power can still continue to coordinate their actions and optimize traffic flow thanks to this distributed 

agent based architecture. Centralized and even a hierarchical architectures do not share this robustness. 

With these architectures if key intersections lose power then an entire area of intersections or perhaps 

even the entire network of intersections can no longer coordinate their actions. Thus the full distribution 

of control provided by the Qoordination architecture enables robustness to single points of failure. 

5.2 Metrics 

The VISSIM microscopic traffic simulator, on which our evaluation platform is based, provides a 

number of evaluation variables with which we can analyze the performance of Qoordination. These 

metrics are as follows: 

 Queue length - The average approach queue length. Low average queue lengths are indicative 

of efficiently progressive traffic flows.  

 Waiting time - The average amount of time that vehicles are waiting in a queue on an approach 

to an intersection. Low average waiting time is indicative of high traffic control system 

performance.  

 Number of vehicle stops - The average number of times a vehicle has to stop as it passes 

through the simulated traffic network. Low number of vehicle stops is indicative of efficient 

progressive traffic flows.  

 Speed - The average speed of vehicles within the simulated traffic network (kph). This is 

indicative of how well the traffic is flowing through the transport network. High average speed is 

indicative of high traffic control system performance. 

 Throughput - The average number of vehicles to pass through an intersection approach per 

cycle. High throughput is indicative of high traffic control system performance. 
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 Traffic volume - The average number of vehicles within the simulated traffic network at any 

one time. High traffic volumes are indicative of congestion within the traffic network. 

Each of these metrics is averaged over the course of the previous cycle or a specified number of 

previous cycles as described in section 4.2.2.2. It should be noted that although these metrics cannot 

measure traffic flow optimization individually they do combine to give a good indication of such. 

5.3 Evaluation Transport Networks  

The simulated transport networks that are used throughout the evaluation experiments presented in 

this chapter are automatically generated using our simulation based evaluation platform (see section 

4.1.2). Such a generated network consists of a grid of intersections that are spaced equally apart. The 

intersection layout is uniform throughout the entire network i.e. all intersections have the layout 

illustrated in Figure 19. In all of the experiments that we present streets are one way streets and all 

intersections are controlled by intersection controllers i.e. there are no uncontrolled intersections. In many 

of the scenarios that we present no turns are permitted. These network restrictions mean that there are no 

opposing traffic flows to cause issues such as those described in section 2.3.1. This also means that the 

simulation networks, despite having the stochasticity introduced by the VISSIM simulator, are relatively 

free of noise traffic. The reasons for the topological restrictions outlined here is simply that in order to 

focus on evaluation of the effects of coordination on traffic control methods the evaluation testbed had to 

generate networks that varied from each other in size only. Thus it generates sequences of networks that 

are incrementally enlarged versions of each other (see Figure 43). 

The question inevitably arises as to how realistic are these scenarios and would Qoordination’s 

performance within them be a good indication as to whether or not it would actually work in reality. 

To begin, the grid network is a common transport network topology in practice e.g. in cities such as 

Manhattan in the USA. It is also a configuration that is commonly used in evaluating traffic control 

systems in academia and by traffic engineers (see examples in section 2.3.3). In these networks it is 

common to feature one way streets and restrictions on vehicle turns. In reality however, even in situations 

where grid networks with such restrictions are enforced there will inevitably be a certain level of noise 

traffic. This noise traffic can come from sources such as car parks and side streets. So could Qoordination 

handle such noise traffic? The answer is that Qoordination would be able to handle such noise traffic as 

this due to the fact that the Reinforcement Learning (RL) algorithm at the heart of Qoordination i.e. Q-

Learning, is a robust algorithm that is capable of handling such noise. There are however limitations on 

this. In our networks all intersections are controlled by signal controllers. This is because we decided 

early in the design phase that we would model our environment as being fully observable (see section 

3.2.3). As Qoordination agents need to know which intersections are their neighbors the introduction of 
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uncontrolled neighboring intersection, through which a significant amount of traffic flowed, would hinder 

a Qoordination agent from learning how to maximize its local reward and thus establish coordination. 

Partial observability of the environment is out of scope of this thesis but is something that could be 

addressed in future research. Qoordination can however handle traffic that is permitted to turn, as is 

shown in experiments 4 and 5 (see sections 5.6.5 and 5.6.6). One thing however that we do not address in 

any of our experiments is two directional streets, or intersections that must handle opposing traffic flows. 

In these situations Qoordination would be able to continue to maintain the dynamic progressive signal 

systems that it forms throughout the network so long as there are no opposing traffic flow directions that 

are equally dominant. This is because each Qoordination intersection optimizes its offset values based on 

the direction in which the main flow of traffic runs (see section 3.4.1). If the dominant flow of traffic 

through an intersection is running from north to south then the intersection agent will establish the 

progressive signal system in a southbound direction. If multiple non-opposing streams of traffic flow 

through the intersection then the intersection agent establishes the progressive signal system to cater for 

this too e.g. if the dominant flows run from north to south and from west to east then the agent establishes 

the progressive signal system in a south-east bound direction. If however opposing traffic flows are 

equally dominant then the Qoordination agent struggles to determine the direction in which to establish 

the progressive signal system, as would you or I in the same situation, e.g. if a clearly dominant flow of 

traffic runs through an intersection from north to south but the flows of traffic from east to west and from 

west to east were equally dominant then the agent would constantly change the direction of the 

progressive signal from south-east to south-west. With regards to the question of the uniform layout of 

the intersections and whether variations in the intersection layouts would negatively affect Qoordination’s 

performance the answer is that because Qoordination’s actions are based solely on the offset between its 

cycle start times and those of its neighbors the patterns that Qoordination agents learn are not affected by 

intersection layouts or number of phases. Thus variety in intersection layout should have no effect on 

Qoordination’s learning capabilities.  

Taking this information into account we can say that it is reasonable to believe that Qoordination’s 

performance within the networks used for our evaluation are a good indication as to whether or not it 

would work if implemented in a real transport grid network. Further research would however need to be 

undertaken in order to take into account uncontrolled intersections within the network i.e. for it to work 

within a partially observable environment. 

5.4 Traffic Control Methods 

Throughout the evaluation presented in this chapter Qoordination is applied to intersection agents that 

implement three different traffic control methods. These methods are Round Robin, a basic SCATS based 
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control method named SAT, and a single-agent Q-Learning based control method that we developed. 

Round Robin and SCATS are among the most widely used methods of traffic control globally. The Q-

Learning based method provides for a good example of a learning traffic control method.  

5.4.1 Round Robin 

The Round Robin method of traffic control is an uncoordinated version of pre-timed control that is 

described in section 2.3.2.1. This method assigns a set duration for each phase and circulates through 

these phases in a set sequence. This is not an adaptive approach to traffic control so these phase durations 

and phase sequences are not altered throughout the course of the simulations. As mentioned in section 

4.1.2.1 the intersections that are implemented in the evaluation platform have the same layout as the one 

illustrated in Figure 19. Each intersection controller runs a six phase cycle, illustrated in the following 

ring diagram: 

 

Figure 46 Six phase ring diagram 

In Phase 1 all traffic flowing from the west approach receives a green light while traffic approaching 

from all other directions is stopped. In Phase 2 the dedicated right turn flowing from west to south is 

stopped and traffic from east to west and from east to south is given a green light. In this phase traffic 
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flowing from both east and west are given green lights with the exception of dedicated right turns. In 

Phase 3 all traffic flowing from the east approach receives a green light while traffic approaching from all 

other directions is stopped. Phases 4 to 6 apply this same pattern to the traffic flowing from the north and 

the south. For phases two and five i.e. those that don’t have any dedicated right turns, we assigned the 

default phase length i.e. 60 seconds. For all other phases we assigned half this duration i.e. 30 seconds 

each. The end of each phase consists of a change interval of 3 seconds and an all red interval of one 

second. Each cycle thus has a total duration of 240 seconds. We have found that these phase durations 

and sequence are enough to keep the intersection relatively clear of traffic under medium traffic flow 

levels. 

5.4.2 SAT 

SAT (Richter, 2006) is a basic adaptive traffic control method that is based upon the SCATS traffic 

control system. This approach modifies phase durations in steps (steps of 6 seconds in our 

implementation) based on traffic saturation levels at the intersection. Saturation is the effective use of the 

total available green time. SAT aims at maintaining saturation levels SL as close to 90% as possible. The 

target maximum throughput TMT for phase p is defined as follows:  

 

 

𝑇𝑀𝑇𝑝 =
𝑀𝑇𝑝

𝑆𝐿
 

 

(40) 

 

where: 

 𝑀𝑇𝑝 is the maximum throughput of the approaches that receive a green light during phase p over 

the previous cycle 

Phase p’s target length 𝑇𝐿𝑝 is then set by multiplying 𝑇𝑀𝑇𝑝 by a scaling factor. If 𝑇𝐿𝑝 is greater than 

p’s current length then p’s length is increased by a specified amount, which we have set to 6 seconds. If 

𝑇𝐿𝑝 is lower than p’s current length then p’s length is decreased by this same amount. A phase length 

must not exceed a set maximum value, which we have set to 90 seconds. It should also not go under a set 

minimum value, which we have set to 6 seconds. SAT’s maximum cycle length is calculated using the 

following formula:  

 

 

𝑀𝑖𝑛𝑝𝑡 × 𝑀𝑎𝑥𝑐𝑓 × 𝑝 

 

 

(41) 

 

where: 

 The minimum phase time 𝑀𝑖𝑛𝑝𝑡is set to 6 seconds 

 The maximum cycle factor 𝑀𝑎𝑥𝑐𝑓is set to 1.5 

 The number of phases 𝑝 is 6 
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After the modifications to the phase lengths have been made the total cycle length must not exceed 

this maximum cycle length. If this has occurred then SAT cycles through the phases and reduces them by 

1 second each until the cycle is below the maximum allowable length. 

5.4.3 Q-Learning Based Traffic Control 

Our single-agent Q-Learning based control was also developed using our traffic control framework 

described in 4.2. Like Qoordination this Q-Learning based traffic control method uses a MLH utility 

function. As state variables this method uses phase durations and vehicle throughputs. Vehicle throughput 

is measured per phase, where a phase’s throughput is the highest throughput measured on the approaches 

assigned to that phase over the course of the past cycle. A total of 12 state variables are thus used. The 

MLH contains 15 layers and coarseness values for both phase length and throughput are set between 6 

and 90. This assumes that no more than an average of one vehicle per second can pass through any 

approach during any phase. Actions consist of phase duration modifications. Thus the agent can increase 

or decrease each phase length or keep the phase lengths the same. Phases can be increased or decreased in 

steps of 6 seconds up to a maximum of 90 seconds or to a minimum of 6 seconds. One action is 

performed per phase at every time step. This means that each phase has the opportunity to have its 

duration changed at each time step. A separate reward is calculated per phase during each update. These 

rewards are calculated by getting the distance between the phase’s duration and a calculated phase length 

goal that aims at having saturation levels at 90%. This calculated phase length is similar to the one 

calculated by SAT. Phase skipping is not allowed and an 𝜖-Greedy exploration strategy is implemented. 

Updates occur every two cycles although state variable values and rewards are calculated based only on 

one previous cycle.  

5.5 Parameters 

This section specifies the values of a number of the more important Qoordination parameters as they 

are set during this evaluation unless stated otherwise. 

  Learning rate ∝: 0.2 

 Temporal discount factor 𝛾: 0.8 

 Initial 𝜖 value: 0.0 

 Maximum 𝜖 value: 0.3 

 𝜖 increase rate: 0.01 

 Number of layers: 45 

 Minimum offset coarseness value: 12 
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 Maximum offset coarseness value: 540 

 Offset modification step size: 12 

A low learning rate such as 0.1 or 0.2 is quite typical of an agent that operates within a dynamic or 

multi-agent environment (Sutton & Barto, 1998) as this enables efficient handling of outlier data and the 

stochasticity of traffic data. The temporal discount factor of 0.8 leads to relatively far sighted agents. The 

reasoning behind setting the 𝜖 related values as they are set is given in section 3.2.9. The maximum offset 

coarseness value is set to 450 because this is the maximum cycle length i.e. 90 * 6. All of these values 

were decided upon after experimentation with a range of different values. These are the values that we 

found were most suitable. 

5.6 Experiments 

This section gives a description of the different scenarios that are implemented in evaluating 

Qoordination’s performance. Each scenario aims to accomplish one or more of the evaluation objectives 

outlined at the beginning of this chapter. 

5.6.1 Experiment 1 – Increasing Network Size and Static Traffic Flow 

Levels 

The purpose of this experiment is to show that Qoordination can establish progressive signal systems 

in networks of static traffic flow direction and static traffic flow levels. In this experiment we vary the 

traffic flow levels from low to medium to heavy. Throughout the duration of each simulation however the 

traffic flow level are kept constant. This experiment also shows the effects of Qoordination on networks 

of different size. This experiment is conducted within a series of increasingly larger transport networks. 

The smallest of these networks is a 1x1 network i.e. a single intersection. The largest of these networks is 

a 5x5 network i.e. a network of 25 intersections. 2x2, 3x3, and 4x4 networks are also used in the 

experiment. The purpose of this is to meet objective 4 i.e. analysis of how well Qoordination scales with 

increasing network size. It also meets objective 5 i.e. assess the effects of Qoordination of various 

methods of traffic control. In this experiment traffic flows from the west of the network to the east and 

from the south of the network to the north. All roads in use are thus one way roads. No left or right turns 

are permitted. Light traffic flow levels permit 360 vehicles per hour into the network by each of the north 

bound and east bound roads. Medium traffic flow levels permit 650 vehicles per hour and heavy traffic 

flow levels permit 950 vehicles per hour through each of these same roads. Each simulation has a 

duration of 21,600 seconds, i.e. 6 hours. Also included in this experiment are the results of an actuated 

control method. These results are included for the single intersection and non-coordinated aspect of this 
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experiment but not in the coordinated aspect of this experiment because, as will be explained in section 

5.6.1.4 we discovered that actuated control is not suitable for coordination.  

5.6.1.1 Comparison of Traffic Control Methods in a Single Intersection 

Let us begin by comparing the performances of the different traffic control methods on a single 

intersection. In this situation there is not only no possibility of coordination but also no possible benefit of 

it. As stated previously the different methods of traffic control used are Round Robin, SAT, and a Q-

Learning based control method.  

5.6.1.1.1 Results and Analysis 
In this sub-section we present the results of this experiment and analyze these results. We further 

analyze these results and discuss observed patterns and findings in sub-section 5.6.1.1.2. 

5.6.1.1.1.1 Medium Traffic Flow Levels 

The following diagrams illustrate this comparison under medium traffic flow levels: 
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Figure 47 Traffic control method performance comparison, single intersection, medium traffic flow levels 

Along the x axis of each of these diagrams we can see the number of hours that have expired since the 

beginning of the simulation. Along the y axis of each of these diagrams we can see a measurement of the 

specific metrics represented in the individual diagrams e.g. average queue length, average waiting time, 

and average vehicle throughput. Our first observation of these diagrams is that on average Round Robin 

performs worst with regards to the different evaluation metrics while SAT performs best of the methods 

evaluated. Actuated and Q-Learning based control tend to perform similarly and somewhere in-between 

Round Robin and SAT.  

We can see from the first of the diagrams in Figure 47 that under medium traffic flow levels SAT 

achieves slightly lower queue lengths than actuated and Q-Learning based control. Round Robin queue 

lengths however stand out as being higher than these. In this diagram we can see that the general trend is 

that the average queue lengths stay roughly stable. For actuated, SAT, and Q-Learning based control 
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there is very little variation in average queue lengths over the course of the experiment. For Round Robin 

there is a slight decrease of approximately 0.1 vehicles over the course of the first hour, which is not a 

significant decrease, from which point on there is very little fluctuation. One reason for such low levels of 

fluctuation in such a stochastic environment is that the queue lengths are being averaged over the course 

of the previous cycle length. We theorize that the main reason however for such a lack of fluctuation in 

average queue length is that, as has been mentioned before e.g. in section 3.2.3, because the induction 

loop sensors are spaced 25 meters apart the agent can only detect approximately five average length 

vehicles at a standstill on any one of the intersection’s approaches. Under medium traffic conditions the 

queue lengths on the approaches that are receiving traffic are longer than or equal to five vehicles a lot of 

the time. This would lead to average queue lengths of between four and five vehicles if traffic was 

flowing in all directions. In this experiment traffic is only flowing from south to north and from west to 

east, thus reducing the average queue lengths for the intersection approaches.  

In the second diagram in Figure 47 we can observe that different traffic control methods do perform 

significantly differently from each other with regards to average vehicle waiting time. Both the metric of 

average queue lengths the metric of average vehicle waiting time are based upon readings that are limited 

to roughly 5 average length vehicles. The metric of average waiting time however is less limited in 

representing the actual state of the traffic flow because it also takes into account how long these vehicles 

have been waiting in the queue. This does not make it more suitable for the metric on which we base 

Qoordination’s ability to coordinate, for reasons described in section 3.2.12, but it does make it a more 

suitable for evaluation purposes. In this diagram we can see that Round Robin average vehicle waiting 

times are consistently over twice as high as both SAT and Q-Learning based control. Actuated control 

waiting times are a bit more irregular though they tend to be closer to those of SAT and Q-Learning based 

control than to Round Robin. This is a clear indication that Round Robin performs worst of the tested 

traffic control methods for a single intersection under medium traffic flow levels. SAT and Q-Learning 

based control perform best. Actuated control on the other hand acts a little more irregularly. These results 

confirm what we would have expected to see from this experiment based upon the designs of the different 

traffic control methods. 

In the third diagram of Figure 47 we can see the average throughput levels achieved by the four tested 

traffic control methods. We can observe that these readings stay roughly level for each of the different 

traffic control methods throughout the duration of the experiment. We put this down to the fact that there 

was no major change in traffic flow levels throughout this experiment and that minor fluctuations in 

traffic flow levels that were introduced by VISSIM were smoothed out by averaging the results over the 

course of the previous cycle. In this diagram we can observe that actuated, SAT, and Q-Learning based 

control methods all achieve similar results with regard to this metric. Round Robin however achieves 

roughly 15% higher than this. This particular result is somewhat surprising as we would have expected 

Round Robin to have a lower throughput than the others, particularly since SAT and the Q-Learning 
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based method aim to maximize throughput. We speculate that the build-up of Round Robin queue lengths 

leads to a higher throughput level per cycle than if the queue lengths were kept down, as is done with the 

other methods. This highlights to us that the method that we use to calculate throughput does not 

accurately portray the true state of traffic flow within the transport network. A more accurate portrayal of 

the true state of traffic flow could possibly however be achieved if we were to have measured the average 

approach throughput over a fixed time span. This fixed time span should be the same for all traffic control 

methods and should not change as the cycle length changes. It should still be long enough to smooth the 

data. Perhaps a duration of 60 or 120 seconds would suffice. 

The fourth diagram of Figure 47 illustrates the performance of the different traffic control methods 

with regards to the average vehicle number of stops metric. This metric is calculated using data outputted 

by VISSIM itself as part of its .fzp files, as opposed to being calculated by the outputs of our 

Qoordination agents. Because of this there is slightly more fluctuation of the metric for the control 

methods over the duration of the experiment. We can observe from these results that SAT achieves the 

lowest average number of vehicle stops, followed closely by actuated control. The Q-Learning based 

method performs quite worse in this category, with an average number of stops twice that of SAT for a 

significant percentage of the simulations. Round Robin comes off worst in this category with 

approximately 30% higher average number of vehicle stops than the Q-Learning based method.  

The fifth diagram of Figure 47 which illustrates average vehicle speed shows quite an interesting 

pattern. It shows fluctuations in the results of the various traffic control methods over the course of the 

experiment. This is particularly highlighted with Round Robin as it results in a significantly fluctuating 

zig-zag pattern. One thing to note about the average speed metric is that, similar to the number of stops 

metric and the traffic volume metric, it is calculated based on VISSIM’s .fzp output files. This means that 

it does not experience the smoothing effect that occurs due to the limitation of a maximum queue length 

of approximately 5 average length vehicles experienced by the first three metrics. Additionally, vehicle 

speed by nature is a very dynamic variable. We also do not average this metric over the duration of the 

previous cycle or specified number of cycles. It is for these reasons that this metric seems to fluctuate so 

much. With regards to this metric Round Robin again achieves significantly lower results than the other 

methods. Actuated control and the Q-Learning based method achieve similar results with SAT achieving 

significantly higher than even these. Although actuated, Round Robin, and Q-Learning based control do 

not show any long term trend of increasing or decreasing performance with regards to this metric we do 

see that SAT results seem to steadily increase over time. This is in part due to random fluctuations caused 

by the stochasticity of the environment. It is also due to the fact that over time SAT adjusts its phase 

lengths to the optimum settings, resulting in higher average vehicle speeds over time.  

In the final diagram of Figure 47 we can observe the performance of the four tested traffic control 

methods with regards to the traffic volume metric. This metric is also calculated using data taken from 

VISSIM’s .fzp output files. Traffic volume however is a much less dynamic variable than average vehicle 
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speed and so we do not see as much fluctuations as we did in the previous diagram. In this diagram we 

can see that the Round Robin method leads to significantly higher traffic volume levels than the other 

three methods. These resulting traffic volumes are in fact up to twice as high as for the other methods. 

Whereas actuated control and the Q-Learning based method maintain similar traffic volume levels SAT 

again performs visibly better than the rest.  

From this initial analysis we can see that in most categories actuated control and the Q-Learning based 

method perform similarly in medium traffic flow levels. Whereas SAT performs consistently equal to or 

better than them the Round Robin method performs significantly worse. The exception to this is the 

category of vehicle throughput, which we have resolved is not calculated in such a way as to accurately 

portray the true state of traffic flow within the system. 

5.6.1.1.1.2 Low Traffic Flow Levels 

We will now make this same comparison of traffic control method performance during low traffic 

flow levels.  
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Figure 48 Traffic control method performance comparison, single intersection, low traffic flow levels 

Under low traffic flow levels the differences in traffic control method performance in most categories 

is not as clearly visible as under medium traffic flow levels. This is due to the fact that many of the results 

fluctuate significantly throughout the course of the experiment, much more so under low traffic flow 

levels than under medium traffic flow levels. We theorize that the reason for this increase in fluctuation is 

because the low traffic flow levels lead to queue lengths that are typically less than five vehicles. As we 

mentioned in the previous sub-section the queue length limitation of roughly 5 average length vehicles 

due to the 25 meter apart spacing of approaches’ induction loops leads to a more steady average of a full 

queue. With low traffic flow levels the measurable queue lengths fluctuate much more as they are not 

usually full. 

In the first diagram of Figure 48 we can observe these greater fluctuations than under medium traffic 

flow levels. In this diagram we can see that both SAT and the Q-Learning based method have similar 
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average queue lengths. Round Robin and actuated control have higher average queue lengths than these. 

All of these average queue lengths are much lower than what we had observed under medium traffic flow 

levels.  

In the second diagram of Figure 48 we see performance of the four tested traffic control methods with 

regards to the metric of average vehicle waiting times. In this category SAT and Q-Learning based 

control again perform quite similarly. Their similarity is slightly masked by the additional fluctuations 

caused by the lower traffic flow levels. Actuated control maintains waiting times slightly higher than 

SAT and Q-Learning based control but the Round Robin method performs significantly worse, with 

average waiting times of almost three times that of actuated control.  

The third diagram of Figure 48 shows that all four tested methods of traffic control have similar 

throughputs under low traffic flow levels. In this diagram we can again observe the fluctuating results that 

are caused by the low traffic flow levels. 

With regards to the metric of average number of vehicle stops the four tested methods of traffic 

control again perform quite similarly, with SAT and the Q-Learning based method tending to have 

similar and lower number of stops than Round Robin and actuated control early on in the experiment.  

The fifth diagram of Figure 48 illustrates the tested traffic control methods’ performance with regards 

to the metric of average vehicle speed. Round Robin performs worst in this metric. It is followed by 

actuated control and then the Q-Learning based method. SAT performs better than Round Robin and 

actuated control, yet due to fluctuations which we ascribe to the low traffic flow levels it varies between 

performing better at times and worse at times than Q-Learning based control. 

Round Robin also performs significantly worse than the other methods with regard to network traffic 

volume, as illustrated in the final diagram of Figure 48. The other three tested methods perform similarly 

with regards to this metric, as can be seen in this diagram despite the fluctuations caused by the low 

traffic flow levels. Note that these fluctuations are also more noticeable in this diagram then in the one 

from the medium traffic flow level scenario because of the scale difference. Even the highest of the traffic 

flow volumes in the low traffic flow level scenario (Figure 47) are lower than the lowest of the traffic 

flow volumes in the high traffic flow level scenario (Figure 48). 

From the results provided in this sub-section we can see that SAT and Q-Learning based control tend 

to perform best under low traffic flow levels, with Round Robin typically performing worst. 

5.6.1.1.1.3 High Traffic Flow Levels 

Let us now consider the case of high traffic flow levels. 
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Figure 49 Traffic control method performance comparison, single intersection, high traffic flow levels 

If it was true that under low traffic flow levels the differences between the performances of the traffic 

control methods is not as clearly visible then this is even more true in the case of high traffic flow levels. 

The reasons for this however are different under high traffic flow levels than under low traffic flow 

levels. Under low traffic flow levels it was difficult to make the comparison because of additional 

fluctuations in the readings. Under high traffic flow levels it is difficult to make the comparison because 

the intersection is constantly at maximum capacity despite the different traffic control methods being 

used.  

With regard to average queue lengths (first diagram of Figure 49) and vehicle throughput (third 

diagram of Figure 49) all methods perform similarly. As mentioned, this is because there is constantly a 

full queue on each approach containing any traffic regardless of the traffic control method in use.  
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We can however see that with regards to vehicle waiting time (second diagram of Figure 49) actuated 

control performs consistently better than Round Robin, with the other two methods acting somewhat 

more dynamically.  

In the fourth diagram of Figure 49 we can see the same pattern of actuated control performing 

consistently better than Round Robin with the other two traffic control methods performing more 

dynamically. We theorize that the results of SAT and Q-Learning based control fluctuate more than the 

other methods in this scenario because they try to adapt their timing plans to improve traffic flow. This 

helps for a little while but ultimately they have to increase their phase lengths to the maximum allowable 

values again because the traffic flow levels are consistently so high and congestion is inevitable. Round 

Robin cannot adjust its timing plans and is thus consistently congested. Actuated control consistently 

extends its phase lengths to the maximum limit as there is never any gap in the traffic flow which would 

allow it to shorten them. 

 With regards to the final two metrics (the final two diagrams of Figure 49) all traffic control methods 

perform quite similarly due to the fact that they are all at full capacity.  

From the results described in this sub-section we can see that all traffic control methods perform quite 

similarly due to the fact that they are all at maximum capacity. That being said, SAT and Q-Learning 

based control tend to have more fluctuating performances than the other two methods. With regards to the 

metrics of average waiting time and average number of vehicle stops actuated control has proven to 

perform consistently better than Round Robin. 

5.6.1.1.2 Concluding Analysis 
In this experiment scenario we have shown how each of the four traffic control methods under 

examination, namely Round Robin, actuated control, Q-Learning based control, and SAT, perform on a 

single intersection. Their performance is with regards to a number of metrics which have been described 

in section 5.2. We have also shown how these methods perform with regard to these metrics under low, 

medium, and high traffic flow levels. Qoordination has not been examined in this scenario, nor has any 

other form of coordination, as the scenario deals with a single intersection, whose agent has no other 

intersection agents to coordinate with. We have found that the performances of these four traffic control 

methods are easiest to compare to each other under medium traffic flow levels. In low traffic flow levels 

the results tend to fluctuate due to the fact that the queue lengths vary significantly between empty and 

full at any one time. Queue lengths in medium traffic flow levels on the other hand tend toward being full 

a lot of the time, which has a smoothing effect on the different metrics, as described in section 5.6.1.1.1.2. 

These fluctuations could perhaps be smoothed by running the experiments a number of times more than 

done in our experiments and then averaging the results. In high traffic flow levels the results tend to be 

quite similar across the different traffic control methods due to the fact that the traffic queues are 

constantly at maximum capacity. Despite these challenges we have been able to observe that in general 
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Round Robin performs worse than the three other traffic control methods taken into consideration. This 

applies across all metrics except one, namely throughput per cycle. As discussed in section 5.6.1.1.1.1 the 

way that throughput is calculated does not accurately portray the true state of traffic flow within the 

transport network. In our evaluation scenario that investigates the different traffic control methods under 

medium traffic flow levels we have been able to observe that SAT generally performs better than the 

other methods. Under low and medium traffic flow levels however it tends to perform comparably to both 

actuated and Q-Learning based control. 

As we have observed thus far, the throughput metric does not accurately portray the true state of 

traffic flow within the transport network. For this reason we will not consider it any further in the 

remainder of our experiments. 

5.6.1.2 Effects of Network Size on Uncoordinated Traffic Control Methods 

Having looked at the performances of the various methods of traffic control in a single intersection let 

us now consider how these methods are affected by increasing network size when no form of 

coordination is applied. Thus Qoordination is not being evaluated in this scenario. We are comparing the 

performance difference between the different traffic control methods without any coordination 

considered. Each intersection controller operates independently of any of the other controllers in the 

networks and is even unaware of their very presence within the environment.  

5.6.1.2.1 Results and Analysis 
In this sub-section we present the results of this experiment scenario and analyze these results. We 

further analyze these results and discuss observed patterns and findings in sub-section 5.6.1.2.2. 

5.6.1.2.1.1 Medium Traffic Flow Levels 

Let us first consider increasing network size of networks under medium traffic flow levels. 
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Figure 50 Performance comparison with network size increase, no coordination, medium traffic flow  

The diagrams presented in the remainder of our evaluation are significantly different from those 

presented in the previous evaluation scenario of section 5.6.1.1. In the previous diagrams the x axis 

represented the passing of time since the beginning of the simulation. In the diagrams in the remainder of 

the evaluation experiments however the x axis represents the network size. In these experiments the value 

on the x axis of 1 represents the averaged results of the associated diagrams from the single intersection 

scenario in section 5.6.1.1. A value of 2 on the x axis represents a network with 2x2 connected 

intersections such as the one shown in Figure 63. A value of 3 represents a 3x3 network, such as shown in  

Figure 65and so on. As with the previous diagrams, along the y axis of each of these diagrams can be 

seen a measurement of the specific metrics represented in the individual diagrams e.g. average queue 

length and average waiting time. 
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From the first diagram of Figure 50 we can see that for all traffic control methods tested the average 

queue lengths are higher on a single intersection then they are in larger networks. For any of the traffic 

control methods the average queue lengths then remain roughly stable as the network size increases from 

2x2 intersections upwards. The reason that the average queue lengths for each of the control methods is 

higher in a single intersection scenario is that all the traffic that arrives on the approaches of the single 

intersection arrive randomly thanks to VISSIM. In larger networks traffic arrives on the approaches at the 

border of the network randomly but is then arranged into platoons of vehicles by passing through the first 

intersection that they encounter in the network. Intersections that are not at the edges of the simulated 

transport network only ever encounter platoons of vehicles. Seeing as there is no coordination between 

intersection agents the offsets between them stay relatively static. Initially this offset is 0 seconds. An 

offset of 0 seconds between intersections that are placed roughly 100 meters apart leads to much of the 

traffic flowing through one intersection to be also met with a green light in the subsequent intersection. 

Thus in this scenario platooned traffic leads to significantly lower average queues than randomly arriving 

vehicles. In this diagram the queue lengths of all intersections within their perspective network size 

categories are averaged. This diagram thus highlights that the introduction of platoons of vehicles into the 

transport network reduces the average queue length.  

We can observe from this first diagram that Round Robin consistently reaches the highest levels of 

average queue lengths when compared to the other methods. This was expected. What is somewhat less 

expected is that Q-Learning based control consistently achieves lower queue lengths than both actuated 

control and SAT. We would have expected SAT to perform best in this metric as it had done in the single 

intersection scenario. As we can see, actuated control and SAT performed quite similarly, with SAT 

performing slightly better than actuated control as the network size increases. Both actuated control and 

SAT are quite dynamic methods of control, with phase lengths changing quicker than Q-Learning control. 

We theorize that Q-Learning based control performs better than the three other methods when it is not 

modifying its offset because the average cycle length of the Q-Learning based signal controllers remain 

more similar to each other, thus keeping them somewhat coordinated, even if that level of coordination 

does only allow for simultaneous progression. With actuated control and SAT changing phase lengths and 

thus cycle lengths at a more rapid pace their signal controllers soon become completely uncoordinated 

with their neighbors. With Q-Learning based control performing better than the other control methods in 

this metric it will have a knock on effect of it performing better than them in all other metrics. 

 In the second diagram of Figure 50 we can see that as the network size increases so too does the 

average vehicle waiting time for each of the four traffic control methods. A particularly interesting 

phenomenon that we can observe in this diagram is that although Round Robin has higher average 

waiting times than actuated control and SAT for single intersections the latter methods’ average waiting 

times increase at such a rate as network size increases that within the 5x5 intersection network Round 

Robin has lower waiting times than the both of them. The Q-Learning based method however maintains a 
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similar rate of increase as Round Robin. This confirms our theory that Q-Learning based controllers 

remain somewhat coordinated with each other because their average cycle lengths do not vary much from 

each other. 

In the third and fourth diagrams of Figure 50 we can see that regarding the metrics of average number 

of vehicle stops and average speed Round Robin performs worse in a single intersection than actuated 

control and SAT but then out passes them as the network size increases. Again we speculate that this 

pattern is caused by the fact that Round Robin intersections have the same cycle length and thus remain 

in a state of simultaneous progression in this scenario. The other approaches do not remain in such a state 

of coordination and times between the starts of their cycles vary greatly, resulting in worse performance. 

Due to the fact that the Q-Learning based method performance also decreases at a rate similar to Round 

Robin’s this would insinuate that its intersections also maintain similar cycle lengths, again confirming 

our theory.  

In the final diagram of Figure 50 we can see that Q-Learning based control manages to keep traffic 

volumes down better than the other approaches with increasing network size. This is followed by Round 

Robin and then actuated control and SAT. Round Robin again however increases its performance with 

regards to this metric as network size increases and in comparison to actuated control and SAT. 

5.6.1.2.1.2 Low Traffic Flow Levels 

Let us now consider the same comparison under low traffic flow levels. 
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Figure 51 Performance comparison with network size increase, no coordination, low traffic flow  

Our first observation from the above diagrams is that as the network size increases the performances 

of each of the uncoordinated traffic control methods tends to converge and then stay steady for the 

average queue length metric i.e. the first diagram of Figure 51. This contrasts the same metric under 

medium traffic flow where the control method’s performances went through an initial drop and then 

stayed stable but showed no sign of convergence. The reasons for such a convergence are unclear. It does 

however seem to have an effect on the methods’ performances with regards to some of the other metrics 

i.e. average waiting time and average vehicle speed. 

The second diagram of Figure 51 shows that average vehicle waiting times increase steadily with 

increasing network size for actuated control, SAT, and the Q-Learning based control. This does not 

however seem to happen with Round Robin. Round Robin waiting times seem to initially decrease but 

then seem to turn and increase as network size increases beyond 4x4 intersections. This pattern is 
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somewhat similar to the convergence pattern displayed in the first diagram if we take into consideration 

the first two medium traffic control diagrams of Figure 50. With regards to Figure 50, in the first diagram 

all performances remain constant while in the second all average waiting times increase as network size 

increases. Regarding Figure 51 in the first diagram the performances converge and then stay roughly 

constant while in the second all average waiting times converge to some degree and then increase as 

network size increases. The initial decrease in Round Robin average waiting time might thus be an effect 

of the convergence pattern. Throughout the second diagram the average waiting times of each traffic 

control method do however roughly maintain their ranking i.e. they do not completely converge. SAT and 

the Q-Learning based method consistently achieve the lowest waiting times. Round Robin consistently 

achieves the highest waiting times while actuated control achieves waiting times half way between those 

of Round Robin and the other two methods.  

The number of stops increases at a fairly steady rate as network size increases for actuated control, 

SAT, and Q-Learning based control as can be seen in the third diagram of Figure 51. Similar to what 

happened with waiting time Round Robins number of stops seems to decrease slightly at first before it 

starts to rise. 

The fourth diagram of Figure 51shows again a convergence of the traffic control methods’ 

performances. The reasons behind this we can assume are the same as have been discussed regarding the 

queue length metric. 

 As can be observed in the final diagram of Figure 51 the traffic volume levels increase fairly 

uniformly across all traffic control methods as network sizes increase. This is as expected because as the 

network sizes increase so do their capacity to contain vehicles and thus a large network will obviously 

contain on average many more vehicles at any one time than a small network. 

5.6.1.2.1.3 High Traffic Flow Levels 

We will now look at the effects of increasing network size in heavy traffic flow levels with no 

coordination. 
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Figure 52 Performance comparison with network size increase, no coordination, high traffic flow  

Our first impressions from these diagrams is that under higher traffic flow levels the difference 

between the more static control methods and the more dynamic control methods is accentuated. We have 

heretofore theorized that both Round Robin and Q-Learning based control remain somewhat coordinated 

due to their lack of / slow change in offsets between their cycle start times. This coordination is simply 

due to the fact the controller cycle lengths remain somewhat the same lengths and it only likely enables 

simultaneous progression. SAT and actuated controllers do not remain coordinated throughout this 

scenario due to their dynamic natures. We would thus be lead to believe from these diagrams that 

coordination is of particular benefit to the performance of the traffic control methods under higher traffic 

flow levels.  

 In this scenario the average queue lengths stay somewhat steady with increasing network size for 

Round Robin, SAT, and the Q-Learning based method.  This can be seen in the first diagram of Figure 
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52. This steadiness is likely due to the fact that under high traffic flow levels the queues are at maximum 

capacity most of the time. Queue lengths for actuated control however seem to drop initially and then turn 

and increase after networks of more than 2x2 intersections. We surmise that this occurs because the heavy 

traffic flow lead all actuated controllers to assign maximum green time to each of the approaches with 

traffic on them immediately after the simulation was started. This kept the controller cycle lengths equal. 

While the cycle lengths were kept roughly equal a level of coordination may have been established 

among the controllers, which combined with the long phase lengths led to lower average queue lengths. 

As the network size increased this unintentional implicit coordination could not be maintained and thus 

broke down.  

In the remainder of the diagrams in Figure 52 the same pattern emerges again and again. Q-Learning 

based control performs best in most metrics with Round Robin not far behind. Round Robin however 

performs best with regards to the metric of average vehicle speed with Q-Learning based control not far 

behind. SAT and actuated control perform similarly with regards to all metrics, both of which however 

perform significantly worse than Round Robin and Q-Learning based control. We would speculate that 

SAT and actuated control perform so similarly in all metrics because the heavy traffic causes them to 

keep the phase lengths of approaches with traffic on them at a maximum at all times, with all other phase 

lengths being set to a minimum. Under heavy traffic flow levels the intersections are thus constantly 

congested with the apparent solution being coordination. 

5.6.1.2.2 Concluding Analysis 
In this scenario we have shown how each of the four traffic control methods under examination, 

namely Round Robin, actuated control, Q-Learning based control, and SAT, perform in networks of 

various size. Network size ranges from a single intersection up to a network of 5x5 connected 

intersections. The control methods’ performance is with regards to a number of metrics which have been 

described in section 5.2. We have also shown how these methods perform with regard to these metrics 

under low, medium, and high traffic flow levels. Qoordination has not been examined in this scenario, 

nor has any other form of coordination.  

We have observed that under low traffic flow levels all methods’ performances converge as the 

network size increases in many of the metrics. Although the reasons behind such a convergence are 

unclear we can see the opposite effect occur as the traffic flow levels increase. Under medium traffic flow 

levels the performances show no clear sign of convergence or divergence. Under high traffic flow levels 

the performances of the more static control methods diverge from those of the more dynamic control 

methods. The more dynamic traffic control methods, namely SAT and actuated control, perform similarly 

under high traffic flow levels because they are at maximum capacity and keep the phase lengths of their 

approaches that have traffic on them at maximum. These methods achieve little or no sense of 

coordination under high traffic flow levels. The more static control methods however do maintain some 
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coordination. Round Robin does not change its phase or cycle lengths so offset is never changed. It thus 

continues to allow the simultaneous progression enabled on all control methods at the start of the 

simulation i.e. all traffic light cycles start at the same time initially. We consider Q-Learning based 

control as somewhat of a static form of traffic control as it is slower to adapt to traffic than actuated 

control and SAT and this seems to allow its traffic controllers to keep their cycle lengths more similar to 

each other. Thus the simultaneous progression is again maintained throughout the experiment and the Q-

Learning based control’s performance excels because of it.  

5.6.1.3 Pre-Coordinated Good / Bad 

In order to have a benchmark for coordination in these experiments we set up a series of pre-

coordinated simulations. In these simulations we set the offsets between each intersection to an optimum 

setting. We deemed this setting to be 15 seconds as this offset keeps the downstream intersections clear of 

traffic. In practice this is similar to pre-timed control where the offsets are set beforehand to an optimal 

setting. This of course has the drawback of needing to be calculated for each individual intersection, 

although in our case the network is a grid with road segments of equal length so optimal offsets of 15 

seconds are uniform throughout the network. Another drawback is that the coordination will be set to 

move in a north easterly direction. If the traffic begins moving in the opposite direction i.e. a south 

westerly direction then the offsets would need to be set to -15 seconds. We have thus established 

coordination in both directions. North east coordination serves to show the effects of well-coordinated 

intersections. This could be looked on as a best case scenario. This is referred to as “Pre-Coordinated 

Good” in results shown in this thesis. South west coordination serves to show the effects of ill-

coordinated intersections. This could be looked on as a possible worst case scenario. This is referred to as 

“Pre-Coordinated Bad” in results shown in this thesis. 

5.6.1.4 Actuated Traffic Control 

Although actuated control (see section 2.3.2.2) has the ability to rapidly adapt to changes in traffic 

flow it is traditionally deemed unsuitable for coordination. Before we progress into evaluating 

Qoordination on our chosen traffic control methods we wish to establish the truth of this. The reason for 

this is that actuated control requires decisions to be made roughly once every second. Round Robin need 

never make any decisions as its phase lengths, cycle length, and offset stay constant. SAT and Q-

Learning based control, as well as Qoordination, require decisions to be made after an evaluation period 

of a cycle length or a set number of cycle lengths. Because actuated control’s decision rate is so much 

higher than Qoordination’s the two may have difficulty interfacing with each other. If we can establish 

that actuated control shows potential to coordinate actions between actuation based controllers then it 
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would be worth addressing these interface issues. If however actuated control does not show sufficient 

potential for coordination then the effort spent in addressing interface issues will have been wasted.  

For our implementation of actuated control we set a minimum green time of the default phase duration 

i.e. 60 seconds, a maximum green time of 90 seconds, and an extension time of 6 seconds. The same 

phases and phase sequence are set up for actuated control as are for Round Robin, SAT, and Q-Learning 

based control, which are given in section 5.3. In our experiments phase skipping is not permitted. 

Illustrated below are the effects of coordination on the metric of average vehicle waiting time for 

actuated control under low, medium, and high traffic flow levels. 

  

 

Figure 53 Round Robin waiting times with increasing network size, low/medium/high traffic flow levels 

In the diagrams of Figure 53 we can see that with actuated control average vehicle waiting times tend 

to reach unacceptably high levels even with optimal coordination under medium and low traffic flow 

levels. The reason why this happens under medium and low traffic flow levels and not under high traffic 

flow levels is that under high traffic flow levels the queues are continuously full. Thus the phase lengths 

remain consistently at their maximum values and the cycle length remains consistent. Under medium 

traffic flow levels the phase lengths and thus the cycle length fluctuate making it more difficult to 

maintain coordination. Under low traffic flow levels the phase lengths are kept close to minimum levels 

resulting in such short cycle lengths that coordination becomes very quickly too difficult to maintain.   

From these findings we can deduce that actuated control is indeed not suitable for coordination and 

we will thus not proceed with implementing a Qoordination interface. Actuated control will thus not 

feature in the remainder of the evaluation experiments. 
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5.6.1.5 Effects of Network Size and Coordination on Traffic Control Methods 

We will now look at the effects of Coordination on the traffic control methods in increasing network 

sizes. It is thus at this point that we begin to evaluate Qoordination itself as opposed to the comparison of  

the traffic control as we have done so far. Our evaluation experiments show similar patterns in the results 

across the three different traffic control methods, Round Robin, SAT, and the Q-Learning based method. 

For this reason we include the results of only one method, namely SAT. 

5.6.1.5.1 Results and Analysis 
In this sub-section we present the results of this experiment scenario and analyze these results. We 

further analyze these results and discuss observed patterns and findings in sub-section 5.6.1.5.2. 

5.6.1.5.1.1 Medium Traffic Flow Levels 

We will begin by looking at the effects of coordination on SAT under medium traffic flow levels.  

  

 

   

Figure 54 Effect of coordination on SAT with increasing network size, medium traffic flow 
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Figure 54 contains the first set of diagrams thus far in this thesis that specifically highlights the 

benefits of coordinating traffic light controllers within a network. This scenario specifically shows us that 

close to optimal coordination can be established using Qoordination. A significant difference between 

Qoordination and the pre-computed optimal coordination is that whereas the latter required manual setup 

and is not able to adapt to changing traffic flow directions or traffic flow levels the former learned on its 

own to establish coordination and is able to adapt to changing traffic flow directions or traffic flow levels. 

These diagrams are thus the most important that we have presented so far in this thesis. 

In the first diagram of Figure 54 we can see that Qoordination reduces average queue lengths by 56% 

when compared to non-coordinated SAT. These improvement increases even further as network size 

continues to increase. These levels of reduced queue lengths are quite similar with optimum coordination 

levels i.e. Pre-Coordinated Good. These findings illustrate to us that Qoordination truly can learn nearly 

optimum offsets such that progressive signal systems can be established. We can also see in this diagram 

that the pre-coordinated bad based controllers performed only slightly worse than the non-coordinated 

controllers. This reason why this difference in performance is so small is that as a dynamic traffic control 

method SAT was able to compensate somewhat for the bad coordination. To prove this we include the 

following diagrams, which show that the performance difference between pre-coordinated bad based 

controllers and non-coordinated controllers is much higher under the same conditions for the more static 

traffic control methods i.e. Round Robin and Q-Learning based control. 

    

Figure 55 Effect of coordination on Round Robin and Q-Learning based control with increasing nw. size 

In the second diagram of Figure 54 we observe that Qoordination reduces average vehicle waiting 

times by approximately 75% when compared to non-coordinated SAT by the time the network size has 

been increased to 5x5 intersections. Again these improvements continue to increase as network size 

increases. This is also consistent with optimal traffic coordination. This impressive increase in 

performance is even more reflective of the benefits of using Qoordination in larger traffic networks than 

those of queue lengths as these also take into account the amount of time the vehicles are waiting at the 

intersection. 
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With regards to the metric of average number of vehicle stops (the third diagram of Figure 54) we can 

see that the rate of increase of number of stops for Qoordination is more than significantly different than 

for non-coordinated control. In networks with no coordination implemented we can see that the average 

number of stops increases by approximately 620% as the network size increases from a single intersection 

up to a 5x5 network. Qoordinated networks however only increase by just under 80% over the same 

increase in network size. Thus Qoordinated networks are much more scalable than non-coordinated 

networks. Low number of stops is indicative of establishment of progressive signal systems. This proves 

that Qoordination does in fact achieve its design requirement Req1. We can also see that with regards to 

this metric Qoordination even outperformed what we considered to be an optimal solution, namely pre-

coordinated good. 

With regards to the metric of average vehicle speed, illustrated in the fourth diagram of Figure 54, we 

can see that Qoordination performs approximately 56% better than non-coordinated control. Thus 

vehicles traveling through a Qoordinated transport network will travel on average over twice as fast as 

those traveling through a non-coordinated network. This metric however has an upper limit of 50 kph as 

this is the maximum speed set on all roads within the simulated networks. To achieve 50 kph would mean 

that no vehicle ever needs to stop or slow down as it passes through the network, so an average vehicle 

speed of approximately 23 kph is not bad, especially taking into account that most vehicles have to stop 

to be formed into platoons on entering the network by the border intersections. 

In the final diagram of Figure 54 we are shown that in a network that consists of a single intersection 

coordination is not possible and thus the network fills up just as much for all approaches. By the time 

network size reaches 5x5 the Qoordinated network contains on average 57% less traffic than the 

uncoordinated network. In comparing these two simulations visually the difference is remarkable as the 

uncoordinated network appears quite full while the Qoordinated network appears relatively empty. In 

reality this would lead to significant reductions in noise and air pollution. 

5.6.1.5.1.2 Low Traffic Flow Levels 

Let us now consider the effects of coordination on SAT under low traffic flow levels. 
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Figure 56 Effect of coordination on SAT with increasing network size, low traffic flow 

Our first observation from the diagrams in Figure 56 is as we would expect based upon what we 

learned from the previous experiment scenario of section 5.6.1.2. That is, that under lower traffic flow 

levels the positive effects of coordination, and in turn Qoordination, are not as obvious as under higher 

traffic flow levels. 

In the first diagram of Figure 56 we can see that queue lengths are reduced in 5x5 transport networks 

by approximately 30% when implementing Qoordination as opposed to when no coordination is 

established. These reductions in queue length fluctuate more so than those under medium traffic flow 

levels for reasons discussed in section 5.6.1.1.1.2. We can also see in this diagram that under low traffic 

flow levels pre-coordinated bad based intersection controllers appear to perform significantly worse than 

non-coordinated intersection controllers. This is an interesting discovery and when considered in this 

scenario alone its root cause is not apparent. When compared to the results of the medium and high traffic 

flow level scenarios however a pattern emerges. The higher the traffic flow the better pre-coordinated bad 
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based controllers perform, as opposed to non-coordinated controllers. The reason for this, we speculate, is 

that because pre-coordinated bad control maintains the offset between intersections at -15 seconds it does 

not let them drift further out of sync. Short cycle lengths cannot drift too far out of sync, resulting in a 

larger percentage of the time that uncoordinated signal controllers have an offset between 0 and -15 or 

even between 0 and +15. Thus because uncoordinated controller offsets can fluctuate they are often more 

in sync with their neighbors under low traffic flow levels than pre-coordinated bad controllers. Under 

high traffic flow levels this fluctuation in offsets is a drawback as the cycle lengths are much larger and 

the controllers spend the vast amount of time less in sync with their neighbors than pre-coordinated bad 

based controllers i.e. with offsets < -15 or > + 15.  

 In the second diagram of Figure 56 we are shown that in networks of size 5x5 intersections 

Qoordination leads to a reduction in average waiting times of approximately 38% when compared to non-

coordinated SAT. This is an increased improvement over that of the queue length metric due to the fact 

that it also takes into account the amount of time that the vehicles spend in the queue. Average waiting 

time is thus somewhat more representative of the real improvement in traffic flow in the network than the 

queue length metric. 

The third diagram of Figure 56 shows us that the average number of vehicle stops for Qoordination 

stays somewhat similar to optimal coordination, though both fluctuate slightly for reasons discussed 

earlier. Here there is a reduction of approximately 32% in average number of stops when using 

Qoordination as opposed to where no coordination is used. This figure is roughly in line with the first two 

diagrams of Figure 56. 

Under low traffic flow levels the average speed seems to be significantly higher for pre-coordinated 

good based controllers than for Qoordination based controllers. Qoordination still however manages to 

have an increase in average speed of approximately 22% over non-coordinated intersections within the 

5x5 network. The reason for a smaller level of improvement here is that there is an upper speed limit set 

of 50 kph. With such short cycle lengths average speeds are kept higher, even in uncoordinated control. 

With regards to the traffic volume metric, as shown in the final diagram of Figure 56, Qoordination 

improves performance over non-coordinated SAT by approximately 17% in the 5x5 network. Again, this 

level of increase is not as high as in the other scenarios due to the fact that, as we have now observed, 

coordination itself improves performance relative to the level of traffic flow, which in this scenario is 

low.  

5.6.1.5.1.3 High Traffic Flow Levels 

Let us now look at the effects of coordination under high traffic flow levels. 
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Figure 57 Effect of coordination on SAT with increasing network size, high traffic flow 

In the first diagram of Figure 57 we can see that Qoordination reduces queue lengths by 55% when 

compared to non-coordinated control under high traffic flow levels. This comes as somewhat of a surprise 

as this value is slightly lower than that obtained under medium traffic flow levels. We had theorized that 

the positive effects of coordination increase not only as the network size increases but also as the traffic 

flow levels increase. Although this theory may still be valid we must append to it the possibility of there 

being a threshold traffic flow level at which the positive effects of coordination stop increasing. Thus our 

theory now is that the positive effects of coordination increase not only as the network size increases but 

also as the traffic flow levels increase towards a certain maximum threshold value. We will proceed with 

giving the results obtained in this scenario simulation and see if the remaining metric results confirm this 

theory. 
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In the second diagram of Figure 57 we observe that Qoordination waiting times are decreased by 

72%% when compared to non-coordinated control. This compares to the result of 75% reduction in 

waiting times obtained under medium traffic control. Thus our appended theory of a maximum traffic 

flow level up to which Qoordination increases performance is confirmed with regards to the average 

waiting time metric. 

The average number of vehicle stops for Qoordination, as can be seen in the third diagram of Figure 

57, is significantly lower than for non-coordinated controllers. 74% lower, which compares to the 75% 

reduction achieved under medium traffic flow levels, again confirming our appended theory. We can see 

in each of these diagrams that Qoordination achieves results very similar to those achieved by pre-

coordinated good based controllers. This again confirms that Qoordination learns near optimal 

coordination. 

In the fourth diagram of Figure 57 we can see an increase of 63% in average vehicle speed by 

implementing Qoordination as opposed to not implementing coordination. This 63% compares to the 

56% achieved under medium traffic flow levels. With regards to this metric Qoordination has thus 

continued to improve performance as traffic flow levels increase. 

The final diagram of Figure 57 shows that Qoordination reduces traffic volumes by 54% in a 5x5 

network when compared to non-coordinated SAT. 

We will now discuss and analyze the results obtained in our experiments of this evaluation scenario. 

5.6.1.5.2 Concluding Analysis 
This experiment scenario has highlighted the effects of coordination on the SAT traffic control 

method in increasing network sizes and under different traffic flow levels. Through this scenario we have 

shown that Qoordination reduces queue lengths and average vehicle waiting times similarly to optimal 

coordination i.e. pre-coordinated good control. We have found that the positive effects of coordination 

increase both as the size of the network increases and as the traffic flow levels increase towards a certain 

maximum threshold value. In the following diagram we graph the increase in performance obtained by 

Qoordination as opposed to non-coordination under low, medium, and high traffic flow levels, for all 

metrics considered.  

 

Figure 58 SAT metric improvement in a 5x5 network in low, medium, high traffic flow 
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This diagram clearly shows that Qoordination improves performance over non-coordination with 

regards to all metrics. The level to which the performance is improved increases significantly between 

low and medium traffic flow levels. Between medium to high levels however this rate of increased 

performance improvement levels off and is slightly reduced. This confirms our theory that there is a 

maximum traffic flow level up to which Qoordination increases performance. This maximum value 

however may not be the same for each of the three traffic control methods i.e. SAT, Round Robin, and Q-

Learning based control. The following diagrams illustrate this point. 

  

Figure 59 Control method improvements in a 5x5 network in low, medium, high traffic flow 

These diagrams show that the use of Qoordination results in improved queue lengths and waiting 

times in a 5x5 network in low, medium, and high traffic flow levels, for SAT, Round Robin, and Q-

Learning based control. They further show that for Round Robin and Q-Learning based control the not 

only does the level to which the performance is improved increases significantly between low and 

medium traffic flow levels but for Round Robin and Q-Learning based control this level of improvement 

continues to increase between medium and high traffic flow levels. With regard to our theory this would 

indicate that for these two traffic control methods the maximum level of traffic flow up to which 

Qoordination improves performance has not yet been reached. This could highlight that this maximum 

value is higher for the more static traffic control methods. 

5.6.1.6 Conclusion 

In this first experiment we have shown a number of things. In the first scenario we have established 

how well the traffic control methods that we have chosen to incorporate into this evaluation perform in a 

transport network that single intersection. From this scenario we learned that for a single intersection 

Round Robin performs consistently worse than the other control methods while SAT performs best. In 

low traffic flow levels the metric readings fluctuated significantly due to the fact that the queue lengths 

vary significantly between empty and full at any one time. Queue lengths in medium traffic flow levels 

on the other hand tend toward being full a lot of the time, which has a smoothing effect on the different 
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metrics, as described in section 5.6.1.1.1.2. Under high traffic flow levels the control methods performed 

more similarly due to the fact that they were constantly at full capacity.  

In the second scenario we have extended the single intersection network a number of times so that we 

can observe how each of the control methods performs in networks of increasing size. These networks 

range from the single intersection scenario up to a 5x5 intersection network. In this particular scenario no 

coordination is taken into account so each intersection makes modifications to its timing plan without 

regard for the other intersection controllers in the network. From this scenario we have learned that as the 

network size increases the rate of change in performance of more static approaches to traffic control i.e. 

those whose cycle lengths remain similar across the intersections within the network, is much improved 

when compared to the rate of change in performance of more dynamic control approaches. This shows 

early signs that maintaining similar cycle lengths across intersection controllers within the network, 

which enables coordination, leads to better performance.  

We then showed that the actuated control method is not well suited to coordination and so will not be 

considered any further in our experiments. 

In our third scenario we extend the previous scenario so as to include pre-timed coordination as well 

as Qoordination. This scenario thus highlights the effects of coordination on traffic control methods in 

increasing network sizes and under different traffic flow levels. Through this experiment we show that 

Qoordination reduces queue lengths and average vehicle waiting times similarly to optimal coordination. 

We found that the positive effects of coordination increase both as the size of the network increases and 

as the traffic flow levels increase towards a certain maximum threshold value. This value is not the same 

for the different traffic control methods and seems to be higher for the more static control methods. In our 

largest network in this experiment i.e. a 5x5 intersection network, and under high traffic flow levels we 

have seen a reduction in average waiting times of 72% as a direct result of Qoordination. These findings 

highlight Qoordination’s ability to form progressive signal systems and thus directly address research 

objectives 1, 4, and 5 as well as the first research question that we defined in section 1.3.  

In conclusion, this first experiment confirms that Qoordination can learn to coordinate traffic flow 

throughout a network in that results in close to optimum performance. Coordination in turn has been 

proven to increase network performance, with regards to a number of metrics. This increase in 

performance grows as network size grows and as traffic flow levels increase up to a maximum value. 

This experiment however only shows the benefits of coordination and Qoordination in networks whose 

traffic flows in north and east bound directions simultaneously. It further only shows these benefits in 

static traffic flow levels. Within the remaining experiments we will show the benefits of using 

Qoordination in networks of changing direction and traffic flow levels. 
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5.6.2 Round Robin Justification 

The results of experiment 1 show that the patterns of the effects of Qoordination on Round Robin, 

SAT, and Q-Learning based control show similar patterns. Due to this fact we have decided that we are 

going to use only one of these control methods in the remaining experiments. This greatly reduces the 

number of experiments that need to be run as well as the number of diagrams to be analyzed in this thesis. 

The question remains as to which control method to use. The purpose of this evaluation to establish that 

Qoordination achieves the evaluation objectives set out in section 5.1, not to compare how well 

Qoordinated SAT performs against Qoordinated Round Robin. Neither is it the purpose of this evaluation 

to find the best control method to use in conjunction with Qoordination. We can however observe from 

Figure 59 that Qoordination has greater effects on Round Robin than it does on SAT and on Q-Learning 

based control. As we wish to highlight Qoordination’s effects on a control method Round Robin this 

makes Round Robin a good choice. Additionally, being a more static control method, Round Robin based 

Qoordination takes less time and fewer simulations to train, reducing the workload required to perform 

this evaluation. The remainder of the experiments performed for this evaluation will thus only feature the 

Round Robin traffic control method unless otherwise stated. 

5.6.3 Experiment 2 – Changing Traffic Flow Direction 

The purpose of this experiment is to show that Qoordination can adapt to changing traffic flow 

directions. In this experiment we change traffic flow direction mid simulation. For the first half of the 

simulation the traffic flows through the network in a north east direction and in the second half of the 

simulation it flows south west. Throughout the duration of the simulation however the traffic flow level is 

kept constant. The purpose of this experiment is to meet objective 2 i.e. assess how well Qoordination can 

adapt to changing traffic flow directions. This experiment is performed in a network of 2x2 intersections. 

All roads in this experiment are one way roads. No left or right turns are permitted. Traffic flow levels in 

this experiment are kept at a steady medium traffic flow level, permitting 650 vehicles per hour through 

each of roads that allow traffic to enter the network. The simulation has a duration of 21,600 seconds i.e. 

6 hours.  

5.6.3.1 Results and Analysis 

To highlight the results obtained in this experiment from Round Robin based Qoordination we 

compare it to non-coordinated Round Robin and also the optimally coordinated Round Robin described 

in the previous experiment i.e. Pre-Coordinated Good. Again we draw the reader’s attention to the fact 

that this optimally coordinated method is static and cannot adapt to changing traffic flow directions. It is 

optimized for traffic flowing in a north east direction, which is the direction of traffic flow for the first 

half of the simulation. From the previous experiment we were able to observe that the two main 
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evaluation categories that Qoordination has an effect on are average queue length and average waiting 

time. Although Qoordination does not have a negative effect on any of the other categories the positive 

effect that it does have are not as dramatic as with the first two. For this reason the only two evaluation 

categories that we will cover here are average queue length and average vehicle waiting time. 

   

Figure 60 Queue lengths and waiting times in reversal of traffic flow direction 

The reader’s attention is drawn to the fact that in Figure 60 we are again observing the passing of time 

since the start of the simulation and not increases in network size. From the results shown in these 

diagrams we can see that when no coordination is applied i.e. when a simultaneous progressive signal 

system is in place, the reversal of the traffic flow direction has no effect on the performance of the 

network. This result is expected as all traffic lights in the networks change at the same time and thus 

traffic progression in any one direction will be impeded just as much as traffic progression in any other 

direction. As the optimally Pre-Coordinated Good method is only optimized for the direction of traffic 

flow in the first half of the experiment there is a dramatic change in performance once the traffic flow 

direction changes. Both average queue length and average vehicle waiting time maintain a steady level of 

approximately 65% of those of the non-coordinated approach throughout the first half of the experiment. 

Once the direction changes however both of these metric values shoot up to being approximately 7% 

higher than those of the non-coordinated approach. The Pre-Coordinated Good method thus essentially 

becomes Pre-Coordinated Bad once the direction of traffic flow is reversed.  

We can observe however that Qoordination is able to adapt to the reversal of traffic flow direction. 

Qoordination average queue length and average vehicle waiting time both raise ever so slightly when the 

direction of traffic flow changes but they immediately return to their previous performance levels 

thereafter. This effect is as a direct result of the complete reversal of the progressive signal system that 

Qoordination establishes within the simulated network. Qoordination is thus shown to be able to adapt to 

the change in traffic flow direction. The reason why the immediate increase in queue length and average 

waiting time after the change in direction is difficult to see in these diagrams is because the time taken for 

Qoordination to reverse the progressive signal system established in this small 2x2 network is only a 

matter of minutes. This is then smoothed out in the graph due to the fact that each point on the graph is an 
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average of values observed over the course of an hour of the simulation. In larger networks this reversal 

would become more obvious in the diagrams as it would take longer to reverse the larger progressive 

signal systems.  

5.6.4 Experiment 3 – Changing Traffic Flow Levels 

The purpose of this experiment is to show that Qoordination is able to adapt to changes in traffic flow 

levels. In this experiment the traffic flow levels are varied from medium to high mid simulation. This 

satisfies evaluation objective 2. As opposed to using Round Robin traffic control method we decided to 

use SAT instead. This is because of SAT’s more dynamic nature which makes it more able to adapt to 

changes in traffic flow levels. It is thus up to SAT to adjust its phase lengths so as to adapt to the changes 

in traffic flow levels. Qoordination’s task is to maintain coordination among the SAT controlled 

intersections throughout the change. In this experiment traffic flows consistently from the west of the 

network to the east and from the south of the network to the north. All roads in use are one way roads. No 

left or right turns are permitted. Medium traffic flow levels permit 650 vehicles per hour and heavy traffic 

flow levels permit 950 vehicles per hour through each of the north bound and east bound roads i.e. each 

of the roads that allow traffic to enter the network. Each simulation has a duration of 21,600 seconds i.e. 6 

hours. This experiment is conducted within a 3x3 intersection network.  

5.6.4.1 Results and Analysis 

The evaluation metrics that we use to highlight these evaluation results are average vehicle waiting 

time, average vehicle number of stops, and network traffic volume as these metrics best highlighted the 

results. 
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Figure 61 Waiting times, number of stops, and traffic volume in fluctuation of traffic flow levels 

From the above results we can observe that the increase in traffic flow levels, which occurred half 

way through the experiment, leads to similarly higher vehicle waiting times for both Qoordinated and 

non-coordinated approaches. This effect however is not present in the category of average number of 

vehicle stops. Whereas the average number of vehicle stops were roughly equal before the change in 

traffic flow levels they are not afterwards. After the change Qoordination achieves an average number of 

stops three times as low as those that are achieved where no coordination is used. This is a significant 

difference. Traffic volume levels however also maintain their appropriate ratios after the change in traffic 

flow levels. These results insinuate that Qoordination is able to adapt appropriately to changes in traffic 

flow levels.  

One further aspect of this experiment was the results obtained in the category of throughput. 

  

Figure 62 Average throughput in fluctuation of traffic flow levels 
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Whereas we expected no significant change in throughput to come as a result of the change in traffic flow 

levels we found that after the change a significant change of roughly one additional vehicle being put 

through each approach on each intersection per cycle resulted. This came as a surprise as we had not 

noted significant increases in vehicle throughput using Qoordination under higher traffic flow levels in 

experiment 1.  

5.6.5 Experiment 4 – Reversing a Single Progressive Signal System 

The main purpose of this experiment is to establish a progressive signal system along a main traffic 

corridor that does not take a direct route from one side of the network to the other. In this experiment 

Round Robin control is implemented on the intersections in a 2x2 network. In this experiment the main 

traffic corridor in question sources from the west of the network, passes straight through the first 

intersection, takes two consecutive right turns, then passes straight through the next intersection to exit 

the network again on the west. Mid-way through this experiment the direction of traffic flow is reversed. 

This experiment thus achieves both research objective 1 and 2. In its initial direction the flow of traffic is 

more limited than in the reversed direction. The reason for this is because the traffic control method being 

implemented in this experiment is that of Round Robin. With the Round Robin method the dedicated 

right turns have only a 30 second phase length. Left turns however can be taken during a 30 second phase 

as well as the main 60 second phase. This will mean that traffic during the first half of the experiment will 

likely get congested at the second intersection that the vehicles meet after they enter the network i.e. the 

top right intersection. Traffic flow levels of 150 vehicles per hour are maintained throughout this 

experiment so that congestion on the downward bend does not cause an issue. In practice SAT would 

likely be a more appropriate traffic control method as it would be able to adapt the phase lengths of the 

dedicated right turns to accommodate higher traffic flow levels. The traffic corridor used in this 

experiment is shown below: 
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Figure 63 Experiment 4 main traffic corridor 

5.6.5.1 Results and Analysis 

The evaluation metrics that we will look at in this experiment are average number of vehicle stops, 

average queue length, and average vehicle waiting time. 
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Figure 64 Experiment 4 average number of vehicle stops, queue lengths, and vehicle waiting times 

We can observe from the first of these diagrams a slight fluctuation in the Qoordination average 

number of vehicle stops. This value starts slightly above a value of 1 as it takes a little while for the 

progressive signal system to be established. When it is established the number of vehicle stops drops 

below 1. With the change in traffic flow direction the number of stops is increased while the direction of 

the progressive signal system is reversed. We noted that it took approximately the equivalent of 50 

minutes real time for this complete reversal of the progressive signal system. Once the progressive signal 

system has been reversed the average number of vehicle stops again drops down to a value of 1 or under. 

Pre-coordinated traffic control has the coordination moving in a north east direction, thus it is not optimal 

for this scenario. Calculating and implementing a pre-coordinated set of offsets for this scenario would 

have been a time consuming process. This is because once turns are taken into account optimal offsets are 

no longer consistently 15 seconds as the phases that feature the turns occur at different points throughout 

the cycle. The pre-coordinated and non-coordinated approaches achieve average number of vehicle stops 

up to four or five times those achieved by Qoordination. After the change in traffic flow direction pre-

coordinated and non-coordinated achieve lower average vehicle stops than before the change. The reason 

for this is the limitations to this corridor due to the Round Robin method of control that we explained 

earlier on in this section. The same phenomenon can be seen for all forms of coordination or lack thereof 

on the two remaining evaluation metrics. The reader may note however that in the second half of the 

experiment the lowest average vehicle waiting time achieved by Qoordination is an impressive 1 second, 
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while the lowest value achieved by pre-coordination and non-coordination is approximately 8 seconds. 

The highest average vehicle waiting time achieved by Qoordination in the first half of the simulation is 

8.3 seconds, while the highest value achieved by the other methods is approximately 21 seconds. 

5.6.6 Experiment 5 – Complex Progressive Signal System 

In this experiment we wish to illustrate the effects of the establishment of progressive signal systems 

with a much more complex traffic path. In this experiment we use a 3x3 intersection network that 

maintains a steady traffic flow level of 150 vehicles per hour across Round Robin intersections. The path 

taken in this experiment is shown below: 

  

Figure 65 Experiment 5 main traffic corridor 

The purpose of this experiment is to show that the benefits of Qoordination increase as the complexity 

of the main traffic path through the transport network increases. This also confirms evaluation objective 

1. 

5.6.6.1 Results and Analysis 

Let us now consider the following set of evaluation results: 



 

 

 

Chapter 5 Evaluation  

 

 
 
 
 
 

162 

  

  

 

Figure 66 Experiment 5 evaluation results for complex traffic corridor path 

Throughout the evaluation queue lengths are kept between roughly two thirds or three quarters less for 

Qoordinated intersections as for non-coordinated intersections. This results in an average reduction of 

queue lengths of 70% in this scenario due directly to the use of Qoordination. Waiting times are reduced 

by an average of approximately 83%, number of vehicle stops by 58%, and total traffic volume by 60%. 

Average vehicle speeds through the network are increased by almost 50 times those of non-coordinated 

intersections due directly to the application of Qoordination to this scenario. These phenomenal increases 

in evaluation results would strongly insinuate that the benefits of using Qoordination in a transport 

network increase dramatically as the level of complexity of the main traffic corridor increases. 
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5.6.7 Conclusion 

In this section we have evaluated Qoordination through experimentation. The experiments that we 

have performed as part of this evaluation establish how well Qoordination addresses the requirements 

defined in section 3.1. The ultimate goal of these requirements is to address our research questions that 

were defined in section 1.3. To address these requirements we have set out clear evaluation objectives in 

section 5.1. Each experiment performed in this section has been performed with the aim of meeting one 

or more of these objectives.  

Experiment 1 was designed to meet objective 4 i.e. analysis of how well Qoordination scales with 

increasing network size. Through this experiment we discovered that that the positive effects of 

coordination increase not only as the network size increases but also as the traffic flow levels increase 

towards a certain maximum threshold value. Qoordination has been shown to achieve results similar to 

optimally pre-timed control, proving that it can learn to coordinate traffic timing plans across 

intersections in the network in an optimal fashion. We have shown that when traffic control methods are 

integrated with Qoordination they scale significantly better as the network size increases than if no 

coordination were taken into account. We have also shown that as traffic flow levels increase up to a 

certain maximum value for each control method so too do the improvements in performance achieved by 

implementing Qoordination. 

Experiment 1 was designed to also meet objective 5 i.e. assess the effects of Qoordination of various 

methods of traffic control. We have shown that actuated control is unsuitable for coordination in general. 

It was thus not considered in any further experiments. We have shown that the three other control 

methods to which Qoordination has been applied have shown significant increases in performance (see 

Figure 59). With regards to queue lengths Qoordination has shown to improve Round Robin by 61%, Q-

Learning based control by 47%, and SAT by 56% under medium traffic flow levels when compared to 

these same control methods performance when no coordination is taken into account. With regards to 

average vehicle waiting time Qoordination has further shown to improve Round Robin by 74%, Q-

Learning based control by 57%, and SAT by 75% under the same conditions. The general trend that we 

can see is that it leads to improvements in all three control methods, with slightly higher improvements 

for Round Robin and slightly less improvements for Q-Learning based control. 

Experiment 2 was designed to meet objective 2 i.e. assess how well Qoordination can adapt to 

changing traffic flow directions. In this experiment we completely reversed the traffic flow direction mid 

simulation. Qoordination was able to adapt to this change so rapidly that it was even difficult to perceive 

a drop in performance in the graphed results. A statically pre-coordinated approach that was used as a 

benchmark however was affected dramatically by the change as it was unable to adapt. Through the 

results obtained from this experiment we can see that Qoordination is well capable of adapting to changes 

in traffic flow direction.  
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Experiment 3 was designed to also meet objective 2 by assessing how well Qoordination can adapt to 

changing traffic flow levels. We were able to show through this experiment that as traffic flow levels 

change the traffic control method e.g. SAT is able to optimize its phase lengths so as to adapt to these 

changes. This experiment shows that Qoordination is able to keep the intersections coordinated 

throughout this change. 

Experiment 4 was designed to meet objective 1 by assessing how well Qoordination agents can 

coordinate their actions and establish progressive signal systems throughout the main traffic corridors of 

the transport network. In this experiment we create a main flow of traffic that does not flow directly 

through the network in a straight course, but that turns and then exits the network from the same direction 

in which it had entered the network. Not only was Qoordination able to automatically establish a 

progressive signal system along this main corridor, but also when we reverse the direction of traffic flow 

mid simulation Qoordination dynamically adapted to this change and reversed the direction of the 

progressive signal system. This experiment thus also meets objective 2. 

In the final experiment we again focused on meeting objective 1 but as opposed to the previous 

experiment this one pushes Qoordination further by giving the main traffic corridor flowing through a 

larger network an intricate path that takes both left and right turns as it meanders through the network. 

Qoordination again automatically established a progressive signal system along the main traffic corridor 

which resulted in an average reduction of queue lengths by approximately 70% and a reduction in average 

vehicle waiting time a by approximately 83%. 

With these experiments concluded only objective 3 remains to be met. This will thus be addressed 

next. 

5.7 Multi-Layer Hashing Utility Function Analysis 

In this section we analyze the inner workings of the MLH utility function to ensure that it is working 

properly. Throughout this analysis we look at the MLH utility functions of Qoordinated intersection 

agents within a 2x2 transport network. The reason for this choice in network size is because each 

intersection agent in the 2x2 network has a total of 2 neighboring intersections. As Qoordination agents 

maintain one state variable per adjacent intersection i.e. for its offset, this will lead to two dimensional 

state spaces. Two dimensional state spaces can be visualized quite efficiently and so patterns within these 

state spaces can be easier for us to confirm visually than the four dimensional state spaces of central 

intersections in 3x3 networks. Traffic flow in this network flows from south to north and from west to 

east. No turns are permitted. Round Robin traffic control is used in this analysis. The network in question 

is illustrated below with each intersection given its assigned number: 
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Figure 67 2x2 network for use in MLH utility function analysis 

As described in Chapter 4, on initialization each agent performs each of its actions a specified number 

of times so as to get a grounding in their understandings of the effects of their actions. In this case this 

specified number is twenty. These actions are taken while no other relevant agents are taking any actions, 

thus reducing the dynamics of the observable effects. We begin this analysis by looking at an MLH’s 

state space with regards to exploration during this initialization process. We then look at the state space of 

each of the agents immediately after this initial training session and then again after a short time in use. 

We will also observe the change on the state space that comes about by the MLH utility function ruling 

out irrelevant state variables. 
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5.7.1 Initialization Process 

 

Figure 68 MLH state space exploration during initialization process 

Figure 68 shows how much of an MLH state space gets explored during an agent’s initialization 

process. Let us describe this initial exploration process. Initialization actions are performed without other 

relevant agents in the environment performing any actions. This makes the initial state space exploration 

a static process i.e. other agents are not performing actions at the same time as this agent. All agents 

begin in the center of the state space i.e. 0, 0, as the offsets from one agent to all of its neighbors are 

initially 0. The initializing agent firstly decrements its offset to its neighbor agents ten times, performing 

an offset maintaining action in between each of these. This explores from the center of the state space to 

the right hand side of the diagram. The agent then performs twenty straight increment offset actions, 

which moves it right over to the left side of the diagram. It then performs a further ten decrement offset 

actions with an offset maintaining action in between each of these. This returns it to the center of the state 

space. Thus an important thing to remember about the diagrams that we present in this analysis is that 

offset decrement actions, which reduce the agent’s offset to all of its neighbors simultaneously, moves the 

agent to the right of the diagram. Offset increment actions move the agent to the left of the diagram.  

The initialization procedure is not always necessary during training but it is observed here so that we 

can give clear representations of the MLH’s inner learning process in the diagrams that we present. We 

can thus far see that a very small percent of the state space has been explored. The reader should note that 

the size of the state space would be much larger if SAT or the Q-Learning based methods were used 

instead of Round Robin. This is because their maximum cycle lengths can vary and thus their maximum 

offsets can be much larger than that of Round Robin.  

5.7.2 Agent 3 

We now consider intersection agent 3. This agent is downstream to both agent 1 and agent 2. It thus 

controls the only intersection in the network that is not a border intersection, as only platoons of vehicles 

arrive on its approaches that have already passed through either agent 1’s or agent 2’s intersections. What 
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we will expect to see is that the MLH will consider offsets to both neighbors as being relevant and will 

thus not rule out either of them. We will first analyze agent 3’s MLH immediately after it has been 

initialized. We then analyze this same MLH after it has been in use for some time so as to see how the 

learning patterns within it are progressing. We then analyze the MLH’s optimization abilities which 

enable it to remove unnecessary state variables.  

5.7.2.1 After Initialization 

 

 

Figure 69 Intersection agent 3 MLH analysis after initialization 

The diagrams in Figure 69 can be best understood by firstly looking at the lower diagram. Each line in 

the diagram represents the utility value associated with one of the agent’s three possible action choices 

i.e. maintain, increment, or decrement the agent’s offset to its neighbors by adjusting its cycle 

commencement time. As we can see at point offset 0 on the x axis the action with the highest utility value 

is the increment offset action and thus this is the action that should be selected here for execution. This 

lower diagram is simply a cross section of the upper diagram. Thus the point 0 on the x axis of the lower 

diagram actually represents point 0, 0 on the upper diagram. The cross section diagram thus cuts across 

the upper diagram from point -90, -90 to point 90, 90. In the upper diagram only the actions with the 

highest utility values are displayed at any point. Thus again we can see that at point 0, 0 the increment 

offset action should be selected for execution (color coding remains the same between the two diagrams). 

For both of the above diagrams, as is the case with Figure 68 offset decrement actions move the agent to 

the right of the diagram and offset increment actions move the agent to the left of the diagram. We can 
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see from the cross section diagram that when an agent finds itself at point 0, 0 it will increment its offset 

until it gets to an offset of roughly -30. This can be seen as the point at which the agent can find the 

highest utility value. At this point it will maintain its offset. If it moves from this position to the left or 

right it knows which action to perform to get back to the point with the highest utility. 

 Although the majority of the state space has not been yet been explored (see Figure 68) we can note 

from Figure 69 that the MLH does contain information regarding the action decisions that should be 

made in a large portion of the entire state space. This is due to the generalization capabilities of MLH. 

Taking into account only immediate rewards as opposed to Q-Learning based utility values would 

have led to the following action selection diagram. 

 

 

Figure 70 Intersection agent 3 MLH analysis after initialization – immediate reward action selection 

This is a very different, and a much less accurate, result from the action selection diagram presented 

in Figure 69. This highlights to us the importance of using utility values as opposed to simple short term 

rewards. 

5.7.2.2 After Extended Use 

We will now look at agent 3’s MLH utility function after some extended use. One important thing to 

note about this is that in the previous sub-section the agent’s environment was kept static during the 

initialization process. The results discussed in this sub-section are of the agent after it has been exposed to 

the dynamic environment in which all agents are making decisions and performing actions 

simultaneously. The environment has thus now become a very noisy and dynamic one in which to dwell. 
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Figure 71 Intersection agent 3 MLH analysis after extended use 

From the first diagram we can see that although much more of the state space has been explored the 

agent dwells particularly in the area of the state space that leads to the higher utility values. From the 

action selection diagram we can see that the terrain here has also been modified and again reflects that the 

agent will tend towards roughly the -30,-30 area. Less areas in the state space however now require offset 

maintenance actions, even though these areas have not been explored. Again this is indicative of MLH’s 

ability to generalize. The action utility cross section diagram again helps us to see from a different angle 

that the agent will tend towards the -30,-30 area of the state space. 

5.7.2.3 Optimized 

At this point we would look at agent 3’s analysis diagrams after MLH has ruled out any state variables 

that it deems unnecessary. In the case of intersection agent 3 however it has been deemed to be dependent 

on its offset to both intersection 1 and intersection 2. Neither of the state variables has thus been 

abstracted away and thus the diagrams remain as they are. This is in accordance with what we expected to 

see for agent 3. 

5.7.3 Agent 1 

We will now consider the MLH utility function of agent 1. Agent 1 is in a very different network 

location than agent 3. As traffic is flowing from west to east and from south to north we can see that 

although agent 3 was downstream to both agents 1 and agent 2, agent 1 is only downstream to agent 0. 
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Agent 1 is however upstream to agent 3. Each of the Qoordination agents act so as to optimize their own 

local rewards. We would thus expect that agent 1 is dependent on its offset to agent 0 but not dependent 

on its offset to agent 3 to optimize its reward. In the case of agent 1 we would thus expect to see that its 

MLH removes from consideration, or abstracts away, the variable stating its offset to agent 3. 

5.7.3.1 After Initialization 

Agent 1’s initial action selection diagram is somewhat different to agent 3’s and is given below: 

 

   

Figure 72 Intersection agent 1 MLH analysis after initialization 

We can see here that agent 1 tends towards the -30, -30 area of the state space. This is similar to what 

we observed for agent 3. The reason for the similarity is that agent 1 is dependent on agent 0 and must 

maintain this level of offset in order to maximize its own local reward. We know that agent 1 is not 

dependent on its offset to agent 3, thus this variable does not affect the diagram.  

5.7.3.2 After Extended Use 

Looking at the MLH after a period of extended use leads to some interesting patterns. 
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Figure 73 Intersection agent 1 MLH analysis after extended use 

We can see from this state space that agent 1 tends to keep an offset of -42 more to one neighbor 

agent than to another. Thus the agent is starting to be able to tell that it is more important for it to keep an 

offset of -42 to agent 0 than it is to keep an offset of -42 to agent 3. This can be observed in its updated 

action selection diagram, where the agent tends to care much more about moving along one axis than the 

other. We would expect that this would be picked up on by the MLH and taken into account during the 

optimization process, which will be shown in the next subsection. This will also make the above pattern 

more clear to the reader. 

5.7.3.3 Optimized 

The MLH is optimized by abstracting away any state variables that it considers irrelevant to 

maintaining accurate utility values. The optimized MLH utility function analysis diagrams are shown 

below: 
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Figure 74 Intersection agent 1 MLH analysis optimized 

We can see from these diagrams that one of the offset state variables has been abstracted away and the 

state space has moved from a two dimensional space to being a one dimensional space. Although the 

Action Utility Cross Section remains the same throughout this change the other diagrams change 

significantly. Learning within this single dimension is now done much quicker than in a two dimensional 

state space. 

5.7.4 Agent 2 

Agent 2 resides in a network location very similar to that of agent 1. It has two neighboring 

intersections, namely those controlled by agents 0 and 3. Like agent 1 it is downstream to agent 0 and 

upstream to agent 3. For this reason it is only dependent on its offset to agent 0 for learning how to 

maximize its own local reward. We have found that agent 2’s MLH analysis graphs are thus very similar 

to those of agent 1, which have already been presented in the previous sub-section. For this reason we 

only show agent 2’s final optimized action selection diagram as an illustration of this similarity. 
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Figure 75 Intersection agent 2 MLH action selection optimized 

5.7.5 Agent 0 

Agent 0 resides in somewhat of a unique network position in this experiment. It has two neighboring 

intersections, namely those controlled by agents 1 and 2. Yet it is upstream to both of these intersections 

and downstream to no intersection. Thus the offsets to both of its neighbors have no direct relevance to 

agent 0’s local reward. It is thus not possible for agent 0 to detect a pattern to learn how to maximize its 

local reward as no pattern exists. It therefore does not matter to agent 0 which action it chooses to 

perform at any time. It does however matter to the downstream agents as they are dependent upon their 

offsets to agent 0. If agent 0 were to constantly execute random actions then agents 1 and 2 would 

struggle to keep up and maintain coordination. It is for this reason that Qoordination will recognize agent 

0 as the key intersection, who is not entitled to perform any offset modification actions. One thing 

however that we can learn from agent 0’s analysis diagrams is that MLH recognizes that there are no 

dependencies on offset to either neighbors. Both offset variables are thus removed from consideration. 

This is illustrated in Figure 76 as the state space has become a 0 dimensional space. 

  

Figure 76 Intersection agent 0 MLH action selection optimized 
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5.7.6 Conclusion 

In this section we have analyzed the learning functionality of the MLH function approximator to 

ensure that it functions as it was designed to. This analysis was designed so as to meet evaluation 

objective 3, which in turn addresses design requirement Req3. Through this analysis we have been able to 

observe that MLH performs generalization such that estimated utility values can be returned even very 

early in the learning process. These values allow for action selection that leads to high rewards very early 

in the simulations. We have also seen that MLH performs abstraction very well. In our scenario the 

different traffic controller agents’ MLHs have been able to correctly recognize the offsets to neighboring 

intersections that are not relevant to them in obtaining a high local reward. These offset variables have 

then been abstracted out of the MLH so as to increase learning speed without suffering any repercussions 

with regards to accuracy.  

In particular in this section we aimed to evaluate MLH as a method that is suitable for Qoordination. 

Through the scenario presented in this subsection and our analysis of the results obtained we have 

achieved this goal. Although MLH is a method of function approximation that has huge potential in being 

applied to other areas it is not our intention in this thesis to give a full set of tests directly relating to its 

functioning and performance in comparison to alternative methods such as lookup tables and neural 

networks. This undertaking is out of the scope of this thesis. We do however see this as a very important 

endeavor that we fully intend to pursue in future research. The results of this pursuit we plan on 

publishing in future literature in both the traffic control and machine learning communities. 

5.8 Summary 

This chapter presented an in depth evaluation of the Qoordination method of intersection controller 

coordination. After having presented the evaluation objectives and metrics the different traffic control 

methods to be implemented by the Qoordinated agents were presented. Important parameters set during 

evaluation experiments were then given. We then described a set of evaluation experiments and discussed 

and analyzed each of their results in turn. From this analysis of the results we have confirmed that 

actuated control is not a suitable method for coordination. When intersections using actuated control do 

attempt to coordinate their action choices so as to establish progressive signal systems their average 

waiting times increase dramatically, even when optimally coordinated. This is particularly true as the 

network size increases and as the traffic flow level decreases. Round Robin, SAT, and the Q-Learning 

based method of traffic control are however suitable methods for coordination. We have found that the 

positive effects of coordination on traffic flow increase as the network size increases and as the traffic 

flow levels increase. In networks of 5x5 intersections under heavy traffic flow levels queue lengths were 

reduced by 63% and average waiting times by 76% when compared to the same traffic control method, 
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i.e. Round Robin, that did not use any form of coordination. Our analysis has also highlighted that the 

positive effects of coordination are again increased as the complexity of the main traffic corridor 

increases. In an experiment that we present with a complex traffic corridor path Qoordination leads to 

reductions in queue length of 70% and in average waiting times of 83% when compared to uncoordinated 

control. In this scenario average vehicle speeds throughout the network were increased by 50 times those 

of vehicles traveling through an uncoordinated network. We have also confirmed through our analysis 

that with regards to queue lengths and waiting times, which are the metrics that we consider most 

represent the establishment of progressive signal systems, Qoordination performs similarly to optimal 

pre-coordinated control. Having analyzed the results of our experiments we then analyzed the MLH 

utility function for intersections in a 2x2 network. Through this analysis we were able to observe MLH’s 

ability to perform generalization and abstraction so as to decrease learning times. 

The purpose of this chapter is to evaluate Qoordination with regards to how well it addresses the two 

research questions defined in section 1.3. We can see through this evaluation and analysis that 

Qoordination combined with its unique MLH utility function address these research questions, as well as 

the research requirements defined in section 3.1 and the evaluation objectives defined in section 5.1. 

Through this chapter’s evaluation and analysis we thus confirm the contributions made by this thesis as 

stated in section 1.4. 
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Chapter 6 

 

 

Conclusion and Future Research 
 

 

 

In this chapter we summarize this thesis and review its most significant contributions. We then 

conclude with a discussion of open research issues regarding this work. 

6.1 Summary 

Chapter 1 gave a brief description of Reinforcement Learning (RL) and introduced the domain of 

traffic control. The research questions that this thesis addresses were then introduced, as were the 

principal contribution of this work.  

In Chapter 2 an analysis of the RL and traffic control domains was provided so as to equip the reader 

with the background information necessary to place the work of this thesis into context. We introduced 

rational software agents and their environments and then detailed learning algorithms used to optimize 

agent behavior when the environment is modeled as a Markov Decision process (MDP). After providing 

background information into the traffic engineering domain we present a number of classical approaches 

to traffic control as well as Artificial Intelligence (AI) based approaches, with particular focus on RL 

based approaches.  

In Chapter 3 we presented a set of requirements for a novel learning based intersection agent 

coordination method. We then described the motivations behind the design decisions made during the 

development of such a method. This method is called Qoordination. We described the design of this 

method in detail with particular focus on its Multi-Layer Hashing (MLH) utility function.  
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Chapter 4 presented our simulation-based evaluation platform as well as our Qoordination 

implementation. The evaluation platform is based upon the industry standard PTV VISSIM microscopic 

traffic simulator. In developing our Qoordination agents we implement a traffic control framework that 

offers the flexibility necessary to experiment with different design elements. Being able to experiment 

with elements such as different learning algorithms e.g. Q-Learning, SARSA, ACRL, ADP, etc. 

facilitated the design of a suitable final solution. The Qoordination agent implementation interfaces 

directly with the VISSIM simulator using the programming API that it provides. 

In Chapter 6 we presented our evaluation and analyses of Qoordination as an approach to intersection 

controller agent coordination. This evaluation is performed using our VISSIM simulation-based 

evaluation platform. After having presented the evaluation objectives and metrics the different traffic 

control methods to be implemented by the Qoordinated agents were presented. Important parameters set 

during evaluation experiments were then given. We then described a set of evaluation experiments. We 

discussed and analyzed each of their results in turn. We found that the positive effects of coordination on 

traffic flow increase as the network size increases and as the traffic flow levels increase. In networks of 

5x5 intersections under heavy traffic flow levels queue lengths were reduced by 63% and average waiting 

times by 76% when compared to the same traffic control method, i.e. Round Robin, that did not use any 

form of coordination. These savings are at a similar level to pre-optimized coordination. Our analysis has 

also highlighted that the positive effects of coordination are again increased as the complexity of the main 

traffic corridor increases. In an experiment that we present with a complex traffic corridor path 

Qoordination leads to reductions in queue length of 70% and in average waiting times of 83% when 

compared to uncoordinated control. In this scenario average vehicle speeds throughout the network were 

increased by 50 times those of vehicles traveling through an uncoordinated network. We ended this 

chapter with an analysis of the MLH utility function’s ability to perform generalization and abstraction 

for increased learning rates.  

6.2 Contributions 

This thesis addresses two main research questions and in so doing makes a number of important 

research contributions. The first of these questions is: How can autonomous intersection agents learn to 

coordinate their actions so as to create dynamic progressive signal systems within dynamic transport 

networks? As a solution to this question we have designed and developed the Qoordination method of 

intersection agent coordination. Qoordination is a novel Q-Learning based method that enables the 

creation and maintenance of progressive signal systems along main traffic corridors that run through 

transport networks. Through analysis of the Qoordination method we have found that it is able to 

establish progressive signal systems that are able to adapt to changing traffic flow levels and changing 
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traffic flow directions. We have been able to prove that the positive effects of Qoordination on traffic 

flow increase as the network size increases, as the traffic flow levels increase, and as the complexity of 

the main traffic corridors increase. In networks of 5x5 intersections under heavy traffic flow levels queue 

lengths were reduced by 63% and average waiting times by 76% when compared to the same traffic 

control method, i.e. Round Robin, that did not use any form of coordination. In an experiment that we 

present with a complex traffic corridor path Qoordination leads to reductions in queue length of 70% and 

in average waiting times of 83% when compared to uncoordinated control. In this scenario average 

vehicle speeds throughout the network were increased by 50 times those of vehicles traveling through an 

uncoordinated network. 

The second research question that this thesis addresses is: How can RL agents rapidly learn accurate 

utility functions within dynamic multi-agent environments? As a solution to this question we present a 

MLH function approximation method. MLH is a novel locality-sensitive hashing inspired technique for 

rapid learning. Its rapid learning abilities stem from its ability to perform generalization and abstraction. 

We present MLH’s design as a method of function approximation that is ideal for use in RL algorithms. 

After presenting its implementation we analyze MLH’s ability to perform generalization and abstraction 

that enables it to perform rapid learning in large dynamic multi-agent environments such as the transport 

networks addressed in this thesis. 

A further contribution of this thesis is the solid methods used in evaluating the Qoordination method. 

Evaluation is performed using a novel traffic control evaluation platform. The industry standard VISSIM 

microscopic simulator is fully integrated into this novel platform so as to ensure accurate and reliable 

results (Fellendorf & Vortisch, 2010). This platform evaluates the effects of coordination on various 

traffic control methods in a novel fashion. This is done by automatically generating numerous simulated 

transport networks of incrementally increasing size. Various methods of traffic control are then run within 

these networks both with and without Qoordination. These methods of traffic control are as follows: 

Round Robin (Salkham et al., 2008), a basic SCATS (Sims & Dobinson, 1980) based adaptive approach 

to traffic control named SAT (Richter, 2006), and a single-agent Q-Learning based traffic control method.  

Throughout our evaluation experiments we were also able to observe interesting phenomena that are 

not as accurately measurable and were thus not included in our results and analysis. An example of one 

such phenomenon is that the establishment of coordinated traffic control within transport networks leads 

to the emergence of behavior such as traffic congestion being kept to the edges of the transport network 

while the center of the network is kept free flowing.  
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6.3 Future Research 

During the Qoordination design process a number of areas that have not yet been addressed and that 

are not within the scope of this thesis were identified. 

The introduction of the Multi-Layer Hashing (MLH) function approximator is a major contributing 

factor to this thesis. Although Reinforcement Learning (RL) algorithms were initially designed with 

lookup table based utility functions in mind this approach is limited as it is not able to perform 

generalization and abstraction. This results in slow learning times. Artificial Neural Networks (ANN) can 

perform generalization and abstraction and are thus much faster to learn, yet their application to RL is 

somewhat of an art. Additionally they are a black box approach that is difficult to debug and see what 

exactly is being learned. In this thesis we developed MLH as a function approximator that is particularly 

suited to RL. Using MLH RL equations only have to be adjusted slightly. MLH is also able to perform 

generalization and abstraction. In this thesis we were able to analyze the MLHs of a number of traffic 

controllers during their learning processes. We observed not only the effects of what MLH was learning 

but were able to graphically represent these traffic controllers’ state spaces with regards to the actions that 

they would select for execution. We were thus able to evaluate MLH in context of its use in 

Qoordination. MLH has great potential as a function approximator, and in particular as a RL utility 

function and as such it deserves a complete evaluation in comparison to alternative function 

approximators. As future research we intend on performing a full comparative analysis of MLH and 

related approaches. As well as performing experiments using the simulation based evaluation platform 

introduced in this thesis we also plan on comparing the performance of MLH based RL with that of the 

DeepMind deep neural network base RL (Mnih et al., 2015) when applied to general learning. DeepMind 

have released to the public the deep learner source code as well as the evaluation platform on which it 

runs. This provides other researchers with the ability to directly compare the performance of their own 

learning algorithms with that of the deep learner in the same scenarios that were used in their paper 

published in Nature. This provides a great opportunity to highlight the value of MLH as a RL function 

approximator in comparison to not only simpler methods like lookup tables but also to a high profile 

method. This comparison will include such metrics as learning time, processor requirements, memory 

requirements, ease of setup, etc.   

Initial results and analyses that we have had published (Fagan & Meier, 2014) comparing Temporal 

Difference (TD) to Adaptive Dynamic Programming (ADP) learning algorithms in both single-agent and 

multi-agent scenarios showed that the rapid learning characteristic of ADP approaches may give them 

significant advantage over TD approaches in multi-agent settings. These results were obtained using a 

basic traffic ballancing simulator. To confirm these findings requires an implementation of an ADP based 

traffic coordination method that can be compared to a similar TD based traffic coordination method. This 
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design, implementation, evaluation, and comparison is out of the scope of this thesis yet its results could 

be quite significant as they would show that model based approaches to learning are more suitable to 

multi-agent learning than model free approaches. 

Qoordinated traffic control takes into account grid networks of signalized intersections such as is 

common in larger cities such as Manhattan. Uncontrolled intersections are not however specifically taken 

into account and are thus not included within our evaluation platform simulations. The inclusion of 

uncontrolled intersections into the transport network would overturn the design decision to have the 

environment modeled as being fully observable. A partially observable Qoordination method would make 

for a more realistic system that would be more likely to be adapted by traffic engineers. A more diverse 

set of simulated traffic networks could then be generated for use in evaluation. 
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