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Abstract

Accurate information sources are vital prerequisites for good decision making. In this

thesis we consider a multiple participant setting, where all decision makers (DMs) have

a collection of neighbours with whom they share their beliefs about some common

relevant uncertain quantity. When determining which course of action to follow a DM

takes into account all the information received from her neighbours. Over time, in

light of the returns observed from choices made, DMs update their own beliefs over

the uncertain event, and also adjust the degree of consideration that they afford to

the opinions of each neighbour based on the level of reliability that the information

they provide is ascertained to have. Much of this thesis is concerned with constructing

a method that incorporates both of these learning facets in a dynamic fashion. This

technique, termed the Plug-in approach, is motivated and derived, and attempts are

made to justify its use by consideration of some attractive properties it obeys, in

addition to studies conducted using both simulated and real data which compared its

performance to some rational alternatives. Generalisations of this method are also

provided to a setting where DMs specify their opinions nonparametrically rather than

using probability distributions, as well as in a group setting where utilities as well as

opinions must be amalgamated. Two subjective approaches are also briefly discussed,

before we conclude with numerous suggestions for further research in this field.
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Chapter 1

Introduction

When individuals make decisions they generally do so in the face of uncertainty. Deci-

sion makers (DMs, who are assumed feminine throughout this thesis) invariably have

some unsureness about the underlying process governing their decision environment,

e.g., they may not know the probability of a medical operation being successful, or

the number of cars that will pass along a motorway during rush hour. Generally the

language of probability is that used to express this uncertainty. It seems intuitive that

there is a connection between the accuracy of the relevant information that a DM pos-

sesses and the satisfaction that she will derive from the outcome resulting from the

decision that she makes. In this thesis we conjecture that it is beneficial for a DM to

absorb information from as many distinct sources as possible, and to assimilate these

into her decision process, incorporating additional knowledge into her task. Having

made a decision, a return is witnessed. We are concerned with two types of learning

that can subsequently occur. Firstly, a DM can update her own opinion about the

inherent decision uncertainty in light of this new evidence that has become available

to her. Secondly, she can reassess the respective perceived reliability of her various

information sources, who (in the context that we are concerned with) are a collection

of fellow non-competing DMs. Much of the work which follows aims at developing a

rational methodology that facilitates these two forms of learning and supplies a DM

with as accurate an opinion as possible to use in her decision task, as well as providing

justifications for the use of this approach in practice. We primarily assume individuals

specify their uncertainty via probability distributions, but we also provide an analogous

nonparametric method achieving these goals.

1



Above we have provided a broad outline of the original research that is contained

within this thesis. Below we supply detailed comments on the contextual setting that

this work is placed within, clearly outline the primary aims of the study conducted,

and highlight the research methodology that was adhered to throughout.

1.1 Contextual Setting

Every day important decisions with long-term repercussions are made. The United

Nations must reach resolutions on what actions to take concerning global conflicts,

governments of countries must determine how capital should be budgeted across their

departments, medical organisations must choose which drug trials should be funded

and which should not. In scenarios such as those illustrated above it seems unwise for

this decision to be made by a single individual, or at least to be made based solely

on the judgment held by one. A collection of people will generally possess a broader

knowledge span that a single person, and hence more pertinent information can be

incorporated into a decision making task by considering the opinions of a multiple

individuals. Additionally, on a practical basis, a crucial decision being made by one

person alone would lead to a great deal of accountability being placed on the shoulders

of that individual, something that can be lessened by a more collective process. Once

we concur that decision making via the amalgamation of several points of view holds

certain advantages over the alternative, the obvious question concerns the manner in

which such a decision should be made. In practical application there are numerous

methodologies that are likely to be employed.

Majority rule is an extremely straightforward approach, in which individuals vote

for their most favoured choice from a set of possible actions, with the action receiving

the greatest number of votes deemed to be best (in some sense) by the collective. This

is termed an ordinal decision scheme, with all emphasis explicitly placed on the rank-

ing order of decisions, rather than the degrees of preference inherent within individual

rankings and the ranking of the group as a whole. We shall return later in thesis (no-

tably in Section 5.4) to discuss the issues and potential pitfalls entailed within schemes

of this nature, but only comment now that they may not provide a complete picture

of the true attitudes and outlooks of those involved regarding the viable alternatives
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considered.

Different individuals will commonly hold diverse opinions based upon their con-

trasting degrees of knowledge over the uncertainty inherent within the forthcoming

decision to be made. Such contrasts may arise due to their potentially disparate back-

grounds; for instance their educational or socio-economic circumstances, how long they

have been involved with a particular organisation, if they have participated in a process

of this nature before, or if they have a vested interest in seeing a particular decision

chosen. Methods exist in which the individuals comprising a group will attempt to

bridge their intrinsic knowledge gaps by sharing their respective opinions and their

personal underlying rationales that led to their formations. Once they have listened

to the thoughts of those around them, individuals may potentially alter their own

opinions, perhaps conceding that they previously were ill informed about the topic at

hand and deferring to the wisdom of colleagues perceived to be wiser. Having done

this, the optimal decision is chosen by the group via discussion, which continues until

a collective consensus is happened upon. We shall further discuss methodologies of

this nature (known as behavioural methods) in more depth in our literature review of

Section 2, but for now only note that they too have complications ingrained within

them, perhaps most significantly being their susceptibility to biases and their potential

lack of rigour.

An obvious technique to be implemented is arguably the most democratic appearing

methodology, in which the opinions of all individuals are given an equal consideration.

On the surface there are certainly advantages apparent in approaches of this nature.

All participants are being treated equally, with no favouritism evident. The concept of

the wisdom of crowds is well known, with an averaging of opinions over an uncertain

quantity commonly leading to a more accurate estimate than if this was provided by

a single individual. Yet, as we shall discuss in our literature review of Section 2, and

numerous times in our findings of Section 4, there are clear foibles entailed in this

approach. If some individuals possess beliefs that are extremely inaccurate then these

have the potential to outweigh the beliefs of their more accurate peers, hence skewing

the collective opinion away from the truth. The greatest strength of this approach is

its simplicity of implementation, yet there are downsides that may occur as a result of

choosing to apply it.
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The clearest shortcoming of this equal weighting scheme is that the knowledge of

inaccurate individuals are given as much consideration as that of accurate individuals.

The easiest way to circumnavigate this would be to listen solely to the individual who

is deemed to possess the most reliable point of view, hence ensuring that unsound

opinions are discarded. Yet, even discounting our cautioning above about making

decisions based on a sole opinion, this leads to another major complication: how can it

be assessed who the most accurate individual is? All members of the collective believe

the opinion that they hold is accurate; if not they would not hold it, or would change

it to one that they felt was a more accurate reflection of the true state of nature.

It is extremely unlikely that any individual will willingly have their opinion discarded

entirely from the decision making task, especially considering that they may personally

believe it to be the most accurate of those proffered.

1.2 Research Aims

Given the above discussion concerning the contextual setting for our research, this

thesis can be seen as having three primary aims. First and foremost we aspire to

create an original decision making methodology, which takes steps towards solving the

complications that are inherent in the schemes discussed above. We mentioned the

shortcomings of decisions being made by a single individual, and hence our approach

shall be based upon the composition of a collection of (potentially diverse) opinions and

judgments from various sources. We commented on the issues inherent with behavioural

techniques, and therefore the scheme that we develop shall be strictly mathematical in

its formulation. An equal weighting scheme seems intuitive, but suffers from the fact

that accurate opinions may be outweighed by inaccurate opinions. However, at the

other end of the spectrum, it seems unwise to listen to a single individual deemed to

be most accurate, due to the complications in choosing such an individual, as well as

the aforementioned problem of basing a decision on a sole opinion. Hence our objective

is to create a method that accounts for the opinions of all individuals in an unequal

fashion. We aim to weight the opinions of individuals, and to set these weights as

proportional to the perceived level of knowledge of participants. Of course, as we shall

see in great detail in Section 2.7, this broad concept is not itself a novel idea, but we will
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expand over the course of this thesis on reasons why our developed technique is indeed

truly original, and the advantages it can be seen to hold over existing alternatives.

Once we have developed a methodology of the nature discussed above our second

aim is to provide justification for its use in practical contexts. We want to be able to

pragmatically advocate for its application in realistic decision scenarios. It is our desire

for our approach to be mathematically logical, in the sense that it obeys properties

that a rational decision maker would deem important for an internally coherent decision

process to adhere to. Hence we intend to investigate the relationship between some at-

tractive statistical and mathematical attributes (for instance the Bayesian paradigm)

and our proposed methodology, and to confirm that this methodology does indeed

meet these criteria. In addition to justification by mathematical argument we also

want to provide data-driven validation, in order to highlight the practical merits of

our approach. We mentioned above that equal weighting, listening solely to the indi-

vidual deemed to be most reliable in a collective, and not taking any other opinions

into account at all are three frequently applied practices. We plan to compare the

performance of our methodology to each of these alternatives (using a suitably derived

comparative metric) to demonstrate the superiority of our technique. In Chapter 4

we see how this is achieved using a mix of simulated data and real world data. By

illustrating the merits of our approach against commonly used alternatives we hope to

underline the benefit of applying it in practical applications in order to increase the

quality of the decision process.

Our final primary aim is to provide some generalisations to our method, in order

to increase its flexibility and consequentially broaden the range of scenarios that it is

appropriate for usage in. Individuals may express their uncertainty concerned some

unknown commodity of interest in a variety of formulations, from a simple point esti-

mate to a fully parameterised probability distribution. Much of the work in this thesis

pertains to this latter case (with justification for this choice contained therein) but we

investigate in Chapter 6 if the general outline of our principal methodology can be ex-

tended to a significantly simplified setting, potentially increasing applicability (albeit

at the potential determent of the resulting decision quality). Arguably a strength of

the method that we derive is its rigid objectivity. However in Chapter 7 we develop

two alternative approaches that adhere to the same generalised ethos of our primary
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technique but that allow for different degrees of subjectivity to be entailed in their

mechanisms. These modifications, different flavours of our central methodology, allow

for our decision making scheme to be applied in a variety of contrasting settings rather

than a single specific one.

1.3 Research Methodology

We now progress to detail the research methodology that was followed during the

course of our research. Statistical decision theory has a rich history, formally dating

back at least as far as the 1730s. In order to be able to write knowledgably about

this topic, and the various nuanced subsets thereof, a reading of the seminal texts

was required. These are discussed in detail in the literature review of Section 2. We

began by consideration of the most basic decision making fundamentals (for instance

the notions of probability and utility), before expanding upon these in an incremental

fashion to explore increasingly deeper matters (such as decision making under imprecise

probabilities and the complications inherent within any group decision making scheme).

As indicated above, our foremost aim was in the development of a scheme suitable for

use in a decision context consisting of multiple individuals with differing degrees of

information about the uncertainty at hand. This concept of combining opinions or

judgments itself has an abundant amount of publications attributed to it. In Section

2.7 we thoroughly examine the most notable of these, highlighting ways in which they

contrast in their execution from what we desire, as well as detailing the contrasts

between them, and the various perceived advantages and disadvantages that they can

be said to hold over each other. The comprehensive literature review of Section 2 can

thus be seen as having a dual function: it provides the interested reader with enough

technical details and knowledge that they should be able to comfortably follow the

original research which it precedes, as well as providing adequate motivation for the

development of our novel decision making methodology.

It is in Section 3 that we derive this decision making methodology, explaining

comprehensively how weights (which represent the perceived accuracy of the decision

makers they are attached to) are calculated and updated over time, as well as how users

may modify their opinions in light of new information witnessed in a statistically coher-
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ent fashion. Having produced our approach our desire was then to provide some formal

justification for it. We mentioned above that our approach is strictly mathematical,

rather than behavioural, and hence an obvious action was to assess its performance in

relation to some mathematical principles, and to see if it adhered to these. Crucially,

Section 2.6 contains discussion on how it is formally impossible to create a scheme that

can adhere to the entirety of a set of attractive criteria. Therefore we simply try to offer

a selection of desirable properties that our technique follows, without every making any

claims that these are indeed truly exhaustive. Section 3.2 delves into how our approach

fits into the Bayesian perspective, an important coherency property for those who wish

to adhere to this paradigm while updating weights/opinions over time. Section 3.5

presents four simple and attractive attributes that our method obeys. These pleasing

mathematical characteristics provide some initial basic justification for our technique.

As discussed in our aims earlier in this chapter it was our goal to provide a strong

justification for the method that we derive. The attractive coherency properties cer-

tainly are a step in this direction, but arguably not a full enough one. In order to

increase the rigorousness of our validation we strove to use data, and to compare our

technique to the aforementioned alternative approaches. An initial question concerned

the metric of comparison to be used. We consulted the seminal paper by Gneiting and

Raftery (2007) in order to be aware of the broad spectrum of possible metrics that could

be considered, eventually choosing one that we felt most appropriate for our setting.

Due to the novelty of our approach there were no pre-existing data sets constructed

in the commensurable fashion desired. Hence we simulated data to examine a broad

range of cases, varying the number of decision makers, the number of decision returns,

the confidence and accuracy of predictions, and the statistical distributions used to

represent these opinions. We compared our approach to the considered alternatives

under the chosen metric. The TU Delft Expert Judgment Data Base is a collection of

data sets that have arisen in realistic contexts, and have been used to provide justifica-

tion for one of the most commonly applied opinion pooling methodologies, the classical

method of Cooke (1991). Although the manner in which this data was collected does

not fully align with the required specifications of our context of interest we attempted

to suitably modify it in order to make it applicable for our approach. Having done this

we were able to provide some additional justification for our approach, using real-world
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data rather than simulated data, in order to strengthen the merits of our technique.

We briefly comment that methods of justification of the ilk discussed here are

repeated later in the thesis to deal with the various generalisations of our approach

that we develop: we consider a set of attractive properties that our group extension

obeys in Chapter 5, look at some axioms that our nonparametric approach in Chapter 6

adheres too in addition to consideration of a brief simulation study, before considering

some attractive coherency properties that our primary alternative subjective approach

in Chapter 7 obeys.

1.4 Outline of Thesis Chapters

We conclude our introduction with a brief summary of the the material contained in

the chapters of this thesis. In addition to this content there are several appendices,

highlighted in the main body of writing, that provide samples of code used, calculations

omitted, results summarised in the text, and tangential discussion points.

• Chapter 2 - Literature Review: The fundamental aspects of statistical decision

theory that will be used throughout this thesis are formally introduced. The

concept of precise probability is discussed, before the subtler notion of utility

theory is treated, as well as the relationship that exists between these two ideas,

and some additional comments on risk aversion. Maximisation of expected util-

ity is reviewed, with reference to its axiomisation and a brief numerical example.

Imprecise probability is then explored and a short numerical example given, as

well as discussion on how decisions can be made in the face of this additional

uncertainty, and a brief note on how expectation can be considered as a primi-

tive construct in lieu of probability. Group decision theory is then considered, as

well as the issues from Arrow’s Impossibility Theorem (Arrow, 1950) and notable

attempts to circumnavigate these. Finally, a detailed discussion takes place on

how a collection of opinions can be combined into a single opinion. The different

philosophies underlying methods of doing this are introduced, and the strengths

and weaknesses of various potential approaches supplied. Considerable attention

is paid to the classical method of Cooke (1991), and the TU Delft Expert Judg-

ment Data Base used to validate this, as well as the work of Karny & Guy (2004)
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which we attempt to generalise in the following chapters.

• Chapter 3 - The Plug-in Approach: This chapter denotes the commencement

of the original research contained within this thesis. The notation used in the

remainder of the chapters is formally defined, and some further heuristic justifi-

cation provided for the concept of linear opinion pooling. The idea of Bayesian

updating is introduced, and discussion takes place in relation to three commonly

implemented conjugate cases which are used for illustration throughout. A frame-

work is supplied for decision making in the environment of interest, termed the

Plug-in (PI) approach. Details are provided regarding how individuals are ini-

tially given equal weights, before these are updated in light of their perceived

accuracy after returns are witnessed. A short numerical example demonstrates

PI weights in a Beta-Binomial conjugate setting. A discussion then takes places

relating to the Markovian elements of the PI process and two attractive Bayesian

properties it adheres to, as well as its relation to scoring rules. Some coherency

properties that the method obeys are examined, a detailed numerical example is

provided, and some asymptotic properties of weights and distributions are men-

tioned. Sample calculations are included regarding the distribution that weights

follow in the Normal-Normal conjugate case. The chapter also contains some

comments pertaining to the relatively straightforward extension of this approach

to a more generalised setting. We briefly compare our method with Bayesian

Model Averaging (Hoeting et al., 1999) and discuss some limitations on the ap-

plication of the PI approach.

• Chapter 4 - Data-based Justifications: Leading on from the somewhat informal

justifications of the PI approach in the previous chapter, we aim to provide

a more rigorous basis for its use. This is attempted using two types of data,

simulated and real. Data is simulated for the three distributional cases previ-

ously introduced, and the PI approach is compared to a collection of rational

alternatives under a particular probability density metric. We also provide the

theoretical calculations underlying these simulations, and demonstrate how our

simulated proportions asymptotically approximate the true probabilities of the PI

approach being superior to alternatives. Next, the performance of the method is
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assessed using the previously introduced TU Delft Expert Judgment Data Base.

Discussion is provided on the contrast between the nature of this data and that

naturally arising within the PI approach, before rationalisation is provided for

the methods used to bridge these contrasts. The performance of the PI approach

is compared for each data set in turn to the performance of alternatives, with the

meaning of these results interpreted.

• Chapter 5 - Group Decision Making: This short chapter discusses how the PI ap-

proach can be applied in a group decision making context. This entails combining

utility functions as well as probability distributions, with commentary provided

on how this may be done in a manner ensuring commensurability (Boutilier,

2003). The proposed group decision making process is considered in relation to

each of the five axioms of Arrow (1950). The chapter concludes with comments

on the links between our method and Utilitarianism (Harsanyi, 1955), and the

merits of cardinal, rather than ordinal, decision ranking schemes.

• Chapter 6 - Nonparametric Extension: Up to this point it has been explicitly

assumed that DMs can supply fully parameterised probability distributions to

quantify their uncertainty, with the PI approach being reliant upon this premise.

Here we discuss how this assumption may be weakened, and consider a far more

simplistic method of nonparametric belief specification. The concept of Nonpara-

metric Utility Inference (Houlding & Coolen, 2012) is introduced. Arguments are

provided regarding how the rules of this method may be augmented for an opinion

updating scenario, where the opinions of a DM over the expectation of the uncer-

tain quantity are represented simply by intervals, referred to as Nonparametric

Prevision Intervals (NPPI). In the context that we consider here, expectation

(i.e., prevision) naturally arises as the obvious choice of primitive construct. A

weighting methodology that explicitly learns over time in multiple ways is sug-

gested, and a detailed heuristic justification is given for its use, invoking the

scoring rule discussed in Gneiting & Raftery (2007). A numerical example illus-

trates how this method may be used in practice. A suitable metric is proposed,

before a brief simulation study demonstrates the potential merit of our approach.

• Chapter 7 - Potential Subjective Alternatives: The PI approach is said to be
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fully objective, in the sense that the weights it produces are based solely on

the data that is witnessed. In this short chapter two alternative methods that

incorporate considerable subjectivity are motivated and derived. The Differing

Viewpoints approach explicitly models the utility function of the individual as-

signing weights, with, for instance, a highly risk prone DM assigning a particular

prediction a substantially different weight than the weight assigned by deeply risk

averse DM. Some formal statements are provided in relation to the risk aversion

metric introduced in Chapter 2, and an appropriate performance metric is de-

tailed. The Kullback-Leibler approach, in which a DM assigns higher weights to

those individuals whose beliefs closely mirror her own, is briefly discussed and its

strengths and weaknesses examined. The chapter concludes with a short example

comparing the performance of the three original methodologies provided in this

thesis.

• Chapter 8 - Summary and Further Research: This final chapter of this thesis gives

a brief summary of the research conducted and the conclusions reached therein.

Various potential extensions for further work are offered. An application to a

social network setting is suggested, with a notation and linear opinion pooling

form provided. A discussion takes place about sequential decision problems,

most notably concerning the relation to the polynomial utility class (Houlding

et al., 2015), and its possible implementation in the setting from this thesis. A

method of decision making with constant learning is suggested using not only

imprecise probabilities (as in Chapter 6) but also imprecise utilities (for instance

over novel returns), allowing for additional uncertainty for users regarding the

specification of relevant quantities. Another idea for complementary research is

the introduction of a non-flat hierarchy inherent within a group (e.g., a govern-

ment), where the weight assigned to individuals incorporates their rank. We also

mention learning over time in relation to a series of correlated random quantities,

that are either realisations of distinct random variables (with θ potentially being

multivariate) or realisations of a single dynamic variable, rather than the static

quantity considered in this thesis. Links with the concept of value of information

(Howard, 1966) are also alluded to.
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Chapter 2

Literature Review

The two pillars upon which statistical decision making is built are probability and

utility, both of which shall be given substantial treatment in what follows. Initially we

focus on precise probabilities, but we will later turn our attention to imprecise prob-

abilities which shall become relevant in Chapter 6. We discuss maximising expected

utility as a decision making criteria, as well as the objections raised, and alternatives

proposed, to this approach. Comments are made regarding decision making methodolo-

gies in an imprecise setting. We analyse group decision making, issues associated with

implementing this fairly (in terms of Arrow, 1950), and some alternative approaches

put forward, which will be discussed again in Chapter 5. Lastly we review methods of

opinion pooling, referencing the various schools of thought on manners by which this

can be done, as well as advantages, disadvantages and justifications for these.

2.1 Precise Probabilities

Probability is a method of quantifying uncertainty. In a non-trivial decision making

framework uncertainty will be faced by a DM, who is unsure of the exact consequences

that will result from her decisions. Probability describes the unsureness of a DM

about the environment she inhabits. In this thesis we consider only DMs with imper-

fect knowledge, i.e., those who are unsure about some aspect of the true mechanisms

controlling their areas of interest, e.g., how a stock price fluctuates, or how many pas-

sengers will book a particular flight. Kolmogorov (1950) provides a strict axiomatic

framework for probability, with coherent probabilities adhering to his axioms. Here we
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provide these, where Θ is the space of all possible events, θ is a particular event, and

P(θ) is the probability of θ occurring.

• Axiom A1: If θ ∈ Θ then P(θ) ∈ R and P(θ) ≥ 0.

• Axiom A2: There is a universal event Θ∗ ⊆ Θ such that P(Θ∗) = 1.

• Axiom A3: For a set of countable mutually exclusive events θ1, θ2, . . . ∈ Θ

P(θ1 ∪ θ2 ∪ . . .) =
∞∑
i=1

P(θi)

Further rudimentary properties can be derived from these, e.g., monotonicity and

bounds of probability. A set of probabilities failing to meet A1-A3 risks falling prey to

a “Dutch book” (e.g., Maher, 1993), which occurs when a DM enters a wager she is

doomed to lose irrespective of what outcome occurs. The probability associated with

the occurrence of an event θ can be considered the price at which a rational DM would

be willing to buy (or equivalently sell) a bet that pays one util (shortly to be defined)

if θ occurs, and zero utils if not. When we discuss imprecise probabilities we shall see

an intuitive extension of this betting analogy.

2.2 Utility

2.2.1 Expected Value Theory

Early probability studies were centred on gambling, i.e., in determining how likely a

player was to win a game and what was a fair stake for them to pay to play. Arguably

the foundations of probability theory arise from a series of letters between Blaise Pascal

and Pierre de Fermat concerning a question posed to them by Chevalier de Mere

regarding a particular game of chance. A fair stake was often considered the expected

value of the outcome of playing the game. This method had shortcomings, highlighted

by Bernoulli (1738) in the St. Petersburg Paradox. This describes a game in which

a player tosses a fair two-sided coin, and wins a pot (doubling with each success) for

every consecutive toss resulting in heads. She receives the pot the first time she tosses

a tail. The initial pot is $2. What is a fair stake? Equating this to the expected prize,
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E, we find

E =
1

2
× 2 +

(1

2

)2

× 22 +
(1

2

)3

× 23 +
(1

2

)4

× 24 + . . . =
∞∑
k=1

1 =∞

This is clearly a ridiculous choice of fair price, indicating that the expected prize from

playing is an infinite sum. Hence we see that expected value theory is not always

a logical decision making criteria, as here a player will give any finite sum to play.

Bernoulli used this argument to motivate a new decision making criteria.

2.2.2 Utility Hypothesis

Bernoulli (1738) wrote that “. . . the determination of the value of an item must not be

based on the price, but rather on the utility it yields. There is no doubt that a gain of

one thousand ducats is more significant to the pauper than to a rich man, though both

gain the same amount”. He said that DMs should specify their own utility functions, u,

that describe their personal attitudes over outcomes, risks and gambles. Formally u is

a function, u : R→ R, from the set of possible decision returns R, to the real numbers

R. For every possible decision a numerical value (measured in units called utils) can be

calculated, with the optimal decision returning the highest value, in a process formally

defined in Section 2.3.1. There are many advantages to this method in comparison

with expected value theory, e.g., it allows for personalistic interpretation of the merits

of outcomes. It will generally yield different numerical values (and hence decisions) for

different DMs depending on their utility functions, opinions and (in financial settings)

monetary situations. It can be argued as a more useful criteria than expected value

theory as it incorporates much more information into the decision making process.

2.2.3 Measures of Risk-Aversion

A DM’s utility function, u(r), measures the satisfaction she derives from returns r ∈ R,

and reflects her attitude over gambles, i.e., if she is risk-averse, risk-neutral or risk-

prone, and to what degree. Suppose a DM has a fortune of f units, and must determine

whether to play a game, raising her fortune to f +m units, or decreasing it to f −m

units, with probabilities of 0.5 respectively. Not playing the game has expected utility

of u(f), while playing has expected utility of 0.5u(f +m) + 0.5u(f −m). She is
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• risk averse if u(f) > 0.5u(f +m) + 0.5u(f −m), i.e., she opts not to gamble, and

indeed would be prepared to pay to avoid taking the gamble.

• risk prone if u(f) < 0.5u(f + m) + 0.5u(f − m), i.e., she opts to gamble, and

indeed would be prepared to pay to take this gamble.

• risk neutral if u(f) = 0.5u(f +m) + 0.5u(f −m), i.e., both decisions are equally

favourable, and she would neither pay to take or avoid taking the gamble.

A utility function that is risk-averse over a range is concave over this. Convexity im-

plies risk-proneness and a straight line implies risk-neutrality, e.g., Fig. 2.1. Formal

measures exist to determine which classification a function falls under (and to what

degree), perhaps most commonly the Arrow-Pratt absolute risk-aversion (ARA) coef-

ficient, from Arrow (1965) and Pratt (1964), given by

A(r) = −u
′′(r)

u′(r)
(2.1)

Fig. 2.1: Contrasting utility functions over the range [1, 10]. From left to right we

have (a) the risk-averse (concave) function u(r) = ln(r), (b) the risk-neutral (straight)

function u(r) = 2r + 1 and (c) the risk-prone (convex) function u(r) = r3.

As two examples, u(r) = log(r) leads to A(r) = 1
r
, positive for all possible values

of r (as logarithms take only positive input), implying risk aversion. By contrast,

u(r) = r3 yields A(r) = −2
r
, indicating risk proneness/aversion for positive/negative

values of r respectively. Functions of the form u(r) = 1 − exp(−αr) give A(r) = α,

termed Constant Absolute Risk Aversion (e.g., Rabin, 2000), with those leading to
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A(r) = 1
ar+b

(for a, b ∈ R) exhibiting Hyperbolic Absolute Risk Aversion (Merton,

1971). Higher order generalisations of ARA such as absolute prudence and absolute

temperance are discussed in Kimball (1990).

2.2.4 Relationship between Utility and Probability

We briefly mention the relationship that exists between utility and probability. Each

DM has a subjective utility function u(r). While in practice elicitation of this is

difficult, theoretically it is doable due to the “twinned” relationship of (subjective)

probability and utility, discussed in French (1994), whereby it is impossible to define

one without the other. The following two formal definitions illustrate this.

• Definition: A DM’s subjective probability for the occurrence of an event is the

amount p she is willing to gamble such that she receives 1 util if the event occurs,

and 0 utils if not.

• Definition: The utility a DM assigns to an outcome r is the value p making her

indifferent between

(a) r for certain and

(b) a gamble between the best possible outcome r∗, with u(r∗)=1, with probability

p, and the worst possible outcome r∗, with u(r∗)=0, with probability 1− p.

In this utility definition the values are rescaled to the unit interval. We discuss why

this is possible in Section 2.3.3. Circularity can be noted between the two definitions.

It seems justifiable for French (1994) to refer to utility as “probability’s younger twin”.

Note both concepts are derived from the preference relation ordering, �, that we shall

shortly define.

2.3 Expected Utility

2.3.1 Decisions

We denote a set of potential decisions by d1, d2, . . . , dn ∈ D, where D is the set of

admissible decisions, and each di is a distinct action. The satisfaction derived from a

decision is based upon which state of nature occurs in conjunction with it, with DMs
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uncertain over which state will obtain. For example, the merits of a trip to a restaurant

are dependent upon whether the chef is a good cook or not. One of these states is true,

but a DM is uncertain which one it is prior to choosing to eat there. Suppose there are

m potential mutually exclusive and exhaustive states of nature, θ1, θ2, . . . , θm ∈ Θ. A

DM states her utilities over all possible outcomes (Table 2.1), where u(di, θj) denotes

the utility resulting from making decision di and the occurrence of θj.

Table 2.1: Cross-tabulation of utilities for D and Θ.

θ1 θ2 . . . θm

d1 u(d1, θ1) u(d1, θ2) . . . u(d1, θm)

d2 u(d2, θ1) u(d2, θ2) . . . u(d2, θm)
...

...
...

...
...

dn u(dn, θ1) u(dn, θ2) . . . u(dn, θm)

The expected utility of a decision di is the sum over the products of the probability

of each possible return occurring and the utility value associated with this, i.e.,

E[u(di)] =
m∑
j=1

u(di, θj)P(θj) (2.2)

This sum is replaced by an integral if returns and/or probability distributions over

returns are continuous. The optimal decision, d∗, maximises Equation (2.2), i.e.,

d∗ = arg max
i

E[u(di)] (2.3)

Lindley (1991) comprehensively treats this approach. In the framework discussed

here, it is assumed that DMs can both probabilistically quantify uncertainty over po-

tential returns and specify exact utility values corresponding to these. Realistically

this may often not be the case. In the absence of these abilities elicitation methods

exist to help discover these unknowns, e.g., the techniques of O’Hagan (1998) are often

used for belief elicitation. Regarding utility, a method by which preferences can be

ascertained over time is adaptive utility, discussed in, e.g., Cyert and DeGroot (1975),

and Houlding & Coolen (2011), and modified to incorporate extreme vagueness in the

priors over parameters in Houlding & Coolen (2012). Chajewska et al. (2000) also

contains information on suitable utility elicitation methods.
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2.3.2 Example using Precise Probabilities

A DM must choose whether to play football (d1), rugby (d2) or snooker (d3). There are

two possible mutually exclusive states of nature: the weather will be sunny (θ1) or rainy

(θ2), with Table 2.2 containing her utilities. Suppose she assesses P(θ1) = 0.7 implying

P(θ2) = 0.3. Using Equation (2.2) she finds that E[u(d1)] = 0.73, E[u(d2)] = 0.48 and

E[u(d3)] = 0.7, i.e., her optimal decision is d1, to play football.

Table 2.2: Cross-tabulation of utilities for D = {d1, d2, d3} and Θ = {θ1, θ2}.

θ1 θ2

d1 1 0.1

d2 0.6 0.2

d3 0.7 0.7

2.3.3 The axiomatisation of von Neumann and Morgenstern

The work of von Neumann & Morgenstern (1944) axiomatically justified utility theory.

They created four rational axioms. If a DM agreed with these, and was herself rational,

then she would make decisions by maximising expected utility. These axioms are:

• Completeness : For any d1, d2 ∈ D, a DM can always determine which, if either,

she prefers, i.e. either d1 � d2, or d2 � d1. The relation � implies weak pref-

erence, with d1 � d2 stating d1 is at least as preferable as d2. Indifference is

indicated by d1 ∼ d2, with � denoting strict preference.

• Transitivity : If d1 � d2 and d2 � d3 then d1 � d3, for all d1, d2, d3 ∈ D. This

ensures “money-pump” situations cannot arise.

• Continuity : If d1 � d2 � d3 then there is p ∈ [0, 1] with d2 ∼ pd1+g(1−p)d3 for all

d1, d2, d3 ∈ D, i.e., there exists a probability p making a DM indifferent between

a gamble between the best and worst outcome (with probabilities p and 1 − p

respectively) and a guaranteed intermediate outcome. Note that the operator +g

is used to denote a gamble between two outcomes rather than standard addition.
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• Independence: If d1 � d2 and p ∈ [0, 1] then, for any alternative d3, we must

have pd1 +g (1− p)d3 � pd2 +g (1− p)d3 for all d1, d2, d3 ∈ D, i.e., preference is

invariant to the introduction of independent alternatives.

Von Neumann and Morgenstern showed for a DM agreeing with these that there is a

unique (up to positive linear transformation) utility function such that:

• u(d1) ≥ u(d2) if and only if d1 � d2 for all d1, d2 ∈ D.

• For all d1, d2 ∈ D, and any p ∈ [0, 1], u(pd1 +g (1− p)d2) = pu(d1) + (1− p)u(d2).

Hence a formal justification was given for maximising expected utility, advocating it

as a method for DMs deemed rational in some sense. Expanding on the invariance of

utility functions to positive linear transformations, a DM need not be concerned if she

specifies her utility function as u1(d) or u2(d) = au1(d) + b for a, b ∈ R and a > 0,

i.e., the decision deemed optimal under u1 is optimal under u2, and the converse. This

property arises due to the linearity of the expectation operator over its arguments.

2.3.4 Objections and Alternatives

The above method is normative, i.e., providing a formal method by which rational DMs

should make decisions. Yet human beings are prone to irrationality and not always

behaving in a manner consistent with this. The Allais paradox illustrates the decision

making irregularity often exhibited by DMs (Allais, 1953). DMs were questioned on

what decisions they would make in two separate hypothetical situations. The first

question asked if DMs would rather have $1,000,000 with certainty (A1), or $1,000,000

with probability 89%, $5,000,000 with probability 10% and $0 with probability 1%

(A2). The second question asked if DMs would rather have $1,000,000 with probabil-

ity 11% and $0 with probability 89% (B1) or $5,000,000 with probability 10% and $0

with probability 90% (B2). The most common pair of decisions to choose was A1 and

B2. This is inconsistent with utility theory, under which choosing A1 implies automat-

ically choosing B1, and choosing A2 implies automatically choosing B2. Irrespective

of the utility function given by a DM it is impossible, under the framework of von

Neumann and Morgenstern, to choose both A1 and B2. This is presented by Allais as

a counterexample to the independence axiom, as the only difference between A1 and
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A2, and B1 and B2, is a common increase in the probability of receiving $0, violating

this axiom.

An attempt to resolve this problem was the development of descriptive decision

making methods, describing how DMs actually make choices and incorporating human

characteristics, perhaps most notably Prospect Theory (Kahneman & Tversky, 1979).

This attempted to mirror behaviour exhibited by DMs in realistic scenarios, such as

how they feel the pain of a loss more severely than the joy of an equivalent gain,

and how they underweight outcomes that are probable compared to those that are

guaranteed. Fuzzy logic (Zadeh, 1965) modifies classical set theory, allowing items to

belong to several distinct sets at once with varying degrees of membership. Statements

need not be strictly true or false, but may have truth values in the [0, 1] interval. There

are advantages to this approach but, as we shall shortly see in decision making under

imprecise probability, computationally it has significant disadvantages.

2.4 Imprecise Probabilities

Supplying a precise probability is a strong statement, implying that a DM knows

enough about the unknown quantity to exactly quantify her uncertainty over it. DMs

may have relevant prior experience, or expert advice, to help them do this. What

should a DM do if she a priori has little relevant information about the topic at hand?

Precise probability statements play a vital part in determining optimal decisions, e.g.,

in Section 2.3.2 using P(θ1) = 0.7 led to d1 being chosen, yet slight augmentation to

P(θ1) = 0.65 makes d3 optimal. DMs must be careful in supplying precise probabilities

as, if inaccurate, they may lead to negative (low utility) consequences. An alternative

is the concept of imprecise probabilities. Rather than a single probability value P(θ),

a DM gives a lower bound P(θ), and upper bound P̄(θ), that she maintains P(θ) lies

within. Probability measures uncertainty, with imprecise probability allowing addi-

tional vagueness. Analogous to Kolmogorov (1950), there are imprecise probability

axioms (Weichselberger, 2000, 2001), B1-B3. It is assumed P(θ) obeys A1-A3.

• Axiom B1: 0 ≤ P(θ) ≤ P̄(θ) ≤ 1 for all θ ∈ Θ.

• Axiom B2: P(θ) ≤ P(θ) ≤ P̄(θ) for all θ ∈ Θ.
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• Axiom B3: infP{P(θ)} = P(θ) and supP{P(θ)} = P̄(θ).

From these further properties can be garnered. Denoting by θc the complementary

event of θ we have P̄(θc) = 1 − P(θ) and P(θc) = 1 − P̄(θ). Previously we gave a

betting price interpretation to precise probabilities. There is an attractive analogy for

imprecise probabilities, with the lower bound probability being the smallest price for

which a DM is willing to sell a bet (in which she must pay one util if θ occurs and zero

utils if not) and the upper bound probability being the largest price for which she is

willing to buy a bet (in which she receives one util if θ occurs and zero utils if not).

Imprecise probability theory is an expanding topic, with many techniques constructed

for tasks that formerly required precise probabilities, e.g., Walley (1991) and Coolen

et al. (2010).

2.4.1 Decision Making using Imprecise Probabilities

How can DMs determine optimal decisions when opinions about θ are given by im-

precise probabilities? Consider Table 2.3, with a DM assessing P(θ1) = 0.4 and

P̄(θ1) = 0.6. For P(θ1) = 0.55 she deems d1 optimal, P(θ1) = 0.45 means d2 is optimal

and P(θ1) = 0.5 gives a tie. Her optimal decision depends upon which probability (in

her range) is considered when calculating expected utilities. Often a single decision

cannot be declared unanimously optimal under all imprecise configurations.

Table 2.3: Cross-tabulation of utilities for D = {d1, d2} and Θ = {θ1, θ2}.

θ1 θ2

d1 1 0

d2 0 1

If a single decision cannot be declared optimal it is important to eliminate decisions

that are unequivocally not optimal, i.e., inadmissible (e.g., Coolen, 2006). If a DM

cannot pick one alternative as maximal then she may choose a decision by a chance

mechanism, akin to uniform preference over decisions. It is desirable to omit as many

inadmissible decisions as possible before making this choice. We discuss four common

decision making methods for imprecise probabilities, two which choose an optimal deci-

sion, with two removing inadmissible options. For a particular definition, as discussed
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in Schervish et al. (2003), these methods can be seen as coherent, i.e., avoiding Dutch

books. If a decision has maximal expected utility under all belief configurations it is

optimal. This will frequently not be the case, but if it is then this decision choice is

robust. In a precise setting, Maximin (Wald, 1950) chooses the decision returning the

largest minimum expected utility value, i.e., a pessimistic approach. Γ−Maximin is

an imprecise probability extension of this. Maximality (Condorcet, 1785) eliminates

inadmissible decisions, i.e., those giving lower values than an alternative for all con-

figurations. E-Admissibility (Levi, 1974) removes all decisions from D except those

which are optimal under at least one belief specification. The set of decisions left after

applying E-Admissibility is a subset of that remaining after Maximality.

For the problem in Section 2.3.2, suppose P(θ1) = 0.3 and P̄(θ1) = 0.7, imply-

ing P(θ2) = 0.3 and P̄(θ2) = 0.7. Maximising expected utility is inconclusive. The

Γ−Maximum values of d1, d2 and d3 are 0.37, 0.32 and 0.7 respectively, i.e., under this

criteria d3 is optimal. Maximality shows both d1 and d3 dominate d2, so it is elimi-

nated, while under E-Admissibility d1 is optimal for 2
3
< P(θ1) ≤ 0.7 and d3 is optimal

for 0.3 ≤ P(θ1) < 2
3
. There is no configuration making d2 optimal, so it is eliminated.

2.4.2 Choosing a Primitive Quantity

Probability is often used in statements of uncertainty. In deriving axioms and theorems

the concept of a probability is usually considered “the primitive”, i.e., the fundamental

quantity upon which all further statements are built. If we are interested in the ex-

pectation of a random variable X, and have probabilities for its potential realisations

x1, . . . , xn then we define this expectation as

E(X) =
n∑
i=1

xiP(X = xi) (2.4)

This is not the only possible route. As in de Finetti (1974) and Whittle (1992) we can

take expectation as the primitive and define other concepts in terms of this. Consider

an indicator variable IX(xi), taking a value of 1 if X = xi, and 0 if not. The probability

of xi occurring is then the expectation of this indicator variable, i.e.,

P(X = xi) = E[IX(xi)] (2.5)

Equation (2.4) defines expectation in terms of probability while Equation (2.5) did the

converse. In imprecise probability settings expectation is often considered the primitive
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(e.g., Walley, 1991). In Chapter 6 this is the framework we adhere to.

2.5 Sequential Problems

The methods above considered a DM making a single decision, yet DMs often need to

make decisions for several future epochs simultaneously, i.e., non-myopically. In a my-

opic setting DMs consider one step into the future, at which time they observe a result,

and consider one step into the future again. A non-myopic setting is one in which a DM

must decide in May how much money she will need in June, July and August. These

problems are solvable using decision trees and the “roll-back” technique (Alghalith,

2012, proposes a “roll-forward” method), discussed via maximising expected utility by

Lindley (1991). An issue with this approach is the “curse of dimensionality”, i.e., when

a large amount of epochs and/or potential decisions are involved trees rapidly become

very complicated and computation is slow. Intractability may occur depending on the

form of probability distributions and utility functions. A method easing these issues

is the polynomial utility class (Houlding et al., 2015), reliant upon the assumptions of

polynomial utility functions and Normal probability distributions, creating conjugacy

for utility functions analogous to that existing for probability distributions. We return

to sequential problems in Chapter 8.

2.6 Group Decision Making

The approaches above dealt with a single DM making a decision, yet group decision

making is an important task too. While there is motivation for a normative method to

assist groups in making rational choices we shall see, for a certain set of axioms, that

this is an unobtainable goal due to the Impossibility Theorem of Arrow (1950). Efforts

have been made to circumnavigate this and find an acceptable group decision making

method, with strengths and weaknesses of some such approaches discussed below.

2.6.1 Arrow’s Impossibility Theorem

Arrow (1950) considered preference ranking among a body of individuals, and if there

was a “fair” mapping from the set of n individual rankings (�1, . . . ,�n) to a collective
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ranking (�). He contemplated a Social Welfare Function (SWF) operating on a set

of individual rankings, which would obey certain basic properties (completeness and

transitivity) and lead to a group ranking obeying the same. He put forward five

desirable axioms for this SWF to obey. Universality stated that the SWF be defined

for every admissible set of individual orderings. Monotonicity declared that if a decision

d1 rose, or did not fall, in the ordering of each DM without any other change in those

orderings, and if d1 was preferred to d2 before the change to individual orderings, then

d1 is still preferred to d2. Non-imposition and non-dictatorship respectively ruled that

the SWF be neither imposed nor dictatorial. Independence is the most controversial

axiom. In a two DM setting, let �1, �2 and �′1, �′2 be two sets of individual orderings.

If for both individuals i, and for all d1, d2 ∈ D, d1 �i d2 if and only if d1 �′i d2,

then the choice made is the same whether the individual orderings are �1 and �2, or

�′1 and �′2. Monotonicity and non-imposition can be combined to form the Pareto

principle axiom (Arrow, 1963). Arrow (1950) showed that for at least two DMs and

three distinct decisions, no SWF satisfying the five conditions can be created, i.e., any

SWF is irrational in some sense. Independence is the axiom researchers most commonly

try to sidestep, as it assumes no preference between any two outcomes is stronger than

that between any other two outcomes, i.e., it is ordinal rather than cardinal. Several

other interesting impossibility results exist, e.g., May’s Theorem (May, 1952), the

Liberal Paradox (Sen, 1970), the Gibbard-Satterthwaite Theorem (Gibbard, 1973 or

Satterthwaite, 1975), and the Duggan-Schwartz Theorem (Duggan & Schwartz, 1992).

2.6.2 Utilitarianism and the SWF

Utilitarianism is a normative theory, broadly stating that well-being should be max-

imised and suffering minimised. A leader, P ∗, must translate the rankings of n in-

dividuals to one collective ranking. From two axioms a cohesive group ranking may

be achieved, as in Harsanyi (1955). All DMs assign utilities to each potential option,

scaled to [0, 1], giving utility functions u1, . . . , un that must be translated to a single

function, u∗. The axiom of anonymity states that P ∗ does not know who put forward

which ranking, i.e., no bias. The second axiom is the strong Pareto principle, declar-

ing that if each individual is indifferent between two outcomes then so is P ∗, i.e., if

ui(r1) = ui(r2) for all i = 1, . . . , n then u∗(r1) = u∗(r2). Similarly if some prefer r1 to
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r2, and the rest are indifferent, then P ∗ prefers r1 to r2. From these, Harsanyi proved

that the only function u∗ obeying these axioms is an equally-weighted additive sum of

u1, . . . , un. We return to discuss this in Chapter 5. While the approach of Harsanyi

was accepted by many, there were detractors, perhaps most notably Buchanan (1954,

1979, 1994a, 1994b) and Buchanan & Tullock (1962), who had reservations about the

choice of function, and concerns that the liberal value judgment of individualism was

overlooked. Sen (1979, 1990, 1995) discusses the importance of a process not just being

mechanically fair, but that its results are fair in a general social sense.

2.6.3 Fully Probabilistic Design

Karny & Guy (2004) consider a setting where each group participant attempts to

improve her individual decision quality by sharing her opinions with those around her,

optionally augmenting her own opinion in light of what she has learned. Key to their

method is the Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951), a measure

of the sameness of two probability distributions (which we use in Chapter 7). If fi and

fj are distributions over Θ then the KL divergence between them is

D(fi||fj) =

∫
Θ

fi(θ) loge

[fi(θ)
fj(θ)

]
dθ (2.6)

Another concept of Karny & Guy (2004) is an “ideal distribution”. DMs model their

beliefs via probabilistic distributions. As well as this modelling distribution Karny

& Guy recommend DMs construct an ideal distribution describing their “best-case

scenario”. This is linked with the KL divergence to determine the optimal decision

for a DM using a method called Fully Probabilistic Design (FPD), with the optimal

decision minimising the KL value between her modelling and ideal distributions. While

a solution does exist it is of a very specific and complex form. Hence, while theoretically

possible, it may be highly problematic to use FPD in a non-trivial context.

Karny & Guy (2009) consider cooperation by DMs in a group framework by shar-

ing of probabilistic information. DMs must “. . . take all offered information pieces as

outputs of noisy information channels and try to estimate parameters of the underly-

ing source”. Several assumptions are made, crucially that there is no mechanism to

measure reliability of information received, nor to compare the differing importance of

information from distinct sources. These are issues we seek to resolve in Chapter 3.
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Karny & Kracik (2003) describe cases with an inherent group hierarchy, specifically the

importance of maximising the amount of information available to DMs. This desire to

maximise information flow motivates the research in the remainder of this thesis.

2.6.4 Other Alternatives

Some key group decision making techniques are from Nash (1951), applicable in situa-

tions with two or more non-cooperative participants. His Bargaining Theorem showed

that working from a set of axioms a fair bargaining point can be reached for a group.

Similarly, his Equilibrium Theorem found combinations of strategies that could not be

improved upon for all DMs. There are powerful methods, yet there are cases where

they are overly simplistic. Nash equilibrium is applicable when all DMs commit to

individual rationality, i.e., wanting to maximise their expected utility, assuming all

other DMs want to do the same. Thoughts regarding others are purely in terms of

the actions that they may take and the consequences of these for themselves. Yet

DMs may be willing to sacrifice part of a benefit to themselves to benefit the group

as whole. The work of Nash is applicable when DMs contemplate fellow players only

in the sense of predicting their actions so as to maximise their own benefit conditional

upon these. When fellow DMs are considered in a “good-will” sense, with willingness

to make concessions for them, the work of Nash is not applicable. Stirling (2004)

proposes a “satisficing” method which searches for a set of decisions deemed “good

enough” for all DMs, rather then a single optimal solution. Info-Gap Decision The-

ory (Ben Haim, 2006, 2007) is a similar satisficing approach that is non-probabilistic

and viable in cases of Knightian uncertainty. Rabin (1993) formalises the concept of

fairness, deriving axioms and equilibria contrasted to those of Nash (1951).

2.7 Combining Expert Judgments

We now present motivation for the combining of multiple opinions, and provide de-

tailed discussion on the most common methods by which this can be done. Using the

terminology of Karny & Guy (2004), we say that the “neighbours” of a DM are the

collection of other participants with whom she has a common area of interest. A set of

neighbours will frequently have different degrees of knowledge and/or opinions about
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the uncertain event of interest, and hence may have greatly differing beliefs over what

outcome may occur as a result of a decision. Not only this, but they will also commonly

have varying degrees of conviction in the belief that they hold, e.g., two neighbours

could both predict that the same outcome will occur (i.e., their opinions have identi-

cal means), but one could be almost certain of this, while the other could be deeply

unsure (i.e., the associated variance of the latter is substantially higher than that of

the former). It seems a logical premise that in order to maximise the decision quality

(and minimise the corresponding risk) for individuals within the group, it is imperative

to maximise the amount of information that they have access to prior to making their

decisions, or to quote Bunn (1975) “the methodology of combining forecasts is founded

upon the axiom of maximal information usage”.

Bates & Granger (1969) can be regarded as a suitably seminal work, in being one of

the first to suggest the amalgamation of different forecasts in the hope of gaining more

accurate estimation, with a weighted sum of point estimate beliefs being constructed

with weights proportional to the absolute error of the predictions of individuals at

previous epochs. The performance of this method was tested on several data sets and

gave encouraging results, indicating the merits of combining opinions. Newbold &

Granger (1974) built upon this, considering several combination rules, amongst them

being that of Bates & Granger (1969), as well as the Box-Jenkins, Autoregressive

and Holt-Winters models. These were tested on a collection of over eighty financial

time series, and although no formal criteria of optimality was demonstrated empirical

evidence was strong in favour of the accuracy of combined beliefs in contrast to that

of individual beliefs. In a point estimate context consisting of two participants, Bunn

(1975) considered the weight assigned to an individual in a linear combination to be

proportional to the subjective probability of that individual being the more accurate

of the two. Beta-Binomial conjugacy was implemented to make modifications to these

reliability measures over time, i.e., this approach contained strong Bayesian elements.

This involved consideration of the mean of a Beta prior distribution, with this prior

defined over the probability that the first individual was the more reliable of the two.

This prior distribution was then updated in light of the data witnessed (i.e., a one

if the first individual is more accurate than the second at an epoch, and a zero if

not) using a Binomial distribution, with the new weights arising from the mean of
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the Beta posterior distribution. Performance was contrasted to linear and exponential

combining rules, with the Beta method appearing superior in instances were a suitably

informative prior could be supplied. Extension to a Dirchlet prior distribution with an

associated multinomial updating mechanism is suggested in a setting that consists of

more than two individuals.

It stands to reason that a DM who is well informed about the pertinent topic at

hand will generally make more astute decisions than a DM who is not. One would

expect this more astute decision making to lead to a corresponding increased decision

quality, i.e., higher utility for the DM. Within the framework in which we are interested

the seemingly rational course of action for all DMs is to share their beliefs with each

other, hence incorporating a greater scope of knowledge into their individual decision

making tasks. We assume that all DMs are non-competing and therefore have no reason

to supply each other with intentionally inaccurate opinions, i.e., there is no motivation

for dishonesty amongst participants as the belief shared by a DM with her neighbours

is the same one that she herself will use in her own decision making task. Hence,

assuming she is rational she will not wish to sabotage her own decision quality, and

will therefore supply her neighbours with her true representation of her opinion. All

individuals make their own decisions, the consequences, positive or negative, of which

will impact solely upon themselves.

Much consideration has been given in the literature to the problem of how to com-

bine the judgments of a set of domain-specific experts into a single opinion to be used

by a DM in a decision making problem, for instance by Cooke (1991, 2007) and Clemen

& Winkler (1999). Our problem approaches this technique from a somewhat different

perspective, with each decision making individual herself being considered an expert

(i.e., possessing some form of probability distribution over the uncertainty inherent

in the decision task), who combines her opinion with those of other (decision mak-

ing) experts in order to make her own decision, whose quality she wishes to maximise.

Nevertheless, the following discussion, which takes place in the setting of the former

context is equally applicable to the latter framework. The aim in both scenarios is to

construct a combined belief that is as accurate a representation of some true underlying

unknown state of nature as possible, with this output being used by all DMs in our

setting and by a single (non-opinion holding) DM in the framework of Cooke (1991).
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There are two primary methods by which a collection of opinions can be amalga-

mated, namely mathematically and behaviourally. The former approach involves some

mathematical function, which takes as its inputs the beliefs of individuals and returns

as its output a single belief, which is in some sense representative of a collective opin-

ion. The latter is a substantially more heuristic approach in which individuals discuss

their opinions together (i.e., the reasoning and rationales underlying these) in some

real or virtual setting, in an effort to reach a common consensus. While several be-

havioural procedures have been developed, perhaps most notably the Delphi method

(Dalkey, 1969) and the Nominal Group Technique (Delbecq et al., 1975), these can be

seen as suffering from a lack of rigour in their application, and hence may be viewed

as somewhat ad hoc approaches, with both methods, for example, being potentially

susceptible to biases that are inherent within the group structure.

Within mathematical combining there are two dominant methods, namely Bayesian

opinion pooling and combining rules. Genest & Zidek (1986) provide a definitive guide

to the nuances of both of these, which we highly recommend to the interested reader.

Of the two approaches Bayesian pooling is by far the more complex method, with

a DM first specifying her own prior distribution over the uncertain quantity, before

viewing the opinions of experts as data, which are entered into a likelihood function,

and combined with her prior distribution to give a posterior distribution over the pa-

rameter of interest. In the case where a DM has no relevant knowledge about the

parameter a “flat”, or relatively non-informative, prior will be used to reflect this. It

will be dominated (i.e., outweighed) by the information contained within the likeli-

hood function in the calculation of the posterior distribution. French (2011) comments

favourably on the concept of viewing expert beliefs as data, but concedes that this

method has vast problems with implementation in practice, primarily concerning the

choice of an appropriate likelihood function. Clemen & Winkler (1999) note that “at

the same time it is compelling, the Bayesian approach is also frustratingly difficult to

apply”, and while they propose some suggested forms of likelihood functions to be

used in specific problems and/or with certain functional forms of opinions, no gener-

alised method of supplying these has been found, rendering the Bayesian method an

extremely problematic one to implement in realistic scenarios.

Lindley & Singpurwalla (1986) illustrate how in a one-period problem concerned
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with estimating failure rates for a system such a Bayesian approach is technically pos-

sible to apply, but it requires participating DMs to specify a vast amount of parameters

(pertaining, for instance, to the correlation between neighbours’ opinions, as well as

their perceived degree of overconfidence), which may be beyond the computational

scope of individuals in a realistic application. Jouini & Clemen (1996) cleverly sidestep

the difficulties with supplying a suitable form of likelihood function by introducing a

copula method that models dependency between the beliefs of individuals. The sup-

plication of a copula function implies that the likelihood function can be rewritten

as a product of the individuals’ marginal distributions and this copula function, with

this function containing the pertinent information about dependencies inherent within

opinions of individuals. Nevertheless, as with the content of Lindley & Singpurwalla

(1986), this technique still places a large implementation burden on the user in sup-

plying measures of dependence between different individuals, which she may struggle

to provide a priori in any meaningful fashion.

Combining rules are a more straightforward methodology, in which opinions can

be combined by a variety of methods. Perhaps the most straightforward of these

is additive linear pooling (e.g., Stone, 1961, Clemen & Winkler, 1999), under which

the combined opinion is an additive combination of the opinions of individuals with

normalised weights, i.e., those which are non-negative and sum to one. An alternative,

discussed for instance in Genest et al. (1984) and Heskes (1998) is logarithmic opinion

pooling, in which opinions are multiplicatively merged and raised to various powers,

prior to normalisation. As discussed in Clemen & Winkler (1999), allowing equal

weights for linear and logarithmic pools is equivalent to taking an arithmetic and

geometric mean of opinions respectively. Harmonic pooling is another option, discussed

in Dawid et al. (1995). Cooke (1991) comments on how the linear and logarithmic

combining methodologies can be seen as belonging to the same general family of rules,

with different parameter choices in each case. Genest & Zidek (1986) provide a detailed

discussion on the merits of the various possibilities, with numerous desirable criteria

being considered, and strengths and weaknesses of each method assessed. Individuals

using logarithmic pooling must be careful with attaching probabilities of zero to events

as, if even a single individual does this, a probability of zero will be assigned to this event

in the combined distribution irrespective of the magnitude of the probabilities provided
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for this event by all other participants. Rufo & Perez (2012) note how logarithmic

pooling is more likely to lead to unimodal pooling with a lower associated variance

than linear pooling, which may lead to multimodal distributions.

The marginalisation property is uniquely obeyed by additive linear opinion pool-

ing, stating that, if a set of individuals provide opinions on some multidimensional

unknown parameter, the results yielded from finding the marginal distribution of one

element of this from the combined belief will be identical to that found from combining

the marginal distributions of all individual opinions over this element. The external

Bayesianity property is solely obeyed by logarithmic pooling, giving the same result

irrespective of whether the combined belief is updated in light of some new return or

if the individual beliefs are updated in light of this and then combined. We shall see

in Section 3.2 that the method we propose in Chapter 3 obeys two desirable Bayesian

properties that are akin, but not strictly equivalent, to this. Various other potentially

attractive properties, for instance the independence preservation property, the strong

setwise property and the zero preservation property are discussed in Genest & Zidek

(1986). French (1985) comments on the existence of impossibility theorems in a similar

vein to that of Arrow (1950), demonstrating that there is no combining rule simulta-

neously meeting the entirety of a particular set of desirable criteria. In this thesis we

choose to use linear opinion pooling for its relative simplicity, its ease of interpretation

and in sticking with common practice. We comment that Litchendahl et al. (2013)

discusses linear averaging of quantiles rather than probabilities, and some motivations

for why this area merits further exploration. In what follows we assume that our linear

pools are comprised of probability distributions.

The next problem that arises concerns the need for an appropriate method of sup-

plying weights to be incorporated in this linear combination, with Genest & Zidek

(1986) commenting that this method “lacks a normative basis for choosing the pooling

weights”. Ideally these weights would be reflective of reliability, with high weights

afforded to those individuals who are deemed to be trustworthy (i.e., accurate) and

lower weights afforded to those who are deemed to be inaccurate. In Cooke’s classical

method (Cooke, 1991, 2007) seed variables are used to assess expert accuracy prior to

any decision being made, with experts requested to give their opinions regarding a col-

lection of quantities whose exact values are unknown to them, but known to the DM.
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These quantities should be similarly themed to that inherent within the DM’s decision

making task, to ensure good performance (i.e., accuracy) over the seeds is indicative

of good performance over the unknown parameter, and the contrary. The opinions of

experts are provided in the form of quantiles, i.e., each expert states the values that

she believes that 5%, 50% and 95% of realisations for a particular seed variable will

respectively be less than. These predictions are then compared with the true value of

the seed variables (known to the DM), with weights for the linear additive combination

constructed based on the magnitudes of these disparities.

The opinions of experts are ranked on two distinct scoring scales. The first of these

is a calibration measure, that rewards individuals whose beliefs contained witnessed

values, i.e., the values lay between their lower and upper quantiles. The second is an

information metric, that takes the width of an expert’s quantile range into account,

with narrower (i.e., more confident) opinions garnering a higher score, as they imply

more certainty on behalf of the expert in the belief that she holds. This latter metric is

akin to consideration of the variance associated with a DM’s probability distribution.

The aim of the scoring process is to maximise sharpness subject to calibration so, for

instance, an expert who supplies the whole real line as her quantile range will receive

a good calibration score but will be heavily penalised for the triviality of her belief.

The overall weight that is assigned to an expert is a function of her calibration and

information scores (for details see Cooke, 1991), with these scores being aggregated

across the full collection of seed variables under consideration. Those experts whose

scores fail to meet some minimum threshold are awarded a weight of zero. They are

excluded from the next stage of the process, in which opinions are supplied over the

unknown quantity inherent within the decision task (i.e., that which the DM has no

relevant opinion over). Hence in some instances the combined belief may simply be the

opinion of a single expert (i.e., she who is considered to be the most reliable) with the

opinions of all other experts disregarded. Note that the threshold below which experts

are disregarded is constructed relative to the reliability of all experts in a scenario,

ensuring there is never a situation where all experts are assigned a weight of zero, i.e.,

the opinion of at least one expert will always be used by the DM in her decision making

task.

DeGroot & Mortera (1991) discuss how weights can be chosen that meet some
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formal optimality criteria, but this is conducted in a setting somewhat different from

that which we are interested in, and is also generally considered unsuitable for the

classical framework. All DMs are assumed to have common prior distributions and

utility functions, assumptions that are far too strong for our context of interest (and

indeed are difficult to conceive of occurring in a realistic scenario). In addition to this,

DMs wish to make a common decision, rather than each individual making her own

personal decision. Each individual then constructs her posterior distribution based on

the data that only she observes, and is unable to share with others in the considered

environment, due to “external forces such as high cost, physical constraints or com-

pany confidentiality”. Individuals then share their respective posterior distributions

with each other. The optimal weights are determined to be those that minimise the

expected value of a particular loss function, which is collectively determined by the

group members. As we shall see in the following chapters the above assumptions can

be viewed as unreasonable for the problem in which we are interested. We comment

that in situations where there is a lack of access to seed variables and other relevant

information pertaining to reliability prior to decision making the Laplacian Principle of

Indifference (Laplace, 1812) is often applied, giving all individuals initial equal weights

in the absence of any significant evidence to favour one individual over another, i.e.,

given that there is no better evidence to the contrary.

When we discuss the opinions of DMs in Chapter 3 we shall assume that they

are expressible in the form of fully parameterised probability distributions, with the

amalgamated opinion a linear combination of these, i.e., a mixture model. Rufo et al.

(2009) and Rufo & Perez (2012) provide discussion in cases where all opinions belong to

the “exponential family” (a set of distributions all expressible in a specific form). This

assumption is often made for mathematical convenience, as we shall shortly discuss in

Section 3.1.2. Two methods are proposed for choosing weights for a linear pool, both

involving the aforementioned Kullback-Leibler divergence measure, aiming to choose

the weights that minimise the KL value between the combined group posterior distri-

bution and the distributions of individuals. The first scheme proposed suffers from not

guaranteeing coherent weights, i.e., potentially providing sets of weights that are not

all non-negative and summing to one. The second scheme entails linear programming

to ensure these necessary constraints are met. Bayesian elements are inherent within
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these techniques. They are primarily concerned with amalgamating initial opinions

rather than developing the stringent method of learning over time that we are con-

cerned with, and are also heavily based upon the closed form solutions inherent within

conjugacy, whereas our approaches, while generally illustrated with conjugate cases

for ease of interpretation, can be implemented using numerical techniques in instances

where opinions are of intractable forms.

Genest & McConway (1990) provide an excellent summary of a further collection of

approaches which can be used to allocate weights in a linear pool. One method involves

“veridical” (defined formally as “coinciding with reality”) weights, based upon the as-

sumption that the opinion held by exactly one expert is precisely correct, with weights

reflecting the relative probabilities of each expert being the correct one. There are clear

philosophical issues with this, as it is unlikely that a DM will consider one individual to

be entirely correct, with several individuals often contributing distinct complementary

information. Another scheme involves weights based on outranking probabilities, i.e.,

the probability that the next prediction of an individual will outperform those of all

others. This method has been shown to be prone to overreaction (in terms of being

overly influenced by short-term performance), and by solely considering ordinal rather

than cardinal performance ranking it does not fully align with the Bayesian philosophy

as it does not consider all the possible information. This outranking scheme may also

motivate individuals to dishonestly report their probability distributions in the hope of

increasing their weight. A technique that eliminates this motivation involves weights

being calculated from proper scoring rules, yet most of these rules (in fact all of them

except a logarithmic one) violate the Likelihood Principle. Even this logarithmic rule

can potentially return negative weights, which is a clear shortcoming. Bordley & Woolf

(1981) supply a method based upon minimising the variance of the combined distri-

bution, but there is no clear rationale for doing so. Finally Barlow et al. (1986) built

a scheme based on equal veridical weights and logarithmic scoring rules, under which

weights are inversely proportional to a distance metric, with high weights awarded to

those individuals with opinions similar to those around them. While there are some

attractive elements to this approach (its Bayesian associations and the logic of the

logarithmic scoring rule) it tends to give conservative weights, and is based upon the

assumption of equal veridical weights, which can be seen as extremely restrictive (in
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addition to the potential philosophical debate against weights of this nature).

Cooke & Goossens (2008) use a vast collection of data sets, named the TU Delft

Expert Judgment Data Base, to validate the classical method of Cooke (1991). This

database consists of forty-five real world data sets pertaining to a broad spectrum of

research fields, for example finance, geography, physics, real estate and health, with

each data set having a varying amount of seed variables under consideration, as well

as a varying amount of experts who provide their quantile opinions over these. Cooke

& Goosen (2008) compare the performance of the classical approach to a collection

of alternatives, primarily the simple method of assigning equal weights to all experts

irrespective of their perceived reliability, as well as a scheme that only listens to the

individual deemed most accurate (i.e., gives her a weight of one) and disregards the

opinions of the rest of the experts. The metric considered was a function of the calibra-

tion and information scores resulting from different forms of combined belief considered

under varying conditions, and some justification was provided for the use of the classi-

cal approach. This study also demonstrated how the method could be applied to real

data, i.e., that it was implementable in practice in a wide range of realistic scenarios.

Clemen (2008) identifies some potential problems with the validation method that

was used in this justification, and cited out-of-sample performance as a metric to be

considered in order to remedy this. He demonstrated that, for a particular subset of the

data sets used by Cooke & Goossens (2008), it was not conclusive if the classical method

outperformed the simple equal weights approach or not, leading him to comment that

“it has been somewhat frustrating to consistently find the simple average performing so

well empirically”. Throughout the literature there are examples of well-reasoned and

rational performance-based weighting schemes unable to outperform this most basic

approach. Clemen (2008) also questions if the classical method incentivises the user

to report their genuine predictions, and presents a hypothetical situation in which an

individual can potentially manipulate the scheme (and hence the weight that she is

allocated) by providing a suitably broad prediction interval. He commented that he

would like to see a full scale study carried out, taking into account his aforementioned

concerns and preferably using the entire collection of available datasets for justification.

Flandoli et al. (2011) discuss some conceivable shortcomings of the classical approach,

primarily in relation to the forms of cross-validation methods that are used to validate
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it, recommending that dividing the data into training and test subsets would be a

more suitable technique than simple leave-one-out cross-validation, as the latter may

potentially be susceptible to biases.

Flandoli et al. (2011), proposes an augmented methodology called the Expected

Relative Frequency (ERF) model, which involves the construction of triangular dis-

tributions from the lower and upper quantiles of a DM as well as her mode. The

weight allocated to an expert is then found by integrating this distribution around a

neighbourhood (having a size that must be defined by the DM) of the true seed value.

Comparisons are made between the performance of the ERF method and the classical

method, using a small subset of the data considered in Cooke & Goossens (2008) to

conduct this investigation. It could not be clearly indicated which approach gave better

results, but it appeared that the ERF model gave a more accurate estimate of some

measure of central tendency for a variable, while the classical method gave a better

indication of the inherent uncertainty (i.e., the variance associated with this variable).

In response to Clemen (2008), Eggstaff et al. (2014) conducted a large scale study

using the complete TU Delft Expert Judgment Data Base, and successfully showed the

merits of the classical approach in opposition to the set of alternatives considered. In

addition to this justification they also demonstrated some interesting results concern-

ing the optimal number of seed variables to be used in the process. They showed that

this is approximately between five and eight seeds, with performance actually tending

to deteriorate after this. They emphasise the importance of choosing the correct seed

variables for consideration, because if seeds that are unrelated to the uncertainty in-

herent in the decision task are used then these may give false indications of the relevant

predictive abilities of experts. We shall return to study the TU Delft Expert Judgment

Data Base in Chapter 4, where we use it to provide some additional justification for

the method discussed in Chapter 3.

We briefly comment that Eggstaff et al. (2013) discuss a novel application for

the classical approach of Cooke (1991) to assess technical performance in an engineer-

ing context. In a setting where no relevant seed variables can be considered (i.e., a

unique problem with no appropriate comparisons available) they augment the tradi-

tional method to allow for dynamic updating, with previously witnessed values consid-

ered as seeds (once a sufficiently large amount of these have been observed, with equal
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weights used up to this point). This method is applicable in cases where the quantity

of interest is expected to vary over time.

Karny & Guy (2004) make reference to combining beliefs in our framework of

interest, where each DM herself is considered to be an expert, and can combine her

opinions with those of her neighbours in an attempt to increase her own resulting

decision quality. In the most simplistic scenario there are two DMs, denoted by P1

and P2, who are interested in some pertinent uncertain quantity θ that they have

probabilistic beliefs over, given by f1(θ) and f2(θ) respectively. Karny & Guy (2004)

advocate that combined beliefs should be given in the following form:

f̂1(θ) = α1f1(θ) + (1− α1)f2(θ) (2.7)

f̂2(θ) = (1− α2)f1(θ) + α2f2(θ) (2.8)

Here αi is the weight assigned by Pi to her own belief, with 1−αi being the weight she

assigns to that of her neighbour, with 0≤αi≤1 for i=1, 2. Note that if a DM wishes to

ignore the opinion of her neighbour entirely she can give herself a dominating weight of

one, i.e., giving her neighbour a weight of zero. However, no explanation is provided as

to how an individual may choose these weights or, perhaps more importantly, how these

weights may be updated over time in light of decision returns witnessed. Karny & Guy

(2004) discuss how this method can potentially be extended to a setting with more

than two participants with belief sharing conducted in a pairwise iterative manner.

However this method is not invariant to the order in which sharing takes place as

beliefs shared between neighbours are functions (i.e., weighted sums) of the beliefs of

themselves and all the neighbours with whom they have previously shared beliefs. A

formal mathematical proof of this statement is included in Appendix B. Much of the

work that is presented in Chapter 3 can be seen as an attempt to generalise the work

of Karny & Guy (2004) to a setting that consists of n participants, while proposing

a method to attempt to solve the problems previously discussed, i.e., of attaching

weights to the opinions of each individual that are somehow a reflection of their relative

reliability, and that can be augmented over time given new data. Our goal can thus

be viewed as providing a non-arbitrary method of assessing the accuracy of neighbours

that supplies appropriate weights to be used in a linear opinion pool.

The work that is presented within this thesis is highly applicable to a wide range of

realistic problems across a broad spectrum of fields that pertain to risk. The illustrative
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example contained in Chapter 3 involves a collection of stockbrokers who want to

communicate amongst each other to determine the behaviour of a stock price. This is

just one of multiple potential implementations of the approach that we derive. A group

of computer programmers may wish to pool their beliefs about the average number of

bugs occurring per one thousand lines of code, in order to aid their individual decisions

on whether to release their software or to continue testing it (e.g., Wilson & McDaid,

2001). Several companies may wish to exchange their opinions on what proportion

of a particular demographic (e.g., males under twenty-one) buy a particular product

(e.g., computer games, laptops, jeans) to ascertain how large a quantity they should

respectively produce. Nuclear power stations may wish to confer between each other

as to the perceived risk of a fault occurring to assist in their decision of determining

whether additional safety devices need be installed or not (e.g., Starr, 1981). Medical

practitioners may seek the opinion of peers as to the probability of a diagnosis being

correct given some symptoms witnessed (and similar problems, e.g., Cox, 2012). We

include a medical example in Chapter 6 where interest lies in estimating the efficacy

of a novel drug treatment. When we consider our results in Chapter 4 for the TU

Delft Expert Judgment Data Base we see that our methodology can be implemented

to assist in various problems spanning a vast range of research fields. In each case

there are clearly risks present that the users wish to avoid, be it a loss of financial

wealth, national safety or medical health. Note that in the situations outlined above

each individual entity (be it a single person or be it a large multinational company) will

have their own personal utility function so even if decisions are made using common

beliefs different decisions may well be deemed optimal by different entities.
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Chapter 3

The Plug-in Approach

In this chapter we describe a linear opinion pooling method, which we have termed the

“Plug-in” (PI) approach. It permits DMs to learn over time, regarding both their own

opinion about the uncertain quantity inherent within the decision problem and also

their perception of the reliability of the opinions held by their neighbours. We provide

discussion on the intuition underlying its calculations, its strong Bayesian associations

and its asymptotic behaviour. Some desirable rationality properties that this method

obeys are detailed, as well as an illustrated example of the PI approach applied in a

financial setting. We derive the distribution that PI weights follow, provide comments

on an extension to a more generalised framework, make comparisons with a similar

technique and detail some limiations of our methodology.

3.1 The Plug-in Approach

3.1.1 Notation and Basics

We consider a setting consisting of n DMs, labeled P1, . . . , Pn, with n ≥ 1. If n = 1

then the DM has no neighbours, i.e., she herself is her only source of information,

meaning the problem is solved as described in Section 2.3.1. Hence in non-trivial

settings we consider the case where n ≥ 2. There is a common uncertain quantity θ

involved in the decision tasks of each DM. In this thesis we assume that θ is static (i.e.,

it does not change over time dynamically, instead remaining constant and unknown

throughout), that all DMs can express their opinions about θ via fully parameterised

probability distributions, and that all DMs are willing to listen to the opinions of
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neighbours, incorporating these into their own decision processes in a non-competing

environment. We denote by fi(θ) the personal opinion of Pi, and write her combined

belief, assimilating the opinions of all her neighbours with her own, as f̂i(θ), such that

f̂i(θ) = αi,1f1(θ) + . . .+ αi,nfn(θ) (3.1)

Much of what follows in this chapter pertains to choosing values of αi,1, . . . , αi,n that

are deemed satisfactory in some sense. Two obvious properties that we constrain these

weights to obey are strict positivity (i.e., αi,j > 0 for all i, j = 1, . . . , n) and summation

to unity (i.e.,
∑n

j=1 αi,j = 1 for all i = 1, . . . , n). The first of these conditions implies

that the opinions of all DMs have some impact in the combined opinion, with weights

potentially becoming arbitrarily small but always exceeding zero. The second property

ensures that weights are normalised, leading to their straightforward interpretation.

Note that while it is necessary that weight sum to one in order to guarantee that

the combined distribution is a valid one, Genest & McConway (1990) provide a brief

discussion on how in some specific cases weights may be permitted to be negative while

still yielding valid combined distributions. In what follows we shall discuss what we

desire weights to represent, and how this may be achieved.

The setting that we consider is one in which DMs enter into a sequence of decision

tasks myopically, i.e., they make a decision, see an outcome, and repeat this process.

Over time DMs will notice that some neighbours are more accurate information sources

than others, i.e., the opinions that they provide seem to more closely mirror the wit-

nessed reality than those of others. The seemingly logical reaction for a DM upon this

realisation is to pay more heed to views proffered by neighbours whom she deems reli-

able, and to somewhat disregard those views of neighbours whom she deems unreliable.

Intuitively this should lead to an increased decision quality, as decisions are being made

using information sources that are believed, and indeed having shown themselves, to

be trustworthy. We wish weights to be reflective of the perceived reliability associated

by DMs with neighbours, with αi,j revealing how accurate Pi considers the opinion of

Pj to be in comparison with her other neighbours (and herself).
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3.1.2 Updating Beliefs

As well as modifying the weights that they associate with the opinions of neighbours,

DMs also desire to augment their own opinions in light of new information witnessed

from the decisions that they have made. We assume that this updating adheres to the

paradigm of Bayes (1763). Each DM considers her initial belief fi(θ) to be her prior

distribution. A return r is witnessed and an appropriate likelihood function f(r|θ) is

implemented. This prior distribution and likelihood function are then multiplicatively

combined to yield her posterior distribution fi(θ|r). This expresses her opinions about

θ in light of the new information r garnered, written as

fi(θ|r) =
f(r|θ)fi(θ)∫

Θ
f(r|θ)fi(θ) dθ

(3.2)

We observe that the likelihood function f(r|θ) is independent of the decision maker

Pi, i.e., we assume it is common for all DMs, who do not control the underlying data

generating mechanism. We also assume that all DMs construct prior distributions of

the same functional form with (potentially) differently chosen hyperparameters e.g., all

DMs have Gamma priors, but their respective shape and scale parameters may differ.

This is not a requirement, but we use it in what follows for ease of interpretation, and

indeed as it may be a sensible course of action. The (normalising) denominator of

Equation (3.2) is independent of θ given the integral. Therefore we frequently rewrite

the posterior distribution up to a normalising constant of proportionality as

fi(θ|r) ∝ f(r|θ)fi(θ) (3.3)

Note that Bayesian updating is the unique updating strategy that prevents against

Dutch Books in a dynamic context, as discussed for instance in Skyrms (1993). Beliefs

over fi(θ) may be of a form such that conjugacy can be applied, with the product

of the likelihood function and the prior distribution leading to a posterior distribu-

tion of the same functional form as the prior but with different hyperparameters, i.e.,

conjugate priors. This is often done for mathematical convenience and elucidation,

ensuring tractability and ease of calculations, although it is by no means a necessity,

with methods such as Markov Chain Monte Carlo (first accredited to Metropolis et al.,

1953) implementable in intractable cases. Probability distributions from the “exponen-

tial family” are all conjugate to some likelihood function, and are generally considered
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suitably flexible to model a wide range of realistic phenomena while simultaneously

guaranteeing computational tractability. As the primary research aims of this thesis

are in decision theory rather than computational statistics we consider three common

conjugate cases for illustration throughout. Beta-Binomial conjugacy is suitable when

interest is in the number of successes in a set of (independent and identically dis-

tributed) Bernoulli trials, e.g., the number of penalties scored by a footballer in ten

attempts. Poisson-Gamma conjugacy is applicable when inference is carried out on

the number of occurrences of some event in a fixed period of time, e.g., the number of

earthquakes hitting San Francisco over a decade. Finally, Normal-Normal conjugacy is

used to learn about the mean of some continuous underlying process, with the associ-

ated variance assumed to be known in the simplest case, e.g., the average temperature

in Dublin in January.

In the framework that we operate within updating is performed upon individual,

rather than combined, beliefs to ensure that DMs can always extract their own personal

belief from the linear combination. We discuss Bayesian interpretations of this in

Section 3.2. We formally distinguish between fi(θ) and f̂i(θ); the former reflects the

personal probabilistic beliefs of Pi while the latter is a tool that she uses in her decision

task, given that she believes herself to not be infallible and is willing to pay heed to

the beliefs of others in the hope of increasing her decision quality.

For simplicity we assume that all DMs observe a common return at a particular

epoch, e.g., a collection of DMs who are interested in the value that a stock price takes

on the last day of May with this value being the same irrespective of how many DMs are

involved. Yet there may be cases when this assumption can be viewed as too restrictive,

with each individual witnessing their own return as a result of the decision that she

makes, i.e., if we have n DMs then there may be n new pieces of information available

following an epoch. Commonly all DMs will be interested in the same parameter

but observe different noisy realisations of this, e.g., if θ is the proportion of defective

goods produced by a wholesaler and different DMs purchase different quantities of

goods witnessing different defective proportions respectively. Primarily we consider

the simplified case of a common return being witnessed, although in Section 3.8 we

demonstrate how straightforward modifications of the common return approach enables

implementation in this more generalised setting. This allowance of multiple differing
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returns further differentiates this method from the setting of a single DM seeking the

opinion of a collection of non-decision-making experts (as discussed in Section 2.7), as

the decisions made by DMs will impact upon the information that they witness and

hence the combined opinions of their neighbours.

As well as a probability distribution over θ we assume that DMs can specify utility

functions over potential decision returns r, written as ui(r) for Pi. In Equation (2.2)

we introduced the expected utility associated with a decision, and declared in Equation

(2.3) that the optimal decision was that which maximised this. Here we subtly modify

this scheme, determining the optimal decision for Pi to be d∗ such that

d∗ = arg max
d∈D

E[ui(d)] = arg max
d∈D

[ ∫
Θ

ui(d, θ)f̂i(θ) dθ
]

= arg max
d∈D

[ ∫
Θ

ui(d, θ)
n∑
j=1

αi,jfj(θ) dθ
]

= arg max
d∈D

[ n∑
j=1

αi,j

∫
Θ

ui(d, θ)fj(θ) dθ
]

(3.4)

For Pi, this is a function of her amalgamated belief f̂i(θ) and her utility function

ui(r). DMs explicitly take the beliefs of neighbours into account by using f̂i(θ) rather

than fi(θ) in Equation (3.4). The expected utility Pi assigns to a decision is a linear

combination of the expected utilities assigned to it (under her own utility function) by

each of her neighbours (and herself), with bigger weights give to those DMs who are

deemed reliable. For notational ease we use the same symbol ui for ui(di, θ) ≡ ui(r)

and ui(d), and presume it is evident which is meant by the context in which it arises.

3.1.3 Updating Weights

An initial issue to consider is how weights should be specified at the first epoch. In

the PI approach it is assumed that a priori participants have no knowledge about the

accuracy of the opinions of neighbours before they begin making decisions. Hence in

light of any better evidence to the contrary DMs initialise weights using the Laplacian

Principle of Indifference (Laplace, 1812), assuming themselves and their neighbours

to be equally reliable. All individual probability distributions in Equation (3.1) are

assigned an equal weight, i.e., at the first decision epoch the combined belief of Pi is

f̂i(θ) =
1

n
fi(θ) + . . .+

1

n
fn(θ) (3.5)
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Note if a DM does have prior information about the reliability of her neighbours she

may allocate initial weights based on this, and proceed in the same manner outlined

below. However in what follows we shall focus on the case of equal prior weights.

Each DM now determines which decision is optimal for her by combining this with her

utility function as in Equation (3.4). This decision is made and some decision outcome

observed. The weighting process based on the perceived reliability of DMs now begins.

DMs want a method to compare the outcome that occurred to those predicted by

neighbours. The return r witnessed is a realisation of the random variable R which

follows a distribution according to the true data generating mechanism f(R = r|θ).

We wish to find the probability density each DM placed on r prior to it occurring, i.e.,

“plugging in” r to their prior predictive distributions. This gives

wi = fi(R = r) =

∫
Θ

f(R = r|θ)fi(θ) dθ (3.6)

The PI weight of Pi is denoted by wi. Rational DMs will want to give higher weights to

those neighbours with high PI weights (i.e., those who appear reliable) than to those

with low weights. For the three conjugate cases previously introduced these PI weights

have tractable closed forms given in Equations (3.7), (3.8) and (3.9) for Beta-Binomial

(with m the number of trials, and αi and βi the respective number of hypothetical

successes and failures witnessed by Pi), Poisson-Gamma (with αi and βi the respective

scale and shape hyperparameters of Pi) and Normal-Normal conjugacy (with σ2 the

know variance, and mi and s2
i the prior mean and variance of Pi) respectively.

wi =
Γ(m+ 1)

Γ(m− r + 1)Γ(r + 1)

Γ(αi + βi)

Γ(αi)Γ(βi)

Γ(αi + r)Γ(βi +m− r)
Γ(αi + βi +m)

(3.7)

wi =
αβii

Γ(r + 1)Γ(βi)

Γ(r + βi)

(αi + 1)r+βi
(3.8)

wi =
1√

2π(σ2 + s2
i )

exp
(
− (r −mi)

2

2(σ2 + s2
i )

)
(3.9)

We include a Beta-Binomial example in Table 3.1 which gives the prior hyperparame-

ters for four DMs and their corresponding means and standard deviations. We imagine

seven successes are seen in ten trials, and use Equation (3.7) to find the PI weights

associated with DMs. We see P4 has the smallest weight, heavily penalised for her

inaccurate mean prediction and associated high confidence (i.e., small standard devi-

ation). Note that even though the mean prediction of P3 is closer than that of P2 to

the Maximum Likelihood Estimate of 0.7, the latter still has a higher weight, arising
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from her decreased uncertainty, i.e., there is a trade-off between accuracy (in terms of

means) and confidence (in terms of standard deviations). Fig. 3.1 presents a graphical

interpretation of this information, illustrating the prior predictive distributions of DMs

and where PI weights arise from.

Table 3.1: The prior hyperparameters, means and standard deviations of DMs, and

their PI and normalised weights after seeing seven successes in ten trials.

Pj αj βj Ej(θ) SDj(θ) wj αi,j

P1 3 3 0.5 0.189 0.120 0.251

P2 6 4 0.6 0.148 0.172 0.359

P3 4 2 0.667 0.178 0.160 0.334

P4 10 20 0.333 0.085 0.027 0.056

Fig. 3.1: The prior predictive distributions of DMs from their priors in Table 3.1. The

data observation is included, with the point of intersection of this vertical line and the

prior predictive distribution of a DM yielding her PI weight.

We want to relate the PI weights in Equation (3.6) to the weights in Equation

(3.1), i.e, if Pi finds wj then what normalised weight (αi,j) should she assign to Pj?
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We propose a multiplicative scheme with weights updated from 1
n

to α∗i,j such that

α∗i,j =
1
n
wj∑n

k=1
1
n
wk

=
wj∑n
k=1 wk

(3.10)

Weights are augmented from initially including no measure of the merits of informa-

tion sources, to accounting for the contrast between their predictions and the revealed

noisy realisation of reality. We see this in Table 3.1 with the two most accurate indi-

viduals (P2 and P3) afforded the larger normalised weights while the seemingly highly

inaccurate P4 is allowed to only make a small contribution to the combined belief at

the next epoch. The type of scenario in which this approach is most applicable entails

numerous decisions being made and returns witnessed over time, implying that the dis-

tributions of DMs and the corresponding associated weights will be modified at each

epoch. Loosely speaking, reliability is a flexible concept. DMs who initially appear

very accurate may in fact be the opposite, with the first realisation leading to them

being considered accurate being a fluke occurrence (i.e., one in the tail probabilities

of the data generating mechanism). Conversely DMs with highly accurate opinions

may initially receive a low weight if the return witnessed is an outlier. Given this it

is clearly important to repeatedly modify the allocated weights over time, augmenting

in light of each new piece of evidence that arises. We write a more generalised version

of Equation (3.10), where α∗i,j is the new updated weight and αi,j is the previously

associated weight with wj the PI weight for the most recent realisation, as

α∗i,j =
wjαi,j∑n
k=1wkαi,k

(3.11)

We can view this scheme as being Markovian, with only the most recent normalised

weight (αi,j) being used in the calculation of the new normalised weight (α∗i,j). Given

the weight at an epoch t, the weights at epochs t + 1 and t − 1 are conditionally in-

dependent. This weighting scheme is dynamically evolving, with elements of the past

constantly incorporated into new weights. Issues arise if all DMs have assigned a proba-

bility density of zero to the event that occurred, leading to division by zero in Equation

(3.11), an invalid operation. Allocating probability densities of zero is strongly advo-

cated against by Cromwell’s Rule (Lindley, 1991) as it implies no amount of evidence

will persuade the DM to change their mind, i.e., a zero in the prior distribution will

always lead to a zero in the posterior distribution, irrespective of the magnitude of

contrary data contained in the likelihood function. However this problem will rarely

48



occur in practice, as in most distributions there will always be a non-zero (if in some

cases negligibly small) probability density associated with any feasible event occurring.

In addition to this, if all individuals did simultaneously assign probabilities of zero to

an event that did occur then they all appear equally unreliable, i.e., weights would

remain unchanged from the previous epoch.

Gneiting & Raftery (2007) discuss the concept of strictly proper scoring rules. These

are methods of assessing the performance of predictions which return the highest pos-

sible value (i.e., indicate the greatest merit) when a prediction is equal to the realised

value. We consider the PI weight of Equation (3.6) to be our scoring rule. A criti-

cism of this form of scoring rule is that “it is not sensitive to distance, meaning that

no credit is given for assigning probabilities to values near, but not identical to, the

one materialising” (Gneiting & Raftery, 2007). Yet in our setting where individuals

constantly update their distributions over θ (and hence by association their predictive

distributions) this is not as important an issue, as their distributions will shift accord-

ingly over time in light of the new information witnessed. We include an example of

this in Fig. 3.2. Recall that rather than seeing some definitive true parameter value

DMs will witness a set of noisy realisations of this, with the seemingly “most accurate”

individual potentially changing repeatedly over time given the new evidence available.

3.2 Bayesian Relationship

In Section 2.7 we introduced the concept of fully Bayesian opinion pooling. Under this

scheme, an individual Pi could combine her opinion fi(θ) with those of her neighbours,

fj(θ) for j = 1, . . . , n and j 6= i, viewing these opinions as data observations. This led

to her posterior distribution over θ being determined as

fi(θ|{fj(θ)}j 6=i) =
f({fj(θ)}j 6=i|θ)× fi(θ)∫

Θ
[f({fj(θ)}j 6=i|θ)× fi(θ)] dθ

(3.12)

It is unclear how the likelihood function (i.e., the first term in the numerator) can

be constructed. As previously discussed this difficultly in specifying an appropriate

form of likelihood function is the primary reason why updating of this nature is rarely

implemented in practice. Hence while it may be desirable to act in a fully Bayesian

manner, enabling us to utilise the full benefits associated with this paradigm (e.g.,

straightforward posterior analysis) it is frequently beyond our computational ability
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Fig. 3.2: The Normal prior and posterior distributions of a DM, with a vertical line

denoting an observation. Opinions shift to the right given new data. Hence while she

may initially seem quite inaccurate she appears far more reliable at the next epoch.

to do so. Recall that under the PI approach each DM updates her own probability

distribution in a strictly Bayesian manner. In this section we discuss two desirable

Bayesian properties that our proposed methodology obeys.

An argument for the functional form of the reweighting scheme in Equation (3.11)

is that it ensures updating of a linear combined opinion is conducted in a manner

adhering to the Bayesian paradigm, as illustrated for instance by Lee (2012), as part

of a discussion on mixture distributions. Suppose the combined belief of Pi is f̂i(θ)

and that a return r is witnessed with corresponding PI weights of w1, . . . , wn for the n

DMs. The posterior distribution f̂i(θ|r) can be written as

f̂i(θ|r) =
f(r|θ)f̂i(θ)

f(r)

=
f(r|θ)

∑n
j=1 αi,jfj(θ)∑n

j=1 αi,j
∫

Θ
f(r|θ)fj(θ) dθ

=

∑n
j=1 αi,jf(r|θ)fj(θ)∑n

j=1 αi,j
∫

Θ
f(r|θ)fj(θ) dθ
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=

∑n
j=1 αi,jfj(θ|r)

∫
Θ
f(r|θ)fj(θ) dθ∑n

j=1 αi,j
∫

Θ
f(r|θ)fj(θ) dθ

=

∑n
j=1 αi,jwjfj(θ|r)∑n

j=1 αi,jwj

∝ w1αi,1f1(θ|r) + . . .+ wnαi,nfn(θ|r) (3.13)

Hence we see that a strong proponent for the reweighting scheme advocated in Equation

(3.11) is that it is unique in providing updating in a manner deemed coherent within

a Bayesian framework, and thus can be viewed as a natural choice in some sense

assuming one agrees with this paradigm. The combined posterior distribution is a

linear combination of individual posterior distributions with the associated weights

determined by the PI method being precisely those guaranteeing rational Bayesian

updating.

It is also desirable for any coherent updating approach to be consistent with the

Likelihood Principle, discussed and illustrated succinctly in Lindley & Phillips (1976).

Suppose that over t decision epochs a DM witnesses a collection of returns, r1, . . . , rt.

We wish to show that the normalised weight she will be assigned after the last return

has been observed is invariant to permutations in the order in which these returns are

witnessed. This is an appealing property for an approach to obey, arising from the

exchangeability that is inherent within Bayesian updating. Let us denote by α
(t)
i,j the

weight assigned by Pi to Pj having seen t returns. All DMs are initially given equal

weights at the first epoch, i.e., α
(0)
i,j = 1

n
for j = 1, . . . , n in an environment containing

n individuals. We write w
(t)
j for the PI weight of Pj having seen the tth return rt. We

note that a DM’s normalised weight can be written as a product of her initial weight

and all her PI weights up to this point, i.e.,

α
(t)
i,j ∝ w

(t)
j α

(t−1)
i,j

∝ w
(t)
j [w

(t−1)
j α

(t−2)
i,j ]

∝ w
(t)
j [w

(t−1)
j [w

(t−2)
j α

(t−3)
i,j ]]

∝ ...

∝
t∏

k=1

w
(k)
j α

(0)
i,j

=
1

n

t∏
k=1

w
(k)
j (3.14)

Recall that the PI weight for a DM is the value that her prior predictive distribution
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takes at the return that was just witnessed. We write Rt for the random variable

occurring at epoch t, with rt being the specific realisation of this that is observed. The

data generating mechanism is the same at all epochs by our assumption of the static

nature of θ, i.e., f(Rt = r) = f(Rt+1 = r) for any return r and epoch t. The PI weight

at epoch t is written as

w
(t)
j = fj(Rt = rt)

=

∫
Θ

f(Rt = rt|θ)fj(θ|r1, . . . , rt−1) dθ (3.15)

Repeatedly substituting Equation (3.15) into Equation (3.14) gives the following:

α
(t)
i,j ∝

1

n

t∏
k=1

w
(k)
j

=
1

n

t∏
k=1

[ ∫
Θ

f(Rk = rk|θ)fj(θ|r1, . . . , rk−1) dθ
]

=
1

n

t∏
k=1

fj(Rk = rk|r1, . . . , rk−1)

=
1

n
fj(R1 = r1)fj(R2 = r2|R1 = r1) . . . fj(Rt = rt|R1 = r1, . . . , Rt−1 = rt−1)

=
1

n
fj(R1 = r1, . . . , Rt = rt) (3.16)

The last line follows from the law of total probability. We may consider r0 to be

the information that a DM bases her prior opinion upon (which is excluded when

necessary for notational convenience). The above identity is invariant to the order in

which the values r1, . . . , rt are witnessed, i.e., if they were observed in a permuted order

rσ(1), . . . rσ(t) then this would result in

α
(t)
i,j ∝

1

n
fj(R1 = rσ(1), . . . , Rt = rσ(t)) (3.17)

Equation (3.17) is equal to Equation (3.16) due to the conditional independence of

returns given θ and the exchangeability previously mentioned. It is straightforward

to hence infer that the combined posterior distribution, f̂
(t)
i (θ|·) say, is also invariant

to the order in which returns are witnessed, as it is a linear combination of weights

that have this invariance (as shown above) and Bayesian posterior distributions (which

inherently possess the exchangeability property themselves). In conclusion, we have

seen that while the PI approach does not equate to a fully Bayesian approach (with

opinions of neighbours incorporated into an appropriate likelihood function) its linear
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technique does adhere to two key Bayesian ideals. The combined posterior distribution

is a linear combination of individual updated posterior distributions with associated

weights obeying Bayes Theorem, and the approach is invariant to the order in which

data is witnessed (i.e., exchangeability).

3.3 Moments of PI Distribution

Interest lies in a probability distribution that is a linear combination (i.e., a mixture)

of individual probability distributions. The distribution fi(θ|·) of each Pi has some

mean and variance, µi and σ2
i , which are functions of its hyperparameters. What is the

mean and variance of the combined distribution f̂i(θ|·)? Generic rules for moments of

linear combinations of random variables do not hold in this case, as our concern is in a

linear combination of probability distributions over a common random variable θ rather

than a linear combination of distributions over distinct random variables, θ1, . . . , θn.

In general a mixture of distributions that are all of some common distributional form

is not guaranteed to be of that distributional form itself, e.g., a mixture of Normal

distributions over θ is not ensured to be a Normal distribution. There may be cases

when it will be, for instance if one DM is given a weight of one and all others are given

weights of zero, or if all individual distributions are identical, but this is not generally

precisely the case (McLachlan & Peel, 2000, contains more discussion on this topic).

We consider the first moment of f̂i(θ|·), i.e., its mean, given as

Ef̂i(θ|·) =

∫
Θ

θf̂i(θ|·) dθ

=
n∑
j=1

αi,j

∫
Θ

θfj(θ|·) dθ

=
n∑
j=1

αi,jµj (3.18)

The mean of the combined distribution is a linear combination of the individual means

comprising this. As f̂i(θ|·) is a convex combination of distributions its mean is respec-

tively bounded below and above by the minimum and maximum means resulting from

these distributions, i.e., Ef̂i(θ) ∈ [minj=1,...,n µj,maxj=1,...,n µj]. This seems an intuitive

and important coherency property. Its second moment, its variance, is given by

Varf̂i(θ|·) =
[ ∫

Θ

θ2f̂i(θ|·) dθ
]
− [Ef̂i(θ|·)]

2
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[ n∑
j=1

αi,j

∫
Θ

θ2fj(θ|·) dθ
]
− [Ef̂i(θ|·)]

2

=
n∑
j=1

αi,j(σ
2
j + µ2

j)− (
n∑
j=1

αi,jµj)
2 (3.19)

The combined variance is a weighted sum of individual variances plus an additional

correction term (zero if the distributions of all DMs have identical means and strictly

positive if not) to account for the difference between individual means and the combined

mean. If DMs have diverse views over θ then this will lead to a large combined variance

even if their individual variances are relatively small. Finally we comment that the

probability density that a combined distribution places on a particular value is a linear

combination of the density that each individual distribution places upon this value.

We illustrate this in Fig. 3.3, in a case where f1(θ) ∼ N(1, 22) and f2(θ) ∼ N(−2, 32),

with αi,1 = 0.7 and αi,2 = 0.3 for i = 1, 2. For example as we have f1(θ= 2) = 0.176

and f2(θ = 2) = 0.055 this implies f̂i(θ = 2) = 0.7(0.176) + 0.3(0.055) = 0.1397.

Using Equations (3.18) and (3.19) we can see that f̂i(θ) is such that Ef̂i(θ) = 0.1

and Varf̂i(θ) = 7.39 with this variance taking into account the respective deviation of

the DM’s means from the combined one. We observe that this combined distribution

is clearly not itself Normally distributed, with a longer left tail resulting from the

increased uncertainty of P2.

3.4 Asymptotic Behaviour

We briefly comment on the behaviour of individual posterior distributions and the

weights that these distributions are assigned as the number of returns witnessed grows

large. As the amount of data that is observed increases the determination of DM

posteriors will be dominated by this, i.e., the prior opinions of individuals will become

gradually outweighed by the actual information that they have viewed. Hence in the

limit (i.e., as the number of returns witnessed tends towards infinity) all DM posterior

distributions will tend towards an identical distribution, with this distribution being

an increasingly accurate model of θ by the Law of Large Numbers. Note that this

statement is based upon the assumption that a DM does not supply a degenerate

prior, i.e., a prior placing a probability mass of one on a particular outcome and zero

on all others, as if so this distribution will not augment in light of new data.
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Fig. 3.3: Individual and combined distributions with vertical line denoting θ = 2.

Genest & McConway (1990) comment on weight updating of the form discussed in

this chapter (and reference Roberts, 1965, as an early discussant of it), and provide an

interesting formal asymptotic result. If we denote by θ0 the true value of the unknown

quantity θ (which of course will be unknown to all DMs throughout the process) then

it is demonstrated how in the limit an individuals normalised weight is proportional

to the product of their initial weight (which we often assume to be 1
n
) and the density

that their prior distribution placed on θ0, i.e.,

lim
k→∞

α
(k)
i,j ∝ α

(0)
i,j fj(θ0) (3.20)

We include an illustration of this phenomenon in Fig. 3.4 with the details concerning

prior distributions and the data generating mechanism included in the caption. We

comment that in this instance each return was the number of successes in five Bernoulli

trials. If this number of trials per epoch was to decrease (i.e., if information was

observed at a slower rate) then this convergence would likely occur at a slower rate,

while a greater amount of trials per epoch would likely increase the rate of convergence.

Finally we comment that as all DM posterior distributions converge towards a

common distribution, an identical combined distribution will be yielded in the limit

regardless of weights allocated, i.e., any convex combination of a common distribution

will simply yield this common distribution. Nevertheless the above asymptotic result
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concerning weights highlights how an individual’s prior distribution has a lasting impact

on their weight, and emphasises the care that they should take in specifying it.

Fig. 3.4: Suppose we have three DMs and a data generating mechanism R ∼ Bin(5, θ)

with f1(θ) ∼ Beta(1, 2), f2(θ) ∼ Beta(4, 4) and f3(θ) ∼ Beta(3, 10). When the true

value of θ is 0.6 we can clearly see below that the weights of P1, P2 and P3 respectively

converge to their limiting values of 0.29, 0.69 and 0.02, and that this convergence

becomes evident quickly.

3.5 Properties and Initial Justifications

As previously discussed the PI approach appears a promising technique as theoretically

the associated decision quality should substantially improve over time as the relevant

information that decisions are based upon becomes increasingly accurate. It also ap-

pears fair to those involved, as individuals are initially assumed to be equally reliable,

with increases/decreases in their allocated weight directly proportional to (an objec-

tive measure of) how accurate they have previously shown themselves to be. The PI

approach takes the previous weight of a DM into account when determining her weight

at the next epoch, as Equation (3.11) is a function of the previously allocated weight,

i.e., both present (i.e., last realised) accuracy as well as all past performance history

are incorporated. We observe that all DMs will have the same combined beliefs f̂i(θ)

56



at each individual epoch (assuming they initialise with equal weights) as the weights

are determined in a highly objective manner, in an identical fashion for each DM, i.e.,

at any particular epoch αi,j is guaranteed to be the same as αk,j. An inductive proof of

this is given in Appendix B. When we discuss subjective weighting measures in Chap-

ter 7 we see that this is generally not the case, with different DMs allocating diffuse

weights to the same neighbour despite witnessing common information. Below we de-

tail some desirable criteria that the PI approach obeys, demonstrating an underlying

rationality and coherency. These are logical properties that one would naturally want

a linear opinion pooling methodology of this ilk to adhere to.

• Property 1: wj ≥ 0 for all j = 1, . . . , n, with wj = 0 if and only if fj(R = r) = 0.

• Property 2: If αi,j < αi,k and wj < wk then α∗i,j < α∗i,k.

• Property 3: If αi,j = αi,k and wj = wk then α∗i,j = α∗i,k.

• Property 4: If αi,j < αi,k and wj > wk then any of the following may occur

depending on differences between initial weights and updated reliability measures:

– α∗i,j < α∗i,k

– α∗i,j = α∗i,k

– α∗i,j > α∗i,k

Proofs are included in Appendix B. Here we briefly interpret the meaning of these

properties and discuss why they are desirable criteria for a weighting scheme to possess.

Property 1 is relatively trivial, stating that PI weights will always be non-negative and

will only equal zero if a DM places no probability density on a (witnessed) outcome

occurring. Property 2 states that if Pk is considered more reliable than Pj (based on

respective past performances) and then at the next epoch Pk is once again deemed more

reliable (i.e., has a larger PI weight) then Pk will still be considered more reliable than

Pj. Property 3 is an equality version of Property 2. Lastly Property 4 states that if Pk is

considered more reliable than Pj, but that the beliefs of Pj are valued as more accurate

at the next epoch (i.e., she has a higher PI weight) then which DM is considered the

most reliable after this is determined by the existing discrepancy between their previous

normalised weights and the discrepancy between their PI weights.
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3.6 Example

Consider a setting consisting of five DMs, P1, . . . , P5. Each has her own opinion about

the true value of θ, which is a latent parameter pertaining to stock performance (and

hence the profit or loss resulting from decisions made), and must decide whether to

enter into a long forward on the stock (d1) or not (d2). Entering into a long forward

entails agreeing to buy a stock at a fixed “expiry” time in the future for a fixed “strike”

price. If the strike price exceeds the actual value of the stock at the expiry time then

the DM has made a loss (as they are buying the stock for more than it is worth), if

not then they have made a profit. It is clear that there must be uncertainty over θ,

as if not decision making would be trivial, i.e., a DM would always enter the long

forward contract if θ is positive, and never do so if θ is negative. In our myopic

scenario DMs must decide whether to enter into a long forward or not at a succession

of epochs. There is obviously inherent risk, as DMs do not know a priori if they

will make a profit or a loss in each trade. We assume for convenience that returns

are Normally distributed with an unknown mean θ and a known variance of 2, i.e.,

R ∼ N(θ, 2). We assume this unknown mean has true value of −2, i.e., on average

DMs will make a loss. Participants have prior beliefs over θ which themselves are

Normally distributed, i.e., Normal-Normal conjugacy. The prior beliefs of Pi over θ

are represented by fi(θ) ∼ N(mi, s
2
i ). The decisions that DMs make over whether to

enter into the long forward (potentially making a monetary gain but also potentially

making a monetary loss) or not (ensuring no monetary gain and no monetary loss)

are influenced by their utility functions and the initial fortune that they have prior to

making any decisions. Their opinions about θ, utility functions, and starting fortunes

(γi) are given in Table 3.2.

In this example we contrast the decisions that would be made by DMs using the

PI approach and by the same DMs if they solely heeded their own opinion. We also

compare what decisions they would deem optimal using two alternative linear pooling

techniques: the Equal Weights (EQ) and Most Reliable (MR) methods. We will discuss

these alternatives in depth in Chapter 4, but only comment briefly for now to note that

the former involves equal weights being assigned over time to each DM irrespective of

accuracy, with the latter entailing a weight of one given to the DM deemed most reliable

at an epoch (i.e., with the highest PI weight) and a weight of zero to all other DMs.
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Table 3.2: DM information for our financial example.

Pi fi(θ) γi ui(γi + r)

P1 N(−3, 1) $50 r + 50

P2 N(0, 2) $45 (r + 45)3

P3 N(3, 3) $60 80(r + 60)− 0.5(r + 60)2

P4 N(4, 2) $35 exp( r+35
15

)

P5 N(5, 2) $30 loge(r + 30)

Note that here the three linear poolings are initialised by the Laplacian Principle of

Indifference at the first epoch, so will yield identical distributions (and hence results)

in each case. The decisions deemed optimal are given on the left hand side of Table

3.3. We can see that under the PI approach (and hence under the other two linear

pooling methods) all DMs opt to enter into the long forward, while only P1, who is

confident that a loss will be made, does not enter into the transaction when listening

only to her own opinions.

Table 3.3: Optimal decisions for DMs at the first (LHS) and second (RHS) epoch.

Here d∗ is the optimal decision for a DM listening only to her own belief, while d∗PI ,

d∗EW and d∗MR are her optimal decisions using the PI, EQ and MR methods respectively.

Pi d∗ d∗P.I. d∗E.W. d∗M.R.

P1 d2 d1 d1 d1

P2 d1 d1 d1 d1

P3 d1 d1 d1 d1

P4 d1 d1 d1 d1

P5 d1 d1 d1 d1

Pi d∗ d∗P.I. d∗E.W. d∗M.R.

P1 d2 d2 d1 d2

P2 d2 d2 d1 d2

P3 d1 d2 d1 d2

P4 d1 d2 d1 d2

P5 d1 d2 d1 d2

Upon entering the long forward all DMs make a loss of $1.30, i.e., r=−1.3, with

this value simulated from the true distribution of θ. DMs now update their beliefs in

light of this new evidence and combine their augmented opinions. The weights, both

PI and normalised, associated with each DM by each of the methods are given in Table

3.4. A graphical interpretation of how these weights arise is included in Fig. 3.5. We

can see that the DM deemed most accurate (i.e., having the largest PI weight) was P2,
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meaning she is the sole individual whose view is considered in the MR method. She

has the highest weight in the PI approach, but the opinions of others are still taken

into account with her opinion having a (non-dominant) weight of 0.4763. As we see

from the right hand side of Table 3.3 no DM using the PI approach opts to enter into

the long forward at the second epoch, while P3, P4 and P5 all would if they listened

only to their own beliefs. Using the EQ approach would lead all DMs to enter into the

transaction, while the MR method leads, in this case, to the same decisions as the PI

approach (although, as we can see from Table 3.4, the PI mean estimate is closer to

the true value than that resulting from the MR method, albeit with a larger variance).

Fig. 3.5: Prior predictive distributions of DMs. The vertical line is the observation

r=−1.3. The intersection of this and a DM’s distribution gives her PI weight.

The decision process has stopped as no DMs enters into a long forward at the second

epoch, and hence no new return can be observed, and opinions updated in light of this.

We can see the clear advantage of using the PI approach in this example, as individuals

who made their decisions without acknowledging the opinions of those around them

would continue to enter into long forwards (and quite possibly make losses), while those

using the linear pooling technique would have stopped (hence prevented future losses).

Fig 3.6 highlights the predictive ability of the various methods, showing that it is the
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Fig. 3.6: PI, EQ and MR posterior distributions. The vertical line denotes the true θ.

Table 3.4: Updated beliefs of individual DMs and those resulting from the three

considered methods, as well as the weights associated in each case, with αPIi,j , αEQi,j and

αMR
i,j denoting the weights from the PI, EQ and MR weights respectively.

Pj Ej(θ|r) Varj(θ|r) wj αPIi,j αEQi,j αMR
i,j App Ef̂i(θ|r) Varf̂i(θ|r)

P1 −2.43 0.67 0.1423 0.4196 0.2 0 PI −1.17 2.23

P2 −0.65 1 0.1615 0.4763 0.2 1 EQ 0.107 3.31

P3 0.42 1.2 0.0280 0.0826 0.2 0 MR −0.65 1

P4 1.35 1 0.0059 0.0174 0.2 0

P5 1.85 1 0.0014 0.0041 0.2 0

PI posterior that places the most density on the true parameter value. Similarly, Fig.

3.7 contrasts the PI posterior distribution with the posteriors of the five individuals,

revealing that the PI method leads to more accurate estimation (in terms of posterior

density) than the individual posteriors of four of the five DMs. Hence it can be argued

that it is in the best interest of DMs to use this combined distribution, as with prob-

ability of 0.8 (i.e., with probability over 0.5) it will lead to better estimation than the

individual distribution of a randomly chosen DM from within the neighbourhood. We
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introduce this metric formally in Chapter 4.

Fig. 3.7: The individual DM posterior distributions and the posterior distribution

resulting from the Pl method. The vertical line denotes the true value of θ=−2.

For illustration in Table 3.5 we show the proportion of times that each method was

superior (in terms of this posterior density metric) based on 5,000 simulations, using

the prior beliefs specified in Table 3.2 and the Normal data generating mechanism.

We see, as shall be demonstrated and discussed in depth in the simulation study in

Chapter 4, that the PI approach becomes increasingly successful as the number of

returns witnessed increases.

Table 3.5: PI, EQ and MR success proportions with the optimal method in bold.

Returns PI EQ MR

2 0.4006 0.1744 0.4250

3 0.4578 0.1760 0.3662

4 0.4866 0.1758 0.3376

5 0.4938 0.1670 0.3392
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3.7 Distributions of PI Weights

Below we derive the probability distribution that PI weights follow. To ease tractability

we consider θ to be a Normal mean with known variance σ2. In Chapter 8 we discuss

potential application of the conjugate utility class (Houlding et al., 2015) to sequential

problems of this ilk. The PI weight of Pi, with prior of fi(θ) ∼ N(mi, s
2
i ), is

wi = fi(R = r) =
1√

2π(σ2 + s2
i )

exp
(
− (r −mi)

2

2(σ2 + s2
i )

)
(3.21)

This defines wi in terms of r. By manipulation we can write r in terms of wi, giving

r = mi ±
√
−2(σ2 + s2

i ) ln
[
wi

√
2π(σ2 + s2

i )
]

(3.22)

Note wi is maximised for Pi when the return seen is her prior mean, i.e., when r = mi.

This leads to her maximal PI value, wmaxi :

wmaxi =
1√

2π(σ2 + s2
i )

exp
(
− (mi −mi)

2

2σ2

)
=

1√
2π(σ2 + s2

i )
(3.23)

The minimum, wmini , of wi approaches zero in the limit as the witnessed return deviates

further and further from her mean, i.e., wi → 0 as |r −mi| → ∞. We produce plots

of r against wi in Fig. 3.8. There are two values of r corresponding to each value of

wi, as realisations both above and below mi will return identical PI weights. The true

distribution for returns is Normally distributed, i.e.,

P(R = r|θ) =
1√

2πσ2
exp

(
− (r − θ)2

2σ2

)
(3.24)

Given this, our definition of r in terms of wi in Equation (3.22), and mutually

exclusiveness, the probability of any particular value of wi occurring is

P(Wi = wi|θ) =P
(
r = mi ±

√
−2(σ2 + s2

i ) ln
[
wi

√
2π(σ2 + s2

i )
]
|θ
)

=P
(
r = mi +

√
−2(σ2 + s2

i ) ln
[
wi

√
2π(σ2 + s2

i )
]
|θ
)

+P
(
r = mi −

√
−2(σ2 + s2

i ) ln
[
wi

√
2π(σ2 + s2

i )
]
|θ
)

=
1√

2πσ2

[
exp

(
−

(mi +

√
−2(σ2 + s2

i ) ln
[
wi
√

2π(σ2 + s2
i )
]
− θ)2

2σ2

)

+ exp
(
−

(mi −
√
−2(σ2 + s2

i ) ln
[
wi
√

2π(σ2 + s2
i )
]
− θ)2

2σ2

)]
(3.25)
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Fig. 3.8: Plot of r vs. wi when σ2 = 2, mi = 11 and s2
i = 2. The dotted horizontal

line denotes a wi with intersecting vertical dashed lines showing the two values of r

leading to this wi. The vertical unbroken line is the r giving wmaxi , i.e., r = mi.

We plot this distribution in Fig. 3.9. We must show Equation (3.25) is a valid

density function, i.e., non-negativity for all possible wi and integration to one over its

support. The first property is obeyed but the second is not. The missing component

is the Jacobian, required due to our change of variables, i.e., finding the probability of

wi by considering the probability of a corresponding r. We calculate dr
dwi

, giving us

dr

dwi
= ±

√
σ2 + s2

i

wi
× 1√

−2 ln
[
wi
√

2π(σ2 + s2
i )
] (3.26)

The absolute value of the Jacobian is considered so we ignore the ± in Equation

(3.26). As the relationship between r and wi is not bijective we must be careful with

our transformation. This absolute value ensures both additive terms in Equation (3.25)

have identical Jacobians. Hence the complete distribution of the PI weights of Pi is
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the product of the absolute Jacobian and Equation (3.25), i.e.,

P(Wi = wi|θ)=
√
σ2 + s2

i

wi
× 1√

−2 ln
[
wi
√

2π(σ2 + s2
i )
] ×

( 1√
2πσ2

[
exp

(
−

(mi +

√
−2(σ2 + s2

i ) ln
[
wi
√

2π(σ2 + s2
i )
]
− θ)2

2σ2

)

+ exp
(
−

(mi −
√
−2(σ2 + s2

i ) ln
[
wi
√

2π(σ2 + s2
i )
]
− θ)2

2σ2

)])
(3.27)

Fig. 3.9: Unnormalised plot of P(Wi = wi|θ) for the parameterisation in Fig. 3.8.

This normalised distribution (integrating to one) is given in Fig. 3.10. The spike as

wi approaches wmaxi arises due to the numerical instability of Equation (3.27) at the

point wi = wmaxi . We can calculate expected values and variances of PI weights using

the following equations, requiring numerical methods to solve:

E[Wi|θ] =

∫ wmaxi

0

wiP(Wi = wi|θ) dwi (3.28)
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Var[Wi|θ] =
[ ∫ wmaxi

0

w2
iP(Wi = wi|θ) dwi

]
− (E[Wi|θ])2 (3.29)

Solving Equations (3.28) and (3.29) give E[Wi|θ] = 0.0769 and Var[Wi|θ] = 0.003

for the parameterisation discussed above. We return in Chapter 8 to discuss how this

material can be used to attempt to solve sequential problems with multiple DMs.

Fig. 3.10: Normalised plot of P(Wi = wi|θ) for the parameterisation in Fig. 3.8.

3.8 Multiple Differing Simultaneous Returns

Above it was assumed that DMs witness a common decision return at each epoch. In

this section we extend the previously derived methodology to a framework in which

DMs are liable to observe different outcomes from decisions that they simultaneously

make. As a motivating example consider n shopkeepers, all of whom buy (potentially

varying amounts of) a particular good from the same manufacturing company. All have

interest in the same quantity θ which is the probability that an item produced by the

manufacturer is defective. Suppose P1, . . . , Pn respectively purchase m1, . . . ,mn goods,

66



and discover that k1, . . . , kn of these are defective. Each DM has seen a different return

but all of these pertain to θ. Here we discuss a method by which this information can

be coherently combined.

We introduce vector notation for the decisions made and returns witnessed at the

ith epoch, writing di = {di,1, . . . , di,n} and ri = {ri,1, . . . , ri,n} respectively. Here di,j is

the decision made by Pj at epoch i and ri,j is the return witnessed by Pj having made

decision di,j. Each DM uses her utility function and the equally weighted combined

belief to make an initial decision. We establish the notion of decisions with non-trivial

consequences here. Consider a DM who must decide whether to invest in stock A or

stock B. Regardless of what decision is made, some information will be witnessed about

the uncertainty of interest (e.g., underlying market behaviour) and hence learning will

occur about θ, i.e., the DM will update her prior opinion, or perhaps more succinctly,

her posterior distribution will differ from her prior distribution. By contrast, consider a

DM who must choose whether to invest in stock A or to not. If she chooses the former

decision she will witness some information about θ as a consequence, but if she opts

for the latter decision then no learning occurs. As her decision was to take no action

she observed no new information about θ. In a setting where a common return was

witnessed by all DMs the same information was gained regardless of if one DM opted

to make a decision with a non-trivial consequence or if they all did. The only instance

in which no new data is realised is when no DM makes a decision with a non-trivial

consequence, i.e., no updating of prior distributions occurs. In the setting of multiple

simultaneous returns the amount of information that is available to DMs is dependent

upon how many DMs opt to take gambles. In what follows we provide a method by

which this updating can be conducted in complete generality, and then discuss the

underlying intuition for our three specific distributional cases.

Once an initial set of decisions d1 have been made by DMs, a set of corresponding

outcomes r1 will be witnessed. As discussed above some of this set will be trivial,

and will not be used in the construction of posterior distributions, although in some

distributional cases an intuitive interpretation can be provided for these uninformative

returns, e.g., in a Binomial setting we can consider observing zero successes in zero

trials. Hence the updated belief of Pi is written as

fi(θ|r1) = fi(θ|r1,1, . . . , r1,n)
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∝ f(r1,1, . . . , r1,n|θ)fi(θ)

= f(r1,1|θ) . . . f(r1,n|θ)fi(θ)

= fi(θ)
n∏
j=1

f(r1,j|θ) (3.30)

= f(r1|θ)fi(θ) (3.31)

We see two ways of considering the likelihood function. The set of witnessed returns

are conditionally independent given θ so we can consider a product of the likelihood

functions for each individual return as in Equation (3.30). Equivalently we may also

use a likelihood function for the whole data set at once as in Equation (3.31) with some

physical interpretation of this provided shortly. Note that these two approaches will

yield identical results as Bayesian updating adheres to the Likelihood Principle.

An alternative to this approach would be for each individual Pi to update her prior

distribution solely in light of the information she herself witnesses, yielding fi(θ|r1,i).

Yet this seems unintuitive and self-defeating for the group as a whole. Previously

in this thesis we extolled the merits of information pooling and the correlation one

would expect to exist between information quality and decision quality. The DMs we

consider inhabit a non-competing environment and hence have nothing to lose (in terms

of utility) from sharing their new information with all their neighbours, especially when

they will receive additional data in return. It is true that if a DM updated solely in

light of the return which she herself witnessed this information would propagate into

the combined distribution of all DMs as it would be a component of the weighted sum,

i.e., each of the elements of r1 would be contained in a belief of the form

f̂i(θ|r1) = αi,1fi(θ|r1,1) + . . .+ αi,nfn(θ|r1,n) (3.32)

Nevertheless this seems counter-productive. In addition, when DMs want to assess

the reliability of the beliefs of neighbours it makes sense to use all possible data in

order to estimate accuracy as precisely as possible. When Pi is judging the accuracy

of Pj she should base this not just on the return she has seen (r1,i) as this may be

an outlier. Instead, she should consider all available data (r1), using as complete a

picture as possible of the true state of nature to ascertain a measure of the reliability

of neighbours. We propose that the combined posterior distribution of each DM should

incorporate all the data witnessed by her neighbours and herself, i.e.,

f̂i(θ|r1) = αi,1f1(θ|r1) + . . .+ αi,nfn(θ|r1) (3.33)
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We provide some intuition behind the information contained in the likelihood functions

for the three primary distributional cases considered.

• Binomial Case: Suppose θ is the success probability for a Bernoulli trial. Each

Pi provides initial Beta priors parameterised by αi and βi. Following d1 each Pi

witnesses ki successes in mi trials, where it is not necessary that mi = mj for all

i 6= j, e.g., two doctors see three out of four, and seven out of ten, patients cured

respectively. When assessing their likelihood function each DM may consider

the probability of seeing k =
∑n

i=1 ki successes in m =
∑n

i=1mi trials, e.g., the

doctors would view their pooled information as ten successes in fourteen trials.

Generically we write the updated posterior of Pi as

fi(θ|k out of m successes) = f(k out of m successes|θ)fi(θ)

= fi(θ)
n∏
i=1

f(ki out of mi successes|θ)

=
Γ(αi + βi)

Γ(αi)Γ(βi)
θαi−1(1− θ)βi−1

n∏
i=1

(
mi

ki

)
θki(1− θ)mi−ki

∝ θαi−1(1− θ)βi−1θ
∑n
i=1 ki(1− θ)

∑n
i=1mi−ki

= θαi+k−1(1− θ)m−k+βi−1 (3.34)

• Poisson Case: Interest lies in a rate parameter θ over some fixed unit of time

with each Pi having a Gamma prior with scale and shape parameters αi and βi

respectively. We can adjust for a differing unit of time by scaling θ up or down

accordingly. Suppose DMs witness k1, . . . , kn distinct observations in disjoint in-

tervals (if they were not disjoint correlation would need to be taken into account)

of length t1, . . . , tn respectively, e.g, one DM sees thirty cars in one minute, and

another sees fifty cars in two minutes. They may view this pooled information as

witnessing k =
∑n

i=1 ki observations across a period of time of length t =
∑n

i=1 ti,

e.g., above this would correspond to eighty cars in three minutes. In generality

the updated posterior distribution of Pi is

fi(θ|k events in time t) = f(k events in time t|θ)fi(θ)

= fi(θ)
n∏
i=1

f(ki events in time ti trials|θ)

=
αβi−1
i

Γ(βi)
θβi−1e−αiθ

n∏
i=1

[(tiθ)
ki

ki!
e−tiθ

]
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∝ θβi−1e−αiθθ
∑n
i=1 kie−θ

∑n
i=1 ti

= θk+βi−1e−θ(αi+t) (3.35)

• Normal Case: Suppose interest is in the mean θ of a Normal distribution. The

associated variance σ2 is known. Each Pi has a Normally distributed prior with

mean ai and variance s2
i . Each DM witnesses a (potentially different) number

mi of observations, having respective sample means of ri =
∑mi
j=1 xj

mi
. Suppose

interest was in the average salary students earn in part time jobs, with one

investigator asking ten students and another asking twenty. An overall average

can be computed by pooling the data collected by individuals, i.e., considering

having witnessed m =
∑n

i=1mi observations, and writing this grand sample mean

as x̄ =
∑n
i=1 rimi
m

. The posterior of Pi is given by

fi(θ|mean x̄ of m samples)=f(mean x̄ of m samples|θ)fi(θ)

=fi(θ)
n∏
i=1

f(mean ri of mi samples|θ)

=
1√
2πs2

i

exp
(
− (θ − ai)2

2s2
i

) n∏
i=1

[ 1√
2πσ2

exp
(
− (ri − θ)2

2σ2

)]
∝ exp

(
−(mx̄− θ)2

2σ2

)
exp

(
−(θ −mi)

2

s2
i

)
∝ exp

[
− 1

2( 1
s2i

+ m
σ2 )−1

(
θ −

ai
s2i

+ mx̄
σ2

1
s2i

+ m
σ2

)]
(3.36)

Implicit in these instances (and any generic application) is the assumption of homo-

geneity between observations from different DMs. An area for further development

is that in which DMs are interested in quantities θ1, . . . , θn which are not necessarily

identical but exhibit substantial correlations and dependencies. For now we see that

the posterior distribution of each DM is determined by the information witnessed by

the group as a whole, i.e., if Pi was to alter the decision that she makes (e.g., buying

shares instead of not buying them) this would change the posterior beliefs for all DMs

within the group structure. In the classical linear opinion pooling setting (Cooke, 1991)

there is a DM consulting domain-specific experts who provide her with opinions about

θ. In this environment there is a single decision made, with the experts providing

advice that they do not themselves act upon. Similarities can be seen between this

setting and our own in the instance where all DMs witness a common return, with all
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individuals wanting to assess the accuracy of a set of beliefs in light of a single piece

of information, which will be witnessed assuming one of them makes a decision with

a non-trivial consequence. However in our extension of this simplified scenario, where

all DMs witness their own returns, this is clearly not the case, as the utility functions

of DMs will impact upon the decisions that they make, and hence which return will

occur and be witnessed by themselves and the group as a whole. This modification

to the configuration of our problem provides additional generality, applicability, and

originality to our research.

Finally, above we only considered the calculation of posterior distributions of DMs.

We turn our attention to the other manner in which learning over time occurs, i.e.,

weight updating. Weights are found by plugging the witnessed aggregated data into

prior predictive distributions of DMs, giving direct analogies of Equations (3.7)−(3.9):

wi = fi(K = k) =
Γ(m+ 1)Γ(αi + βi)Γ(αi + k)Γ(βi +m− k)

Γ(m− k + 1)Γ(k + 1)Γ(αi)Γ(βi)Γ(αi + βi +m)
(3.37)

wi = fi(K = k) =
αβii

Γ(k + 1)Γ(βi)

Γ(k + βi)

(αi + 1)k+βi
(3.38)

wi = fi(X̄ = x̄) =
1√

2π(σ2 + s2
i )

exp
(
− (x̄−mi)

2

2(σ2 + s2
i )

)
(3.39)

We see that the PI approach can be extended to a significantly more generalised setting.

In what follows we focus on the more simplistic common return scenario, while bearing

in mind that such an extension is always achievable.

3.9 Bayesian Model Averaging

We briefly turn our attention to Bayesian Model Averaging (BMA), discussed in detail

in Hoeting et al. (1999), which we strongly recommend to the interested reader. BMA

shares two of the core ideals of our PI approach. Firstly it is a technique for combining

a collection of (potentially diverse) probabilistic quantities into a single quantity, and

secondly it aims to achieve this while adhering to the Bayesian paradigm. Consider a

setting where an individual wishes to model a phenomenon, but is unsure which partic-

ular model from a broad class of models (e.g., linear regression models or proportional

hazard models) describes this most accurately. For instance, the user may believe the

quantity can be modelled via a linear regression, but is unsure which of her available

covariates should be included in this. BMA derives an ensemble methodology by which
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these models may be amalgamated in a linear fashion, with different weights awarded

to the different models based on their integrated likelihood/prior predictive distribu-

tions. The goal of this process is generally to provide a measure of uncertainty (i.e., a

variance) as well as a point estimate (i.e., the mean) for use in a predictive problem,

e.g., weather forecasting or financial modelling. Similarities and contrasts are instantly

evident here with the PI approach: both are Bayesian techniques for merging several

elements into a single element. Yet in the PI approach the elements to be merged are

differently parameterised versions of a common probability distribution, while in BMA

they are different versions of a common broad statistical family. We comment that

BMA is often computational expensive if one wants to include an exhaustive set of

all possible models in her ensemble, and that specification of a prior distribution over

model types is a challenging task. Solving BMA prior predictive integrals (analogous to

our Equation 3.6) is often a very complex task, with exact solutions generally unachiev-

able, and approximations found using the Bayesian Information Criteria approximation

(Raftery, 1995).

3.10 Limitations

In this chapter we have provided some simple justifications for the PI approach using

mathematical arguments, and in the following chapter we shall attempt additional

validation using two types of data. While there is certainly merit in the use of our

technique, we conclude this chapter with some brief notes on the limitations associated

with it, specifically referencing contexts in which it is not suitable for use.

• It is assumed throughout the process that the uncertain quantity of interest re-

mains constant. The opinion of DMs over this quantity will change over time, in

light of new noisy realisations, but in our context we do not consider that the true

underlying quantity itself will alter. There are cases when this is very reason-

able, for instance if the parameter is the proportion of patients who successfully

respond to a new drug trial, or the average temperature in Dublin from year to

year. Yet there are certainly cases where it would be useful to be able to explic-

itly consider the quantity as dynamic, e.g., if it were the price of a piece of real

estate in a developing area or the speed at which an athlete in training can run

72



a mile. As it stands the corresponding observations for these phenomena will be

incorporated in the Bayesian updating, but they will still be seen as realisations

of the initial random variable rather than some evolved one.

• In its current form our model does not explicitly incorporate correlation between

potentially similar unknown quantities. As a motivating example suppose interest

lies in the time it will take a runner to complete a half marathon, and several

realisations of this are available. Intuitively we would imagine a strong correlation

between their time for running a half marathon and running a full marathon. Yet,

at present, if interest was to shift to the individuals time for a full marathon, the

process would need to be begun again from scratch (although obviously DMs

could use their knowledge of the half marathon times in the construction of their

prior distributions).

• The PI approach is fully parametric, with DMs being required to supply a fully

parameterised probability distribution. This may be beyond the scope of some

users, even with the available elicitation techniques. In Chapter 6 we develop a

nonparametric simplification, but this too is reliant upon the specification of a

measure of uncertainty on the behalf of the user, i.e., a class of variance estimate.

There may be cases where individuals are interested only in the combining of the

point estimates, and do not wish to complicate matters by the consideration of

higher order moments. In this situation the PI approach is not suitable for use.

• All individuals have strictly positive weights through the PI scheme, but in the

limit these can tend towards zero. DMs may be willing to amalgamate their

opinion with those of their neighbours, and to have their own opinion diluted

by the individuals around them, especially if they are perceived as being more

accurate. Yet there will conceivably be cases where a DM is unwilling to enter

into a scheme in which the decision that she herself undertakes, and will bear the

consequences of, is one which almost entirely discounts her point of view. Hence

users must be made aware before use of the objectivity inherent in the scheme,

and must concur with the potential ramifications of this. In Chapter 7 we derive

a subjective method, the KL approach, which goes some way towards solving this

problem.
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Chapter 4

Data-based Justifications

In the previous chapter we introduced the Plug-in approach as a decision making tool

for quantifying perceived reliability of information sources, and demonstrated its at-

tractive Bayesian and coherency properties. Yet these advocations lack a certain degree

of formality. In this chapter we justify the PI approach with more rigour by considering

its performance on sets of data, both simulated and real, providing strong empirical

evidence for its use. In addition to discussing and interpreting results we illustrate

the theoretical calculations underlying the simulated data study and demonstrate how

simulated proportions converge to true probabilities of the PI approach’s superiority.

4.1 Alternatives Methods and Metric Choice

In the setting that we are concerned with a DM does not need to listen to her neigh-

bours as the decision that she makes is her own, i.e., she alone feels its consequences.

Hence she may wish to make this decision based solely on her own personal beliefs.

If she is confident in having a firm understanding of θ she may feel that listening to

opinions of (potentially vague/inaccurate) neighbours will only weaken the precision of

the distribution that she makes her decision with, potentially diminishing her decision

quality. By contrast a DM believing herself to be relatively uninformed about θ may

be willing to incorporate views of (potentially far more knowledgeable) neighbours into

her decision task, hopeful of increasing her decision quality. Each DM makes a choice:

to make decisions using the PI posterior opinion or her own posterior opinion. We

attempt to discover which method is superior, by considering which leads to the most

75



accurate belief (i.e., that most closely mirroring θ).

An obvious matter regards the performance metric determining superiority. Initially

we considered a metric based on comparing a method’s posterior mean with the true

θ, with the best method minimising this absolute distance. Yet issues arise with this

choice, both in solely considering a distribution’s mean (as opposed to, for instance,

its median), and also that the corresponding associated uncertainty (i.e., variance) is

disregarded. We illustrate this in Fig. 4.1 where the distribution of P1 has a mean closer

to θ but the distribution of P2 places more probability density on θ. The mean-based

metric ignores the overconfidence (small variance) of P1. Hence when comparing a set

of techniques (i.e., the several pooling methods we shortly introduce) we declare the

superior method to be that placing the most posterior density on θ. In the individual

problem, comparing the PI posterior to those of individuals, we say the PI approach

is superior if it places more density on θ than over half the posteriors of DMs, i.e., if

a DM is randomly chosen from the group then there is probability over 0.5 that the

combined distribution will provide more accurate estimation than her own distribution.

DMs do not know a priori how reliable they are.

Fig. 4.1: The distributions f1(θ) ∼ N(3, 0.2) and f2(θ) ∼ N(−0.5, 2), and θ = 1.8.

Suppose a DM opts to listen to her neighbours, i.e., incorporating their opinions into

her decision task. We proposed the PI approach as a suitable linear pooling method,

but it is not the only option. Several other rational schemes exist. We discussed how
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at the first epoch all DMs can be given equal weight. This is reasonable and intu-

itive in the absence of relevant information about their accuracy. A simple weighting

scheme is one maintaining these equal weights throughout the process, i.e., weights are

unchanged in light of new data. Weaknesses are clear. DMs with concise and accu-

rate opinions are afforded the same merit as those with vague and inaccurate opinions.

When more DMs possess opinions of the latter type than the former type this leads

to the combined opinion being highly inaccurate and hence to potentially low decision

quality for DMs, i.e., the accuracy of knowledgeable DMs is overshadowed. Yet there

are situations when this approach may yield good results. Over time opinions of DMs

become increasingly accurate (converging to precise identical distributions in the limit)

so affording equal weights to a set of reliable DMs will yield a reliable opinion. As more

returns are witnessed the probability of the equal weights approach being meritorious

increases. The calibre of this approach may grow if DMs predictions are symmetric

around θ, e.g., if two DMs underestimate θ by two and three units respectively, and

two DMs overestimate θ by two and three units respectively then equal weights leads

to prediction centred on θ. This is the “wisdom of crowds” explaining how, as dis-

cussed in Section 2.7, the equally weighted combination potentially outperforms more

sophisticated schemes. As time progresses predictions of DMs grow closer to θ, e.g.,

after an epoch we may have two DMs underestimating by one and two units, and two

overestimating by one and two units. Hence the symmetry in beliefs and increasing

DM accuracy, leads to predictions closer to θ. We investigate this case in Section 4.2.

The PI approach awards high weights to the DMs who appear most accurate in a set

of neighbours. An alternative weighting scheme gives a weight of one to the single DM

deemed most reliable at the previous epoch (i.e. maximised Equation 3.6), and weights

of zero to all others, i.e., a significantly simplified version of the PI approach. This may

lead to rotation of which DM is deemed most reliable. This approach initialises with

the Laplacian Principle of Indifference, with shortcomings evident. Giving weights of

one is a dangerous strategy often cautioned against (e.g..Eggstaff et al., 2014). If the

outcome witnessed is an unlikely one and the distribution of the DM severely contrasts

with θ then subsequent decision quality may be poor, with her inaccurate opinion

the only one considered. The PI approach would assign her a large PI weight, but

opinions of other DMs would be factored in also, with her past inaccuracy leading to
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a considerable decrease in her normalised weight. Yet, there are situations where this

method could be effective. Suppose all DMs barring one are extremely unreliable, with

that DM being accurate. Assuming no unlikely (i.e., tail probability) events occur

this DM will be given the dominating weight throughout, ensuring that the combined

belief is consistently accurate. Also as time progresses we have discussed how DMs

become increasingly accurate. In a setting where all DMs are accurate (e.g., a priori

or after several epochs), giving a weight of one to a single DM is reasonable as it leads

to a similar opinion as a weighted combination (by the asymptotic argument in Section

3.4). The variance of this method will not be impacted upon by the positive correction

term in Equation (3.19) so may have a smaller variance than the PI distribution. It is

clear that this approach will be most successful if tail events do not occur and a large

proportion of DMs possess strongly inaccurate beliefs. Below we assess the merits

of the PI distribution against the distributions of individual DMs, and also to the

distributions from the Equal Weights (EQ) and Most Reliable (MR) methods.

4.2 Simulation Study

We consider our three conjugate cases: Beta-Binomial (for probabilities), Normal-

Normal (for continuous problems) and Gamma-Poisson (for rates), and situations where

DMs on average overestimate, underestimate, and have mean predictions centred on,

θ. Distributions over prior hyperparameters are in Table 4.1, e.g., for Normal overesti-

mation (θ = 0) prior means are uniformly chosen from [−2, 8] so on average DMs will

have a mean of 3. In underestimation cases we set average prior predictions closer to θ,

investigating if this impacts performance. The number of DMs involved increases from

2 to 20 and the number of returns witnessed increases from 1 to 12. For each of the

228 (i.e., 19× 12) cases we run 5,000 simulations, recording which method is superior

each time and aggregating results over the 5,000 simulations. The method with the

highest success proportion is deemed superior for that case.

Results for Normal overestimation are in Fig 4.2. After exactly one return the MR

approach outperforms the PI and EQ approaches irrespective of the number of DMs

involved. After exactly two returns the PI approach gives better estimation if the group

contains ten DMs or more, while after exactly three returns it is better if the group
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Table 4.1: Data mechanisms and parameters, prior structures and distributions over

the simulation of prior parameters, as well as the corresponding average prior means.

Beta-Binomial Normal-Normal Gamma-Poisson

Data Mechanism R ∼ Binomial(5, θ) R ∼ N(θ, 1) R ∼ Poisson(θ)

θ 0.5 0 5

Priors fi(θ)∼Beta(β1, β2) fi(θ)∼N(mi, si) fi(θ)∼Gamma(β1, β2)

Overestimation β1 ∼ U(1, 16) mi ∼ U(−2, 8) β1 ∼ U(1, 4)

β2 ∼ U(1, 4) si ∼ U(0, 3) β2 ∼ U(1, 32)

Efi(θ) = 0.8 Efi(θ) = 3 Efi(θ) = 8

Underestimation β1 ∼ U(1, 6) mi ∼ U(−6, 2) β1 ∼ U(1, 4)

β2 ∼ U(1, 14) si ∼ U(0, 3) β2 ∼ U(1, 16)

Efi(θ) = 0.3 Efi(θ) = −2 Efi(θ) = 4

Mean-Centred β1 ∼ U(1, 10) mi ∼ U(−8, 8) β1 ∼ U(1, 4)

β2 ∼ U(1, 10) si ∼ U(0, 4) β2 ∼ U(1, 20)

Efi(θ) = 0.5 Efi(θ) = 0 Efi(θ) = 5

contains seven DMs or more. The more information sources DMs have access to the

better PI performance is. As the number of returns grows PI performance becomes

increasingly dominant. This is intuitive as the PI method learns over time, gaining

increasingly accurate reliability measures in accordance with an increased amount of

data. These conclusions are reinforced by the figures in Table 4.2. The proportion of

times the PI approach outperforms alternatives steadily increases with the number of

DMs. Success proportions for the PI approach for a given number of DMs is higher

having seen four returns than three returns. In Fig. 4.3-4.5 we plot the eight other

cases (Binomial underestimation, etc.), with identical conclusions inferred from these,

i.e., PI performance grows with the amount of DMs/returns involved. PI performance

is marginally weaker in the underestimation case (in which DMs are a priori more ac-

curate) than the overestimation case, but performance actually improves when average

predictions are mean-centred. Briefly we comment on the poor EQ performance. In

only one case (two DMs and a single return in the Binomial mean-centred scenario)

is it superior. Opinions of accurate DMs are sabotaged by those of inaccurate DMs,
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Fig. 4.2: Plot of the method with the highest success proportion in Normal overesti-

mation for a varying amount of DMs/returns. Empty circles imply the MR method is

superior, with filled squares/triangles for the PI/EQ methods respectively.

with performance-based weighting giving more accurate estimation. In addition the

EQ method often produces higher variances than alternatives, i.e., supplying quite flat

(uninformative) distributions.

(a) (b)

Fig. 4.3: Optimal methods for Binomial and Poisson overestimation.
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(a) (b)

(c)

Fig. 4.4: Optimal methods for Binomial, Normal and Poisson underestimation.

We also compare the PI posterior distributions to those posterior distributions of

individual DMs. It seems clear that for a reasonable amount of DMs and returns the

PI approach is superior to the more simplistic EQ and MR methods, but we have not

yet discussed if DMs would be best served simply heeding solely their own opinions and

ignoring the additional available information. We conducted a similar study to resolve

this using the same initialisations in Table 4.1. For each simulation we considered the

density placed on θ by the PI and individual posteriors, declaring the former superior if

it placed more density than over half the individual posteriors (ties can occur if there is

an even amount of DMs). In each case we aggregated results over 5,000 simulations. In

several cases with two DMs individual distributions often tied with the PI distribution,
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(a) (b)

(c)

Fig. 4.5: Optimal methods for Binomial, Normal and Poisson mean-centred beliefs.

i.e., the PI approach gave more accurate estimation for the less accurate DM and

less accurate estimation for the more accurate DM. For the case of Binomially mean-

centred opinions, individuals own distributions marginally outperformed the weighted

combination, although we note that the PI method generally had a more accurate mean

but a higher variance. As previously discussed, if most DMs are a priori accurate then

they will gain little from listening to the opinions of neighbours. However in realistic

applications it is unlikely that numerous DMs will have opinions centred on the exact

true state of nature. In all other instances the PI approach was superior.

We illustrate success proportions for Normal overestimation in Table 4.3. We see a

decrease in PI success proportions over time, which is to be expected; as DMs witness
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Table 4.2: PI, EQ and MR success proportions for Normal Overestimation after three

and four returns for a varying amount of DMs. Bold font denotes the optimal method.

After 3 Returns After 4 Returns

DMs PI EQ MR PI EQ MR

2 0.1902 0.1398 0.6700 0.2276 0.1470 0.6254

3 0.3038 0.1344 0.5618 0.3306 0.1298 0.5396

4 0.3636 0.1204 0.5160 0.3974 0.1344 0.4682

5 0.4072 0.1326 0.4602 0.4378 0.1212 0.4410

6 0.4324 0.1312 0.4634 0.4400 0.1228 0.4372

7 0.4388 0.1228 0.4384 0.4758 0.1264 0.3978

8 0.4656 0.1214 0.4130 0.4788 0.1300 0.3912

9 0.4824 0.1246 0.3930 0.4816 0.1326 0.3858

10 0.4838 0.1094 0.4068 0.4860 0.1280 0.3860

11 0.4798 0.1290 0.3912 0.4944 0.1276 0.3780

12 0.4858 0.1288 0.3854 0.5110 0.1190 0.3700

13 0.4922 0.1322 0.3746 0.5206 0.1238 0.3556

14 0.4960 0.1200 0.3840 0.5008 0.1270 0.3722

15 0.4986 0.1284 0.3730 0.5308 0.1192 0.3500

16 0.5020 0.1186 0.3794 0.5328 0.1276 0.3396

17 0.4972 0.1292 0.3736 0.5308 0.1202 0.3490

18 0.5122 0.1194 0.3684 0.5296 0.1332 0.3372

19 0.5004 0.1316 0.3680 0.5460 0.1240 0.3300

20 0.5162 0.1186 0.3652 0.5346 0.1258 0.3396

more data they themselves become increasingly accurate and less dependent upon the

views of their more accurate neighbours. As mentioned above ties are possible when an

even number of DMs are involved. Hence we observe slightly lower success proportions

in even cases than odd cases, particularly in instances with a small numbers of DMs. In

general, success proportions remain relatively constant as the number of DMs increases.

We concur that there is doubtlessly merit in DMs using the combined distribution in

place of their own, as well as in place of the two alternative pooling methods discussed.

The bulk of simulation figures is omitted here for brevity, with several representative

illustrations provided in Appendix C. In conclusion, it is clear from the wide range
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of cases considered (spanning three commonly used distributional assumptions and a

vast array of initialisation configurations) that the PI approach is an attractive decision

making tool.

Table 4.3: Individual and PI success proportions after three and four returns for a

varying amount of DMs. Bold font denotes the optimal method.

After 3 Returns After 4 Returns

DMs IND PI IND PI

2 0.5000 0.5000 0.5000 0.5000

3 0.1728 0.8272 0.1876 0.8124

4 0.2071 0.7929 0.2319 0.7681

5 0.1750 0.8250 0.1880 0.8120

6 0.1931 0.8069 0.2085 0.7915

7 0.1732 0.8268 0.1900 0.8100

8 0.1805 0.8195 0.1941 0.8059

9 0.1774 0.8226 0.1844 0.8156

10 0.1835 0.8165 0.2026 0.7974

11 0.1756 0.8244 0.2014 0.7986

12 0.1712 0.8288 0.1894 0.8106

13 0.1668 0.8332 0.2030 0.7970

14 0.1728 0.8272 0.1940 0.8060

15 0.1628 0.8372 0.1988 0.8012

16 0.1699 0.8301 0.1925 0.8075

17 0.1722 0.8278 0.1958 0.8042

18 0.1678 0.8322 0.1927 0.8073

19 0.1780 0.8220 0.1958 0.8042

20 0.1730 0.8270 0.1915 0.8085
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4.3 Theoretical Calculations

4.3.1 True Success Probabilities

Above we demonstrated the merits of the PI approach by simulation, comparing its

performance to those of alternatives and recording the proportion of times it was supe-

rior to these. As the amount of simulations ran increased, success proportions seemed

to converge to a constant value, i.e., the true probability of the PI approach being

superior. We demonstrate calculation of this probability and illustrate convergence,

focusing on the Beta-Binomial case. We comment on the Poisson-Gamma and Normal-

Normal cases, which are given in full in Appendix E. We assume n is odd (i.e., ties

cannot occur) but this material is easily modified if not. In the Beta-Binomial case θ

is a Bernoulli success probability which each Pi has a Beta prior over:

fi(θ) =
Γ(αi + βi)

Γ(αi)Γ(βi)
θαi−1(1− θ)βi−1 with θ ∈ [0, 1] (4.1)

Returns are realisations of a Binomial random variable R. Each r is a number of

successes in m independent, identically distributed trials. Each r has probability of

f(R = r|θ) =

(
m

r

)
θr(1− θ)m−r with r = 0, 1, . . . ,m (4.2)

Over t epochs there are (m + 1)t possible t−tuples of returns witnessable. The un-

normalised weight given to Pi after t returns (ui,t) is a product of her PI weights over

these t returns and her initial equal weight, as in Equation (3.14). Denoting rk as the

kth epoch return and wi,k for the PI weight of Pi over rk we have:

ui,t =
1

n
wi,1 . . . wi,t

=
1

n
fi(R1 = r1) . . . fi(Rt = rt|Rt−1 = rt−1 . . . , R1 = r1) (4.3)

We write α
(k)
i and β

(k)
i for the updated hyperparameters of Pi after k returns:

α
(k)
i = αi +

k∑
j=1

rj (4.4)

β
(k)
i = βi + km−

k∑
j=1

rj (4.5)

Using the convention that α
(0)
i = αi and β

(0)
i = βi, we rewrite Equation (4.3) as

ui,t =
1

n

t∏
k=1

(
m

rk

)
(α

(k−1)
i + β

(k−1)
i − 1)!(α

(k−1)
i + rk − 1)!(β

(k−1)
i +m− rk − 1)!

(α
(k−1)
i − 1)!(β

(k−1)
i − 1)!(α

(k−1)
i + β

(k−1)
i +m− 1)!

(4.6)

85



By independence, the probability of return set {r1, . . . , rt} is a product of Binomials:

f(R1 = r1, . . . , Rt = rt|θ) =
t∏

k=1

(
m

rk

)
θrk(1− θ)m−rk (4.7)

Any value of Equation (4.6) occurs with probability in Equation (4.7). The normalised

weight of Pi after t returns (here written as γi,t to avoid notational confusion) is

γi,t =
ui,t∑n
j=1 uj,t

=

1
n

∏t
k=1

(
m
rk

) (α
(k−1)
i +β

(k−1)
i −1)!(α

(k−1)
i +rk−1)!(β

(k−1)
i +m−rk−1)!

(α
(k−1)
i −1)!(β

(k−1)
i −1)!(α

(k−1)
i +β

(k−1)
i +m−1)!∑n

j=1
1
n

∏t
k=1

(
m
rk

) (α
(k−1)
j +β

(k−1)
j −1)!(α

(k−1)
j +rk−1)!(β

(k−1)
j +m−rk−1)!

(α
(k−1)
j −1)!(β

(k−1)
j −1)!(α

(k−1)
j +β

(k−1)
j +m−1)!

=

∏t
k=1

(
m
rk

) (α
(k−1)
i +β

(k−1)
i −1)!(α

(k−1)
i +rk−1)!(β

(k−1)
i +m−rk−1)!

(α
(k−1)
i −1)!(β

(k−1)
i −1)!(α

(k−1)
i +β

(k−1)
i +m−1)!∑n

j=1

∏t
k=1

(
m
rk

) (α
(k−1)
j +β

(k−1)
j −1)!(α

(k−1)
j +rk−1)!(β

(k−1)
j +m−rk−1)!

(α
(k−1)
j −1)!(β

(k−1)
j −1)!(α

(k−1)
j +β

(k−1)
j +m−1)!

(4.8)

Weights in Equation (4.8) are merged with distributions in Equation (4.1) with new

hyperparameters from Equations (4.4) and (4.5) giving a PI posterior after t returns

of

f̂PIt (θ|r1, . . . , rt) =
n∑
z=1

γz,tfz(θ|r1, . . . , rt)

=
n∑
z=1

[ ∏t
k=1

(
m
rk

) (α
(k−1)
z +β

(k−1)
z −1)!(α

(k−1)
z +rk−1)!(β

(k−1)
z +m−rk−1)!

(α
(k−1)
z −1)!(β

(k−1)
z −1)!(α

(k−1)
z +β

(k−1)
z +m−1)!∑n

j=1

∏t
k=1

(
m
rk

) (α
(k−1)
j +β

(k−1)
j −1)!(α

(k−1)
j +rk−1)!(β

(k−1)
j +m−rk−1)!

(α
(k−1)
j −1)!(β

(k−1)
j −1)!(α

(k−1)
j +β

(k−1)
j +m−1)!

×

Γ(α
(t)
z + β

(t)
z )

Γ(α
(t)
z )Γ(β

(t)
z )

θα
(t)
z −1(1− θ)β

(t)
z −1

]
(4.9)

Recall that over t epochs there are (m+ 1)t possible return streams. Denote by rx the

xth of these. Consider an indicator variable Ij,x giving a 1 if the PI posterior places

more density on θ than that of Pj given rx, and 0 if not, i.e.,

Ij,x =

 1 if f̂PIt (θ|rx) > fj(θ|rx);

0 if f̂PIt (θ|rx) < fj(θ|rx).

This forms a matrix of zeros and ones, as in Table 4.4. Interest is in its column

sums. If for returns rx the column sum exceeds n
2

then, for rx, the PI approach gives

better estimation than over half of DMs, i.e., it is superior. The xth column is Sx:

Sx =
n∑
k=1

Ik,x (4.10)
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Table 4.4: Cross-tabulation of DMs and return streams, with Ij,x for each cell {j, x}.

r1 r2 . . . r(m+1)t

P1 I1,1 I1,2 . . . I1,(m+1)t

P2 I2,1 I2,2 . . . I2,(m+1)t

...
...

...
...

...

Pn In,1 In,2 . . . In,(m+1)t

We introduce an indicator, Ix, returning a 1 if this sum exceeds n
2
, and a 0 if not:

Ix =

 1 if Sx >
n
2
;

0 if Sx <
n
2
.

Finally we consider the quantities {Ix}x=1,...,(m+1)t and the corresponding probabilities

for rx, as in Equation (4.7). The probability that the PI approach is superior to DM

distributions is the cross-product of these vectors:

P(PI is superior|θ) =

(m+1)t∑
x=1

Ixf(R = rx|θ) (4.11)

We demonstrate that proportions convergence to this probability. Consider a case

where R ∼ Bin(2, θ), for θ=0.7. Suppose there are five DMs with respective Beta(1, 3),

Beta(7, 2), Beta(2, 2), Beta(4, 3) and Beta(2, 1) priors. After four returns the true

success probability is 0.687. We simulated 5,000 process iterations, recording success

proportions at each stage as in Fig. 4.6. These converge to 0.687.

We perform similar calculations in the group problem. We defined the PI distribu-

tion after t returns in Equation (4.9) and now turn to the EQ and MR distributions.

The former is straightforward with weights independent of returns, i.e.,

f̂EQt (θ|r1, . . . , rt) =
n∑
z=1

1

n
fz(θ|r1, . . . , rt)

=
1

n

n∑
z=1

[ Γ(α
(t)
z + β

(t)
z )

Γ(α
(t)
z )Γ(β

(t)
z )

θα
(t)
z −1(1− θ)β

(t)
z −1

]
(4.12)

The MR posterior depends upon which DM was deemed most reliable (i.e., returned

the highest PI weight) at the tth epoch. We consider, IMR
j,x , giving a 1 if Pj has the

biggest PI weight having seen rx, and 0 if not, where rx[t] is the tth element of rx:

IMR
j,x =

 1 if fj(Rt = rx[t]|·) = maxk∈{1,...,n} fk(Rt = rx[t]|·);

0 if fj(Rt = rx[t]|·) 6= maxk∈{1,...,n} fk(Rt = rx[t]|·).
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Fig. 4.6: Simulated proportions (the horizontal line denotes the true probability).

The MR posterior after rx is

f̂MR
t (θ|rx) =

n∑
z=1

IMR
z,x fz(θ|rx)

=
n∑
z=1

IMR
z,x ×

Γ(α
(t)
z + β

(t)
z )

Γ(α
(t)
z )Γ(β

(t)
z )

θα
(t)
z −1(1− θ)β

(t)
z −1 (4.13)

Consider three indicators, IPIx , IEQx and IMR
x respectively giving a 1 if the method is

superior (in terms of posterior density) given rx and a zero if not:

IPIx =

 1 if f̂PIt (θ|rx) > max{f̂EQt (θ|rx), f̂MR
t (θ|rx)};

0 if not.

IEQx =

 1 if f̂EQt (θ|rx) > max{f̂PIt (θ|rx), f̂MR
t (θ|rx)};

0 if not.

IMR
x =

 1 if f̂MR
t (θ|rx) > max{f̂PIt (θ|rx), f̂EQt (θ|rx)};

0 if not.

Given these, we define the probabilities of techniques being optimal as

P(PI is superior|θ) =

(m+1)t∑
x=1

IPIx f(R = rx|θ) (4.14)

P(EQ is superior|θ) =

(m+1)t∑
x=1

IEQx f(R = rx|θ) (4.15)
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P(MR is superior|θ) =

(m+1)t∑
x=1

IMR
x f(R = rx|θ) (4.16)

We demonstrate convergence to these probabilities (using the previous example) in

Fig. 4.7. Full calculation details for Poisson-Gamma and Normal-Normal cases are in

Appendix E. These follow from the above material with minor modifications. In the

Binomial case we can produce a (finite) exhaustive list of all possible values of r, i.e.,

there are m+ 1. The same cannot be said in the Poisson case which has a (countably)

infinite set of possibilities. Equations (4.11) and (4.14)− (4.16) must be finite sums to

ensure computability. Hence in the Poisson case we must choose a (finite) upper bound

value that returns have negligibly small probability of exceeding. In the continuous

Normal distribution, which has an (uncountably) infinite set of returns, we perform

a similar process by discretising the range (in a manner that is not too coarse) and

choosing suitable lower and upper bounds.

Fig. 4.7: Proportions from simulations (horizontal line denotes the true probabilities).

The examples here are low-dimensional as there are issues related to “curse of

dimensionality”. If there are N potential returns per epoch then there are N t potential

return streams over t epochs. This term grows quickly, often making computation in a

reasonable time impossible. If there are 50 returns considered across five epochs there
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are over 3 × 108 combinations to compute. This is extremely computationally slow

with this number growing unmanageable as epochs increase. Yet we have seen how

accurately simulations mirror probabilities. Hence it is adequate to talk in terms of

proportions rather than probabilities, as the former are very accurate estimates of the

latter with severely decreased computation time. In non-conjugate cases it is impossible

to give closed form PI weights meaning simulation is required, i.e., probabilities cannot

be calculated, only approximated by proportions. Nevertheless, this material is a nice

derivation which confirms the correctness of our simulation method.

4.3.2 Unconditional Probabilities

Above we determined the true probability of the PI approach being superior to a set

of alternatives. Implicit within this material is the assumption that the true value of

θ is known. For our justification purposes this is perfectly reasonable, but in practical

applications DMs will be unaware of the true value of the latent parameter θ prior

to (and during) the process, modelling their uncertainty via probability distributions.

The question we seek to answer here is the following: if a DM has her prior opinion

over θ and receives opinions from neighbours over θ then what is the probability she

a priori associates with the PI approach giving more accurate estimation than her

own distribution? This is akin to “integrating out” θ in Equation (4.11), i.e., we are

interested in P(PI is superior) rather than P(PI is superior|θ).

Here we consider the Beta-Binomial case where (m + 1)t possible return sets can

be witnessed over t epochs. We consider each case in turn, and determine if the

resulting PI posterior would be more accurate than the DM’s own distribution, given

her prior opinion over θ. As θ is unknown to the DM she calculates the probability of

PI superiority for a range of values of θ, e.g., θ ∈ {0, 0.01, . . . , 0.99, 1} in turn. If the PI

method has a probability over 0.5 of yielding more accurate estimation than a DM’s own

distribution then she will be inclined to use it. We produce plots of the corresponding

probabilities of the PI method being superior for the range of values of θ in Fig.

4.8 for three DMs with respective Beta(4, 2), Beta(2, 2) and Beta(1, 3) priors, with

θ ∼ Bin(2, θ), and two returns to be witnessed. P1 will a priori consider the probability

of the PI approach being superior to exceed 0.5, given f1(θ), if θ ≤ 0.62, while for P2

this holds if θ ≤ 0.18 and θ ≥ 0.78, and for P3 if θ ≥ 0.32. DMs consider that they will
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benefit from listening to opinions of others if the true θ transpires to be suitably different

from their predictions. Respective prior means of DMs are Ef1(θ) = 0.67, Ef2(θ) = 0.5

and Ef3(θ) = 0.25. At values of θ close to their mean estimates each DM considers her

own opinion superior to the PI approach, i.e., that they will not benefit from listening

to neighbours’ opinions as their own opinion is already sufficiently accurate. DMs do

not know a priori if their own opinion is accurate or not, and therefore are taking a

gamble in some sense: using the PI approach is akin to admitting a possibility that

her own belief is incorrect, and hence she is willing to listen to opinions of neighbours,

which may improve her accuracy if her own distribution is inaccurate.

Fig. 4.8: Prior probabilities DMs place on the PI approach yielding superior estimation

to their own distributions for varying θ. Horizontal lines denotes a probability of 0.5.

We declared in the individual problem that the PI approach was superior if, for over

half the DMs, it led to better estimation over θ. Here we consider, for each value of θ

in turn, if the PI approach is considered to have a probability of over 0.5 of giving more

accurate estimation for over half of DMs. We find if 0.2 ≤ θ ≤ 0.3 or 0.64 ≤ θ ≤ 0.76

then the PI approach will not be considered best for the set of DMs, while outside

this range it will be. We conduct similar analysis in the group problem. For each θ

contemplated a DM assesses if a priori the PI, EQ or MR approach will yield more

accurate estimation for her. We illustrate this is in Fig. 4.9, showing the success

probabilities assigned by P2 to techniques for the θ values considered under her own

opinions about θ. The EQ method is deemed optimal for θ ≤ 0.72, with PI optimal

for θ ≥ 0.82, and MR briefly optimal for 0.72 < θ < 0.82.
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Fig. 4.9: Success probabilities for the PI, EQ and MR approaches for P2.

Note the distinction between the material here and in the previous subsection.

The latter is used for justification, where the value of θ is assumed known in order

to calculate the probability of the superiority of the PI method. In the former, DMs

wish to know before witnessing returns which values of θ lead to the PI distribution

being superior. The resulting probabilities should not impact upon their decision to

use the PI approach. A DM naturally believes her opinion over θ is correct: if not she

would augment it to one that she felt represented θ more accurately (see the temporal

coherence argument in, e.g., Goldstein, 2001). McConway & Genest (1990) provide

arguments (and corresponding proofs) similar to this, discussing how a DM should

always expect her weight, and those of DMs with opinions similar to her own, to

increase at the next epoch, as she believes the data will validate her opinion (although

this is based on the assumption of dialectical equilibrium, a somewhat behavourial

element we don’t directly consider). Yet DMs using the PI approach acknowledge that

their own opinion may be incorrect and that they themselves are not infallible, and

hence are willing to take into account the opinions of neighbours. They will learn over

time about who is reliable and who is not (themselves included), with this additional

information used in their weighting scheme. This work serves as a footnote to our

theoretical calculations in Section 4.3.1, giving results that are not conditional upon θ.
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Ideally we would formulate a theorem that provides details of the necessary con-

ditions required for the PI approach to be superior to the considered alternatives.

However from the earliest examinations of methods of opinion combining (e.g., the

aforementioned study of Newbold & Granger, 1974) derivation of such a formal theo-

rem has appeared extremely problematic, with comparison to existing methodologies

under a particular metric the commonly used technique for assessing the merits of a

particular method. Even the classical method of Cooke (1991) is primarily validated

using suitable data studies, in addition to some desirable properties that it obeys. Our

justification for the PI approach is the same, using our data studies and the properties

laid out in Sections 3.2 and 3.4. French (1985) discusses how impossibility theorems

exist to show that no combination rule can concurrently obey all of a set of attractive

criteria, meaning that while it is doubtlessly good that our method adheres to these

criteria, there are certainly other criteria which could be deemed desirable that it does

not adhere to.

As previously alluded to, there are a wide range of metrics which can be used

to determine superiority, such as the distance between a distributions mean and the

true value, which would be most appropriate in a case where only a point estimate

was required by the user. However, given our interest in higher order distributional

moments, our probability density metric, which explicitly considers both the mean

and the variance of the mixture distribution, seems a suitable choice for assessing the

quality of our method. As in Section 4.3.2 a DM can try to determine the merits of

the PI approach using our theoretical calculations, but this is reliant upon her own

opinion about the uncertain quantity of interest, and hence cannot be relied upon: if

her understanding of the uncertain quantity is poor then her estimation of the merits

of the PI approach are likely to be inaccurate. We can only make the following formal

statements, which concern the comparison of the PI approach to the two rational EQ

and MR alternatives, under the probability density metric:

• The performance of the PI approach will improve as the number of DMs in the

group grows.

• The performance of the PI approach will improve as the number of witnessed

returns grows.
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• In the limit, as the number of witnessed returns tends to infinity, the performance

of all three approaches will become identical (assuming no individual supplies a

degenerate prior distribution).

4.4 TU Delft Expert Judgment Data Base

Having validated the PI method with simulated data we attempt to do the same using

real data, specifically the TU Delft Expert Judgment Data Base (introduced in Section

2.7). In the framework that we consider all opinion-holding individuals are DMs,

using the belief that they hold, as well as those of neighbours, to make decisions. All

individuals are completely involved in the decision process, i.e., not just supplying

information to be compiled and collated but in sharing the inherent risk. By contrast

in the classical method opinions over uncertainty are offered by a set of experts, which

are synthesised for use by a single DM who herself is not an expert about the relevant

uncertainty, i.e., holds no well-informed opinion over θ. In our PI context each DM

makes a decision, while in the classical method only one decision is made, and it is not

by an original opinion-holder. Yet the goals of both methods are concurrent, seeking

to form a weighted sum of maximum accuracy for a decision task.

We discuss the form of opinions in the TU Delft Expert Judgment Data Base. Each

data set consists of n experts giving opinions on m similarly themed seed variables. In

Table 4.5 we detail the available forty two data sets explored. In the PI framework

we often assume before making a decision (and witnessing a return) that all DMs

are equally reliable. Only once relevant returns are seen can reliability statements be

made. By contrast in the classical method experts have their accuracy assessed on

seed variables (whose true values are known to the DM) with opinions compared to

true values and weights based on these disparities. Hence prior to decision making

reliability information is available. While seeds are related to the unknown element

of the decision problem they are not this element itself, i.e., accuracy on seeds may

not correspond to accuracy for the unknown quantity, and the converse. In the PI

approach equal weights are only changed given returns that are noisy realisations of θ.

Opinions of DMs in the PI approach must be fully parameterised probability distri-

butions. Under the classical method opinions are quantile values {q(0.05), q(0.5), q(0.95)}
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Table 4.5: Details of the data sets in TU Delft Expert Judgment Data Base.

Name Field n m Name Field n m

A SEED Zoology 5 8 LADDERS Falls 7 10

ACNEXPTS Chemistry 7 10 MONT1 Volcanos 11 8

ACTEP Air Traffic 6 10 MVOSEEDS Volcanos 77 5

AOTDAILY Trading 5 34 NH3EXPTS Ammonia 3 10

AOTRISK1 Risk 5 11 OPRISKBANK Risks 10 16

CARMAG Health 6 10 PHAC Health 14 14

DAMS Dams 11 11 PILOTS Pilots 31 10

DIKRING Failure 17 47 PM25 Physics 6 12

DSM1 Safety 10 8 REALESTR Real Estate 4 31

DSM2 Safety 8 10 RETURN1 Real Estate 5 15

ESTEC1 Space Exp. 4 13 RIVERCHNL Rivers 6 8

ESTEC2 Space Exp. 7 26 SARS Health 9 10

ESTEC3 Space Exp. 6 12 SO3EXPT Physics 4 9

EUNRCRWD Geography 7 14 TEIDE MAY Volcanos 17 10

EUNRCDD Geography 8 14 THRMBLD Physics 6 48

EUNRCDIS Dispersion 8 23 TNO DISP1 Dispersion 7 36

EUNRCEAR Health 7 16 TNO DEPOS1 Geography 4 21

FCEP Air Safety 5 8 TUD DISPER1 Dispersion 11 36

GLINVSPC Species 9 13 VESUVIO Volcanos 14 10

GROND5 Transport 7 10 VOLCRISK Risk 45 10

INFOSEC Security 13 10 WATERPOL Pollution 11 9

which an expert believes that the realisation has a probability of 0.05, 0.5 and 0.95 of

lying below respectively. As discussed in Section 2.7 weights are functions of calibra-

tion (accuracy) and information (width) scores, with experts potentially given a weight

of zero if their score fails to meet a minimal threshold. In the PI approach all DMs

have a strictly positive weight at all epochs. DMs are never totally eliminated from

the process due to its learning aspect, i.e., an inaccurate DM becomes more reliable as

data is witnessed. DMs who appear initially inaccurate may actually be reliable, with

the returns witnessed thus far being tail (i.e., unlikely) events. These reasons provide

motivation for constant positivity of weights. The dichotomy between the methods is
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rationalised by their subtly differing objectives. The PI approach is for use in a dy-

namic decision setting where new data repeatedly becomes available and old opinions

(both over θ and DM accuracy) are augmented. Under the classical method all learning

occurs in one step, with weights based on a single set of realisations. A summary of

these contrasts is in Table 4.6.

Table 4.6: Differences between the Plug-in and classical methods.

Plug-in Classical

Decisions made? n (per epoch) 1

DMs hold opinions? Yes No

Form of opinions? Probability Distributions Quantiles

Info. prior to 1st decision? None (Assume equal reliability) Yes (Scores from seeds)

Weights of zero? Never Sometimes

We illustrate the data using data set A SEED which consists of five experts and

eight seeds. In Table 4.7 we show predictions of the first expert, and true values (having

severely differing orders of magnitudes, which we comment on shortly). The central

90% interval for this expert contains true values for only the first three seeds.

Table 4.7: The quantiles of the first expert over the eight seeds in the A SEED data.

Seed q(0.05) q(0.5) q(0.95) True Seed q(0.05) q(0.5) q(0.95) True

1 0.002 0.019 0.036 0.027 5 70 76 82 92

2 449 2690 4930 3460 6 49 58 66 75

3 673 4040 7400 5090 7 13 20 27 46

4 0.009 0.012 0.015 0.006 8 1.7 3.1 5.8 21

4.4.1 Fitting Distributions to Quantiles

An issue with modifying the data to the PI context is the contrasting belief specification

method. A cornerstone of the PI method is the PI weights, i.e., the values of prior

predictive distributions for realisations. Consider Normal-Normal conjugacy. Interest

is in the mean θ of a Normally distributed process, R ∼ N(θ, σ2), with σ2 known.
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The prior opinion of Pi is Normal, i.e., fi(θ) ∼ N(mi, s
2
i ). As previously demonstrated

this gives a prior predictive distribution of fi(R = r) ∼ N(mi, s
2
i + σ2). How can we

modify the data, in terms of quantile opinions and returns seen, to suit our purposes?

There are numerous reasons for our Normality assumption: its prevalence in realistic

scenarios, computational simplicity, that it is straightforward to translate quantiles

to distributions under this assumption, and, critically, that many quantiles appear

approximately (and often exactly) symmetric around their central quantile, e.g., Table

4.7. Denoting qi(x) as the xth quantile of Pi we write her mean as

mi = qi(0.5) (4.17)

We considered various forms for the standard deviation, most notably an arithmetic

average of the (rescaled) distances from the mean to the lower/upper quantiles. How-

ever we found the best representation of an opinion, counteracting occasional extreme

underestimation and overestimation, was the minima of these distances, given in Equa-

tion (4.18). The 1.645 arises from standard Normal theory, i.e., if the quantity is truly

Normally distributed then the distance from its mean to its lower/upper quantile is

1.645si. This combination of mi and si led generally to close fits to the data.

si = min
(qi(0.95)− qi(0.5)

1.645
,
qi(0.5)− qi(0.05)

1.645

)
(4.18)

For each seed variable, we consider its true value as that realised by DMs, i.e., the value

plugged into their prior predictive distribution. We monitor how well fitted Normal

distributions match quantile predictions. For each DM and seed in turn we can graph

the Normal cumulative distribution function of the DM over the seed and add their

quantiles. If these points lie on the fitted function then this indicates a good fit. We

also see if the true value is in a DMs central 90% probabilistic range. An example of

this in Fig. 4.10, shows quantiles, fitted distributions and true parameter values for the

first four experts over the second A SEED seed. The Normality assumption seems very

acceptable for the first, second and fourth experts, and slightly less so for the third

expert. The quantile ranges of all experts contain the true parameter value, although

that of the third expert is far wider (i.e., less informative) than those of her peers.

Finally we discuss the variance σ2 (assumed known) of realised values. If we had

a set of realisations for each seed then we could approximate the true variance as an

average of their deviation around their sample mean. However we only have a single
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Fig. 4.10: Fitted cumulative distributions of experts using Equations (4.17) and (4.18).

Unfilled circles are quantiles and vertical lines represent true parameter values.

value, i.e., the realisation itself. Traditional estimation is not possible. We propose a

simple alternative, assuming σ2 is a fixed fraction of the true/realised value r, i.e.,

σ2 =
r

k
where k ∈ R+ (4.19)

This assumption may appear to let variance be chosen randomly but we provide notes

on this choice here. We commented above on the disparity in orders of magnitude of

seeds within data sets. Equation (4.19) ensures that the variance of a seed is propor-

tional to its order of magnitude, e.g., if k = 10 then a true value of 10 has associated

variance of σ2 = 1 while a true value of 1000 has σ2 = 100. This is more sensible

than a variance parameter constant across all seeds independent of magnitudes. Below

we conduct analysis for several values of k ensuring robustness of results, i.e., conclu-

sions are not solely based on a specific arbitrary parameterisation choice but hold for

numerous possibilities. We shortly see that conclusions are reasonably invariant to k.
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4.4.2 Problem Type and Metric Choice

Previously we discussed two contexts where the PI approach can be applied: individ-

ual and group problems. In the former DMs decide whether to listen solely to their

own opinion or to a PI combination of this and those of her neighbours. The group

problem supposes linear pooling must be carried out, e.g., in a full group decision

making context or one in which a DM is committed to heeding other opinions but

is unsure how to do this. Below we compare the PI distribution to those of DMs

(the individual problem) as well as the EQ and MR alternatives (the group problem).

These are the same alternatives considered by Cooke & Goossens (2008) and Eggstaff

et al. (2014), although in the classical method these are used in a static, rather than

dynamic, fashion. We consider the metric previously discussed, where densities placed

by competing posterior distributions are compared, and the method maximising this

density is deemed superior.

The experts in the classical process do not directly learn about unknown quantities

over time, i.e., having given quantiles for the first seed, and seen its true value, the

expert has not ascertained new information about the second seed. This differs from

our context where DMs learn at each epoch, with every realisation being a noisy version

of θ. The only learning between seeds in the classical method is that experts whose

quantiles have not contained seeds may contemplate widening their ranges for the next

seed, i.e., considering that they may be overconfident in their assessments and are

providing overly narrow predictions. To quote Cooke & Goossens (2008): “If after a

few realisations the expert was to see that all realisations fall outside his 90% central

confidence intervals, he might conclude that these intervals were too narrow and broaden

them on subsequent assessments. This means that for this expert, the uncertainty

distributions are not independent, as he learns from the realisations. Expert learning

is not a goal of an expert judgment study . . . rather the decision maker wants experts

who do not need to learn from the elicitation.”

This further highlights the contrasting goals of the PI and classical methods. Per-

muting the original seed ordering is acceptable as there is no clear Markov dependency

between consecutive assessments. For a particular permutation we calculate weights

for the first seed, observe this value, then update weights for the second seed, and so

on, repeating this for various permutations. This contributes an additional robustness
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to our results as they represent numerous configurations of seed variables rather than

a single one. Seed variables should all relate to the uncertain variable in the forthcom-

ing decision task, so they are not fully independent, but their ordering is irrelevant to

the classical method with weighting scores aggregated over all seeds. Learning over

uncertainty does not occur in the strict Bayesian manner of the PI approach and seeds

should be somehow correlated but may not always be. Hence an expert who previously

appeared very reliable may suddenly appear highly inaccurate due to a seed being only

weakly related to her field of expertise, or differing degrees of seed difficulty. As only

minimal learning occurs between seeds (experts possibly widening quantiles to com-

pensate for overconfidence) we permute seeds and still validly measure corresponding

results. The dependence between consecutive assessments quoted by Cooke & Goossens

(2008) above refers to an experts assessment of her own accuracy rather than learning

over seeds.

The PI goal is learning over time so our assessments are conducted on final seeds,

i.e., when maximal information has been witnessed and DMs have a good understand-

ing of the reliability of neighbours. If there are m seeds then there are m(m − 1)

permutations to be considered to take into account every possibility. We saw in Sec-

tion 3.2 that the PI approach is invariant to the order in which a set of returns is

witnessed. Hence identical weights are given at the final seed regardless of if it is pre-

ceded by xσ1(1), . . . , xσ1(m−1) or xσ2(1), . . . , xσ2(m−1) with σ1 and σ2 distinct permutations

of a common set. Hence for the PI approach we need only consider each seed in turn

as the final one. The same holds for the EQ case, with past reliability not factored into

weights. However the MR method is dependent upon which DM is deemed most reliable

for the (m− 1)th seed (i.e., who maximises the PI weight) which is itself independent

of previous realisations in this context (as learning occurs here only over weights rather

than seeds). Hence we must consider every possible permutation of the final two seeds,

i.e., m(m − 1) permutations. For each permutation we record which method gives

the best estimation and aggregate results over all permutations. The technique with

the greatest proportion is superior for that data set. A similar study (needing only m

permutations) is conducted contrasting individual distributions to those from the PI

approach, with the latter superior if it gives more accurate estimation at the last seed

than more than half of DM distributions.
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(a) (b)

(c) (d)

Fig. 4.11: Distributions of the PI, EQ and MR methods for four A SEED seed vari-

ables. The true parameter value is included (vertical line) in each case.

Fig. 4.11 shows distributions from group methods for four A SEED seeds. The PI

method gives clear better estimation for Seeds 6 and 8 and slightly outperforms the

MR method for Seed 5. It is marginally outperformed by the MR method for Seed 7.

Table 4.8 shows the (relatively constant) weights allocated to DMs over time, with P4

and P5 dominating. For Seeds 5, 6 and 8 listening to a weighted combination of these

two DMs gives better estimation than listening to only one of them (even if the DM

listened to is the more reliable). We produce similar plots for the individual problem

in Fig. 4.12. For all seeds there is at most one DM whose posterior is more accurate
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Table 4.8: DM weights across four seeds for a configuration of the A SEED data

rounded to three decimal places (i.e., P1, P2 and P3 have strictly positive weights).

Pi αi,5 αi,6 αi,7 αi,8

P1 0.000 0.000 0.001 0.000

P2 0.000 0.000 0.000 0.000

P3 0.000 0.000 0.000 0.000

P4 0.405 0.311 0.306 0.166

P5 0.595 0.689 0.693 0.834

than the PI posterior, i.e., it is in the best interest of DMs to use it.

4.4.3 Results

An issue previously mentioned was the variance scaling parameter in Equation (4.19).

Below we let k = 50, k = 25 and k = 5 to ensure robustness of results. We begin with

the individual problem, with results in Table 4.9. We see results are mostly invariant

to changes to k. This is highlighted in the aggregated figures in Table 4.11 with the

proportion of data sets for which the PI approach is superior constant across values of

k. The PI approach is superior to the alternative for the bulk of data sets and hence

it is reasonable to declare it meritorious in the individual problem.

We include group problem success proportions in Table 4.10. The PI approach is not

dominant in several cases, with the EQ method performing strongly. Aggregated results

are in Table 4.12. Results seem relatively invariant to changes in k. The EQ method

is successful across the greatest number of data sets. Yet, of the two performance-

base schemes the PI method is strongest, outperforming the MR approach for all k

considered. We see it is advantageous to use a subtler performance-based scheme. The

EQ success is not surprising given our earlier discussion about the nature of seeds. For

the data we consider seeds should be correlated and related to the unknown decision

variable but this may not always be so, with some seeds potentially being irrelevant

and/or expertise on one seed not implying it on another. In cases of this ilk the EQ

approach performs strongly using “wisdom of crowds” logic. It seems intuitive that in

a setting such as that which the PI approach is intended for, it will produce stronger

results against the EQ method, as the PI approach is a technique based upon the

102



(a) (b)

(c) (d)

Fig. 4.12: Distributions of DMs (unbroken curves) and the PI approach (broken curve)

for four A SEED seed variables with true parameter values (vertical lines) included.

principle of learning from information, of which very little (pertaining to seed values)

is available here.

The EQ method is dominant for a large amount of datasets in the collection under

examination. We have provided discussion above concerning why this may be the case,

namely that correlation between seeds may be weak, implying knowledge of one seed

does not imply knowledge of the next, and hence the PI method of learning may be

bettered by a simple wisdom of crowds averaging. We briefly consider here if the data

sets that the EQ approach is superior for share any type of common characteristic.
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Table 4.9: Individual problem success proportion. Optimal methods are in bold.

k = 5 k = 25 k = 50

Data Set IND. P.I. IND. P.I. IND. P.I.

A SEED 0.1250 0.8750 0.1250 0.8750 0.1250 0.8750

ACNEXPTS 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

ACTEP 0.2000 0.8000 0.2000 0.8000 0.2000 0.8000

AOTDAILY 0.4705 0.5295 0.4705 0.5295 0.4705 0.5295

AOTRISK 0.2727 0.7272 0.2727 0.7272 0.2727 0.7272

CARMA 0.2000 0.8000 0.2000 0.8000 0.2000 0.8000

DAMS 0.3636 0.6363 0.3636 0.6363 0.3636 0.6363

DIKRING 0.2340 0.7659 0.2304 0.7659 0.2340 0.7659

DSM1 0.1250 0.8750 0.1250 0.8750 0.1250 0.8750

DSM2 0.4000 0.6000 0.4000 0.6000 0.4000 0.6000

ESTEC1 0.3076 0.6924 0.3076 0.6923 0.3846 0.6153

ESTEC2 0.1153 0.8846 0.1153 0.8846 0.1153 0.8846

ESTEC3 0.2500 0.7500 0.2916 0.7083 0.2916 0.7083

EUNCRWD 0.0714 0.9285 0.1428 0.8571 0.1428 0.8571

EUNRCDD 0.5714 0.4285 0.5000 0.5000 0.5000 0.5000

EUNRCDIS 0.1739 0.8260 0.1956 0.8043 0.1521 0.8478

EUNCEAR 0.2666 0.7334 0.2666 0.7333 0.2667 0.7333

FCEP 0.6250 0.3750 0.6250 0.3750 0.6250 0.3750

GLINVSPC 0.3846 0.6153 0.3846 0.6153 0.3846 0.6153

GROND5 0.3000 0.7000 0.3000 0.7000 0.3000 0.7000

INFOSEC 0.4000 0.6000 0.4000 0.6000 0.4000 0.6000

LADDERS 0.1000 0.9000 0.1000 0.9000 0.1000 0.9000

MONT1 0.2500 0.7500 0.2500 0.7500 0.2500 0.7500

MVOSEEDS 0.0000 1.000 0.0000 1.0000 0.0000 1.0000

NH3EXPTS 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

OPRISK 0.2500 0.7500 0.2500 0.7500 0.2500 0.7500

PHAC 0.3571 0.6428 0.2857 0.7142 0.2857 0.7142

PILOTS 0.4000 0.6000 0.3000 0.7000 0.3000 0.7000

PM25 0.4167 0.5833 0.3750 0.6250 0.4583 0.5416

REALESTR 0.2580 0.7149 0.2580 0.7419 0.3225 0.6777

RETURN1 0.2000 0.8000 0.2667 0.7333 0.4000 0.6000

RIVERCHNL 0.2500 0.7500 0.2500 0.7500 0.2500 0.7500

SARS 0.6000 0.4000 0.6000 0.4000 0.6000 0.4000

SO3EXPTS 0.3888 0.6111 0.3888 0.6111 0.3888 0.6111

TEIDE MAY 0.1111 0.8889 0.2000 0.8000 0.2000 0.8000

THRMBLD 0.3333 0.6667 0.2708 0.7292 0.3023 0.6979

TNO DISP1 0.3055 0.6945 0.3055 0.6944 0.3055 0.6945

TUD DEPOS 0.2619 0.7381 0.2619 0.7380 0.2619 0.7381

TUD DISP 0.1944 0.8055 0.1944 0.8055 0.1944 0.8056

VESUVIO 0.4500 0.5500 0.5000 0.5000 0.5000 0.5000

VOLCRISK 0.2000 0.8000 0.2000 0.8000 0.2000 0.8000

WATERPOL 0.1111 0.8889 0.2222 0.7778 0.2222 0.7778
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Table 4.10: Success proportions for the group problem. Optimal methods are in bold.

k = 5 k = 25 k = 50

Data Set P.I. EQ. M.R. P.I. EQ. M.R. P.I. EQ. M.R.

A SEED 0.5714 0.0000 0.4285 0.5000 0.0714 0.4285 0.5000 0.0714 0.4285

ACNEXPTS 0.2667 0.5555 0.1778 0.2667 0.5556 0.1778 0.2667 0.5556 0.1778

ACTEP 0.2778 0.3778 0.3333 0.1555 0.4778 0.3667 0.1555 0.4778 0.3667

AOTDAILY 0.2932 0.2772 0.4295 0.3226 0.2745 0.4028 0.3092 0.2905 0.4001

AOTRISK1 0.4000 0.2363 0.3636 0.3545 0.2636 0.3818 0.3545 0.2636 0.3818

CARMA 0.5333 0.2667 0.2000 0.5333 0.2667 0.2000 0.5333 0.2667 0.2000

DAMS 0.4454 0.5000 0.0545 0.4454 0.5000 0.0545 0.4454 0.5091 0.0454

DIKRING 0.3931 0.3098 0.2969 0.4028 0.3075 0.2895 0.4195 0.2978 0.2826

DSM1 0.5714 0.1785 0.2500 0.6964 0.0714 0.2321 0.5357 0.0892 0.3750

DSM2 0.1777 0.4333 0.3888 0.1667 0.4333 0.4000 0.1000 0.5000 0.4000

ESTEC1 0.2500 0.3525 0.3974 0.2948 0.3076 0.3974 0.2500 0.3782 0.3717

ESTEC2 0.2769 0.4507 0.2723 0.2800 0.4507 0.2669 0.2800 0.4507 0.2692

ESTEC3 0.3560 0.2727 0.3712 0.3787 0.2772 0.3484 0.31833 0.3333 0.3484

EUNCRWD 0.3901 0.2967 0.3131 0.3462 0.3076 0.3462 0.3462 0.3076 0.3462

EUNRCDD 0.0329 0.5989 0.3681 0.0989 0.5549 0.3462 0.1098 0.5549 0.3352

EUNRCDIS 0.2766 0.4308 0.2924 0.2608 0.4527 0.2865 0.3162 0.4624 0.2213

EUNCEAR 0.2333 0.3809 0.3857 0.2333 0.3809 0.3857 0.2284 0.3809 0.3905

FCEP 0.3214 0.2857 0.3928 0.1071 0.4464 0.4464 0.1428 0.4464 0.4107

GLINVSPC 0.2756 0.4743 0.2500 0.2756 0.4744 0.2500 0.2756 0.4743 0.2500

GROND5 0.2222 0.4111 0.3666 0.2555 0.3888 0.3555 0.2555 0.3888 0.3556

INFOSEC 0.0556 0.6777 0.2667 0.2111 0.5333 0.2556 0.2111 0.5333 0.2555

LADDERS 0.5555 0.0888 0.3555 0.5888 0.0888 0.3222 0.6333 0.0889 0.2777

MONT1 0.4464 0.1964 0.3572 0.4464 0.2143 0.3393 0.4464 0.2142 0.3392

MVOSEEDS 0.5500 0.3000 0.1500 0.6000 0.2000 0.2000 0.6500 0.2000 0.1500

NH3EXPTS 0.1333 0.6000 0.2667 0.3333 0.4667 0.2000 0.3667 0.4667 0.1667

OPRISK 0.3500 0.4166 0.2333 0.3538 0.4208 0.2208 0.3583 0.4208 0.2208

PHAC 0.2637 0.5329 0.2032 0.2580 0.5220 0.2200 0.2580 0.5220 0.2200

PILOTS 0.0778 0.6667 0.2555 0.2444 0.5333 0.2222 0.2333 0.5111 0.2556

PM25 0.1742 0.3787 0.4469 0.0984 0.4772 0.4242 0.0227 0.5530 0.3232

REALESTR 0.0935 0.6344 0.2720 0.1505 0.5612 0.2881 0.2419 0.4667 0.2914

RETURN1 0.3333 0.2619 0.4047 0.2809 0.3381 0.3809 0.2809 0.3381 0.3809

RIVERCHNL 0.5000 0.2142 0.2857 0.4642 0.2142 0.3214 0.4642 0.2142 0.3214

SARS 0.0888 0.7222 0.1889 0.0778 0.7444 0.1778 0.1778 0.6555 0.1667

SO3EXPTS 0.2638 0.3055 0.4305 0.2638 0.3055 0.4305 0.2638 0.3055 0.4305

TEIDE MAY 0.4000 0.3888 0.2111 0.4000 0.3888 0.2111 0.4000 0.3888 0.2111

THRMBLD 0.2495 0.2721 0.4782 0.2859 0.3297 0.3848 0.2651 0.3631 0.3718

TNO DISP1 0.2706 0.3682 0.3611 0.2706 0.3682 0.3611 0.2881 0.3507 0.3611

TNO DEPOS 0.3928 0.1833 0.4238 0.3785 0.2000 0.4214 0.3785 0.2000 0.4214

TUD DISP1 0.4785 0.2406 0.2793 0.3785 0.2421 0.2793 0.4785 0.2421 0.2793

VESUVIO 0.2333 0.5222 0.2444 0.3444 0.4777 0.1778 0.3555 0.4778 0.1667

VOLCRISK 0.3444 0.4444 0.2111 0.4444 0.3777 0.1778 0.4444 0.3778 0.1788

WATERPOL 0.2778 0.5416 0.1805 0.2778 0.5277 0.1944 0.2778 0.5277 0.1944
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Table 4.11: Gross Individual Results: how many data sets methods are optimal for.

k P.I. Ind.

k = 50 38 4

k = 25 38 4

k = 5 38 4

Table 4.12: Gross Group Results: how many data sets method are optimal for.

Metric P.I. EQ. M.R.

k = 50 11.5 21.0 9.5

k = 25 12.5 20.5 9.0

k = 5 12.0 20.0 10.0

Without information concerning the experts involved, or a subject-specific knowledge

of the seeds that they were assessed upon, it is difficult to use the content of the

datasets to draw inference from. In terms of intuition, it appears likely that if all

experts involved are highly knowledgeable than the EQ method will perform strongly.

In cases where there are a mix of accurate and inaccurate experts the PI approach is

likely to be the superior method, as it will give priority to the knowledgeable experts,

rather than listening to all equally.

We considered the data sets which each of the three methods were dominant for,

and looked at the median of the number of experts involved for these. The median

seemed a more sensible measure of central tendency than the mean for this study as,

for instance, the 77 MVOSEEDS experts (by far the largest amount of experts for any

of the data sets) would have a distorting impact on our conclusions, as means are liable

to heavy influence by outliers. In the k=50 case the respective medians for the number

of experts in the PI, EQ and MR dominated data sets were 10.5, 8 and 5, in the k=25

case they were 10, 8 and 5 and the k=5 case they were 8.5, 8.5 and 5. This aligns with

our intuition, with the EQ and PI methods, which heed opinions from multiple sources

(albeit in various ways), generally performing better for larger datasets. By contrast,

the MR dominated datasets have by far the smallest median: the wisdom of crowds,

weighted or otherwise, is less likely to apply for these small groups, and listening to a
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single individual may hence be the best course of action. Note that an analysis of the

number of seeds involved for the various datasets was also conducted but produced no

significant results.

4.4.4 Conclusions

Previously we justified the PI approach by showing it obeyed desirable Bayesian and

coherency properties and illustrating its superiority on simulated data. Having done

this a natural progression was to use real world validation data. Efforts were made to

circumnavigate the differences between the classical and PI methods with probability

distributions constructed from quantiles, and PI weights amended in light of the most

recent realisation in a Markovian manner. Multiple permutations of original seed or-

derings have been considered, permissible due to the weak dependence of consecutive

seeds and predictions, and that learning about one seed does not directly teach a DM

about the next. These permutations ensure robustness of our analysis.

We considered individual and group problems. In the former, overwhelming evi-

dence indicated that it was in the best interest of DMs to use the PI distribution over

their own. For the group problem we considered the PI, EQ and MR methods. The

PI method was dominant over the MR method but outperformed by the simple EQ

method. The strong EQ performance can be partially explained by the fact that con-

secutive variables may be only weakly correlated, with an accurate prediction for one

not necessarily implying accurate prediction on the next. Hence a simple arithmetic

averaging may give better results than a performance-based approach due to “wisdom

of crowds”. As previously alluded to, a facet of research of this nature is that even

the most well-reasoned approaches can fail to match this most straightforward com-

bination rule. When considering the analysis contained within this section we must

bear in mind the contrasts between the TU Delft data and data which would naturally

occur in the PI approach. Our aim was to provide a stronger validation than simply

one based upon simulated data, but in using the TU Delft data we have had to bridge

a large amount of differences, and may perhaps be trying to “fit square pegs in round

holes” to some degree - we are manipulating the raw data from quantiles to Normal

distributions, permuting their order, and assuming accuracy on one seed pertains to

accuracy on the next. Nevertheless, we do observe interesting results, which provide
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some additional validation for our PI approach. A closing comment is that there does

not appear to be a single type of data set that the PI approach is dominant for, e.g.,

sets with few experts and lots of variables, lots of experts and few variables, financial

data sets, etc. We see that the PI approach can be of value in a wide range of potential

settings and contexts, i.e., is truly applicable in practice.
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Chapter 5

Group Decision Making

In previous chapters we considered a set of n decision makers each with their own

decision task, i.e., n decisions were made per epoch. We now turn to group decision

making as introduced in Section 2.6. In this environment a single decision is made

per epoch that is reflective of the opinions and aspirations of all the DMs forming the

cohort. On a small scale, a group of friends may need to decide which film they will

collectively see in the cinema, while on a grander scale the United Nations may need

to reach a resolution on whether to impose economic sanctions upon a country or not.

Regardless of the magnitude of the problem there is a motivation for a mathematical

method implementable to determine which decision is optimal for a group as a whole.

Below we provide such a technique by combining both probabilities and utilities, and

relate this to the terms of Arrow’s Impossibility Theorem (Arrow, 1950).

5.1 Group Expected Utility

Previously we discussed how DMs make decisions by maximising expected utility, i.e.,

calculating the expected utility associated with each possible alternative and deter-

mining the optimal decision as that with the largest expected utility, as in Equations

(2.2)-(2.3). For an individual Pi this was a function of her probability distribution fi(θ)

and her utility function ui(r). In this section we present methods by which probability

distributions f1(θ), . . . , fn(θ) can be combined to give a single probability distribution

f̂(θ), and utility functions u1(r), . . . , un(r) can be combined to give a single utility

function u∗(r). These are respectively representative of the group consensus over θ
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and the group preference over returns. Having done this the expected utility that the

group assigns to a decision di is

E[u∗(di)] =

∫
Θ

u∗(di, θ)f̂(θ) dθ (5.1)

The optimal group decision d∗ is that maximising this, i.e.,

d∗ = arg max
i

E[u∗(di)] (5.2)

5.1.1 Combining Probabilities

We derived the PI approach for individual decision tasks but it is also suitable in a

group setting. We slightly modify the combined belief of Equation (3.1), now writing

f̂(θ) = α1f1(θ) + . . .+ αnfn(θ) (5.3)

We originally denoted by αi,j the weight Pi assigns to Pj. Here we replaced αi,j by αj,

dropping the first subscript to reflect that this weight isn’t assigned by a particular DM

but by the group as a whole. Hence, in an extension of Equation (3.11), the normalised

weight α∗i afforded to Pi, given her previous normalised weight was αi, and wi is her

most recent PI weight, is

α∗i =
wiαi∑n
k=1wkαk

(5.4)

Individual opinions are updated in the Bayesian manner from Section 3.1.2. The strin-

gent objectivity of the PI approach makes it suitable for use in a group context. All

DMs are a priori assumed to be equally reliable, with fluctuations from this directly

proportional to the accuracy of the information that they provide. Hence no subjectiv-

ity enters the analysis, making it appropriate in a group process in which the sole aim

should be to increase the decision quality of the group as whole with no concerns for the

egos of the DMs involved. In Section 4.2 a simulation study assessed the merits of the

PI approach. In a group decision context DMs do not have the choice to listen solely

to their own belief and hence opinions must be combined in some fashion to reach a

consensus. Given our discussions in Sections 2.7 and 4.2 we believe that linear opinion

pooling is an adequate method of doing this. The EQ and MR methods are arguably

the two most obvious alternatives to the PI approach. As we have seen in Section 4.2

the PI approach performed admirably against these (especially for a large number of
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DMs and/or returns), making it suitable for use in this problem. All previous advoca-

tions of the PI approach are applicable in the group decision making context, with its

objectivity an even bigger strength in this case.

5.1.2 Combining Utilities

Merging utility functions is a less intuitive task than amalgamating probability distri-

butions. The utility function of a DM takes into account her attitude towards risks and

gambles. It is unclear how this could be represented in a combined utility function.

The combined probability distribution was a weighted sum with weights reflecting per-

ceived reliability of information sources. If we construct the combined utility function

as an additive linear combination of DMs utility functions then equal weight should be

given to the utility function of each DM at all epochs to ensure fairness of the process.

This indicates that preferences of all DMs are uniformly important, i.e., the method is

not biased towards one DM over another. Naively we could construct u(r) as a simple

arithmetic average of DMs utility functions, i.e.,

u(r) =
u1(r) + . . .+ un(r)

n
(5.5)

Yet this motivates DMs to exaggerate their utility functions to make the combined func-

tion more similar to their true preferences. Suppose n = 2 and P2 knows u1(r) = 2r,

believing her own function to be u2(r) = 2r2. Thus, if she claims her utility function

is u2(r) = 4r2 − 2r then this ensures u(r) = 2r2, i.e., the combined function exactly

modelling her personal preferences. In reality a DM may not know the exact utility

functions of her neighbours when choosing her own, but it nevertheless presents a mo-

tivation for potential dishonesty in preference representation. Also, in general, utility

functions that are more extreme will tend to dominate the combined utility function.

We counteract these issues by rescaling all utility functions to [0, 1], a valid act as utility

is invariant to positive linear transformation. Hence each DM now assigns a utility of 1

to their most preferred outcome and a utility of 0 to their least preferred outcome, with

this rescaled function denoted as u∗i (r) for Pi. We assume that there are at least two

distinct outcomes, one that is at least as good as any other outcome (denoted r∗), and

one that is at least as bad as any other outcome (denoted r∗) with r∗ � r∗. If returns

lie on the real line then this involves truncation to ensure finite values, i.e., choosing
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the best and worst possible values as those that there are negligibly small probabilities

of exceeding and being less than respectively. In a setting where initial fortunes are

arguments of utility functions of DMs (e.g., a financial context) these functions must

be rescaled for all DMs such that they assign a utility of 0 to the worst possible fortune

achievable by a group member, and a utility of 1 to the best possible fortune achievable

by a group member. If each individual Pi has a fortune of γi and a utility function

ui(γi + r) then rescaling must be conducted ensuring u∗i (min{γ1, . . . , γn} + r∗) = 0

and ui(max{γ1, . . . , γn} + r∗) = 1 for all i = 1, . . . , n, as illustrated in Section 5.1.3.

Generically, the combined utility function, u∗(r), can be written

u∗(r) =
u∗1(r) + . . .+ u∗n(r)

n
(5.6)

This approach guarantees commensurability (Boutilier, 2003, Houlding & Coolen,

2011), i.e., it is possible to meaningfully compare the respective utility functions of

two distinct DMs. Rescaling in this manner ensures absolute comparisons rather than

relative comparisons, i.e., we consider the utility that multiple DMs assign a fortune of

$20 rather than the utility that multiple DMs assign a loss of $20 from their respective

starting positions. A useful measure for classifying risk attitudes is ARA, defined in

Equation (1.1). For the combined utility function in Equation (5.6) the ARA is given in

Equation (5.7). The group ARA is not a simple linear function of the ARA coefficients

of the DMs, but a more complex construct.

ARA∗(r) = −u
′′∗(r)

u′∗(r)

= −
d2

dr2
[u∗(r)]

d
dr

[u∗(r)]

= −
d2

dr2
[ 1
n
u∗1(r) + . . .+ 1

n
u∗n(r)]

d
dr

[ 1
n
u∗1(r) + . . .+ 1

n
u∗n(r)]

= −
1
n
[u′′∗1 (r) + . . .+ u′′∗n (r)]

1
n
[u′∗1 (r) + . . .+ u′∗n (r)]

= −
n∑
i=1

u′′∗i (r)

u′∗1 (r) + . . .+ u′∗n (r)
(5.7)

This approach is similar to Utilitarianism (Harsanyi, 1955) as we discuss later. This

method can be seen as reasonable, giving equal weight to all DM preferences to ensure

fairness in the process. The utility function of each DM is augmented over time in light

of changes in positions (in terms of utils) after decision returns are received.
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5.1.3 Example

We illustrate combining utilities for three DMs (detailed in Table 5.1), supposing that

the best possible outcome in whatever gamble occurs is a gain of $20 with the worst

being a loss of $20. As discussed above utilities are rescaled so each DM assigns a utility

of 0 to a fortune of min{$100, $40, $80} − $20 = $20 and a utility of 1 to a fortune

of max{$100, $40, $80} + $20 = $120, i.e., we ensure that utilities are anchored above

and below respectively by the best and worst possible state achievable by any group

member. Utility functions are rescaled by solving simultaneous equations, i.e., for P2

we find a and b such that a(20)2 − b = 0 and a(120)2 + b = 1. Rescaled functions are

given in Table 5.1 alongside their ARA. We see P1 is risk-neutral, P2 is risk-prone (for

r > −40) and P3 is risk-averse (for r < −80, with values less than this not defined).

Table 5.1: Utility functions of DMs, as well as initial fortunes and ARA coefficients.

Pi γi ui(γi + r) u∗i (γi + r) ARAi

P1 $100 r + 100 0.01(r + 100)− 0.2 0

P2 $40 (r + 40)2 1
14000

(r + 40)2 − 1
35

− 1
r+40

P3 $80 loge(r + 80) 0.558 loge(r + 80)− 1.67 1
r+80

From Equation (5.6) we find that the combined group utility function is

u∗(r) =
1

3
u∗1(γ1 + r) +

1

3
u∗2(γ2 + r) +

1

3
u∗3(γ3 + r)

=
1

3

[
0.01(r + 100)− 0.2

]
+

1

3

[ 1

14000
(r + 40)2 − 1

35

]
+

1

3

[
0.558 loge(r + 80)− 1.67

]
=

1

300
(r + 100) +

1

42000
(r + 40)2 +

93

500
loge(r + 80)− 199

315

5.1.4 Linear Identity

We defined in Equations (5.1) − (5.2) how a group decision can be made using f̂(θ)

and u∗(r). Using linearity of expectation an attractive and intuitive identity arises:

E[u∗(di)] =

∫
Θ

u∗(di, θ)f̂(θ) dθ

=

∫
Θ

[ 1

n
u∗1(di, θ) + . . .+

1

n
u∗n(di, θ)

]
f̂(θ) dθ

=

∫
Θ

[ 1

n
u∗1(di, θ)f̂(θ) + . . .+

1

n
u∗n(di, θ)f̂(θ)

]
dθ
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=

∫
Θ

1

n
u∗1(di, θ)f̂(θ) dθ + . . .+

∫
Θ

1

n
u∗n(di, θ)f̂(θ) dθ

=
1

n

∫
Θ

u∗1(di, θ)f̂(θ) dθ + . . .+
1

n

∫
Θ

u∗n(di, θ)f̂(θ) dθ

=
1

n
E[u∗1(di)] + . . .+

1

n
E[u∗n(di)] (5.8)

The expected utility that the group assigns to a decision is an equally weighted sum of

the expected utilities that DMs assign to this. This desirable property serves as partial

justification for our method of combining utility functions in Equation (5.6). This

identity holds regardless of the manner in which beliefs are combined so long as each

DM uses a common distribution in their expected utility assessment, i.e., that resulting

from the PI approach, behavioural aggregation, or if each DM had an identical prior

opinion. Note therefore that while in what follows we shall assume f̂(θ) was found via

the PI approach this is not the only possibility leading to Equation (5.8) holding. In

an analogy of Equation (3.4) we write E[u∗i (dj)] as

E[u∗i (dj)] =

∫
Θ

u∗i (dj, θ)f̂(θ) dθ (5.9)

Hence the decision that Pi would make in an individual context is a function of her own

utility function and a combined belief, as she is willing to incorporate the opinions of

neighbours into her decision task (as rationalised in Section 3.1). Note that while the

utility function used in Equation (5.9) is potentially a function of the initial fortunes

of neighbours (as discussed in our commensurability argument) this does not impact

upon the decision deemed optimal by Pi due to the aforementioned invariance of utility

to positive linear transformation.

5.2 Arrow’s Impossibility Theorem

Above we created a method by which DMs can combine opinions and utilities to deter-

mine an optimal decision for the group as a whole. In Section 2.6.1 we introduced the

content of Arrow (1950) which considered the development of a Social Welfare Func-

tion (SWF) that would translate individual preference rankings to a group ranking.

Five desirable axioms were outlined. Universality stated that a group ranking could be

determined from any set of individual rankings. Monotonicity implied that if a deci-

sion rose in the preference rankings of an individual, with all other individual rankings
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remaining unchanged, then this decision would not decrease in the group ranking. Inde-

pendence of irrelevant alternatives meant that removal of one decision from the ranking

scheme would leave preference rankings between all other decisions unchanged. Non-

imposition declared that for any conceivable group ranking there was a corresponding

set of individual rankings that would lead to this. Finally non-dictatorship decreed

that there could be no “dictator” inherent within the group, defined as follows: “A

social welfare function is said to be dictatorial if there exists an individual i such that

for all x and y, x �i y implies x � y regardless of the orderings of all individuals

other than i”, i.e., that there must be no single individual whose preference ranking

automatically becomes the group ranking. Arrow (1950) showed in his Impossibility

Theorem that for at least two DMs and three decisions there was no SWF obeying all

five axioms.

The symbols � and �i denote strict group preference and the preference of in-

dividual i respectively, with � and �i, and ∼i and ∼, being respectively analogous

for weak preference and indifference. Arrow’s SWF deals with ordinal, rather than

cardinal, rankings over decisions, i.e., only the order in which decisions are ranked

is of importance with the differing degrees of preference inherent within this disre-

garded. By contrast in our method from Section 5.1 expected utility values play a

large part in determining which decision is optimal for the group. For an individual

Pi, we relate our terminology to that of Arrow (1950), saying d1 �i d2 if and only

if E[ui(d1)] > E[ui(d2)], d1 �i d2 if and only if E[ui(d1)] ≥ E[ui(d2)] and d1 ∼i d2 if

and only if E[ui(d1)] = E[ui(d2)]. Hence in our framework we may equivalently talk

in terms of which decision is preferred and which decision has the highest expected

utility. Arrow (1950) requires preference rankings of DMs to incorporate completeness

and transitivity, i.e., DMs must be able to provide a distinct ranking over each pair

of decisions (strict, weak or equal preference) and this ranking must itself be coherent.

Our procedure obeys both requirements. Regarding completeness, a DM can calculate

expected utility for any possible decision using Equation (5.9) and hence can compare

the two expected utility values to determine which, if either, she prefers. Transitiv-

ity is clear, as if d1 �i d2 and d2 �i d3 then E[ui(d1)] > E[ui(d2)] > E[ui(d3)], i.e.,

E[ui(d1)] > E[ui(d3)], so d1 �i d3 as required.
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5.3 Comparison and Consideration of Axioms

Clearly there are differences between the method in Section 5.1 and that of Arrow

(1950), most fundamentally in the manner in which an individual determines her pref-

erence ranking. In Arrow (1950) this is done in a solitary fashion with no consideration

given to the beliefs or preferences of any of the other DMs in the group. Once each

DM has constructed her own opinion these are then amalgamated via the SWF, which

returns a group preference ranking. By contrast in our method prior to constructing

her own preference ranking each DM shares her opinion over θ with her neighbours in

the hope of gaining an increased understanding of it. The motivation for this has been

previously documented, i.e., in the hope of increasing decision calibre. Having created

their individual preference rankings using their own utility functions and the common

shared belief f̂(θ), these preferences are then synthesised into a single preference rank-

ing using Equation (5.8). The expected utility assigned by the group to a decision is

an equally weighted sum of the expected utilities designated by DMs to that decision.

Once this has been calculated for all possible decisions these are then ranked based

upon which is the largest. In the framework that we have developed there is access

to more information than in the minimal setting of Arrow (1950) in which there is no

mention of cardinal values. We assume that it is possible for all DMs in our setting

to calculate these values and hence derive their individual (and indeed group) prefer-

ence ranking using these. Finally we comment that Arrow (1950) is concerned with

developing a full group preference ranking over all possible admissible decisions, i.e.,

being able to construct a full ordinal ranking over all possibilities. In the framework

that we are concerned with the primary interest is in finding which decision is deemed

optimal for the group as a whole, i.e., we are interested in which decision is best for

the collective, and less so in which decision is ranked, for instance, fourth or fifth best.

Given a full group preference ranking it is trivial to ascertain which decision is optimal

for the group, i.e., it is simply that preferred to all alternatives.

Due to the fundamental variations between our method and that of Arrow (1950)

it is clear that the techniques in Section 5.1 are not directly pertinent to Arrow’s

Impossibility Theorem, and the converse. Nevertheless the axioms of Arrow (1950) are

desirable coherency properties for a group decision process to obey regardless of how

it is defined. We consider our method against each axiom in turn and discover which
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of these it obeys. In what follows we consider a setting of n DMs P1, . . . , Pn who must

make one of m possible decisions d1, . . . , dm with n ≥ 2 and m ≥ 3.

5.3.1 Universality

Each Pi calculates her expected utility for them decisions using Equation (5.9), yielding

E[ui(d1)], . . . ,E[ui(dm)]. Each DM compares these values using operators ≥, > and =,

and makes an equivalent preference statement using preference operators �i,�i and

∼i, by the relationship discussed above. The expected utility assigned by the group as

a whole to a decision is found by Equation (5.8), giving numeric value to each decision

which can be ranked in a manner identical to that discussed above. Hence for each set

of individual preference rankings our method generates a group ranking which reveals

which decision is optimal for the group as a whole. Our method obeys universality.

5.3.2 Monotonicity

Suppose Pi augments the expected utility she affords to a decision dj, increasing it so it

rises up her individual preference ordering overtaking (without loss of generality) one

decision which it now has a higher expected utility than. In doing so it changes from

being the (a+ 1)th ranked decision for Pi to being the ath ranked. No further changes

are made to her preference ranking or to those of any other DMs in the group. Clearly

in Equation (5.8) an increase in E[u∗i (dj)] corresponds to an increase in E[u∗(dj)]. As

no change has been made to the group expected utility of any other decisions (as no

other changes have been made to individual expected utilities) the group ranking of dj

will either remain the same or increase depending on the other expected utility values,

but it never decreases. Our approach obeys monotonicity.

5.3.3 Independence of Irrelevant Alternatives

Suppose without loss of generality that the group preference ranking is determined as

d1� . . . � dj−1 � dj � dj+1� . . .� dm. By the identities discussed above this implies

E[u∗(d1)] > . . . > E[u∗(dj−1)] > E[u∗(dj)] > E[u∗(dj+1)] > . . . > E[u∗(dm)], with each

group expected utility found via Equation (5.8). There are two distinct cases now,

depending on which decision dj is removed from the set of possible decisions:
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• Case 1: Suppose removing dj does not impact upon r∗ or r∗, i.e., the best and

worst possible outcomes amongst the decisions. Utility functions of DMs will

remain unchanged, and hence the expected utilities assigned by each DM to the

remaining m − 1 decisions will be unchanged also (due to the independence of

irrelevant alternatives axiom by von Neumann and Morgenstern, 1944), ensuring

that the group expected utilities for the remaining decisions remain the same.

This leads to the original group preference ordering, but with dj omitted and all

other preferences remaining unchanged, i.e., d1 � . . . � dj−1 � dj+1 � . . . dm.

• Case 2: Suppose removing dj impacts upon r∗ or r∗. Utility functions of DMs

will be rescaled (in a setting where initial fortunes are considered) to account for

the new best/worst case scenarios achievable. In this instance the ordinal ranking

of a DM over the remaining decisions will remain unchanged, but the cardinal

difference in utility she associates with these will change. Hence it is possible

(although by no means guaranteed) that the group preference ranking may be

different from that ultimately occurring from Case 1.

Hence our method does not obey independence of irrelevant alternatives (at least in

problems where initial fortunes are incorporated into utility functions), as there will

always be (at most two) decisions whose removal can potentially lead to changes in the

group ranking.

5.3.4 Non-imposition

It seems straightforward that when using our method every possible combination of

group preference ranking is constructible from some combination of individual prefer-

ence rankings; in fact there are multiple combinations of individual preference rankings

(an infinite amount when we consider cardinal utility) leading to these group rankings.

A trivial illustration with two DMs and three decisions showing that no social rank-

ing can be imposed is the case where the group preference ranking is identical to the

common preference rankings of all DMs, e.g., d1 � d2 � d3 will be constructed if

d1 �i d2 �i d3 for i = 1, 2 and so on. Our method obeys non-imposition.
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5.3.5 Non-dictatorship

In the parlance of Arrow (1950) a DM was deemed a dictator if, having witnessed the

preferences of the other DMs in her group, she could augment her original preferences in

such a fashion that the group preference would mirror her original preferences. Firstly

we consider the following example which demonstrates that instances do exist in which

our approach may fall prey to a dictator. Suppose that we have two DMs and three

possible decisions. The true preferences of P1 and P2 are given by d1 �1 d2 �1 d3 and

d3 �2 d2 �2 d1 respectively. The corresponding expected utility values of DMs and the

group are given in Table 5.2 with P ∗ denoting the group as a whole. From Equation

(5.8) we see d3 � d1 � d2, which is not the (full) preference ranking of either DM.

Table 5.2: Original expected utilities of the DMs and the group.

P1 P2 P ∗

E[u∗i (d1)] 0.9 0.1 0.5

E[u∗i (d2)] 0.3 0.5 0.4

E[u∗i (d3)] 0.2 1 0.6

Now P1 can be a dictator if there exist x, y, z ∈ [0, 1] such that

x+ 0.1

2
>
y + 0.5

2
>
z + 1

2
−→ x+ 0.1 > y + 0.5 > z + 1

This is satisfied, for instance, by x = 1, y = 0.55 and z = 0 leading to the cardinal

preferences in Table 5.3, i.e., d1 � d2 � d3, the true preference of P1. Hence she is

capable by Arrow’s definition of being a dictator.

Table 5.3: The augmented expected utilities of P1 in light of those of P2, and the new

expected utilities of the group.

P1 P2 P ∗

E[u∗i (d1)] 1 0.1 0.55

E[u∗i (d2)] 0.55 0.5 0.525

E[u∗i (d3)] 0 1 0.5
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Similarly P2 can be a dictator if there exist a, b, c ∈ [0, 1] such that

a+ 0.2

2
>
b+ 0.3

2
>
c+ 0.9

2
−→ a+ 0.2 > b+ 0.3 > c+ 0.9

This is satisfied, for instance, by a = 1, b = 0.7 and c = 0 leading to the cardinal

preferences in Table 5.4, i.e., d3 � d2 � d1, the true preference of P2. Hence she too

has the potential to be a dictator. It is not possible for both DMs to simultaneously

be dictators. Firstly this would clearly be a contradiction. Secondly in order to behave

as a dictator (as defined above) a DM must be cognisant of the preference rankings

of all of her neighbours (i.e., for them to be fixed) that she will then alter her own

preferences in light of. This is not the case if two (or more) DMs are dictators, as

they would need to both be aware of each other’s preferences that would constantly be

being updated, i.e., a circular argument.

Table 5.4: The augmented expected utilities of P2 in light of those of P1, and the new

expected utilities of the group.

P1 P2 P ∗

E[u∗i (d1)] 0.9 0 0.45

E[u∗i (d2)] 0.3 0.7 0.5

E[u∗i (d3)] 0.2 1 0.6

We have shown that cases do exist where our method is susceptible to a dictator.

Now consider the following example, having three DMs and four potential decisions.

The respective preferences are d1 �1 d2 �1 d3 �1 d4, d3 �2 d2 �2 d4 �2 d1 and

d4 �3 d2 �3 d1 �3 d3. The corresponding expected utility values are in Table 5.5

leading to a group preference ranking of d2 � d1 ∼ d3 ∼ d4.

For P1 to be a dictator there must exist x, y, z, t ∈ [0, 1] such that

x+ 0.3

3
>
y + 1.8

3
>
z + 1.1

3
>
t+ 1.2

3
−→ x+ 0.3 > y + 1.8 > z + 1.1 > t+ 1.2

There is no set of values {x, y, z, t} satisfying this inequality due to the magnitude

of the expected utility for d2. Irrespective of what augmentations P1 makes to her

own ranking she cannot prevent d2 from being the decision that is deemed optimal

for the group. This is contrary to the decision (d1) that she herself deems personally

120



Table 5.5: Original expected utilities of the DMs and the group.

P1 P2 P3 P ∗

E[u∗i (d1)] 1 0.1 0.2 0.325

E[u∗i (d2)] 0.9 0.9 0.9 0.675

E[u∗i (d3)] 0.2 1 0.1 0.325

E[u∗i (d4)] 0.1 0.2 1 0.325

preferable. Hence P1 cannot be a dictator, nor, from the symmetry inherent within the

problem, can P2 or P3. Due to the strong cardinal utility values placed on d2 there is

no change that any DM can make to her own preference ranking to prevent it being

optimal for the group. Therefore in this instance there is nobody capable of being a

dictator. We see that there is not always guaranteed to be a DM who can be a dictator.

Our method obeys non-dictatorship.

5.4 Discussion

In summary, the method in Section 5.1 is guaranteed to obey universality, monotonicity

and non-imposition. The condition of independence of irrelevant alternatives holds if

the decision removed does not change the best or worst case outcome achievable from

the decision process, but cannot be said to be true in complete generality. If a group

consists of three or more DMs there may be a dictator, but this will often not be the

case as discussed more below. Despite the contrasting setting of our approach and

that considered in Arrow (1950) it was an eventuality that our technique would not be

capable of adhering to all of its terms. Nevertheless it seems an admirable facet of our

methodology that it performs reasonably well with regard to the axioms of Arrow, in

that it can breach at most two of them, and even these breaches are not guaranteed to

occur (assuming there are more than two DMs in the group).

Of the five axioms discussed above perhaps the most interesting result pertains

to non-dictatorship. We have shown that it is possible to construct a group deci-

sion method that will not always contain a DM who is a dictator, i.e., while there

are occasions when there may be a DM who can behave dictatorially this is not an
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inevitable eventuality. Two highly relevant theorems are the previously mentioned

Gibbard-Satterthwaite Theorem (Gibbard, 1973, Satterthwaite, 1975) and the Duggan-

Schwartz Theorem (1992), both of which are concerned with manipulability, i.e., the

potential for a group decision process to be manipulated by a DM within the group.

These results show that there is no process meeting some desirable criteria (similar to

those of Arrow) that is not potentially susceptible to manipulability, i.e., the ability of

DMs to influence group preference by giving a modified version of their true preferences

is prevalent in any reasonable decision scheme. However just because manipulability

is technically possible does not imply it can always be exacted in practice. This is

evident in our decision making scheme from Section 5.1. We have provided an example

where a DM can alter her preferences to make the group preference ranking identical

to her own (i.e., manipulability). However this is not always the case as our counter-

example illustrates. In our setting the preferences of all DMs are given an equal weight

in Equation (5.8). It seems clear that as the number of DMs in the group increases

the propensity for the existence of a dictator decreases. In a group consisting of only

two DMs both are guaranteed to have the ability to be a dictator (formally proved in

Appendix B) but for groups with three or more DMs this will not always be the case.

Of course such large groups may fall victim to a dictator depending on the expected

utility values assigned by DMs to the decisions involved, but it is not guaranteed. It

is always worth investigating if a problem is susceptible to a dictator, but in prob-

lems with a large amount of DMs this is decreasingly likely. A simple way to combat

dictatorship is to not allow DMs to change their preferences once they have initially

been put forward, or equivalently to say that DMs are not permitted to witness the

preferences of others until they have finalised their own. We have discussed above why

it is in the best interest of DMs to share opinions about θ, yet there is no analogous

gain to be found from sharing utility functions prior to the decision task.

Our method derived cardinal rankings in addition to ordinal rankings. Utilitar-

ianism (Harsanyi, 1955) dealt with cardinal utilities also, stating that the optimal

decision for a group is that maximising group expected utility. The utility function of

the group (SWF in the terms of Arrow) is an equally weighted sum of utility functions

of individuals, obeying anonymity and strong Pareto as discussed in Section 2.6.2.

For motivational reasons akin to those mentioned in Section 5.1.2, Harsanyi (1955)
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restricted utilities to the unit interval. He demonstrated that the only choice of func-

tion obeying his criteria was an equally weighted sum of individual functions. Our

method can be seen as an extension of Utilitarianism that ensures commensurability

and incorporates additional probabilistic information. We believe consideration of car-

dinal utility values, rather than simple ordinal preference rankings, leads to a more

intuitive, subtler, decision making process. Consider the following simple motivational

example. Five housemates must decide whether to watch Planet of the Apes (PA) or

The Shawskank Redemption (SS), with four of the five preferring PA to SS. Under a

scheme based on ordinal ranking (e.g., majority rule) the group decision would be to

watch PA. However, consider the expected utilities assigned by DMs in Table 5.6.

Table 5.6: The expected utilities of the DMs and the group.

P1 P2 P3 P4 P5 P ∗

E[u∗i (PA)] 0.2 0.22 0.17 0.21 0 0.16

E[u∗i (SS)] 0.18 0.2 0.16 0.2 1 0.348

The first four DMs prefer PA to SS but there is only a fractional difference between

their preference for the former over the latter. The respective satisfactions that they

will derive from watching either movie are almost indistinguishable. By contrast P5 has

a strong preference for the latter over the former. Despite the apparent preference for

PA over SS (in terms of majority rule) the group expected utility for SS is over twice

that for PA. Note it is imperative P5 does not know the preferences of her neighbours

prior to stating her own, or else she may manipulate these to ensure a group preference

for SS. This is an exaggerated illustration but the point is evident nonetheless. Ordinal

rankings do not necessarily tell the whole story of preference as they do not incorporate

the degree of preferences involved. We believe this is a fundamental flaw in ranking

schemes/group decision processes of this nature, and claim that it is a desired property

of any such scheme/process to maximise collective expected utility. This is a property

that the method in Section 5.1 obeys. In conclusion, in this chapter we have created a

group decision making method based upon maximising expected utility (which can be

seen as a rational course of action in its own right) that performs well in terms of the

axioms of Arrow (1950). This seems strong evidence in favour of our technique.
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Chapter 6

Nonparametric Extension

In Chapter 3 we introduced a method enabling DMs to combine their opinions with

those of their neighbours. This approach permitted DMs to update both their own

opinions over time and the reliability measures that they assigned to neighbours. Im-

plicit within this approach was the assumption that DMs can express their opinions

over θ via fully parameterised probability distributions. This assumption is common

(French, 2011), in part due to the availability of elicitation techniques (e.g., O’Hagan

1998). In Chapter 2 we discussed the concept of imprecise probability which is a formu-

lation permitting greater uncertainty (in terms of belief specification) for users. In this

chapter we modify our previously derived technique to a nonparametric framework. We

consider a very basic method of belief specification and provide a “distribution-free”

analogy to the PI approach.

6.1 Belief Specification

In the setting that we consider a DM represents her predictions via a lower and upper

bound over the expected value of θ, e.g., between 0.3 and 0.7 for the event of heads in a

coin toss. A DM with this belief expects to see, for instance, between 30 and 70 heads

in 100 tosses. No values within this range are explicitly deemed more/less likely than

any others. Subtly this does not imply that all values are assumed equally likely. The

expected value is believed to lie somewhere in this interval but no further statements

of consequence can be made. We consider expectation, rather than probability, as our

primitive quantity, in contrast to the standard imprecise framework where DMs specify
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lower and upper bound probabilities of θ lying in a particular range (e.g., Coolen et al.,

2010). This increased simplicity leads to a trade-off in terms of a potential decrease

in the quality and interpretability of the corresponding results, i.e., often a single

decision cannot be declared unanimously optimal. In what follows we frequently use the

synonym of expectation, prevision (de Finetti, 1974), which is apt in our context as the

opinion of a DM represents the lower and upper bound expected values she judges for θ

prior to witnessing data. We create a framework where DMs can linearly combine their

prevision bounds, with weights representing reliability, and bounds/weights updated

in light of returns observed, i.e., a nonparametric generalisation of the PI approach.

6.2 Nonparametric Utility Inference

A common assumption is that DMs can assign precise utility values to any possible

return. This may be unreasonable especially when a DM may receive a return that is

novel to her. If this is so how can she be expected to know a priori the satisfaction

that she will derive from its occurrence? Motivation exists for updating utilities in light

of phenomena experienced, i.e., adaptive utility (Cyert & DeGroot, 1975, Houlding

& Coolen 2007, 2011). A specialisation of this is Nonparametric Utility Inference

(NPUI, Houlding & Coolen, 2012) which contains elements of Nonparametric Inference

(Coolen, 2006, Roelofs et al., 2011) and uncertain utility. NPUI relies upon Hill’s A(n)

assumption (Hill, 1968, 1988, 1993) which states that if the real line is partitioned into

distinct, disjoint subintervals, the probability of θ lying within any of these intervals is

equal regardless of their respective widths. This models extreme vagueness.

In NPUI utilities are rescaled to the unit interval. A DM is interested in the utility

that she will assign to a novel outcome, and has experienced n exchangeable outcomes

that (after observation) she believes are similar to this, e.g., a DM who has been to

concerts by n distinct rock bands (that she has enjoyed to varying extents) and wants

to predict the satisfaction she would derive from attending a concert by a rock band she

has never seen before. These known outcomes have utilities labeled u(1), u(2), . . . , u(n)

with 0<u(i)≤u(j)< 1 for i < j. Modifying Hill’s A(n) to the unit interval, the utility

for the previously unrealised outcome obeys the following, for i = 1, . . . , n− 1:

P(Unew∈ [u(i), u(i+1)]) = P(Unew∈(0, u(1)]) = P(Unew∈ [u(n), 1))=
1

n+ 1
(6.1)
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The probability of the utility of the novel return lying in any of the n + 1 intervals is

equal regardless of their widths. From this, lower and upper bounds for the expectation

of the unknown utility can be constructed, given respectively by:

E[Unew] =
1

n+ 1

n∑
i=1

u(i) (6.2)

Ē[Unew] =
1

n+ 1

(
1 +

n∑
i=1

u(i)

)
(6.3)

A consequence of this is that the width of the predictive interval will be

∆(E(Unew)) =
1

n+ 1
(6.4)

Learning occurs over time with new observations incorporated into Equations (6.2) and

(6.3). As n increases the interval width decreases, i.e., the more experiences a DM has

had the more confident she will be in making predictions for utility values of previously

unrealised similar outcomes.

6.3 Adapting NPUI to Prevision Bounds

Conceptually our goal and that of NPUI are distinct. However as utilities are restricted

to the unit interval there is a strong similarity to our topic of interest as the expecta-

tion of θ must also lie in this range (by definition of expectation and the constraints

upon θ discussed below). In both cases we wish to provide bounds for an unknown

quantity in [0, 1]. We present a method by which nonparametric prevision intervals

(NPPI) may be updated over time given observations witnessed following decisions.

We begin with a single DM before generalising to a multiple DM setting. Below we

consider the restrictive case where θ lies in the unit interval to ensure similarity with

NPUI, discussing a real line extension in Section 6.5. Hence θ can be viewed in two

potential lights: as a latent parameter value lying in [0, 1] or as a Bernoulli trial success

probability. In the latter case the data witnessed will be ones and zeros, corresponding

to successes and failures respectively. If X ∼ Ber(p) then E[X] = p which is attractive

given our predilection towards expectations. Optionally we can consider (independent

and identically distributed) Bernoulli aggregated data, i.e., output which is a realisa-

tion of a Binomially distributed quantity. In this instance the witnessed value used

in our updating rules is the ratio of the number of successes to the number of trials.
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This is less preferable as it counts multiple observations as a single observation and

hence will not be as informative (i.e., gives no information on the number of trials

witnessed and hence the relative importance of respective pieces of data). Witnessing

four successes in five trials is less telling than witnessing four million successes in five

million trials, yet using Binomially aggregated data leads to these observations being

treated as equal.

6.3.1 Single DM

Prior to the first epoch a DM supplies an interval [l, u], with l, u ∈ [0, 1] and l ≤ u,

that she believe E(θ) lies within, i.e., her initial lower and upper bound values are

E0(θ) = l (6.5)

Ē0(θ) = u (6.6)

The width of this interval, ∆0, is a measure of her uncertainty over θ. Narrow intervals

indicate confidence in her prediction while wide ones imply a lack of knowledge. There

are two extreme cases. When l = 0 and u = 1 the DM knows nothing about E(θ)

and can only trivially state that it lies in [0, 1]. However learning occurs over time and

this interval will become narrower (more informative) once outcomes are witnessed.

By contrast when l = u a DM provides a point estimate. We shortly see that this is

unreasonable in our context of interest. The DM makes an initial decision, using her

bounds in Equations (6.5) and (6.6), and the methods in Section 2.4.1. How can a DM

who has witnessed some outcome(s) update her NPPI given this new information?

In Equation (6.4) interval width was 1
n+1

where n was the number of outcomes

realised. In NPUI if a DM had seen no relevant utility values then her interval had a

width of one. If not then her inferences were influenced by the pertinent utility values

witnessed. The more values she has observed the slimmer her interval is. Modifying

the approach from Equations (6.1)-(6.3) to solve our problem we consider which obser-

vations (theoretical or real) would a DM have had to witness to form her prior bounds.

Thin intervals are equivalent to having witnessed a lot of data. We can view wide

intervals as analogous to uninformative priors in a Bayesian setting, e.g., a DM with

a Beta(1, 1) prior considers herself to have seen one success in two hypothetical trials

while a DM with a Beta(100, 100) prior has the same mean prediction but it is based
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on two hundred hypothetical trials. In our nonparametric setting the latter DM would

have a far narrower NPPI than the former DM due to her increased confidence (i.e.,

lower variance). Below, rather than use the symbol n (which we have thus far used

to denote the number of DMs) we use its Greek equivalent ν. To find the number of

hypothetical observations she would have had to witness to construct her prior NPPI

a DM solves

Ē0(θ)− E0(θ) = ∆0 =
1

ν + 1
(6.7)

This reveals ν = 1−∆0

∆0
so given the interval [l, u] she can consider the 1−∆0

∆0
hypothetical

observations she would have had to see to create this (under this inferential model).

Issues arise if ∆0 = 0, i.e., division by zero. In a parametric approach this is equivalent

to having seen an infinite amount of data. Hill’s A(n) assumption and its variants are

post-data assumptions related to finite exchangeability, in contrast to the framework

developed by de Finetti (1974) that allows for infinite exchangeability. Our inferential

focus is in a setting where only a finite amount of values can be observed. We assume

∆0 > 0 implying that a DM has some vagueness about E(θ). Once a DM finds ν she

may progress in a manner analogous to NPUI by augmenting prevision bounds after

each new observation and increasing ν by 1 for each new piece of data witnessed.

Updating when ν ∈ N0

If a DM solves Equation (6.7) and finds ν ∈ N0 then her NPPI is consistent with having

seen a non-negative integer amount of hypothetical observations. She considers which ν

observations would lead to this (under this nonparametric model). If the ith observation

is xi then {x1, . . . , xν} must satisfy the constraints from Equations (6.2)-(6.3):

E0(θ) =
1

ν + 1

ν∑
i=1

xi (6.8)

Ē0(θ) =
1

ν + 1

(
1 +

ν∑
i=1

xi

)
(6.9)

We find that the solutions are {x1, . . . , xν} such that

ν∑
i=1

xi = l(ν + 1) = u(ν + 1)− 1 (6.10)

She may choose any values of x1, . . . , xν in [0, 1] meeting this constraint as only their

sum is used in updating. Once a new set of returns {xν+1, . . . , xν+m} (with m = 1 for
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Binomial aggregated data or θ being latent in [0, 1], and m > 1 if not) is seen after the

decision at the first epoch her NPPI bounds become

E1(θ) =
1

ν +m+ 1

ν+m∑
i=1

xi (6.11)

Ē1(θ) =
1

ν +m+ 1

(
1 +

ν+m∑
i=1

xi

)
(6.12)

Updating when ν /∈ N0

Our process loses intuitive appeal if ν /∈ N0 but we can implement it in a similar, albeit

somewhat contrived, manner. The value ν is decomposed into ν = bνc + r with bνc

the integer part of ν and r the remainder, i.e., 0 < r < 1. She may now proceed in a

manner analogous to that above, i.e., finding the dνe values x1, . . . , xdνe satisfying

E0(θ) =
1

ν + 1

(
rx1 +

dνe∑
i=2

xi

)
(6.13)

Ē0(θ) =
1

ν + 1

(
1 + rx1 +

dνe∑
i=2

xi

)
(6.14)

We consider that the DM has seen dνe values (i.e., v rounded up to the nearest integer),

the first of which is rescaled by a factor of r. Any one of the dνe values could be chosen

to be rescaled, with x1 used for convenience. This case is less aesthetic than that

when ν ∈ N0, but it is still possible to proceed as before with the next m observations

denoted {xdνe+1, . . . , xdνe+m} and a new interval being calculated of width 1
ν+m+1

.

If a DM finds ν /∈ N0 she may wish to re-evaluate her NPPI so that it corresponds

with the intuitively preferable concept of witnessing an integer number of hypothetical

observations. Manipulating Equation (6.10) shows that if a DM supplies an initial

lower bound l then her interval will correspond to one formed having witnessed an

integer (k) amount of observations if u = 1
k+1

+ l, with k ∈ N+, e.g., for an initial lower

bound l = 0.15 choices of k equaling 1, 2 and 3 gives u values of 0.65, 0.483 and 0.4

respectively. Equivalently if she supplies an initial upper bound of u then her interval

will correspond to one formed having witnessed an integer (k) amount of observations

if l = u− 1
k+1

, for k ∈ N+. We include a set of widths and the corresponding (integer)

numbers of hypothetical observations that would have had to be observed to lead to

these in Table 6.1. Given this, a DM may wish to change her initial NPPI to ease

interpretability.
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Table 6.1: Values of ∆0 and corresponding numbers of hypothetical observations, ν.

∆0 1 0.5 0.25 0.2 0.1 0.05 0.02 0.01

ν 0 1 3 4 9 19 49 99

Example

A DM provides [E0(θ), Ē0(θ)] = [0.55, 0.75] giving ∆0 = 0.2, i.e., ν = 4 solves Equation

(6.7). Using Equation (6.10) she learns hypothetical observations obey
∑4

i=1 xi=2.75,

i.e., x1 =x2 =1, x3 =0.75 and x4 =0 is one suitable observation set. At the first epoch

she sees four successes in five trials. These values are exchangeable so without loss of

generality x5 =x6 =x7 =x8 =1 and x9 = 0. From Equations (6.11)-(6.12) she finds

E1(θ) =
1

9 + 1

9∑
i=1

xi = 0.675

Ē1(θ) =
1

9 + 1

(
1 +

9∑
i=1

xi

)
= 0.775

This interval has width ∆1 = 0.1, i.e., it has become narrower (and shifted upwards)

in light of the data witnessed. We illustrate this in Fig 6.1.

Fig. 6.1: The prior NPPI (top) and posterior NPPI (bottom) in our example.
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6.3.2 Multiple DMs

We extend the above theory to a setting of nDMs with prior NPPIs of [l1, u1], . . . , [ln, un]

respectively. All are interested in θ. Below we assume ν ∈ N0 for ease. Notation from

Section 6.3.1 extends naturally. Et,i(θ) is the lower NPPI of Pi after the tth epoch, i.e.,

after t decisions have been made and t sets of data witnessed. This is determined both

by the νi hypothetical data points {xi,1, . . . , xi,νi} forming her prior, and the subsequent

data {x1, . . . , xm} seen from t epochs. For Binomially aggregated data m = t as there

are as many observations as there are epochs (i.e., one at each) while for Bernoulli

data there are more observations than epochs, i.e., t > m. We write

Et,i(θ) =
1

νi +m+ 1

( νi∑
j=1

xi,j +
m∑
k=1

xk

)
(6.15)

Similarly Ēt,i(θ) is the upper NPPI bound of Pi after t epochs:

Ēt,i(θ) =
1

νi +m+ 1

(
1 +

νi∑
j=1

xi,j +
m∑
k=1

xk

)
(6.16)

The width of the NPPI of Pi after t epochs is:

∆t,i(θ) = Ēt,i(θ)− Et,i(θ) =
1

νi +m+ 1
(6.17)

We construct the combined bounds of Pi, having received opinions of neighbours, as

weighted sums of the respective lower and upper bounds of her and her neighbours:

Êt,i(θ) =
n∑
j=1

αi,jEt,j(θ) (6.18)

ˆ̄Et,j(θ) =
n∑
j=1

αi,jĒt,i(θ) (6.19)

Initially all DMs are assumed to be equally reliable, i.e., for i = 1, . . . , n we have

Ê0,i(θ) =
1

n

n∑
j=1

E0,j(θ) (6.20)

ˆ̄E0,i(θ) =
1

n

n∑
j=1

Ē0,j(θ) (6.21)

Once a return is witnessed and information learned about θ the DMs update equal

weights to those reflecting perceived reliability. In Chapter 3 we presented a method

by which this was done when DMs supplied opinions via probability distributions.

Below we derive a similar method for use in the NPPI case.
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6.4 Calculating Weights

It appears that there are three primary elements for assessing predictive ability of a

DM. Firstly, how often have their bounds contained corresponding realisations? DMs

whose NPPI have contained several realisations appear more accurate than those whose

intervals contained few. Secondly, if previously witnessed values were not in the NPPI

then how far from the observations have their bounds been? Low values are a sign

of more accurate DMs. Thirdly, what was the width of their last NPPI? This is the

subtlest of the three measures, requiring contextual interpretation.

In determining the reliability of a neighbour the most obvious fact that a DM

will wish to find out is how accurate their last prediction was, as well as how accurate

previous predictions have been. We introduce St,j, defined for Pj after t decision epochs

as:

St,j =
t∑

m=1

1xm∈[Em−1,j(θ),Ēm−1,j(θ)] (6.22)

St,j is a sum of indicator variables, defined for each m as

1xm∈[Em−1,j(θ),Ēm−1,j(θ)] =

 1 if xm ∈ [Em−1,j(θ), Ēm−1,j(θ)];

0 if xm /∈ [Em−1,j(θ), Ēm−1,j(θ)].

Equation (6.22) is the running total of the amount of times that the intervals of Pj

have contained corresponding realisations. Bernoulli data is aggregated here, i.e., if

[E0,j(θ), Ē0,j(θ)] = [0.4, 0.6] and Pj sees five successes in ten trials then x1 = 0.5 giving

1x1∈[E0,j(θ),Ē0,j(θ)] = 1. It may seem counter intuitive that St,j is independent of the

amount of trials witnessed (e.g., here St,j=1 regardless of if one success is seen in two

trials or five are seen in ten) but the amount of data witnessed is incorporated into the

process via the updated NPPI previously derived. The NPPI of a DM will be sharper

after five successes in ten trials than one success in two. If a single Bernoulli value

is seen per epoch then the NPPI of a DM will rarely contain this. Hence it is the

measures of distance and width given below which shall be used in weight updating.

Consider a DM whose interval did not contain the last realisation. The further her

NPPI is from this value the less reliable she appears, e.g., if [E0,i(θ), Ē0,i(θ)] = [0, 0.2],

[E0,j(θ), Ē0,j(θ)] = [0.7, 1] and a value of 0.3 is witnessed then Pi will appear more

reliable than Pj. We introduce a measure of the distance from the NPPI of Pj to the
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witnessed value at the mth epoch, denoting this distance as δj,m:

δj,m=

 min
{
|xm − Em−1,j(θ)|, |xm − Ēm−1,j(θ)|

}
if xm /∈ [Em−1,j(θ), Ēm−1,j(θ)];

0 if xm∈ [Em−1,j(θ), Ēm−1,j(θ)].

This gives the distance from the witnessed value to the closest bound (i.e., either lower

or upper) with δj,m = 0 for a DM whose interval contained the observation. These

values are summed over time to give a cumulative measure, δj, of the inaccuracy of Pj:

δj =
t∑

m=1

δj,m (6.23)

The width measure is a more complex construct. Suppose that two DMs have intervals

[E0,i(θ), Ē0,i(θ)] = [0.15, 0.85] and [E0,j(θ), Ē0,j(θ)] = [0.35, 0.6] and a value of 0.5 is

seen. It seems logical to concur that the latter DM is the more accurate as, while

both opinions can be viewed as correct, she has more confidence in her prediction.

For accurate DMs narrow intervals are commendable. However, by contrast suppose

[E0,i(θ), Ē0,i(θ)] = [0, 0.1] and [E0,j(θ), Ē0,j(θ)] = [0.7, 1], and a value of 0.5 is seen.

Pi has the narrower belief but is this something to reward? It implies that she not

only holds an inaccurate opinion but is also extremely convinced of its truth. It can

be argued in this case that the DM with the wider interval is more reliable, i.e., for

inaccurate DMs narrowness should not be heralded as a strictly favourable attribute as

it was for accurate DMs. In a Bayesian setting weak prior distributions reflect a lack

of knowledge and conviction. When data is witnessed these may often be dominated

by the likelihood function, i.e., new data has a large effect a posteriori, outweighing

the weak prior distribution. Therefore for an inaccurate DM a wide NPPI is not

necessarily a negative quality as it implies her opinions are susceptible to change given

new information. By contrast consider an extremely inaccurate DM with a very narrow

interval. This corresponds to strong conviction in her opinion, i.e., is akin to her basing

her prior on a large amount of hypothetical realisations. This belief will be slow to

augment towards the truth even given a lot of new information. The inaccurate DM

with wide beliefs will learn from her mistakes faster than the inaccurate DM with

narrow beliefs. We express this opinion via two axioms, given tabularly in Table 6.2.

• Axiom 1: If two DMs have NPPIs containing the witnessed value we penalise

the wider interval more.
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• Axiom 2: If two DMs have NPPIs not containing the witnessed value we penalise

the DM with the tighter interval more.

Table 6.2: Merits of different combinations of width and accuracy.

Accurate Belief Inaccurate Belief

Narrow Interval Best Case Scenario Wost Case Scenario

Wide Interval 2nd Best Case Scenario 3rd Best Case Scenario

Gneiting and Raftery (2007) discuss proper scoring rules for interval predictions. If

l and u are the α
2

and 1− α
2

quantiles of an opinion, and x is the data witnessed, then

they recommend the negatively oriented rule:

S(x; l, u) = (l − u) +
2

α
(l − x)1(x<l) +

2

α
(x− u)1(x>u) (6.24)

In our parlance, for Pj after epoch t this is equivalent to

Sj(x; lj, uj) = ∆t,j + δt,j (6.25)

In contrast to Gneiting and Raftery (2007) we consider a setting in which learning

occurs over time. Suppose we witness a return of 1. Equation (6.25) gives the intervals

[0, 1] and [0, 0.01] the same weight. Yet the latter NPPI is radically inaccurate and

will be very slow to augment to the truth even if a large amount of realisations are

witnessed, while the former although initially trivially vague will quickly converge to

the truth. We augment Equation (6.25) to entail the complexity of width:

Sj(x; lj, uj) = δj + (t− St,j)(1−∆t,j) + St,j∆t,j

= δj + t− t∆j + St,j∆j − St,j + St,j∆j

= δj + t− St,j + ∆j(2St,j − t) (6.26)

The first term penalises past inaccuracy. The second term, t − St,j, is a penalty for

DMs who have not contained witnessed values in their NPPI, being minimised if they

have been accurate at all t epochs (i.e., t = St,j) and maximised if they have been

inaccurate at all epochs (i.e., St,j = 0). Consider the final term in this expression,

∆j(2St,j − t). We have ∆j(2St,j − t) > 0 if St,j >
t
2

and ∆j(2St,j − t) < 0 if St,j <
t
2
. A

DM is penalised for her width if she is mostly accurate (i.e., more than half the time)
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and rewarded for her width if she is mostly inaccurate (in line with our axioms). If

Sj(x; lj, uj) is small (i.e., Pj is deemed accurate) then
(
Sj(x; lj, uj)

)−1

will be large,

and the converse. Hence we propose the normalised weight assigned by Pi to Pj is

αi,j =
ui,j∑n
k=1 ui,k

=

(
Sj(x; lj, uj)

)−1

∑n
k=1

(
Sk(x; lk, uk)

)−1 (6.27)

We initially considered a scheme under which the unnormalised weight assigned to Pj

was the positively oriented scoring rule 2t− Sj(x; lj, uj), with the leading 2t chosen to

ensure strict positivity of weights. However we found that this approach led to highly

inaccurate individuals still receiving high weights as the leading 2t had a very large

impact; weights seldom tended towards the theoretical lower limit of zero even for DMs

with very inaccurate opinions. Returning to our current methodology, we see αi,j is

the same for all i = 1, 2, . . . , n by the objectivity inherent within the process, as was

the case for the fully probabilistic PI approach. Under the PI approach the weights

at one epoch were directly a function of the weights at the previous epoch, which is

not precisely the case here. Nevertheless we can observe that St,j and δj are evolving

measures (as cumulative sums across epochs) and ∆t,j is strictly decreasing, so there is

a strong Markovian element to the weights over time, i.e., the future and past weights

are independent of each other given the present weight.

6.5 Extension to the Real Line

Above we restricted E(θ) to [0, 1]. Now we generalise our method so that it can lie

anywhere on the real line. We may apply Hill’s A(n) assumption to the real line but

issues arise with finding analogies to the NPPI updating rules of Equations (6.15)-

(6.16). In the second of these rules we added 1 to the sum of the data, yet this

only makes sense in a [0, 1] context with any choice of number to add in its place

being arbitrary. Straightforward extension is problematic. An alternative, rather than

translating our method to the real line, is to translate the real line problem to [0, 1],

allowing us to apply the above approach. Translations from the whole real line are not

bijective but if we truncate these (as in Coolen, 1996) we may apply our method. We
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must assume that there is a finite lowest/highest possible parameter value, mapped to

0 and 1 respectively. Intermediate values can now be translated.

Truncated Real Line Example

Suppose E(θ) is limited to [−500, 1000] and a DM expects it to fall in [100, 400]. We

denote by x the original values and by x∗ those rescaled to lie in [0, 1]. We translate

the smallest possible value to x∗ = 0 and the largest to x∗ = 1, solving simultaneous

equations a(−500) + b = 0 and a(1000) + b = 1 to give a = 1
1500

and b = 1
3
, i.e.,

x∗ =
x

1500
+

1

3
for all x ∈ [−500, 1000] (6.28)

[E0(θ), Ē0(θ)]=[100, 400] is mapped to [E0(θ∗), Ē0(θ∗)]=[0.4.0.6]. This is equivalent to

having seen four observations with
∑4

i=1 x
∗
i = 2. One possible return set obeying this

is x∗1 = 0.2, x∗2 = 0.4, x∗3 = 0.6, and x∗4 = 0.8. Inverting Equation (6.28) gives

x = 1500x∗ − 500 (6.29)

Hence x∗1, x
∗
2, x
∗
3, x
∗
4 are translated to x1 = −200, x2 = 100, x3 = 400 and x4 = 700.

Suppose a new observation x5 =350 is seen, mapped to x∗5 =0.567. Her NPPI becomes

E1(θ∗) =
1

6

( 5∑
i=1

x∗i

)
= 0.4278

Ē1(θ∗) =
1

6

(
1 +

5∑
i=1

x∗i

)
= 0.5945

Equation (6.29) gives [E1(θ), Ē1(θ)] = [141.7, 391.75]. Changing opinions are shown in

Fig. 6.2. Below we continue in [0, 1], knowing we can always generalise this if needed.

6.6 Example

Consider five doctors, P1, . . . , P5. A new drug has come on the market as a potential

cure for a disease. It has only been subject to limited testing, i.e., there is uncertainty

about its efficacy. If it works then the patient will be cured, if not they will suffer

negative side-effects. Each doctor has a set of patients who place different utilities on

the possible outcomes, i.e., utilities come from their respective patients (Table 6.3).

The potential decisions are d1 (take the drug, risking side-effects) or d2 (not taking
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Fig. 6.2: Prior and posterior NPPIs in terms of the real line and unit interval.

the drug). We denote by θ1 the event of the drug working and by θ2 the complement.

For each patient the utility of d2 is independent of whether the drug works or not

and incorporates their attitude over risks. In Table 6.3 we present the NPPI bounds

of doctors over drug efficacy θ, with P(θ1) = θ. Equal weights are given at the first

decision epoch resulting in bounds of [Ê0,j(θ),
ˆ̄E0,j(θ)] = [0.462, 0.822] for each DM.

Table 6.3: Initial previsions and utilities, as well as the decisions deemed optimal.

Pj [E0,j(θ),Ē0,j(θ)] ∆0,j uj(d1, θ1) uj(d1, θ2) uj(d2) d∗

P1 [0.6, 0.8] 0.2 1 0 0.85 d2

P2 [0, 1] 1 1 0 0.3 d1

P3 [0.45, 0.55] 0.1 1 0 0.4 d1

P4 [0.76, 0.96] 0.2 1 0 0.2 d1

P5 [0.5, 0.8] 0.3 1 0 0.35 d1

Patients must combine their utility over potential outcomes with the corresponding

expectations associated with these. They use the combined NPPI of [0.462, 0.822] to

do this. Here decisions are monotonic in θ (assuming a DM wishes to use maximising

expected utility as her decision making criteria) so she needs only to calculate the

expected utility of each decision under the lower and upper bounds. If a decision has
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the highest expected value in both scenarios then it is optimal for her, as clearly it

will be so for all intermediate values. These optimal decisions are in Table 6.3 with

only the patient of P1 opting to not try the drug. Of the four who try the treatment

three are cured while one is not and suffers side-effects. Each doctor updates their

previsions about the efficacy of the drug, and the reliability of their neighbours, given

this Bernoulli data. Out of four trials three successes have been witnessed so the

observed sample proportion for the drug working is 0.75, giving the weights in Table

6.4. These seem rational and coherent with the ordinal ranking we would choose.

Despite being accurate P2 is penalised for her wide opinion/vague belief. P1 and P5

are deemed the most accurate, with the former achieving a higher weight due to her

narrower interval.

Table 6.4: Weights having witnessed three successes out of four trials.

Pj S1,j ∆1,j δj,1 =δj ui,j αi,j

P1 1 0.2 0 5 0.436

P2 1 1 0 1 0.087

P3 0 0.1 0.2 0.91 0.079

P4 0 0.2 0.01 1.24 0.108

P5 1 0.3 0 3.33 0.290

Doctors update their prevision bounds over θ in light of the new data. Recall, as

previously discussed, that they must find the values of the hypothetical observations

which would have had to be witnessed to create their initial NPPI, and use Equations

(6.15) and (6.16) to update prevision bounds. Table 6.5 shows this information. After

only seeing four observations the opinion of P2 has shifted from triviality to being

highly informative, i.e., it has adapted dramatically to the data witnessed. Combining

modified opinions with new weights gives a combined prevision of [Ê1,i(θ),
ˆ̄E1,i(θ)] =

[0.648, 0.770].

The utilities of the next patients of the doctors are in Table 6.6. All try the treat-

ment. Four are cured while one is not (suffering side-effects). Weights and prevision

bounds are updated in light of this, given in Table 6.7. P2 is deemed the most reliable,

having been accurate at both epochs (the only DM to be so). P3, the only DM to have
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Table 6.5: Updated previsions of doctors having witnessed data at first epoch.

Pi ni
∑ni

j=1 xi,j
∑4

j=1 xj [E1,i(θ), Ē1,i(θ)]

P1 4 3 3 [0.66, 0.77]

P2 0 0 3 [0.6, 0.8]

P3 9 4.5 3 [0.537, 0.607]

P4 4 3.8 3 [0.755, 0.866]

P5
7
3

7
3

(with x1 = 1) 3 [0.636, 0.772]

been inaccurate both times, has the smallest weight. The combined NPPI is updated to

[Ê2,i(θ),
ˆ̄E2,i(θ)] = [0.706, 0.790] for all DMs. Fig. 6.3 highlights the change in weights

over time. With the possible exception of P3 it appears that opinions of doctors are

starting to converge towards a common value. Fig. 6.4 shows the prevision bounds of

individuals over the three epochs. These are decreasing in width over time as each DM

witnesses more data. This procedure can be repeated indefinitely.

Table 6.6: Utilities at the second epoch, as well as the decisions deemed optimal.

Pj uj(d1, θ1) uj(d1, θ2) uj(d2) d∗

P1 1 0 0.2 d1

P2 1 0 0.3 d1

P3 1 0 0.4 d1

P4 1 0 0.5 d1

P5 1 0 0.45 d1

This method is applicable in a wide range of instances. A set of retailers can esti-

mate the probability that the goods that they buy are of resalable quality to maximise

profit. In system safety DMs may have contrasting thoughts on the probability of a

device failing, with utility measured in monetary cost and in terms of safety. Leaving

[0, 1], DMs may be concerned with stock market behaviour, in the predicted traffic

along a motorway at a particular time (where their aim is minimising congestion), or

the number of students applying to a college. There is a vast array of problems which

NPPI is equipped to solve, similar to those the PI approach is suitable for but with a
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Table 6.7: Weights after four successes out of five trials (i.e., a success probability of

0.8) at the second epoch and the updated NPPI bound of doctors in light of this.

Pj S2,j ∆2,j δj,2 δj αi,j [E2,j(θ), Ē2,j(θ)]

P1 1 0.11 0.03 0.03 0.168 [0.714, 0.785]

P2 2 0.2 0 0 0.433 [0.7, 0.8]

P3 0 0.07 0.193 0.392 0.077 [0.605, 0.658]

P4 1 0.111 0 0.01 0.154 [0.771, 0.843]

P5 1 0.136 0.028 0.028 0.168 [0.703, 0.784]

Fig. 6.3: The change in weights awarded to the five DMs over the three epochs.

decreased burden for DMs regarding the manner in which beliefs must be supplied.

6.7 Performance Measure

We wish to assess the merits of various NPPIs. This task is more complex than similar

comparisons for the PI approach in Chapter 4. We introduce three rules for determining

which NPPI, [Et,i(θ), Ēt,i(θ)] or [Et,j(θ), Ēt,j(θ)], is deemed better.

• Rule 1: If both intervals contain E(θ) then the better interval is the thinner

one, i.e., if E(θ) ∈ [Et,i(θ), Ēt,i(θ)] and E(θ) ∈ [Et,j(θ), Ēt,j(θ)] then we prefer the

former if ∆t,i < ∆t,j.
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Fig. 6.4: Prevision bounds the five DMs across the three epochs.

• Rule 2: If one interval contains E(θ) and the other does not then we prefer

the former to the latter. When the accurate interval is the thinner one then

this is self-evident. When the accurate interval is the wider one we attribute

this rule to placing priority on accurate intervals, i.e., a vague and accurate

belief is better than a confident and inaccurate belief, as in Table 6.2. Hence if

E(θ) ∈ [Et,i(θ), Ēt,i(θ)] and E(θ) /∈ [Et,j(θ), Ēt,j(θ)] then we prefer the former.

• Rule 3: If neither interval contains E(θ) then we say the better one is that

minimising the sum of its distance to E(θ) and one minus its width, i.e., if

E(θ) /∈ [Et,i(θ), Ēt,i(θ)] and E(θ) /∈ [Et,j(θ), Ēt,j(θ)] then we consider the former

more reliable if dt,i + (1−∆t,i) < dt,j + (1−∆t,j), where dj,m is

dj,m = min{|E(θ)− Em,j(θ)|, |E(θ)− Ēm,j(θ)|} (6.30)

This is the distance from E(θ) to the nearest bound of Pj. This concurs with our

earlier discussion about width for inaccurate predictions.

Note that dj,m in Equation (6.30) is distinct from δj,m in Equation (6.23), with the

latter measuring distance to the last witnessed value rather than the true underlying

value E(θ). Rule 1 is intuitive. If two NPPIs contain E(θ) then the narrower is

more desirable, conveying both accuracy and confidence. It is more likely for a single

decision to be deemed optimal under a narrow belief as there is a smaller range it must

be maximal over. Rule 3 states that for two inaccurate NPPIs we have a preference for
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wide intervals as previously discussed. The degree of inaccuracy should be incorporated

also. Rule 2 is clearly reasonable when the interval containing E(θ) is the narrowest.

In the case of it being the widest it is harder to concur which is better. Here we place a

premium on accuracy, declaring the interval containing E(θ) as better. We say that the

combined NPPI is optimal if it outperforms more than half the individual DMs, i.e.,

the metric discussed in Chapter 4. We consider this shortly in our simulation study.

6.8 Links between Individual and Combined NPPIs

Defining an accurate interval as one containing E(θ) we have the following theorem.

Theorem 6.1: If the NPPIs of all DMs are accurate then so is the combined NPPI.

Proof: E(θ) ∈ [Et,j(θ), Ēt,j(θ)] for j = 1, . . . , n. As weights are non-negative and

sum to one, each amalgamated lower and upper bound is a convex linear combination

of DM lower and upper bounds, implying that Êt,i(θ) ∈ [minj Et,j(θ),maxj Et,j(θ)]

and ˆ̄Et,i(θ) ∈ [minj Ēt,j(θ),maxj Ēt,j(θ)]. The combined lower bound lies between the

smallest and largest lower bound (inclusively) while the combined upper bounds lies

between the smallest and largest upper bound (inclusively). As all DMs are accurate

this implies Êt,j(θ) ≤ E(θ) and ˆ̄Et,j(θ) ≥ E(θ), i.e., E(θ) ∈ [Êt,i(θ), ˆ̄Et,i(θ)], meaning

the combined NPPI is accurate. �

If it were possible to construct an inaccurate opinion from a set of accurate opinions

this would make our method incoherent. We now consider assessing performance of

the combined NPPI when all DMs are accurate, starting with an elementary lemma.

Lemma: ∆̂t,i(θ) =
∑n

j=1 αi,j∆t,j(θ) for all i = 1, . . . , n.

Proof: Proof follows from the laws of summations and previous definitions:

∆̂t,i(θ) = Êt,i(θ)− ˆ̄Et,i(θ)

=
n∑
j=1

αi,jĒt,j(θ)−
n∑
j=1

αi,jEt,j(θ)

=
n∑
j=1

αi,j

(
Ēt,j(θ)− Et,j(θ)

)
=

n∑
j=1

αi,j∆t,j(θ) �

If the intervals of all DMs are accurate then the combined NPPI is superior if its

width is less than that of more than half of individual NPPIs by the rules previously
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discussed. As E(θ) ∈ [Et,j(θ), Ēt,j(θ)] for all j = 1, . . . , n we have, by Theorem 6.1,

E(θ) ∈ [Êt,i(θ), ˆ̄Et,i(θ)]. To compare the performance of the combined NPPI against

the NPPIs of individuals we use Rule 1, comparing widths, with narrower intervals

indicating more reliability. Having seen t sets of data the combined belief is superior

if ∆̂t,i(θ) < ∆t,j(θ), for j = 1, . . . , n holds for more than n
2

of the DMs. Note that if

a single DM is inaccurate then the combined NPPI is not ensured to be accurate, but

their inaccuracy will be penalised by a low weight and hence their opinion will have

only a small impact in the combined NPPI.

6.9 Small Simulation Study

In Chapter 4 we ascertained the merits of the PI approach using simulation, approxi-

mating the true probability of it being superior to alternatives in various cases. Here

we attempt to do similarly to assess performance of our combined NPPIs. The rules

in Section 6.7 are used to compare the relative merits of intervals. We declare the

combined NPPI beneficial for a DM if it provides better estimation than the intervals

of over half of DMs, i.e., with probability exceeding 0.5 it gives more accurate estima-

tion for a randomly chosen user. Below we run our process from several initialisations

and observe how performance varies with adjustments to the number of DMs and/or

returns and the prior accuracy of DMs. In each case 5,000 simulations are used to

calculate success proportions which approximate true probabilities as the number of

iterations grow, converging asymptotically. We conduct testing for the individual and

group problems, assessing performance of the combined NPPI against those of DMs,

before comparing its merits to those of the equal weights (EQ) scheme.

Combined NPPI vs. Individual NPPI

We use four cases to investigate behaviour of our combined NPPI and determine when

its performance is strongest. We measure its performance against the intervals of DMs.

Results are given in Table 6.8.

• Case 1a: We assume E(θ) = 0.4 with range 0.2, i.e., realisations are uniformly

drawn from [0.2, 0.6]. DM lower bounds are uniformly chosen from [0.1, 0.5], i.e.,

on average initial lower bounds of 75% of DMs are less than E(θ). Upper bounds
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are chosen uniformly from [l + min.width, l + min(max.width, 1 − l)]. Here l is

the lower bound and min.width and max.width are the respective smallest and

largest interval width allowed. The term min(max.width,1 − l) ensures upper

bounds cannot exceed 1. Setting min.width= 0.05 and max.width= 0.5 the

average prior interval width is 0.275. Success proportions denote the proportion

of the simulations for which the combined NPPI was superior, i.e., for three DMs

and one return in 3,832 of the 5,000 cases (i.e., 0.7664) the combined NPPI was

more accurate than the NPPIs of two or more DMs.

• Case 2a: The is identical to Case 1a except that we decrease the range of values

that realisations take from within 0.2 of E(θ) to within 0.1 of it. This should

increase the weighted performance as the returns upon which it is based will be

more accurate reflections of θ, and therefore should increase the accuracy of the

combined NPPI and its success proportion.

• Case 3a: This modifies Case 1a so prior accuracy increases. We lower max.width

to 0.4 and choose lower bounds uniformly from [0.25, 0.45], meaning intervals now

have average width of 0.225. As in Case 1a, on average, 75% of the initial lower

bounds of DMs will be less than E(θ), but lower bounds will now on average be

closer to E(θ). Hence DMs are both more accurate and more confident in this

accuracy. This should decrease success proportions from Case 1a as opinions of

DMs are increasingly accurate prior to sharing with neighbours.

• Case 4a: This is identical to Case 3a except that we decrease the range of values

which realisations take from within 0.2 of E(θ) to within 0.1 of it.

Analysis of Results 1

The primary conclusion that we draw from our results is that combining intervals is

worthwhile for DMs. In each case considered the proportion of times that this method

is successful exceeds 0.5, i.e., in all instance it was in the best interest of a DM to

use it. As the number of DMs increases so do success proportions. This is intuitive.

As the amount of DMs involved in the process grows larger the amount of sources of

information that a DM has access to increases. We previously conjectured that there
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Table 6.8: Success proportion of the combined NPPI for Cases 1a-4a. Highlighted in

bold are the instances when our method was optimal.

Case DMs Epochs Prop. DMs Epochs Prop. DMs Epochs Prop.

1a 3 1 0.7664 3 3 0.7814 3 5 0.7852

1a 7 1 0.8390 7 3 0.8946 7 5 0.8852

1a 11 1 0.8590 11 3 0.9204 11 5 0.9082

1a 23 1 0.8830 23 3 0.9316 23 5 0.9154

2a 3 1 0.8464 3 3 0.8516 3 5 0.8444

2a 7 1 0.9532 7 3 0.9622 7 5 0.9578

2a 11 1 0.9702 11 3 0.9876 11 5 0.9870

2a 23 1 0.9882 23 3 0.9950 23 5 0.9960

3a 3 1 0.6718 3 3 0.6828 3 5 0.6966

3a 7 1 0.7686 7 3 0.7934 7 5 0.7914

3a 11 1 0.8008 11 3 0.8282 11 5 0.8306

3a 23 1 0.8414 23 3 0.8542 23 5 0.8574

4a 3 1 0.7458 3 3 0.7532 3 5 0.7534

4a 7 1 0.8776 7 3 0.8782 7 5 0.8740

4a 11 1 0.9524 11 3 0.9244 11 5 0.9234

4a 23 1 0.9592 23 3 0.9572 23 5 0.9610

is a direct correlation between information and accuracy, and between these quantities

and decision quality. Success proportions remain relatively constant as the number

of epochs increases. We see between Case 1a and Case 2a, and between Case 3a and

Case 4a, that there are significant increases in proportions. This relates to the decrease

in the range of realisations, with observations falling in [0.2, 0.6] in Cases 1a and 3a

and in [0.3, 0.5] in Cases 2a and 4a. In the latter instances learning occurs faster as

witnessed data are more genuine reflections of the true underlying phenomenon. Hence

success proportions are significantly higher than in the cases with wider ranges. We see

increasing prior accuracy (Cases 3a and 4a) leads to decreases in success proportions

for the combined opinions. This is expected, as if DMs are themselves more accurate

then they are less dependent upon opinions of others.
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Combined NPPI vs. Equally Weighted NPPI

Here we consider four cases, assessing performance against the EQ method. Success

proportions are given in Table 6.9.

• Case 1b: We assume E(θ) = 0.4 and sett the range of possible values as 0.1,

i.e., observations lie in [0.3, 0.5]. Lower bound priors are uniformly chosen from

[0.1, 0.5], i.e., on average, 75% of DMs initially have lower bounds less than E(θ).

The minimum width is 0.05 and the maximum is 0.5.

• Case 2b: Case 1b is modified so lower bounds are now uniformly chosen from

[0.2, 0.6]. This implies that, on average, half of DMs have initial lower bounds

less than E(θ), i.e., a higher proportion of DMs overestimate it.

• Case 3b: This augments Case 1b, with lower bounds now uniformly chosen from

[0.3, 0.7]. This implies that, on average, only a quarter of DMs initially have lower

bounds less than E(θ), i.e., a higher proportion overestimate it.

• Case 4b: Case 2b is altered with lower bounds now uniformly chosen from

[0.3, 0.5]. As in Case 2b this implies that on average half of the DMs have initial

lower bounds greater than E(θ), but in this instance bounds are closer to E(θ),

i.e., they are increasingly accurate.

Analysis of Results 2

The dominance of our combining approach is not as unconditionally evident in the

group setting as it was for the individual problem, as is clear from Case 1b, where it is

outperformed in most instances by the EQ approach. Yet as is obvious from Cases 2b,

3b and 5b, in certain situations it is in the best interest of DMs to merge opinions in our

more sophisticated manner. In these instances the prior accuracy of DMs is weakened

with on average 50% and 75% of DMs in Cases 2b and 3b respectively overestimating

E(θ), with success proportions above 0.5 in both scenarios, dramatically so in the

latter. Hence we see that if most DMs are a priori accurate information sources then

a straightforward equally weighted combination will perform strongly, yet as DMs

become initially increasingly inaccurate our more subtle method grows increasingly

powerful. In Case 4b we made the lower bound predictions of the DMs closer to E(θ),
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Table 6.9: Success proportion of the combined NPPI for Cases 1b-4b. Highlighted in

bold are the instances when our method was optimal.

Cases DMs Epochs Prop. DMs Epochs Prop. DMs Epochs Prop.

1b 3 1 0.4474 3 3 0.3446 3 5 0.3484

1b 7 1 0.4806 7 3 0.1708 7 5 0.1198

1b 11 1 0.5526 11 3 0.1274 11 5 0.0542

1b 23 1 0.6906 23 3 0.0772 23 5 0.0100

2b 3 1 0.5570 3 3 0.5952 3 5 0.6164

2b 7 1 0.6932 7 3 0.5878 7 5 0.5586

2b 11 1 0.7548 11 3 0.5924 11 5 0.5614

2b 23 1 0.8560 23 3 0.5930 23 5 0.5366

3b 3 1 0.6936 3 3 0.8522 3 5 0.8964

3b 7 1 0.8522 7 3 0.9648 7 5 0.9718

3b 11 1 0.9158 11 3 0.9886 11 5 0.9872

3b 23 1 0.9780 23 3 0.9996 23 5 0.9984

4b 3 1 0.5544 3 3 0.5568 3 5 0.5714

4b 7 1 0.6670 7 3 0.5804 7 5 0.5374

4b 11 1 0.7452 11 3 0.5850 11 5 0.5122

4b 23 1 0.8302 23 3 0.5976 23 5 0.5048

while maintaining the same ratio of accuracy as in Case 2b, leading to decreases in

success proportions. Nevertheless they remain above 0.5.

In conclusion, from our brief study it is evident that there is merit in using the

linear pooling technique from Sections 6.3-6.4. When comparing its performance to

that of the opinions of DMs it appears to be strong, dominant in all cases considered.

Results are more ambiguous in comparison with the method of consistent equal weights,

which can also be successful. If priors of DMs are all suitably accurate than the EQ

approach is the better of the two, while as DMs become increasingly accurate a priori

the more sophisticated technique becomes stronger. Motivation exists for determining

conditions for which each technique is dominant. There is a wide range of variables to

consider, e.g., prior accuracy of DMs (expressible in multiple ways), the range which
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witnessed values can occur in, and the number of DMs/epochs considered. In our

fully parameterised setting we instigated a study of this nature but doing so is more

complicated in our nonparametric setting, with more parameters to be specified, and

with results potentially sensitive to the chosen initialisation. An area for further work,

before carrying out a full scale study, is determining a set of cases to consider, covering

a suitably broad spectrum of scenarios to provide generalised results. In the above

study we only considered the EQ method as a rival to our technique, yet another

alternative exists in the form of the Most Reliable approach. We could also compare

our combining method to this simplistic performance-based approach.
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Chapter 7

Potential Subjective Alternatives

Much of this thesis has considered objective methods of ascertaining the reliability of

DM’s opinions, with these opinions being either parametrically or nonparametrically

expressed. In this chapter we discuss two alternative techniques that add subjectivity

to the process. The technique that we shall focus on primarily is called the Differing

Viewpoints (DV) approach, incorporating utility as well as probability (i.e., the two

core elements of decision making) into its calculations. We compare this method to the

PI approach, as well as discussing its relationship with Absolute Risk Aversion (ARA)

and a suitable performance metric. The other method, termed the Kullback-Leibler

(KL) approach, bases weights upon the degree of similarity between opinions, entailing

biases that DMs may feel towards opinions that are akin to their own.

7.1 The Differing Viewpoints Approach

As utility is a fundamental decision making element it seems attractive for a reweighting

process to incorporate this. The PI approach was fully objective (assuming equal initial

weights are supplied), giving the same results for all DMs, i.e., the weight allocated by

Pi to Pj (αi,j) is the same as that allocated by Pk to Pj (αk,j) and indeed is the same as

that Pj affords herself (αj,j). Calculation of the PI weight given to Pj was independent

of the utility function of the DM assigning this. Yet DMs with different fortunes

and attitudes towards risk may react differently to common information, e.g., a risk

prone DM may give more weight to an opinion predicting a large profit (with strong

associated uncertainty) than to one predicting a small profit (with strong conviction
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in this belief). A risk averse DM may do the opposite. Arguments of this nature

motivate development of a weighting scheme assimilating both probability and the

utility function of the user into its calculations.

Initially DMs have no data to base reliability assessments on and combine beliefs as

in Equation (3.5). All DMs calculate the decision, d∗, that is deemed optimal for them,

i.e. that maximises expected utility. Once this decision has been made and a return

observed then DMs can start assessing the reliability of their neighbours. Similarly

to the PI approach, each DM compares the distributions offered by neighbours to the

witnessed outcome, but in the DV approach they do so in a manner taking their own

utility function into account as well. Each Pi calculates the expected utility that she

would have assigned to d∗ had she only listened to the beliefs of Pj, i.e.,

Ei|j[ui(d∗)] =

∫
Θ

ui(d
∗, θ)fj(θ) dθ (7.1)

Having done this Pi then computes the absolute value of the difference between this

expected utility associated with d∗ under the beliefs of Pj and the actual utility that

was witnessed following d∗ (for all j = 1, . . . , n). We assume that a common return

is witnessed by all DMs with comments on an extension to the previously discussed

multiple simultaneous returns setting included in Appendix F. This quantity is known

as the DV weight, vi,j, formally written as

vi,j = |ui(r)− Ei|j[ui(d∗)]| (7.2)

If Pj returns a small vi,j then this implies that there is a small discrepancy (in terms of

the utils of Pi) between her prediction and the outcome that occurred. Hence she may

be considered a reliable information source as her probability distribution seems to

accurately model θ in terms of the preferences of Pi. A large vi,j implies the converse.

The goal of the DV weight is identical to that of the PI weight, i.e., to compare

predictions with observations and to construct a reliability measure based on these

disparities. In the PI approach this was based entirely on probability while the DV

approach uses both probability and utility. Note accurate individuals return large PI

weights in Equation (3.6) but small DV weights in Equation (7.2), and the converse.

The DV method deals only with the order of magnitude between two quantities

and is invariant to which is bigger. Suppose for Pi, that ui(r) = 10, Ei|j[ui(d∗)] = 5

and Ei|k[ui(d∗)] = 15, giving vi,j = vi,k = 5. It may appear unintuitive that Pi awards
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the same DV weight to Pj and Pk despite the fact that Pk predicts a higher expected

utility, with DMs desiring their utility to be as large as possible. If a DM is trying to

determine which decision to choose from a set of alternatives she will be interested in

the cardinality of expected utilities as (assuming she is rational) she wishes to maximse

her return. However in Equation (7.2) her decision has already been made and cannot

be changed. Her sole interest is in ascertaining the reliability of neighbours in the hope

of positively influencing the quality of her next decision. Hence a prediction of five

utils too high is as accurate/inaccurate as a prediction of five utils too low. It is what

a DM could expect to get listening to a particular neighbour, not what she would get.

Given this, we define the updated normalised weight α∗i,j afforded by Pi to Pj, given

she previously allocated her a normalised weight of αi,j and that her most recent DV

weight is vi,j ,as

α∗i,j =

αi,j
vi,j∑n
k=1

αi,k
vi,k

(7.3)

Issues arise regarding divisibility by zero if vi,j = 0, i.e., if ui(r) = Ei|j[ui(d∗)]. This

can only occur in the limit, when Pj’s mean prediction equals the return witnessed and

her associated variance tends towards zero. Due to our requirement that all DMs must

possess some uncertainty (i.e., positive variance) this limit is never reached in practice.

As previously discussed, utility is invariant to positive linear transformation. Hence it

is desirable that a utility-based weighting scheme adhere to this invariance. Consider

a function u
′
i(r) = aui(r) + b, with a, b ∈ R and a > 0. This gives a DV weight, v

′
i,j, of

v
′

i,j = |u′i(r)− Ei|j[u
′

i(d
∗)]|

= |aui(r) + b− Ei|j[aui(d∗) + b]|

= |aui(r) + b− aEi|j[ui(d∗)]− b|

= |aui(r)− aEi|j[ui(d∗)]|

= a|ui(r)− Ei|j[ui(d∗)]|

= avi,j. (7.4)

Inserting this DV weight into Equation (7.3) we see that

α∗i,j
′

=

αi,j

v
′
i,j∑n

k=1
αi,k

v
′
i,k
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=

αi,j
avi,j∑n
k=1

αi,k
avi,k

=

αi,j
vi,j∑n
k=1

αi,k
vi,k

= α∗i,j (7.5)

Hence this weighting scheme ensures invariance to affine transformation for a DMs

utility function, a desirable and sensible property for a utility-based weighting approach

to obey. Implicit in our DV method is the Markovian property and the four criteria

(with suitable inversions) discussed in Section 3.5 (proofs are given in Appendix B),

making it coherent in some sense. We provide further discussion on the functional form

of reweighting scheme given in Equation (7.3). It seems rational that this should be a

function of a the previous normalised weight of a DM and her most recent DV weight,

i.e., α∗i,j ∝ h(αi,j, vi,j) for some function h(·). We have seen h(αi,j, vi,j) =
αi,j
vi,j

ensures

invariance. What other choices do? We saw vi,j under ui(r) transformed to v′i,j = avi,j

under u′i(r) in Equation (7.4). Hence, to obey invariance, h must be such that

α′∗i,j =
h(αi,j, v

′
i,j)∑n

k=1 h(αi,k, v′i,k)

=
h(αi,j, avi,j)∑n
k=1 h(αi,k, avi,k)

(7.6)

=
ah(αi,j, vi,j)

a
∑n

k=1 h(αi,k, vi,k)
(7.7)

=
h(αi,j, vi,j)∑n
k=1 h(αi,k, vi,k)

= α∗i,j

We see between Equations (7.6) and (7.7) that it must be possible to write h(αi,j, avi,j)

as ah(αi,j, vi,j) implying h(·) must be multiplicative in its arguments, i.e., must be a

product or quotient involving vi,j and αi,j. An obvious choice of that h that adheres to

this is h(αi,j, vi,j) = vi,jαi,j, yet this penalises DMs with low values of vi,j (indicating

accuracy), making it incoherent. We choose h(αi,j, vi,j) =
αi,j
vi,j

, as it ensures rational

updating, i.e., high weights for those with low values of vi,j and the converse. Various

other forms are possible with arguments raised to powers, e.g., h(αi,j, vi,j) =
αi,j
v2i,j

yet

why this would be done is not obvious. Another property of Equation (7.3) is that, if

we denote α
(t)
i,j by the normalised weight assigned by Pi to Pj after t returns, and by
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v
(t)
i,j the DV weight assigned for the tth return, we can rewrite it as:

α
(t)
i,j ∝

α
(t−1)
i,j

v
(t)
i,j

=

α
(t−2)
i,j

v
(t−1)
i,j

v
(t)
i,j

=
α

(t−2)
i,j

v
(t)
i,j v

(t−1)
i,j

=

α
(t−3)
i,j

v
(t−2)
i,j

v
(t)
i,j v

(t−1)
i,j

=
α

(t−3)
i,j

v
(t)
i,j v

(t−1)
i,j v

(t−2)
i,j

=
...

=
α

(0)
i,j∏t

k=1 v
(k)
i,j

=
1
n∏t

k=1 v
(k)
i,j

=
1

n
∏t

k=1 v
(k)
i,j

(7.8)

We see that the unnormalised weight assigned by Pi to Pj is the inverse of the product

of her initial (equal) weight and her DV weights to this point. This is akin to the

relationship we determined for the PI weights (which guaranteed exchangeability in

its setting) in Equation (3.14). Note that a similar exchangeability does not hold for

the DV scheme as weights are calculated as a function of a DMs initial fortune which

fluctuates over time, i.e., the weight given to a neighbour will differ dependent on if

the DM assigning it has a fortune of (for instance) $50 or $55.

We conclude this section by commenting briefly that, in Equation (7.1), the DM

retrospectively considers the utility that she would have expected to achieve had she

solely heeded the opinion of her neighbour Pj. In comparing this, in Equation (7.2),

to the utility which was actually realised from the decision that she made, the DM

can be seen in some sense as assessing if she regrets not considering this opinion more

prominently or the contrary, i.e., if perhaps she may have increased her decision qual-

ity by listening more prominently to that individual. As an aside, we comment that

the aim of this process can be seen as kindred to that of Regret Theory, derived in

Loomes & Sugden (1982), Bell (1982) and Fishburn (1982). This theory was moti-

vated by experimental research, contrasting the regret anticipated and experienced by

individuals facing pending uncertainty, and with users assimilating a regret component

(generally increasing, continuous and non-negative) to their utility function, with the

former subtracted from the latter. Regret Theory has been used to explain phenomena
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witnessed in auction environments and behavioural finance.

7.1.1 Differing Viewpoints and ARA

Suppose Pi is determining the weight to assign to the opinions of Pj and Pk. A return

r has been witnessed and the Normally distributed beliefs of Pj and Pk are symmetric

around this with common variance, i.e., the mean prediction of Pj is m units below r

and that of Pk is m units above r. Under the PI method these beliefs would receive

equal PI weights, i.e., wj =wk, as a prediction m units below the mean is as accurate

as a prediction m units above the mean (given equal variances) by the symmetry of the

Normal distribution. The following theorem shows that both distributions may receive

different DV weights depending on the nature of ui(r).

Theorem 7.1: Suppose Pi observes a return r. Two neighbours have the beliefs

fj(θ) ∼ N(a, σ2) and fk(θ) ∼ N(b, σ2), with |r − a| = |r − b| and a < r < b. If Pi is

• risk averse over the range of return values she will give a higher DV weight to Pj.

• risk prone over the range of return values she will give a higher DV weight to Pk.

• risk neutral over the range of return values she will give equal DV weights.

Proof: We can find that

• Ei|j[ui(d∗)] =
∫∞
−∞

ui(r)√
(2πσ2)

exp
(
− (r−a)2

2σ2

)
dr

• Ei|k[ui(d∗)] =
∫∞
−∞

ui(r)√
(2πσ2)

exp
(
− (r−b)2

2σ2

)
dr

Clearly Ei|k[ui(d∗)] > Ei|j[ui(d∗)] as b > a.

• If Pi is risk-averse (i.e., Ai(r) > 0 for all r considered) then by the nature of her

utility function, |ui(r)−Ei|j[ui(d∗)]|>|ui(r)−Ei|k[ui(d∗)]|. This implies vi,j > vi,k.

The DM with the higher prediction is deemed more reliable.

• If Pi is risk-prone (i.e., Ai(r) < 0 for all r considered) then by the nature of her

utility function, |ui(r)−Ei|j[ui(d∗)]|<|ui(r)−Ei|k[ui(d∗)]|. This implies vi,j < vi,k.

The DM with the lower prediction is deemed more reliable.

• If Pi is risk-neutral (i.e., Ai(r) = 0 for all r considered) then by the nature of her

utility function, |ui(r)−Ei|j[ui(d∗)]| = |ui(r)−Ei|k[ui(d∗)]. This implies vi,j = vi,k.

Both DMs are deemed equally reliable. �
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This result may seem counter-intuitive but is rational under proper consideration.

By definition, a risk prone DM will have a higher disparity between ui(b) and ui(r)

than that between ui(r) and ui(a). Hence when r is realised the difference between the

expected utility promised by Pk and the utility actually occurring will be greater than

that between the expected utility promised by Pj and that occurring. Therefore (given

the utility preferences of Pi) Pj is more accurate than Pk, as her prediction is closer in

utils to the utility that actually occurred than the prediction of Pk. Hence Pj will get

a lower DV weight. Similar arguments apply for the risk-averse/risk-neutral cases.

For illustration, suppose ui(r) = exp( r
20

), i.e., Pi is risk prone with Ai(r) = − 1
20
< 0

for all r. A return r = 5 is witnessed and fj(θ) ∼ N(4, 1) and fk(θ) ∼ N(6, 1). If Pi has

an initial fortune of 35 then this leads to vi,j=0.35 and vi,k = 0.391, i.e., the DM with

the lower prediction is deemed more reliable. If ui(r) = ln(r) (risk prone for r > 0 with

values less than this not computable), Pi has a fortune of 50, a return of r = 10 is seen,

and fj(θ) ∼ (5, 1) and fk(θ) ∼ (15, 1) then this leads to vi,j = 0.086 and vi,k = 0.081.

The DM with the higher prediction is deemed most reliable.

Theorem 7.1 includes a caveat requiring DMs to be risk-averse/risk-neutral/risk-

prone over the return range considered. Yet when the Normal distribution is used the

range of plausible values is the real line. A logarithmic utility function is not defined

below zero and a utility function u(r) = r2 will change from risk prone to risk averse

as returns move from above to below zero. In the examples above it was assumed that

the probability of straying into these change-point areas was negligibly small enough

to be considered zero. An area for further research is to reformulate our theorem to

allow returns lie on the boundary between a risk averse and risk prone utility function.

7.1.2 Different Weights from Different Methods

The weight allocated to a particular DM based on her perceived reliability is the same

for all neighbours under the PI approach. Below we illustrate how this is not the case

under the DV approach and highlight how weights change as the utility function of

a DM changes (as measured by her ARA coefficient). Consider a setting consisting

of three DMs each with a Normally distributed belief over the mean of a Normally

distributed quantity, i.e., fi(θ) ∼ N(mi, s
2
i ) for i = 1, 2, 3 where R ∼ N(θ, 2). The prior

beliefs of DMs are in Table 7.1 as well as their utility functions and initial fortunes (γi).
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These functions are dependent upon the fortunes of DMs, i.e., γi is an argument of

ui(·). We comment on our Normality assumption. This is for simplicity with fortunes

augmented from γi to γi + r and utilities from ui(γi) to ui(γi + r). For a setting

involving, for instance, the Binomial distribution, additional rules must be specified to

relate returns witnessed to the new fortune of a DM.

Table 7.1: Opinions, initial fortunes, utility functions and ARAs of DMs.

Pi fi(θ) γi ui(γi + r) ARAi

P1 N(−2, 2) 10 (r + 10)2 − 1
r+10

P2 N(3, 3) 20 r + 20 0

P3 N(5, 2) 30 loge(r + 30) 1
r+30

Suppose r = 1.5 is observed. Initial equal weights were given (under the PI and DV

approaches). Once data has been seen weights are updated. Table 7.2 shows weights for

the PI method (common to all DMs) and those for each DM under the DV approach.

Table 7.2: The weights allocated by DMs under the PI and DV methods.

Plug-in P1 (Risk Prone) P2 (Risk Neutral) P3 (Risk Averse)

αi,1 0.189 0.297 0.231 0.214

αi,2 0.622 0.495 0.538 0.547

αi,3 0.189 0.208 0.231 0.239

The return witnessed was halfway between the respective mean predictions of P1

and P3 with both having common variances. We see that these DMs are given equal

weights under the PI approach and also by risk-neutral P2 (by Theorem 7.1) using the

DV method. Risk-prone P1 gives a higher weight to the DM with the lower prediction

while risk-averse P3 gives a higher weight to the DM with the higher prediction. Here

we see that all DMs agree on who the most reliable individual is (i.e., P2). Note that

DMs have assigned different weights under the DV method to under the PI method.

We examine how sensitive weights are to initial fortunes. Table 7.3 shows the weights

allocated when fortunes are doubled from those in Table 7.1. Identical ordinal reliability
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rankings hold but the cardinal values have changed.

Table 7.3: Weights allocated by DMs under the PI and DV methods with γi doubled.

Plug-in P1 (Risk Prone) P2 (Risk Neutral) P3 (Risk Averse)

αi,1 0.189 0.265 0.291 0.229

αi,2 0.622 0.516 0.418 0.535

αi,3 0.189 0.219 0.291 0.236

Also of interest is how weights change dependent on the extremity of a DM’s utility

function measured by ARA. We consider the situation above, changing the utility

function of P1 each time to make her progressively more risk-prone. We keep her

initial fortune fixed at 20 with results given in Table 7.4. We see changes in weights as

the exponent of u1(·) grows, i.e., as she becomes more risk-prone. The DM predicting

the higher return is given an increasingly small weight over time as the discrepancy

between her prediction (in terms of the utils of P1) and what occurs grows larger as u1(·)

grows more extreme. We see that the weights allocated by the DV method are heavily

influenced by utility functions. It would be an interesting exercise to rewrite the weights

assigned by a DM as a function of her ARA, a task that is possible because given the

ARA of a DM one can derive her utility function (up to a linear transformation) using

ordinary differential equations (e.g., Houlding, 2008).

Table 7.4: Changing u1(·), A1(r), and weights assigned by P1 for r = 1.5.

u1(20 + r) A1(r) α1,1 α1,2 α1,3

(r + 20)2 − 1
20+r

0.265 0.515 0.219

(r + 20)3 − 2
20+r

0.300 0.493 0.207

(r + 20)4 − 3
20+r

0.339 0.468 0.193

(r + 20)5 − 4
20+r

0.378 0.443 0.179

(r + 20)6 − 5
20+r

0.419 0.416 0.165
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7.1.3 Differing Viewpoints Metric

A simulation study justified the fully objective probability-based PI approach. Poste-

rior distributions were calculated and contrasted to those from alternative techniques,

i.e., the Equal Weights (EQ) and Most Reliable (MR) methods. We considered the

density that each distribution placed a posteriori on θ and declared the optimal method

as that maximising this. The DV method incorporates probability and utility. Hence

its justification should be based upon these two concepts. We discuss a suitable com-

parison metric and illustrate it in practice. A set of DMs make m decisions, seeing m

returns, and updating weights m times. Having done this, we consider the expected

utility values that are predicted by the various methods for the next epoch and contrast

these to the actual utility that would result from the true value of θ being witnessed.

Small discrepancies imply predictions are accurate as there is only a small difference

between reality and that DM’s projection of it. In practice DMs will never know the

true value of θ; it is only considered here in order to justify the DV approach. We

assume that returns are Normally distributed as discussed above. For our justification

methodology we suppose at each epoch DMs make decisions leading to a return being

witnessed (i.e., gambles) rather than ones leaving fortunes unchanged. This is done to

ensure that we need not determine which decision is optimal for DMs at each epoch,

as our goal in this exercise is not to guarantee good decision making but to validate

weights/estimates for various linear pooling methods.

Suppose we have three DMs, with interest in the mean θ of a Normal process with

R ∼ N(θ, 2) and θ = 5. Each Pi has a Normal prior over θ, i.e., fi(θ) ∼ N(mi, s
2
i ) as

well as has her own utility function ui(γi + r) and her fortune γi given in Table 7.5.

Table 7.5: DM information for example.

Pi fi(θ) γi ui(γi + r)

P1 N(−5, 4) 10 r + 10

P2 N(6, 3) 15 (r + 15)2

P3 N(11, 4) 20 exp( r+20
20

)

Using the DV method the weight that Pi assigns to Pk will often not be the same

as that which Pj allocates to Pk. Likewise all DMs need not agree on which neighbour

160



they consider most reliable (getting a weight of one under the MR method) as this is

based upon their own subjective utility functions. Unlike in the PI approach interest

is not solely in the means/variances resulting from various techniques and the contrast

between these and θ. Instead we are concerned with the expected utilities predicted

by DMs and the contrast between these and the true utility occurring. The severity

of this discrepancy for Pi is dependent on ui(γi + r). Hence to assess the accuracy of

distributions from the different methods we take utility into account and compare the

expected utility each of these methods would allocate at the next decision epoch, to

the utility that would occur from θ being witnessed. This is a strong indicator of the

merits of methods as on average realisations will tend towards θ.

The utility contrasts are provided in Table 7.6. We see for P1 that the DV method

leads to an expected utility only 0.438 utils away from the true utility she will experience

from θ occurring. Of the three pooling approaches it is the DV method that gives the

most accurate estimation for each DM. We see that for P1 and P2 that more accurate

estimation comes from the DV opinion rather than their own, while P3 in this instance

gets more accurate estimation from her own distribution. Hence here the DV method

is declared superior. For the individual problem it gives better estimation than over

half of individual distributions. In the group problem it gives better estimation than

the other two methods for all DMs.

Table 7.6: Absolute differences between expected utilities predicted by pooling meth-

ods (and DMs own distributions) and the true utility occurring from θ being witnessed,

respectively denoted by DVdiff, EQdiff, MRdiff and INDdiff.

Pi DVdiff EQdiff MRdiff INDdiff

P1 0.438 0.921 0.657 1.942

P2 35.06 65.10 47.00 47.00

P3 0.193 0.345 0.251 0.06

A simulation study can be conducted determining how results may vary with the

number of DMs in the group and/or returns witnessed. We have seen PI performance

growing stronger as more neighbours were involved/returns witnessed. Will the DV

approach be the same? How do initial fortunes impact upon weights and hence which
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method is superior? Perhaps of most interest is the relationship between success pro-

portions and the nature of the utility function of the user in terms of her ARA. Does it

provide more accurate estimation for DMs with a particular type of function? An intu-

ition is that the further utility functions deviate from risk neutrality the more accurate

estimation will become but this remains to be proved.

7.1.4 Contrasting the DV and PI approaches

We have discussed how the DV and PI methods generally produce different weights.

In the example below we calculate weights and resulting posterior distributions using

both approaches and compare performance under the probability-based metric used to

justify the PI approach and the utility-based metric used to justify the DV approach.

Suppose we have three DMs interested in θ with R ∼ N(θ, 2) and θ = 5, each having a

Normally distributed opinion which is given alongside their initial fortune and utility

function in Table 7.7. We see that P2 and P3 are risk prone, and that P1 is risk-averse

as she has quadratic utility but a negative fortune. We simulate two returns.

Table 7.7: DM information for DV/PI comparison.

Pi fi(θ) γi ui(γi + r)

P1 N(2, 3) −15 (r − 15)2

P2 N(7, 2) 20 (r + 20)3

P3 N(9, 2) 25 exp( r+25
20

)

Weights given by DMs are in Table 7.8. Under the DV approach risk-prone P2 and

P3 give similar respective weights to neighbours. The weights allocated by risk-averse

P1 contrast starkly. Interestingly the weights (commonly) given by the PI approach are

disparate from those under the DV method for each neighbour, e.g., all DMs consider

P2 the least reliable under the DV approach yet the PI approach considers her the most

reliable. Posterior distributions for DMs under the different methods are in Fig. 7.1,

with different DV posteriors for each DM as all DMs assign different weights. The PI

method places more density on the true value of θ than the DV posteriors of all DMs,

i.e., its performance is superior by the probability-based metric.

We contrast the expected utilities that would be predicted by the different posteriors
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Table 7.8: Weights allocated by DMs under the PI and DV methods.

Plug-in P1 (DV) P2 (DV) P3(DV)

αi,1 0.242 0.278 0.559 0.509

αi,2 0.622 0.271 0.191 0.209

αi,3 0.136 0.451 0.250 0.282

Fig. 7.1: Posteriors of the PI and DV approaches with a vertical line denoting θ.

to the utility that would occur from the true value of θ being realised, i.e., the metric

from Section 7.1.3. From Table 7.9, the PI method gives better estimation for P1

but the DV posteriors are better for P2 and P3. Hence as it provides more accurate

estimation for over half the DMs the DV method is deemed superior in this instance.

We have seen in this particular example that the PI approach gives more accu-

rate estimation under the probability-based metric while the DV approach gives more

accurate estimation under the utility-based metric. Hence which method is deemed su-

perior is a subjective decision based upon the prerogative of the user and if they wish

to use their utility function in their weighting calculations or not. Severely contrasting

weights are likely to occur dependent on which approach a user opts to implement.
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Table 7.9: The difference between the expected utility predicted by the DV/PI ap-

proaches and the true utility occurring from θ being witnessed for different DMs.

Pi DVdiff PIdiff

P1 4.103 3.06

P2 1128.38 2923.69

P3 0.157 0.291

7.2 Kullback-Leibler Approach

DMs will often be biased towards their own belief and hence may not wish to assign it

the same weight as those of their neighbours in Equation (3.5). They may be inclined

to give high weights to neighbours with beliefs akin to their own. We recall that

the KL divergence (Kullback & Leibler, 1951) introduced in Section 2.6.3 measured

the divergence of two probability distributions, with small values indicating similarity.

Hence a DM may want to give high weights to neighbours whose distribution returns

a low KL score with her own, and the contrary. As D(fi||fi) = 0 a participant must

choose αi,i to assign to her own distribution. This allows Pi to potentially fully discount

the beliefs of neighbours if she allocates αi,i = 1. Conversely if she has no confidence

in her own opinions she can set αi,i = 0. We propose Pi calculates D(fi||fj) for each

Pj, with j 6= i and then inverts these quantites. Hence if Pj has an opinion similar

to Pi then D(fi||fj) will be small, and hence its inverse will be large, indicating that

Pi considers her to be reliable. The converse also holds. Pi should then rescale these

values so weights sum to 1−αi,i. Hence higher weights are awarded to those DMs with

opinions similar to her own. Formally weights are given by

αi,j =

1
D(fi||fj)∑
j 6=i

1
D(fi||fj)

× (1− αi,i) for j 6= i (7.9)

Note if Pj has an identical distribution to Pi then Pi may increase her self-weight

accordingly, as this appears as evidence favouring her opinion. A decision is made,

an outcome observed, and each fi(θ) updated in light of this. The procedure is then

repeated with KL values calculated for the new opinions of DMs. Note that, by the

asymptotic behaviour of distributions discussed in Section 3.4 this will lead to each

DM assigning an equal weight to all her neighbours (not including herself) in the limit.
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Individuals may also reconsider the weight that they assign themselves, increasing it

if they believe themselves to be more accurate than they previously thought, and the

contrary. We mention three shortcomings of this approach. Firstly, the KL divergence

is not guaranteed to be symmetric (and hence does not meet the formal definition of a

distance metric) which could be viewed as undesirable. However in reality the judgment

of Pi regarding how similar the opinion of Pj is to her own, may not necessarily be the

same as the judgment of Pj regarding how similar the opinion of Pi is to her own. If the

user is concerned about asymmetry then alternative symmetric dissimilarity measures

could be used, e.g., total variation distance, variational distance or χ2 distance (Cover

& Thomas, 1991). Secondly the choice of αi,i is arbitrary for Pi. While this may appear

problematic it gives added subjectivity to the approach, allowing a DM to ignore the

opinions of neighbours or indicate her level of confidence in her own expertise. In a

non-competing setting, where negative decision consequences only affect the DM, this

stubbornness is acceptable. Finally issues arise if a DM has very little faith in her own

vague beliefs, and gives herself a low weight. Yet beliefs akin to hers will receive a high

weight, while those that are more confident will unintuitively, receive low weights.

We also comment that a DM could potentially initialise her weighting scheme by

the KL method and then use the PI method for the subsequent epochs i.e., initially

assigning weights in a subjective manner based on the similarity of the opinions of

neighbours with her own before proceeding in an objective manner once data has been

witnessed.

7.3 Comparing PI, DV and KL approaches

We briefly illustrate the differing results occurring from our three original methods. In

reality θ = 5. Suppose R ∼ N(θ, 2) with all DMs having Normally distributed priors

over θ. The PI and DV approaches initialise with the Laplacian Principle of Indifference

so, for the sake of comparison, we contrast the resulting posteriors after a single return

(r = 6) has been witnessed. Hence in Table 7.10 we include respective posterior

distributions over θ as well as utility functions, initial fortunes, and the weights that

DMs assign their own opinion under the KL method, denoting by αKL
i,i for Pi. P1 is

strongly convinced of the correctness of her opinion while P3 has little faith in her own
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opinion.

Table 7.10: DM information for DV/PI/KL comparison.

Pi fi(θ|r = 6) γi ui(γi + r) αKL
i,i

P1 N(5, 1.33) −15 (r − 15)2 0.8

P2 N(6.67, 0.67) 20 loge(r + 20) 1
3

P3 N(7.5, 1) 10 r + 10 0.2

The resulting posterior distributions for the various methods are given in Fig. 7.2.

We see, for instance that for P1 it is the KL approach that places the most density on

the true θ, i.e., listening heavily to her own opinion transpired to be a good idea as

her distribution transpired to be very accurate. In Fig. 7.3 we highlight the difference

in the weights allocated by the different DMs under the various techniques. We can

observe that in this instance the weights from the PI and DV approach appear to be

relatively similar with those allocated by the KL method are strongly contrasting to

these. We must recall that when comparing the performances of different approaches it

is important to use a metric that takes into account our aspirations, e.g., to maximise

posterior density or a utility-based measure.

7.4 Conclusions

In this section we have discussed two subjective methods of ascertaining reliability of

information sources. A detailed simulation study demonstrated the merits of the fully

objective PI approach. An aim for future research is to derive a similar justification for

the methods in this chapter, most notably the DV approach. The KL approach may

well yield poor results (in terms of utility) as it allows DMs to completely disregard

the opinions of neighbours if they choose to. We may think of this as “unlimited

subjectivity”. By contrast a DM using the DV approach may choose her utility function

but cannot impact further on the weights assigned. This “limited subjectivity” is likely

to yield a higher decision quality with objective information witnessed having a more

substantive effect on the weights. Finally we note that if Pi does have prior opinions

about the accuracy of herself and her neighbours she could subjectively assign these at

166



(a) (b)

(c)

Fig. 7.2: The posterior distributions for the three DMs respectively, founding using

the PI, DV and KL methods. We also include their individual (IND) posterior.

the first epoch (e.g., αi,1 = 0.5, αi,2 = 0.3, αi,3 = 0.2), rather than giving equal weights

as in Equation (3.5) and proceed using the PI method at all subsequent epochs.
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Fig. 7.3: The weights allocated by P1, P2 and P3 respectively (from left to right above)

to the opinions of their neighbours under the three different techniques considered, i.e.,

the PI, DV and KL approaches.
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Chapter 8

Summary and Further Research

In this thesis we have developed methods enabling DMs to amalgamate their opinion

with (potentially contrasting) opinions from a set of distinct information sources in a

fashion that was deemed coherent in some sense. Emphasis was placed on two types

of updating: that of the opinions of DMs, and that relating to the perceived accuracy

of the neighbours of a DM. In a parametric setting we derived the Plug-in approach.

Justifications were provided by attractive Bayesian and coherency properties it obeys,

as well as its performance on simulated and real data. We also weakened the need for

DMs to supply probability distributions by constructing an analogous framework with

uncertainty expressed by simple intervals. We discussed the PI approach in a group

decision context, combining it with a utility function that was an equally weighted

sum of (suitably rescaled) utility functions of DMs, and noted the relationship between

this method and the work of Arrow (1950). Finally we derived two alternative linear

opinion pooling methods that both entailed additional subjectivity. Recall the three

primary research aims discussed in Chapter 1. These have clearly been achieved over

the course of this thesis: we have derived an original decision making methodology that

remedied problems inherent within existing techniques, we provided justification for its

use in practical contexts using a mix of mathematical arguments and data studies, and

we have also provided several generalisations for our approach, increasing its flexibility

and hence its applicability.
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8.1 Social Networks

An interesting concept would be using the PI approach in a social network frame-

work, i.e., modelling information propagation through a social network. DMs would

have neighbours of varying degrees dependent upon their level of connectivity (friends,

friends-of-friends, etc.) and would have different levels of trust depending on the degree

of the neighbour who information was received from. This is an attractive concept,

applicable in various realistic settings. Two DMs are neighbours of degree d if they are

separated by a minimal series of d dyadic links, and Ni,d is the set of all neighbours of

Pi of degree d, e.g., in Fig. 8.1 we have N3,2 = {P1, P5}. This is akin to the standard

social network framework discussed in, for instance, Wasserman & Faust (1994). A

DM is a neighbour of degree zero with herself. Opinions of DMs are weighted by Pi

conditional on the degree to which they are neighbours. Those of degree d have their

opinions multiplicatively rescaled by βdi with 0 ≤ βi ≤ 1, i.e.,

f̂i(θ|·) = β0
i αi,ifi(θ|·) + β1

i

∑
j∈Ni,1

αi,jfj(θ|·) + . . .+ βmi
∑
j∈Ni,m

αi,jfj(θ|·) (8.1)

Weights in Equation (8.1) should be normalised, but we leave them in the above form

for ease of elucidation. The weights a DM allocates to neighbours are a combination of

their “basic weight” (found by the PI method) and their “social weight” (arising from

their proximity to the DM). There are two extreme cases: when βi = 1 (the DM has no

biases based on degree of separation) and when βi = 0 (the DM solely heeds her own

opinion). This process is subjective with smaller βi values indicating greater mistrust

by Pi for far removed information sources. This is a highly interesting research area

with plenty of scope for extension.

8.2 Sequential Problems

In Section 2.5 we touched upon sequential (non-myopic) decision making where DMs

must make decisions for multiple future epochs simultaneously without seeing corre-

sponding returns until the end of the process. Methods exist for a single DM involving

calculating conditional posterior distributions and “integrating out” uncertainty from

right to left using prior information. Fig. 8.2 gives a graphical interpretation of a

tree for a problem with two epochs and two potential decisions per epoch. We are
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P1 P5

P2 P4

P3

Fig. 8.1: Illustrative social network consisting of five DMs.

interesting in discovering how to solve sequential problems in the setting of this thesis

where DMs have numerous information sources, which greatly complicates the stan-

dard process. PI weights and the associated normalised weights are conditional upon

witnessed returns. Our derivation of the distribution of PI weights in Section 3.7 will

be required as without actually observing returns integrals must be solved. We consider

the polynomial utility class (Houlding et al., 2015), providing tractable solutions when

beliefs are Normally distributed and utility functions are polynomial (or polynomially

approximated via Taylor expansions). An aspiration for future work is to solve this

problem, increasing the applicability of our PI method. Note that a linear combina-

tion of polynomial utility functions is itself polynomial, which will be useful in a group

decision making context.

d1

R1 d2

d2

dA

dA

dB

dAdB

dB

R2

R2

R1

R2

R2

Fig. 8.2: Decision tree for a two-period sequential problem.
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8.3 Imprecision of Probabilities and Utilities

We previously discussed how imprecise probabilities allow DMs to more easily express

their unsureness in instances where they are not statistically literate, permitting ad-

ditional uncertainty in decision processes. Another common assumption is that DMs

can supply exact utility over possible decision returns, either via discrete values or a

continuous function. Yet DMs may often be uncertain of the merits associated with a

particular return that they are unfamiliar with, e.g., if they have only eaten octopus

once they may lack enough experience to place a precise utility value on the act of

doing so again. What if the chef that night had been particularly good/bad? They

may instead provide lower and upper utility bounds that they believe their true util-

ity (which will only be derived after multiple experiences) lies within. Note that this

subtly differs from NPUI (Houlding & Coolen, 2012) as we consider a DM witnessing

noisy realisations of a true utility rather than interpolating from utilities deemed sim-

ilar. We hope to develop a decision scheme incorporating both imprecise probability

(i.e., increased uncertainty over returns from decisions) and imprecise utility (i.e., in-

creased uncertainty about their associated merits). As discussed in Section 2.4.1 this

may lead to issues with determining a single decision as optimal, but non-optimal de-

cisions can be eliminated, and if a single decision is deemed maximal under all possible

configurations (of both beliefs and utilities) it is extremely robust.

8.4 R Package

The tabulated results and illustrative graphics produced throughout this thesis were

created using a collection of original R functions. For the PI approach we created func-

tions calculating distributions and weights under various distributional assumptions,

as well as determining if the method was superior to a set of alternatives using both

real and simulated data. Functions also calculated the theoretical probabilities of this

superiority occurring. In our NPPI setting we have routines taking into account our

various updating rules and determining superiority as defined in Section 6.7. Functions

for Differing Viewpoints calculations have also been written. An aim is to compile these

functions succinctly, ensuring internal consistencies, and creating an R package which

individuals who wish to apply the methods described in this thesis can utilise.
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8.5 Miscellaneous

We conclude with brief comments on some specific topics within which additional

investigation could be conducted.

• In the group decision context of Chapter 5 it was assumed that all DMs had

equal standing, i.e., flat hierarchy. Yet this may often not be the case, e.g.,

Karny & Kracik (2003). There may be different degrees of hierarchy inherent

within a group, i.e., a government consisting of a Party leader, ministers, junior

ministers, etc. All of these may have differing opinions and aspirations, with

those of more senior members given more consideration. Could the PI approach

be used in this setting with weights assigned in a manner akin to in Equation

(8.1)?

• Throughout this thesis we assumed that all DMs are interested in a common

θ, being neighbours as this parameter is inherent in all their respective decision

tasks. It would increase applicability if our method could be extended to incor-

porate DMs with correlated, but distinct, uncertainties within their problems,

i.e., θ1, . . . , θn. For example in a financial context there is an underlying market

behavour and different stocks (i.e., different values of θi) are correlated to differ-

ent degrees, i.e., we would imagine that shares in Vodafone and eMobile would

exhibit more similar behaviour than shares in Vodafone and Bayern Munich.

• The Differing Viewpoints approach entailed both probability and utility. It is

an aim to conduct a full scale simulation study assessing its merits. Doing this

was more straightforward in the objective PI approach, but when utility functions

must be factored into calculations complexity increases. A logical action would be

to find results for a set of DMs with utility functions expressing radically different

preferences, ensuring generality of results, and identifying if (for example) the

method gives better results for DMs with more extreme utility functions.

• Implicit in this thesis was the assumption that the parameter of interest θ is

a scalar, rather than a vector. An area of further investigation would be to

explicitly extend the methods presented to those applicable in vector settings,

considering the case where the elements of θ could be correlated with each other.
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This would require the utility function of a DM to become multi-attributed (e.g.,

Keeney & Raiffa, 1976).

• Suppose the methods discussed within this thesis were applied in an expert judg-

ment context. In realistic settings a DM would pay experts for providing their

opinions. It seems intuitive that the opinion of a highly accurate expert should

be considered more valuable than that of an inaccurate expert. This aligns with

the concept of value of information (Howard, 1966) which attempts to assign a

monetary value to additional information provided to a DM, often contrasting

her expected utility before and after receiving this opinion. There appears to be

a connection between this and the DV method which, in Equation (7.2), consid-

ered a quantity of this ilk. Further investigation could be conducted to examine

this relationship in depth and to use it to determine how a DM should divide a

fixed sum of money between a collection of domain-specific experts.
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Appendix A

Notation

Below we present the primary notation that is consistently used throughout this thesis.

In a setting with a single DM with a parametric opinion

• D - the set of admissible decisions.

• d1, . . . , dn ∈ D - a collection of n potential admissible decisions.

• d∗ ∈ D - the decision maximising expected utility.

• R - the set of potential decision returns.

• r1, , . . . , rk ∈ R - a collection of k possible decision returns.

• r∗, r∗ - the best and worst outcomes respectively in R.

• γ - the fortune of the DM.

• u(r) or u(γ+ r) - the utility function of the DM (which may involve her fortune).

• θ - some latent unknown parameter or event of interest.

• Θ - the set of possible states of nature.

• θ1, . . . , θm - a collection of m possible states of nature.

• f(θ) - the probability distribution of a DM over θ.
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In an information sharing setting where DMs have parametric opinions

• Pi - the ith DM.

• fi(θ) - the probability distribution of Pi over θ.

• f̂i(θ) - the probability distribution of Pi over θ after listening to neighbours.

• γi - the fortune of Pi.

• ui(r) or ui(γi + r) - the utility function of Pi (which may involve her fortune).

• wj - the Plug-in weight given to Pj (by all neighbours).

• vi,j - the Differing Viewpoints weight given by Pi to Pj.

• αi,j - the normalised weight given by Pi to Pj in f̂i(θ).

In a group decision setting with parametric opinions

• u∗i (r) - the utility function of Pi rescaled to the [0, 1] interval.

• u∗(r) - the combined utility function of the n DMs.

• f̂(θ) - the combined probability distribution of the n DMs.

• αi - the weight afforded by the group to Pi in f̂(θ).

In an information sharing setting where DMs have nonparametric opinions

• Et,i(θ) - the lower bound of the NPPI of Pi after t epochs.

• Ēt,i(θ) - the upper bound of the NPPI of Pi after t epochs.

• ∆t,i(θ) - the width of the NPPI of Pi after t epochs.

• Êt,i(θ) - the lower bound of the combined NPPI after t epochs.

• ˆ̄Et,i(θ) - the upper bound of the combined NPPI after t epochs.

• ∆̂t,i(θ) - the width of the combined NPPI after t epochs.
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Appendix B

Proofs

This appendix contains proof of several theorems stated in the main text of this thesis.

Proof of Statement in Section 2.6

We prove that a pairwise iterative sharing of distributions, as suggested by Karny &

Guy (2004), is not invariant to the order of sharing. For three DMs we consider two

different sharing orderings, observing different results in each case.

Ordering 1

• Stage 1 : P1 and P2 sharing.

f̂1(θ) = α1f1(θ) + (1− α1)f2(θ)

f̂2(θ) = α2f2(θ) + (1− α2)f1(θ)

• Stage 2 : P1 and P3 sharing.

f̂1(θ) = α1f̂1(θ) + (1− α1)f3(θ)

= α2
1f1(θ) + α1(1− α1)f2(θ) + (1− α1)f3(θ) (B.1)

f̂3(θ) = α3f3(θ) + (1− α3)f̂1(θ)

= α3f3(θ) + α1(1− α3)f1(θ) + (1− α3)(1− α1)f2(θ)

• Stage 3 : P2 and P3 sharing.

f̂2(θ) = α2f̂2(θ) + (1− α2)f̂3(θ)
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= f2(θ)
(
α2

2 + (1− α3)(1− α1)(1− α2)
)

+ f3(θ)
(
α3(1− α2)

)
+f1(θ)

(
α2(1− α2) + α1(1− α3)(1− α2)

)
(B.2)

f̂3(θ) = α3f̂3(θ) + (1− α3)f̂2(θ)

= f2(θ)
(
α3(1− α3)(1− α1) + α2(1− α3)

)
+f1(θ)

(
α1α3(1− α3) + (1− α3)(1− α2)

)
+ f3(θ)

(
α2

3

)
(B.3)

Ordering 2

• Stage 1 : P2 and P3 sharing.

f̂2(θ) = α2f2(θ) + (1− α2)f3(θ)

f̂3(θ) = α3f3(θ) + (1− α3)f2(θ)

• Stage 2 : P1 and P3 sharing.

f̂1(θ) = α1f1(θ) + (1− α1)f̂3(θ)

= α1f1(θ) + α3(1− α1)f3(θ) + (1− α1)(1− α3)f2(θ)

f̂3(θ) = α3f̂3(θ) + (1− α3)f1(θ)

= α2
3f3(θ) + α3(1− α3)f2(θ) + (1− α3)f1(θ) (B.4)

• Stage 3 : P2 and P3 sharing.

f̂1(θ) = α1f̂1(θ) + (1− α1)f̂2(θ)

= f1(θ)
(
α2

1

)
+ f2(θ)

(
α1(1− α1)(1− α3) + α2(1− α1)

)
+f3(θ)

(
α1α3(1− α1) + (1− α1)(1− α2)

)
(B.5)

f̂2(θ) = α2f̂2(θ) + (1− α2)f̂1(θ)

= f1(θ)
(
α1(1− α2)

)
+ f2(θ)

(
α2

2 + (1− α2)(1− α1)(1− α3)
)

+f3(θ)
(
α2(1− α2) + α3(1− α2)(1− α1)

)
(B.6)

Examining coefficients we see that Equation (B.1) is not equal to Equation (B.5),

that Equation (B.2) is not equal to Equation (B.6), and that Equation (B.3) is not

equal to Equation (B.4), i.e., the beliefs of P1, P2 and P3 respectively differ depending

on the order that they receive information from neighbours.
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Proof of Statement in Section 3.5

This is an inductive proof that for the PI approach f̂i(θ|·) is the same for i = 1, . . . , n

after seeing returns r1, . . . , rm. We denote by ri the ith return witnessed.

• Proof for m = 0: Having seen zero returns all DMs are assumed equally reliable,

i.e., αi,j = 1
n

for all i, j = 1, . . . , n. The combined belief of Pi will be the same for

each DM as they have all received the same distributions f1(θ), . . . , fn(θ), i.e.,

f̂i(θ) =
1

n
f1(θ) + . . .+

1

n
fn(θ) for all i = 1, . . . , n (B.7)

• Assumption for m = k: We assume, having seen k returns, that f̂i(θ|r1, . . . , rk)

is the same for all DMs, i.e., the combined identical belief for each Pi

f̂i(θ|r1, . . . , rk) = αi,1f1(θ|r1, . . . , rk) + . . .+ αi,nfn(θ|r1, . . . , rk) (B.8)

• Proof for m = k + 1. We assume distributions are identical after k returns.

Following the decision made at epoch k + 1, a return rk+1 is seen and the prob-

ability attached by each individual’s distribution to this outcome is calculated,

i.e., w1 = f1(R = rk+1|r1, . . . , rk), . . . , wn = fn(R = rk+1|r1, . . . , rk). These val-

ues yield the same results regardless of which DM performs the calculations, i.e.,

objectivity. Equation (3.11) is used to update weights, giving the combined dis-

tribution of Pi in Equation (B.9). This will be the same for all i = 1, . . . , n as the

weights are calculated in the same manner for all DMs and all participants have

been told the same updated distributions f1(θ|r1, . . . , rk), . . . , fn(θ|r1, . . . , rk).

Therefore, after k + 1 returns all DMs have identical combined beliefs, as re-

quired.

f̂i(θ|r1, . . . , rk+1) = α∗i,1f1(θ|r1, . . . , rk+1) + . . .+ α∗i,nfn(θ|r1, . . . , rk+1) (B.9)

Proof of Properties in Section 3.5

• Proof of Property 1: This follows trivially from the non-negativity of prior

predictive distributions. In addition wj will only be zero in the case of Pj placing

no probability density on the outcome that was observed occurring. Conversely,

if Pj places no probability density on the outcome that was observed occurring

then wj = 0.
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• Proof of Property 2: Given that αi,j < αi,k and wj < wk it is evident that

wjαi,j < wkαi,k. Division by the same positive (scaling) constant will not change

this inequality, giving us α∗i,j =
wjαi,j∑n
l=1 wlαi,l

<
wkαi,k∑n
l=1 wlαi,l

= α∗i,k.

• Proof of Property 3: This follows from the proof of Property 2 with inequalities

replaced by equalities.

• Proof of Property 4: Numerical examples illustrate proof of this proposition.

Suppose Pj and Pk are the only DMs in the process, with αi,j = 0.4 and αi,k = 0.6.

– If wj = 0.1 and wk = 0.05 we have α∗i,j = 0.571 and α∗i,k = 0.429, i.e.,

α∗i,j > α∗i,k.

– If wj = 0.3 and wi,k = 0.2 we have α∗i,j = 0.5 and α∗i,k = 0.5, i.e., α∗i,j = α∗i,k.

– If wj = 0.1 and wk = 0.02 we have α∗i,j = 0.769 and α∗i,k = 0.231, i.e.,

α∗i,j < α∗i,k.

Proof of Statement in Section 5.4

Suppose that we have two decision makers (P1 and P2) who must choose between m

distinct courses of action, d1, . . . , dm. Their expected utilities are given in Table B.1

with ai, bi ∈ [0, 1] for all i = 1, . . . ,m. If �1 and �2 both have a highest preference

for the same decision then there is no need for either DM to be a dictator, i.e., their

preference is automatically deemed most favourable in the group ranking. Hence we

assume that their highest preferences are for different decisions, or, more formally, that

arg maxd∈D E[u∗1(d)] 6= arg maxd∈D E[u∗2(d)].

Table B.1: Original Expected Utilities of P1, P2 and the Group (P ∗).

P1 P2 P ∗

E[u∗i (d1)] a1 b1
a1+b1

2

E[u∗i (d2)] a2 b2
a2+b2

2
...

...
...

...

E[u∗i (dm)] am bm
am+bm

2

Suppose without loss of generality that a1 > aj for all j = 2, . . . , n (i.e., the most

preferred decision for P1 is d1) and that arg maxd∈D E[u∗2(d)] 6= d1 (i.e., d1 is not the
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preferred decision of P2). We also suppose that arg maxd∈D E[u∗(d)] 6= d1, i.e., the

optimal decision for the group as a whole is not the preferred one (d1) of P1. For P1 to

be a dictator she must manipulate {a1, . . . , an} to ensure that arg maxd∈D E[u∗(d)] = d1.

If P1 sets {a1, . . . , an} so that a1 = 1 and aj = 0 for all j 6= 1, i.e., E[u∗1(d1)] = 1 and

E[u∗1(dj)] = 0 for all j 6= 1 then this leads to the following:

E[u∗(d1)] =
1 + b1

2
(B.10)

E[u∗(dj)] =
0 + bj

2
for all j 6= 1 (B.11)

We see that Equation (B.10) is greater than Equation (B.11) if b1 > 0. If b1 = 0 and

there is a j such that bj = 1 then this leads to a tie, i.e., the respective preferred

decisions of P1 and P2 will be equally preferred in the group ranking. Therefore we

see that, in a setting with two DMs, P1 will always be able to adjust her preferences

to ensure that her favoured decision is at least as favoured as all others in the group

ranking. Hence she can be seen as capable of being a dictator, as, by the symmetry

inherent within the problem, can P2. Hence a scenario with two DMs will always have

individuals capable of manipulability.

Proof of Properties for DV approach

Here we formally prove four coherency properties for the DV approach. These are

analogous to those proved for the PI approach, introduced in Section 3.5.

• Property 1: vi,j ≥ 0 for all i, j = 1, . . . , n with vi,j = 0 if and only if we have

ui(r) = Ei|j[ui(d∗)].

• Proof of Property 1: Non-negativity holds trivially from the non-negativity of

absolute values. We see that if vi,j = 0 then this implies |ui(r)−Ei|j[ui(d∗)]| = 0,

which only holds if ui(r) = Ei|j[ui(d∗)]. Conversely if ui(r) = Ei|j[ui(d∗)] then

|ui(r)− Ei|j[ui(d∗)]| = 0, i.e., vi,j = 0.

• Property 2: If αi,j < αi,k and vi,j > vi,k then α∗i,j < α∗i,k.

• Proof of Property 2: Given that αi,j < αi,k and wi,j > wi,k it is evident

that
αi,j
vi,j

<
αi,k
vi,k

. Division by a common positive scaling value will preserve this

inequality, i.e., α∗i,j =

αi,j
vi,j∑n
l=1

αi,l
vi,l

<

αi,k
vi,k∑n
l=1

αi,l
vi,l

= α∗i,k
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• Property 3: If αi,j = αi,k and vi,j = vi,k then α∗i,j = α∗i,k.

• Proof of Property 3: The follows from the proof of Property 2, with inequalities

being replaced by equalities.

• Property 4: If αi,j < αi,k and vi,j < vi,k then all of the following may occur, de-

pending on differences between initial weights, and updated reliability measures:

– α∗i,j < α∗i,k

– α∗i,j = α∗i,k

– α∗i,j > α∗i,k

• Proof of Property 4: Numerical examples illustrate the proof of this proposi-

tion. Suppose Pj and Pk are the only two DMs in the process, with αi,j = 0.4

and αi,k = 0.6. We can let i = j or i = k.

– If vi,j = 0.25 and vi,k = 0.3 then we have α∗i,j = 0.444 and α∗i,k = 0.556, i.e.,

α∗i,j < α∗i,k.

– If vi,j = 0.4 and vi,k = 0.6 then we have α∗i,j = 0.5 and α∗i,k = 0.5, i.e.,

α∗i,j = α∗i,k.

– If vi,j = 0.05 and vi,k = 0.1 then we have α∗i,j = 0.57 and α∗i,k = 0.43, i.e.,

α∗i,j > α∗i,k.
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Appendix C

Simulation Study Results

In Tables C.1-C.9 we include success proportions for the nine cases of the simulation

study in Section 4.2. For brevity we only include a subset in each instance, showing

results for initialisations with between two and ten DMs having witnessed between two

and five returns. The superior technique has its success proportion highlighted in each

instance. The behaviour of techniques is clear from the proportions below.

Table C.1: Success proportions: Normal overestimation in the group problem.

DMs Returns PI EQ MR DMs Returns PI EQ MR

2 2 0.1170 0.1458 0.7372 2 3 0.1902 0.1398 0.6700

3 2 0.2628 0.1308 0.6064 3 3 0.3038 0.1344 0.5618

4 2 0.3168 0.1320 0.5512 4 3 0.3636 0.1204 0.5160

5 2 0.3748 0.1348 0.4904 5 3 0.4072 0.1326 0.4602

6 2 0.3850 0.1356 0.4794 6 3 0.4324 0.1312 0.4364

7 2 0.4154 0.1238 0.4608 7 3 0.4388 0.1228 0.4384

8 2 0.4180 0.1360 0.4460 8 3 0.4656 0.1214 0.4130

9 2 0.4338 0.1276 0.4386 9 3 0.4824 0.1246 0.3930

10 2 0.4394 0.1312 0.4294 10 3 0.4838 0.1094 0.4068

2 4 0.2276 0.1470 0.6254 2 5 0.2640 0.1386 0.5974

3 4 0.3306 0.1298 0.5396 3 5 0.3476 01344 0.5180

4 4 0.3974 0.1344 0.4682 4 5 0.4158 0.1398 0.4444

5 4 0.4378 0.1212 0.4410 5 5 0.4324 0.1362 0.4314

6 4 0.4400 0.1228 0.4372 6 5 0.4610 0.1346 0.4044

7 4 0.4758 0.1264 0.3978 7 5 0.4856 0.1216 0.3928

8 4 0.4788 0.1300 0.3912 8 5 0.4966 0.1264 0.3770

9 4 0.4816 0.1326 0.3858 9 5 0.5120 0.1246 0.3634

10 4 0.4860 0.1280 0.3860 10 5 0.5088 0.1300 0.3612

In Tables C.10-C.18 we document success proportions for the PI approach in the

individual problem, highlighting cases where it is superior to individual distributions.
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Table C.2: Success proportions: Normal understimation in the group problem.

DMs Returns PI EQ MR DMs Returns PI EQ MR

2 2 0.1372 0.1992 0.6636 2 3 0.1818 0.1760 0.6422

3 2 0.2762 0.1680 0.5558 3 3 0.3284 0.1636 0.5088

4 2 0.3338 0.1754 0.4908 4 3 0.3772 0.1608 0.4620

5 2 0.3706 0.1624 0.4670 5 3 0.4142 0.1600 0.4258

6 2 0.3888 0.1582 0.4530 6 3 0.4190 0.1590 0.4220

7 2 0.3938 0.1646 0.4416 7 3 0.4410 0.1606 0.3984

8 2 0.4070 0.1672 0.4258 8 3 0.4392 0.1660 0.3948

9 2 0.4114 0.1654 0.4232 9 3 0.4586 0.1492 0.3922

10 2 0.4240 0.1674 0.4086 10 3 0.4680 0.1484 0.3836

2 4 0.2154 0.1708 0.6138 2 5 0.2444 0.1612 0.5864

3 4 0.3398 0.1608 0.4994 3 5 0.3622 0.1582 0.4826

4 4 0.3914 0.1574 0.4512 4 5 0.3958 0.1646 0.4396

5 4 0.4276 0.1530 0.4194 5 5 0.4300 0.1592 0.4108

6 4 0.4378 0.1550 0.4072 6 5 0.4470 0.1510 0.4020

7 4 0.4602 0.1540 0.3858 7 5 0.4726 0.1500 0.3774

8 4 0.4600 0.1532 0.3868 8 5 0.4726 0.1480 0.3764

9 4 0.4784 0.1564 0.3652 9 5 0.4794 0.1524 0.3682

10 4 0.4714 0.1602 0.3654 10 5 0.4966 0.1558 0.3476

Table C.3: Success proportions: Normal mean-centred in the group problem.

DMs Returns PI EQ MR DMs Returns PI EQ MR

2 2 0.1500 0.1774 0.6276 2 3 0.2086 0.1666 0.6248

3 2 0.2652 0.1600 0.5748 3 3 0.3266 0.1590 0.5144

4 2 0.3374 0.1606 0.5020 4 3 0.4028 0.1520 0.4452

5 2 0.4728 0.1510 0.4762 5 3 0.4410 0.1396 0.4164

6 2 0.4066 0.1466 0.4468 6 3 0.4620 0.1422 0.3958

7 2 0.4214 0.1474 0.4312 7 3 0.4822 0.1390 0.3788

8 2 0.4302 0.1450 0.4248 8 3 0.4858 0.1346 0.3796

9 2 0.4344 0.1354 0.4302 9 3 0.4846 0.1346 0.3808

10 2 0.4502 0.1334 0.4164 10 3 0.5004 0.1352 0.3644

2 4 0.2378 0.1522 0.6100 2 5 0.2734 0.1620 0.5646

3 4 0.3684 0.1530 0.4786 3 5 0.3788 0.1556 0.4656

4 4 0.4284 0.1530 0.4186 4 4 0.4402 0.1470 0.4128

5 4 0.4752 0.1434 0.3814 5 5 0.5058 0.1336 0.3606

6 4 0.4972 0.1376 0.3652 6 5 0.5130 0.1424 0.3446

7 4 0.5124 0.1370 0.3506 7 5 0.5442 0.1308 0.3250

8 4 0.5094 0.1400 0.3506 8 5 0.5402 0.1442 0.3156

9 4 0.5402 0.1262 0.3336 9 5 0.5522 0.1290 0.3188

10 4 0.5460 0.1292 0.3248 10 5 0.5602 0.1398 0.3000
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Table C.4: Success proportions: Poisson overestimation in the group problem.

DMs Returns PI EQ MR DMs Returns PI EQ MR

2 2 0.1260 0.2044 0.6696 2 3 0.1588 0.1796 0.6616

3 2 0.2648 0.1934 0.5418 3 3 0.3216 0.1676 0.5108

4 2 0.3302 0.1902 0.4796 4 3 0.3760 0.1776 0.4464

5 2 0.3726 0.1872 0.4402 5 3 0.4426 0.1786 0.3988

6 2 0.3808 0.1908 0.4284 6 3 0.4378 0.1718 0.3904

7 2 0.4000 0.1882 0.4118 7 3 0.4508 0.1784 0.3708

8 2 0.4130 0.1838 0.4032 8 3 0.4600 0.1708 0.3692

9 2 0.4328 0.1768 0.3904 9 3 0.4964 0.1710 0.3596

10 2 0.4208 0.1770 0.4022 10 3 0.4742 0.1638 0.3620

2 4 0.1964 0.1762 0.6724 2 5 0.2096 0.1696 0.6208

3 4 0.3466 0.1734 0.4800 3 5 0.3078 0.1654 0.4638

4 4 0.4026 0.1802 0.4172 4 5 0.4158 0.1724 0.4118

5 4 0.4384 0.1768 0.3848 5 5 0.4746 0.1752 0.3502

6 4 0.4724 0.1660 0.3616 6 5 0.4798 0.1724 0.3478

7 4 0.4858 0.1746 0.3234 7 5 0.5330 0.1620 0.3050

8 4 0.5020 0.1746 0.3234 8 5 0.5330 0.1620 0.3050

9 4 0.5000 0.1766 0.3234 9 5 0.5222 0.1694 0.3084

10 4 0.5148 0.1632 0.3220 10 5 0.5336 0.1540 0.3104

Table C.5: Success proportions: Poisson underestimation in the group problem.

DMs Returns PI EQ MR DMs Returns PI EQ MR

2 2 0.1456 0.2224 0.6320 2 3 0.2070 0.1996 0.5934

3 2 0.2722 0.2040 0.5238 3 3 0.3204 0.1892 0.4904

4 2 0.3272 0.2132 0.4596 4 3 0.3614 0.1908 0.4478

5 2 0.3454 0.2016 0.4530 5 3 0.3794 0.2070 0.4136

6 2 0.3728 0.1952 0.4320 6 3 0.4162 0.1886 0.3970

7 2 0.3798 0.1950 0.4252 7 3 0.4250 0.1976 0.3774

8 2 0.3844 0.2024 0.4132 8 3 0.4342 0.0.1802 0.3856

9 2 0.3894 0.2096 0.4090 9 3 0.4346 0.1920 0.3704

10 2 0.3922 0.2188 0.3890 10 3 0.4368 0.1970 0.3662

2 4 0.2372 0.1828 0.5800 2 5 0.2392 0.1946 0.5662

3 4 0.3290 0.1836 0.4874 3 5 0.3552 0.1808 0.4640

4 4 0.3780 0.1868 0.4352 4 5 0.3836 0.1918 0.4246

5 4 0.4170 0.1844 0.3986 5 5 0.4154 0.1828 0.4018

6 4 0.4238 0.1930 0.3832 6 5 0.4338 0.1962 0.3700

7 4 0.4538 0.1886 0.3576 7 5 0.4478 0.1864 0.3658

8 4 0.4538 0.1886 0.3576 8 5 0.4638 0.1920 0.3442

9 4 0.4556 0.2018 0.3426 9 5 0.4674 0.1938 0.3388

10 4 0.4700 0.1864 0.3436 10 5 0.4766 0.1950 0.3284
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Table C.6: Success proportions: Poisson mean-centred in the group problem.

DMs Returns PI EQ MR DMs Returns PI EQ MR

2 2 0.1578 0.2414 0.6008 2 3 0.1920 0.2168 0.5912

3 2 0.2740 0.2274 0.4986 3 3 0.3154 0.2182 0.4664

4 2 0.3366 0.2278 0.4356 4 3 0.3584 0.2108 0.4308

5 2 0.3682 0.2186 0.4132 5 3 0.4048 0.2066 0.3886

6 2 0.3862 0.2118 0.4020 6 3 0.4280 0.2050 0.3670

7 2 0.3928 0.2286 0.3786 7 3 0.4456 0.2078 0.3466

8 2 0.3880 0.2250 0.3870 8 3 0.4496 0.2038 0.3466

9 2 0.4140 0.2196 0.3664 9 3 0.4490 0.2120 0.3390

10 2 0.3998 0.2192 0.3810 10 3 0.4652 0.2038 0.3310

2 4 0.2242 0.2062 0.5696 2 5 0.2366 0.2080 0.5554

3 4 0.3408 0.2022 0.4570 3 5 0.3606 0.1922 0.4472

4 4 0.4080 0.2042 0.3878 4 5 0.4054 0.2014 0.3932

5 4 0.4160 0.2080 0.3760 5 5 0.4430 0.1938 0.3572

6 4 0.4600 0.1932 0.3468 6 5 0.4744 0.1924 0.3332

7 4 0.4680 0.1984 0.3356 7 5 0.4794 0.1930 0.3276

8 4 0.4762 0.2032 0.3206 8 5 0.4816 0.2034 0.3150

9 4 0.4852 0.1962 0.3186 9 5 0.4890 0.2146 0.2964

10 4 0.5000 0.1938 0.3062 10 5 0.5004 0.1992 0.3004

Table C.7: Success proportions: Binomial overestimation in the group problem.

DMs Returns PI EQ MR DMs Returns PI EQ MR

2 2 0.1760 0.1914 0.6326 2 3 0.2354 0.1820 0.5826

3 2 0.2594 0.1662 0.5744 3 3 0.3112 0.1540 0.5348

4 2 0.2850 0.1686 0.5464 4 3 0.3500 0.1552 0.4948

5 2 0.3230 0.1624 0.5146 5 3 0.3768 0.1528 0.4704

6 2 0.3150 0.1726 0.5124 6 3 0.3926 0.1512 0.4562

7 2 0.3288 0.1680 0.5032 7 3 0.3908 0.1608 0.4484

8 2 0.3328 0.1714 0.4958 8 3 0.4136 0.1574 0.4290

9 2 0.3326 0.1716 0.4958 9 3 0.4184 0.1744 0.4072

10 2 0.3320 0.1666 0.5014 10 3 0.4292 0.1586 0.4122

2 4 0.2656 0.1724 0.5620 2 5 0.2802 0.1762 0.5436

3 4 0.3406 0.1568 0.5026 3 5 0.3536 0.1622 0.4842

4 4 0.3872 0.1526 0.4602 4 5 0.4008 0.1582 0.4410

5 4 0.3990 0.1616 0.4394 5 5 0.4324 0.1782 0.3894

6 4 0.4118 0.1722 0.4160 6 5 0.4253 0.1804 0.3942

7 4 0.4262 0.1796 0.3942 7 5 0.4390 0.1744 0.3866

8 4 0.4400 0.1790 0.3810 8 5 0.4500 0.1848 0.3652

9 4 0.4390 0.1850 0.3760 9 5 0.4518 0.1878 0.3604

10 4 0.4400 0.1884 0.3716 10 5 0.4504 0.3536 0.3536
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Table C.8: Success proportions: Binomial underestimation in the group problem.

DMs Returns PI EQ MR DMs Returns PI EQ MR

2 2 0.1840 0.2622 0.5338 2 3 0.2212 0.2496 0.5292

3 2 0.2526 0.2628 0.4846 3 3 0.3026 0.2406 0.4568

4 2 0.2870 0.2452 0.4678 4 3 0.3440 0.2364 0.4196

5 2 0.3124 0.2510 0.4366 5 3 0.3614 0.2390 0.3990

6 2 0.3334 0.2540 0.4126 6 3 0.3748 0.2372 0.3880

7 2 0.3308 0.2524 0.4168 7 3 0.3860 0.2462 0.3678

8 2 0.3452 0.2548 0.4000 8 3 0.3874 0.2578 0.3548

9 2 0.3542 0.2542 0.3916 9 3 0.4074 0.2506 0.3420

10 2 0.3470 0.2528 0.4002 10 3 0.4140 0.2428 0.3778

2 4 0.2582 0.2396 0.5022 2 5 0.2526 0.2576 0.4898

3 4 0.3214 0.2420 0.4366 3 5 0.3312 0.2406 0.4282

4 4 0.3602 0.2452 0.3946 4 5 0.3720 0.2420 0.3860

5 4 0.3830 0.2422 0.3748 5 5 0.3832 0.2350 0.3818

6 4 0.3952 0.2382 0.3666 6 5 0.3956 0.2558 0.3486

7 4 0.4200 0.2502 0.3298 7 5 0.4256 0.2392 0.3352

8 4 0.4080 0.2550 0.3370 8 5 0.4328 0.2456 0.3216

9 4 0.4212 0.2598 0.3190 9 5 0.4286 0.2454 0.3260

10 4 0.4312 0.2504 0.3184 10 5 0.4402 0.2546 0.3052

Table C.9: Success proportions: Binomial mean-centred in the group problem.

DMs Returns PI EQ MR DMs Returns PI EQ MR

2 2 0.1748 0.3416 0.4836 2 3 0.2166 0.3102 0.4732

3 2 0.2458 0.3364 0.4178 3 3 0.2818 0.3092 0.4090

4 2 0.2804 0.3380 0.3816 4 3 0.3173 0.3032 0.3796

5 2 0.3126 0.3256 0.3618 5 3 0.3482 0.3180 0.3338

6 2 0.3226 0.3382 0.3392 6 3 0.3648 0.3070 0.3282

7 2 0.3244 0.3258 0.3498 7 3 0.3724 0.3062 0.3214

8 2 0.3456 0.3182 0.3362 8 3 0.3824 0.3130 0.3046

9 2 0.3554 0.3164 0.3282 9 3 0.4062 0.3090 0.2848

10 2 0.3770 0.2928 0.3302 10 3 0.4002 0.3238 0.2760

2 4 0.2380 0.2980 0.4640 2 5 0.2430 0.2870 0.4700

3 4 0.3058 0.2978 0.3964 3 5 0.3070 0.3008 0.3922

4 4 0.3386 0.2980 0.3634 4 5 0.3382 0.3016 0.3602

5 4 0.3788 0.2884 0.3228 5 5 0.3822 0.2968 0.3210

6 4 0.3798 0.2946 0.3256 6 5 0.4058 0.2976 0.2966

7 4 0.4158 0.2926 0.2916 7 5 0.3994 0.2898 0.3108

8 4 0.4270 0.2820 0.2910 8 5 0.4290 0.2856 0.2854

9 4 0.4430 0.2932 0.2638 9 5 0.4220 0.3094 0.2686

10 4 0.4440 0.2892 0.2668 10 5 0.4348 0.2918 0.2734
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Table C.10: Success proportions: Normal overestimation in the individual problem.

DMs Returns PI DMs Returns PI

2 2 0.5000 2 3 0.5000

3 2 0.8422 3 3 0.8272

4 2 0.8063 4 3 0.7929

5 2 0.8538 5 3 0.8250

6 2 0.8326 6 3 0.8069

7 2 0.8536 7 3 0.8268

8 2 0.8486 8 3 0.8195

9 2 0.8570 9 3 0.8226

10 2 0.8531 10 3 0.8165

2 4 0.5000 2 5 0.5000

3 4 0.8124 3 5 0.8068

4 4 0.7681 4 5 0.7697

5 4 0.8120 5 5 0.7918

6 4 0.7915 6 5 0.7794

7 4 0.8100 7 5 0.7908

8 4 0.8059 8 5 0.7802

9 4 0.8156 9 5 0.7842

10 4 0.7974 10 5 0.7838

Table C.11: Success proportions: Normal underestimation in the individual problem.

DMs Returns PI DMs Returns PI

2 2 0.5000 2 3 0.5000

3 2 0.7600 3 3 0.7546

4 2 0.7381 4 3 0.7187

5 2 0.7730 5 3 0.7560

6 2 0.7553 6 3 0.7408

7 2 0.7820 7 3 0.7720

8 2 0.7683 8 3 0.7496

9 2 0.7884 9 3 0.7684

10 2 0.7761 10 3 0.7578

2 4 0.5000 2 5 0.5000

3 4 0.7368 3 5 0.7290

4 4 0.7033 4 5 0.6929

5 4 0.7294 5 5 0.7270

6 4 0.7211 6 5 0.7082

7 4 0.7352 7 5 0.7270

8 4 0.7357 8 5 0.7151

9 4 0.7384 9 5 0.7406

10 4 0.7386 10 5 0.7236
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Table C.12: Success proportions: Normal mean-centred in the individual problem.

DMs Returns PI DMs Returns PI

2 2 0.5000 2 3 0.5000

3 2 0.8048 3 3 0.7922

4 2 0.7782 4 3 0.7552

5 2 0.8368 5 3 0.8130

6 2 0.8268 6 3 0.8060

7 2 0.8608 7 3 0.8344

8 2 0.8436 8 3 0.8227

9 2 0.8616 9 3 0.8426

10 2 0.8566 10 3 0.8450

2 4 0.5000 2 5 0.5000

3 4 0.7784 3 5 0.7722

4 4 0.7434 4 5 0.7401

5 4 0.7942 5 5 0.7754

6 4 0.7855 6 5 0.7637

7 4 0.8055 7 5 0.7966

8 4 0.8093 8 5 0.8008

9 4 0.8236 9 5 0.8244

10 4 0.8216 10 5 0.8078

Table C.13: Success proportions: Poisson overestimation in the individual problem.

DMs Returns PI DMs Returns PI

2 2 0.5000 2 3 0.5000

3 2 0.7622 3 3 0.7552

4 2 0.7365 4 3 0.7268

5 2 0.7972 5 3 0.7922

6 2 0.7814 6 3 0.7719

7 2 0.8316 7 3 0.8150

8 2 0.8139 8 3 0.8021

9 2 0.8470 9 3 0.8236

10 2 0.8281 10 3 0.8191

2 4 0.5000 2 5 0.5000

3 4 0.7550 3 5 0.7368

4 4 0.7195 4 5 0.7068

5 4 0.7688 5 5 0.7704

6 4 0.7642 6 5 0.7466

7 4 0.7940 7 5 0.7778

8 4 0.7833 8 5 0.7636

9 4 0.8110 9 5 0.7898

10 4 0.8006 10 5 0.7780
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Table C.14: Success proportions: Poisson underestimation in the individual problem.

DMs Returns PI DMs Returns PI

2 2 0.5000 2 3 0.5000

3 2 0.7102 3 3 0.6992

4 2 0.6522 4 3 0.6647

5 2 0.7122 5 3 0.7200

6 2 0.7074 6 3 0.6954

7 2 0.7358 7 3 0.7214

8 2 0.7200 8 3 0.7167

9 2 0.7514 9 3 0.7360

10 2 0.7445 10 3 0.7368

2 4 0.5000 2 5 0.5000

3 4 0.6902 3 5 0.6940

4 4 0.6577 4 5 0.6490

5 4 0.6974 5 5 0.8842

6 4 0.6830 6 5 0.6699

7 4 0.7122 7 5 0.7128

8 4 0.7000 8 5 0.6922

9 4 0.7238 9 5 0.7110

10 4 0.7278 10 5 0.6934

Table C.15: Success proportions: Poisson mean-centred in the individual problem.

DMs Returns PI DMs Returns PI

2 2 0.5000 2 3 0.5000

3 2 0.6704 3 3 0.6680

4 2 0.6310 4 3 0.6312

5 2 0.6940 5 3 0.6744

6 2 0.6734 6 3 0.6479

7 2 0.7008 7 3 0.6848

8 2 0.6963 8 3 0.6819

9 2 0.7114 9 3 0.6946

10 2 0.6994 10 3 0.6849

2 4 0.5000 2 5 0.5000

3 4 0.6460 3 5 0.6400

4 4 0.6191 4 5 0.6219

5 4 0.6646 5 5 0.6514

6 4 0.6447 6 5 0.6330

7 4 0.6586 7 5 0.6596

8 4 0.6596 8 5 0.6483

9 4 0.6836 9 5 0.6616

10 4 0.6670 10 5 0.6597
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Table C.16: Success proportions: Binomial overestimation in the individual problem.

DMs Returns PI DMs Returns PI

2 2 0.4889 2 3 0.4916

3 2 0.7066 3 3 0.7056

4 2 0.6783 4 3 0.6795

5 2 0.7636 5 3 0.7510

6 2 0.7342 6 3 0.7259

7 2 0.7898 7 3 0.7676

8 2 0.7750 8 3 0.7552

9 2 0.8024 9 3 0.7856

10 2 0.7830 10 3 0.7715

2 4 0.4871 2 5 0.4878

3 4 0.7008 3 5 0.6830

4 4 0.6668 4 5 0.6494

5 4 0.7366 5 5 0.7164

6 4 0.7131 6 5 0.7056

7 4 0.7540 7 5 0.7364

8 4 0.7301 8 5 0.7213

9 4 0.7696 9 5 0.7444

10 4 0.7520 10 5 0.7425

Table C.17: Success proportions: Binomial undestimation in the individual problem.

DMs Returns PI DMs Returns PI

2 2 0.4911 2 3 0.4914

3 2 0.5904 3 3 0.5864

4 2 0.5623 4 3 0.5609

5 2 0.5950 5 3 0.5880

6 2 0.5807 6 3 0.5679

7 2 0.5968 7 3 0.5990

8 2 0.5888 8 3 0.5910

9 2 0.6238 9 3 0.6200

10 2 0.6072 10 3 0.6029

2 4 0.4916 2 5 0.4941

3 4 0.5702 3 5 0.5608

4 4 0.5486 4 5 0.5443

5 4 0.5930 5 5 0.5764

6 4 0.5728 6 5 0.5547

7 4 0.6048 7 5 0.5832

8 4 0.5917 8 5 0.5728

9 4 0.6108 9 5 0.6168

10 4 0.6043 10 5 0.5896
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Table C.18: Success proportions: Binomial mean-centred in the individual problem.

DMs Returns PI DMs Returns PI

2 2 0.4952 2 3 0.4932

3 2 0.4510 3 3 0.4520

4 2 0.4543 4 3 0.4466

5 2 0.4270 5 3 0.4272

6 2 0.4295 6 3 9.4201

7 2 0.4034 7 3 0.4140

8 2 0.4173 8 3 0.4001

9 2 0.4000 9 3 0.3950

10 2 0.4007 10 3 0.4069

2 4 0.4924 2 5 0.4922

3 4 0.4596 3 5 0.4532

4 4 0.4561 4 5 0.4587

5 4 0.4254 5 5 0.4216

6 4 0.4282 6 5 0.4305

7 4 0.4100 7 5 0.4156

8 4 0.4075 8 5 0.4142

9 4 0.3942 9 5 0.3918

10 4 0.3987 10 5 0.3998
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Appendix D

Sample Code

Simulation Study Code

Here we provide an illustration of the code used in our group problem simulation study

in Section 4.2. Below is commented code for the function PlugIn.Group.

N<-Number of DMs

n<-Number of returns

true<-true value of theta

par1<-vector of first parameter of DMs priors

par2<-vector of second parameter of DMs priors

dist<-"binomial","normal" or "poisson"

plot<-"TRUE" or "FALSE" dependent on if graphs are required or not

x<-extra parameter (number of trials in binomial case, known variance in

normal case, omitted in poisson case).

PlugIn.Group<-function(N,n,true,par1,par2,dist,plot,x)

{

a<-matrix(NA,N,n+1) #matrix for "a" hyperparameter of distributions.

b<-matrix(NA,N,n+1) #matrix for "b" hyperparameter of distributions.

means<-matrix(NA,N,n+1) #mean matrix. (i,j) entry is mean of DM i at epoch j.

vars<-matrix(NA,N,n+1) #var matrix. (i,j) entry is var of DM i at epoch j.
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w<-matrix(NA,N,n+1) #matrix for PI weights with (i,j) as above.

w[,1]<-rep(0,N) #sets initial values equal to 0.

ualpha<-matrix(NA,N,n+1) #matrix for unnormalised weights. (i,j) as above.

alpha<-matrix(NA,N,n+1) #matrix for normalised weights. (i,j) as above.

alpha[,1]<-rep(1/N,N) #initial equal unnormalised weights.

ualpha[,1]<-rep(1/N,N) #initial equal normalised weights.

relalpha<-matrix(NA,N,n+1) #matrix of most reliable DMs

relalpha[,1]<-rep(1/N,N) #initial weights are equal

if (dist=="binomial"){ #learning in Binomial setting.

a[,1]<-par1 #inserts prior

b[,1]<-par2 #inserts prior

r<-rbinom(n,x,true) #simulates Binomial data

means[,1]<-a[,1]/(a[,1]+b[,1]) #initial means

vars[,1]<-(a[,1]*b[,1])/((a[,1]+b[,1])^2*(a[,1]+b[,1]+1)) #initial vars

for (j in 2:(n+1)){ #updates hyperparameters given data

a[,j]<-a[,j-1]+r[j-1]

b[,j]<-b[,j-1]+(x-r[j-1])}

for (j in 2:(n+1)){ #updates means and variances

means[,j]<-a[,j]/(a[,j]+b[,j])

vars[,j]<-(a[,j]*b[,j])/((a[,j]+b[,j])^2*(a[,j]+b[,j]+1))}

for (j in 2:(n+1)){#PI weights from predictive distribution

w[,j]<-exp((lgamma(x+1)+lgamma(a[,j-1]+b[,j-1])+lgamma(a[,j-1]+r[j-1])+

lgamma(b[,j-1]+x-r[j-1])-lgamma(x-r[j-1]+1)-lgamma(r[j-1]+1)-

lgamma(a[,j-1]) -lgamma(b[,j-1])-lgamma(a[,j-1]+b[,j-1]+x)))}}
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if (dist=="normal"){ #learning in Normal setting.

means[,1]<-par1 #inputs prior means

vars[,1]<-par2 #inputs prior variances

r<-rnorm(n,true,sqrt(x)) #simulates Normal data

for (j in 2:(n+1)){#updates posterior means and variances

means[,j]<-((means[,j-1]/vars[,j-1])+(r[j-1]/x))/((1/vars[,j-1])+(1/x))

vars[,j]<-1/((1/vars[,j-1])+(1/x))}

for (j in 2:(n+1)){#creates plug-in weights

w[,j]<-dnorm(r[j-1],means[,j-1],sqrt(x+vars[,j-1]))}

}

if (dist=="poisson"){ #learning in Poisson setting.

a[,1]<-par1 #inserts prior scale parameters.

b[,1]<-par2 #inserts prior shape parameter.

r<-rpois(n,true) #simulates Poisson data.

means[,1]<-b[,1]/a[,1] #calculates prior mean.

vars[,1]<-b[,1]/(a[,1]^2) #calculates prior variance.

for (j in 2:(n+1)){#data witnessed used to update shape and scale

a[,j]<-a[,j-1]+1

b[,j]<-b[,j-1]+r[j-1]}

means[,]<-b[,]/a[,] #updates means

vars[,]<-b[,]/(a[,]^2)#updates variances
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for (j in 2:(n+1)){#creates plug-in weights

w[,j]<-exp(b[,j-1]*log(a[,j-1])+lgamma(r[j-1]+b[,j-1])-lgamma(r[j-1]+1)

-lgamma(b[,j-1])-(r[j-1]+b[,j-1])*log(a[,j-1]+1))}

}

for (j in 2:(n+1)){ #updates unnormalised and normalised weights.

ualpha[,j]<-alpha[,j-1]*w[,j]

alpha[,j]<-ualpha[,j]/(sum(ualpha[,j]))}

#divides MR weight if multiple DMs have the same view

for (j in 2:(n+1)){for (i in 1:N){ ###1 to MR, 0 to others

ifelse(max(w[,j])==w[i,j],relalpha[i,j]<-1/length(w[,j][w[,j]==max(w[,j])]),

relalpha[i,j]<-0)}}

#means of the three methods

mean.PI<-sum(alpha[,n+1]*means[,n+1])

mean.EQ<-sum(rep(1/N,N)*means[,n+1])

mean.MR<-sum(relalpha[,n+1]*means[,n+1])

#variances of the three methods

var.PI.comp<-rep(NA,n)

var.PI.comp<-sum(alpha[,n+1]*(means[,n+1]^2+vars[,n+1]))

var.PI<-var.PI.comp-(mean.PI)^2

var.EQ.comp<-rep(NA,n)

var.EQ.comp<-sum(rep(1/N,N)*(means[,n+1]^2+vars[,n+1]))

var.EQ<-var.EQ.comp-(mean.EQ)^2

var.MR<-sum(relalpha[,n+1]*vars[,n+1])

w.methods<-rep(NA,3)

if(dist=="binomial"){

dens<-rep(NA,N)
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for (i in 1:N){

dens[i]<-dbeta(true,a[i,n+1],b[i,n+1])}}

if(dist=="normal"){

dens<-rep(NA,N)

for (i in 1:N){ # density each DM places on truth

dens[i]<-dnorm(true,means[i,n+1],sqrt(vars[i,n+1]))}}

if(dist=="poisson"){

dens<-rep(NA,N)

for (i in 1:N){

dens[i]<-dgamma(true,b[i,n+1],a[i,n+1])}}

w.methods[1]<-sum(alpha[,n+1]*dens) #PI density

w.methods[2]<-sum(rep(1/N,N)*dens) #EQ density

w.methods[3]<-sum(relalpha[,n+1]*dens) #MR density

#which method is best?

w.res<-ifelse(max(w.methods)==w.methods[1],0,

(ifelse(max(w.methods)==w.methods[2],1,2)))

if(plot=="TRUE"){

if(dist=="normal"){

#range considered

t<-seq(min(true,means[,n+1]-5*vars[,n+1]),max(true,means[,n+1]+5*vars[,n+1]),

length.out=1000)

#EQ densities

dens.t<-matrix(NA,N,length(t))

for (i in 1:N){

dens.t[i,]<-dnorm(t,means[i,n+1],sqrt(vars[i,n+1]))}
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#PI densities

dens.PI<-rep(NA,length(t))

for (i in 1:length(t)){

dens.PI[i]<-sum(alpha[,n+1]*dens.t[,i])

}

#MR

plot(t,dnorm(t,mean.MR,sqrt(var.MR)),type="l",col="green",lwd=3,

main="Different Densities",xlab="Theta", ylab="Prob(Theta)",

ylim=c(0,max(colMeans(dens.t),dens.PI,dnorm(t,mean.MR,sqrt(var.MR)))))

#EQ

lines(t,colMeans(dens.t),col="blue",lwd=3)

#PI

lines(t,dens.PI,col="red",lwd=3)

abline(v=true,lwd=3)

legend("topright",c("PI","EQ","MR","True"),lty=c(1,1,1,1),lwd=c(3,3,3,3),

col=c("green","blue","red","black"),cex=0.6)

}

if(dist=="binomial"){

#range considered

t<-seq(0,1,0.001)

#EQ densities

dens.t<-matrix(NA,N,length(t))

for (i in 1:N){

dens.t[i,]<-dbeta(t,a[i,n+1],b[i,n+1])}

#PI densities
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dens.PI<-rep(NA,length(t))

for (i in 1:length(t)){

dens.PI[i]<-sum(alpha[,n+1]*dens.t[,i])

}

#MR

plot(t,dbeta(t,sum(relalpha[,n+1]*a[,n+1]),sum(relalpha[,n+1]*b[,n+1])),

type="l", col="green",lwd=3,main="Different Densities",xlab="Theta",

ylab="Prob(Theta)", ylim=c(0,max(colMeans(dens.t),dens.PI,

dbeta(t,sum(relalpha[,n+1]*a[,n+1]),sum(relalpha[,n+1]*b[,n+1])))))

#EQ

lines(t,colMeans(dens.t),col="blue",lwd=3)

#PI

lines(t,dens.PI,col="red",lwd=3)

abline(v=true,lwd=3)

legend("topright",c("PI","EQ","MR","True"),lty=c(1,1,1,1),lwd=c(3,3,3,3),

col=c("red","blue","green","black"),cex=0.6)

}

if(dist=="poisson"){

#range considered

t<-seq(0,max(true,means[,n+1]+5*vars[,n+1]),length.out=1000)

#EQ densities

dens.t<-matrix(NA,N,length(t))

for (i in 1:N){

dens.t[i,]<-dgamma(t,b[i,n+1],a[i,n+1])}

#PI densities
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dens.PI<-rep(NA,length(t))

for (i in 1:length(t)){

dens.PI[i]<-sum(alpha[,n+1]*dens.t[,i])

}

#MR

plot(t,dgamma(t,sum(relalpha[,n+1]*b[,n+1]),sum(relalpha[,n+1]*a[,n+1])),

type="l",col="green", lwd=3,main="Different Densities",xlab="Theta",

ylab="Prob(Theta)",ylim=c(0,max(colMeans(dens.t),dens.PI,

dgamma(t,sum(relalpha[,n+1]*b[,n+1]),sum(relalpha[,n+1]*a[,n+1])))))

#EQ

lines(t,colMeans(dens.t),col="blue",lwd=3)

#PI

lines(t,dens.PI,col="red",lwd=3)

abline(v=true,lwd=3)

legend("topright",c("PI","EQ","MR","True"),lty=c(1,1,1,1),lwd=c(3,3,3,3),

col=c("green","blue","red","black"),cex=0.6)

}

}

#returns data frame of key attributes

dfa<-data.frame(c(mean.PI,mean.EQ,mean.MR),c(var.PI,var.EQ,var.MR),

c(true,rep("",2)),c(w.methods),c(w.res,rep("",2)))

rownames(dfa)<-c("PI","EQ","MR")

colnames(dfa)<-c("Means","Variances","True","Density","Winner")

dfa

}
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Real Data Study Code

We also provide commented code used for our real data study in the group problem in

Section 4.4.

data<-the name of the data set of interest, e.g., "A_SEED".

k<-the associated variance scaling parameter.

PlugInCooke<-function(data,k)

{

#data sets for expert opinions and real values respectively

data.experts<-read.csv(paste("~/Documents/Statistics/Orginial/Third Year/

Cooke/DATA/",data,".EXPERTS.csv",sep=""),header=TRUE)

data.real<-read.csv(paste("~/Documents/Statistics/Orginial/Third Year/

Cooke/DATA/",data,".REAL.csv",sep=""),header=TRUE)

#number of experts and seeds respectively

n<-dim(data.experts)[1]/dim(data.real)[1]

m<-dim(data.real)[1]

#matrices for means and sds for DMs distributions, as discussed in thesis.

means<-matrix(NA,n,m)

sdevs<-matrix(NA,n,m)

for (i in 1:m){

means[,i]<-data.experts[c(0:(n-1))*m+i,6]}

for (i in 1:m){

for (j in 1:n){

sdevs[j,i]<-min((data.experts[(c(0:(n-1))*m+i)[j],7]-

data.experts[(c(0:(n-1))*m+i)[j],6])/1.645,

(data.experts[(c(0:(n-1))*m+i)[j],6]-

data.experts[(c(0:(n-1))*m+i)[j],5])/1.645)}}
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#associated variance - function of k

sigsq<-abs(data.real[,3])/k

#PI weights. Initialised at zero. (i,j) entry is weight i^th DM

#associates with j^th seed (in original ordering).

w<-matrix(NA,n,m+1)

for (i in 1:n){w[i,1]<-0}

for (i in 1:n){

for (j in 2:(m+1)){

w[i,j]<-dnorm(data.real[j-1,3],means[i,j-1],sqrt(sigsq[j-1]+sdevs[i,j-1]^2))}}

#vector for storing optimal method for last seed for each permutations

last.seed<-rep(NA,m*(m-1))

#determines the m(m-1) permutations

grid<-expand.grid(c(1:m),c(1:m))

omit<-which(grid[,1]==grid[,2],)

grid<-grid[-omit,]

#measures which method is best for each permutation in turn

for (q in 1:(m*(m-1)))

{

#chooses q^th permutation and permutes relevant quantities

perm<-c(c(1:m)[-as.numeric(grid[q,])],as.numeric(grid[q,]))

means.new<-means[,perm]

sdevs.new<-sdevs[,perm]

data.real.new<-data.real[perm,]

sigsq.new<-sigsq[perm]

w.new<-w[,c(1,(perm+1))]

#matrices of unnormalised and normalised weights, initialised

#as equal. (i,j) entry is weight for i^th DM after seeing j seeds.
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ualpha<-matrix(NA,n,m+1)

alpha<-matrix(NA,n,m+1)

for (i in 1:n){alpha[i,1]<-1/n}

for (i in 1:n){ualpha[i,1]<-1/n}

#matrix for which DM is deemed most reliable. Initialised with

#equal weights. (i,j) entry is 1 if i^th DM maximises PI weight

#after seeing (j-1) returns, 0 if not.

relalpha<-matrix(NA,n,m)

relalpha[,1]<-rep(1/n,n)

#updates weights over time.

for (j in 2:(m+1)){

for (i in 1:n){

for (k in 1:n){

ualpha[k,j]<-alpha[k,j-1]*w.new[k,j]}

alpha[i,j]<-ualpha[i,j]/(sum(ualpha[,j]))}}

#determines which DM is most reliable at each epoch,

#allowing for potential ties.

for (j in 2:m){for (i in 1:n){

ifelse(max(w.new[,j])==w.new[i,j],relalpha[i,j]<-1/

length(w.new[,j][w.new[,j]==max(w.new[,j])]),relalpha[i,j]<-0)}}

#the density each DM places on the true value of each seed.

dens<-matrix(NA,n,m)

for (i in 1:n){

for (j in 1:m){

dens[i,j]<-dnorm(data.real.new[j,3],means.new[i,j],sdevs.new[i,j])}}

#the density placed by each method in turn on true value.

w.methods<-matrix(NA,3,m)
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for (j in 1:m){

w.methods[1,j]<-sum(alpha[,j]*dens[,j]) #PI density

w.methods[2,j]<-sum(rep(1/n,n)*dens[,j]) #EQ density

w.methods[3,j]<-sum(relalpha[,j]*dens[,j]) #MR density

}

#determines which method is optimal for each seed. By equal

#weights all methods are equal for first seed. Hence i^th entry

is which method is best for seed i+1. 0 denotes PI, 1 denotes

#EQ and 2 denotes MR.

res.methods<-rep(NA,m-1)

for (i in 2:m){

ifelse(max(w.methods[,i])==w.methods[1,i],res.methods[i-1]<-0,

ifelse(max(w.methods[,i])==w.methods[2,i],res.methods[i-1]<-1,

res.methods[i-1]<-2))}

#notes which method is optimal for final seed for this permutation

last.seed[q]<-res.methods[m-1]

}

#aggregates results over the m(m-1) permutations and

#prints results

last.scores<-c(sum(last.seed==0),sum(last.seed==1),

sum(last.seed==2))/(m*(m-1))

last.scores

}
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Appendix E

Theoretical Calculations

In Section 4.3.1 we derived the theoretical calculations underlying the true probability

of the PI approach being dominant over a set of alternatives, with simulated propor-

tions approximating this true probability as the number of simulations increases. We

provided calculations for the Beta-Binomial case in the main text of this thesis. Below

we supply similar calculations for the Poisson-Gamma and Normal-Normal cases.

Poisson-Gamma conjugacy

Here θ is a rate parameter over a unit of time. Each Pi has a Gamma prior over θ:

fi(θ) =
αβii

Γ(βi)
θβi−1e−αiθ with θ ∈ (0,∞) (E.1)

Returns follow a Poisson distribution, with the probability of a particular r being

f(R = r|θ) =
θr

r!
e−θ with r = 0, 1, . . . (E.2)

When R ∼ Bin(m, θ) there was a finite amount of returns witnessable per epoch,

yet the Poisson distribution can produce a (countably) infinite number of potential

returns. To ensure computability we assume that there is a finite upper bound u with

P(R > u|θ) < ε where ε is small. The hyperparameters of Pi after k returns are

α
(k)
i = αi + k (E.3)

β
(k)
i = βi +

k∑
j=1

rj (E.4)

We write ui,t as

ui,t =
1

n

t∏
k=1

Γ(r + β
(k−1)
i )

Γ(rk + 1)Γ(β
(k−1)
i )

(α
(k−1)
i )

β
(k−1)
i

(α
(k−1)
i + 1)rk+β

(k−1)
i

(E.5)
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The probability of return set {r1, . . . , rt} is a product of Poisson distributions, i.e.,

f(R1 = r1, . . . , Rt = rt|θ) =
t∏

k=1

θrk

rk!
e−θ (E.6)

The normalised weight given to Pi after t returns is

γi,t =

1
n

∏t
k=1
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i )
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(E.7)

The weights in Equation (E.7) are combined with the distributions in Equation (E.1),

with hyperparameters updated as in Equations (E.3) and (E.4), yielding a PI posterior

distribution after t returns of

f̂PIt (θ|r1, . . . , rt) =
n∑
z=1

[ ∏t
k=1

Γ(r+β
(k−1)
z )

Γ(rk+1)Γ(β
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z )

(α
(k−1)
z )

β
(k−1)
z

(α
(k−1)
z +1)rk+β

(k−1)
z∑n

j=1

∏t
k=1

Γ(r+β
(k−1)
j )

Γ(rk+1)Γ(β
(k−1)
j )

(α
(k−1)
j )

β
(k−1)
j

(α
(k−1)
j +1)

rk+β
(k−1)
j

×

(α
(t)
z )

β
(t)
z

Γ(β
(t)
z )

θβ
(t)
z −1e−α

(t)
z θ
]

(E.8)

We can proceed in a manner analogous to that from the Beta-Binomial case. We

demonstrate convergence. Suppose we have R ∼ Pois(θ) with θ = 2 and three DMs

with respective prior distributions of f1(θ) ∼ Gamma(1, 3), f2(θ) ∼ Gamma(7, 2),

f3(θ) ∼ Gamma(2, 2) and ε = 0.001. After four returns have been witnessed the true

success probability is 0.962. We simulated 5,000 process iterations and recorded the

success proportion at each stage. We see in Fig. E.1 that convergence is clear.

The EQ posterior is a special case of Equation (E.8), i.e.,

f̂EQt (θ|r1, . . . , rt) =
n∑
z=1

[ 1

n
× (α

(t)
z )

β
(t)
z

Γ(β
(t)
z )

θβ
(t)
z −1e−α

(t)
z θ
]

=
1

n
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[(α
(t)
z )

β
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z

Γ(β
(t)
z )

θβ
(t)
z −1e−α

(t)
z θ
]

(E.9)
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Fig. E.1: Success proportions/the true probability in a Poisson-Gamma case.

The MR posterior requires calculation of the indicators, IMR
z,x , leading to

f̂MR
t (θ|rx) =

n∑
z=1

IMR
z,x ×

(α
(t)
z )

β
(t)
z

Γ(β
(t)
z )

θβ
(t)
z −1e−α

(t)
z θ (E.10)

We proceed as in the Beta-Binomial case to find which method is superior. Convergence

(using the example previously considered) is shown in Fig. E.2, with the PI method

being superior in this case.

Normal-Normal conjugacy

Here θ is the mean of a Normally distributed process with known variance σ2. The

prior of each Pi over θ is Normally distributed with mean mi and variance s2
i , i.e.,

fi(θ) =
1√
2πs2

i

exp
(
− (θ −mi)

2

2s2
i

)
(E.11)

Returns are realisations of a continuous Normal random variable. In the Beta-Binomial

case there were (m+1) possible returns per epoch, and in the Poisson-Gamma case we

restricted there to be only (u+ 1) possibilities with u chosen so that the probability of

seeing a return exceeding this was negligibly small. However, as the Normal distribution
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Fig. E.2: Success proportions/the true probability in a Poisson-Gamma case.

is continuous the probability of seeing any particular value is zero (i.e., an uncountably

infinite amount of potential returns). We introduce discretisation and suppose that

r ∈ [a1, . . . , am], i.e., that there are m possibly returns that are equally spaced apart

(aq − aq−1 = d for all q = 2, . . . ,m with aq−1 < aq for all q = 2, . . . ,m). Clearly the

smaller d is/the bigger m is, the less coarse the method is. We have a trade-off between

accuracy of results and computational ability. The set of considered returns is centred

on θ, i.e., am+1
2

= θ if m is odd, and
am

2
+am

2 +1

2
= θ if not. Values should be chosen so

that returns below a1 or above am have negligibly small probability of occurring. We

find the probability of seeing any value ai by integrating over the Normal distribution

within a range of d
2

either side of ai, i.e.,

f(R = ai|θ) =

∫ ai+
d
2

ai− d2

1√
2πσ2

exp
(
− (ai − θ)2

2σ2

)
dθ (E.12)

This integral must be numerically solved as no closed form solution exists. The poste-

rior hyperparameters of Pi, m
(k)
i and s

(k)
i , after k returns are

m
(k)
i =

mi
s2i

+
∑k
j=1 rj

σ2

1
s2i

+ k
σ2

(E.13)
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s
(k)
i =

√
1

1
s2i

+ k
σ2

(E.14)

We can write ui,t as

ui,t =
1

n

t∏
k=1

1√
2π(σ2 + (s

(k−1)
i )2)

exp
(
− (rk −m(k−1)

i )2

2(σ2 + (s
(k−1)
i )2)

)
(E.15)

The probability of seeing returns {r1, . . . , rt} is a product of Normal distributions:

f(R1 = r1, . . . , Rt = rt|θ) =
t∏

k=1

∫ rk+ d
2

rk− d2

1√
2πσ2

exp
(
− (rk − θ)2

2σ2

)
(E.16)

The normalised weight afforded to Pi after t sets of returns is

γi,t =

1
n

∏t
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) (E.17)

The weights in Equation (E.17) are combined with the Normal distributions in Equa-

tion (E.11), with hyperparameters updated as in Equations (E.13) and (E.14), yielding

a PI posterior distribution after t returns of

f̂PIt (θ) =
n∑
z=1

[ ∏t
k=1

1√
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(E.18)

We proceed as previously outlined to determine the probability that the PI approach

is superior. We demonstrate convergence where R ∼ N(θ, 1) with θ = 0. Suppose

there are three DMs with f1(θ) ∼ N(−1, 1), f2(θ) ∼ N(4, 4), f3(θ) ∼ N(5, 3). After

two returns have been observed the true success probability is 0.549. We discretised

the return space somewhat coarsely (m = 50 leading to d = 0.122) and simulated 5,000

process iterations (as in Fig. E.3) with convergence again being evident.

In the group problem the EQ posterior is a special case of Equation (E.18), i.e.,

f̂EQt (θ|r1, . . . , rt) =
n∑
z=1

[ 1

n
× 1√

2π(s
(t)
z )2

exp
(
− (θ −m(t)

z )2

2(s
(t)
z )2

)]
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Fig. E.3: Success proportions/the true probability in a Normal-Normal case.
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(E.19)

The MR posterior requires calculation of the indicators, IMR
z,x , leading to

f̂MR
t (θ|rx) =

n∑
z=1

IMR
z,x ×

1√
2π(s

(t)
z )2

exp
(
− (θ −m(t)

z )2

2(s
(t)
z )2

)
(E.20)

We proceed as before to find which method is superior. Convergence is illustrated in

Fig. E.4. The MR method is optimal in this case.
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Fig. E.4: Success proportions/the true probability in a Normal-Normal case.
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Appendix F

DV for Multiple Simultaneous

Returns

In Section 3.8 we discussed how the PI approach could be extended from a setting

where it was assumed that all DMs witnessed a common return at each epoch (e.g.,

a stock price or a particular horse winning a race) to one in which all DMs observed

distinct returns. This more complex environment, entailing multiple simultaneous

returns, increased the applicability of this technique and further differentiated it from

the classical setting of Cooke (1991). Here we construct an analogous extension for the

DV approach derived in Section 7.1.

Each DM should update their opinion in light of all the information witnessed as

in Equations (3.30) and (3.31), leading to an augmented belief of the form given in

Equation (3.33). Our topic of interest regards how DV weights should be calculated

given multiple returns. Using notation from Section 3.8, how should Pi, with utility

function ui(r), calculate an analogy of the DV weight in Equation (7.2) given the

stream of decisions d1 and corresponding returns r1 at the first epoch? We propose

that this be done by pairwise summation across all sets of returns observed, i.e.,

vi,j =
n∑
k=1

|ui(r1,j)− Ei|j[ui(d1,k)| (F.1)

This involves consideration of all available information, with a DM comparing the

predictions given by the information source to the outcomes resulting from the various

decisions made by neighbours and contrasting these with the corresponding returns. If

a DM calculated weights simply using Equation (7.2), i.e., the return she witnessed,
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then she is ignoring the rest of the data she has access to. Her neighbour may appear

very accurate but this may be a result of the outcome witnessed by the DM being a

“fluke”, i.e., one with a probability of occurring that is in the tails of the true data

generating mechanism. If this was the case, and Equation (F.1) was used the neighbour

would score poorly for the other (more likely) returns witnessed, and hence receive a

low weight. Note that if a DM makes a “trivial” decision (i.e., one leading to no

relevant return being witnessed, such as a decision to not enter a transaction) then this

is not considered in the summation in Equation (F.1).
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