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Summary 

The paradigm of Software Defined Networking can have significant beneficial impacts on 

the provision of traditional Telecommunications services, but there is a possibility that 

networks may be oversimplified by removing hidden but important components. 

We evaluate the impacts of applying Software Defined Network principles to constraints 

that have been built in, over time, into traditional Telecommunications networks. 

We adopt a two stranded approach. The first strand evaluates the interaction between a 

state of the art control plane and a converged network (Long reach PON) architecture, 

through the application of a number of typical but important scenarios. The first strand 

gathers data from physical testbeds that were constructed specifically for the experiments. 

The second strand evaluates innovation in the Layer 2 data plane, made possible by the 

application of SDN principles, again through the application of a number of typical 

scenarios.  The second strand relies on a mix of simulation, predominantly, and physical 

experimentation.  

To evaluate the effect of SDN on the converged network architecture, we construct a 

number of testbeds involving substantial state-of-the-art components that create an end-to-

end telecommunications network. A number of testbeds are used that facilitate different 

technological aspects of the network, as well as the skillsets of the centres involved. The 

complexity of the testbeds and their integrations developed over time to reflect the 

availability of components. The experiments that were execute involved the performance 

and capability in the provisioning of high capacity bandwidth, as well as the speed of failover 

of network paths across a wide area, that is both on the scale of a National Network as well 

as a Continental Network. The experiments are executed a number of times, to understand 

any underlying artefacts in the interaction between the control plane and the data plane. 

The Protection use case exemplifies how path integrity in the Core and TDM-DWDM LR-

PON based Access Metro network of a Telecommunications network can be assured 

through logical protection. The protection experiment demonstrated a dual-homed LR-PON 

protection mechanism where backup OLTs are shared among PONs in an N:1 scheme and 

the service restoration is provided over an end-to-end Software Defined Network. The DWA 

use case exemplifies how capacity constraints in one PON channel may be overcome by 

re-allocating dynamically one or more end user ONUs to a different channel in order to 

assure quality of service. This could also be used for the opportunistic provision of high 

bandwidth services (on-demand video and big data transfers), to specific PON users on a 

dynamic basic. 

To evaluate the Data Plane architecture aspects, we propose and model a design for a flat 

Telecommunications architecture that is theoretically more scalable and efficient when 

compared to traditional architectures. This architecture is called FLATLANd (short for Flat 

Layer Two Telecommunications Network). The proposed structure provides a number of 
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benefits. Firstly, the architecture is strictly flat and conducts all traffic at a single layer – that 

is layer 2 without the use of tunnelling, VPN nor labels. Secondly, the architecture is 

inherently Open Access in that no one network nor service provider dominates over the 

others, as is the case in traditional wholesale and retail models for broadband access 

networks. Thirdly, the addressing is extremely scalable and granular, accommodating many 

terminating nodes as well as service types.  Rather than preserving legacy devices such as 

B-RAS in their physical or virtual form, we re-architect the entire network from first principles. 

We target in particular next generation optical broadband networks, and take into 

consideration the convergence of access and metro networks, using the Long-Reach PON 

(LR-PON) architecture.  
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Chapter 1 Introduction 

1.1  Background to the research 

Telecommunications networks have been slow to adapt to meet the needs of high speed 

ubiquitous communication services. Telecommunications networks were originally 

commissioned in the first decades of the 20th century to provide POTS services (Plain Old 

Telephone Service).  They comprised of large copper based cable networks extending from 

customer premises to local exchange buildings, where phone calls were switched through 

a hierarchy of national and international network transmission lines until they connected 

with their intended destination. Original switching equipment was mechanical and required 

significant building accommodation close to population centres, making the operation and 

ownership of the Telephony network and its assets significant responsibilities. In most 

countries, there was only one Telephone company, which operated as part of the function 

of the state, prohibiting other companies from providing telecommunications services.  

Much of the architectural topology and network layers (Figure 1) has remained unchanged 

for many years.  Typically, there is an Access Network which provides geographical reach, 

so all customers can have a network termination. The Access Network typically comprises 

the copper cable in the ground, which is costly to maintain and replace. The Metro Network 

concentrates traffic, so network traffic can be handled more efficiently. There can also be 

capabilities in the Metro Network to switch or redirect traffic between customers located off 

the same network portion.   Typically, there might be a number of Metro Nodes in large 

geographical regions, towns and cities. The Core Network is at the top of the 

Telecommunications network hierarchy. It is here that there is the highest level of traffic 

concentration and requirement for network resilience and redundancy.  
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Figure 1 - Today’s FTTH telecommunications architecture 
 

The adoption of new technologies such as Fibre Optics has been most pronounced in the 

core network, since this is where there is most competition between incumbent (divested) 

telecommunication providers such as BT, France Telecom, Eircom, and wholly commercial 

companies such as Amazon, Google and Facebook. Unfortunately, migration to fibre optic 

has been slower in the access because there is more regulation and less competition.  With 

less competition, there is less incentive for network operators to provide equivalent services 

such as high speed broadband, to both urban and rural customers.  

With the advent of rudimentary data services such as public packet data service, a 

dedicated network was either built separately or over-laid on top of the existing telephony 

infrastructure. The building of a separate network made services expensive and thus not 

attractive to customers, while over-lay networks reinforced the existing sub-optimal 

architecture and topology. Newer services such as broadband access, Internet and GSM 

have been over-laid on existing telecommunications networks. Each service has required 

its own network components and management system, typically from different vendors.  

Different access and metro components, for telephone, broadband, IP (Internet Protocol) 

and GSM , serving similar customer or service groupings are split geographically, leading 

to inefficiencies.  With each horizontal hop and with each vertical layer that data must transit 

through requires processing, more energy and computational processing must be 

expended, which in turn can cause performance artefacts such as latency, jitter and packet 

loss. 

 

Stimuli for legacy networks upgrades  

There are three types of forces that stimulate the upgrade of legacy networks. These are 

economic, policy and regulatory. In Europe, the main motivation for incumbent European 
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Telco’s to invest in new technologies such as Fibre to the Home (FTTH) are Revenue 

Attrition, User Demand for Higher Bandwidth, New Application Devices, Competition, 

Political Will, Address High Cost Base, Future-proofing and Regulatory Relief [1]. In 

particular, the type and volume of services that customers consume will change 

considerably over next few years. In the course of 5 years from 2015 to 2020, the CISCO 

VNI index [2]  predicts that the total number of Internet users in the UK will increase 10% to 

62 Million, with the  average fixed broadband speed increasing from 24.7 Mbps to 51.3 

Mbps, and the average WiFi speeds increasing from 17.4 Mbps to 35 Mbps. The nett result 

is that the average combined Internet UK traffic will increase 2.9 fold from 5 Tbps in 2015 

to 20 Tbps in 2020, with the Busy Hour traffic increasing 4.5 fold from 21 Tbps to 117 Tbps.  

At a European level, the Digital  Agenda for Europe (DAE) [3] defines the policy objectives 

in relation to  broadband infrastructure with which national government agencies such as 

the Department of Communications in Ireland should comply. The key targets of the DAE 

agenda are that all European citizens should have access to broadband internet with 

speeds of at least 30MB/s by the year 2020 with 50% of users subscribing to broadband 

with speeds of over 100MB/s. The short-term policy target was to have universal broadband 

provision by 2013. In Ireland, the objective of the Communications Sector of the Department 

of the Communications, Energy and Natural Resources is "to contribute to sustained macro-

economic growth and competitiveness and ensure that Ireland is best placed to avail of the 

emerging opportunities provided by the information and knowledge society, by providing a 

supportive legislative and regulatory environment and by developing a leading edge 

research and development reputation in the information , communications and digital 

technologies".  

 

Technological Environment 

Other communication systems, most notably the Internet have also faced issues related to 

legacy technologies. This is surprising since the Internet is a much more recent and open 

network than a traditional telecommunications network. Central to the issues facing the 

Internet is the fact that the reach and importance of the Internet had grown exponentially in 

the 1990’s and 2000’s. From a base level of 200 hosts in 1980, the Internet grew 

substantially to 570  million hosts in 2008 [4]. Applications that are congestion-sensitive can 

hog bandwidth resources needed by other applications, which made it unattractive for 

companies to run commercial services over the internet. The poor returns for commercial 

use of the Internet lead to under-investment in capacity [5]. A flaw in the Internet’s core 

routing algorithm in 1989 caused the entire Internet to fail. The impact was a mere 

inconvenience for the several thousand researchers who were the used the Internet then 

for academic purposes. This is in contrast to the effect of the SQL slammer attack in 2003 

which caused over a billion dollars in damages to business [6]  including the outage of 



Background to the research 

4 
 

commercial airline flights reservation systems and  thousands of Automatic Teller Machines 

lasting for days.  

These catastrophic events had been predicted [7] in advance of them happening.  This is 

because since its inception, the Internet has developed in an evolutionary and reactive 

manner, likened, at times, to patch being applied upon patch to network protocols and 

network. Physical components such as routers and switches which make up the core of the 

Internet must comply with in excess of 5400 RFCs. An RFC (Request for Comment) is a 

specification of a protocols or functionality, created by the Internet Engineering Task Force 

(IETF) that is essential to the operation of the Internet. This has made routers, which are 

critical to the functioning of the internet, bloated with functionality that is in many cases 

redundant. Each device requires code exceeding 20 Million lines, switching logic spanning 

500 million gates and over 10 GBytes of RAM.  Paradoxically, the Internet, which was 

initially designed to be open and free of regulation had itself become an impediment to 

Innovation [8]. This barrier to innovation is evident where important enhancements such as 

multicast, Mobile IP and Quality of Service sit on top of the IP layer [4] and have not been 

fully embedded in the Internet architecture. Incorporation of this functionality would require 

significant upgrades in the physical components such as routers and switches with a high 

risk that existing functionality would break. Typically, functionality may be provided as a 

patch by individual vendors to their equipment, which adds to the complex melange of 

functionality that routers and switches have to currently support.  

The approach to how the stakeholders of the Internet have addressed these problems is 

different from how the operators of commercially run companies tackle the issues of legacy 

Telecommunication networks.  There were a number of initiatives to both document the 

deficiencies of the current Internet and to define the architecture and functionality of the 

future Internet [7]. Some protagonists advocated an incremental or evolutionary approach 

so as to ensure compatibility with the current Internet. The NewArch  [9] initiative advocated 

a revolutionary approach that would explore the technical consequence of a combination of 

top-down architectural reasoning and simulation and prototyping of a new architecture. This 

would speed up innovation and thus prevent legacy issues from been carried forward into 

the future Internet. In 2005, a panel of US academics instigated the NSF future Internet [10] 

project. This was followed by the development of the GENI experimental facility [6] and the 

NSF FIND programme [11]. NSF FIND was an important influence on Internet architecture 

concepts worldwide –in Europe [12], in Japan on the JGN+  testbed which supports  the 

Japanese AKARI Next Generation Network [13], and in Korea on the KOREN2 experimental 

network.  The EU-FP7 CaON cluster of Future Network projects were heavily influenced by 

the US NSF FIND/GENI initiatives.  

Unfortunately, the GENI research plan was not universally admired [4]. Some elements in 

the research community criticised it for being too broad in focus. Others said  it lacked a 
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classical scientific approach [14]. Stanford University were doubtful that a group of 

Computer Scientists could ‘champion big ideas’ such as the re-architecting of the internet. 

Instead, there could be better return on resource and effort through the embedding of 

research in so-called “CIO type” organisations. A CIO (Chief Information Office) has 

oversight of all technologies in an organisation, both network and IT. This would provide 

focus for the application of research and thus yield the necessary efficiency and 

effectiveness. While the GENI research network [6] proposed large infrastructure and a 

structured/formal approach to innovation, the Openflow initiative instigated out of Stanford 

University has gained significant community support.  

Openflow is significant in that it has caught the imagination of both technology and 

commercial entities in the Internet, so much so that it is the stimulus behind the Software 

Defined Network initiatives.  Openflow is a component (in terms of a protocol and a suite of 

applications) that can be evaluated and deployed by the research institutions, given their 

own network and resources. Openflow recognises that the transfer of IP packets is founded 

on flow and forwarding tables to be found in all switches and routers. While the structure of 

the flow tables may differ from vendor to vendor, the basic functionality is quite similar. 

Openflow separates the control plane decision making process from the action of passing 

IP. The control plane for all devices in a network can be aggregated and centralised where 

there are sufficient resources for path, switch and routing computation. The functionality of 

data plane components such as Switches and Routers can be simplified, and a common 

Optical infrastructure can be partitioned to provide virtual test bed  resources, equivalent to 

those proposed by GENI [8].  Networks which are flatter and have fewer hops can be 

created using Fibre optics and end to end networking protocols such as the Internet 

Protocol. These protocols work at different levels in the Internet stack, and thus can work 

together.  

 

Software Defined Network paradigm should be as applicable to the Telecommunications 

Industry as it is to the Internet Industry, with benefits to be applied at different levels in the 

technology stack.  
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1.2  Architectures for network convergence 

Passive Optical Network architectures such as Long Reach PON (LR-PON) [15] make the 

Access network entirely fibre based. The migration to fibre access changes the 

characteristic of household Internet usage with households with fibre access consuming 

considerably more Internet (up to 20% more or 608.5 GB in total) than those with traditional 

copper access [2]. This removes legacy and redundant Optical-Electrical-Optical (OEO) 

transitions but also concentrates geographical functionalities and interfaces (such as Layer 

1 to Layer 2, Layer 2 to Layer 3) for efficiencies. The reduction in OEO transitions has the 

benefit of reducing power consumption. The main drivers for power reduction research are 

usually economical (reducing the energy cost), technical (reducing the associated heat 

dissipation) and environmental (reducing the carbon footprint) reasons [16]. 

Figure 2 shows the Flat Core of the LR-PON architecture where the core switches are 

partially or fully meshed. Metro-Core Nodes perform traffic aggregation closer to the 

customers. Passive Optical Networks are composed of customer side ONU devices and 

Metro Access OLT devices, between which the PON protocol runs. In protocols derived 

from the GPON protocol, the upstream protocol is based on TDM (Time Division 

Multiplexing), whilst in the upstream traffic is statistically multiplexed. Fairness of usage is 

maintained using a Dynamic Bandwidth Algorithm (DBA). From a practical layer 2 

perspective, the Ethernet protocol runs throughout the network.  

 

Figure 2 - DISCUS Architecture for Long-Reach PON (LR-PON) 

In a LR-PON architecture (Figure 2), much of the currently protected metro network is 

replaced by long feeder fibres. The probability of failure is higher due to higher probability 

of the long feeder fibres being cut and optical amplifiers in the first splitter failing.  
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Remediating the broken fibre feeder is not easy and may take hours if not days. The impact 

of failure is also high, not only because many users are affected, but the types of services 

supported by the PONs may be of high value (i.e., can include backhauling and other 

business services).  The LR-PON feeder fibres are replacing part of the current network 

that offers protection from failure and for this reason protection mechanisms become a 

requirement in LR-PON. Fast protection is required in order to fulfil user requirements for 

converged multi-service shared PON environment, particularly for enterprise and mobile 

backhaul applications.  

The DISCUS metro/core nodes are core edge nodes in a similar architectural position in the 

network to what are often called metro-core nodes in classic telecommunication 

architectures. The DISCUS Metro/Core node are the only nodes in the network covered by 

a single optical island with traffic processing functions. The architecture of these nodes is 

flexible enough so that different (IP, Ethernet and Optical) layers can evolve and if 

necessary displace other layers minimising cost and energy consumption. The node 

architecture consists of an optical switching layer, an Ethernet layer and an IP layer. The 

optical switch provides flexible interconnect between theses layers and the optical channels 

from the access and core networks. The large port-count optical switch allows maximum 

flexibility as any incoming fibre can be terminated, after de-multiplexing, at any OLT (Optical 

Line Termination), or can be re-amplified and sent back to another ONU or regenerated and 

sent over the optical core network. Since every access PON can carry a large number of 

wavelengths, potentially 80 or more in the medium to long term, the optical switch must be 

highly scalable, while offering a very low optical loss (less than 2-3dB). The Optical Switch 

should have large switch matrices and a potentially be 3-stage switches capable of scaling 

to over 12000 ports.  

 

Figure 3 - DISCUS metro/core node architecture 
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The main approach to increasing availability of the LR-PON service is through redundancy 

of the feeder fibre and dual homing, which adds costs to the network and must be recouped 

through higher service charges. In addition, protection times may be reduced significantly 

by using 1+1 protection mechanisms, such as hardware optical monitoring, in the LR-PON. 

The downside of 1+1 protection is that downstream traffic must be replicated through both 

primary and secondary OLTs, so additional network ports, fibre and capacity are needed to 

duplicate downstream traffic. These downsides may be ameliorated if N:1 or 1:1 protection 

were possible in a granular, cost efficient and time responsive manner. The typical 

mechanisms used to provide protection in the core are based on routing (OSPF) or label 

switched paths (MPLS). Open shortest path first (OSPF), in which packets are routed 

through the shortest path, takes more than a second to recover. Recovery times of this 

order are not acceptable in many networks where target switch over time of 50  milliseconds 

are common for leased line traffic or 100  milliseconds for realistic internet scenarios [17]. 

Multiprotocol label switching (MPLS) provides fast rerouting by a protection mechanism that 

uses an alternative Label Switched Path (LSP) to reroute packets from a protection point to 

another node or to the destination. This mechanism has to be provided locally at each switch 

[18]. In the access network however, protection mechanisms have not been developed as 

much as in the metro and core. In 2008 an experiment was carried out using commercial 

GPON hardware and the restoration time was found to be in the order of 30 seconds [19].  

The authors believed this could be reduced to approximately 500 milliseconds if they could 

optimise the switching, ranging and registration mechanisms of the GPON system. The 

same operator published in 2013 an updated protection mechanism using VLAN switching 

with an automated restoration solution, achieving protection times in the order of 4.5 s  and 

with maximum values of 9.5 s. [20] . Fast PON protection also allows the implementation of 

protection load balancing schemes, such as those introduced in [21]  which allow reducing 

substantially cost of both IP and PON backup resources by increasing the ability to share 

protection equipment across the network [17]. 

1.3  Flat Layer 2 Networks 

Figure 4 exemplifies the complexity of providing Broadband service to a residential 

customer by a wholesale network operator through layered communications stacks. 

Typically, a Point-to-Point-over-Ethernet (PPPoE) tunnel extends from a B-RAS 

(Broadband Remote Access Service) through to a Residential Gateway located in the 

customer’s premises. Network designers typically use tunnels and VPNs to extend the 

reach of services such as PPPoE. 
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Figure 4 - State of the Art FTTH telecommunications 
 

Here, an MPLS router tags the PPPoE tunnel with a Pseudo-Wire (PW) identifier and a 

Label-Switched Path (LSP) label. The PW is used to identify the path up to the Optical Line 

Terminal (OLT). For each OLT different PWs identify different SPs and within an SP different 

service types (Video-on-Demand and VOIP).After the OLT, towards the Optical Network 

Unit (ONU), a VLAN tag, together with the MAC address, is used by the ONU to direct traffic 

through a pre-determined Traffic-Container (T-CONT) and GPON Encapsulation Method 

(GEM) port. In the case of PPPoE, there are significant Virtual B-RAS load and capacity 

constraints. Tests done by  BT (for example) [5] showed a maximum limit of 9,000 PPPoE 

sessions per virtual B-RAS (Broadband Remote Access Server).  There are multiple manual 

configuration actions to set up new services and customers, largely due to the lack of 

integration between the management systems of the technology each layer and stack that 

underlies the service.  

Excessive tunnelling and encapsulation for the transit of large connection volumes has 

significant downside such as restrictive network partitioning, slow reconfiguration times, and 

suboptimal dissociation between network platform and services. Each network layer and 

hop that is traversed has the potential to introduce artefacts such as jitter, Bufferbloat and 

cross-layer authentication requirements. Bufferbloat happens when excessively large 

(bloated) buffers are designed into network communication systems [22]. Systems suffering 

from Bufferbloat have bad latency under load under some or all circumstances, depending 

on if and where the bottleneck in the communication's path exists. Bufferbloat encourages 

network congestion; it destroys congestion avoidance in transport protocols such as HTTP, 

TCP and BitTorrent. Network congestion-avoidance algorithms depend on timely packet 

drop. Unfortunately, bloated buffers invalidate this design presumption. 

The original intent of the Internet was to transmit IP datagrams over transmission links which 

were both unreliable and had limited by capacity. Intermediate IP routers would have to be 
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operationally autonomous. The TCP protocol was developed to cater for session properties 

such as statefulness, error control and congestion management [23]. Unfortunately, the 

underlying characteristics that made the Internet robust, have also been the ones that have 

made the Internet rigid  [24] -  Internet protocols such as IP, UDP and TCP do not have 

native support for Voice and Video Quality of Service (QoS);  TCP flow control is inefficient 

because it is based on a slow-start mechanism; routing between large domains is 

cumbersome and unreliable; large-scale networks are difficult to manage. 

We introduce the FLATLANd architecture [25] which uses an efficient hierarchy of  low 

latency layer-2 switches and distributed Openflow tables (across ONU/OLT, electrical and 

optical switches in a LR-PON topology). In the FLATLANd architecture we apply the same 

concept to telecommunications networks. Any network that uses Ethernet as a layer-2 

protocol can benefit from the FLATLANd architecture. From a practical layer 2 perspective, 

the Ethernet protocol runs throughout the network.  A translation is performed between the 

real (physical) address of the end device and the internal structured (pseudo) addressing 

used within the network. In the case of LR-PON, this translation is performed at the ONU 

GEM port. The mechanism partitions the internal 48-bit address space of an Ethernet layer 

into a number of arbitrary subfields, each routed to a different part of the network. 

Layer-2 Ethernet addresses of network devices and terminations are assigned during 

manufacturing and thus uncorrelated to their location and other devices in their vicinity. This 

restricts their use in switched LAN and WAN segments, due to the impossibility to create 

any kind of hierarchical structure in the addressing scheme and forwarding tables. Through 

the use of pseudo-MAC addressing, the FLATLANd architecture (Figure 5) overcomes such 

limitation by creating a structured Ethernet addressing domain that spans the entire network 

between the network terminations at the customer premise and the datacentre thus 

empowering wide area SDN at layer-2. 

The FLATLANd architecture (Figure 5) creates a structured Ethernet addressing domain 

that spans the entire network between the network terminations at the customer premise 

and the Data Center thus empowering wide area SDN at layer-2. From a practical layer 2 

perspective, the Ethernet protocol runs throughout the network.  Layer-2 Ethernet 

addresses of network devices and terminations are assigned during manufacturing and thus 

uncorrelated to their location and other devices in their vicinity. This restricts their use in 

switched LAN and WAN segments, due to the impossibility to create any kind of hierarchical 

structure in the addressing scheme and forwarding tables. 

 



Chapter 1. Introduction 

11 
 

 

Figure 5 - FLATLANd FTTH architecture-level diagram 

 

 

1.4  Overview of methodology 

To conduct the research in a robust manner,  we apply  Leedy and Omrod’s  key principles 

for conducting research projects [26]. They are as follows. 

  

Research should originate with a question or problem.   

Software Defined Networking is having significant benefits for networking systems that 

underpin the Internet and Data Centres. Is the SDN paradigm of separating data and control 

planes applicable to the traditional Telecommunications Industry without oversimplification 

caused by  the removal of hidden but important components? 

 

Research requires clear articulation of a goal.  

We evaluate the impacts of applying Software Defined Network principles to constraints 

that have been built in, over time, into traditional Telecommunications networks. 

 

Research requires the collection and interpretation of data in an attempt to resolve 

the problem that initiated the research.  

We adopt a two stranded approach [27, 28]. The first strand evaluates the interaction 

between a state of the art control plane and a start of the art Passive Optical Network, 

through the application of a number of typical but important scenarios. The second strand 

evaluates innovation in the Layer 2 data plane, made possible by the application of SDN 

principles, again through the application of a number of typical scenarios.  The first strand 

adopt an approach similar to Action Research where data is gathered from physical 
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testbeds that were constructed specifically for the experiments. Action Research follows a 

closed cycle iterating through the steps Action Planning, Action Taking, Evaluation, Specific 

Learning, Diagnosing [29]. The second strand adopts an approach of Concept 

Implementation and Protocol Analysis and Simulation [30], in that we rely on a mix of 

simulation and experimentation.  

 

Research requires a specific plan for proceeding.  

We construct a number of testbeds involving substantial state-of-the-art components that 

create an end-to-end telecommunications network. A number of testbeds are used that 

facilitate different technological aspects of the network, as well as the skillsets of the centres 

involved. The complexity of the testbeds and their integrations developed over time to reflect 

the availability of components. The experiments that were execute involved the 

performance and capability in the provisioning of high capacity bandwidth, as well as the 

speed of failover of network paths across a wide area, that is both on the scale of a National 

Network as well as a Continental Network. The experiments are executed a number of 

times, to understand any underlying artefacts in the interaction between the control plane 

and the data plane. The Protection use case exemplifies how path integrity in the Core and 

TDM-DWDM (Dense Wavelength Division Multiplexing) LR-PON based Access Metro 

network of a Telecommunications network can be assured through logical protection. The 

protection experiment demonstrated a dual-homed LR-PON protection mechanism where 

backup OLTs are shared among PONs in an N:1 scheme and the service restoration is 

provided over an end-to-end Software Defined Network. The DWA (Dynamic Wavelength 

Assignment) use case exemplifies how capacity constraints in one PON channel may be 

overcome by re-allocating dynamically one or more end user ONUs to a different channel 

in order to assure quality of service. This could also be used for the opportunistic provision 

of high bandwidth services (on-demand video and big data transfers), to specific PON users 

on a dynamic basic. 

To evaluate the Data Plane architecture aspects, we propose and model a design for a flat 

Telecommunications architecture that is theoretically more scalable and efficient when 

compared to traditional architectures. This architecture is called FLATLANd (acronym for 

Flat Layer Two Telecommunications Network). The proposed structure provides a number 

of benefits. Firstly, the architecture is strictly flat and conducts all traffic at a single layer – 

that is layer 2 without the use of tunnelling, VPN nor labels. Secondly, the architecture is 

inherently Open Access in that no one network nor service provider dominates over the 

others, as is the case in traditional wholesale and retail models for broadband access 

networks. Thirdly, the addressing is extremely scalable and granular, accommodating many 

terminating nodes as well as service types.  Rather than preserving legacy devices such as 

B-RAS in their physical or virtual form, we re-architect the entire network from first principles. 
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We target in particular next generation optical broadband networks, and take into 

consideration the convergence of access and metro networks, using the Long-Reach PON 

(LR-PON) architecture. 

 

Research is, by its nature, cyclical or more exactly helical.  

Particularly with respect to the evaluation of the interaction between a state of the art control 

plane and a start of the art Passive Optical Network. For the protection experiment, we 

execute a number of iterations of the experiments that a 1+1, through 1:1 to N:1 protection 

scenarios. The protection experiments also evolve to include more physical layer 

components as they became available, and also encompassed different complexities of 

core network such as transcontinental core networks and national networks. The dynamic 

wavelength assignments also evolved from experiments on stand-alone testbeds to more 

complicated experiments across multiple geographically spread testbeds.   

 

Research is guided by the specific problem, question or hypothesis.  

The hypothesis is the application of Software Defined Networking principles with 

technological developments can encourage innovation, new services and approaches to 

old problems and bottlenecks in Telecommunications network architectures that have 

become stagnated, 

1.5  Key Contributions 

There are three key contributions within this work.  

 

The First contribution is the development of the control plane mechanism for a metro-access 

network and its implementation and tests for experiments involving path protection and 

Dynamic capacity assignment (both in time and wavelength domains). This involved: 

 development of SDN network control and network orchestration facilities 

 development of message based event plane 

 development of interfaces with devices such as OLT, ONU, EDFA, Optical Switches 

through an Openflow Agent so they could participate in the SDN framework 

 development of timing and measurement experimentation tools 

 optimisation of Openflow controllers for use in real-time protection experiments 

 integration between testbeds including physical layer PON, GEANT testbed, 

IDEALIST testbed 

 Execution of experiments for both path protection and dynamic capacity assignment. 

 

The Second contribution is the introduction of the FLATLANd (Flat Layer Two 

Telecommunications Network) architectural concept which exploits Software Defined 
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Networking concepts to provide an alternative Telecommunications architecture. The most 

significant contributions within the design are: 

 the principle of mapping from pseudo to real MAC addresses, enabling layer 2 

routing across a wide area 

 the use of Openflow switches and controllers to mimic network functions such as 

ARP, DNS and DHCP 

 the development of architectural patterns for Network Function Virtualisation, Open 

Access, Traffic regulation and Path Protection 

 

The Third contribution is that the NSIM network simulator which was developed to compare 

the performance of classic and FLATLANd architecture models. It has support for standard 

network protocols such as Ethernet, IP, TCP and UDP but also fractional layer protocols 

such as PPP, MPLS, Dot1Q, PPPoE. It has support for network characteristics such as 

buffering and latency. It supports Drop-Tail and Controlled Delay (CoDel) queuing 

disciplines. This allowed us to demonstrate hypothetical collapsed protocol stacks such as 

TCPoE and UDPoE. 

 

1.6  Dissertation Outline 

We structure the thesis into a review of the State of the Art for the application of SDN to 

Telecommunications networks. This is followed by chapter each that deals with major 

contribution of the thesis.   

The review of the State of the Art was completed and maintained through a number of 

revisions until closure of the research. State of the Art informs precedents, constraints and 

developments related to technology and approaches. 

The State of the Art has two main strands. The first strand evaluates the interaction between 

a state of the art control plane and a state of the art Passive Optical Network, through the 

application of a number of typical but important scenarios. The candidate scenarios are the 

protection scenario and the Dynamic Wavelength Assignment. Because the components 

we are working with are purpose built, there is a high level of flexibility around how to 

interface with them. This allows use to investigate interaction with a novel SDN control plane 

which we build.  

We review candidate options for SDN frameworks. While Openflow is a dominant theme in 

the control of layer 2 (Ethernet) and layer 3 (IP) devices such as switches and routers, it is 

not apparent how relevant it is to physical and optical devices. Prior to Openflow, there has 

been precedence in the dividing data plane from control plane in optical networks. For the 

experimentation, we gather data from physical testbeds that were constructed specifically 

for the experiments. Firstly, we look at the performance of a protection scheme for a 
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flattened optical access, metro and core network. We see that a network failure such as a 

fibre break in the access network can be detected in a number of milliseconds, with the 

event being transmitted to an SDN control plane for corrective decision and action to be 

taken. This complexity of this use case evolves from a 1:1 protection regime in the access 

metro with diverse paths in the core through a N:1 protection regime with diverse paths in 

the core built on the GEANT European Research Testbed, to an N:1 protection regime on 

a TDM-DWDM PON physical layer in the Access network with an emulated national core. 

Secondly, we look at the implementation of a bandwidth on demand scheme through 

Dynamic Wavelength Assignment. A request for dedicated bandwidth, equivalent to an 

entire wavelength can be accommodated by an SDN control plane, incorporating a Network 

Orchestrator and multiple Network Controllers.  The complexity of this use case was 

developed in two ways.  We conduct the experiment with a TDM-DWDM PON physical layer 

in the Access network with an emulated national core. Secondly, we integrate our Metro 

Access network with the EU-FP7 IDEALIST core.  This requires integration between our 

network controller and the IDEALIST ABNO orchestrator. The DWA use case exemplifies 

how capacity constraints in one PON channel may be overcome by re-allocating 

dynamically one or more end user ONUs to a different channel in order to assure quality of 

service. This could also be used for the opportunistic provision of high bandwidth services 

(on-demand video and big data transfers), to specific PON users on a dynamic basic. The 

use case in both case involves provisioning end-to-end dedicated bandwidth between a 

Video Server and a Video client. The Protection use case exemplifies how path integrity in 

the Core and TDM-DWDM LR-PON based Access Metro network of a Telecommunications 

network can be assured through logical protection. The protection experiment demonstrated 

a dual-homed LR-PON protection mechanism where backup OLTs are shared among 

PONs in an N:1 scheme [and the service restoration is provided over an end-to-end 

Software Defined Network.  

The second strand evaluates innovation in the Layer 2 data plane, made possible by the 

application of SDN principles, again through the application of a number of typical 

scenarios.  The second strand relies on a mix of simulation, predominantly, and physical 

experimentation. 

We propose and model a design for a flat Telecommunications architecture that is scalable, 

efficient and economic, when compared to traditional architectures. The proposed 

Addressing structure provides a number of benefits. Firstly, the architecture is strictly flat 

and conducts all traffic at a single layer – that is layer 2 without the use of tunnelling, VPN 

nor labels. Secondly, the architecture is inherently Open Access [31] in that no one network 

nor service provider dominates over the others, as is the case in traditional wholesale and 

retail models for broadband access networks. Thirdly, the addressing is extremely scalable 

(at 2^48 or 281 trillion addresses) and granular, accommodating many terminating nodes 
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as well as service types. We look at the FLATLANd data plane performance, and the critical 

functions required from the constituent data nodes. We look at the state of the art of network 

node design, and understand the issues that are created when large volumes of traffic need 

to be switched at high speed.  We look at the structure of a network node, the discrete 

functions which must be performed on packetised traffic. Depending on the level of flow 

processing that needs to be performed, the network node may experience constraints, due 

to fixed nature of the node architecture. At large traffic volumes, it is common for a network 

node to experience congestion which gives rise to artefacts such as Jitter, packet loss and 

latency. An anomalous behaviour can crop up where ingress buffers build up quickly on 

network nodes with large buffers, but do not dissipate normally. This behaviour is called 

BufferBloat. 

The two strands are brought together in the section on conclusions and recommendations.  

1.7  Publications arising from this work 

The following is a list of papers to which I have contributed, which have been published or 

accepted for publication. 

1. IEEE ICTON 2014 - An SDN-Driven Approach to a Flat Layer-2 

Telecommunications network. Frank Slyne, Marco Ruffini 

2. IEEE/OSA ECOC 2014 - Design and experimental test of 1:1 End-to-End Protection 

for LR-PON using an SDN multi-tier Control Plane. Frank Slyne, Nattapong 

Kituswan, Séamas McGettrick, David B. Payne and Marco Ruffini 

3. IEIEC COMEX Letter - A Europe-Wide Demonstration of Fast Network Restoration 

with Openflow. Nattapong Kitsuwan, Frank Slyne, Seamas McGettrick,David B. 

Payne, and Marco Ruffini 

4. IEEE/OSA Journal of Optical Communications and Networking. VOL. 3, NO. 

2/FEBRUARY 2014 An Independent Transient Plane Design for Protection in 

Openflow-based Networks. Nattapong Kitsuwan, Seamas McGettrick, Frank Slyne, 

David B. Payne, and Marco Ruffini 

5. IEEE 16th International Telecommunications Network Strategy and Planning 

Symposium.  A Transparent Openflow-based Oracle for Locality-Aware Content 

Distribution. Emanuele Di Pascale, Frank Slyne, Marco Ruffini. 

6. IEEE/OSA OFC 2015. Experimental End-to-End Demonstration of Shared N:1 Dual 

Homed Protection in Long Reach PON and SDN-Controlled Core. S. McGettrick F. 

Slyne, N. Kitsuwan, D.B. Payne, M. Ruffini. 

7. IEEE/OSA OFC 2016, postdeadline paper. Demonstration of SDN Enabled 

Dynamically Reconfigurable High Capacity Optical Access for Converged Services. 

Giuseppe Talli, Stefano Porto, Daniel Carey, Nicola Brandonisio, Alan Naughton, 
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Peter Ossieur, Frank Slyne, Seamas McGettrick, Christian Blum, Marco Ruffini, 

David Payne, Rene Bonk, Thomas Pfeiffer, Nick Parsons, Paul Townsend.  

8. [Invited] Elsevier Optical Fibre Technology special issue on Next Generation 

Access, Vol. 26, part A, December 201. Software Defined Networking for Next 

Generation Converged Metro-Access Networks. M. Ruffini, F. Slyne, C. Bluemm, N. 

Kitsuwan, S. McGettrick.  

9. IEEE ONDM 2016. End-to-end Service Orchestration From Access to Backbone. J. 

M. Gran Josa, F. Slyne, V. Lopez, M. Ruffini.  

10. IEEE ONDM 2016, best student paper award. FLATLANd: A Novel SDN-Based 

Telecoms Network Architecture Enabling NFV and Metro-Access Convergence. 

Frank Slyne, Marco Ruffini  

11. IEEE/OSA Journal of Lightwave technology, vol. 34, No. 18, September 2016. 

Experimental End-to-End Demonstration of Shared N:M Dual Homed Protection in 

SDN-controlled Long Reach PON and Pan-European Core. Seamas McGettrick, 

Frank Slyne, Nattapong Kitsuwan,David B. Payne, and Marco Ruffini 

12. IEEE/OSA Journal of Lightwave technology, in press. SDN Enabled Dynamically 

Reconfigurable High Capacity Optical Access Architecture for Converged Services. 

G. Talli, F. Slyne, S. Porto, D. Carey, N. Brandonisio, A. Naughton, P. Ossieur, S. 

McGettrick, C. Blumm, M. Ruffini, D. Payne, R. Bonk, T. Pfeiffer, N. Parsons, P. 

Townsend 

 

The following is a list of papers to which I have contributed, which have been submitted for 

publication. 

 

1. [Invited] IEEE/OSA Journal of Optical Communications and Networking. End-to-end 

Service Orchestration From Access to Backbone. V. Lopez, J. M. Gran Josa, V. 

Uceda, F. Slyne, M. Ruffini, R. Vilalta, A. Mayoral, R. Muñoz, R. Casellas, R. 

Martínez 

2. [Invited] IEEE/OSA Journal of Optical Communications and Networking. 

FLATLANd: A Novel SDN-Based Telecoms Network Architecture Enabling NFV and 

Metro-Access Convergence. Frank Slyne, Marco Ruffini. 

 

Demonstrations 

1. Work contained in this document related to Fast Protection (section 5.3 ) was 

demonstrated at ECOC 2015 which was held in  Valencia 27th – 30th September 

2015. 
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2. Work contained in this document related to Fast Protection (section 5.3 ) and 

Dynamic Wavelength Assignment (section 6.1 ) was demonstrated at the EU-FP7 

DISCUS plenary meeting held in the Tyndall Institute, Cork. 8th-10th December 2015. 

  

The following is a list of Invention Disclosures to which I have contributed. 

1. Invention Disclosure P11512GB at UK IPO. (The official filing details assigned to 

this UK Application are 1412069.5.). Metro-Core Network Layer and System.  
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Chapter 2 State of the Art 

2.1  Software Defined Networks 

The Open Network Foundation [32] defines Software Defined Network as a network 

“architecture [that] decouples the network control and forwarding functions enabling the 

network control to become directly programmable and the underlying infrastructure to be 

abstracted for applications and network services.” Traditional telecommunications networks 

are characterised by very long provisioning times and lack of flexibility in network bandwidth 

[33]. There are multiple manual configuration actions to set up new services and customers, 

largely due to the lack of integration between the management systems of the technology 

stacks that support the service. Legacy network architectures are embedded in the control 

plane with the data plane in network devices, while Software Defined Networks have the 

advantages of being “dynamic, manageable, cost-effective, and adaptable, making it ideal 

for the high-bandwidth, dynamic nature of today's applications.” SDN separates control 

plane routing decisions, user plane forwarding engines and processing of individual flows. 

SDN enables Virtualisation thereby overcoming issues associated with multilayer and 

network segmentation thereby optimising infrastructure resource utilisation [34]. The impact 

of SDN on Telecommunications networks is forecast to have real tangible effects with AT&T 

implementing SDN in its core Telecommunications Network at 4500 Central Offices (CO’s)  

as part of its Domain 2.0 programme.  AT&T predicts a reduction of $95 to $85 per annum 

in service delivery cost per customer. 

The concept of Software Defined Network (SDN) appears in different categories of networks 

ranging from carrier networks, data centres and central office networks through to home 

and wireless networks. Also, SDN is relevant to physical, link, network and transport layers 

of the OSI and TCP/IP stacks, both individually but also in an amalgamation. The impetus 

behind SDN is Openflow [35] which aims at replacing, or at least extending, current network 

equipment by a new type of ”dumb switches” where the decision making is entirely assumed 

by Controller(s), giving the switches only a basic set of instructions: (a) Forward the packet, 

(b) Drop the packet, (c) Send the packet to Controller (after encapsulation) and (d) Overwrite 

part of the packet header. Openflow switches only need to look at their Flow Table(s) which 

contains the action(s) associated to a flow. To identify a flow, a switch can rely on a function 

which can match various fields in the frame (inbound port, VLAN ID, data layer or network 

address, transport protocol header, etc.). To register to a Controller, an Openflow switch 

goes through a procedure called a Handshake. During this exchange of messages, the two 

parties gather information about one another, such as the Data-path ID to uniquely identify 

the switch, the maximum capacity of the buffer and how many bytes of a packet to send to 

the Controller in case of an unknown flow. Once the switch is registered, it relies on the 

Controller to handle the management of the flows. When an inbound packet arrives, the 
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switch goes through its Flow Table(s) to try and match the different headers of the packet 

to an action. If one is matched, it carries the corresponding action. If not it sends the packet 

(or part of it depending on the configuration) to the Controller with a PACKET IN message. 

The Controller then replies back the final decision about the packet, whether it is to forward 

it with a PACKET OUT message or drop it entirely. It possibly writes an action in the switch’s 

Flow Table with a FLOW MOD message in case another packet from the same flow comes 

up.  

2.1.1  SDN at Layer 2 and Layer 3 

While the Openflow protocols are synonymous with SDN for the configuration and 

management of flows at the data plane layer, it is one of a number of protocols that abstract 

the control plane from the data plane of network devices.  The concept of the separation of 

control and data planes had been in existence for a number of years prior to Openflow 

catching the attention of first the research community, followed by switch manufacturers 

and software providers. 

Rexford, Caesar, Feamster and Caldwell [36] first presented a Routing Control Platform 

(RCP)  in which Border Gateway Protocol (BGP) inter- domain routing is replaced by 

centralised routing control to reduce complexity of fully distributed path computation. In the 

same year, IETF released the Forwarding and Control Element Separation (ForCES) 

framework, which separates control and packet forwarding elements in a ForCES Network. 

A ForCES Network Element (NE) consists of multiple Forwarding Elements (FEs) and 

multiple Control Elements (CEs). In 2007, Casado, Freedman, Pettit, Luo, McKeown and 

Shenker [37] presented Ethane, where simple flow-based Ethernet switches are 

supplemented with a centralised controller to manage admittance and routing of flows. 

The Openflow Switch Consortium released the Openflow reference implementation (version 

0.1.0) in 2007. In 2009, Openflow version 1.0 added multiple queues per output port for 

minimum bandwidth guarantees.  In 2011, Openflow version 1.1 added multiple tables 

pipeline processing, VLAN’s and rudimentary support for MPLS. In 2012, after stewardship 

for Openflow moved to the Open Network Foundation (ONF), Openflow version 1.2 was 

released and provided support for Flexible Matching and Rewrite, Multiple Controllers and 

IPv6. Openflow version 1.3 provided support for PBB tunnelling, Per-flow bandwidth 

tracking, traffic measurement and event filtering. The OF-Config 1.1 protocol was enhanced 

to allow configuration and management of Openflow switches and controllers. Openflow 

version 1.4 [38], released in 2014, supports Optical port parameters and Command 

Bundling.  Command Bundling allows group of commands to be committed or rolled back 

in the event of success or failure of a given criteria. Openflow version 1.5 supports Layer 4 

to Layer 7 processing through deep header parsing and execution of complex actions. 

There is support for a wider variant of Tunnels, as well as the stacking of tunnels. Prior to 
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version 1.5, flows were treated as unidirectional and stateless. With version 1.5 flows can 

be made persistent through the use of flow meta-data, as well as being paired as 

bidirectional flows in upstream and downstream direction. 

The ONF has created a number of working groups to advance SDN in different areas. The 

Forwarding Abstraction Work Group is both standardising Openflow Switch hardware, but 

also improving interoperability between switches and controllers, through the use of 

Negotiable Datapath Modes (NDM) and Table Type Patterns (TTP). TTP describes a set of 

flow tables and the valid operations to be supported by an OF switch. Although the syntax 

and definition of TTPs is currently being defined, it is supported in rudimentary form in OF-

Config v1.2. This allows some negotiation of the supported TTP at switch initialisation. The 

Optical Transport Working Group is looking at ROADM configuration in photonic enterprise 

networks and Network virtualisation for multi-layer networks and packet-optical integration.  

The Wireless and Mobile Working Group is responsible for proposing Openflow support and 

extensions for wireless transport, Mobile Packet Core and Mobile packet tunnels (for 

example GTP – GPRS Tunnelling Protocol). 

Switch configuration may be performed through provisioning directly to the OVSDB 

database associated with each switch under the control of a controller, or through the 

Netconf based OF-CONFIG.  OF-Config initiates the control channel, configures bridges, 

ports, meters and other facilities on a switch and (in version 1.5) negotiates the use of a 

particular NDM Network Device model, between the controller and the switch. OF-Config 

provides limited support for tunnels (such as IP-in-GRE and VXLAN). In future, because it 

is based on Netconf, OF-Config will support Yang based service model definition. 

Participation in a virtual machine / datacentre orchestrated network is catered for through a 

north-bound interface to Openstack Neutron.  OpenStack Neutron is an SDN networking 

project focused on delivering networking-as-a-service (NaaS) in virtual compute 

environments. 

2.1.2  SDN at Layer 1 and Layer 2 

In 2006, the Path Computation Element (PCE) architecture was presented to compute label 

switched paths separately from actual packet forwarding in MPLS and GMPLS networks 

[39]. PCE and PCEP provide a mechanism for calculation and control and re-optimisation 

of MPLS Traffic Engineering tunnels (MPLS-TE). PCE is applicable to MPLS routers and 

GMPLS capable optical elements. Path Computation is the process of calculating route 

through a network that should be taken by an MPLS or GMPLS traffic engineered tunnel of 

a defined size, delay and jitter in order to meet the requirements of the bandwidth 

reservation that it is supporting. The path computation element is a computing function 

within the network that the MPLS Label Edge Route has elected to delegate this calculation 

to. The PCEP is the protocol that is run between the MPLS Label Edge Router (LER), known 
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as the Path Computation Client (PCC) and the PCE. This protocol supports the signalling 

of the path characteristics from the PCC to the PCE. To calculate the path, the PCE utilises 

the knowledge of the availability in the network based on its view of the Traffic Engineering 

Database (TED). The TED contains the set of all of the links within the MPLS domain, their 

characteristics and their available bandwidth. Elements of the PCEP protocol includes 

establishment of session between PCC and PCE, request for path computation, generation 

of keep-alive messages and definition of performance targets for resources and constraints.  

Ordinarily, the PCE is stateless, and plays no active part in the overall management of 

resources and bandwidth in the network. The IETF has defined a number of enhancements 

to the PCE architecture that permits a PCE to request that a PCC initiate an Label Switched 

Path (LSP), as well as an enhancement to ETSI’s Resource Admission Control Subsystem 

(RACS) [40]. This allows application driven reservation of resources in the network and 

turns the PCE into a component of a fully-fledged bandwidth management implementation. 

The PCC still remains in control of the LSP and updates requests that violate the local policy 

held at the PCC may result in the PCE request being rejected. Because PCE has been 

specified to support both MPLS and GMPLS functions, this capability can be used by 

applications wishing to optimise the mapping of MPLS bearers to the optical layer. Velasco, 

Castro, King, Gerstal, Casellas and Lopez [41] demonstrated a PCE based optimisation 

tool that was used to prevent spectrum fragmentation in optical networks that support 

variable sized frequency slots. This was achieved by allowing a controller to adjust the 

allocation of light paths within the optical spectrum to group smaller light paths and free up 

larger contiguous blocks of spectrum. A stateful PCE facilitates a number of use cases such 

as Optimisation of network resources across optical and packet, re-optimisation, re-

establishment and prioritisation of reservations after disruption, handling on-demand 

bandwidth requests from a bandwidth management function.  

The Interface to Routing System (I2RS) provides access for external systems to the routing 

and topology information about a Layer 3 network[42]. It is also possible for external 

systems to modify the routing in the network. As such, it may act as an alternative to 

Openflow for conventional IP/MPLS carrier Networks. The objectives of I2RS are to be able 

to read from or write to the Routing Information Base (RIB), the provision of monitoring and 

control of BGP including policy enforcement, the control of routing in the network for given 

flows as well as the ability to extract topological information from a network. I2RS provides 

NetConf and RestConf (a restful version of NetConf) interfaces, over which Yang Service 

models may be defined [43].   

Current MPLS based networks are characterised by thousands of Traffic Engineering LSP’s 

and thousands of labels within the LDP (Label Distribution Protocol) database. Application 

states are contained within the network with the result that both convergence and recovery 

during a protection event can be slow.  The IETF has drafted a standard for source routing 
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of traffic based on labels in both an MPLS and IPv6 based network. The scheme is called 

Segment Routing [44]. Each node in the network advertises labels to identify themselves 

as IS-IS via the Interior Gateway Protocol (IGP). Instead of the route being determined at 

each hop in the network, it can be specified as a sequence of labels that are applied at the 

ingress of the network. The stack of labels applied at the ingress may either be a specific 

sequence of next hops (to adjacent nodes) or a set of next segments (across multiple 

nodes). This facilitates a strict route, a loose routing path or a mixture of both. In the case 

of a loose routing scheme, this is equivalent to the use of Equal Cost Multi-path (ECMP) 

routing. 

Because node adjacency can be used as a service identifier, adjacency labels only have 

meaning at a given node. This reduces the size of the LDP database and the number of TE 

LSPs in the network.  Chaining of services is facilitated, by directing traffic through a 

predetermined set of functions (for example, firewalls). The Segment Routing scheme is 

compatible with existing IP routing infrastructure including IGP, BGP and MPLS control 

planes. Because RSVP-TE and LDP are not required in the operation of Segment Routing, 

protection across most if not all topologies is guaranteed to be less than 50 milliseconds. In 

the SDN paradigm, the Segment Routing scheme acts as a centrally co-ordinated control 

plane, with the MPLS or the IPv6 network acting as the data plane.  

2.1.3  Network Function Virtualisation (NFV) characteristics 

ETSI promotes the standardisation for Fibre to the CAB (FTTcab), VDSL2 and G.Fast,. 

Most recently, ETSI has looked at which traditional components may be virtualised [45]. 

These components include GPON OLT’s, ONU’s, DSL DSLAM and Broadband Remote 

Access Servers (B-RAS) and home gateway devices.  ETSI has a number of objectives in 

promoting NFV. These include optimisation of cost, reduction in the power consumption of 

remote devices, the relocation of complex functionality that is currently located in the field, 

to the Head End, and the automation of provisioning of configuration and new services. 

ETSI have defined a number of uses cases for NFV services. These use cases relate to the 

provision of virtual CPE (vCPE), Fixed Access Network Function Virtualisation, virtual 

Provider Edge (vPE) and virtual Basestation (vBS). The Virtual Network Functions (VNF) 

forwarding graphs use case describes how services may be chained together. Service 

chaining is also described by the Broadband Forum document SD-326. The Broadband 

Forum has a number of working groups looking at SDN as part of Broadband (SD-313), 

Access Networks (WT-358) and as an enabler for Flexible Service Chaining (SD-326) and 

Network Function Virtualisation (WT-359) [46]. SD-313 is examining deployment scenarios 

where only some of the network equipment would support SDN functionalities, as well as 

possibility of supporting SDN capabilities by upgrading software only. EU FP7 project 

SPARC has successfully demonstrated the synergies between Software Defined 
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Networking and Network Function Virtualisation through the separation (and subsequent 

concentration) of forwarding and processing elements found in traditional 

telecommunications networks.  

2.1.4  Frameworks for Software Defined Networks 

A number of SDN frameworks have been created. These range from basic standalone 

controllers such as Floodlight [47], POX and RYU, that manage individual switches through 

to full architectures that administer entire data centres and telecommunications networks 

and WAN’s.  Generally, the standalone controllers are open-source, however, an exception 

is Onix which is closed source. Onix [48] is notable because it can provide a global 

architectural view of the switches under its control, and is also seen as an impetus for the 

ONF ONOS architectural framework.  

OpenContrail is a tactical SDN framework, which has been adopted by Juniper as a control 

framework (Contrail) for its SDN compatible equipment [49]. Architecturally it is composed 

of four subsystems. vRouters handle network slicing, traffic steering and MPLS or VXLAN 

based overlay networks. The configuration subsystem manipulates the high-level service 

data model into a form for consumption by the devices. The Controller component manages 

and monitors network state. Lastly, the Analytic subsystem collects and collates data about 

system performance. OpenContrail uses XML based IF-MAP (Interface to Metadata Access 

Points) for model definition, which in time will be supplanted by YANG [43] based 

configuration format. 

OpenDayLight [50] is an Opensource SDN architectural framework, based on the Cisco 

Extensible Network Controller (XNC), that is provided in  three different guises or editions. 

Firstly, there is the basic core Controller edition. Secondly, there is the Virtualisation edition 

for Data Centres, which interworks with Openstack [51] and Virtual Tenant networks 

(VTN’s). Thirdly, there is the Service provider edition with components for SDN in the WAN, 

LISP service and Defense4All (D4A) for DDOS protection [50]. The Service Provider edition 

has renderers for IETF’s NetConf configuration,  BGP and PCEP [40]. The Topology 

query for the purposes of discovery and host tracking and inventory management are 

performed through a REST API. SDN models are defined using YANG based MD-SAL 

(Model-Driven Service Abstraction Layer), where applications are defined as a data model 

and the API's required to access them can be auto-generated as part of the integration 

process. The OpenDayLight framework is made robust through the implementation of a 

distributed data store and a fail-over arrangement for its primary and stand-by controllers.  

The Application-Based Network Operations [52] is an SDN framework that is unique in that 

it does not communicate using native Openflow to the data plane components [53]. Instead 

the focus of ABNO is MPLS and GMPLS multi-domain networks with PCE as the controlling 

agent and PCEP as the control protocol. ABNO also has a policy manager, an I2RS 
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(Interface 2 Routing System) client, a Virtual Network Topology Manager (VNTM) for multi-

layer co-ordination and an Application-Layer Traffic Optimisation Server. Southbound 

communication with components such as Openflow are achieved using a provisioning 

manager. Statefulness is provided by an LSP-DB and TED database. ABNO has been used 

in the IDEALIST project [54] to demonstrate the multi-domain and multilayer configuration 

of commercial equipment (such as ADVA, Juniper nodes and OTN 400 Gbps channels) and 

the validation of the PCEP extensions to support remote GMPLS LSP set-up.  

ONOS [55] is specifically a network operating system for Service providers, driven and 

supported by the ONF [56], which also maintains the Openflow standards [55]. ONOS is a 

specific ONF project with resources allocated to it by services providers such as AT&T and 

NTT, and research entities such as Internet2 and CREATE-NET. The objectives of the 

ONOS project are to provide a SDN platform with carrier-grade performance and 

availability. Overall, ONOS attempts to optimise Capex and Opex. The ONOS project has 

outlined a number of use cases to demonstrate the carrier capability of the system. These 

are an SDN IP Peering use case, a Network Function Virtualisation as a Service (NFVaaS) 

use case and a use case demonstrating failover using IETF Segment Routing (Spring 

Project). The NFVaaS use case demonstrates a virtual OLT (vOLT) solution for GPON. 

ONOS does not rely solely on Openflow as its SDN control plane technology, as 

demonstrated in the Segment Routing use case.  The PCE [39] use case looks at the issue 

of over-dimensioning of current Packet Optical cores so as to handle both network outages 

and peak bursts. Usually Normal utilisation is kept at 30%, meaning a four to five fold 

underutilisation of capacity. The ONOS PCE application is used to configure, orchestrate 

and monitor the packet optical core to achieve much higher levels of utilisation without 

compromising on redundancy.   The ONOS architecture and use cases demonstrates that 

there is accommodation for SDN protocols other than Openflow, particular for the 

orchestration of lower layers, as well as the co-ordination of multiple domains.  

SPARC [57] reviewed three alternatives to implementing its Split Architecture, IETF’s 

ForCES framework [58], IETF’s GMPLS/PCE and Openflow supported at the time by 

Stanford University, but since then supported by the Open Network Foundation. AT&T are 

one of the sponsor operators of the ONF’s ONOS SDN framework. 

GMPLS was discounted by the SPARC project because it is, in essence, an intra-control 

plane signalling protocol, used for NNI (Network Network Interface) applications. GMPLS 

does not specify the interaction between the data and the control planes. While PCE 

recognises the decoupling of the data and control planes, the majority of control plane 

functions are delegated to distinct network elements. The PCE architecture does facilitate 

the concentration of control capability in a centralised system, however, with the PCEP 

protocol running between the Path Computation Element (PCE) and the Path Computation 

Client (PCC) [59] respectively.  



Software Defined Networks 

26 
 

ForCES and Openflow were directly compared because they clearly defined the control 

interface between the control and data planes. The strength of ForCES was that it was 

already, by the time Openflow was being created, a mature framework that allowed different 

technologies to be specified through the use of libraries.  While Openflow was seen by 

SPARC as being less flexible than ForCES, the overall architecture for Openflow was 

simpler and provided a clearly defined nodal model. Openflow had more support than 

ForCES from both industry and research communities so it was less likely to be dominated 

by vendors or by theoretical academic interests. Openflow was selected by SPARC as the 

basis for its Split Architecture. 

2.1.5  SDN in Access Networks 

EU FP7 project SPARC (Split Architecture) [60] was an early project to demonstrate both 

SDN in the Access and Aggregation network as well as a prototype of Network Function 

Virtualisation, through a Virtual Home Gateway [61] and a Virtual BRAS. [45] There are two 

(so-called) splits in the SPARC architecture. Firstly, there is the split between the Control 

and Data planes that allows the data and control planes to evolve separately from each 

other. The data plane extends reach, connectivity and bandwidth, while the control plane 

enhances service creation, control and delivery. Secondly, there is the split between the 

forwarding and processing elements. In a traditional telco network, these functions are 

distributed throughout the network, for example at DSLAMs and customer home gateways 

with the result that these functions become isolated and degraded, though lack of 

manageability and enhancement. The split in forwarding and processing elements, is 

familiar in the concept Network Function Virtualisation, where simplified forwarding 

components at the level of data plane are located in the field or remotely, with the 

processing elements concentrated in either data centre or central office environments. 

SPARC respects the separation between access/aggregation and backbone/core networks, 

and leverages standard IP/MPLS control protocols such as OSPF, LDP, RSVP-TE and BGP 

to provide the necessary glue between control domains.  

Another EU-FP7 project OFELIA, though while not primarily looking at SDN in the access 

network, demonstrated the evolving use of SDN and particularly Openflow in the Wide Area 

Networks and the effect on traditional carrier networks [62]. OFELIA demonstrated Optical 

Wavelength switching, Optical Flow Switching [63] and Multi-service technology control. 

Associated projects such as EU-FP7 project ALIEN presented a generic model using 

abstraction in the data plane to allow a wide range of access devices based on FPGA’s and 

Network Processors to be controlled using Openflow. 

An access network controller is associated with every metro/core node, where it controls 

the optical switch, access switch, and OLTs/ONUs. The access controller sends abstracted 

topological information about the resources available within its domain. Where access 
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protection is required, the controller handles incoming failure messages from the OLT to 

operate fast protection. Moreover, the access controller receives provisioning requests from 

the orchestrator and reports the service setup status. Finally, the access controller should 

be able to carry out path computation, because the network orchestrator can request a path 

computation.  To do so, the physical domain information have to be obtained from the 

network elements and mapped in the abstracted view. Similarly, the provisioning of 

abstracted services is map in real configurations. Therefore, the access controller maintains 

information on bandwidth availability within the access switch and each OLT. Besides, it 

configures the network elements (access switch, optical switch, OLT, ONU/ONT) depending 

on its specific requirements.  

 

2.2  Network Performance and Quality of Service 

2.2.1  Causes of Poor Performance 

TCP performance 

TCP assumes that packet loss is caused by network congestion, and not by transmission 

errors. In the earlier variants of TCP, congestion was signalled by dropping packets [64]. 

TCP also assumes that there is only a small amount of jitter so Round Trip Time (RTT) is 

relatively constant. Any path alteration due to rerouting or switching needs to happen very 

quickly.  

In most recent versions of TCP, a host can transmit a sequence of packets called a window. 

A new packet cannot be sent until a slot in the current window is available. Each TCP packet 

that is send has an associated count-down timer. If by the time the time expires an 

acknowledgment is not received, the sending host assumes that either the packet or its 

acknowledgment have been lost or corrupted. The sending host retransmits the packet. The 

purpose of Flow Control is to prevent flooding of a receiver’s buffers. A sliding window is 

the mechanism which is used. A sender can send more data than the window advertised 

by the receiver, until the window is updated. A persist timer prevents TCP deadlock if the 

window is not updated by the receiver. The TCP sender will recover from a potential 

deadlock situation, when the persistence timer expires, by sending a small packet to the 

receiver so that the receiver can respond by sending an acknowledgement containing the 

new window size. Flow Control is similar in operation but contrasting in objectives to 

Congestion Control which prevents a transmitter from pushing too much data on to a 

network. With Congestion Control, a senders infers information about network conditions 

from the acknowledgements or lack of them between the sender and receiver.  

TCP transmit and congestion windows increase with the increase in latency along the TCP 

path. With large windows, TCP can transmit a lot data with outstanding acknowledgments. 
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If the TCP transmit window is 2 MB, TCP will push 2 MB of data at the full network interface 

speed out to the network, so every device along the path experiences a high-speed burst 

of packets. Any issues related to buffering or packet loss causes TCP to back-off. This 

causes quite a marked decrease in throughput and performance. However, in low latency 

networks, TCP windows are small in comparison. Any similar issues related to queuing and 

packet loss are identified quickly, but also because the windows are smaller, the effect of 

TCP recovery is negligible. For a high latency network with inadequate buffers, there is a 

high chance of a buffer saturation due to large bursts of data.  The TCP connection goes 

through a continuous cycle of recovery and congestion avoidance, or worse, may be in a 

continuous state of recovery with sub-optimal windowing and transmission rate. However, 

for low latency networks, while there might be frequent packet loss due to buffer saturation, 

identification and recovery is much quicker, so the effect is more negligible. 

Buffer Congestion  

A network node such as an Internet router or switch typically maintains a set of queues, 

generally one per interface, that hold packets that are scheduled to go out on that interface.  

The original queuing discipline was the Drop-tail discipline which enqueues the packet if the 

queue is shorter than its maximum size (measured in packets or in bytes). Otherwise it is 

dropped. A router buffers as many packets in a fixed length buffer. Any excess packets are 

dropped. Whenever the network is congested then router buffers are constantly full. The 

Drop Tail algorithm has a number of disadvantages. Firstly, some TCP flows, such as bursty 

traffic that use only a small portion of the bandwidth, may hog buffer space. Secondly, the 

Drop-tail algorithm on similar types of routers across the Internet can lead to TCP global 

synchronization where all TCP connections in a network are held back and then released 

through timeout, leading to the anomaly of the Thundering Herd.  . 

Random Early Detection (RED) is a congestion avoidance algorithm as well as an active 

queue management algorithm which attempts to overcome global synchronisation by 

dropping packets based on statistical probabilities[65]. Active queue management (AQM) 

drops packets with a probability proportional to how full the queue is. Even if the buffer is 

partially full, packets may be dropped, albeit with a small probability. As the buffer fills up, 

the probability of enforced packet drop also increases, however there is no fixed threshold 

at which packets are dropped. The more traffic a host transmits, the more likely it is that its 

packets are dropped, as the probability of a host’s packet being dropped is proportional to 

the amount of data it has in a queue.  

Explicit Congestion Notification (ECN)  is a IP extension that is an alternative to dropping 

packets as a means of detecting congestion [66]. For it to work, it requires the co-operation 

of routers along the IP path as well as the terminating points. When an ECN-aware router 

detects impending congestion at its interfaces, it sets a flag in the header of transiting IP 
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packets instead of dropping a. The receiver of the packet echoes the ECN flag back to the 

sender, which should adjust it’s transmit rate downwards. 

Bufferbloat 

There are many locations in a TCP data path, where traffic may be buffered. These include 

network devices such as core and edge router nodes, broadband Remote Access Servers, 

customer premises equipment such as broadband routers and laptop network stacks as 

well as hosts within data centres.  Buffers are judiciously placed at ingress ports to help 

absorb (without packet drops) any transient bursts of bandwidth that may occur on the traffic 

links.  

Logically, a buffer should be equal to the TCP congestion window which will vary with the 

Round Trip Time (RTT) of a TCP connection [67]. Typical RTT between sites within the 

same region is  20  milliseconds, between sites on the same continent is 100  milliseconds 

and between different continents 200  milliseconds [68].  The guideline for the network 

equipment manufacturers is to provide buffers large enough to accommodate at least 250  

milliseconds worth of traffic passing through a device [69]. For example,  the 1 Gbps 

Ethernet interface on a router would require a  buffer of 32 MB in size. If buffers are not 

adequately large then TCP sessions with long Round Trip Time can experience excessive 

packet loss and TCP bandwidth reduction [70].  

The TCP congestion avoidance algorithms rely on either packet Round Trip Times or packet 

drops to set the congestion window and the data throughput for a TCP connection. Where 

packets are buffered rather than dropped, the congestion algorithms do not alter their 

congestion windows appropriately.  As a consequence packets which have been subjected 

to long or variable buffering may arrive with either high latency or jitter.[71]. The problem of 

continuously filled buffers which do not dissipate normally and function in a manner counter 

to their original purpose, that is, to improve Quality of Service, is called BufferBloat [22]. 

Since it is quite common in the downstream network path for network elements to high-

bandwidth ingress links and low-bandwidth egress link, Bufferbloat problem is exacerbated 

by traffic bursts on the high-bandwidth ingress links that can fill up the buffers without giving 

them a chance to be drained by the low-bandwidth egress links [70]. For example, a buffer 

which is 1Mbyte in size takes 2 seconds (1000Kbytes/(8bits per Byte / 4Mbps) to empty 

through a 4 Mbps pipe.  

This buffering effect affects UDP (that is non-TCP) applications as well, since application 

which require different mixes of latency and bandwidth all share the same traffic links. The 

effect is that Mpeg compressed video can suffer missed frame synchronisation, DNS 

resolver requests may time out.  Gettys, the original proponent of the BufferBloat concept 

criticised equipment for including unnecessarily large buffers due to the availability of 

inexpensive high density Dynamic RAM (DRAM) [22]. 
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2.2.2  Remediating Bufferbloat 

Classical AQM algorithms based on RED  try to identify Bufferbloat by gauging how full 

buffers become. There are two problems with approaches based upon RED based AQM 

algorithms [72] . Firstly, buffers may fill up for legitimate reasons other than through 

Bufferbloat. Buffers may fill up due to short spurts of high volume traffic and then dissipate 

normally. These are called Good Buffers. Secondly, such algorithms do not facilitate 

remedial actions for TCP traffic streams buffered for long periods, as they do not 

discriminate based on the age of data in the buffer.  

CableLabs evaluated a number of solutions that remediate the Bufferbloat issue[73]. They 

looked at two Saturated Tail- Dropping approaches (Saturated Tail-Dropping Queues with 

large buffer depths and Saturated Tail-Dropping Queues with short buffer depths optimised 

with Buffer Control ECN, feature  set to depths equal to the expected Bandwidth-Delay 

Product) [74]. Both of these algorithms perform simple dropping of packets whenever 

queues reach their maximum size, but they do not respond quickly to queue build-ups nor 

can they be forced to drop a sufficient number of packets once queue saturation is reached. 

As a result, Saturated Tail-Dropping systems cause BufferBloat for some latency-sensitive 

packets. The SFQ-CoDel establishes different queues per service group packet flows, 

which are identified as hash codes calculated from flow tuples. These hash codes direct 

different packet flows into different queues, which are serviced in a round-robin fashion. 

While performance is good, but performance suffers if there are hash collisions that causes 

two separate flows into a single queue. It is for this reason, SFQ has been enhanced with 

the CoDel algorithm which drops packets when performance may have degraded because 

of the issue of hash-collisions.   

Both CoDel [71] and PIE  [75] try to pre-empt buffer saturation by either dropping packets 

or throttling high-bandwidth flows. They do this well in advance of the Saturated Tail 

algorithms. Similar to RED, PIE randomly drops a packet at the onset of the congestion, 

however, congestion detection is based on the queueing latency (similar to CoDel) unlike 

the queue length in conventional AQM schemes such as RED.  PIE uses a combination of 

latency moving trends and whether latency is increasing or decreasing to determine the true 

levels congestion. The CoDel (Controlled Delay) scheduling algorithm determines if a queue 

is good disciplined or bad based on the minimum age of packets in the queue. A good 

queue is where the minimum age of a packet is less than 5 milliseconds. For this algorithm 

to work, the timestamp of when the packet entered the queue must also be stored. When a 

packet is dequeued with an age greater than 5 milliseconds for a given window, the 

algorithm drops the packet. CoDel can infer buffer depths from the measured packet delays. 

The advantages of the CoDel algorithm are that the monitoring and the action of the 

algorithm require little processing overhead and require no additional configuration 

parameters. No action is taken against packets within a Good disciplined queue. The 
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disadvantage of CoDel is that it requires changes to data structures within the queuing 

mechanisms of host and routing devices. The CoDel queuing discipline has been available 

from Linux version 3.5 (2012).   

The BDP (Bandwidth-Delay Product) is defined as the maximum amount of data that has 

been transmitted but not yet acknowledged on network connection at any point in time. It is 

calculated as a product of a data link's capacity measure in bits per second and its RTT 

(round-trip delay time measured in seconds). A network with a large BDP value is called a 

Long Fat Network. On a homogeneous network, the BDP would be equivalent to the product 

of the transmission speed of the egress port on the network element multiplied by the RTT 

currently being experienced by the TCP connection (with units of Bytes). Each elements 

assumes that its own egress link bandwidth capacity is the highest transmission rate that 

the TCP session will experience, and sets its buffer depth accordingly. However, this is an 

incorrect assumption since links, port speeds and Round Trip Times are not homogeneous 

along the path of the TCP connection. With one buffer size being defined for a single shared 

buffer which caters for multiple flows, the buffer is typically not apportioned based on the 

RTT of each flow [22]. 

2.3  QoS Frameworks 

Besides specific events such as buffer saturation and Bufferbloat, network termination 

devices require the ability to request and be given a particular Quality of Service. Examples 

of Quality of Service parameters are that jitter, delay or packet loss are within give bounds.  

QoS frameworks are typically categorised by how they deal with this complexity and 

scalability as well as service differentiation. IntServ is the model architecture for IP based 

QoS guarantees. IntServ (RFC 1633 )[76] configure every router in a small network run by 

a single operator, where end users traffic patterns are predetermined [76]. The Resource 

Reservation Protocol (RSVP) adapts the IntServ model for dynamic QoS provision of real-

time/interactive traffic over larger and more complex networks [77].The RSVP protocol uses 

signalling messages along the network path between sender and receiver, with each node 

along the path interpreting RSVP and storing QoS state information for each flow requesting 

resources. End hosts (or their proxies) should also interpret the RSVP protocol. IntServ 

(Integrated Services) provides three levels of Class of Service, which are Guaranteed 

Service, Controlled-load Service and Best Effort. The down side of IntServ is that it is 

complicated and resource intensive [76].  

In contrast to IntServ which deals with single flow instances, DiffServ [78] reduces the 

volume of the required flow state information in routers by dealing with flow aggregates [79]. 

Each edge device must set the appropriate DSCP bits based on the network’s current QoS 

policy. DiffServ enabled nodes are required to inspect the DSCP and respect the required 

QoS appropriate for that particular class of service. Exterior nodes of a DiffServ domain 
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implement may admission control blocking. Interior nodes do not track individual flows but 

must be provisioned to handle the actual classes of service which are provided inside the 

domain. Overall, DiffServ assurances are statistical in nature so there is not an explicit 

alignment between the QoS requirement requested by an end application and the QoS 

delivered by the network. This makes DiffServ appropriate to networks with larger cores 

compared to IntServ. DiffServ (Differentiated Services)  Blake, Black, Carlson, Davies, 

Wang and Weiss [79] provides three levels of service also, Expedited Forwarding, Assured 

Forwarding, Default Forwarding. Expediting Forwarding is employed where there is a need 

for low loss, low latency, low jitter, and assured bandwidth end-to-end services. IntServ 

treats different classes of packets in a different manner. 

In contrast to IntServ and DiffServ which are still criticised for remaining dumb and 

increasing protocol management and overheads and make QoS decisions based on the IP 

packet header, MPLS makes QoS (and routing) decisions, based on short fixed length 

(shim) label in the packet header [4] [80]. Where the label matches an entry in a routers 

forwarding table, the packet may be forward along an explicit Label Switched Paths (LSPs) 

[81]. An LSP may support a class of service or aggregate particular network resources. 

MPLS configures an end-to-end path between routers and simplifies QoS classification and 

management [82] MPLS Switching based on Label forwarding enables a higher packet 

processing rate because the forwarding component of the router is simpler. However, every 

node along a network path must know what MPLS labels map to a particular class of 

service. This is similar to every node in a DiffServ network being aware of the mapping 

between DSCP bits and the Class of service. 

The NGN Flow-State-Aware Transport mechanism uses DiffServ flow-aggregation in the 

Core and QoS mechanisms at the edge that are based on individual flows. While the Flow-

state-aware transport technology is relatively similar to IntServ, it uses flow aggregations 

and is thus more scalable and less complex. NGN typically separates services from the 

underlying separating transport layer, so when a transport link  carries QoS guaranteed 

traffic, an FSA node needs to guarantee a certain part of the link capacity for the flow-state-

aware traffic [83]. Flow-Aggregate-Based Services   enhances NGN Flow-State-Aware 

architecture and addresses three distinct types of congestion - instantaneous (packet-level) 

congestion, sustainable (flow-level) congestion and congestion avoidance. Instantaneous 

congestion is mitigated through the proper aggregation of flows and discard of packets. 

Sustainable congestion is resolved through rate limiting, and admission flow discards. Flow-

aggregate-based services introduces inter-domain flow aggregation and endpoint implicit 

admission control. DiffProbe is used to estimate congestion in the network. 

Overall, QoS frameworks may be distinguished by whether they require signalling or not. 

Both Connectionless approach and FAN do not require any signalling and do not offer much 

service differentiation. IntServ, Flow-State Aware and Flow-Aggregated-Based Services 
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outline in depth how to use signalling and offer greater differentiation, with numerous 

parameters to be assigned to each flow and multiple classes of service. Signalling is 

relatively complex limiting the scalability.  

2.4  Flow-based QoS Frameworks 

Almost all flow-based QoS architectures understand the concept of a traffic flow, either as 

the object or component of an object subject to defined quality metrics, such as a stream of 

related packets from a single-user activity such as a single video stream or voice 

transmission.  

IETF defines a flow as a unidirectional sequence of packets with some common properties 

that pass through a network device, with flow classifiers based on the 5-tuple of the source 

and destination addresses, ports, and the transport protocol (either TCP or UDP) used for 

transmission.  

In the IntServ QoS framework, traffic related to a single service is classed as a flow. Routers 

in the traffic path must treat all packets within the flow equally with the same QoS. In the 

Connectionless QoS framework, a flow is defined as a stream of packets between two client 

server applications. A user may create multiple flow instances in the network which must 

be treated individually. In both the DPS and Feedback and Distribution QoS frameworks, 

there is a clear distinction between UDP and TCP flows, with a single user session defined 

by the standard 5-tuple. In flow-based differentiated QoS frameworks, a flow is regarded as 

an aggregate of all transmissions between the same end users, defined by unique pair of 

source and destination IP addresses that belong to the same class of service defined by a 

value of the DiffServ field (DS field) [84]. Where NAT obfuscates multiple sessions within a 

single flow, the source destination pair would be identical. Similarly, NGN-based flow QoS 

frameworks, such as Flow State Aware transport and Flow-Aggregated-Based Services 

define a flow based on a unique pair of source and destination IP addresses that belong to 

the same class of service defined by a value of the DiffServ field or MPLS field. The 

Connectionless Approach overcomes the scalability issues of the IntServ model, by using 

an Automatic Quality of Service mechanism instead of using the RSVP protocol [85]. The 

AQS mechanism profiles the network traffic in real-time and defines the end-to-end QoS 

along the path of the traffic. The approach is scalable since it does not use signalling 

between nodes. However, in order to manage router bandwidth it retains the IntServ Model 

classifier, admission controller and scheduler. As a result, Traffic handling capability is 

reduced because of the complex processing performed at each node. Because the QoS 

logic is executed autonomously at each individual node, it is not possible for end users to 

differentiate their bandwidth in advance, through service upgrade nor downgrade. 

Connectionless approach is also open to abuse by users that try to imitate other traffic types. 
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Dynamic Packet State (DPS) adopts the IntServ QoS admission control and scheduling and 

obviates the need for per-flow states in core routers [86]. The edge router inserts per-flow 

QoS classification into the IP packet header which can then be read and updated by all 

(including the core) routers in the path of the traffic. DPS approach is scalable in the core 

of the network, but has a number of limitations. The IP header is being modified according 

to the CJVC (Core-Jitter Virtual Clock queueing algorithm) and requires proprietary router 

firmware. The manipulation of the IP header makes the real-time data handling more 

complex. Because the router firmware for the modified IP functionality must be pervasive 

throughout the network, the architecture cannot be introduced gradually into the network, 

but done in so as part of a step change. 

The Feedback and Distribution Method is a hybrid QoS framework similar to DPS, but 

designed specifically for a client server network, with traffic being generated predominantly 

from the server side [87]. It has the per-flow traffic regulation of IntServ and the simplified 

core architecture of DiffServ and does per-flow-based QoS differentiation, by marking the 

traffic and the server side and profiling the traffic and the receiving client side. The traffic 

marker assigns one of two levels of priority, either high or low,  to  a flow.  A profile meter 

gauges if a flow is received with the required priority. When a high priority flow starts to 

experience congestion, the profile meter feeds a signal back to the traffic marker to drop 

packets related to low priority flows. This lasts until such time as the quality of service related 

to the high priority flows is re-established.  Flow-Based Differentiated Services  implement 

a flow based proportional QoS scheme based on three additional modules: a flow estimator 

for the number of active flows; a dynamic weighted fair queuing scheduler and a queue 

manager [78]. While Flow-based DiffServ has the advantage of retaining the scalability 

features of the basic DiffServ, it also retains the disadvantages of a limited number of Class 

of Service (CoS) and the difficulties in maintaining CoS service across domains.  

Flow-Aware Networking provides differentiation based on the current flow peak rate while 

protecting low-rate flows[88]. Admission Control maintains the quality of existing flows while 

restricting new flows (of all priorities) until network congestion has improved. The 

functionalities for measurement-based admission control and fair scheduling with priorities 

that control link sharing and other traffic management mechanisms are implemented in a 

custom router called a  Cross-Protect (XP) Router [89].  The XP Router does not require 

signalling between routers, the QoS calculation algorithms are lightweight so there is low 

processing overhead [90].  

2.5  How Network Performance is Benchmarked 

Many operators provision their network, and thus prioritise capital investments, based on 

either peak period traffic volume or a measure of the per-subscriber bandwidth at peak (or 

peak hour, or peak period) [91]. A number of operators use additional metrics to optimise 
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where and when capital investments should be made [92]. Two metrics that suit this 

objective are round-trip time (a measure of network latency) and video quality of experience. 

Video quality can test all dimensions of the quality of delivery of service in terms of Display 

Quality (how good the picture looks e.g. the target bitrate and resolution)  and Transport 

Quality (how often the picture stalls and rebuffers). However, not all Internet video behaves 

in the same manner. Progressive video takes the user’s request for a particular level of 

quality and starts downloading the file. In a progressive download, the video usually does 

not start playing until the buffer has grown large enough to ensure stall-free playback. 

Adaptive video takes a different approach, achieving transport quality at the expense of the 

display quality (to the viewer, this manifests as down-shifts and up-shifts in display quality). 

The effect of poor network performance on businesses can be quite stark. Quantitatively, 

Amazon has estimated that each 100 milliseconds of  network latency between its 

customers and its services costs them 1% in sales annually [93].  

There are two main standards for benchmarking throughput for internet (packet) based 

devices: IETF RFC2544 and ITU-T Y.1564. RFC2544  is the base standards for determining 

Throughput, Latency, Frame Loss and Back-to-back frames performing tests, on Devices 

Under Test (DUT), for a range of standard frame size (64, 128, 256, 512, 1024, 1280 and 

1518 bytes). Back-to-back frame testing involves sending a burst of frames with minimum 

inter-frame gaps to the DUT and count the number of frames forwarded by the DUT. If the 

count of transmitted frames is equal to the number of frames forwarded the length of the 

burst is increased and the test is rerun. If the number of forwarded frames is less than the 

number transmitted, the length of the burst is reduced and the test is rerun. The back-to-

back value is the number of frames in the longest burst that the DUT will handle without the 

loss of any frames. Some of the criticisms of RFC6815 are that its main purpose is to 

benchmark network equipment not to turn up services, it can’t be used for determination of 

QoS characteristics such as Committed Information Rate (CIR) and it does not measure 

Inter-frame delay variation (IFDV) commonly known as Jitter. The more recent ITU-T 

Y.1564 (EtherSAM) standard was created within the context of Ethernet service activation 

based on the service attributes used by service providers to define their SLAs. EtherSAM 

is comprised of two phases, the service configuration test and the service performance test. 

The service configuration test consists in sequentially testing each service. It validates that 

the service is properly provisioned and that all SLA parameters (throughput, frame delay, 

frame loss, frame delay variation) are met. A ramp test and a burst test are performed to 

verify the committed information rate (CIR), excess information rate (EIR), committed burst 

size (CBS) and excess burst size (EBS). Once the configuration of each service is validated, 

the service performance test simultaneously validates the quality of all the services over 

time. In this phase, all services are generated at once at their CIR, and all KPIs are 

measured for each service.  
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2.6  Data Plane Design 

Figure 6 shows the logical architecture of the state of the art Data Plane that spans the 

network between two end points which may be a Data Centre Traffic source and an end 

user.  

 

Figure 6 - Multi-layer Traffic Conditioning 
 

Traffic management parameters and rules that are applied to user generated traffic streams 

are defined by a TCA (Traffic Conditioning Agreement). The TCA describes the various 

networking mechanisms required in order to handle packets according to a required QoS 

(Quality of Service). TCA is usually subject to an underlying Service Level Agreement (SLA) 

provided by the Network Layer [79].The primary mechanisms used by QoS include traffic 

classification, call admission, regulation, policing and shaping.  Secondary mechanisms 

include signalling, routing and flow control.  These mechanisms are invoked in the provision 

of a typical CoS (Class of Service) scenarios.  In particular, admission control, traffic policing 

and shaping, packet scheduling, and buffer management, are used, and are coupled with 

flow and congestion control and routing [94]. Admission Control is the function that allows 

connection to the network.  Packet queuing involves the buffering, queuing and servicing of 

packets throughout the buffers along the length of the network. Depending on the 

appropriate servicing discipline or policy, Queued packets may be dropped or scheduled. 

In a multi-layer network composed of metro, access, edge and core layers, it is appropriate 

to apply QoS (and traffic management) functions at particular layers.  

Admission Control, traffic policing, shaping and sometimes buffer management are found 

in the access or edge layers.   Scheduling, buffer management and sometimes shaping and 

regulation can be found in the metro or the core networks. Packet flow handling is found 

throughout the various layers. 



Chapter 2. State of the Art 

37 
 

2.6.1  Traffic Conditioning 

Class of Service, Type of Service, QoS and Traffic Management are used to balance 

utilisation of constrained processing resources with meeting the demands of concurrent 

differing service streams, usually in a packetised environment. Generally, they interwork 

with each other, but are invoked under different conditions. 

Traffic Management  provides congestion management, queuing algorithms, prioritisation 

and merging of network traffic for large numbers of flows [95]. It forwards traffic according 

to a user-defined set of rules pertaining to priority levels, latency and bandwidth guarantees, 

and varying congestion levels. Traffic Management prevents network congestion using the 

techniques of traffic measurement, policing and shaping.  At a granular level the 

mechanisms such as Transmit priority, bandwidth allocation, Call Admission Control (CAC), 

congestion avoidance, and selective packet loss are employed.  Traffic management can 

sometimes be called Traffic Conditioning or Traffic Access Control [79].  On the ingress line 

card, WFQ (Weighted Fair Queuing) allows packets from lower priority queues to be 

interleaved with higher priority traffic into the switch fabric. This prevents the higher priority 

traffic from completely blocking the lower priority traffic, since the queues are guaranteed 

access to the switch fabric for a predefined proportion of the time.  

Traffic policing prevent either inadvertent or deliberate traffic surges which overload network 

end-points and intermediate network elements.  It does this by analysing and measuring 

traffic characteristics in real-time.  There are a number of responses that are possible should 

the requisite policy limits be breached. The traffic may be tagged and routed separately 

from other traffic or the traffic may be dropped in extreme circumstances.   

Traffic engineering avoids or reduces congestion by controlling traffic paths in a network 

and routing traffic along non-default routes in a congested network. This has the benefit of 

optimising network resources such as link bandwidth utilisation in and out of the Metro 

Node.   In order to do this, Traffic Engineering need to be capable of measuring the capacity 

of possible flows or maximizing the flows in a given network [96].  

Admission control is a type of traffic policing that prevents traffic with a particular 

characteristics, to regions of the network.  Two end-points of a transport link agree flow 

control parameters that ensure that both stations are not over-burdened by traffic, 

particularly to the extent that packets are dropped. Traffic shaping by an intermediate 

component such as a Network Processor supports desired flow-control traffic characteristic 

such as desired rate and burstiness. It does this by regulating the volume of packets 

released into the network using a combination of buffering, metering and smoothing.  

Depending on a given shaping or scheduling algorithm, packets may be forwarded to 

appropriate queues, and then scheduled for transmission according to the conditions of the 

lines, the receivers, and the priorities appropriate to that these packets [97].  
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2.6.2  Network Node Structure 

In a network node such as an Internet router or switch, traffic needs to transit the node with 

the minimum of delay and interference as possible. Flow processing is the function where 

the characteristics of flows of very many packets are manipulated over time. These 

characteristics include QoS (Quality of Service) and CoS (Class of Service), which align to 

a cut-through switching architecture. Cut-through switching is a method for packet switching 

systems, wherein the switch starts forwarding a frame (or packet) before the whole frame 

has been received, normally as soon as the destination address is processed. It is only in 

rare circumstances that entire individual packets are processed (for example, where they 

rewritten or compressed) and require store and forwarding.  

Modern switch architectures employ Virtual Output Queuing (VOQ). VOQ, in conjunction 

with a scheduling algorithm to eliminates blocking issues, such as Head-of-Line blocking, 

input blocking, and output blocking [98]. HOL blocking wastes nearly 50% of crossbar 

switch's bandwidth if the cells waiting at each input are stored in a single First-In, First-Out 

(FIFO) queue. To implement scheduling algorithms requires signalling and a switch fabric 

runs faster than the line speed of the interfaces. A 10GE line card that supports 15 Gbps to 

the switch fabric offers 50 percent “speedup”. Where the crossbar switch runs twice as fast 

as the external line, the traffic manager can transfer two cells from each input port, and two 

cells to each output port during each cell time. 

The functionality that needs to be implemented at a Network Node includes Admission 

Control, Classification, Marking/Policing, Shaping and Scheduling. All incoming packets 

needs to be Error Checked and (re-)assembled. Rudimentary address lookup must be 

performed and Traffic management polices applied. For outgoing packets, checksums must 

be calculated and traffic shaped prioritised and queued. 

In order to perform switching, routing and access control validation, the packet needs to be 

classified by performing a match against classification tables in its local control plane 

processor. The classification table is a special memory used by the packet processor, and 

contains routing table determines where to route incoming packets, Access Control Lists 

(ACLs) which grant or deny permission to specific users or groups and flow classification 

table about a particular user or group of users, protocols, and applications.   A Simple   Layer 

2 or Layer 3 switch classifies traffic based on the Layer 2 Header (such as the Ethernet 

header and the VLAN tags) or the Layer 3 Header (which may be either IPv4 or IPv6). Older 

architectures would use sequential look-up trees to perform the match, while newer 

architectures store the tables in TCAM (Ternary CAM) which allows matches to be executed 

in a few clock cycles.  
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2.6.3  Architectural Constraints 

There are a number of situations in the transit of a packet through a Router or Switch where 

it may suffer processing constraints, most notably in the Ingress packet buffer, during packet 

classification, Crossbar switch and backplane interconnect, Traffic Management, Multicast 

replication and queues and during interaction between the Route processing and the 

Control plane [99]. Table 1 shows the loading effect on the central process by a number of 

typical layer 2 and layer 3 traffic processing scenarios.   

Scenario Activity Action Level of 
Loading 

A Full Duplex layer 2 performance and 
latency 

Packet 
Forwarding 

Very Low 

B Layer 2 QoS 
throughput & latency test 

Traffic 
Management 

Medium 

C Layer 3 (IPv4) with ACL 
performance & latency test 

Ingress Packet 
Buffer 
Packet 
Classification 

Medium 

D Layer 3 (IPv4) 
with QoS & ACL 
performance & latency test 

Ingress Packet 
Buffer 
Packet 
Classification 
Traffic 
Management 

Medium 

E Mesh L3 IPv4 with ACL performance 
& latency 

Packet 
Classification 
CrossBar 

Medium 

F Mesh L3 IPv4 with QoS and ACL 
performance & latency 

Packet 
Classification 
Traffic 
Management 
CrossBar 

 

Table 1 - Loading Scenarios 
 

Scenario A demonstrates full duplex with traffic transmitting in both directions. The DUT 

(Device under Test) must perform packet parsing and Layer 2 address look-ups on the 

ingress port and then modify the header before forwarding the packet on the egress port. 

This scenario does not present loading on any components of the router or switch. Scenario 

B determines the DUT’s maximum Layer 2 forwarding rate with packet loss and latency for 

different packet sizes. The DUT must perform a Layer 2 address lookup, check the 802.1p 

priority bit value on the ingress port, send it to the designated queue, and then modify the 

header before forwarding the packet on the egress port. This scenario presents medium 

loading on the Traffic Management module. Scenario C determines the DUT’s maximum 

IPv4 Layer 3 forwarding rate with packet loss and latency for different packet sizes. The 

DUT must perform packet parsing and route look-ups for both Layer 2 and Layer 3 packets 

on the ingress port and then modify the header before forwarding the packet on the egress 
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port. The ACL test involves blocking or allowing traffic through, based on user-defined 

classifiers such as IP addresses or Layer 4 port numbers. This scenario presents Medium 

loading on the Ingress Packet Buffer and Packet Classification modules. In Scenario D, 

QoS values in each header will force the classification of the traffic based on IP Type of 

Service (TOS) field settings. On the ingress side, this QoS policy could also be used for 

assigning a packet to a specific queue, packet metering, and policing; on the egress side, 

it could be used for packet shaping.   This scenario presents Medium loading on the Ingress 

Packet Buffer, Packet Classification and Traffic Management modules. 

It is apparent that every packet that crosses a router’s interface must be read at Layer 3 

and a new MAC header must be created. Reading a packet’s Layer 3 addressing 

information and creating a new MAC header causes latency. In contrast, when a packet is 

switched through a network, the Layer 2 address is read and the packet is forwarded, 

filtered, or flooded. The MAC header is not recreated and this dramatically reduces latency.  

To emphasise the scale of computing that a processor would have to complete, Giladi [96] 

gives an example of 1 Gbps Ethernet handling about 1 million packets per second. For each 

packet, classification based on complex parsing would be executed. Typically, this might 

involve retrieving both the destination port and its IP address. In some cases, for some 

destination ports this could mean identifying field in layer 7 Protocol Data Unit (PDU), at an 

offset depending on the destination port.  On from which, there could be one or two searches 

to be executed to retrieve a destination IP address and port. A search would be conducted 

among hundreds of thousands of possible addresses, and a longest prefix match is 

matched. Ignoring packet modification and forwarding processing times, all these parsing 

and searching activities would have to take place in less than 1 microsecond.  The Von 

Neumann architecture does not efficiently support this set of sequential and parallel 

miniature processing steps and data flows.  

Jitter, packet loss and latency can be caused by a build-up of data in the ingress packet 

buffer. The packet buffer is a temporary repository for arriving packets while they wait to be 

processed by Packet processing function. This may be caused by sub-optimal efficiency 

and architecture of the packet processor, or multiple ingress ports on a switch/router 

contending for an egress port. To prevent buffer overflow, the packet processor issues a 

flow-control instruction to the upstream MAC device, instructing it to stop passing packets, 

which then transmits a “pause” to remote ports requesting them to suspending sending 

packets. Where the buffer continues to fill-up, the MAC device will start to drop packets. An 

ingress packet buffer being fed by a 10GE MAC device continuous packet stream would 

have to dequeue packets every 67 ns in order not to saturate. During times of congestion, 

the traffic manager may need to make discard decisions based on the availability of queue 

space, priority, or destination port, using a packet discard algorithm like Random Early 

Detection (RED) or Weighted RED (WRED) for IP traffic.  The worst case performance for 
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small (64 Byte) Ethernet packets through a 10G/E interface are 14.88 Million IPV4 

Packets/Sec, and 12.25 Million MPLS IPv4 Packets/Sec. 

2.7  Tree Networks 

We see examples of research into large scale layer 2 networks in the Telecoms world as 

well as in Data Centres. In Figure 7, EU FP-7 Project SPARC uses MPLS labels to bind 

service provider and customer groupings together [60]. In Project NANDO (Neutral Access), 

network slicing is created using  VLANs [31]. This provides the benefit of simplicity from the 

perspective of encapsulation and working across different media, however it has a 

significant downside. Inclusion in the VLAN is based on a service provider-supplied 

secondary MAC address that must be associated with each device that requires access.  

 

 

Figure 7 - EU FP7 SPARC (left). Project NANDO (right) 
 

Substantial progress on creating flat, large-scale Layer 2 networks has been achieved in 

the area of Data Centres. In modern Data Centres, not only are there tens if not hundreds 

of thousands of physical machines, but each machine may have up to twenty tenant virtual 

machines. Each of these virtual machines must be addressable through a distinct layer 2 

MAC address.  There are different strategies referenced in the literature [101]. These 

include IEEE TRILL Shortest Path Bridge (SPB), VL2, Portland, SEATTLE, Hedera, and 

BCube which span the gamut of what is currently being tested and going through 

standardisation.  Figure 8 shows the topology of the first four of these. TRILL uses a layer 

2 link state protocol to identify the shortest paths between switches on a hop-by-hop basis, 

and load balance across these paths. This enhances scalability, allows loop-free multipath 

topologies and reduces excessively large MAC address tables (approaching 20,000 entries) 

that must be discovered and updated in conventional Ethernet networks. Shortest path 

bridging (SPB) is a layer 2 standard (IEEE 802.1aq) that attempts to address the same 

basic issue as TRILL, albeit in a slightly different approach. It uses the IEEE 802.1ah PBB 

provider link state bridging. The 802.1ah frame format provides a service identifier that is 

completely separate from the backbone MAC addresses and the VLAN IDs. This separates 

the connectivity services layer from the physical network infrastructure.   
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Figure 8 - Layer 2 Datacentre Architectures (Trill, SPB, VL2, and Portland) 
 

VL2 uses a CLOS network topology with Valiant Load Balancing (VLB) with traffic being 

sent to random intermediate switches, resulting in small forwarding tables and hosts which 

can be independent of location in the data centre.  Each Core switch is given the same 

Anycast address and  ECMP is used to select a random shortest paths.  OSPF builds 

forwarding tables between the switches, each of which is assigned a location-specific IP 

address.  Real servers have Application-specific IP addresses so a centralised address 

manager is needed to maintain the mappings between Application and Local IP address 

mappings.  In order to route on Local Addresses and deliver based on Application specific 

Addresses, IP-in-IP encapsulation is used. This requires a layer 2.5 stack which runs on 

each host in the VL2 regime that consults the Address Manager for the mapping between 

the Application and Local IP address mappings prior to transmitting packets.  

Portland uses a fat tree topology with pseudo or position-based MAC (PMAC ) addresses 

to achieve a very compact routing state [102]. Top-of-the- Rack (ToR) aggregation switches 

are grouped together in pods, with every core switch being connected to every pod through 

a single link. Each Virtual Machine and real host is assigned a pseudo MAC address with 

information embedded related to the Pod identifier, its position in the pod, the port identifier 

and lastly it’s Virtual Machine Identifier. Typical this of the form:  pod.position.port.vmid. 

By having a structured and predictable regime, as opposed to a typically random layer 2 

addressing, opens up the possibility of best of Layer 2 and Layer 3 worlds. Wild carding of 

addresses can be used to route to pods, at a layer 2 level. Longest prefix-matches can be 

used to reduce forwarding state. Three components are needed to make the Portland 

strategy work. Firstly, in order to obviate the need for hosts and VMs to be aware of the top-

level addressing structure, switches must rewrite between pseudo and real MAC addresses. 

Secondly, in order to calculate routes locally, switches must maintain a matrix of full link-

connectivity.  Lastly, a centralised fabric manager is required to maintain the mappings 

between pseudo and real MAC addresses. 
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Chapter 3 SDN Control Plane for Converged Architecture 

Software Defined Networks (SDN) separates the control and data planes in network 

components such as switches, bridges and routers. The SDN control plane can enable 

highly dynamic service and capacity provision over the LR-PON in response to changing 

demand by implementing agents in the network elements.  The Logical SDN control plane 

architecture [103], shown in Figure 9, is derived from  the Open Network Foundation SDN 

model [56], and is based on a hierarchical structure of controllers. The access network 

controller controls the access network elements and the core network controller controls the 

core transmission elements. The network orchestrator handles requests from application 

plane and translates them into high-level commands for the access and core network 

controllers. 

 

Figure 9 - Logical SDN Architecture 
 

There are three main interfaces defined, the A-CPI, the I-CPI and the D-CPI interfaces. The 

A-CPI interface describes the interaction between the control plane and the application 

plane. This is the interaction between the service provider and the network orchestrator. 

The I-CPI interface operates between the network orchestrator and the access and core 

network controllers. Lastly, the D-CPI interface operates between the access and core 

controllers and the physical devices [104].  There are different protocols to cope with the 

functionalities in each interface.  
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In this section, we present the design of an SDN Controller for a Converged Architecture. 

We present the functional components (section 3.1 ) and detail the messages (section 3.2 

that are exchanged between these components.  

3.1  Functional Components 

3.1.1  Network Orchestrator 

The network orchestrator is defined as a parent controller or a centralised “controller of 

controllers”, which handles the automation of end-to-end connectivity provisioning, working 

at a higher, abstracted level and covering inter-domain aspects between the access and 

the metro/core network. The network orchestrator interfaces with the network controllers to 

get topological information about the resources in each controller’s domain. Each controller 

may have different interfaces, which requires the orchestrator to have a method to support 

multiple technologies or interfaces. When an application, such as Network Management 

System (NMS) or Operation Support System (OSS) requests a service, the network 

orchestrator must deal with the end-to-end path computation. This process can be done by 

the orchestrator or may be delegated to the access and core controllers. Once the services 

are set-up, the network orchestrator is in charge of update its status and notifying the 

application plane. 

3.1.2  Core Network Controller 

The core controller is in charge of receiving commands from the network orchestrator and 

transforming them in the D-CPI for the metro/core network. Similarly, it exports the topology 

to the network orchestrator, so it can have a view of the resources in the core network. The 

network orchestrator can request a path computation to the core controller, so it must 

support path computation within its domain. A core controller is used as an entity which is 

in charge of the specifics of the underlying core technologies. The technologies under the 

core controller are Optical Transport Network (OTN), Wavelength Switched Optical Network 

(WSON), Spectrum Switched Optical Network (SSON) networks, which are based on the 

GMPLS distributed control plane. If the GMPLS is enables, the best interface to interface 

with the nodes is Path Computation Element Protocol (PCEP), as demonstrated in ABNO 

[53]. 

3.1.3  Access Network Controller 

The Access Network Controller translates requests from the Network Orchestrator into 

instructions for the physical devices, such as access switch, optical switch and OLT. The 

Access Network controller uses Openflow to manage the various network components in 

the access network, such as the optical switch, access switch and PON components. The 

Access Network Controller consists of a JSON RESTful API, an Application module, a 
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Database, and a RYU Openflow controller, which we will describe in detail. The JSON 

RESTful API module is an interface that translates a JSON request, which is received from 

the Network Orchestrator via the I-CPI interface which is then sent to the application 

module. JSON is a syntax for storing and exchanging data. It is written in a lightweight data-

interchange format, which is less verbose than XML. JSON also describes data structures 

which includes arrays, whereas XML does not. 

Application Module 

The application module processes the incoming request, based on the state information 

present in the database. This module implements functionalities such as path calculation, 

path recovery, wavelength selection, bandwidth assignment, PseudoWire (PW) assignment 

and Link State Protocol (LSP) assignment. Based on the request and the network state, the 

application module determines whether the request can be satisfied or should be declined. 

The application module triggers the appropriate OpenFlow commands using the RYU 

OpenFlow controller. Thus the communication to the controller is carried out over the 

Openflow v1.4 protocol using the RYU Openflow controller application programming 

interfaces (APIs). The Network Controller sends an acknowledgment message back to the 

Network Orchestrator via I-CPI. The Network Controller maintains Openflow rules and 

meters in the access switch. A two-stage hierarchy of meters implements Peak Information 

Rate (PIR) and Committed Information Rate (CIR) Quality of Service characteristics for 

each flow. PIR is implemented by discarding packets that exceed the first meters bitrate. 

CIR is subsequently implemented by marking non-dropped packets as low priority 

(prec_level=0) that exceed the CIR bitrate defined by a second meter.  

Database Module 

The database module stores all information from the Metro Core node on routing, 

wavelengths, capacity, MPLS labels, and detail of flows and meters being used. 

Infrastructure information is held in database tables and relates to topology and the 

definition of ports, paths and host configuration (Figure 10).  
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Figure 10 - Database Administration Interface 
Logically, the database is broken into two distinct sub-databases, the Infrastructure 

Database and the Network State Information Database.  

Infrastructure Database 

The Infrastructure database stores information that is statically defined by a management 

or network control system and consists of the following tables: PATHS, WAVELENGTHS, 

SW_PORTS and HOST_IP.  The PATHS table (Table 2) defines the route between sources 

and destinations.  

 

id src_IP dst_IP pri_path 

48 10.0.0.77 10.0.0.103 105,7461338682660421663,103 

49 10.0.0.99 10.0.0.102 101,7461338682660421663,102 

Table 2 - Example of information in the PATHS table 
Here, src_IP indicates an the source IP address of the path, for example the address of a 

SP video server, dst_IP indicates the IP address of the destination path, for example the 

address of an OLT that terminates a PW paths, pri_path defines a path between src_IP and 

dst_IP  

Private IP addressing is used which is mapped to the HOST-IP table. The designation SW 

indicates a packet switch, while optical switches are designated as OSW.   

The WAVELENGTH table (Table 3) associates wavelength ITU-T IDs with the wavelength 

ID recognised by the SFP+ tunable component. 
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wavelength_id ITU_ID Wavelength (nm) FPGA_ID 

1 21a 1560.61 21 

2 21b 1560.2 22 

3 22a 1559.79 23 

4 22b 1559.33 24 

5 23a 1558.98 25 

6 23b 1558.58 26 

7 24a 1558.17 27 

8 24b 1557.77 28 

9 25a 1557.36 29 

10 25b 1556.96 30 

Table 3 - Example of information in the WAVELENGTH table 
Here, wavelength_id defines an ID number for the wavelength, ITU_ID is the standard 

wavelength ID defined by the ITU and Wavelength defines the value of the wavelength 

expressed in nanometres.  FPGA_ID is the wavelength identifier used for controlling the 

tuneability of the SFP+ transceiver through the FPGA. 

The SW_PORTS table (Table 4) defines the port connectivity of each switch which is 

statically allocated. In more complex implementations this information could be retrieved 

through discovery protocols. 

SW_ID ports_connection 

7461348157366609941 101,14560991494939486229,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

14560991494939486229 102,7461348157366609941,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

7461338682660421663 0,102,0,0,0,0,0,103,0,0,0,0,0,105,0,0,0,0,0,101,0,0 

Table 4 - Example of information in table SW_PORTS 
 

Here, SW_ID shows the id number of a switch, ports_connection defines the port number 

of the switch and SW_ID that connects to the switch. In the example, switch with dpid 

7461348157366609941 is connected to host 101 at port 1 and to switch with dpid 

14560991494939486229 at port 2 

 

The HOST_IP table (Table 5) defines the IP address for each host. 
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host_id ip PRI_OLT_IP BK_OLT_IP 

102 10.0.0.102   

104 10.0.0.88   

103 10.0.0.103   

101 10.0.0.99   

501 10.0.0.123 10.0.0.102 10.0.0.103 

Table 5 - Example of information in the HOST_IP table 
 

Here. host_id indicates the ID number of the host, which could be an SP server, ONU, or 

OLT.  ip shows the IP address of the host, PRI_OLT_IP shows an IP address of a primary 

OLT (if the device is an ONU,  BK_OLT_IP shows an IP address of a backup OLT if the 

device is an ONU. 

Network state information database 

This database contains the information used to identify the dynamic state of the network, 

including the flow table, the meter table, and the capacity table. This information is added, 

removed or modified dynamically following network operations. The MPLS_LABEL table 

defines LSP and PW numbers for each flow. Here, src_IP indicates the IP address of the 

source of the MPLS Pseudowire path, dst_IP indicates the IP address of the destination of 

the MPLS Pseudoswire path,  lsp defines the higher level Link State Protocol that contains 

the PseudoWire. pw defines the label for the path and traffic_type indicates the traffic type 

carried by the PW.  Here, traffic type is one of Internet, Video on Demand or Bandwidth on 

Demand.  

The SERVICES table stores information on active services in the Metro Core node. 

ID_Operation is a reference ID number associated to an incoming request and is 

automatically generated after the Network Controller receives the request.  Operation_Type 

indicates the type of service. flow_id refers to the id in the FLOWS table. meter1 and meter2 

are the meter numbers that define the PIR and CIR respectively.  wavelength_no refers to 

walength_id in the WAVELENGTH table. pw refers to the Pseudowire pw field in table 

MPLS_LABEL.  dst_host_id refers to the destination ONU ID.  The METERS table stores 

the configuration of the OpenFlow meters. Meters are unidirectional, thus if QoS is required 

on both direction of a connection, it is configured into two separate entries. Here, 

ID_Operation is the reference ID number for the request associated to the meter.   SW_ID 

is the ID number of the switch where the meter is configure. stream indicates the direction 

for the meter, for example from source IP to destination  IP address.  meter_id is an identifier 

for the meter and is automatically generated after a request. band_type defines the action 

on the packet, which may be DROP for PIR, or DSCP_REMARK for CIR); rate is the 

capacity limit for the meter considered; arguments indicates an optional argument for the 
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meter (i.e., following the OpenFlow syntax).  The FLOWS table stores the flows in use on 

the OpenFlow switches, indicating both matching condition and meters. id is a reference 

number for the flow; SW_ID is the ID number of the switch where the flow is installed; 

ID_Operation is the reference ID number of the request; stream indicates the direction of 

the flow (from source IP to destination  IP address); match_condition refers to match field 

used in the OpenFlow table for the switch; meter1 and meter2 are meter numbers attached 

to the flow, controlling, respectively, PIR and CIR capacity.   The BW table (Table 6) stores 

the available capacity for each wavelength on each link in the network, for both the PON 

channels and for the capacity between switches or between switches and other hosts. It is 

calculated and updated by the Network Controller upon every new request. 

s_link d_link MAX wavelength_ID  available_capa

city 

101  3492832460723070997 10000000 1 10000000 

104 7461348157366609941 10000000 1 10000000 

7461338682660421663 101 10000000 2 10000000 

7461338682660421663 105 10000000 1 10000000 

7461338682660421663 103 10000000 1 10000000 

7461338682660421663 102 10000000 1 10000000 

102 501 10000000 2 10000000 

Table 6 - Example of information in the BW table 
s_link is device_id at the beginning of the link; d_link is device_id at the end of the link; MAX 

is the total capacity of the link in bps; wavelength_ID is the identifier for the wavelength 

used; available_capacity shows remaining CIR bandwidth in bps. The BW table is used to 

assess the current available capacity on an end-to-end connection. For example, in the 

case of a VoD request with defined CIR and PIR parameters, the Network Controller will 

first determine the end-to-end path from the PATH table. It then checks the available 

capacity on each link making up the end-to-end path in the BE table.  

3.1.4  Open Flow Agent 

A number of network elements such as the PON ONU and OLT and the optical switch 

cannot be controlled through a native OF v1.4 protocol. We have developed an OF agent 

(Figure 11), running collocated with the controller, that emulates the Openflow protocol and 

provides a mediation interface between the upper Openflow Control plane and the lower 

non-native Openflow network devices such as the FPGA-based LR-PON OLTs and ONU. 

The OF agent interprets the Openflow commands coming from the Access Network 

controller and communicates various changes to the PON network via a UART control link 

in the FPGA hardware. The OLT and connected ONUs can be controlled via the access 

network controller like any other network components. The OLT uses a proprietary 

messaging system over a UART serial interface. The optical switch can be controlled 

through a TL1 session. Transaction language 1 (TL1) is a man-machine management 
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protocol defined by Bellcore and is commonly used to manage the optical broadband and 

access equipment [105].  

 

Figure 11 – OLT Fast protection mechanism 
 

To control the Openflow Agent, the standard Openflow V1.4 syntax is used. Firstly, the 

Feature Mask is set to include capabilities for OFPPC_PORT_DOWN, OFPPC_NO_RECV, 

OFPPC_NO_FWD and OFPPC_NO_PACKET_IN. Secondly the 

OFPPortModPropOptical  properites is built up based on freq_lmda, fl_offset, 

grid_span, tx_pwr. Lastly, the OFPPortMod method is called on the Openflow Agent 

datapath ID (or the MAC address) with the OFPPortModPropOptical  properites and 

Feature Mask just described. The OFPPC_PORT_DOWN bit indicates that the port has 

been administratively brought down and should not be used by Openflow. The 

OFPPC_NO_RECV bit indicates that packets received on that port should be ignored. The 

OFPPC_NO_FWD bit indicates that Openflow should not send packets to that port. The 

OFPPFL_NO_PACKET_IN bit indicates that packets on that port that generate a table miss 

should never trigger a packet-in message to the controller. 

The Openflow standard V1.4 introduced support for querying and managing the 

characteristics of Optical ports. This includes the ability to configure and monitor transmit 

and receive frequency of a laser, as well as its power. The Optical ports may be Ethernet 

based optical ports (i.e. Ethernet through SFP+ interfaces) or optical ports on circuit 

switches. This allows an Openflow controller to configure the optical ports through  the 

Optical port mod property (ofp_port_mod_prop_optical), monitor the optical ports 

through Optical port stats property (ofp_port_stats_prop_optical) and to describe the 

optical ports through the Optical port description property (ofp_port_desc_prop_optical).  

To support the mapping between the real device, Openflow Agent has a number of data 

structures defined on a per-port basis to handle the attributes required by the Openflow 

Controller. The ofp_port_desc_prop_optical  data structure stores attributes for Maximum 
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and Minimum Transmitted Frequency , Maximum and Minimum Received, Maximum and 

Minimum Transmitted Power and Features. Features is a bit mask, with the bits 

representing the capabilities of the particular port. The right-hand most bit 

(OFPOPF_RX_TUNE) denotes if the Receiver is tuneable or not (OFPOPF_TX_TUNE), 

the second bit if the transmitter is tuneable or not (OFPOPF_TX_PWR), the third bit of the 

Power is configurable and lastly, the fourth bit denotes whether the to use frequency or 

wavelength (OFPOPF_USE_FREQ). For the Openflow Agent, all four bits are set to the on 

position. The minimum, maximum, and grid spacing are specified for both transmit and 

receive optical ports as either a frequency in MHz or wavelength (lambda) as nanometres 

scaled up by a factor of 100. For ports that are not tuneable, the minimum and maximum 

values need to be identical and so specify the fixed value. 

The overall behaviour of the Openflow Agent is described by the Openflow Agent class. It 

has two main routines or methods, wait_on_controller() and get_optical_message(). On 

instantiation, the Openflow Agent makes a network connection to the standard TCP 

listening port for Openflow (6633).  The wait_on_controller() routine is a loop that waits 

for Openflow messages. Once the upstream Openflow controller accepts the TCP 

connection, it issues an Openflow Hello message to which Openflow Agent responds with 

Hello. Thereafter, wait_on_controller() handles responses to upstream controller requests 

for message types OFPT_ECHO_REQUEST, OFPT_BARRIER_REQUEST, 

OFPT_FEATURES_REQUEST, OFPT_PORT_MOD, OFPT_MULTIPART_REQUEST 

and OFPT_FLOW_MOD. Wait_on_controller() uses the  OFPT_PORT_MOD message 

with subtype OFPT_PORT_MOD_OPTICAL as a trigger to generate a message 

(get_optical_message()) to the downstream Optical device, for which the Openflow Agent 

is acting as agent. get_optical_message() is a stub, which is over-ridden when Openflow 

Agent is instantiated.  

The Openflow Agent is composed of 2 main sets of Classes. The first set of classes details 

the messages which are exchanged between the Openflow Agent and the upstream 

Openflow Controller. The Openflow Agent acts as a client, and the Openflow Controller acts 

as the server in the relationship. It is the function of the Openflow Agent to initiate the 

relationship, by contacting the controller. It is the function of the Openflow Agent to 

sufficiently mediate between the non-native Openflow device and the controller, and behave 

in a manner that will give the impression that the device is a real Openflow Switch. The 

base class of Openflow Agent message is ofPkt.  All messages derive their attributes for 

transaction ID and payload from the ofPkt Class. OfPkt also details the versions of 

Openflow which the Openflow Agent can support. It is possible for the Openflow Agent and 

the Controller to negotiate to the most optimal version of Openflow to be used in the 

relationship. All messages have a common header with fields for the size of the message 

as well as detailing the message type. Depending on the message type, the payload of the 
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message will vary in length as well as format. Depending on the switch characteristics the 

size of messages can vary also. For example, there is a common format of data structure 

and command structure to manipulate a single port, however, different switches have 

different numbers of ports so the size of the total structures is sufficiently expandable. 

3.1.5  PON ONU and OLT  

The LR-PON Protocol is implemented over three Xilinx VC709 FPGA boards acting as 

primary and secondary OLTs and ONU.  The LR-PON protocol is a partial implementation 

of the XGPON standard, the major differences being that the LR-PON protocol must work 

over a longer feeder fiber (125Km  in LRPON as opposed to 20Km in XGPON) and across 

a higher split ratio (512 versus 64). The PON backplane connection to the core network 

contains a 10G Ethernet physical layer and Media Access Control Layer, allowing it to be 

plugged into any 10G capable network element. In this experiment the PON backplane is 

connected to a 48-port 10G Openflow Access/Metro switch. A Microblaze soft  processor, 

which is collocated on the Virtex FPGA board, provides a (North Bound) UART  

management interface to the PON OLT and ONU hardware. Through this interface most 

PON functionality can be controlled such as resetting the hardware, viewing hardware 

status, simulating hardware failure, loading bandwidth map and setting XGEM mappings.  

The OLT’s and ONU’s do not present native Openflow interfaces, but instead are controlled 

over a high-speed serial UART running at 406kbps. The Microblaze on the host FGPA 

boards presents an interface for directly programming and interrogating PON control 

registers, which are then accessible over the high-speed UART interface. Run-time control 

of the PON is executed through the interfaces on the OLTS which in turn relay control 

instructions to the remote ONU using PLOAM messages. The run-time functionality (see 

section 3.2.2 ) includes configuration of the laser frequencies of the OLT and ONU tuneable 

lasers, the configuration of Alloc_id’s at the  ONU  for appropriate XGEM packets and the 

rehoming of ONU from one OLT to another. 

An Openflow agent wrapper around both OLT1 and OLT2 was developed so as to present 

an Openflow v1.4 compatible interface to the Metro-Access Controller. Openflow v1.4 

facilitates the control of optical parameters of Openflow compatible switches and devices 

through the OFPPortModPropOptical method. These parameters include the transmission 

centre frequency or wavelength, a frequency offset from the centre frequency and the 

transmission power level (dB) and are a subset of those which we are looking to control 

within the PON. Because we need runtime control of additional non-standard additional 

parameters, we enhanced both the v1.4 protocol and the agent to allow configuration of the 

XGEM, Alloc_ID and PseudoWire tags associated to a given flow through the Metro-Access 

Controller. 
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Logically, using the paradigm of Software Defined Networking, the Metro Access controller 

communicates with the OLTs through the Openflow agent translating Openflow commands 

into proprietary control messages sent through the UART interface, such as the set-up of 

wavelengths and the set-up of protection paths.  

3.1.6  Distributed Message Queue 

The Openflow protocol was originally intended as a means for the controller plane to push 

flow updates to the data-plane devices, and was not intended for responsiveness to real-

time events. As a consequence, early controllers prioritised the fulfilment of the functional 

aspects of the Openflow standards rather than performance. There was a trade-off between 

developer productivity and performance when early Openflow controllers were developed 

to replicate the functionality of the original NOX controller [106]. A common means of 

increasing productivity (and making the applications portable across multiple platforms) was 

to abstract the functionality of the controller using class/object hierarchies. A number of 

controllers (such as RYU and POX) were rendered in Python in such a fashion. Because 

Python is a dynamically typed and semi-interpreted language applications requiring CPU 

(i.e. real-time) responsiveness may appear sluggish in the manipulation of both simple data 

structures and particularly more complex class/objects. Figure 4 of Erickson [106] shows 

the low throughput and high latency of standard Python based controllers such as POX and 

RYU,  in comparison to compiled controllers. 

In order to accelerate some of the time-critical messages at the I-CPI level, we created an 

asynchronous module to pick up the failure event form the OLT. This is then passed to an 

Event Plane, implemented using the ZeroMQ libraries [107]. which bypasses the slower 

JavaScript object notation (JSON) /API interfaces. We elected to use the open source 

ZeroMQ library which can handle up to 2.8 million messages per second and can open a 

TCP socket and process data within 28.45 microseconds.  Any elements throughout the 

test bed can either publish or subscribe to topics on the event plane, through the use of the 

lightweight ZeroMQ API. This API is available for scripting and programming languages 

such as Perl, Python, Java and C. A key feature of ZeroMQ is that the Message Queue is 

logically centralised however; there is no physical hub through which all messages flow. 

This removes both single points of failure and performance bottlenecks.  The event plane 

allows all major elements in the test bed such as the Openflow Controllers and the PON 

components to publish events using a common message format, as well as to subscribe to 

system wide broadcast events. We implemented four sets of messages which have a 

common format for control and co-ordination of events within the test bed. Our development 

optimised the real-time event-handling capability of the standard Python controller and 

extended the functionality across multiple controllers. We retained the basic shell of the 
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Python controller for the purposes of a standard Interface to the south-bound Openflow 

devices. This allowed us to leverage our existing code-base.  

 

3.2  Messages 

3.2.1  Control Plane Messages 

Table 7 show the messages type implemented by the SDN controllers and orchestrator. 

The D-CPI messages shown in Table 7 are those between the OF agent and the physical 

device. The ‘Patch_Connect’ and ‘Patch_Disconnect’ messages are those that invoke 

connection between optical switch ports. These are translated over the interface to the TL1 

‘ENT-PATCH::inport,outport:;’ and ‘DLT-PATCH::inport,outport:;’ messages. Also the 

D-CPI messages from the Network Controller to the OF agent for the optical switch and 

OLT follow the OF v1.4 standard. The only extension to the standard OF protocol is that at 

the OLT for the wavelength selection at the OLT.  

# Initialise variables. stream_id = 1 -> up, 0->down 

c=3; fl=2000; gs=3000; tx=50; frq= 1500;stream_id=1; 

# Set Feature Mask    

mask = (ofp.OFPPC_PORT_DOWN | ofp.OFPPC_NO_RECV | ofp.OFPPC_NO_FWD | 

ofp.OFPPC_NO_PACKET_IN) 

# Set Properties 

properties = [ofp_parser.OFPPortModPropOptical(1, configure=c, freq_lmda=frq, 

fl_offset=fl, grid_span=gs, tx_pwr=tx, stream_id=stream_id)] 

# Mod Port 

req = ofp_parser.OFPPortMod(datapath, port_no, hw_addr, config,   mask, properties) 

Figure 12 - OFPPortModPropOptical stream_id 
 

The ‘ofp_port_mod_prop_optical’ data structure and the ‘OFPOPF Configure’ method 

which are defined in the OF v1.4 standard haves been enhanced to include an FGPA stream 

identifier (stream_id in Figure 12) used to differentiate between the upstream and 

downstream directions of the port considered.  

These are then mapped to the parameters of the ‘Set_US_lambda’ and ‘Set_DS_lambda’ 

D-CPI functions (Table 8) from the OF agent to the FGPA Microblaze controller interface in 

the OLT. 
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Interfac
e Type 

Command Type Source Destination Use Case Main 
Parameters 

D-CPI Patch_Connect Network 
Controller 

Optical 
Swtich 

Protect, 
DWA 

Input-
output 
ports 

D-CPI Patch_Disconnect Network 
Controller 

Optical 
Switch 

Protect DWA Input-
output 
ports 

D-CPI Status_report OLT Network 
Controller 

Protect, 
DWA 

Status 
Values 

D-CPI Failure_Detect OLT Network 
Controller 

Protect ID of pre-
set failure 
event 

D-CPI Create_Flow Network 
Controller 

OLT Protect, 
DWA 

MAX, 
xgem_port, 
mpls_tag 

D-CPI Delete_Flow Network 
Controller 

OLT Protect,DW
A 

Flow_ID 

D-CPI Set_DS_lambda Network 
Controller 

OLT DWA ONU_ID, 
channel 

D-CPI Set_US_lambda Network 
Controller 

OLT DWA ONU_ID, 
channel 

I-CPI Failure_Detected Network 
Controller 

Network 
Orchestrato
r 

Protect  

I-CPI Invoke_Failover Network 
Orchestrator 

NC, CNC Protect  

I-CPI Client Failure 
Recovery 

Network 
Orchestrator 

Network 
Controller 

Protect  

I-CPI Create_Path Network 
Orchestrator 

Network 
Controller, 
Core 
Network 
Controller 

DWA Source, 
Destination
, QoS 
params 

A-CPI Resource_Request Portal Network 
Orchestrato
r 

DWA Source, 
Destination
, QoS 
params 

A-CPI Resource_Confirmat
ion 

Network 
Orchestrator 

Portal DWA Request_ID 

 
Table 7 - List of Main Control Plane Messages 

 

The ‘Status_Report’ is a general message to report the status of a given parameter. The 

‘Failure_Detected’ message indicates that the OLT has identified a failure and it triggers 

the protection action at the Network Controller. The ‘Create_Flow’ creates an entry on the 

OLT flow table, providing flow association between the device MAC address, the ONU XG-

PON encapsulation method (XGEM) port and the Multiprotocol Label Switching (MPLS) 

label (this isused to identify a Pseudo-Wire in this part of the network). The Network 

Controller uses the ‘Set_DS_lambda’ and ‘Set_US_lambda’ for indicating the downstream 
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downstream and upstream upstream transmission wavelengths to the ONU. Once the ONU 

has received the corresponding XG-PON physical layer operation, administration and 

maintenance (PLOAM) message, it sends a ‘write WL<lambda>’ over the UART interface 

to change the centre wavelength of its tunable filter. This last command is sent to the OLT, 

which then generates a PLOAM message to communicate with the ONU. 

While our implementation of the Network Controller to OLT is proprietary, the Broadband 

forum has initiated an effort to standardise define a D-CPI OF interface for PONs [109]. The 

I-CPI layer takes charge of the messaging between the Network Orchestrator and node 

controller NCs. The messages used in our case are: “Failure_Detected” reporting from the 

Network Controller to the network orchestrator that one of the OLT connections has failed; 

‘Invoke_Failback’, used by the network orchestrator to activate the pre-configured 

protection path on the NCs; “Client_Failure_Recovery”, is used by the network 

orchestrator to inform the Network Controller that the protection was successfully 

established. Alternatively, the DWA use case employs instead a ‘Create_Path” message 

with source, destination and quality of service (QoS) parameters (triggered by the 

‘Resource_Request’ message described below).  In the protection experiments [107, 110, 

111], we have used a proprietary interface for the I-CPI, although in [112] we have 

demonstrated the interoperability of our controller NC with the Control Orchestration 

Protocol (COP) [113].  

The A-CPI interface operates between a user portal and the network orchestrator. In the 

DWA use case, a “Resource_Request” is sent by the portal to the network orchestrator 

indicating the source and destination points as well as the relevant QoS parameters (e.g., 

CIR and PIR) such as committed information rate (CIR) and peak information rate (PIR).The 

demonstrated architecture also integrates an SDN control plane for the access and core 

network elements, showing a fast protection mechanism, in the case of primary backhaul 

link failure, with service restoration and the dynamic reassignment of an ONU wavelength 

in response to increased traffic demand. 

3.2.2  Openflow Messages  

All Openflow messages follow a common format, however, the format has grown from a 

simple one format in the 0x01 wire standards to the more complex formats of wire standards 

0x04 and later. The increase in complexity of the messages reflects the complexity of the 

type of functions and controls which more recent type of Openflow switches are required to 

exercise. Switches are required to be stateful, and have wider varieties of port attributes. 

An example of complex messaging introduced is the Barrier Message, which must be 

interpreted by Openflow Agent. When the controller wants to ensure message 

dependencies have been met or wants to receive notifications for completed operations by 

Openflow Agent, it uses an OFPT_BARRIER_REQUEST message. This message has no 
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body. Upon receipt, the Openflow Agent must finish processing all previously-received 

messages, including sending corresponding reply or error messages, before executing any 

messages beyond the Barrier Request. When such processing is complete, the Openflow 

Agent must send an OFPT_BARRIER_REPLY message with the transaction id of the 

original request. 

Messages are characterised as either synchronous or asynchronous. Asynchronous 

messages can be sent by either the Openflow Agent or the Controller, and elicit a response 

from the other party. Example of asynchronous messages are Hello and EchoRequest. 

Hello elicits Hello in return, and is used to initiate the relationship between the Openflow 

Agent and the Controller, however in practice, this usually is initiated by the Openflow 

controller. EchoRequest elicits EchoReply in response and is typically used as a health 

check or keep-alive message. Synchronous messages generally are initiated by the 

controller, once the relationship has been created. Synchronous messages are used to elicit 

information from the Openflow Agent by the Controller. Examples of Synchronous 

messages are OFPT_FEATURES_REQUEST, OFPT_PORT_MOD and 

OFPT_FLOW_MOD.  OFPT_FEATURES_REQUEST is the request for the characteristics 

of the switch as well as the capabilities of all ports.  

3.2.3  PON wrapper methods 

Software-wise, communication with the OLT’s and ONU’s is accomplished through a single 

Class FPGA, through which a number of methods are defined. Instantiation of the class 

opens a TTY serial interface port to the particular device. The sendcmd() method is the 

base method to issue a string to the interface and receive back a response. sendcmd() is 

used by almost all other FGPA methods to issue commands and gather responses. The 

raw FPGA interface presents a menu structure, which is invoked by the FPGA class. The 

following table outlines the range of based methods which may be issued on the PON 

devices. 
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Method Explanation 

device.reset() Resets Device 

device.enable_mpls() Enables MPLS tagging interpretation on the device. 

This command is issued at the head-end OLT. 

device.disable_mpls() Disables MPLGS tagging interpretation on the 

device. This command is issued at the head-end 

OLT. 

device.set_ds_laser(fpga_channel) Sets downstream laser to channel designated by 

fpga_channel (Skylane mapping). This command is 

issued at the head-end OLT. 

device.set_us_laser(onu_id, 

fpga_channel) 

Sets downstream laser to channel designated by 

fpga_channel (Skylane mapping) on the ONU 

onu_id. This command is issued at the head-end 

OLT. 

device.set_alloc_id(onu_id, 

alloc_id) 

Sets the alloc id / XGEM port on the ONU onu_id 

device.create_flow(mac, xgem, 

mpls_tag, cam) 

Creates a flow denoted by mac mac address, 

XGEM port xgem, MPLS tag mpls_tag on cam cam. 

This command is issued at the head-end OLT. 

device.delete_flow(cam) Deletes flow in cam cam_id 

device.dwa_set() Completes the set up of the DWA mapping on the 

PON. This command is issued at the head-end OLT. 

device.dwa_reset() Resets the DWA mapping on the PON. This 

command is issued at the head-end OLT. 

device.getstatus() Returns the status of the device. This may be on any 

deivce 

device.readreg() Returns the register value. This may be on any 

device 

Table 8 - PON Methods 
  

3.2.4  Event Plane Messages 

The message format is composed of a major category (called a ZeroMQ topic); a global 

timestamp which is synchronized to Dublin time; a minor category which is used for a 

command or message payload.  The four messages types are as follows: 

i. unsolicited events of large significance such as the failure of major nodes and links: 

an example of a primary PON failure event showing the major category, timestamp 

and minor category is NetEvent 1422736912.30 OLT_P_Failure, 
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ii. reactive control messages, which are generated in response to unsolicited events, 

for example, messages that trigger takeover of service by a standby piece of 

equipment or Service. An example of an Optical Switch control message showing 

the major category, timestamp and minor category is GlimEvent 1422737623.07 

upSdownP. 

iii. proactive configuration of elements or sub-systems within the testbed. An example 

of a sub-system restart event showing  the major category, timestamp and minor 

category is SysControl 1422737623.07 Restart.  

iv. The control of or alerting within test routines. These messages serve to co-ordinate 

the actions of a number of agents involved in a test cycle which are located across 

the wide area testbed.  

3.3  Sample Configuration 

The example of executing a resource request through the Access Controller A-CPI interface 

is given as follows. The sample topology in Figure 13 shows two traffic sources 10.0.0.88 

and 10.0.0.99 sending traffic streams to a common ONU (10.0.0.123) along paths which 

are designated green and red respectively. The red flow is tagged with pseudowire labels 

2001 and the green flow is tagged with pseudowire label 2002. The pseudowire labels are 

popped at the OLTs.  

 

Figure 13 - Example topology 
 

To emulate the use of MPLS tunnelling across the core network, the core switches S0 and 

S1 push and pop mpls tag 1001 on the red stream. Similarly, core switches S3 and S4 push 

and pop mpls tag 1002 on the green stream. Figure 14 and Figure 15 show the RESTful 

JSON API calls to the Network Controller to install the Red and Green Traffic flows 

respectively.  



Chapter 4.  

61 
 

curl -X POST -d '{"Direction_Type": "Unidirectional", "Wavelength_Range_from": "1556", 

"Destination_Node": "501", "PRI_OLT_IP": "10.0.0.102", "ONU_IP": "10.0.0.123", 

"Wavelength_Range_to": "1561", "Bandwidth": {"CIR": "4000000", "PIR": "6000000"}, 

"BK_OLT_IP": "10.0.0.103", "Source_Node": "10.0.0.99", "New_Lambda": "None", 

"Operation_Type": "PWMPLSProvisioningWF", "Traffic_Type": "Internet", "Operation": 

"add"}' http://127.0.0.1:8080/stats/flowentry/add 

Figure 14 - Install Red Traffic flows 
The Red Traffic flow has Traffic Type Internet and requires a guaranteed bandwidth of 

4Mbps with an ability to peak up to 6 Mbps. The Green Traffic flow has Traffic Type VoD 

(Video on Demand) and requires a guaranteed bandwidth of 8Mbps with an ability to peak 

up to 10 Mbps.  

 

curl -X POST -d '{"Direction_Type": "Unidirectional", "Wavelength_Range_from": "1556", 

"Destination_Node": "501", "PRI_OLT_IP": "10.0.0.102", "ONU_IP": "10.0.0.123", 

"Wavelength_Range_to": "1561", "Bandwidth": {"CIR": "8000000", "PIR": "10000000"}, 

"BK_OLT_IP": "10.0.0.103", "Source_Node": "10.0.0.88", "New_Lambda": 

"Necessitated", "Operation_Type": "PWMPLSProvisioningWF", "Traffic_Type": "VoD", 

"Operation": "add"}' http://127.0.0.1:8080/stats/flowentry/add 

Figure 15 - Install Green flows 
For the purposes of demonstrating Assured bandwidth, a dedicated wavelength may be 

necessitated.  Figure 16 shows the release of the Red and Green Traffic flows 

 

curl -X POST -d '{"pw": "2001", "ID_Operation": "", "Operation": "release"}' 

http://127.0.0.1:8080/stats/flowentry/release 

 

curl -X POST -d '{"pw": "2002", "ID_Operation": "", "Operation": "release"}' 

http://127.0.0.1:8080/stats/flowentry/release 

Figure 16 - Release Red and Green Traffic flows 
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Chapter 5 Converged Architecture Fast Protection  

In a classical telecommunications architecture, each portion of the metro network serves 

potentially hundreds of residential and business users. In a converged architecture such as 

Long-Reach PON, this metro network is being replace by backhaul links which must be 

made dual parented using a secondary backhaul. Fast protection of these links is required 

in order to fulfil requirements by enterprise and mobile backhaul applications. Fast PON 

protection enabled by SDN control also allows the implementation of protection load 

balancing schemes, which allow substantial cost reduction in both IP and PON backup 

resources by increasing the ability to share protection equipment across the network. 

 

Figure 17 - Fast Protection Scenario 
 

Figure 17 portrays the fundamental SDN enabled protection scenario which we 

demonstrate in this section. A traffic generator transmits traffic to a traffic receiver across a 

PON. The ONU is homed off a primary OLT through a fibre distribution path that involves 

an Optical Switch. There is a cut of the fibre, which is sensed by the primary OLT. The 

primary OLT sends an in-band alert to the upstream SDN controller, that then instigates a 

number of steps to fail the PON over to a secondary path. We execute a number of iterations 

of the protection experiments from a 1+1 (Active-Active) , through 1:1 (Active-Standby) to 

N:1 (Active-shared Standby ) protection scenarios. The protection experiments evolve to 

include more physical layer components as they became available, and also encompass 
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different complexities of core network such as transcontinental core networks and national 

networks. 

5.1  1:1 Protection Scheme with Pan-European Core 

5.1.1  Configuration 

We investigated a 1:1 protection scheme, where a primary OLT had a dedicated backup 

OLT, but without traffic duplication in the core. Our objective was to implement an end-to-

end protection switching scheme across the access and core networks that operates in the 

tens of milliseconds [110].  

The experiment for the combined access and core networks spanned the optical 

architecture test bed in Trinity College Dublin and the GEANT Openflow facility. The GÉANT 

Openflow facility is a test-bed environment deployed on top of the GÉANT pan-European 

research and education network and provides network resources such as software-based 

OVSwitch soft  Openflow switches and interconnecting network links. The GEANT 

Openflow facility is collocated with five of the GEANT network Points-of-Presence in Vienna 

(AT), Frankfurt (DE), London (UK), Amsterdam (NL) and Zagreb (HR). The OFELIA Control 

Framework (OCF) is used by the GÉANT Openflow facility to manage requests for slice 

submission, instantiation, and decommissioning [114].  OCF is a set of software tools for 

testbed management, which controls the experimentation life cycle such as resource 

reservation, instantiation, configuration, monitoring. Connectivity between the two access 

and core portions of the network was achieved over the Internet. While this connectivity 

would ideally be over a dedicated fibre link, this setup allowed us to replicate latency effects 

between diverse network elements and the higher-level control layers [115]. 

 

Figure 18 - Modelled combined LR-PON access and core network, with multi-tier Control Plane 
 
In GEANT, we created a five-node network topology, with nodes in Amsterdam (NL), 

Frankfurt (DE), Hungary (HR), Austria (AT) and London (UK). Collocated with Node DE was 

a server which acted as a Data Centre. The primary path in the core is through nodes DE, 
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UK and NL, with the diverse fall back path from nodes DE through AT and HR to NL. Since 

node NL was the only gateway to our access network, both primary and protection paths 

pass through this node, while in a more realistic scenarios the node hosting the backup OLT 

would be connected directly to a node on the secondary path. However, this served the 

purpose of carrying out core network redirection. NL also hosted the Openflow core network 

controller.  

For our access network, the configuration was comprised of a Pronto 3780 switch with 48 

10G interfaces, running release 2.2 (Openflow v1.3 compatible firmware), and a Hitech 

Global 10G NetFPGA board acting as twin OLTs and ONU. The Pronto switch was 

configured with multiple virtual bridges. A VPN tunnel extended between the access and 

the core network gateways. A Dell R320 acted as the Openflow access controllers running 

RYU. In our 1:1 scheme, data travelled through the primary OLT and the primary bridge. 

The standby path, through the secondary OLT and secondary bridge did not carry any traffic 

until it was invoked, at which stage all primary traffic was redirected. Link availability was 

determined by the transmission of a UDP packet every 1 milliseconds between the Data 

Centre (DE node) and the Client which was terminated on the ONU in the TCD testbed. 

 

5.1.2  Results 

In our 1:1 protection experiment described in Figure 18, the feeder fibre between the primary 

OLT and first stage splitter on the PON was cut (event 1). This stopped all data from being 

transmitted upstream or downstream on the Primary link. A hardware unit in the primary 

OLT FPGA monitored the upstream data. The hardware detection unit alerted the OLT 

controller which sent an in-band upstream alarm (event 2). An upstream alarm was 

required, because the Openflow bridge did not physically terminate the connection between 

the ONU and the OLT, which meant that it was not possible for Openflow path switching 

rules (such as Group based port protection) to be invoked due to the fibre cut. Once any 

ONU has been registered on a particular PON, the upstream fibre should be quiescent for 

no longer than a single quiet window [116]. For a LR-PON of 125 Km, as proposed by the 

DISCUS project, this would be equivalent to no more than 1.3 milliseconds. Taking round 

trip time into account, the hardware failure detection unit (Figure 11) would detect a break 

in the fibre in approximately 2.5 milliseconds. Next, the data plane of the Openflow-based 

primary bridge intercepted the upstream alarm, which it then forwards to the access node 

controller (event 3). The Openflow controller instructed the Openflow switches to route 

traffic through the secondary bridge and the backup-OLT (event 4). The upstream alarm 

was also sent to the Openflow based controller for the core network (event 5). The core 

network controller built the backup path in the core from the nodes DE through AT and HR 

to NL (event 6). While it was not possible for Openflow path switching rules to be invoked 

directly by interception of this alarm (that is, solely within the data plane), we had devised 
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an Openflow relay (OF-Relay), located on-board the Pronto switch, that performed fast 

updating of the access fast recovery rules on the switch, as well as forwarding the alarm to 

the higher layer control infrastructure. The fast recovery paths were invoked and revoked 

by an application of a single goto_table statement injected into the primary switch. Results 

were measured over 50 failure – restoration cycles. Figure 19 shows the variance in fast 

recovery times in the access and core networks. 

 

 
Figure 19 - Fast Recovery in access and core 

 

Figure 20 shows that full recovery took place over an elapsed time period of 124 

milliseconds. This was composed of 3 individual time periods - a period in which traffic in 

the access was failed over from the primary path to the secondary path (7.2 milliseconds); 

a period in which core traffic was being redirected before the service could be restored (25 

milliseconds) and lastly an intervening period in which the end to end link was in flux (92 

milliseconds). 
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Figure 20 - Multi-tier protection events. 
 

5.2  N:1 Protection Scheme with Pan-European Core 

5.2.1  Configuration 

The N:1 protection with Pan-European core experiment [107] evaluated a dual-home Long-

Reach Passive Optical Network (LR-PON) protection mechanism where backup OLTs were 

shared among PONs in an N:1 scheme, and the service restoration was provided over an 

end-to-end Software Defined Network (SDN) controlled core network . In our test scenario, 

we simulated a cut in the feeder fibre between the primary OLT and first stage splitter on 

the PON. This stopped all upstream and downstream data on the Primary link. A hardware 

unit in the primary OLT FPGA monitored the upstream data path. Even in cases were the 

two directions of communication were operated over separate fibres, a cut in the 

downstream fibre prevents all ONUs from receiving messages form the OLT. In this case 

all ONUs automatically stopped transmitting, so that the OLT does not receive any upstream 

data. This upstream silence activates a timer. If this timer expires an alarm is raised to 

initiate a protection switchover. The duration of this timer would take into account all normal 

silences on the PON, namely quiet windows and normal roundtrip time, in order to make 

sure that an alarm was only raised when a failure occurred. Thus on a LR-PON of 125 Km, 

like the one proposed by the DISCUS project, failure detection could take approximately 2.5 
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milliseconds in worst case conditions (Figure 19). The 2.5 milliseconds is composed of 1.25 

milliseconds of round-trip fibre delay and 1.25 milliseconds for quiet window.  

Since our aim was to investigate end-to-end network protection times, we incorporated the 

control plane for the access and core nodes. For our experiment, we used Openflow-

controlled access and core networks, each using an independent Openflow controller. Thus, 

when a failure was detected, the hardware detection unit alerted the OLT controller which 

sent an in-band upstream alarm to the Openflow access network controller. An upstream 

alarm was required, because the Openflow Bridge did not physically terminate the 

connection between the ONU and the OLT, which meant that it was not possible for 

Openflow path switching rules, such as Group based port protection, to be invoked due to 

the fibre cut. 

We tested our end-to-end protection service with dual-homed, N:1 backup OLT sharing by 

combining the optical architecture testbed in Trinity College Dublin and the GÉANT pan-

European research network, as shown in Figure 21. The testbeds were connected through 

two dedicated Gigabit Ethernet links. Although this link was well below the 10Gb capacity 

of the LR-PON, having dedicated data links allows us to reliably evaluate latency effects 

between diverse network elements and the higher-level control layers. The experiment 

replicated both the metro-access and core networks of a high-speed fixed line 

telecommunications network. The end-points replicated a Data Centres generating traffic 

(located in Frankfurt) and a reception or termination point located on a PON ONU in Dublin.  

The Metro-Access portion of the network was created in the Optical Network Architecture 

(ONA) lab in Trinity College Dublin. The Core network was replicated using the GÉANT 

Openflow testbed facility, which spanned continental Europe. 

 

 
Figure 21 - Logical view of combined LR-PON access and SDN Core network 

 

A server co-located at the DE node acted as the source for data in this experiment. The 

primary data path in the core is between nodes DE, AT and NL (shown in green in Figure 

21). The backup path followed the route: DE, HR and UK (shown in red Figure 21). We 

implemented two paths to emulate dual-homed PON network where the primary and the 

backup OLT were in different locations. Data on the primary data path was routed to the 
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Primary OLT and data on the backup link was routed to the backup OLT. The NL node also 

hosted the Openflow core network controller which could be used to control which of the 

two paths data takes to our access network. 

The TCD ONA (Optical Network Architecture) was setup as two Metro/Core nodes together 

with an LR-PON access network. Although we used one physical switch and server, they 

were both virtualised to represent independent MC node switches and controllers. The 

Metro/Access network comprised of a pronto 3780 switch, running release 2.2 (Openflow 

v1.3 compatible firmware), three Xilinx vc709 development boards acting as primary OLT, 

backup OLT and ONU, a Glimmerglass MEMs-based optical fibre switch, A Dell T620 with 

10G SFP+ cards acting as client machine attached to the ONU and a separate Dell R320 

Server acting as access Openflow controller. The Pronto switch was configured as multiple 

virtual bridges to act as standalone bridges each with a separate Openflow controller.  

These were connected to a gateway machine on the core side of the network and one of 

the Primary or backup OLTs on the access side. The two testbeds, TCD and GÉANT were 

connected via two dedicated 1Gb links to UK and NL respectively.  

In our previous experiment in 1:1 protection (see section 5.2 ), we utilised tunnelling over 

the internet for these links which added a variance to our results that was very hard to 

measure and account for in our results. Although the dedicated 1Gb links were well below 

the 10Gb capacity of the GÉANT and TCD testbeds they do offer a stable link that enables 

us to carry out the protection experiments to the desired precision. The Glimmerglass 

optical switch was connected between the backup-OLT and the ONU which allowed the 

backup OLT to switch between a number of different PONs allowing us to test the N:1 

protection timing. In order to extend Message Queue from TCD testbed to GÉANT, we 

implemented tunnels to NL and DE. 

Our test scenario used two independent Openflow controllers, the core controller and the 

access controller. The OLT issued an alarm to the access Openflow controller when a failure 

was detected. The access controller enabled a data route through the backup Openflow 

Bridge, activated the backup OLT and tuned the optical switch to route data from the backup 

OLT to the failed PON backup fibre. In parallel it communicated with the core controller to 

activate the pre-calculated protection route in the core, which connected the remote server 

with the MC node where the backup OLT was located. 

 

5.2.2  Testing Procedure 

The TCD ONA testbed was designed to ensure all tests were easily reproducible, 

regardless of when they are run and by whom.  All testbed components were completely 

programmable using a Python (v2.7) based object Framework.  This allowed us to centrally 

control all testbed components so that test scenarios could be set up quickly and 

consistently. Likewise all test components logged information to a central repository, with 
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clear and consistent messages and time stamps. This allowed us to run test scenarios 

repeatedly allowing for statistical analysis of means and deviations of measurements.  

In this scenario, a Python scenario script was initially used to check the status of all relevant 

components. It uploaded a bootstrap configuration to an Openflow Switch, set up the 

Openflow controllers, set up the event logger, configured the optical switch and flashed the 

FPGA images. The OpenVSwitch (OVS) was restarted and connected to the controller.  The 

switches and ports were defined and associated with the OVS instance. For each switch, 

the required flows were configured.  The testbed controller then linked to the OLT and ONU 

microprocessors to ensure the PON were operational. Finally, the data service on the DE 

node of the GÉANT network were enabled and end to end operation of the system were 

confirmed. 

Once the experiment were started, data start flowing over the primary link from node DE 

through AT and NL to our testbed and through the PON to the data sink connected to the 

ONU.  After some time a trigger signal were sent to the primary OLT FPGA which resetted 

the optical channel to simulate a fibre dig up. At this stage the protocol hardware was 

unaware of the break and packets are lost. The failure detection timeout timer started and 

when it expired the primary OLT issued an alarm which was sent in band upstream to the 

Openflow controller. The Openflow access network controller notified the optical switch to 

connect the backup OLT path to the failed PON and finally the management controller 

notified the backup OLT to take control of the PON. The ONU meanwhile entered the Loss 

of Downstream Sync state and remained there for 100 milliseconds or until the backup OLT 

began to send synchronization words downstream. If the backup OLT did not take over 

before the 100 milliseconds time out the entire PON would have to be reactivated, and re-

ranged to resume transmitting data. Once the backup OLT had taken control of the PON 

the PON was ready to start receiving data again. 

In parallel with the backup OLT taking control of the PON, the Openflow access network 

controller passed a message to the core network Openflow controller. This caused the core 

network to redirect data from the primary path to the backup path to emulate more closely 

the dual homed nature of the Long-Reach PON. When data services resumed, data was 

then flowing over the backup-path from DE to HR, UK through our backup OLT to the ONU. 

Since each of the packets being sent on the PON had a sequence number the ONU could 

easily work out how many packets were dropped during the switchover. Once this number 

had been calculated the scenario script was ready to restart a new iteration of the 

experiment. 

In the first  1:1 experiment, (see section 5.1 ) we had noticed a significant variation in the 

time for the protection path to be fully activated, ranging from 79 milliseconds up to 133 

milliseconds. On analysis, this high level of variation had been caused by two factors. Firstly, 

there was variation in the time between the receipt of a PON failure alarm by the Optical 
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Network Architecture (ONA) Openflow controller and the subsequent action taken by both 

the ONA and GÉANT POX controllers. Secondly, there had been significant variation in the 

relaying and tunnelling of signals between the ONA and GÉANT POX controllers. In order 

to reduce the latency and variation within both the controllers and the tunnels between the 

controllers, we implemented an event plane based on a fast, low latency distributed 

message queuing architecture (See section 3.1.6 ). Figure 22 shows the logical 

configuration of the Test bed event plane based on the  distributed ZeroMQ Message 

Queue described in section 3.1.6  

 

Figure 22 – Event plane based on distributed ZeroMQ Message Queue 

 

The TCD_ONA Openflow Controller intercepts the downstream failure alarm in the primary 

PON. As well as triggering Openflow switching rules in the Metro Core network, the 

TCD_ONA controller also publishes Message Queue NetEvent and GlimEvent messages. 

The NetEvent broadcasts to all subscribed components about the PON failure. One such 

subscribe component is the GÉANT Openflow Controller which executes secondary routing 

in the network core. The Message Queue was extended between the TCD_ONA controller 

and GÉANT Openflow Controller using an SSH tunnel.  The GlimEvent triggers Optical 

Switch path selection or protection Path in the Access Optical Switch. The Optical Switch 

subsystem was developed to provide a concurrent Message Queue interface to the TL1 

interface of the Glimmerglass Optical Switch. Table 9  shows the array of test bed 

components on the Message Queue and the type of messages which they publish and to 

which messages they subscribe.  
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Subsystem Location Topic Direction Purpose 

TCD Openflow 

controller 

TCD_ONA 

controller  

NetEvent Publish Interpret failure 

signal from PON and 

broadcast event on 

Message Queue 

TCD Openflow 

controller 

TCD_ONA 

controller 

GlimEvent Publish Trigger Primary or 

Secondary Path in 

Optical Switch 

Testbed Controller TCD_ONA 

controller 

TestControl Publish Broadcast signal for 

stop, start, restart of 

test cycles. 

GÉANT Controller GÉANT 

Openflow 

controller (NL) 

NetEvent Subscribe Execute secondary 

routing in network 

core. 

Data Logger TCD_ONA 

controller 

TestControl Subscribe Aggregate and 

format results of test 

events throughout 

Test bed.  

Data Traffic Gap 

Measurement 

Sender 

GÉANT 

DataCentre  

(DE) 

TestControl Subscribe Ascertain when test 

scenario has started 

or stopped, and 

which one 

Data Traffic Gap 

Measurement 

Receiver 

TCD_ONA 

Testbed 

TestControl Subscribe Ascertain when test 

scenario has started 

or stopped, and 

which one 

Optical Switch 

(Glimmerglass 

System 100 16 port) 

TCD_ONA 

Testbed 

GlimEvent Subscribe Execute Optical 

Switch path 

selection 

Table 9 - Association of Message Queue types and testbed components 

 

5.2.3  Results 

Figure 23 shows the end to end N:1 dual homed protection time of the LR-PON and SDN 

core over 50 experimental iterations, using the initial break in the fiber as a reference point. 

The figure also shows the timing of various events that occur during the protection switch 

for all 50 experimental iterations. 
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Since the trigger failure event was issued to the FPGA board over a UART it was not 

possible to read an absolute time value from the FPGA boards for when the break in the 

primary fibre occurred. However, we were able to work back from the restoration point of 

traffic by subtracting the outage duration within each cycle. On average, the alert that 

identifies loss of the primary PON (the E2 event in the figure) occurs 3.5 milliseconds after 

the break.  The Openflow controller within the TCD ONA testbed sees the alert 0.59 

milliseconds (E3) after this and publishes a NetEvent failure alert as well as a GlimEvent 

event. The NetEvent alerts the GÉANT controller to invoke the alternate path through the 

core. The GlimEvent event invokes the secondary path in the optical switch. Within this 

experiment, the GÉANT controller sees the NetEvent event 20.3 milliseconds after the initial 

failure (E5). Separately, we have measured the asynchronous switchover of the 

Glimmerglass optical switch as 23 milliseconds.  Overall, Restoration time of the data traffic 

is measured as 81.29 milliseconds. 

 

5.3  N:1 Protection Scheme with PON Physical layer 

5.3.1  Configuration 

For the N:1 Protection with Physical Layer experiment [117], we implemented end-to-end 

software defined networking (SDN) management of the access and core network elements 

of a time-division multiplexing (TDM) dense wavelength division multiplexing (DWDM) long-

reach passive optical network (PON). The physical layer in Figure 24 demonstrated co-

existing heterogeneous services and modulation formats such as residential 10G PON 

channels, business 100G dedicated channel and wireless front haul on the same long reach 

TDM-DWDM PON system. This worked with both erbium doped fibre amplifiers (EDFAs) or 

semiconductor optical amplifiers (SOAs) for a TDM-DWDM PON up to 100km reach, 512 

users and emulated system load of 40 channels. 

Figure 23 - Switchover time (milliseconds) for 50 iterations of N:1 protection 
experiment 
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Figure 24 - Network level view of the demonstration 
 

The Use case shown in Figure 25 exemplifies how path integrity in the Core and TDM-

DWDM LR-PON based Access Metro network of a Telecommunications network could be 

assured through logical protection. The protection experiment demonstrated a dual-homed 

LR-PON protection mechanism where backup OLTs are shared among PONs in an N:1 

scheme  [107] and the service restoration is provided over an end-to-end SDN. The system 

carried out an initial phase of path-precomputation, where it sets up a backup path 

associated to the failure of a specific PON. The pre-calculation considers the input and 

output ports at the optical switch, the flow table configuration of the OF SDN switch (both 

access and core) and the configuration of the OLT flow table. The Failure Event (1) was 

caused by the feeder fibre between the primary OLT and first stage splitter on the PON 

being cut. This stops all upstream and downstream data on the Primary link. A hardware 

unit in the primary OLT FPGA monitors the upstream data path. 

 

 

Figure 25 - Protection Experiment 
 

 

5.3.2  Results 

The first test of the protection experiment was the failure event emulated by using the optical 

switch to simulate a fibre cut in the backhaul fibre link between the primary OLT and the 

Access Network. Silence in the upstream activated a countdown timer in the primary OLT, 

which on expiry generated a failure detection and an in-band alarm to the controller of node 

1. The duration of this timer took into account all normal silences on the PON due to the 
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1.25 milliseconds quiet windows and 1.25 milliseconds roundtrip time over maximum 

distance supported by the protocol of 125km, for a total of 2.5 milliseconds. The node 1 

controller then alerted the overarching Network Orchestrator which calculated a path to 

restore services to the ONUs according to its knowledge of the full end-to-end topology 

covering the core and access networks. The Network Orchestrators were then instructed 

by the Network Orchestrator to provision the protection path through the backup OLT.  

Figure 26 shows a capture of the message flow for one of the protection experiment runs.   

 

Figure 26 - Protection Message Flow 
 

Figure 27 shows the service restoration time for the protection mechanism conducted where 

backup OLTs are shared among PONs in an N:1 scheme [117]. The baseline time between 

the two paths of approximately 50 milliseconds is given when the switchover is proactively 

triggered by the controller, without waiting for a failure event. In contrast, the protection 

results show the restoration time when a failure event is caused by a cut in the backhaul 

link between the primary OLT and the Access Node. Silence in the upstream activates a 

countdown timer in the primary OLT controller, which on expiry generates a failure detection 

and an in-band alarm to the Openflow access Network Controller. The access Network 

Controller alerts the Network Orchestrator, which provisions the protection path. The 

average protection time is measured at 64 milliseconds, with variations between 50 and 

100 milliseconds attributed to the random delay in the failure detection. 
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Figure 27 - Protection Timings 
 

The N:1 + physical layer experiment was executed secondly [118], where the detection 

response was optimised. The results of the service restoration time for the SDN control 

plane based protection mechanism are shown in Figure 28. The average restoration time 

over 70 measurements was 41 milliseconds.  

 

Figure 28 - Service restoration time for the protection mechanism and the DWA through the 
implemented SDN control plane 

 

In Figure 29, we show the breakdown of the various timings that comprise the 41 

milliseconds protection figure. The hardware monitoring at the OLT can detect a failure in 

the network in about 2.5 milliseconds. A further 1 milliseconds is taken for the alarm packet 
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to be created and sent to the Core Node switch.  The time needed by the protocol to re-

establish downstream synchronization is between 2 and 3 milliseconds. 

 

Figure 29 - Timings Trace 
 

We know that some time may be needed to re-range the ONUs in addition to the 

synchronization time (between 2 and 4 milliseconds), however in this work we assume that 

ranging to the backup OLT can be done during normal operation of the PON [116]. Intra-

control plane communication is done through a dedicated network with typical latencies. 

The network latencies between both the OLT and the Network Orchestrator and the 

Network Orchestrator and the Network Controllers are emulated in the test-bed and set at 

4 milliseconds each. The latency and the processing times for both the Network Controllers 

is also emulated as 5 milliseconds each. The core network recovery happens in parallel to 

the access network recovery time.  

Accordingly, within 15 milliseconds of the failure, the optical and electronic switch 

components and the backup OLT have been instructed to reconfigure their protection paths.   

Within 33 milliseconds after the failure, the electronic switch components within the core 

and access are configured, and by 38 milliseconds, the optical switch component is 

configured. In order to understand the effect of centralising both the Network Orchestrator 

and the Network Controllers, we compared the above results with the case where 

orchestrator and controllers are collocated within the Core Network. This was accomplished 

by setting the emulated intra-control plane latencies at zero. The results are shown in Figure 

28 as the basic protection line. On average, basic protection can be accomplished within 

27.8 milliseconds.   

5.4  Summary 

In this chapter, we have been able to demonstrate, progressively more complex scenarios 

for the protection of converged architecture networks. In our first 1:1 protection experiment 
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(see section 5.1 ) across a pan-European network, full recovery took place over an elapsed 

time period of 124 milliseconds. From analysis, this was composed of 3 individual time 

periods - a period in which traffic in the access was failed over from the primary path to the 

secondary path (7.2 milliseconds); a period in which core traffic was being redirected before 

the service could be restored (25 milliseconds); an intervening period in which the end to 

end link was in flux (92 milliseconds). We optimised the failure detection mechanism in our 

first N: 1 experiment (section 5.2 ). Overall, Restoration time of the data traffic improved 

and was measured at 81.29 milliseconds. 

In our second N: 1 experiment (see section 5.2 ), we included a PON physical layer with 

backup OLTs shared among PONs in an N:1 scheme.  The average protection time was 

measured at 64 milliseconds, with variations between 50 and 100 milliseconds attributed to 

the random delay in the failure detection. In our third N:1 experiment, we optimised the 

failure detection response again and achieved an average restoration time of 41 

milliseconds across 70 measurements.  
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Chapter 6 Converged Architecture DWA 

On a shared transmission pipe, all traffic flows contend for the common bandwidth. Capacity 

on Demand allows a dedicated portion of bandwidth to be allocated to a flow or group of 

flows, for a period of time. The capacity may be requested in real-time or semi-real-time by 

an end user.  Typically, a user selects through a portal, the source and destination for the 

transmission of traffic and the bandwidth required. The portal is a front-end to the network 

orchestrator. Type traffic types include Video-On-Demand (VOD) and Bandwidth-on-

Demand (BOD).  In Figure 30(a), we give an example of Capacity that is assured across 

the Openflow switch, where the useful traffic must contend with best effort background 

traffic. The useful traffic has a fixed commit Information Rate (CIR) on the egress port of the 

Openflow switch which cannot be compromised by the Best Effort traffic. Separately, the 

traffic can peak to a Peak Information Rate which exceeds the Committed Information Rate, 

however, this additional bandwidth is contended. This solution is adequate where there is 

sufficient bandwidth across the PON. 

 

Figure 30 – (a) VOD with Assured Capacity. (b) Assured capacity on new channel 
However, there are situations where some level of guaranteed bandwidth can be 

provisioned across the PON, in addition to the assured bandwidth in the metro core network. 

In Figure 30(b), capacity is assured across the PON through the allocation of a dedicated 

wavelength in a real-time.  This Dynamic Wavelength Assignment (DWA) use case 

exemplifies how capacity constraints in one PON channel may be overcome by re-allocating 

one or more end user ONUs dynamically to a different channel in order to assure quality of 

service. This could also be used for the opportunistic provision of high bandwidth services 

(on-demand video and big data transfers), to specific PON users on a dynamic basic.  Since 

the DWA use case is aimed at capacity provision, the wavelength and service 

reconfiguration times targeted are in the region of a few hundreds of milliseconds. While 

wavelength assignment is not carried out at the granularity of individual burst transmission, 

dynamic wavelength assignment is still being invoked since the change in wavelength is 

dynamically and automatically allocated by the controller as a response to an increase in 

user capacity, rather than being statically assigned by the network management plane.  
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6.1  Assured Capacity on a new Channel 

In the cases of temporary and dynamic migration of wavelength it is important that the 

wavelength switching time is minimized to avoid impacting users of other network services. 

Typically, an end user (customer) elects through a portal frontend to transmit a fixed 

bandwidth transport between two end points typically for the sending and receipt of video 

streaming.  The Network Orchestrator orchestrates the provision of the path, according to 

its knowledge of the full End-to-End topology covering the Core and Metro Access 

Networks. The core Network Controller and the Metro Access Network Controller, are each 

instructed to provision an explicit path respectively. The SDN Controller (Figure 9) 

provisions the path through the Metro Access Openflow switch, and the PON. Using a 

custom implemented PLOAM message, the primary OLT requests the ONU tune to a 

wavelength provisioned out of the secondary OLT. The DISCUS SDN Network Controller, 

acknowledges that it has completed the provisioning of the path through the Metro Access 

portion of the network.   

Practically, Dynamic Wavelength Assignment was implemented through the addition of 

laser and filter control to the LR-PON protocol hardware and control mechanisms.  The 

tuneable laser was controlled across an i2c bus to the Skylane 10G SFP+ tuneable lasers 

and the tuneable filter was controlled through a UART.  To implement DWA in the physical 

layer, we employed a splitter and filter in the downstream, and an AWG and Polatis Optical 

Switch in the upstream direction, statically patched to ITU channels 33 and 32 of the primary 

and secondary OLT respectively (Figure 31).   In order to select the OLT and ONU 

transmission wavelengths, the OLT provided a North Bound interface.  Through this 

Interface, the control plane could tune an OLT’s transceivers to a given wavelength. Since 

the ONU was remote from the control plane, tuning of an ONU’s laser and filter was 

performed also through this interface by the invocation of custom PLOAM message within 

the LR-PON protocol. The wavelength of the OLT and ONU were selected by writing to 

control registers in the OLT. Each individual OLT laser wavelength could be set by writing 

the ITU channel number to its local register.  To select the wavelength of transmission for 

an ONU, the ITU channel number was set by writing the target ITU channel number to 

register of the OLT to which it is homed. The ONU Id was also specified so as to distinguish 

an individual from multiple ONU’s homed off a single OLT. 
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Figure 31 - DWA Scenario 
 

 

6.2  Results 

The DWA results in Table 10 refer to the service provisioning time when, in response to an 

increase in traffic demand, the Network Orchestrator instructs the core and the access 

Network Controller (using the control plane messages in Table 7) to provision the new path.  

The Network Orchestrator uses its knowledge of the full end-to-end network topology to 

instruct the ONU traffic to move to a different PON channel. In this instance, is from the 

probing Using a custom implemented Physical Layer Operations, Administration and 

Maintenance (PLOAM) message, the primary OLT requested the ONU to tune to a 

wavelength provisioned by the secondary OLT. On inspection, we believe that the 

measured provisioning time of about 225 milliseconds (from probe event 4.a to the probe 

event 6.a) could be reduced by an optimized design of communication interfaces between 

the ONU FPGA and the tuneable components. 

 

 

Table 10 - DWA timings 
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6.3  Interworking between DISCUS and IDEALIST testbeds 

This work defined and demonstrated an SDN architecture to support end-to-end service 

from access to core. The validation work had involved two laboratories that demonstrated 

that network operators could deploy SDN solutions that covers, not only access or core 

scenarios, but also end to end. 

 

Figure 32 - Experimental Lab Set up 
 

There were two different labs set-up to demonstrate the scenario of this work, one lab in 

Telefonica premises and another in Trinity College of Dublin. Figure 32 shows the schema 

of the lab set-up for this experiment. To communicate between them, a VPN was created, 

so the data plane connection had a low bandwidth. The network orchestrator was located 

in Telefonica labs and was based on netphony ABNO implementation. The north and south-

bound interface of the orchestrator was implemented using the STRAUSS COP.  The core 

controller used the netphony ABNO, which in addition with netphony PCE controlled a 

GMPLS emulated control plane. The GMPLS nodes used the protocol suite developed by 

Telefonica I+D and is released in GitHub. This setup was built with 30 virtual machines, 

which run in a Linux server distribution. Each emulated node implemented a GMPLS stack 

(including RSVP, OSPFv2 and PCEP) with the extensions to support flexgrid developed in 

IDEALIST project. The PON backplane connection to the core network contained a 10G 

Ethernet physical layer and Media Access Control Layer, allowing it to be plugged into any 

10G capable network element.  

To implement DWA in the physical layer, we employed a splitter and filter in the 

downstream, and a WSS (Optimum 9x1/1x9 50Ghz Wavelength Selective Switch) in the 

upstream direction, statically patched to ITU channels 32.5 and 31 of the primary and 

secondary OLT respectively.   In order to select the OLT and ONU transmission 
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wavelengths, the OLT provided a North Bound interface.  Through this Interface, the control 

plane could tune an OLT’s transceivers to a given wavelength. Since the ONU was remote 

from the control plane, tuning of an ONU’s laser and filter could be performed also through 

this interface by the invocation of custom PLOAM message within the LR-PON protocol. 

The wavelength of the OLT and ONU could be selected by writing to control registers in the 

OLT. Each individual OLT laser wavelength could be set by writing the ITU channel number 

to its local register.  To select the wavelength of transmission for an ONU, the ITU channel 

number was set by writing the target ITU channel number to register of the OLT to which it 

is homed. The ONU Id was also specified so as to distinguish an individual from multiple 

ONU’s homed off a single OLT. For the experimental LR-PON access network, the 

configuration was comprised of a Pronto 3780 switch with 48 10G interfaces, running 

release 2.4 (Openflow v1.4 compatible firmware). The Pronto switch was configured with 

multiple virtual bridges.  A Video Server (VLC) application was co-located with the ABNO 

controller interface in the Telefonica premises. This transmitted a UDP based video stream 

across the Tunnel between the two testbeds, traversing the DISCUS PON and was received 

by the GPU workstation for display by the TV display.  

6.4  Results 

The latency between the two testbeds was measured over 100 measurements at between 

45 and 48 milliseconds. It was not possible to transmit the video stream through the 

IDEALIST network, as a physical data path was not available. In Step 1, an end user 

(customer) elected through a portal frontend to the ABNO controller to transmit a fixed 

bandwidth transport (100Mbps) between two end points aEnd (10.0.50.3) and zEnd 

(10.0.50.4) typically for the sending and receipt of Video streaming. In Step 2, the ABNO 

orchestrated the provision of the path, according to its knowledge of the full End to End 

topology covering the Core and Metro Access Networks. The IDEALIST core Network 

Controller and the Metro Access (DISCUS) SDN NC, were each instructed to provision an 

explicit path in steps 3 and 4 respectively. For the Metro Access portion of the network (the 

path from 10.0.50.2 to 10.0.50.4), the DISCUS SDN Network Controller was instructed to 

provision the path according to the route 10.0.50.2 to 10.0.50.1 to 10.0.50.4. The DISCUS 

SDN Controller provisioned the path through the Metro Access (Openflow) switch (step 5), 

and the PON (primary/secondary OLT and ONU – step 6). Using a custom implemented 

PLOAM message, the primary OLT requested the ONU tune to a wavelength provisioned 

out of the secondary OLT (step 7). In step 8, the DISCUS SDN NC, acknowledged that it 

had completed the provisioning of the path through the Metro Access portion of the network.  

In step 9, the Video transmission was triggered to start. 

First, the portal requested a new video service, which could not be processed within the 

access area scope. This meant that there was a request from the video platform to provision 
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an end to end path between the client and the video server. Therefore, the STRAUSS ABNO 

received a COP calls service set-up to establish the connection. The STRAUSS ABNO 

carried out a path computation, which crossed different networks, the core (IDEALIST) and 

access network (DISCUS). Therefore, the STRAUSS ABNO sent a COP calls service set-

up to each controller to configure the nodes in their domain. The IDEALIST PCE configured 

the GMPLS nodes, while the DISCUS controller configured the access elements. The 

workflow is explained in Figure 33. 

 

Figure 33 - Workflow Steps 
Figure 33 shows the message exchange between the different elements. 

 

Figure 34 - Whireshark capture 
 

As it is shown in Figure 34, the ABNO received an HTTP POST request with COP syntax. 

Figure 35 shows the JSON object with the request parameters. The aEnd and zEnd 

routerIds identifies the client and the video server. The traffic parameters were set to request 
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a 100Mbps connection and a 100 milliseconds latency. This request was sent as an 

Ethernet service.  

Once the STRAUSS ABNO received the requests, it requested its PCE for a path 

computation between the two end points. To do so a PCReq-PCResp process was 

performed. Now, the PCE could calculate the path and response to ABNO with a PCResp, 

which contained the Explicit Route Object with the path. The ABNO controller with the ERO 

information call to Provisioning Manager (PM) via a PCInitiate message. The PM split the 

route in different domains and with a COP message call to each controller to create a path 

in each domain (IDEALIST and DISCUS). When the path was created each controller sent 

respective http message with an OK status. With this information PM response to ABNO 

controller with a PCEReport message and finally ABNO report to video platform with an 

HTTP response. 

 

Figure 35 - JSON object for a COP service-call set-up 

 

Across 10 repetitions of the experiment, the total completion time of the workflow was 

measured at 275 milliseconds, of this, 35  milliseconds (with associated inter-testbed 

latency) related to the blocking element of the call to the DISCUS  SDN Controller. The non-

blocking elements of the DISCUS SDN proceed in parallel with the completion of the return 

calls by the ABNO controller. 

6.5  Summary 

The Dynamic Wavelength Assignment (DWA) use case exemplifies how capacity 

constraints in one PON channel may be overcome by re-allocating one or more end user 

ONUs dynamically to a different channel in order to assure quality of service. We executed 

this scenario twice. In the first instance, we provisioned DWA over a PON physical layer, 

and in the second instance, DWA provisioning on the DISCUS testbed was trigger from the 

IDEALIST ABNO orchestrator. Using a custom implemented physical layer operations, 

administration and maintenance (PLOAM) message, the primary OLT requested the ONU 

to tune to a wavelength provisioned by the secondary OLT. In the first scenario, we 
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measured the total provisioning time as 225 milliseconds. On analysis, we identified much 

of this time taken up with latency between the interfaces of the FPGA and the controller. 

We believe that this time could be reduced by an optimised design of communication 

interfaces between the ONU FPGA and the tuneable components. Across 10 repetitions of 

the experiment in the second scenario, the total completion time of the workflow was 

measured at 275 milliseconds, of this, 35 milliseconds (with associated inter-testbed 

latency) related to the blocking element of the call to the DISCUS SDN Controller. The non-

blocking elements of the DISCUS SDN proceed in parallel with the completion of the return 

calls by the ABNO controller. 
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Chapter 7 Performance Evaluation - NSIM 

NSIM is a distributed, multi-layer network simulator, which has been developed from the 

ground-up using a semi-interpretive programming language. The intention of nsim is to 

overcome restrictions of other network simulators (most notably NS3) and to leverage the 

wider tools and libraries available to commonly used languages such as Java, Python and 

JavaScript. 

The key functional requirements of any Network simulator are the ability to configure 

network topologies with typical components such as switches, routers and network links, to 

support for network protocols, to configure and run scenarios at simulation speeds and to 

produce results such as timings and network traces equivalent to those produced from live 

experiments.  

NS3 is the most common open-source simulator used in particular for network domain 

problems. It is written entirely in C++ and requires development of models in C++ also. The 

NS3 simulator is monolithic in that it must run on a single host environment, so that the 

computing resources such as memory, CPU, disk and I/O available to simulations are 

limited to those available on a given machine. To run larger simulations requires execution 

on a host with more resources.   

The primary design requirements of NSIM are  

 It should be open and extendible simulation framework that is flexible to support any 

variations of standard and non-standard network stacks and topologies.  

 It should have support for standard network protocols such as Ethernet, IP, TCP 

and UDP but also fractional layer protocols such as PPP, MPLS, Dot1Q, and 

PPPoE. Support should include the encapsulation as well as the state management 

aspects of the protocol. 

 it should support for network characteristics such as buffering and latency 

The secondary design requirements of NSIM are that 

 It should support simulations to run across multiple hosts, and thereby leverage the 

computing resources, such as CPU, memory, disk and I/O of the constituent 

machines. It should also run adequately on a single machine. 

 It should support access to other python computational, and analytical tools such as 

twisted, numpy, scapy and octave. Octave is an open source variant of Matlab.  

 It should allow access to other computational resources such as GPU cores, in-

memory and distributed databases  

When trying to simulate the FLATLANd architecture in NS3, we identified a number of 

shortcomings. NS3 has a restricted array of network protocol stacks.  While NS3 provides 

some basic helper functions to create wired networks – PointToPointHelper, CsmaHelper 

and bridgeHelper, these require full stacks to be installed on each terminating and 

intermediate nodes.  The NS3 Openflow switch module it mandates the use of CSMA 
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interfaces on each of its ports [119], the effect of this is  to impose CSMA limitations and 

characteristics on the interfaces.  There is currently no switched Ethernet models available 

that simulate Ethernet packet level switching between ports on an Ethernet switch, and 

which use a non-CSMA physical layer. Albeit there have been a number of attempts to 

create a basic Ethernet switching model. One uses the half-duplex csma channel type, and 

nests two csma-net-devices (rx and tx) inside a single ethernet net device. Another is 

derived from point-to-point links with some of the protocol-specific parts (header processing) 

from the  csma model. The work on advancing the Ethernet Switch module by the Ns-3 

community has stalled since 2014[120].  

7.1  Generic Functionality 

The NSIM scheduler (Figure 36) maintains the simulation clock, defaulted to a granularity 

of 1 millisecond. The scheduler negotiates locking and unlocking of the simulation clock 

with the constituent Processes. A Process is any component which must function at 

simulation speed either at one or multiple clock ticks. The scheduler is, and indeed any 

Process maybe, a network based function, allowing the simulation to run across multiple 

machines. Depending on the complexity of the simulation, a simulation clock tick may 

endure from a fraction of a second up to minutes or hours in real-time. Functionality 

available to components based on the Process component include  waittick() which locks 

the component until the next clock tick, waitfor(n) which locks the component for n clock 

ticks, lock()/unlock() which prevents the simulation clock advanced for a period of execution 

by the component. The simulation clock cannot advance until all components are unlocked. 

Other functionality includes wait10mstick(), wait100mstick() and waitsectick() which locks 

the components for 10 milliseconds, 100 milliseconds and 1 second respectively. The 

waittick() functionality is most used in loops to schedule events at specific intervals, for 

example, transmitting packets. 

 

Figure 36 - NSIM Scheduler and Distributed Processes 
Fundamental to the simulation of network stacks and network links are Queues, which 

allows data to be exchanged between components using standard set() and get(). A 
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maximum size can be set on the size of the queue. NSIM queues are stored in a distributed 

database, so they are accessible from NSIM components which are located on a different 

machines. There are three variants of Queues , a standard Queue which can emulate a 

buffer, a latency Queue which can  emulate transmission latency delays with a granularity 

of 1 milliseconds, and an aged Queue which manages the age of entries in the queue.   

A Connector connects Queues which maybe constituents of higher level modules, and 

because it is a threaded variant of a Process, it operates asynchronously and at simulation 

speeds. It implements two pieces of functionality key to network simulation – most notably 

behaviour when Queues (or buffers fill-up) as well as the control of the rate at which data is 

transferred, that is rate limiting. The Connector allows data that is being transferred between 

connected queues to be inspected (the inspect() function), which again is key to higher level 

functionality such as network packet analysis. A Connect functional block cross-connects 

two interfaces, each of which is implemented using a Connector.  

A Duplex is a Process with two interfaces (A and B) which allows bidirectional transfer 

between the two interfaces, and is a super-class for network layers or network transmission 

links. Each interface has a transmit and a receive Queue. An interface can be configure to 

behave in one of two ways when its buffers reach saturation. They either behave in a lossy 

manner in which case packets are dropped, or they can behave lossless, in which case 

the packet is not accepted for delivery. We use the term back-pressure to describe the 

effect on downstream queues. Back-pressure can have a domino effect on a downstream 

chain of lossless queues. In this instance, the downstream queue that has large buffer 

space, or is lossy bears the onus for the domino effect. 

Two connectors are used to cross-connect the interfaces. Rate limiting, Maximum Queue 

size, latency and inspection functionality can be specified when the Duplex is configured.  

 

Figure 37 - Duplex Process 
Stack and Hub network paradigms can be implemented respectively by interconnecting 

multiple Duplex blocks using Connect functions, or connecting multiple Duplex blocks using 

a 1-to-many Connector. 
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Figure 38 - Stack 
A Traffic Generator is a Process which generates traffic with one of three profiles – a single 

packet, a stream of fixed length packets every n milliseconds or a stream of traffic at a rate 

of N Mbps. The traffic generator connects to a network host or to another network block and 

can also receive traffic that is returned from an upstream host. This allows packets returned 

to be compared with traffic transmitted, and thereby calculate packet loss and packet delay. 

 

Figure 39 uses a simulation clock period of 1 millisecond, and lasts for 10 seconds. The 

traffic generator trafgen generates 200 byte packets at a rate of 1 every millisecond. To 

generate 1 Mbyte of traffic, the parameter ms1 is replace with the parameter capacity=1. 

Term2 is the received node, which accepts and returns traffic which it receives.  In sub-

scenario 0, the nodes traf and term2 are connected using a simple connect block. Sub-

scenario 1 connects the nodes through a third duplex block. In sub-scenario 2, the nodes 

are connected through 2 x 3-layer stacks (stack1 and stack2). These stacks simply transfer 

data up and down with modifying the data.  The data is not encapsulated with any network 

protocol. Once the nodes, links and topology are defined, the simulation is started for the 

specified duration. 

scenario =0 

sched=scheduler(tick=0.001,finish=10) 

traf=trafgen('traf',ms1=1) 

term2=terminal('term2') 

if scenario == 0: 

  connect('con1',traf.B,term2.A) 

elif scenario == 1: 

  node1=duplex('node1') 

  connect('con1',traf.B,node1.A) 

  connect('con2',term2.A,node1.B) 
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elif scenario == 2: 

  stack1 = stack('stack1') 

  stack2 = stack('stack2') 

  connect('linkA',traf.B,stack1.A) 

  connect('linkB',stack1.B,stack2.A) 

  connect('linkC',stack2.B,term2.A) 

sched.process() 

Figure 39 - NSIM example scenario A 
 

In Figure 40, A Flow Generator creates a set of parallel running flows, with number 

flowcount. There is an initial start time and a flow duration. An interval specifies the gap 

between subsequent flows. 

Typically, a flow is used for background traffic which begins and ends. The staggered delay 

in starting the flows allows this background traffic to ramp up and fall off. Background flows 

should traverse the network to a specific network termination point.  The flow-generator is 

bound to host3. Destination traffic will have a destination of mdst='00:00:00:00:00:00', which 

is then dropped by the termination host host2, which drops any traffic with mac address 

mdrop='00:00:00:00:00:00' 

 

sched=scheduler(tick=0.001,finish=10) 

 

host1=host('host1',stack='udp') 

host2=host('host2',stack='udp',mdrop='00:00:00:00:00:00') 

host3=host('host3',stack='udp',mdst='00:00:00:00:00:00') 

#traf=trafgen('traf1',ms1=1) 

traf=trafgen('traf1') 

term2=terminal('term2') 

flowgen=flowgen('flowgen',start=0.002,stop=2.5,ival=0.300,flowcount=5) 

# sw=datalink('node1',capacity=1,MaxSize=10000,latency=40) 

connect('hostcon1',host1.B,traf.B) 

connect('con1',host1.A,sw.A) 

connect('con2',sw.B,host2.A) 

connect('hostcon2',host2.B,term2.A) 

connect('flow',flowgen.B, host3.B) 

connect('con3',host3.A, sw.A) 

 

sched.process() 

Figure 40 - NSIM example scenario B 
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7.2  Network Functionality 

Network functionality is implemented using the fundamental generic functionality described 

such as Duplex, Connectors and Connects. The scapy python module is used for packet 

crafting.  

A host creates a Process based network stack composed of an Ethernet layer, IP layer and 

either a TCP or UDP layer. For data that is being sent down the stack, data has to be 

encapsulated with the relevant parameters of each layer (such as Ethernet addressing and 

IP addressing) in turn. For data that is being sent up the stack, from the network interface, 

data must be de-encapsulated each layer in turn.  

 

Figure 41 - Host Stack 
A Datalink is a subclass of a Duplex block, through which the link capacity in Mbps and Bit 

Error Rate (BER) of Transmission may be specified. The link capacity translate to the rate 

limit parameter of the underlying Connector blocks. BER is implemented by inspecting the 

traffic (using the underlying Connectors inspect() function) then decoding the line traffic at 

an Ethernet link level. Given the size of the packet and the bit error rate, a packet_drop() 

function determines True or False to drop the packet at the Ethernet interface level 

(Equation 1). A packet drop hit is recorded in the database for that interface.  

 

Probability of Packet Drop = 1 െ  ሺ1 െ pሻ 

Equation 1 - Packet drop probability 
 

Where n is the number of bits, and p is the probability of an error. 

 

Separately, the inspect() function writes the Ethernet packet out to a .pcap file if tracing is 

switched on this datalink. Inspection happens separately for data in the forward and reverse 

date transmission directions, since there are two separate Connector blocks in use. 
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Figure 42 - Datalink - based on Duplex block 
An Ethernet switch is a single layer stack, containing two Duplex blocks. Two blocks are 

required for the forward and reverse data transmission directions. The Ethernet switch has 

two network interfaces A and B through which data is switched as well as two application 

interfaces. A Connect block cross connects the application interfaces. Ethernet packets are 

simply inspected and switched between the A and B interfaces without modifying any 

characteristics including the Ethernet addressing. A Router However, it routes traffic 

between the two interfaces and thus modifies the Ethernet packet addressing. A vswitch 

inserts and drops MPLS, Dot1Q, PPPoE and PPP sublayers. It is similar to the Ethernet 

switch and contains two Duplex blocks.  

 
 

Figure 43 - NSIM switch types 
 

As an example, in Figure 44, two hosts are created, each with a UDP stack (which includes 

Ethernet and IP layers.) Traffic Generator and Termination points are created.  A datalink 

(dl) is created with a data transfer rate of 1000 bps, and QueueSize of 1000 bytes. Connects 

are made between terminating points and the stacks, and between the stacks. 

 

sched=scheduler(tick=0.001,finish=10) 

host1=host('host1',stack='udp') 

host2=host('host2',stack='udp') 

 

traf=trafgen('traf1') 

term2=terminal('term2') 
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  dl=datalink('node1',ratelimit=1000,MaxSize=1000) 

connect('hostcon1',host1.B,traf.B) 

connect('con1',host1.A,dl.A) 

connect('con2',dl.B,host2.A) 

connect('hostcon2',host2.B,term2.A) 

sched.process() 

Figure 44 - NSIM example scenario C 
 

In Figure 45, the datalink is configured with a latency of 50 milliseconds and a Bit Error Rate 

(BER) of 10^-9. PCAP tracing is enabled on this link (to file link.pcap), which may then be 

read by wireshark or tcpdump. 

  

link=datalink('link',latency=50,trace=True,debug=True,ber=-9) 

connect('hostcon1',host1.B,traf.B) 

dataconnect('con1',host1.A,link.A) 

dataconnect('con2',link.B,host2.A) 

connect('hostcon2',host2.B,term2.A) 

Figure 45 - NSIM example scenario D 

 

Figure 46 - TCPDump of link.pcap 
 

In Figure 47, the hosts are connected by two vswitches, which uses MPLS as a sub-layer 

between the switches. In the forward data direction, vsw1 pushes the MPLS label and sw2 

pops the label. In the reverse direction, vsw2 pushes the MPLS label and sw1 pops the 

label 

 

sw1=vswitch('sw1',"","MPLS(label=250)") 

sw2=vswitch('sw2',"MPLS(label=250)","") 

connect('hostcon1',host1.B,traf.B) 

connect('con3',host1.A,sw1.A) 

connect('con3',sw1.B,sw2.A) 

connect('con4',sw2.B,host2.A) 

connect('hostcon2',host2.B,term2.A) 

Figure 47 - NSIM example scenario E 
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Typically, hardware devices are lossless and trigger back pressure when their fixed buffers 

become saturated. Hardware devices such as switches, routers and hosts can be 

configured specifically to have a fixed length buffers and then drop packets when their buffer 

gets saturated. Since datalinks do not have buffers other than the latency used for the data 

in transit, they are configured as lossy by default.  

7.3  TCP protocol 

Implementing the TCP transport layer requires additional end to end functionality, not 

evident in the packet level transfer for UDP. This end-to-end functionality assures data that 

is transferred between the end-points, so that the connection is created between the correct 

end-points but also all data that is transfer is transferred intact, and in an efficient manner 

possible. TCP is implemented in NSIM in two parts – the TCP network stack and the TCP 

protocol. The TCP network stack performs the (TCP/IP/Ethernet) encapsulation and de-

encapsulation of data for transmission to the network and reception by a remote host. The 

stack creates a TCP listener and an application level socket through which data may be 

sent to /from an application, as well as a network (that is, an ethernet) interface to the NSIM 

(virtual) physical layer.  

 

self.listener = 

TCPListener(self.A.get,self.A.put,'1.1.1.1') 

self.conn=TCPSocket(self.listener) 

self.conn.connect('2.2.2.2',80) 

 Client end of TCP connection 

self.listener = 

TCPListener(self.B.get,self.B.put,'2.2.2.2'      

self.conn=TCPSocket(self.listener) 

self.conn.bind('2.2.2.2',80) 

Server end of TCP connection 

Figure 48 – NSIM example Scenario F 
This process is identical for both local and remote nodes. However, a Server binds to its 

local socket, while a Client connects to its local socket, which allows the client to make the 

connection request.   

The TCP protocol manages transition between states of the TCP connections 

(CLOSED,LISTEN, SYN-SENT,SYN-RECEIVED,ESTABLISHED,CLOSE_WAIT, LAST-

ACK and FIN-WAIT) as well as the transition between sub-states within the operation of 

protocol, in particular, related to Congestion management.  

In Figure 49, a TCP client (tcpxmit) and a TCP server (tcprecv) are created. They are 

connect through three switches vsw1, vsw2 and vsw3 by two datalinks link1 and links2 with 

latencies of 10 milliseconds and 50 milliseconds respectively. VLAN encapsulation is run 

between sw1 and sw2, and MPLS is run between sw2 and sw3. Sw2 performs de-

encapsulation of VLAN and encapsulation of MPLS in the forward direction. 
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sw1=vswitch('sw1',"","Dot1Q(vlan=3)") 

sw2=vswitch('sw2',"Dot1Q(vlan=3)","MPLS(label=101)") 

sw3=vswitch('sw3',"MPLS(label=101)","") 

link1=datalink('link1',latency=10,trace=True) 

link2=datalink('link2',latency=50,trace=True) 

connect('con3',tcpxmit.B,sw1.A) 

connect('con3',sw1.B,link1.A) 

connect('con3',link1.B,sw2.A) 

connect('con3',sw2.B,link2.A) 

connect('con3',link2.B,sw3.A) 

connect('con4',sw3.B,tcprecv.A) 

Figure 49 - NSIM Example Scenario G 
 

In the reference TCP/IP protocol stack, TCP encapsulates the application PDU (protocol 

data unit) with a TCP header to be transmitted from the upper layer application. The 

application PDU must be segmented into TCP segments. In turn, the lower IP layer 

encapsulates the TCP PDU. On the receiving (peer) side, the process of de-encapsulating 

and interpreting the data happens in reverse. The TCP header holds the meta data such as 

source and destination ports (16 bits each), sequence and acknowledgement numbers, 

protocol flags and checksum.  The Sequence number is a 32 bits number that represents 

either the initial sequence number, if the SYN bit is set, or the sequence number of the 

current packet if the SYN bit is not set. Here, the sequence number of the first data byte will 

then be one plus the initial sequence number. Similarly, the Acknowledgment number is a 

32 bit number that represents the sequence number of the next expected byte to be 

received from the sender if the ACK bit is set or the acknowledgment of the remote end’s 

initial sequence number itself, if the ACK bit is not set. 

A TCP session progresses through three phases. Connections from a client to a server are 

established through a 3 step handshake process [121] . Once the connection is established, 

Data is transferred bi-directionally. Connections may be terminated by either client or server 

through a three or four steps. TCP manages the myriad of states and sub-states which each 

TCP connection can progress through, using a complex state machine. Within the 

Connection phase a connection may be in a state of LISTENING, SYN-RECEIVED, SYN-

SENT. Within the Data Transfer phase, a connection may be in a state of ESTABLISHED. 

Within a Termination Phase, a connection may be in a state of CLOSED, FIN-WAIT-1, 

FIN_WAIT-2, CLOSE-WAIT, TIME-WAIT, and TIME-WAIT. During the establishment of a 

connection, a server starts off in a LISTENING state. A client generates a TCP SYN packet, 

with the segment sequence number set to a random value X. The server responds with a 
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SYN-ACK packet (both bits set). The ACK number is to one more than the received 

sequence number (X+1). Also the server chooses a sequence number Y for packets which 

are being sent in the opposite direction. The client responds to the SYN-ACK with an ACK. 

The sequence number in the client to server direction is increased by one (X+1). When 

either the client or server wishes to terminate a connection, they use a four step sequence 

FIN,ACK,FIN,ACK or a three step sequence FIN, FIN+ACK, ACK. After which, the 

terminating side waits for a timeout before finally closing the connection. 

Upon connection establishment, TCP uses a slow start mechanism to increase the 

congestion window, from an initial value of twice the Maximum Segment Size (MSS) [122]. 

With every packet acknowledgment, the congestion window increases by one Maximum 

Segment Size so that the congestion window doubles for every Round Trip Time (RTT). 

Karn’s algorithm was used to better estimate the RTT [123]. When the congestion window 

exceeds the Slow Start Threshold (ssthresh), the algorithm enters the congestion avoidance 

state.  Where the Initial value of ssthresh is large, the initial slow start usually completes in 

a packet loss. The Slow Start Threshold is updated at the end of each slow start. In the 

congestion avoidance state, the congestion window is increased by one Maximum Segment 

Size every Round Trip Time, as long as there are no duplicate ACK received. The probability 

of receiving a duplicate ACKs is high, when a packet is lost. For Triplicate ACKs, TCP Tahoe 

[122] performs a ”fast retransmit”, resetting to the slow-start state and reduces the 

congestion window to a single Maximum Segment Size. TCP Tahoe was the first TCP 

congestion control strategy. For each connection, TCP Tahoe maintains a congestion 

window that limits the total number of unacknowledged packets that may be in end-to-end 

transit. The congestion window is a derivation of the TCP sliding window for flow control. 
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Chapter 8 FLATLANd Architecture 

8.1  Outline of FLATLANd Architecture 

FLATLANd uses the Portland architecture [102] for Data Centres to facilitate an efficient 

hierarchy of layer-2 switches and distributed Openflow tables (across ONU/OLT, electrical 

and optical switches).    A translation is performed between the real (physical) address of 

the end device and the internal structured (pseudo) addressing used within the network. In 

the case of LR-PON, this translation is performed at the ONU GEM port. The mechanism 

partitions the internal 48-bit address space of an Ethernet layer into a number of arbitrary 

subfields, each routed to a different part of the network. The correlation between the real 

and pseudo addressing is performed dynamically by the SDN controller. For the LR-PON 

scenario we have identified a possible addressing scheme based on the following 

allocation: ‘mm-tt-nn-cc-gg-dd’. Following the structure in Figure 50, ‘mm’ identifies up to 

4096 different metro-core nodes (12 bits), each with up to ‘tt’ up to 4096 OLT ports (12 bits). 

Within an OLT port,’nn’ identifies up to 4096 ONUs (12 bits), each with 16 ‘cc’ T-CONTs (4 

bits). A T-CONT is a group of logical connections that carries traffic within an ONU. Each 

T-CONT is identified by a unique Allocation Identifier (Alloc_ID) carrying traffic associated 

to one bandwidth type (i.e., QoS characteristic). The final 8 bits are split between GEM ports 

‘gg’ (4 bits or 16 GEM ports per T-CONT) and devices ‘dd’ (4 bits or 16 devices per GEM 

ports). A GEM Port is a virtual port that encapsulates frames transmitted between the OLT 

and the ONU. Each traffic-class is assigned a different GEM Port. This would allow for 

example different users on the same ONU to acquire services from different providers 

concurrently. It should be noticed that we consider a classless address structure, where 

each block can have an arbitrary number of bits (up to a maximum sum of 48 bits, defined 

by the Ethernet address space limit).  

 

Figure 50 - FLATLANd FTTH function-level diagram 
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There are two main distinguishing differences between the scenarios of the data centre 

networks and the Passive Optical networks. Firstly, traffic is predominantly consumed by 

the PON access termination nodes (customer devices) whereas in the Data Centre, traffic 

is predominantly generated by the access termination nodes (Data Centre machines).  The 

traffic ratios are essentially reversed, the significance of which is indeterminate at this stage.  

Secondly, and most crucially, access termination nodes are not under the control of the 

Infrastructure provider. This strictly precludes schemes that use secondary MAC addresses 

(NANDO) and IP-in-IP encapsulation (VL2) because the operator plays no part in the 

operation of the device configuration.  While there is a need for customised components in 

SPB, Trill and Portland, the scale of Trill and SPB is limited by PBB encapsulation. In the 

case of Portland, the range of pseudo MAC addresses is relatively unbounded (2^48 or 281 

Trillion addresses). There is some merit in the approach adopted by Portland due to its 

scale and flexible Layer 2 addressing scheme. 

FLATLANd uses the Openflow broad and flexible definition of a flow. This definition has 

expanded from the basic 5-tuple to included other attributes such as MPLS labels, VLAN 

tags and IP TOS fields. All devices are granted access to the network but subsequently may 

be dynamically or statically bound to the profile of a target service provider. Indeed the 

flexibility of the addressing scheme favours multi-tenancy, as parts of the address can be 

used for packet routing purposes and other parts for QoS and SP differentiation. Distinct 

flow rules are created for the metering of each class of traffic at each Metro-Core node, OLT 

and ONUs. These are separate from the rules necessary or forwarding flows. Table 11 

compare the characteristics of FLATLANd against those of other flow-based networks which 

were highlighted in section 2.4  
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Architecture Pros Cons 
Flatland Layer 2 mechanism that 

supplements other Flow-
based approaches. 
Stateless Core 
No Signalling 
Inherent Admission 
Control 

 Rigid Service 
definition, required at 
planning stage 

Integrated Services Real Guarantees Low Scalability 
Connectionless Approach No Signalling Implicit 

differentiation, user 
misbehaviour 
Vulnerability 

Dynamic Packet State Stateless Core Complex data 
handling 

Feedback and Distribution Simple core operations Per-flow signalling, 
weak service 
differentiation 

Flow-based differentiated 
Services 

DiffServ scalability Fixed Classes 

Flow-Aware networking No Signalling Weak service 
differentiation 

Flow-State Aware transport Diverse service 
differentiation options 

Complex signalling 

Flow-Aggregated-Based Services Diverse service 
differentiation 

Complex signalling 

Table 11 - Comparison of Flow based Networks 
 

FLATLANd is distinguished from IP-layer QOS framework such as IntServ, DiffServ, by 

providing a layer 2 QoS guarantees at layer 2, and does not generally require signalling to 

provided service differentiation. The fact that QoS characteristics are determined in 

advance, to which flows bind, brings a certain level of rigidity to how applications use the 

network. The FLATLANd architecture facilitates the determination of QoS parameters on a 

per-application, per-user, per-ONU, per OLT per Service Provider level.   

FLATLANd shares a common infrastructure amongst all Service Providers where bandwidth 

apportionment is done throughout the network. Figure 51 shows the contiguous 48-bit 

pseudo MAC address range. 36 bits of the address relate to the routing of traffic across the 

core and metro networks to an ONU. This is composed of Metro Core, OLT and ONU 

address portions. 12 bits of the address relate to the identification of Service Provider and 

Service Type. Bandwidth apportionment may be performed at the root of the network, which 

has visibility of all traffic flows in the network, however, that would require a continuous flow 

table which is unfeasibly large (with potentially 248  of 48 entries). 
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Figure 51 - 48-bit Address Range 

 

The FLATLANd architecture allows two main approaches for distributed bandwidth 

apportionment: Geographical and per-Class.  Geographical bandwidth apportionment 

applies control to the flows traversing each network element. For example, in order to 

apportion bandwidth according to a per-OLT basis, rules need to be applied at the upstream 

Metro Core network.  In order to apportion bandwidth on a Service Type or Service Provider 

basis in the Geographical model, rules need to be applied to the upstream TCONT and 

GEM ports. The existing flow rules can be modified with the meter tags on the output action. 

Per-Class applies control to the flows traversing each network element. The key difference 

with the Geographical model is that distinct flow rules are created for the metering of each 

class of traffic at each Metro-Core, OLT and ONUs. These are separate from the rules 

necessary for forwarding flows. The advantage of per-Class bandwidth apportionment is 

that there is greater control over each Class of service across the network, whereas with 

Geographical, there is probably more efficient use of bandwidth. 

 

 

Figure 52 - FLATLANd Network Function Container 

 

In the FLATLANd architecture, Network Functions are classified as either service-control or 

in-line.  Examples of service-control are service authorisation and service binding. 
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Examples of in-line services are services that impact or touch the actual traffic being 

generated by an end-user, examples of which are firewalling and traffic monitoring and 

control and the ETSI vCPE. Figure 5 shows how the in-line services are provided in the 

Data Center, with dedicated processing allocated to each network terminating device such 

as an ONU. A multi-tiered Openflow based switch network connects Aggregation and Top 

of the Rack (ToR) layers. The centralised FLATLANd SDN Control function that directs the 

Core, Metro and Access network, also directs the Data Center NFV functions. Where there 

are 4 million ONU's then an equal number of Virtual Machine's (VM) would be allocated 

within the datacentre. The working ratio of VM's to physical machines is 20:1, however this 

ratio may be altered upwards or downwards on an individual basis. FLATLANd provides the 

equivalent of a virtual network between the customer terminating network and the VM in the 

Data Center. Each VM has two virtual interfaces, one of which faces into the FLATLANd 

core, the other faces into the public or provider network. In its simplest form, these virtual 

interfaces may be bridged in order to connect the terminating network with the public or 

provider network, or may form the ingress and egress interface of a single in-line network 

function such as a firewall or a chain of network functions. The virtual interfaces are opened 

in raw socket mode, so the Ethernet encapsulation (pseudo-mac) addresses and thereby 

preserving the identity (source MAC address) of the remote devices.  Flows within the Data 

Center rely on the hierarchy of addressing. Upstream traffic flows that match the wild-carded 

source pseudo-mac address mm:tt::nn:* are directed through the switched network 

according to Openflow rules injected into the aggregation and TOR layer switches by the 

SDN controller. Similarly, downstream traffic match wild-carded destination pseudo-mac 

address mm:tt::nn:* 
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Figure 53 - Address Scheme 

 

 

8.2  Architectural Patterns 

An architectural pattern may be seen as a general, reusable solution to a commonly 

occurring problem, analogous to a software design pattern. To give examples of FLATLANd 

architectural design patterns, we use the FLATLANd addressing convention 

node1:node2:node3:node4. In FLATLANd the FLATLANd address 7:7:7:1:1 designates the 

first device off the first service provider off the 7th ONU off the 7th OLT off the 7th Metro 

Switch. This convention allows us to aggregate bits within the 48 bit pseudo Mac address 

range into groupings that are appropriate to their layers, in a manner akin to how 32 bit 

binary IP addresses are grouped into dotted decimal for person-friendly use. The number 

of bits from the total pseudo 48 bits assigned to a particular layer can be kept flexible. 

The FLATLANd multi-service / Open Access pattern in Figure 54 gives the example of three 

separate devices off the one PON ONU which received service from three separate service 

providers.  
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Figure 54 - FLATLANd Multi-service / Open Access Pattern 
 

Device E6:C7:8E:AA:B8:24 with FLATLANd address 7:7:7:1:1 is bound to  Service Provider 

1 which has a profile of *:*:*:1:*.  This has a traffic profile for Open Access. Device 

52:FA:85:EE:20:70 with FLATLANd address 7:7:7:2:1 is bound to  Service Provider 2 which 

has a profile of *:*:*:2:*. This has a traffic profile of Video on Demand. Device 

56:FC:41:24:09:2F with FLATLANd address 7:7:7:3:1 is bound to  Service Provider  which 

has a profile of *:*:*:3:*, which has a low bit rate, all-ways on per packet traffic profile.  

The traffic regulation pattern in Figure 55 shows how traffic regulation is applied at the 

various layers in the FLATLANd architecture.  

 

Figure 55 - FLATLANd Traffic Regulation Pattern 
 

In order to regulate traffic for device 0:2:1:2:3, three meters are applied. At OLT 0:2, an 

Openflow meter is applied to network mask 0:2:*:*:*. At OLT 0:2:1, an Openflow meter is 

applied to network mask 0:2:1:*:*. Lastly, a meter is applied to TCONT *:*:*:2:*  



Architectural Patterns 

104 
 

The Protection Pattern in Figure 56 provides a primary and secondary route to ONU 0:0:0 

along the path 0: to  0:0: to 0:0:0: A standby device picks up the identifier of the failed 

device. 

 

Figure 56 - FLATLANd Protection Pattern 
 

Figure 57 show the FLATLANd NFV architectural pattern. A single layer datacenter switch 

is instantiated with small number of rules to direct the upstream and downstream traffic 

flows to and from the Network Function Virtual Machine.  

 

 

Figure 57 - Network Function Pattern 
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Linux LXC Container technology is used for the virtualisation, with the advantages that a 

low storage and processing overhead is imposed on the host environment. A basic traffic 

application was deployed on the Network Function Container, which both transited traffic 

between the ingress and egress interfaces as well as inspected and logged packet headers 

and payload.  

 

8.3  Functional Validation 

In implementing the flat Layer 2 network, the MAC address organisation is moving from a 

state of randomness to one of order and structure. In theory, the network should be 

compatible with all current applications and services.  We validate the functionality of a 

number of client-server, peer-to-peer and network services such as DHCP, DNS and AAA 

(Authentication, Authorisation and Accounting) on the architecture, from the perspective of 

performance and resilience.  The architecture is fundamentally a Layer 2 fat tree topology. 

The correlation between the MAC addresses and IP addresses of client devices is usually 

done through ARP (Address Resolution Protocol). Because the MAC address of the 

terminating devices are translated, these devices will not natively be able to respond to ARP 

requests from upstream devices. The issue that arises is how to implement ARP proxing or 

ARP translation. This function will require interaction with the service that leases IP 

addresses or with the device that is aware of the correlation between the real and pseudo 

MAC addresses. While there is considerable emphasis on the layer 2 routing and MAC 

translation in the downstream direction, a similar regime needs to be implemented in the 

upstream direction. This regime does not have to be as complicated since there are less 

constraints on bandwidth, however it does have to be robust. A technique employed in 

switched datacentre networks such DSR (Direct Server Return) could be both robust and 

simple. At the ONU termination, there needs to be optimal discovery of real MAC addresses 

and correlation with the pseudo MAC addresses through the MAC address translation 

algorithm.  For test purposes, this functionality is not critical since correlation can initially be 

statically coded. However, in a (near-) production environment, any MAC address learning 

or translation or correlation algorithm needs to be scalable and fast. 

We validate the operations of the SDN controller in the FLATLANd architecture in the stages 

required to register an ONU device with a given Service Provider: first pseudo address 

allocation and then layer-3 authorization. We validated the FLATLANd address partitioning 

and mapping scheme by replicating the 6-tier network hierarchy shown in Figure 4, and test 

key NFV functionality such as service registration. Service registration is the process that 

allows each network element to obtain a pseudo-MAC address unequivocally associated to 

its physical MAC address, thus enabling its association to the FLATLANd network, and 

Layer-3 authentication. To validate the functionality on a virtual environment implemented 
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on the Mininet platform [124]. A custom Openflow controller was developed, derived from 

the base POX implementation, and extended with memory-based Redis database. The 

Redis database is low-latency and can be (geographically) distributed across many physical 

machines, with some implementations handling millions of queries per second. Redis 

preserves transactionality between nodes. While there is a single master read/write node, 

changes in this database can be instantaneously mirrored across many read only nodes. 

For the current purposes, the database maintains the mappings between all real-mac, 

pseudo-mac addresses, IP addresses, and f lows both in the network in the Data Center for 

the virtualization of Network Functions.  

Figure 58 shows the emulated network architecture, inclusive of emulated latency times 

between the network elements (the values used are only indicative of the LR-PON case 

study considered), and the client binding and registration process. The test initiates with the 

Layer-2 Bind Phase, where the client device at the GEM port of the ONU registers its 

interface on the network. This interface is configured to obtain its IP address from a DHCP 

server, situated centrally and upstream from the device. 

 

Figure 58 - Service Registration carried out on SDN/NFV testbed 
 

On sensing of a DHCP-discover/request packet, the layer-2 of the customer Openflow-

enabled ONU, sends the DHCP packet to the centralised Openflow Controller [125]. At the 

ONU the Openflow switching is operated by the ONU GEM port switch. The Openflow 

Controller then performs three actions. Since the Openflow Controller knows the ONU from 

which packets are received, the controller formulates a pseudo-MAC address appropriate 

to that ONU. The Openflow Controller database creates a forward and reverse mapping 

between the real- and pseudo-MAC addresses to allow fast database lookups. The mapping 
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is then sent to the ONU as an Openflow rule. The layer-3 authorization phase is required 

for the ONU client to receive appropriate network layer facilities such as IP address, DNS 

settings and Gateway addressing. The system operates by the Openflow controller 

intercepting a DHCP-discover/request either as part of the layer-2 bind phase or as a 

retransmission of this request. The Openflow Controller constructs a DHCP-reply packet 

with the appropriate settings, for transmission through the ONU switch, to the client. The 

Openflow Controller also constructs per-Service Provider IP addresses and DNS settings. 

In the ARP Exchange Phase, the end-points exchange IP addresses and MAC address 

pairings. Where the client device sends an IP packet to a Data Centre, the ARP who-is 

request is broadcast upstream and the upstream device responds with an ARP response. 

The GEM Port switch performs a swap of real- and pseudo-MAC addresses for the client 

device. The metro switch intercepts the ARP who-is request destined for the pseudo-MAC 

of the client device. Finally, the controller performs a proxy-ARP functionality based on the 

pseudo-MAC address of the client device.  

To demonstrate the NFV functionality, a single layer Data Center switch was instantiated 

with small number of rules to direct the upstream and downstream traffic flows to and from 

the Network Function Virtual Machine. Linux LXC Container technology was used for the 

virtualisation, with the advantages that a low storage and processing overhead is imposed 

on the host environment. A basic traffic application was deployed on the Network Function 

Container, which both transited traffic between the ingress and egress interfaces as well as 

inspected and logged packet headers and payload.  

The testbed results show that registration times of around 30 milliseconds can be achieved 

for the LR-PON based scenario shown in Figure 58. While such operations are generally 

not time-critical, these results demonstrate the type of benefits that a simplified SDN-driven 

flat architecture can bring about. Once registration was complete, we successfully 

transmitted traffic between the client and Data Center end-points. The traffic included both 

typical HTTP web traffic, but also less conventional Ethernet frames more suited to the 

transit of IoT device traffic. 

8.4  Performance Scenarios 

To benchmark the performance of the proposed Flatland scheme against the state of the 

art Classical QoS Frameworks, we simulated the models in NSIM and applied similar traffic 

profiles to the models.  

The classical architecture (Figure 59) is characterised by 5 distinct domains – Customer 

Premises, the Access Network, Metro Network, Core Network and the Data Centre.   

Within the Customer premises, there is typically an ONU which physically terminates the 

network and acts as a line protocol DTE, and which presents a higher layer connection, 

most typically Ethernet, to internal customer premises equipment. Typically, the CPE is a 
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multilayer device which acts as a Layer 2 switch, a PPPOE termination device and a NAT 

firewall.  

The network line protocol extends across the Access Network between the customer 

premises as well as the network providers local exchange. The function of the Access 

Network is to provide the physical distribution of the cabling to the customer terminations, 

as well as to physically aggregate the cabling for termination upstream on the Metro Node.  

The function of the Metro Node is to physically terminate tunnel connections from the 

Access Network, aggregate traffic and to create tunnel connections across the core. 

Tunnelling of connections allows traffic to follow a predetermined route with an optional 

alternative or diverse path that can be invoked for protection or the provision of additional 

capacity.  Such routes can have a level of assurance over quality metrics, and are typically 

assigned to tenant service providers according to network wholesale model. A Metro 

Network provides a distribution of these nodes, such that a large geographical area is 

covered, such as the provinces in a country or districts in a city.  
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Figure 59 - Classic Model simulation 
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Figure 60- FLATLANd Model Simulation 
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The Core network aggregates traffic even further while transporting it back to a small 

number of nodes, operated by the host network provider, or by tenant service providers. 

The core nodes as well as the network connections to and from the core nodes require a 

very high level of performance and resilience. The core nodes terminate the tunnelled 

connections from Metro Nodes. The Data Centre hosts network functions that are 

necessary for authenticating / authorising clients on the network, providing routing 

information and support services such as Domain Name Services. The FLATLANd 

architecture (Figure 60) is characterised by 3 distinct domains – Customer Premises, the 

hybrid Access / Metro Network and the Core Network. The Data centre functionality is co-

locate with the Access / Metro Network. 

The distinction between the Classical and Flatland schemes is that, in the Classical case, 

the network nodes have full stacks and buffers of a typical size, while in the Flatland case, 

these nodes have been replaced by switches with minimal buffers. The performance metrics 

we measure and compare are the Congestion Windows (CWND) and Round Trip Time 

(RTT) specifically for TCP, and the packet Loss, throughput and jitter for both UDP and TCP 

transport protocols. The six scenarios are as follows: 

Scenario  Topology Enhancement 

0 Point to Point link between Hosts N/A 

2 Classic Architecture Standard Queues 

3 Classic Architecture Aged Queues 

4 FLATLANd Architecture Standard Queues 

5 FLATLANd Architecture Small Queues 

6 FLATLANd Architecture Flow regulation 

Table 12 - Simulation scenarios 
 

All scenarios shared the same NSIM header and footer configuration (Figure 61). This 

defines the duration of the scenario and the simulation clock ticks. The clock ticks determine 

the granularity with which the scheduler controls and reports on events. 

 

sched=scheduler(tick=0.001,finish=5) 

 

host1=host('host1',stack='udp') # Good traffic generator 

host2=host('host2',stack='udp',mdrop='00:00:00:00:00:00') # terminal, dropping fake 

traffic 

host3=host('host3',stack='udp',mdst='00:00:00:00:00:00') # fake traffic generator 

 

traf=trafgen('traf1',ms1=1) 

term2=terminal('term2') 
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standardbuffers=64000 

smallbuffers=8000 

 

#### Scenarios go here <<<<<<<<  

  

sched.process() 

Figure 61 - Shared Configuration 
 

A host (host1) application generates useful traffic, which is direction to a traffic sink (host2). 

In this example, all hosts are built with a UDP stack. For TCP scenarios, the hosts are built 

with a TCP stack. Host2 is directed to drop traffic with a target Ethernet address of  

'00:00:00:00:00:00', which is generated by the load traffic generator attached to host3. The 

ms1=1 parameter configures the good traffic application (trafgen) to emit application 

packets at a rate of 1 every millisecond. The standard size of each packet is 200 Bytes, 

which is then encapsulated in UDP or TCP and the other lower levels in the protocol stack. 

We define small and standard buffer size constants of 8000 Bytes and 64000 Bytes 

respectively. The scenario is run using the sched.process() command at the end of the 

configuration script.  

Scenario 0 (Figure 62) is a baseline scenario with a simple topology. The hosts are 

connected using an (Ethernet) datalink with a capacity of 10 Mbps and an end to end latency 

of 10 milliseconds.  The sending hosts host1 (good traffic) and host 3 (load traffic) are placed 

at one end of the datalink. The receiving host2 is placed at the other end.  

 

   flowgen=flowgen('flowgen',start=0.002,stop=1.0,ival=0.05,flowcount=5) 

   sw=datalink('pon',capacity=10, latency=10) 

   connect('hostcon1',host1.B,traf.B) 

   connect('con1',host1.A,sw.B) 

   connect('con2',sw.A,host2.A) 

   connect('hostcon2',host2.B,term2.A) 

   connect('flow',flowgen.B, host3.B) 

   connect('con3',host3.A, sw.B) 

Figure 62 - Scenario 0 
 

The load traffic generator flowgen triggers 5 flows starting at t=0.002 seconds, with an 

interval of 50  milliseconds between them. flowgen terminates all flows at t=1.000 seconds. 

Scenario 2 (Figure 63)  is the scenario for the classic architecture. All components such as 

datalinks, Ethernet switches and routers are configured with standard buffer sizes.  
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  flowgen=flowgen('flowgen',start=0.002,stop=1.0,ival=0.05,flowcount=5) 

  pon=datalink('pon',latency=2,capacity=10,ber=-12,MaxSize=standardbuffers) 

  link1=datalink('link1',latency=2,ber=-12,MaxSize=standardbuffers) 

  link2=datalink('link2',latency=2,ber=-12,capacity=5,MaxSize=standardbuffers) 

  link3=datalink('link3',latency=2,ber=-12,MaxSize=standardbuffers) 

  onu=vswitch('onu',"","Dot1Q(vlan=22)",MaxSize=standardbuffers) 

  olt=vswitch('olt',"Dot1Q(vlan=22)","",MaxSize=standardbuffers) 

  cpe=vswitch('cpe',"","Dot1Q(vlan=35)",MaxSize=standardbuffers) 

  bras=vswitch('bras',"Dot1Q(vlan=35)","",MaxSize=standardbuffers) 

  homerouter=eth_switch('hr',MaxSize=standardbuffers,profile=True) 

  metrorouter=vswitch('mr',"","MPLS(label=250)",MaxSize=standardbuffers) 

  corerouter=vswitch('cr',"MPLS(label=250)","",MaxSize=standardbuffers) 

  connect('hostcon1',host1.B,traf.B) 

  connect('hostcon2',host2.B,term2.A) 

  connect('c1',homerouter.B,cpe.A) 

  connect('c2',cpe.B,onu.A) 

  connect('c3',onu.B,pon.A) 

  connect('c4',pon.B,olt.A) 

  connect('c5',olt.B,bras.A) 

  connect('c6',bras.B,link1.A) 

  connect('c7',link1.B,metrorouter.A) 

  connect('c8',metrorouter.B,link2.A) 

  connect('c9',link2.B,corerouter.A) 

  connect('c10',corerouter.B,link3.A) 

  connect('c8',host2.A,homerouter.A) 

  connect('c9',host1.A,link3.B) 

  # 

  connect('flow',flowgen.B, host3.B) 

  connect('con3',host3.A, corerouter.B) 

Figure 63 - Scenario 2 
 

All datalinks (pon, link1, link2 and link3) are configured with a Bit Error Rate (BER) of one 

bit error in 10^-12 bits transmitted. link1, link2 and link3 are not rate limited. Traffic on the 

PON link are constrained by a rate limit of 10 Mbps. The traffic on link2 between the Core 

Router and the Metro Router is deliberately rate limited to 5 Mbps. Traffic between the ONU 

and the OLT is encapsulated in a 801.3q tunnel Traffic traversing the ONU from the A to 

the B interface tags traffic with VLAN ID 22. The VLAN tag on traffic going in the opposite 

direction (from interface B to interface A) is dropped. Traffic between the CPE and the BRAS 
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is encapsulated in an 801.3q tunnel with Vlan ID 35. VLAN encapsulation is used to emulate 

PPPoE encapsulation. Traffic traversing the CPE from the A to the B interface tags traffic 

with VLAN ID 35. The VLAN tag on traffic going in the opposite direction (from interface B 

to interface A) is dropped. Traffic between the Core Router and the Metro Router is 

encapsulated in an MPLS tunnel with label 250. 

Scenario 3 (Figure 64) is similar to Scenario 2, but with one difference. Both routers 

connected through link1 with the traffic restriction of 5 Mbps, are configured with queues 

that use an aged queue discipline. Any traffic data older than 10 milliseconds that is dropped 

from the internal buffers of the core router and metro router. 

 

  flowgen=flowgen('flowgen',start=0.002,stop=1.0,ival=0.05,flowcount=5) 

  pon=datalink('pon',latency=2,capacity=10,ber=-12,MaxSize=standardbuffers) 

  link1=datalink('link1',latency=2,ber=-12,MaxSize=standardbuffers) 

  link2=datalink('link2',latency=2,ber=-12,capacity=5,MaxSize=standardbuffers) 

  link3=datalink('link3',latency=2,ber=-12,MaxSize=standardbuffers) 

  onu=vswitch('onu',"","Dot1Q(vlan=22)",MaxSize=standardbuffers) 

  olt=vswitch('olt',"Dot1Q(vlan=22)","",MaxSize=standardbuffers) 

  cpe=vswitch('cpe',"","Dot1Q(vlan=35)",MaxSize=standardbuffers) 

  bras=vswitch('bras',"Dot1Q(vlan=35)","",MaxSize=standardbuffers) 

  homerouter=eth_switch('hr',MaxSize=standardbuffers,profile=True) 

  metrorouter=vswitch('mr',"","MPLS(label=250)",MaxSize=standardbuffers,age=10) 

  corerouter=vswitch('cr',"MPLS(label=250)","",MaxSize=standardbuffers,age=10) 

  connect('hostcon1',host1.B,traf.B) 

  connect('hostcon2',host2.B,term2.A) 

  connect('c1',homerouter.B,cpe.A) 

  connect('c2',cpe.B,onu.A) 

  connect('c3',onu.B,pon.A) 

  connect('c4',pon.B,olt.A) 

  connect('c5',olt.B,bras.A) 

  connect('c6',bras.B,link1.A) 

  connect('c7',link1.B,metrorouter.A) 

  connect('c8',metrorouter.B,link2.A) 

  connect('c9',link2.B,corerouter.A) 

  connect('c10',corerouter.B,link3.A) 

  connect('c8',host2.A,homerouter.A) 

  connect('c9',host1.A,link3.B) 

  # 

  connect('flow',flowgen.B, host3.B) 
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  connect('con3',host3.A, corerouter.B) 

 Figure 64 - Scenario 3  
 

Scenario 4 (Figure 65) shows the configuration for the FLATLANd architecture. All 

components such as datalinks and switches are configured with standard buffer sizes. All 

datalinks (pon, link1, link2 and link3) are configured with a Bit Error Rate (BER) of one bit 

error in 10^-12 bits transmitted. link1, link2 and link3 are not rate limited. Traffic on the PON 

link are constrained by a rate limit of 10 Mbps. The traffic on link2 between the Core Router 

and the Metro Router is deliberately rate limited to 5 Mbps. Traffic between the ONU and 

the OLT is encapsulated in a 801.3q tunnel Traffic traversing the ONU from the A to the B 

interface tags traffic with VLAN ID 70.  

 

  flowgen=flowgen('flowgen',start=0.002,stop=1.0,ival=0.05,flowcount=5) 

  pon=datalink('pon',latency=2,ber=-12,capacity=10,MaxSize=standardbuffers) 

  link1=datalink('link1',latency=2,ber=-12,MaxSize=standardbuffers) 

  link2=datalink('link2',latency=2,ber=-12,MaxSize=standardbuffers) 

  link3=datalink('link3',latency=2,ber=-12,MaxSize=standardbuffers,capacity=5) 

  onu=vswitch('onu',"","Dot1Q(vlan=70)",MaxSize=standardbuffers) 

  olt=vswitch('olt',"Dot1Q(vlan=70)","",MaxSize=standardbuffers) 

  cpe=eth_switch('cpe',MaxSize=standardbuffers,profile=True) 

  accessswitch=eth_switch('as',MaxSize=standardbuffers,profile=True) 

  metroswitch=eth_switch('ms',MaxSize=standardbuffers,profile=True) 

  coreswitch=eth_switch('cs',profile=True) 

  connect('c1',cpe.B,onu.A) 

  connect('c2',onu.B,pon.A) 

  connect('c3',pon.B,olt.A) 

  connect('c4',olt.B,link1.A) 

  connect('c5',link1.B,accessswitch.A) 

  connect('c6',accessswitch.B,link2.A) 

  connect('c7',link2.B,metroswitch.A) 

  connect('c8',metroswitch.B,link3.A) 

  connect('c9',link3.B,coreswitch.A) 

  connect('c10',host1.A,coreswitch.B) 

  connect('c11',host2.A,cpe.A) 

  connect('hostcon1',host1.B,traf.B) 

  connect('hostcon2',host2.B,term2.A) 

  # 

  connect('flow',flowgen.B, host3.B) 
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  connect('con3',host3.A, coreswitch.B) 

Figure 65 - Scenario 4 
The VLAN tag on traffic going in the opposite direction (from interface B to interface A) is 

dropped. 

We investigate the use of small buffers with the FLATLANd architecture in Scenario 5 

(Figure 66). All components such as datalinks and switches are configured with standard 

buffer sizes. 

  flowgen=flowgen('flowgen',start=0.002,stop=1.0,ival=0.05,flowcount=5) 

  pon=datalink('pon',latency=2,ber=-12,capacity=10,MaxSize=smallbuffers) 

  link1=datalink('link1',latency=2,ber=-12,MaxSize=smallbuffers) 

  link2=datalink('link2',latency=2,ber=-12,MaxSize=smallbuffers) 

  link3=datalink('link3',latency=2,ber=-12,MaxSize=smallbuffers,capacity=5) 

  onu=vswitch('onu',"","Dot1Q(vlan=70)",MaxSize=smallbuffers) 

  olt=vswitch('olt',"Dot1Q(vlan=70)","",MaxSize=smallbuffers) 

  cpe=eth_switch('cpe',MaxSize=smallbuffers) 

  accessswitch=eth_switch('as',MaxSize=smallbuffers) 

  metroswitch=eth_switch('ms',MaxSize=smallbuffers) 

  coreswitch=eth_switch('cs') 

  connect('c1',cpe.B,onu.A) 

  connect('c2',onu.B,pon.A) 

  connect('c3',pon.B,olt.A) 

  connect('c4',olt.B,link1.A) 

  connect('c5',link1.B,accessswitch.A) 

  connect('c6',accessswitch.B,link2.A) 

  connect('c7',link2.B,metroswitch.A) 

  connect('c8',metroswitch.B,link3.A) 

  connect('c9',link3.B,coreswitch.A) 

  connect('c10',host1.A,coreswitch.B) 

  connect('c11',host2.A,cpe.A) 

  connect('hostcon1',host1.B,traf.B) 

  connect('hostcon2',host2.B,term2.A) 

  # 

  connect('flow',flowgen.B, host3.B) 

  connect('con3',host3.A, coreswitch.B) 

Figure 66 - Scenario 5 
In scenario 6 (Figure 67), we apply admission control to the FLATLANd architecture for new 

flows being created in the down stream direction. The addition of the fblimit  parameter to 

the flowgen initialisation only allows flowgen flows on to the network when the the data rate 

at the CPE is less than the value of fblimit measure in Mbps.  
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  flowgen=flowgen('flowgen',start=0.002,stop=1.0,ival=0.05,flowcount=5,fblimit=3) 

  pon=datalink('pon',latency=2,ber=-12,capacity=10,MaxSize=smallbuffers) 

  link1=datalink('link1',latency=2,ber=-12,MaxSize=smallbuffers) 

  link2=datalink('link2',latency=2,ber=-12,MaxSize=smallbuffers) 

  link3=datalink('link3',latency=2,ber=-12,MaxSize=smallbuffers,capacity=5) 

  onu=vswitch('onu',"","Dot1Q(vlan=70)",MaxSize=smallbuffers) 

  olt=vswitch('olt',"Dot1Q(vlan=70)","",MaxSize=smallbuffers) 

  cpe=eth_switch('cpe',MaxSize=smallbuffers) 

  accessswitch=eth_switch('as',MaxSize=smallbuffers) 

  metroswitch=eth_switch('ms',MaxSize=smallbuffers) 

  coreswitch=eth_switch('cs') 

  connect('c1',cpe.B,onu.A) 

  connect('c2',onu.B,pon.A) 

  connect('c3',pon.B,olt.A) 

  connect('c4',olt.B,link1.A) 

  connect('c5',link1.B,accessswitch.A) 

  connect('c6',accessswitch.B,link2.A) 

  connect('c7',link2.B,metroswitch.A) 

  connect('c8',metroswitch.B,link3.A) 

  connect('c9',link3.B,coreswitch.A) 

  connect('c10',host1.A,coreswitch.B) 

  connect('c11',host2.A,cpe.A) 

  connect('hostcon1',host1.B,traf.B) 

  connect('hostcon2',host2.B,term2.A) 

  # 

  connect('flow',flowgen.B, host3.B) 

  connect('con3',host3.A, coreswitch.B) 

Figure 67 - Scenario 6 
 

.  

8.5  Performance Results 

Figure 68 shows the traffic flows which are applied to the NSIM simulation topologies. The 

simulation lasts for 5 seconds in total. For the duration of the simulation, a constant traffic 

stream is generated by the trafgen traffic generator attached to host1 and to the traffic sink 

attached to host 2. This traffic is termed goodput or the effective traffic being generated and 

received at the application layer. For the simulations, this is set at 1.6Mbps. This is to be 
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distinguished from the actual throughput at the data link layer which includes the application 

data encapsulated with TCP/IP layer headers and trailers. 

 

Figure 68 - Traffic Flows 
 

At t=0.002 seconds, the background traffic load starts and ramps up quickly so as to swamp 

both or either of the limited bandwidth in the network topology or the buffers and queues in 

the network device. The load traffic lasts until t=1.000 seconds, when it stops abruptly. 

Shown on the graph also is the restricted bandwidth capacity also present in some of the 

traffic models. This is set at 5 Mbps. Also shown is the admission control limit of 3 Mbps. 

Again, this is present only some of the simulation models. 

The scenario numbers are given in table Table 12. Figure 69 shows the results of the UDP 

performance tests for the six scenarios, each graph showing a different performance metric. 

It should be noted that scenario 0 is a reference scenario that uses a basic network between 

transmitting and receiving hosts. It has a latency of 10 milliseconds and is included so as to 

provide a benchmark for the other scenarios. Scenarui 0 does not include any load traffic 

congestion. Scenario 3 has a number of distinct characteristics in comparison to the other 

scenarios. Scenario 3 uses a queuing discipline at the metro and core network that disposes 

of packets with an age of 10 milliseconds or older. We see a high level of packet loss (477), 

with the cause seen in the Aged Queue graph.  
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Figure 69 - UDP performance metrics 
  

The aged queue graph shows a much higher level of packet loss (2574) because this 

includes good traffic as well as the load traffic. Much of the packet loss happens during the 

period of congestion (from time t=0.002 to t=1.000 in the simulation). Packet loss due to 

Normal Queue overrun (6), Rate Limiting Events (802) and Back pressure events (505) for 

scenario 3 are quiet low compared to the other six scenarios.  While scenario 3 has a very 

good average jitter value of 1.719 milliseconds and average delay of 21 milliseconds, the 

overall throughput is poorest at 1.4476 Mbps. Unlike TCP, UDP is not a guaranteed delivery 

protocol, so once the packets are lost, it is the responsibility of the higher application layer 

to recover the lost packets. The classic architecture (scenario 2) has the poorest UPD 

average jitter (18.83 milliseconds) over the simulation. While packet loss due to buffer 

overrun is high (92), this is very low compared to the dropped packet strategy in scenario 3 
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(2574). When the link between the metro and core router gets congested, there are 2216 

rate limiting events, which results in a very high level of back pressure events (12057). Thus 

Scenario 2 deals with congestion by filling and emptying buffers repeatedly, giving rise to 

the high metric for jitter.  Scenario 4 is the FLATLANd scenario with standard buffer sizes. 

Average packet delay is high (312 milliseconds) and average jitter is low (4.765 

milliseconds). Congestion causes a high level rate limit events (2164), which causes the 

buffers at the core router to drop packets (30). The effective loss of good packets is 25. 

Scenario 5 reduces the buffer size of scenario 4. There is a marginal improvement in delay 

(dropping from 312 to 309 milliseconds) but a significant degradation in jitter, rising from 

4.765 milliseconds to 11.749 milliseconds.  Because the buffers have been reduced, the 

effective number of packet losses rises from 25 to 41.  Scenario 6 uses admission control 

to prevent flows from joining the network, thereby preserving back width for existing flows. 

As expected, average delay is as good as the aged queue scenario (21.663 milliseconds), 

and jitter is good (1.381 milliseconds), this is because all three underlying causes for poor 

performance are low. There are just 21 lost packets, 509 rate limiting events and 504 back 

pressure events.  

The equivalent TCP performance metrics are given in Figure 70. These metrics reflect 

additional protocol overhead that TCP uses to resend lost packets, as well as congestion 

control mechanisms to optimise the throughput of traffic given varying network conditions. 

The average Jitter values for the standard and small buffers versions of FLATLANd have 

evened out to 0.259 milliseconds and 0.137 milliseconds respectively. Because the 

congestion event (Figure 72) happens within one Retransmission Time Out (RTO), initially 

set to 1 second, and because the Round Trip Time causes delayed acknowledgment, the 

sender resends packets. Much of the bandwidth for scenarios 4 and 5 after the congestion 

event (time t=1.000 seconds to t=2.000) is taken up with packet retransmissions. This 

causes a significant increase in Round Trip Time (1.2 seconds) 



Chapter 8. FLATLANd Architecture 

121 
 

 

Figure 70 - TCP performance metrics 
The strict aged queue policy has a significant effect on all packets buffered in the core and 

metro routers. Not only are first time transmit packets which exceed 10 milliseconds 

disposed of, but also retransmitted traffic is affected. The effect is to flatten the Congestion 
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Window (Figure 71) for up to 2 seconds after the removal of the congestion event. Like the 

UDP scenario 3, the throughput for TCP scenario 3, poor (1.5 Mbps) 

 

 

Figure 71 - TCP Congestion Window 
The TCP Round Trip Times are quite predictable with the TCP scenario 3 having a flat 

response due to the fixed packet discard threshold. Classic scenario 2 has an adequate 

RTT response, given that it does not discard incoming flows nor discards aged packets. 

Flatland scenarios 4 and 5 follow the same graph.   

 

Figure 72 – TCP Round Trip Time (RTT) 
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8.6  Protocol Efficiency 

NSIM captures the proportion of bandwidth used by each layer in the protocol stack, at 

specific points in the network. For these experiments, this specific point at which the data 

is captured is at the PON link between the ONU and OLT. We can then compare the 

proportion of protocol overhead used in the classical (Table 13) and FLATLANd 

architectures (Table 14).  We see that each tunnelling layer (MPLS or 802.1Q) adds an 

additional 2.4% of overhead onto the overall data transferred at line level.  In the FLATLANs 

case, the PON encapsulation protocol is emulated using 801.1Q. The protocol used both 

cases is UDP without background traffic.  

Protocol Bytes Protocol Overhead % Protocol 

Overhead 

% Overhead 

wrt total 

Ethernet(0

) 

1710596 138486 8.81% 8.10% 

802.1Q(1) 1572110 41271 2.70% 2.41% 

802.1Q(2) 1530839 40048 2.69% 2.34% 

IP(3) 1490791 197384 15.26% 11.54% 

UDP(4) 1293407 81296 6.71% 4.75% 

Raw(5) 1212111 1212111 
 

70.86% 

Table 13 - Protocol Efficiency, Classic Architecture 
 

Protocol Bytes Protocol Overhead % Protocol 

Overhead 

% Overhead 

wrt total 

Ethernet(0

) 

1670850 138680 9.05% 8.30% 

802.1Q(1) 1532170 42685 2.87% 2.55% 

IP(2) 1489485 196667 15.21% 11.77% 

UDP(3) 1292818 78955 6.50% 4.73% 

Raw(4) 1213863 1213863 
 

72.65% 

Table 14 -  Protocol Efficiency, FLATLANd Architecture 
 

The useful application payload occupies between 70% and 72% of total traffic.   In both 

cases, a significant amount of overhead (about 11.5%) is taken up by the IP protocol 

header. Thus FLATLANd does not add a substantial improvement to the protocol efficiency. 

Where instead it can contribute to improving network efficiency is in reducing the network 

operations required to switch traffic.  We analysed this by using NSIM also profiles the router 

and switch operations performed during the simulation. This allows us to compare the 

switch performance in the classical architecture (Table 15) and the FLATLANd architecture 
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(Table 16). This shows the number of Ethernet forwarding operations, and MPLS/VLAN 

label switching/routing operations.  

 
 

Home 

router 

ONU CPE Core 

Router 

Metro 

Router 

OLT B-

RAS 

Total % 

eth 

fwd 

4986 
      

4986 8% 

label 

pop 

 
4986 4986 4995 4994 4989 4989 29939 46% 

label 

push 

 
4986 4986 4974 4980 4984 4984 29894 46% 

        64819 100

% 

Table 15 - Network operations - Classic Architecture 
 
 

CPE ONU OLT Access 

Switch 

Metro 

Switch 

Core 

Switch 

Total % 

eth_fwd 4978 
  

4976 4973 4968 1989

5 

50% 

label_pop 
 

4984 4986 
   

9970 25% 

label_pus

h 

 
4982 4980 

   
9962 25% 

       
3982

7 

100

% 

Table 16 - Network operations - FLATLANd Architecture 
 

The overall amount of network operations executed in the Classic Architecture is 40% 

higher than in FLATLANd. This is due to the additional VLAN tunnelling across the access 

network and the MPLS tunnelling across the metro-core network. The types of operations 

being executed also are more complex, with MPLS switching and routing, and VLAN 

pushing and popping being more complex to execute and more expensive in terms of 

calculation and processing (Table 1). The classic architecture must execute 59’833 complex 

(label pushing and label popping) operations as opposed to 19’932 complex operations by 

FLATLANd. The processing overhead for PPPoE is not accounted for. 
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8.7  New Protocols 

Because it is possible to transmit packets over a wide area, using the FLATLANd model, 

the source and destination hosts can identify each other using the Ethernet addressing of 

their respective Network Interface Cards. For the purposes of routing traffic over 

FLATLANd, the IP address of each host end becomes redundant. We can envisage a 

collapsed network protocol stack where the IP layer of the TCP/IP stack is removed, and 

the TCP or the UDP layer communicates directly with the Ethernet Layer. TCP and UDP 

continue to provide the interface to the application layer for the purposes of end to end 

transport layer communication. 

 

 

 

Because the IP header in the packet is not used for routing by any device within FLATLANd, 

the removal of the IP packet encapsulation does not affect the functioning of the FLATLANd 

network architecture.  The advantages of removing a layer in the communications stack 

layer can have advantages. There is less packet processing required for encapsulation and 

de-encapsulation of packets. From our simulation measurements, the IP layer accounts for 

11% of the total data exchanged at a line level. By removing the IP layer, Ethernet frames 

are shorter so less bandwidth is used to transfer data. In transferring the same application 

payload, switch and host buffers are less utilised, potentially leading to less network 

congestion. There is no requirement for Address resolution so as to determine which IP 

address is bound to which Ethernet Address, since the IP address layer would not exist any 

longer. 

8.7.1   TCP over Ethernet (TCPoE) 

Because, TCP over Ethernet (TCPoE) does not have a standard Ethertype, we need to 

create a new Ethertype (0x9998) and new binding between Ethernet and TCP in NSIM. 

Figure 73 shows the resulting TCPoE packet trace. There are no functional complications 

in NSIM with TCP communicating to the VLAN (802.1Q) layer as opposed to the Ethernet 

layer directly. 
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Figure 73 - TCP over Ethernet packet trace 
 

8.7.2  UDP over Ethernet (UDPoE) 

Similarly, because, UDP over Ethernet (UDPoE) does not have a standard Ethertype, we 

need to create a new Ethertype (0x9999) and new binding between Ethernet and TCP in 

NSIM.  Figure 74 shows the resulting UDPoE packet trace. 

 

Figure 74 - UDP over Ethernet packet trace 
We can compare the performance differences between using the UDPoE approach and the 

previous UDP over IP approach, in executing the FLATLANd  scenario 4. The traffic 
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generation sinks and sources in scenario 3 are configured to use the UDPoE stack ( Figure 

75)   

 

host1=host_udp('host1',stack='udpoe') # Good traffic generator 

host2=host_udp('host2',stack='udpoe',mdrop='00:00:00:00:00:00') # terminal, dropping 

fake traffic 

host3=host_udp('host3',stack='udpoe',mdst='00:00:00:00:00:00') # fake traffic generator 

Figure 75 - UDPoE host configuration 
 

Figure 76 shows the overhead of each protocol layer when scenario 4 is run used UDPoE. 

Because the IP layer is no longer in the protocol stack. The payload now accounts for 85% 

of the data transmitted at an Ethernet line level. This is an increase from 70% in the original 

scenario 4. 

Protocol Layer Bytes protocol 

Overhead (Bytes) 

% protocol 

Overhead 

Over as % of total 

frame 

Ethernet(0) 2507490 199374 9.33% 7.95% 

802.1Q(1) 2308116 59566 2.79% 2.38% 

UDP(2) 2248550 111052 5.20% 4.43% 

Raw(3) 2137498 2137498 
 

85.24% 

Figure 76 - UDPoE protocol stack utilisation 
  

From Figure 77, we less effects from packet rate limiting (down 17%) and back pressure 

(down 16%) compared to the FLATLANd UDP over IP scenario 4. This results in a 25% 

improvement in delay and in 18% improvement in jitter. 

Parameter Value Units 

Send  5000 packets 

Loss (pkts) 22 packets 

Jitter (ms) 3.878 millisecond 

Delay (ms) 234.762 millisecond 

Goodput (bps) 1.59264 Bits per Second 

Rate Limited (pkts) 1787 Packets 

Back Pressure (pkts) 1853 Packets 

Dropped Packets (Normal Queue) 28 Packets 

Dropped Packets (Aged Queue) 0 Packets 

Figure 77 - UDPoE performance for scenario 4 



New Protocols 

128 
 

Chapter 9 Discussion 

While the prospect of removing layers of legacy functionality can be attractive, the risk is 

that the resulting architecture can become simplistic. Buffers in network equipment are 

essential, particularly at the egress to long fat networks to accommodate Bandwidth Delay 

Product which is essential for the operating of TCP based application protocols. Likewise, 

the necessity for inter-layer co-ordination. While buffer size should be adequate, it should 

not be excessively large. Due to the availability of cheap RAM, large buffers can be 

configured needlessly at many interfaces in the network regardless of whether they are 

required or not. With the domino effect of back pressure, a temporary spike in traffic at the 

junction of high-speed and low-speed networks can rapidly fill successive upstream buffers. 

This can lead to unexpected sluggish response within a network which has more than 

adequate built-in capacity. There have been various queue discipline attempts at dealing 

with bloated buffers. The predominant solution is the CoDel queue discipline that drops 

queued packets older than a set age. In our tests on UDP and TCP streams, the FLATLANd 

architecture compared favourable against aged queues. 

TCP is a problematic protocol in a network which has shared bandwidth. Not only is it 

adversely affected by bandwidth hogging by other (predominantly) UDP protocols, it 

depends on TCP intra-flow co-operation. However, there are different implementations of 

TCP, some of which operate in a bandwidth selfish manner. This is why it is essential in any 

network, or portion of a network where there is not unlimited bandwidth, to have Quality of 

Service or Traffic Management. This is traditional done at the IP network layer or the data 

plane.  

Flow based QoS frameworks can apportion bandwidth in an equitable manner between 

flows, once flows can be defined. However, while flows can be easily identified and 

managed at the edge, it becomes a much harder issue to manage them as they become 

aggregated and concentrated in the core of the network. FLATLANd is unique in that it 

shares characteristics of the IP-layer flow-based QoS frameworks but it operates at a data 

plane level. The FLATLANd architecture is a hybrid between a flow-based network and a 

tree network, with a mix of the advantages and disadvantages of both.  In our UDP and 

TCP comparative tests, we implemented Admission Control characteristic of the Flow 

Aware Networks.  

QoS frameworks may be categorised by whether or not they allow applications to engage 

in the negotiation of a QoS characteristics. It can be a pointless exercise allowing 

applications to choose their QoS characteristics, since most end user applications do not 

expect, nor are they given, explicit QoS guarantees. This is despite basic mechanisms for 

traffic differentiation such IntServ and DiffServ existing in most modern routers. As a result, 
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many networks and applications continue to avail of  ‘best effort services’ [91]. The absence 

of ubiquitous QoS profile implementation and simple and standardised interface/protocol, 

independent of network and geography has meant that developers typically do not 

implement QoS support into their applications. This is because requiring an application to 

run exclusively in an IntServ or DiffServ environment significantly reduces the target number 

of users.  Xiao [126] shows that it is commercially difficult to introduce QoS into a network 

which works satisfactorily mainly due to over-provisioning. Even highly demanding 

applications can achieve sufficiently good QoS, providing that the access networks are not 

congested. Many major networks operators claim that their core network suffer from 

congestion. The pattern is to continually upgrade capacity of the basic services. While there 

are certain applications with well-known QoS profiles (such as VoIP) which are understood 

between developers and network providers, there is a significant hurdle to getting new and 

emerging applications such as multi-player games accommodated by network providers 

since the QoS requirements are often quite difficult to state explicitly. Most network 

operators do not support mechanisms for the dynamic provisioning of QoS for more recent 

applications. It is difficult to convince users to buy extra services while the standard service 

works adequately. This does not put pressure on telecom operators to introduce any 

differentiation mechanisms.  

The impact and challenges in concentrating the ARP functions for an entire network in a 

small number of locations, should not be underestimated. In classic architectures, the 

function of ARP address resolution is distributed to each Layer 2 broadcast domain, in 

particular at the terminating LAN and WiFi networks. In total, the number of hosts generating 

ARP queries  and seeking ARP responses for an entire network could  run into the hundreds 

of thousands or millions per second. However, centralisation of ARP is an important network 

control network, already implemented in large Data Centres and can be quantified. In the 

Portland model [102], it is assumed that each ARP requires 25 microseconds execution 

time with an ARP timeout of 60 seconds and each ARP packet is 28 bytes long. Using the 

model proposed, for a Flatland network with 4 million terminating ONU’s, each generating 

1 Arp request per second, would require a 100 Core processors, which may be parallelized 

and distributed to 4 or 5 geographical areas in the network. In total, Arp queries and 

responses generates 896 Mbps of traffic. In this chapter, we have identified one solution to 

the issue of handling large volumes of ARP traffic. Through the elimination of the IP layer, 

the requirement for Address Resolution to map the IP addresses to MAC addresses is 

obviated. Table 17 is a brief synopsis of the features and benefits of the FLATLANd 

architecture. Many of these features and benefits are applicable to generic SDN based 

architectures. 
The debate around the re-architecture of the Internet was initially split between two camps. 

There were those that wanted a big plan for a New Architecture for the Internet, which 
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would, at a specific point in the future, rectify all the issues with the Internet. Core to the 

future internet would be the regaining of the original experimental nature of the Internet 

which had been lost through ossification of technology and processes.  The other camp saw 

a gradual and phased migration to the new Internet.  

Core to the resolution of the debate was what type of discipline, such as engineering or 

computer science, should be used to address the design issues of the future Internet. There 

were misgivings that computer science was not suitable discipline even though many of the 

contributors to Internet standardisation bodies were computer scientists. Some question 

whether computer science is a bona fide science in the first place [30]. 

Prior to 1990, in the age of mainframe computers, the range of Computing related 

disciplines was narrow - focusing on Electronic Engineering (Hardware), Computer Science 

(Software) and Information Systems (Business). With the scope and scale of computing 

increasing in the 1990's, it was only natural that there would be additional categories added. 

The previous three areas have now been supplemented in the Computing Curricula [127]  

by Computer Engineering, Software Engineering and Information Technology, bridging the 

gap between technology and the business of end users (Figure 78). 

 

Figure 78 - (a) Computer Engineering Curriculum. (b) Computer Science Curriculum 
 

Of most pertinence to the Internet New Architecture are the fields of Computer Engineering 

(Design and construction of computer based systems, digital hardware/software systems, 

embedded systems and integration of hardware/software) and Computer Science (Effective 

ways of solving computing problems, design and implementation of software, new ways to 

use computers). What distinguishes Computer Engineering from Computer Science is the 

former spans all theoretical and applied aspects of lower level technology, while computer 

science concentrates on more theoretical aspects of application, software development and 

infrastructure.  

In theory, Internet Architecture should concern itself with the IP network and upwards of the 

TCP/IP stack, however it finds itself distracted with the issues such as bloated embedding 

of functionality within routers and switches.  The approach being pursued to resolve the 

issues should be a combination of computer engineering and computer science. Once the 
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hardware and physical layer issues are resolved, then there is a reasonable prospect the 

Internet Architecture agenda can concern itself with Computer Science issues methods. 

Over the course of 10 to 15 years since the New Architecture was first discussed, the 

dominant view has been that of those favouring a phased migration. While the structure of 

the Internet, in terms of processes, standards and architecture is consistent with the past, 

there has been steady adoption of SDN paradigms in technology islands such as data 

centres. The SDN approach to separation of the data and control plane has allowed styles 

and pace of innovation to be split also, and has, rightly, facilitated the use of computer 

engineering disciplines for the data plane and computer science techniques for the control 

plane.  

If control plane design and development falls under the remit of the computer science 

discipline, the focus moves to the level of Software Development Lifecycle rigour that is 

applied to this development. In the past, networks have had some level of resilience to faulty 

design due to the autonomous nature of switches and routers. An upgrade of a network 

node, might cause affect a node or a domain, however, the rest of the network might still 

function. The hurdles to making changes in the network were very often physical, often 

requiring updates to remote central offices by on-site technicians. With SDN, the entire 

control of the network is centralised with the functionality defined by, for instance, YANG, 

COP and Openflow configurations residing in code repositories such as git. SDN upgrades 

to an entire can be effected with a push of a button. Alternatively, upgrade or changes can 

be rolled back, or the state of the network may be changed to a configuration at a specific 

point in the past. This may be judiciously or erroneously. 

If there is some consolation, it is that there has been a similar revolution in other areas of 

computer science and Information technology, from which equivalence can be identified 

and approached learnt.  There has been deprecation of mainframe technologies (equivalent 

of switches and routers), and the virtualisation of computing and storage (equivalent to 

virtualisation of networks and the adoption of SDN). The current best practice for the 

management of system functionality is the Continuous Delivery lifecycle (Figure 79) that is 

used to manage highly complex functionality such as the Linux Kernel.  Both Linux and Git 

were initially developed and are currently maintained by Linus Torvalds.  
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Figure 79 - Continuous Delivery life cycle [128] 
For this regime to be applied to SDN based development, there needs to be multiple 

environments for Staging, User Acceptance Testing and Development that are identical to 

the production environment. These environments may be physical, however, preferably 

they should be virtualised so they can be created on demand, and in any quantity required 

by developers. The SDN code should be in a single git repository with separate branches 

for development, integration testing and production. With SDN functionality progressing 

from left to right in the diagram, there are gates through which the development must go 

through, the success of which demands on the execution of tests that test both existing 

functionality as well as new functionality. The rigour with which new functionality is 

introduced and bugs and faults are prevented is down to how detailed tests are defined. 

Preferably, tests should be automated and managed along with the SDN functionality 

residing in the git repository. There needs to be unit tests that test atomic functions and 

procedures. There needs to be system tests for aggregate system functionality, integration 

tests for validating interoperability between systems and User Acceptance tests for testing 

the fulfilment of business level requirements. Typically in a Test Driven Development (TDD) 

approach associated with Continuously Delivery, for every line of SDN code, there would 

typically be 3 lines of test code. The combination of CD, TDD and the easy availability of 

virtualised environments has led to the Dev Ops (Development Operations) that uses SDLC 

rigour to IT and Networks Operations Management. Given the complexity and the volume 

of changes that may be progressing through an SDN lifecycle, fortunately, there are 

Continuously Delivery, such as Jenkins, that can managed the process.  In a CIO-envisaged 

environment [14], there would not be a distinction between SDN system delivery and 

delivery of functionality for Telecommunications OSS or BSS except that they related to 

different domains.   
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Area Feature  Benefit Beneficiary Current situation 

Network 

efficiency 

Large Addressing 

Scheme  

2^48, Much larger than is 

required for Internet of 

Things, forecasted to be 20 

billion by 2020. 

 

Network 

provider 

such as  

Telefonica, 

BT, France 

Telecom 

this address space is much larger than current IPV4 

Address space (2^32) 

Network 

Security 

End devices are 

identified directly at 

a lower level in the 

network i.e. at 

Layer 2 

Secure. Services bind to 

devices rather than other 

way around.  

 

Network 

providers. 

End 

Customers 

Customer IP addresses are currently assigned by 

service providers. Identification of malicious activity is 

currently hidden through various layers of obfuscation 

Service 

Provision 

Binding between 

real and pseudo 

MAC addresses is 

controlled by the 

infrastructure, or a 

delegated party.  

Speed. This binding is 

unique can be done quickly. 

Also, it can be 

removed/changed quickly. 

  

Service 

providers 

 

Service 

provider – 

video 

platform, 

IOT 

platform 

This is equivalent to setting up a subscription to a 

broadband service provider, which can take 

days/weeks/months to put in place.  

Network 

Security 

Binding between 

real and pseudo 

Secure. This binding is 

unique and prevents 

Service 

providers 

Currently, black hat hackers can hijack identities and IP 

address sessions, through man-in-the middle attacks.  
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MAC addresses is 

controlled by the 

infrastructure, or a 

delegated party.  

duplication or take-over of 

mapping by third parties 

Network 

Convergence 

MAC address 

translation facility is 

operated by 

infrastructure 

provider. As a 

common broker 

between higher 

level network 

providers and/or 

service providers 

Utilisation of lower layer 

infrastructure resources is 

efficient and economic. 

Tenant network providers 

leases capacity required. 

This leads to much sought 

after Open Access. 

Service 

providers 

Network providers compete for the provision of 

infrastructure, leading to replication of infrastructure, 

and islands of low infrastructure in some areas, and 

over provision in others. 

Network 

convergence 

MAC address 

translation at the 

last hop in the 

network (GEM 

port) allows binding 

of services to be 

changed quickly. 

Service characteristics can 

be carried with a device, if 

they move between 

locations or between 

termination nodes (ONU’s). 

This allows services such as 

tablet or phone moving from 

a broadband line to a wifi or 

Cable modem, or another 

Service 

providers 

Currently there is no co-ordination between service 

providers. A customer has to have a separate contract, 

and authentication profile if they are in a different 

building or using a different access type (mobile, WiFi 

etc.)  
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building, and carry service 

characteristics with them 

(e.g. speed, authenticated 

services, ip address etc.) 

Network 

convergence 

MAC address 

translation can be 

used on any 

network that uses 

Ethernet as a layer 

2 carrier. 

Ethernet is ubiquitous and is 

found on all LAN’s, WAN’s, 

PON sub-layers, mobile 

LTE, DOCSIS cable TV 

networks, WiFi. The same 

principles as described for 

Optical networks can be 

applied to these networks. 

This supports principle of 

open access and efficient 

use of infrastructure. 

 

Network 

providers. 

Service 

providers. 

Current, network provider types (cable TV, Mobile, Wi-

Fi___33, Broadband) must maintain their own 

infrastructure, leading to issue replication of 

infrastructure, and islands of low infrastructure in some 

areas, and over provision in others. 

Internet of 

Things 

A ubiquitous 

packet based 

Layer 2 network 

Basic layer 2 service can be 

provided to the granularity of 

individual devices, without 

necessity of subscription  to 

a service provider 

Service 

providers. 

CPE 

manufactur

ers 

Households or businesses must subscribe to a service 

provider before they access any services. This can be 

a lengthy process.  

Network 

efficiency 

(Energy) 

 

Service binding 

can be completed 

on a per-device 

Subscription to services 

does not need to done at the 

level of an entire household 

or business premises, nor 

Network 

providers. 

Service 

providers 

Households or businesses must subscribe to a service 

provider before they access any services. Generally, 

there is only service provider, with a subscription which 

is long-term in the case of broadband.  
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 level or even a sub-

device level. 

does it need to be time-

based. 

One device can be 

accessing a service (e.g. 

Video-On-Demand) from 

one service provider, at one 

quality of service. A separate 

device can be accessing a 

different service provider at a 

separate quality of service. 

Future 

proofness 

Proposed structure 

addressing 

scheme is a sub-

set of the (current) 

unstructured 

addressing 

scheme 

Service binding at layer 2, is 

backwardly and forwardly 

compatible with existing 

layer 3 services 

Network 

providers 

 

New Services Structured 

addressing 

Traffic flows can be 

aggregated according to 

customer, device, locality, 

city, town, service provider, 

service type. Flows can be 

metered and controlled in 

real time. 

Network 

providers. 

Service 

providers 

It is difficult for service providers to identify traffic 

according to customer, device, locality, city, town, 

service provider, service type. This can lead to over and 

under-provisioning of network resources in different 

parts of the network. 

Where service providers do control bandwidth, it is 

difficult to alter i.e. time-of-day or customer profile 

based. 
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Networking traffic 

engineering and planning 

can be done efficiently and 

economically. 

Network 

efficiency. 

New Services 

Structured 

addressing and 

binding 

The customer network 

environment can be 

extended to include a 

centralised data centre 

portion. This allows services 

(such as firewalling, parental 

access control) to be hosted 

in a virtual manner, efficiently 

and securely by the service 

provider 

Network 

provider 

Current Customer Premises equipment are low 

specification and only adequate for purpose. They can 

become out of date quickly, and difficult to maintain, 

usually be customers themselves who don’t have the 

skillset. 

Service 

Quality 

Layer 2 network Low latency, less buffering of 

traffic, lower jitter, Higher 

quality of high speed 

transmission. 

End 

Customers 

Every device in current networks that operates at layer 

2, 3 etc. has buffers to reduce packet loss and assist 

with flow control. These devices include broadband 

modems, router cards/ports, DSLAM’s, B-RAS’s etc. 

This leads to the phenomenon known as Bufferbloat.  

Network 

efficiency 

Layer 2 network Much more cost efficient 

Ethernet ports.  

48x 10Gb ports   Openflow 

switch = €8k. 

Network 

provider 

Nexus 7000 - €540k 

 
Table 17 - Features and Benefits of SDN FLATLANd architecture
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Chapter 10 Conclusions and future work 

We have shown the principles of Software Defined Networking can be applied at different 

points and levels within a Telecommunications Networks, almost mutually exclusively of 

each other. We have demonstrated quite different applications of SDN in the physical 

(optical) layer, as well in the higher (level 2 and beyond) layers. This undoubtedly benefits 

the phased introduction of SDN into legacy architectures. However, as a concept, for the 

full benefits of SDN, there should be complete separation of control plane and data plane 

for all components at all layers in the network architecture. We initially look at how 

successful are the application of SDN at each of the two distinct layers.  

We devised and tested an end-to-end 1:1 protection scheme for a combined LRPON access 

and core network, using a multi-tier Control Plane over a Pan-European network.  We 

achieved fast recovery within 7.2ms with subsequent core traffic redirection in 117 

milliseconds across the metro core network. We predicted that using loosely coupled multi-

tier controllers with dedicated links could reduce total link outage to 41 milliseconds.  

In our first 1:1 protection experiment (see section 5.1 ), full recovery took place over an 

elapsed time period of 124 milliseconds which was composed of 3 individual time periods - 

a period in which traffic in the access was failed over from the primary path to the secondary 

path (7.2 milliseconds); a period in which core traffic was being redirected before the service 

could be restored (25 milliseconds); an intervening period in which the end to end link was 

in flux (92 milliseconds). The bulk of the 92 milliseconds was caused by two factors: link 

latency and the synchronous sequential update of the Openflow rules in the four Openflow 

switches along the backup path in the core.  

The time lag between the access control plane sensing the failure and the controller in the 

core receiving the trigger over the Internet connection was measured at 70 milliseconds. 

Much of the elapsed time was taken up by the time to transmit the instruction between the 

controller and node, and an acknowledgment to be received. We the elapsed time of 67 

milliseconds for the controller to update the flow rules across the secondary path, could be 

reduced significantly if the instructions could be issued asynchronously or in parallel by 

multi-threaded dispatcher. This would become a function of the longest node update time 

between the controller and a node (in this instance, 18 milliseconds).  For typical sized 

countries using dedicated links between the access and the core, we felt that the total 

elapsed time for recovery could be reduced to 41 milliseconds.  

We optimised the failure detection mechanism in our first N:1 experiment so that restoration 

time of the data traffic was  occurred on average 81.29 milliseconds across a Pan European 

network. In our second N:1 experiment (see section 5.2 ), we included a PON physical layer, 

backup OLTs were shared among PONs in an N:1 scheme.  The average protection time 
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was measured at 64 milliseconds, with variations between 50 and 100 milliseconds 

attributed to the random delay in the failure detection. In our third N:1 experiment, we 

optimised the failure detection response and achieved an average restoration time of 41 

milliseconds across 70 measurements. Wwithin 15 milliseconds of the failure, the optical 

and electronic switch components and the backup OLT have been instructed to reconfigure 

their protection paths.   Within 33 milliseconds after the failure, the electronic switch 

components within the core and access are configured, and by 38 milliseconds, the optical 

switch component is configured. In order to understand the effect of centralising both the 

Network Orchestrators and the Network Controllers, we compared the above results with 

the case where orchestrator and controllers are collocated within the core network. This 

was accomplished by setting the emulated intra-control plane latencies at zero. The results 

are shown in Figure 28 as the basic protection line. On average, basic protection can be 

accomplished within 27.8 milliseconds.   

Overall, the experiments were successfully in demonstrating that SDN based path 

protection can be achieved well below the target switch over time of 50  milliseconds which 

are common for leased line traffic or 100  milliseconds for realistic internet scenarios [17]. 

Unlike Multiprotocol label switching (MPLS) which executes protection through an 

alternative Label Switched Path (LSP) at each switch along a path in the core network, our 

experiments demonstrated a co-ordinated control plane approach that can be centrally 

defined. Open shortest path first (OSPF) can take considerably longer to route, up to 1 or 2 

seconds to route through a shortest path. The number of comparative case studies of path 

restoration in metro access networks are sparse. In 2008 an experiment was carried out 

using commercial GPON hardware and the restoration time was found to be in the order of 

30s [19]. The authors of this experiment believed this could be reduced to approximately 

500 milliseconds if they could optimise the switching, ranging and registration mechanisms 

of the GPON system. The same operator published in 2013 an updated protection 

mechanism using VLAN switching with an automated restoration solution, achieving 

protection times in the order of 4.5 s (with maximum values of 9.5 s) [20]. 

We presented a flat layer 2 architecture for telecommunications networks that allows 

removing many components traditionally active in telecommunications architectures, while 

still retain much of the functionality for access and the delivery of service. The benefits of 

the flat layer-2 approach are exemplified by contrasting today’s (Figure 1) and the proposed 

(Figure 50) architectures. There is a flattening of layers within the access and metro portions 

of the network, with some functions, such as B-RAS and PPPoE terminating modems being 

made redundant, and other network functions such as AAA (Authentication, Authorization 

and Accounting)  services being virtualised at the periphery of the network, following a 

Network Function Virtualisation approach. With the elimination of functions in some 

instances, and the virtualisation of functions within a property run datacentre, there is 



Recommendations for future work 

140 
 

potential for significant Capex and Opex improvements through reduced Operations and 

Maintenance. This is facilitated through the adoption of white-boxes Openflow-based 

switches controlled by a unified SDN control plane. 

The FLATLANd architecture can function entirely at a layer 2 network and is inherently 

Open Access in that the roles of infrastructure provider, network provider and service 

provider can be clearly demarcated. All terminating devices can be granted access to the 

network and at any time be dynamically or statically bound to the profile of a target service 

provider. Indeed the flexibility of the addressing scheme favours multi-tenancy, since parts 

of the address can be used for packet routing purposes and other parts for QoS and SP 

differentiation. Distinct flow rules are created for the metering of each class of traffic at each 

Metro-Core node, OLT and ONUs. These are separate from the rules necessary or 

forwarding flows. We demonstrate that the functionality of registration and binding devices 

to the FLATLANd service are successful. A registration time of around 30 milliseconds was 

achieved for the LR-PON based scenario shown in Figure 58. While such operations are 

generally not time-critical, these results demonstrate the type of benefits that a simplified 

SDN-driven flat architecture can bring about. Once registration was complete, we 

successfully transmitted traffic between the client and Data Centre end-points. The traffic 

included both typical HTTP web traffic, but also less conventional Ethernet frames more 

suited to the transit of IoT device traffic. 

Since a number of layers (such as PPPOE tunnelling) and component stacks (such as 

Broadband Access Services) are removed, there is less requirement for authentication and 

authorisation across junctions between these layers. This has potential for much savings in 

Opex and Capex through reduced equipment plant in the metro and access networks. With 

less layers (such as PPPoE tunnelling) and component stacks (such as Broadband Access 

Services), the requirement for cross-layer authentication and authorization is greatly 

reduced. In addition, the FLATLANd architecture provides a separation between the 

provision of infrastructure, network services and Internet services by distinct entities, 

potentially enhancing efficiency of use of resources.  

We conclude that SDN has facilitated the separation of Telecommunications networks into 

a domain constrained by physics (data plane) and a domain liberated by software 

engineering (control plane). Together, they have enabled fresh approaches to the provision 

of network services. Whilst the initial results for SDN base Telecommunications networks 

are positive, the bridge between proof of concept and production solutions will require rigour 

of defining adequate use cases for regression and future network services. The level of 

adequacy will prevent over-simplification which could lead to poor solutions.  

10.1  Recommendations for future work 

The following are selected recommendations for future work. 
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NSIM Enhancements.  

 NSIM has been developed and employed to test specific scenarios outlined in this 

paper. However, NSIM is a generic simulator which can be enhanced in a number 

of directions. NSIM has a functional TCP protocol implementation which is a rare 

example of an implementation written as part of a Python based simulator. While 

the implementation follows the standards, it can be enhanced to include other 

features, such as Window Scaling, that appear in the Linux kernel. This would make 

NSIM of interest to wider community users.  

 The base Duplex block has been sub-classed to implement network blocks such as 

switches and routers, as well as physical layer components such as transmission 

lines. NSIM can be enhanced to include other physical (optical) layer characteristics 

within DWA’s, EDFA’s and Optical switches. This would allow NSIM to simulate 

realistic, full stack networks.  

 

Network convergence 

Within this thesis, we evaluated the effects of SDN, separately, on the two distinct layers -

converged network and flat layer two.   It was not possible to fully evaluate both SDN 

controlled layers working together. However, the combination of converged network, flat 

layer two and IP-less network could provide ubiquitous high speed resilient network 

(converged network), open access granular services (FLATLANd) and protocol efficiency 

(TCPoE). A common SDN controller for these layers could provide more insight into 

customer demand and service quality. A study would compare the performances of existing 

networks and further converged architectures. 
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Chapter 12 Appendix 

Glossary 

ABNO Application Based Network Operations 

ACK Acknowledgment (packet) 

API Application Programme Interface 

ARP Address Resolution Protocol 

ATM Asynchronous Transfer Mode 

BGP Border Gateway Protocol 

B-RAS Broadband Access Server 

CAC Call Admission Control 

CD Continuous Delivery 

CBR Constant Bit Rate 

DAE Digital Agenda Europe 

DARPA Defence Advanced Research Projects Agency 

DISCUS Distributed Core for unlimited bandwidth supply for all users and services 

DSCP DiffServ Code Point 

DWA Dynamic Wavelength Assignment 

DWDM Dense Wave Division Multiplexing 

EU European Union 

FPGA Field Programmable Gate Array 

FTP File Transfer Protocol 

FTTH Fibre to the Home 

GENI Global Environment for Network Innovations 

HTTP Hypertext Transfer Protocol 

IEEE Institute of Electronic and Electrical Engineers  

IETF Internet Engineering Task Force 

IETF Internet Engineering Task Force 

IP Internet Protocol 

JSON JavaScript Object Notation 
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LR-PON Long Reach Passive Optical Network 

MPLS Multiprotocol Label Switching 

MPLS Multiprotocol Label Switching 

MTU Message Transfer Unit 

NAT Network Address Translation 

NFV Network Function Virtualisaion 

NNI Network to Network Interface 

NSF National Science Foundation 

OLT Optical Network Termination 

ONF Open Network Foundation 

ONU Optical Network Unit 

OSI Open Standards Institute 

OSPF Open Shortest Path First 

PCE Path Computation Element 

PCEP PCE protocol 

POTS Plain Old Telephone Service 

QoS Quality of Service 

RAM Random Access Memory 

RFC Request For Comment 

RFC Request For Comment 

RTT Round Trip Time 

SDN Software Defined Networks 

SDN Software Defined Networks 

SFP Small Form Factor 

SMTP Simple Mail Transfer Protocol 

SQL Structured Query Language 

SSH Secure Shell 

TCAM Ternary Content Addressable Memory 

TCP Transmission Control Protocol 

TDD Test Driven Development 
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TDM Time Division Multiplexing 

TED Transmission Database 

UBR Unspecified Bit Rate 

UDP User Datagram Protocol 

UNI User Network Interface 

VBR Variable Bit Rate 

VLAN Virtual Local Area Network 

VOIP Voice over IP 

VPN Virtual private network 

VPN Virtual private network 

XFP Extended Form Factor 

XML Extended Mark-up language  
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FGPA 1 

TCAM 

The following is a description of TCAM is programmed on the FGPA. The upstream and 

downstream systems work in a similar way but are both programmed separately. Both are 

programmed via the OLT.  

 

Both downstream and upstream appear to be working from my tests but until you get a full 

scenario working I won't know for sure how you want to use it. A very simple pseudo code 

version of what happens is the following 

 

Downstream: Data_in is packet from backplane Data_out is packet heading to PON. 

ONU_out is the ONU on PON to address data to. (Ref) 

 

 
Figure 80 - Downstream TCAM 

 
As can be seen, any packets that don't match a CAM rule are passed through unchanged. 

However if a CAM rule is found to match the MAC address is rewritten. If multiple CAM 

rules are found to match the last one is used. I.e. if rule 0 and rule 15 match then rule 15 

will apply. 
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Upstream US is very similar to downstream except that source XGEM can now be used as 

a matching criteria together with destination MAC (Ref) 

 

 

 
Figure 81 - Upstream TCAM 

Controls 
 
0xc020 = enable mac rewrite 
0xc021 = LSB MAC to be replaced 
0xc022 = MSB MAC to be replaced 
0xc023 = LSB new MAC 
0xc024 = MSB new MAC 
0xc025 = corresponding xgem label (can be applied DS -since we have one ONU it is not 
necessary however it will be used US to map real to pseudo) 
0xc026 = command 16bit <4 bit unused> <4 bit CAM address><6bit unused><1 bit line active><1 
bit  replace xgem DS > 
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When enabled any incoming packet with matching MAC will be replaced with new MAC 

address and if replace xgem option is set the Xgem address is also changed. Since in the 

test, there is only one ONU this isn't important. Any packets that do not match any of the 16 

rules will pass through unaffected 

 

Where a frame has a  destination mac address of, for instance, 11:22:33:44:55:66 and we 

want to be mapped to aa:bb:cc:dd:ee:ff and xgem/alloc_id 0004. The following commands 

are issued : 

 
wc021:33445566 
wc022:1122 
wc023:ccddeeff 
wc024:aabb 
wc025:0004 
wc026:0003 // address 0, enable line of cam(1bit), enable xgem rewrite (1 bit), 
 
// The above will do nothing until the whole system is enabled 
wc020:1 // enable the mac switch feature 
 
Now if a second line is added to the cam to rewrite 12:34:56:78:90:ab to 10:20:30:40:50:60 

and no modification to xgem. Since CAM line zero is full we put this in cam line 1 

 
wc021:567890ab 
wc022:1234 
wc023:30405060 
wc024:1020 
wc025:0006 // value here will not be used 
wc026:0102 // address 0, disable xgem rewrite, enable line 1 of cam 
 
Finally to delete any line of the cam simply write to c026 with  the address of cam line and 

command 0 

 
so to delete line 1 
wc026:0100 
 
The US registers are identical only the address is at 20 - 26 instead of c020-c026. So US 

enable for example would be w20:1. 

 

Context for TCAM + tests  

 

FPGA 1 

  if(DS_mac_rewrite_enabled) then 
      if MAC_rewrite_cam (data_in_destination_MAC) !=0 then 
         // MAC found in came 
         data_out = new_mac from CAM 
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         if(rewrite_ONU_ID enabled for CAM line then 
           // This system is being used to choose between ONUS 
           onu_out = new onu_ID from CAM 
         else 
            // ONU_ID feature not being used 
           onu_out = default 
      end if 
      else 
         // no match in CAM so packet remains unchanged 
        data_out = data_in 
        onu_out = default 
     end if  
  else 
    // rewrite system is not enabled so bypass system 
    Data_out = Data_IN 
    onu_out = default 
end if 

FPGA 2 

  if(US_mac_rewrite_enabled) then 
      if MAC_rewrite_cam (data_in_destination_MAC) !=0 then 
         // MAC found in CAM 
         if XGEM_match_enabled then 
            // XGEM match requested 
            if xgem_cam == xgem_data_in then 
               // MAC and XGEM match successful rewrite data 
               data_out = new_mac from CAM 
            else 
               // MAC match successful but no XGEM match 
               // NO match found in CAM 
               data_out = data_in 
           end if 
         else 
            // XGEM match not needed to rewrite MAC address 
            data_out = new_mac from CAM 
        end if 
      else 
         // no match in CAM so packet remains unchanged 
        data_out = data_in 
       end if 
  else 
    // rewrite system is not enabled so bypass system 
    Data_out = Data_IN 
end if 
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Internet Statistics 

 UK (2015) UK (2020) 

Internet users 56 62 

Devices per person 5.7 devices  

Average fixed broadband 

(Mbps) 

24.7 51.3 

Average Wi-Fi speeds 

(Mbps) 

17.4 35 

Internet Traffic per month 

per user (GB) 

40 93.9 

IP Traffic per annum per 

user (GB) 

45 113 

Internet Traffic per annum 

per user (GB) 

35 100 

Internet Traffic per month 

per House (GB) 

84.5 202.1 

average FTTx Internet 

household per month (GB) 

 608.5 (203.2% more than 

other broadband households) 

 

Devices (M) 368.3 660.3 

Consumer IP VOD traffic, 

per month 

514 Petabytes per month 

(18% of Internet traffic, 

21% of consumer IP 

traffic) 

745 Petabytes per month 

(10% of Internet traffic, 12% 

of consumer IP traffic) 

Consumer Internet Video, 

per month (ExaBytes) 

1.3 4.7 

Consumer Fixed Internet 

per Month (ExaBytes) 

1.9 

(77% of Consumer IP 

traffic, 65% of total IP 

traffic) 

5.2 (81% of Consumer IP 

traffic, 68% of total IP traffic) 

Consumer IP traffic per 

Month (ExaBytes) 

2.5 (85% of total IP traffic) 6.4 (85% of total IP traffic) 

Fixed/Wired IP traffic per 

month (Exabytes) 

1.4 (49% of IP traffic, 37% 

of total internet traffic) 

2.5 (33% of IP traffic, 25% of 

Internet traffic) 
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Fixed/Wifi IP traffic per 

month (Exabytes) 

1.4 (48% of IP traffic, 59% 

of Internet traffic) 

4.5 (59% of IP traffic, 66% of 

Internet traffic) 

IP traffic per month 

(Exabytes) 

2.9  7.6  

Average Internet traffic 5 Tbps 20Tbps (2.9 fold increase) 

Busy Hour Internet traffic 21 Tbps 117 Tbps (4.5 fold increase) 

Internet Video per month  121 Bn Minutes 

Internet Video traffic per 

month (Exabytes) 

1.5  5.4  

Gaming Traffic per month 

(Exabytes) 

1.5  5.4  

Table 18 - Internet Statistics 

  



Chapter 1.  

151 
 

Definitions 

Transponders 

Transponders are devices that provide bidirectional conversion from one optical wavelength 

to another, typically from/to a grey (1300 nm) optical signal to a DWDM-band (1500 nm) 

specific wavelength optical signal. Transponders can be considered as two back-to-back 

transceivers. The (grey) client side interface typically has limited reach (e.g. up to 2km, 

40km, or 80 km), whereas the line side interface typically has longer reach (e.g. 200km, 

500km or 2000 km) given the appropriate amplification  

Transceivers provide full-duplex conversion from/to an electrical signal to/from an optical 

signal. They are typically commercially available in standardized enclosures such as SFP 

(1G) and XFP (10G), XENPAK (10G), CFP (100G) 

TCP 

TCP 793 . TCP (Transmission Control Protocol) is a network communications transport 

protocol that provides a number of services for application and higher layers in the TCP/IP 

network architecture stack  . It is one of the dominant transport protocols that use the IP 

network layer to provide a logical end to end transport service for application data. The 

alternative to TCP is UDP (User Datagram Protocol). While UDP is a lightweight 

connectionless protocol that does not preserve state nor sequence between protocol 

packets, TCP provides a guarantee that a stream of bytes sent from the sender application 

on one host is delivered reliably and in the same order to the receiver application on the 

other host to the application layer. The key features that set TCP apart from UDP include 

Retransmission of lost packets, Ordered data transfer, Error-free data transfer, Congestion 

control, Flow control. Examples of applications that rely on the robust transmission 

characteristics of TCP include SMTP, HTTP, SSH and FTP. Examples of applications that 

avail of the alternative more lightweight characteristics of UDP include VoIP (Voice over IP) 

and Video Streaming. UDP based applications either do not require guaranteed delivery of 

packets and thereby survive packet-loss, or they provide their own equivalent of a stateful 

transmission protocol within the application layer. The implication being that there are 

characteristics of TCP which have undesirable performance overhead or latency, since TCP 

waits for retransmissions of lost messages or reorder out-of –order messages. TCP is a 

bidirectional protocol which allows two hosts to transmit data in packets asynchronously to 

each other. For each packet is sent from one host, an acknowledgement (ACK) packet must 

be received. The ACK packet indicates the next sequence number that the remote host is 

expecting. Congestion episode occurs if there are three duplicate acknowledgments or after 

a timeout.  

Quality of Service 

QoS (Quality of Service) refers to the quality of transmission through a Network System 

such as a Metro Node. Typical QoS parameters are level of throughput, packet loss, packet 
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delay, jitter and amount of errors induced [79]. Each of these is an indicator of underlying 

issues related to design, configuration or presence of faults. Bandwidth and throughput 

indicate the number of packets that flow through a network every second. The type of media 

guide that carries the traffic as well as configuration (for example, clock speed) of a 

terminating port interface have significant bearing on the throughput.  Faulty terminations, 

reflections or a mismatch between packet MTU sizes between terminating interfaces 

increases packet discards, errors (for example, the Bit Error Rate) and as a consequence 

the Packet loss ratio. Packet Delay or latency is the average or maximum delay in sending 

packets in a single direction, or round-trip.  Jitter is the level of lack of stability in the packet 

delay, which can have a detrimental effect on real-time applications such as VOIP (voice-

over-ip). 

Class of Service 

CoS (Class of Service) is the mechanism by which upper layer protocols and applications 

direct how the lower network layers should carry or handle traffic. In contrast to QoS which 

is a finely grained traffic control mechanism. CoS is a coarsely-grained traffic control which 

scales better as a network grows in size and complexity. CoS  aggregates a group of flows 

which are similar in characteristics such as bulk data transfer, video streaming or sporadic 

email traffic, and assigns a set of class-specific rules to each traffic type. The delivery time 

and bandwidth assigned to a traffic type is not guaranteed and is offered on a best-effort 

basis.  Class of Service is alternatively called Type of Service. There are a number of 

examples of how Telco grade services and IETF RFC related services define Class of 

Service [129]. The parameters used by ATM (Asynchronous Transfer Mode) to distinguish 

different classes of service include VBR (Variable Bit Rate), CBR (Constant Bit Rate), 

Available Bit Rate, Guaranteed Bit Rate and UBR (Unspecific Bit Rate). UBR is alternatively 

called Best Effort [130]. IEEE proposed the 802.1p Layer 2 Tagging which uses a 3-bit field 

called the Priority Code Point (PCP) within an Ethernet frame header when using VLAN 

tagged frames as defined by IEEE 802.1Q. It specifies a priority value of between 0 and 7 

inclusive that can be used by QoS disciplines to differentiate traffic. The IETF Type of 

Service field (ToS) field is a six-bit Differentiated Services Code Point (DSCP) field and a 

two-bit Explicit Congestion Notification (ECN) field in the IPv4 header While DiffServ is 

somewhat backwards compatible with ToS, ECN is not. The ToS field can be used to specify 

a datagram's priority and request a route for low-delay, high-throughput, or highly-reliable 

service. Based on the ToS values, a packet would be placed in a prioritized outgoing queue 

or take a route with appropriate latency, throughput, or reliability. In general, the type of 

service (ToS) field has been defined in different ways RFCs and in practice, the it has not 

been widely beyond experimental networks. 

Comreg 
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Comreg is the regulator for electronic communication (telecommunications, radio 

communications and broadcasting) and postal sectors in ireland. Further to Regulation No. 

2887/2000 of 18 December 2001 of the European Parliament and of the Council on 

unbundled access to the local loop, Comreg was set up through the 2002 Communications 

Regulation Act, replacing the previous Office of the Director of Telecommunications 

Regulation (ODTR). Section 12 of the Act details Comreg's objectives with regards to 

electronic communications, that is, to promote competition, to contribute to the development 

of the internal market, and to promote the interests of users within the Community. 
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